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Introduction

Overall Plan

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies
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Introduction

Plan for this Lecture

I Projective parsing
I Exact higher-order parsing
I Approximations

I Non-projective parsing
I NP-completeness
I Exact higher-order parsing
I Approximations
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Introduction

Graph-Based Parsing Trade-Off
[McDonald and Nivre 2007]

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

The major question in graph-based parsing has been how to
increase scope of features to larger subgraphs,

without making inference intractable.

Advanced Graph-Based Parsing Techniques 4(33)



Exact Higher-Order Projective Parsing

Higher-Order Parsing

I Two main dimensions of higher-order features
I Vertical: e.g., “remain” is the grandparent of “emeritus”
I Horizontal: e.g., “remain” is first child of “will”
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Exact Higher-Order Projective Parsing

Higher-Order Projective Parsing

I Easy – just modify the chart
I Usually asymptotic increase with each order modeled
I But we have a bag of tricks that help
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Exact Higher-Order Projective Parsing

2nd-Order Horizontal Projective Parsing

I Score factors by pairs of horizontally adjacent arcs

I Often called sibling dependencies

I s(i , j , j ′) = score of adjacent arcs xi → xj and xi → xj ′

s(T ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

= . . . + s(i0, i1, i2) + s(i0, i2, i3) + . . . + s(i0, ij−1, ij ) +

s(i0, ij+1, ij+2) + . . . + s(i0, im−1, im) + . . .
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Exact Higher-Order Projective Parsing

2nd-Order Horizontal Projective Parsing

I Add a sibling chart item to get to O(n3)

i j j j’

ji
j

j’

i
j’

j j’i

s(i, j, j’)
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Exact Higher-Order Projective Parsing

Higher-Order Projective Parsing

I People played this game since 2006
I McDonald and Pereira [2006] (2nd-order sibling)
I Carreras [2007] (2nd-order sibling and grandparent)
I Koo and Collins [2010] (3rd-order grand-sibling and tri-sibling)
I Ma and Zhao [2012] (4th-order grand-tri-sibling+)
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Approximate Higher-Order Projective Parsing

Exact Higher-Order Projective Parsing

I Can be done via chart augmentation
I But there are drawbacks

I O(n4), O(n5), . . . is just too slow
I Every type of higher order feature requires specialized chart

items and combination rules

I Led to research on approximations
I Bohnet [2010]: feature hashing, parallelization
I Koo and Collins [2010]: first-order marginal probabilities
I Bergsma and Cherry [2010]: classifier arc filtering
I Cascades

I Rush and Petrov [2012]: structured prediction cascades
I He et al. [2013]: dynamic feature selection

I Zhang and McDonald [2012], Zhang et al. [2013]: cube-pruning
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Approximate Higher-Order Projective Parsing

Structured Prediction Cascades
[Rush and Petrov 2012]

I Lower-order models prune space for higher order models

I Weiss et al. [2010]: train level n w.r.t. to level n + 1
I Vine-parsing allows linear first stage [Dreyer et al. 2006]

I 100X+ faster than unpruned 3rd-order model with small
accuracy loss (93.3→93.1) [Rush and Petrov 2012]
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Approximate Higher-Order Projective Parsing

Cube Pruning
[Zhang and McDonald 2012, Zhang et al. 2013]

I Keep Eisner O(n3) as back bone
I Use chart item k-best lists to score higher order features

i0 i1 i2

i0 i1 i2

i0 i1 i2

i3 i4 i5

i3 i4 i5

i3 i4 i5

i0 → i5
s(i0 → i5 → i4)

s(i0 → i5 → i3)

Example:
Grandparent features

I Always O(n3) asymptotically
I No specialized chart parsing algorithms
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Approximate Higher-Order Projective Parsing

Projective Parsing Summary

I Can augment chart (dynamic program) to increase scope of
features but comes at complexity cost

I Solution: use pruning approximations

En-UAS Zh-UAS

1st order exact 91.8 84.4
2nd order exact 92.4 86.6
3rd order exact∗ 93.0 86.8
4th order exact† 93.4 87.4

struct. pred. casc.‡ 93.1 –
cube-pruning? 93.5 87.9

∗[Koo and Collins 2010], †[Ma and Zhao 2012], ‡[Rush and Petrov 2012], ?[Zhang et al. 2013]

Cube-pruning is 2x slower than structured prediction cascades and 5x faster than third-order
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Higher-Order Non-Projective Parsing

Higher-Order Non-Projective Parsing

I McDonald and Satta [2007]:
I Parsing is NP-hard for all

higher-order features
I Horizontal, vertical, valency, etc.
I Even seemingly simple arc features like “Is this the only

modifier” result in intractability
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Higher-Order Non-Projective Parsing

What to do?

I Exact non-projective parsing
I Integer Linear Programming

[Riedel and Clarke 2006, Martins et al. 2009]
I Intractable in general, but efficient optimizers exact
I Higher order parsing: asymptotic increase in constraint set size

I Approximations (some return optimal in practice)
I Approximate inference: T ∗ = argmax T∈Gx s(T )

I Post-processing [McDonald and Pereira 2006],
[Hall and Novák 2005], [Hall 2007]

I Dual Decomposition
I Belief Propagation [Smith and Eisner 2008]
I LP relaxations [Riedel et al. 2012]
I Sampling [Nakagawa 2007]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T )

I Mildly non-projective structures
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Assume a 2nd-order sibling model:

s(T ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

T ∗ = argmax
T

s(T )

I Computing T* is hard, so let us try something simpler:

s(Di ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

D∗i argmax
Di

s(Di )

I The highest scoring sequence of dependents for each word xi

can be computed in O(n) time using a semi-Markov model
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For each word xi , find D∗i :

ROOT What did economic news have little effect on

root

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

aux
nsubj dobjprep

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

pobj

put it together

ROOT What did economic news have little effect on

aux
nsubjamod dobjprep

amod
root

pobj
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Why does this not work? No tree constraint!

ROOT What did economic news have little effect on

root

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

aux
nsubj dobj [

ROOT What did economic news have little effect on
amod [

ROOT What did economic news have little effect on

prep

put it together

ROOT What did economic news have little effect on

aux
nsubjamod dobjprep

amod
root

pobj

prep
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I First-order O(n2) model with tree constraint exists
I MST algorithm [Chu and Liu 1965, Edmonds 1967]

I Second-order O(n3) model without tree constraint exists
I The O(n3) sibling decoding algorithm

I Dual Decomposition [Koo et al. 2010]

I Add components for each feature
I Independently calculate each efficiently
I Tie together with agreement constraints (penalties)
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:

I s1o(T ) be the first-order score of a tree T
I T1o = argmaxT∈Gx

s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I What we really want to find is

T = argmax
T∈Gx

s1o(T ) + sso(T )
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:
I s1o(T ) be the first-order score of a tree T

I T1o = argmaxT∈Gx
s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I This is equivalent to:

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G )

s.t. t1o(i , j) = g2o(i , j), ∀ i , j ≤ n
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration
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Approximate Higher-Order Non-Projective Parsing
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What are the penalties p?
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Let p(i , j) = t1o(i , j)− g2o(i , j)

I p is the set of all penalties p(i , j)

I We rewrite the decoding objectives as:

T1o = argmax
T∈Gx

s1o(T )−
∑
i ,j

p(i , j)× t1o(i , j)

G2o = argmax
G∈Gx

s2o(G ) +
∑
i ,j

p(i , j)× g2o(i , j)

I Reward trees/graphs that agree with other model

I Since t1o and g2o are arc-factored indicator variables, we can
easily include in decoding

I s(i , j) = s(i , j)− p(i , j) for first-order model
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Approximate Higher-Order Non-Projective Parsing
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition – 1-iter Example

First-order

ROOT0 What1 did2 economic3 news4 have5 little6 effect7 on8

aux
nsubjamod dobjprep

amod
root

pobj

Second-order sibling

ROOT0 What1 did2 economic3 news4 have5 little6 effect7 on8

aux
nsubjamod dobjprep

amod
root

pobj

prep

penalties: p(5, 3) = 1, p(4, 3) = −1, p(7, 8) = −1

first-order: s1o(5, 3) −= 1, s1o(4, 3) += 1, s1o(7, 8) += 1

second-order: s2o(5, ∗, 3) += 1, s2o(4, ∗, 3) −= 1, s2o(7, ∗, 8) −= 1

*Indicates any sibling, even null if it is first left/right modifier.
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Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

Goal : (T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T )+sso(G ), s.t. t1o(i , j) = g2o(i , j)

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o (T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o (T ) + p // second-order decoding

3. if t1o (i, j) = g2o (i, j), ∀ i, j , return T1o

4. else Update penalties p and go to 1

I Penalties push scores towards agreement

I Theorem: If for any k, line 3 holds, then decoding is optimal
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Dual Decomposition

I Koo et al. [2010]: grandparents, grand-sibling, tri-siblings

I Martins et al. [2011, 2013]: arbitrary siblings, head bigrams

UAS

1st order 90.52
2nd order 91.85
3rd order 92.41

[Martins et al. 2013]
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Mildly Non-Projective Structures

I Dual decomposition approximates search over entire space
I T = argmax T∈Gx s(T )

I Another approach is to restrict search space
I T = argmaxT∈Gx

s(T )
1. Allow efficient decoding
2. Still cover all linguistically plausible structures

I Do we really care about scoring such structures?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

aux
aux

auxaux

aux
aux

aux
aux

auxaux

aux

aux

aux
aux

aux aux

Advanced Graph-Based Parsing Techniques 26(33)



Approximate Higher-Order Non-Projective Parsing

Mildly Non-Projective Structures

I Dual decomposition approximates search over entire space
I T = argmax T∈Gx s(T )

I Another approach is to restrict search space
I T = argmaxT∈Gx

s(T )
1. Allow efficient decoding
2. Still cover all linguistically plausible structures

I Do we really care about scoring such structures?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

aux
aux

auxaux

aux
aux

aux
aux

auxaux

aux

aux

aux
aux

aux aux

Advanced Graph-Based Parsing Techniques 26(33)



Approximate Higher-Order Non-Projective Parsing

Mildly Non-Projective Structures

I Dual decomposition approximates search over entire space
I T = argmax T∈Gx s(T )

I Another approach is to restrict search space
I T = argmaxT∈Gx

s(T )
1. Allow efficient decoding
2. Still cover all linguistically plausible structures

I Do we really care about scoring such structures?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

aux
aux

auxaux

aux
aux

aux
aux

auxaux

aux

aux

aux
aux

aux aux

Advanced Graph-Based Parsing Techniques 26(33)
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Mildly Non-Projective Structures

I Well-nested block-degree 2 [Bodirsky et al. 2005]

I LTAG-like algorithms: O(n7)∗ [Gómez-Rodŕıguez et al. 2011]
I + 1-inherit: O(n6) [Pitler et al. 2012]

I Empirical coverage identical to well-nested block-degree 2

I + Head-split: O(n6) [Satta and Kuhlmann 2013]

I Empirical coverage similar to well-nested block-degree 2

I + Head-split + 1-inherit: O(n5) [Satta and Kuhlmann 2013]

I Gap Minding Trees: O(n5) [Pitler et al. 2012]

I 1-Endpoint-Crossing: O(n4) [Pitler et al. 2013]

∗All run-times are for first-order parsing
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1-Endpoint-Crossing [Pitler et al. 2013]

I An arc A, is 1-endpoint-crossing iff all arcs A′ that cross A
have a common endpoint p

I An endpoint p is either a head or a modifier in an arc

I E.g., (arrived, What) is crossed by (ROOT,think) and (think,?),
both have endpoint ‘think’

ROOT What do you think arrived ?

aux

auxaux aux

aux
aux
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1-Endpoint-Crossing

I Can we design an algorithm that parses all and only
1-endpoint-crossing trees?

I Pitler et al. [2013] provides the solution

I Pitler’s algorithm works by defining 5 types of intervals

i j

Interval representing a 
contiguous sub-tree from i to j

Only edges with 
endpoint at left may 
cross exterior point p

Both

Neither

Only edges with 
endpoint at right may 
cross exterior point p

i j i j

i ji j

p p

p p

I Location of exterior point, direction of arcs, etc, controlled via
variables, similar to Eisner [1996] projective formulation
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1-Endpoint-Crossing

I On CoNLL-X data sets [Buchholz and Marsi 2006]

Class Tree coverage Run-time

Projective 80.8 O(n3)
Well-nested block-degree 2 98.4 O(n7)

Gap-Minding 95.1 O(n5)
1-Endpoint-Crossing 98.5 O(n4)

[Pitler et al. 2013]

Macro average over Arabic, Czech, Danish, Dutch, Portuguese
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1-Endpoint-Crossing

I Good empirical coverage and low run-time

I Can be linguistically motivated [Pitler et al. 2013]

der mer em Hans es huus hälfed aastriiche

aux
nsubj

amod

prep

amod

root

I Phrase-impenetrability condition (PIC) [Chomsky 1998]

I Only head and edge words of phrase accessible to sentence
I Long-distance elements leave chain of traces at clause edges
I Pitler et al. [2013] conjecture: PIC implies 1-endpoint-crossing
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1-Endpoint-Crossing

I Pitler [2014]: 1-endpoint-crossing + third-order
I Merge of Pitler et al. [2013] and Koo and Collins [2010]
I Searches 1-endpoint-crossing trees
I Scores higher-order features when no crossing arc present
I O(n4) – identical to third-order projective!
I Significant improvements in accuracy
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Coming Up Next

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies
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