
Advanced Graph-Based Parsing Techniques

Joakim Nivre

Uppsala University
Linguistics and Philology

Based on previous tutorials with Ryan McDonald

Advanced Graph-Based Parsing Techniques 1(33)



Introduction

Overall Plan

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Advanced Graph-Based Parsing Techniques 2(33)



Introduction

Plan for this Lecture

I Projective parsing
I Exact higher-order parsing
I Approximations

I Non-projective parsing
I NP-completeness
I Exact higher-order parsing
I Approximations

Advanced Graph-Based Parsing Techniques 3(33)



Introduction

Graph-Based Parsing Trade-Off
[McDonald and Nivre 2007]

I Learning and inference are global
I Decoding guaranteed to find highest scoring tree
I Training algorithms use global structure learning

I But this is only possible with local feature factorizations
I Must limit context statistical model can look at
I Results in bad ‘easy’ decisions

The major question in graph-based parsing has been how to
increase scope of features to larger subgraphs,

without making inference intractable.

Advanced Graph-Based Parsing Techniques 4(33)



Exact Higher-Order Projective Parsing

Higher-Order Parsing

I Two main dimensions of higher-order features
I Vertical: e.g., “remain” is the grandparent of “emeritus”
I Horizontal: e.g., “remain” is first child of “will”

Advanced Graph-Based Parsing Techniques 5(33)



Exact Higher-Order Projective Parsing

Higher-Order Projective Parsing

I Easy – just modify the chart
I Usually asymptotic increase with each order modeled
I But we have a bag of tricks that help

Advanced Graph-Based Parsing Techniques 6(33)



Exact Higher-Order Projective Parsing

2nd-Order Horizontal Projective Parsing

I Score factors by pairs of horizontally adjacent arcs

I Often called sibling dependencies

I s(i , j , j ′) = score of adjacent arcs xi → xj and xi → xj ′

s(T ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

= . . . + s(i0, i1, i2) + s(i0, i2, i3) + . . . + s(i0, ij−1, ij ) +

s(i0, ij+1, ij+2) + . . . + s(i0, im−1, im) + . . .

Advanced Graph-Based Parsing Techniques 7(33)



Exact Higher-Order Projective Parsing

2nd-Order Horizontal Projective Parsing

I Add a sibling chart item to get to O(n3)

i j j j’

ji
j

j’

i
j’

j j’i

s(i, j, j’)

Advanced Graph-Based Parsing Techniques 8(33)



Exact Higher-Order Projective Parsing

Higher-Order Projective Parsing

I People played this game since 2006
I McDonald and Pereira [2006] (2nd-order sibling)
I Carreras [2007] (2nd-order sibling and grandparent)
I Koo and Collins [2010] (3rd-order grand-sibling and tri-sibling)
I Ma and Zhao [2012] (4th-order grand-tri-sibling+)

h m h ms

g mh

HORIZONTAL CONTEXT

V
E

R
TI

C
A

L 
C

O
N

TE
X

T

* From Koo et al. 2010 presentation

h mss’

g mh s

1

1

2

32

O(n3) O(n3)

O(n4) O(n4)

O(n4)

h mss’

O(n5)g

Advanced Graph-Based Parsing Techniques 9(33)



Approximate Higher-Order Projective Parsing

Exact Higher-Order Projective Parsing

I Can be done via chart augmentation
I But there are drawbacks

I O(n4), O(n5), . . . is just too slow
I Every type of higher order feature requires specialized chart

items and combination rules

I Led to research on approximations
I Bohnet [2010]: feature hashing, parallelization
I Koo and Collins [2010]: first-order marginal probabilities
I Bergsma and Cherry [2010]: classifier arc filtering
I Cascades

I Rush and Petrov [2012]: structured prediction cascades
I He et al. [2013]: dynamic feature selection

I Zhang and McDonald [2012], Zhang et al. [2013]: cube-pruning

Advanced Graph-Based Parsing Techniques 10(33)



Approximate Higher-Order Projective Parsing

Exact Higher-Order Projective Parsing

I Can be done via chart augmentation
I But there are drawbacks

I O(n4), O(n5), . . . is just too slow
I Every type of higher order feature requires specialized chart

items and combination rules

I Led to research on approximations
I Bohnet [2010]: feature hashing, parallelization
I Koo and Collins [2010]: first-order marginal probabilities
I Bergsma and Cherry [2010]: classifier arc filtering
I Cascades

I Rush and Petrov [2012]: structured prediction cascades
I He et al. [2013]: dynamic feature selection

I Zhang and McDonald [2012], Zhang et al. [2013]: cube-pruning

Advanced Graph-Based Parsing Techniques 10(33)



Approximate Higher-Order Projective Parsing

Structured Prediction Cascades
[Rush and Petrov 2012]

I Lower-order models prune space for higher order models

I Weiss et al. [2010]: train level n w.r.t. to level n + 1
I Vine-parsing allows linear first stage [Dreyer et al. 2006]

I 100X+ faster than unpruned 3rd-order model with small
accuracy loss (93.3→93.1) [Rush and Petrov 2012]

Advanced Graph-Based Parsing Techniques 11(33)



Approximate Higher-Order Projective Parsing

Cube Pruning
[Zhang and McDonald 2012, Zhang et al. 2013]

I Keep Eisner O(n3) as back bone
I Use chart item k-best lists to score higher order features

i0 i1 i2

i0 i1 i2

i0 i1 i2

i3 i4 i5

i3 i4 i5

i3 i4 i5

i0 → i5
s(i0 → i5 → i4)

s(i0 → i5 → i3)

Example:
Grandparent features

I Always O(n3) asymptotically
I No specialized chart parsing algorithms

Advanced Graph-Based Parsing Techniques 12(33)



Approximate Higher-Order Projective Parsing

Projective Parsing Summary

I Can augment chart (dynamic program) to increase scope of
features but comes at complexity cost

I Solution: use pruning approximations

En-UAS Zh-UAS

1st order exact 91.8 84.4
2nd order exact 92.4 86.6
3rd order exact∗ 93.0 86.8
4th order exact† 93.4 87.4

struct. pred. casc.‡ 93.1 –
cube-pruning? 93.5 87.9

∗[Koo and Collins 2010], †[Ma and Zhao 2012], ‡[Rush and Petrov 2012], ?[Zhang et al. 2013]

Cube-pruning is 2x slower than structured prediction cascades and 5x faster than third-order

Advanced Graph-Based Parsing Techniques 13(33)



Higher-Order Non-Projective Parsing

Higher-Order Non-Projective Parsing

I McDonald and Satta [2007]:
I Parsing is NP-hard for all

higher-order features
I Horizontal, vertical, valency, etc.
I Even seemingly simple arc features like “Is this the only

modifier” result in intractability

Advanced Graph-Based Parsing Techniques 14(33)



Higher-Order Non-Projective Parsing

What to do?

I Exact non-projective parsing
I Integer Linear Programming

[Riedel and Clarke 2006, Martins et al. 2009]
I Intractable in general, but efficient optimizers exact
I Higher order parsing: asymptotic increase in constraint set size

I Approximations (some return optimal in practice)
I Approximate inference: T ∗ = argmax T∈Gx s(T )

I Post-processing [McDonald and Pereira 2006],
[Hall and Novák 2005], [Hall 2007]

I Dual Decomposition
I Belief Propagation [Smith and Eisner 2008]
I LP relaxations [Riedel et al. 2012]
I Sampling [Nakagawa 2007]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T )

I Mildly non-projective structures

Advanced Graph-Based Parsing Techniques 15(33)



Higher-Order Non-Projective Parsing

What to do?
I Exact non-projective parsing

I Integer Linear Programming
[Riedel and Clarke 2006, Martins et al. 2009]

I Intractable in general, but efficient optimizers exact
I Higher order parsing: asymptotic increase in constraint set size

I Approximations (some return optimal in practice)
I Approximate inference: T ∗ = argmax T∈Gx s(T )

I Post-processing [McDonald and Pereira 2006],
[Hall and Novák 2005], [Hall 2007]

I Dual Decomposition
I Belief Propagation [Smith and Eisner 2008]
I LP relaxations [Riedel et al. 2012]
I Sampling [Nakagawa 2007]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T )

I Mildly non-projective structures

Advanced Graph-Based Parsing Techniques 15(33)



Higher-Order Non-Projective Parsing

What to do?
I Exact non-projective parsing

I Integer Linear Programming
[Riedel and Clarke 2006, Martins et al. 2009]

I Intractable in general, but efficient optimizers exact
I Higher order parsing: asymptotic increase in constraint set size

I Approximations (some return optimal in practice)
I Approximate inference: T ∗ = argmax T∈Gx s(T )

I Post-processing [McDonald and Pereira 2006],
[Hall and Novák 2005], [Hall 2007]

I Dual Decomposition
I Belief Propagation [Smith and Eisner 2008]
I LP relaxations [Riedel et al. 2012]
I Sampling [Nakagawa 2007]

I Approximate search space: T ∗ = argmaxT∈Gx
s(T )

I Mildly non-projective structures

Advanced Graph-Based Parsing Techniques 15(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Assume a 2nd-order sibling model:

s(T ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

T ∗ = argmax
T

s(T )

I Computing T* is hard, so let us try something simpler:

s(Di ) =
∑

(i ,j):(i ,j ′)∈A

s(i , j , j ′)

D∗i argmax
Di

s(Di )

I The highest scoring sequence of dependents for each word xi

can be computed in O(n) time using a semi-Markov model

Advanced Graph-Based Parsing Techniques 16(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For each word xi , find D∗i :

ROOT What did economic news have little effect on

root

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

aux
nsubj dobjprep

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

pobj

put it together

ROOT What did economic news have little effect on

aux
nsubjamod dobjprep

amod
root

pobj

Advanced Graph-Based Parsing Techniques 17(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For each word xi , find D∗i :

ROOT What did economic news have little effect on

root

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

aux
nsubj dobjprep

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

pobj

put it together

ROOT What did economic news have little effect on

aux
nsubjamod dobjprep

amod
root

pobj

Advanced Graph-Based Parsing Techniques 17(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Why does this not work? No tree constraint!

ROOT What did economic news have little effect on

root

ROOT What did economic news have little effect on
amod

ROOT What did economic news have little effect on

aux
nsubj dobj [

ROOT What did economic news have little effect on
amod [

ROOT What did economic news have little effect on

prep

put it together

ROOT What did economic news have little effect on

aux
nsubjamod dobjprep

amod
root

pobj

prep

Advanced Graph-Based Parsing Techniques 18(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I First-order O(n2) model with tree constraint exists
I MST algorithm [Chu and Liu 1965, Edmonds 1967]

I Second-order O(n3) model without tree constraint exists
I The O(n3) sibling decoding algorithm

I Dual Decomposition [Koo et al. 2010]

I Add components for each feature
I Independently calculate each efficiently
I Tie together with agreement constraints (penalties)

Advanced Graph-Based Parsing Techniques 19(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I First-order O(n2) model with tree constraint exists
I MST algorithm [Chu and Liu 1965, Edmonds 1967]

I Second-order O(n3) model without tree constraint exists
I The O(n3) sibling decoding algorithm

I Dual Decomposition [Koo et al. 2010]

I Add components for each feature
I Independently calculate each efficiently
I Tie together with agreement constraints (penalties)

Advanced Graph-Based Parsing Techniques 19(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:

I s1o(T ) be the first-order score of a tree T
I T1o = argmaxT∈Gx

s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I What we really want to find is

T = argmax
T∈Gx

s1o(T ) + sso(T )

Advanced Graph-Based Parsing Techniques 20(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:
I s1o(T ) be the first-order score of a tree T

I T1o = argmaxT∈Gx
s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I What we really want to find is

T = argmax
T∈Gx

s1o(T ) + sso(T )

Advanced Graph-Based Parsing Techniques 20(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:
I s1o(T ) be the first-order score of a tree T

I T1o = argmaxT∈Gx
s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I What we really want to find is

T = argmax
T∈Gx

s1o(T ) + sso(T )

Advanced Graph-Based Parsing Techniques 20(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:
I s1o(T ) be the first-order score of a tree T

I T1o = argmaxT∈Gx
s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I What we really want to find is

T = argmax
T∈Gx

s1o(T ) + sso(T )

Advanced Graph-Based Parsing Techniques 20(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:
I s1o(T ) be the first-order score of a tree T

I T1o = argmaxT∈Gx
s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I What we really want to find is

T = argmax
T∈Gx

s1o(T ) + sso(T )

Advanced Graph-Based Parsing Techniques 20(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I For a sentence x = x1 . . . xn, let:
I s1o(T ) be the first-order score of a tree T

I T1o = argmaxT∈Gx
s1o(T )

I s2o(G ) be the second-order sibling score of a graph G
I G2o = argmaxG∈Gx

s2o(G)

I Define structural variables
I t1o(i , j) = 1 if (i , j) ∈ T1o , 0 otherwise
I g2o(i , j) = 1 if (i , j) ∈ G2o , 0 otherwise

I This is equivalent to:

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G )

s.t. t1o(i , j) = g2o(i , j), ∀ i , j ≤ n

Advanced Graph-Based Parsing Techniques 20(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

If K is reached, return T1o from last iteration

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

(T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T ) + sso(G ), s.t. t1o(i , j) = g2o(i , j)

Algorithm sketch

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o(T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o(T ) + p // second-order decoding

3. if t1o(i , j) = g2o(i , j), ∀ i , j , return T1o

4. else Update penalties p and go to 1

What are the penalties p?

Advanced Graph-Based Parsing Techniques 21(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Let p(i , j) = t1o(i , j)− g2o(i , j)

I p is the set of all penalties p(i , j)

I We rewrite the decoding objectives as:

T1o = argmax
T∈Gx

s1o(T )−
∑
i ,j

p(i , j)× t1o(i , j)

G2o = argmax
G∈Gx

s2o(G ) +
∑
i ,j

p(i , j)× g2o(i , j)

I Reward trees/graphs that agree with other model

I Since t1o and g2o are arc-factored indicator variables, we can
easily include in decoding

I s(i , j) = s(i , j)− p(i , j) for first-order model

Advanced Graph-Based Parsing Techniques 22(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Let p(i , j) = t1o(i , j)− g2o(i , j)

I p is the set of all penalties p(i , j)

I We rewrite the decoding objectives as:

T1o = argmax
T∈Gx

s1o(T )−
∑
i ,j

p(i , j)× t1o(i , j)

G2o = argmax
G∈Gx

s2o(G ) +
∑
i ,j

p(i , j)× g2o(i , j)

I Reward trees/graphs that agree with other model

I Since t1o and g2o are arc-factored indicator variables, we can
easily include in decoding

I s(i , j) = s(i , j)− p(i , j) for first-order model

Advanced Graph-Based Parsing Techniques 22(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Let p(i , j) = t1o(i , j)− g2o(i , j)

I p is the set of all penalties p(i , j)

I We rewrite the decoding objectives as:

T1o = argmax
T∈Gx

s1o(T )−
∑
i ,j

p(i , j)× t1o(i , j)

G2o = argmax
G∈Gx

s2o(G ) +
∑
i ,j

p(i , j)× g2o(i , j)

I Reward trees/graphs that agree with other model

I Since t1o and g2o are arc-factored indicator variables, we can
easily include in decoding

I s(i , j) = s(i , j)− p(i , j) for first-order model

Advanced Graph-Based Parsing Techniques 22(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition – 1-iter Example

First-order

ROOT0 What1 did2 economic3 news4 have5 little6 effect7 on8

aux
nsubjamod dobjprep

amod
root

pobj

Second-order sibling

ROOT0 What1 did2 economic3 news4 have5 little6 effect7 on8

aux
nsubjamod dobjprep

amod
root

pobj

prep

penalties: p(5, 3) = 1, p(4, 3) = −1, p(7, 8) = −1

first-order: s1o(5, 3) −= 1, s1o(4, 3) += 1, s1o(7, 8) += 1

second-order: s2o(5, ∗, 3) += 1, s2o(4, ∗, 3) −= 1, s2o(7, ∗, 8) −= 1

*Indicates any sibling, even null if it is first left/right modifier.

Advanced Graph-Based Parsing Techniques 23(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

Goal : (T ,G ) = argmax
T∈Gx ,G∈Gx

s1o(T )+sso(G ), s.t. t1o(i , j) = g2o(i , j)

for k = 1 to K

1. T1o = argmaxT∈Gx
s1o (T )− p // first-order decoding

2. G2o = argmaxG∈Gx
s2o (T ) + p // second-order decoding

3. if t1o (i, j) = g2o (i, j), ∀ i, j , return T1o

4. else Update penalties p and go to 1

I Penalties push scores towards agreement

I Theorem: If for any k, line 3 holds, then decoding is optimal

Advanced Graph-Based Parsing Techniques 24(33)



Approximate Higher-Order Non-Projective Parsing

Dual Decomposition

I Koo et al. [2010]: grandparents, grand-sibling, tri-siblings

I Martins et al. [2011, 2013]: arbitrary siblings, head bigrams

UAS

1st order 90.52
2nd order 91.85
3rd order 92.41

[Martins et al. 2013]

Advanced Graph-Based Parsing Techniques 25(33)



Approximate Higher-Order Non-Projective Parsing

Mildly Non-Projective Structures

I Dual decomposition approximates search over entire space
I T = argmax T∈Gx s(T )

I Another approach is to restrict search space
I T = argmaxT∈Gx

s(T )
1. Allow efficient decoding
2. Still cover all linguistically plausible structures

I Do we really care about scoring such structures?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

aux
aux

auxaux

aux
aux

aux
aux

auxaux

aux

aux

aux
aux

aux aux

Advanced Graph-Based Parsing Techniques 26(33)



Approximate Higher-Order Non-Projective Parsing

Mildly Non-Projective Structures

I Dual decomposition approximates search over entire space
I T = argmax T∈Gx s(T )

I Another approach is to restrict search space
I T = argmaxT∈Gx

s(T )
1. Allow efficient decoding
2. Still cover all linguistically plausible structures

I Do we really care about scoring such structures?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

aux
aux

auxaux

aux
aux

aux
aux

auxaux

aux

aux

aux
aux

aux aux

Advanced Graph-Based Parsing Techniques 26(33)



Approximate Higher-Order Non-Projective Parsing

Mildly Non-Projective Structures

I Dual decomposition approximates search over entire space
I T = argmax T∈Gx s(T )

I Another approach is to restrict search space
I T = argmaxT∈Gx

s(T )
1. Allow efficient decoding
2. Still cover all linguistically plausible structures

I Do we really care about scoring such structures?

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

aux
aux

auxaux

aux
aux

aux
aux

auxaux

aux

aux

aux
aux

aux aux

Advanced Graph-Based Parsing Techniques 26(33)



Approximate Higher-Order Non-Projective Parsing

Mildly Non-Projective Structures

I Well-nested block-degree 2 [Bodirsky et al. 2005]

I LTAG-like algorithms: O(n7)∗ [Gómez-Rodŕıguez et al. 2011]
I + 1-inherit: O(n6) [Pitler et al. 2012]

I Empirical coverage identical to well-nested block-degree 2

I + Head-split: O(n6) [Satta and Kuhlmann 2013]

I Empirical coverage similar to well-nested block-degree 2

I + Head-split + 1-inherit: O(n5) [Satta and Kuhlmann 2013]

I Gap Minding Trees: O(n5) [Pitler et al. 2012]

I 1-Endpoint-Crossing: O(n4) [Pitler et al. 2013]

∗All run-times are for first-order parsing

Advanced Graph-Based Parsing Techniques 27(33)



Approximate Higher-Order Non-Projective Parsing

1-Endpoint-Crossing [Pitler et al. 2013]

I An arc A, is 1-endpoint-crossing iff all arcs A′ that cross A
have a common endpoint p

I An endpoint p is either a head or a modifier in an arc

I E.g., (arrived, What) is crossed by (ROOT,think) and (think,?),
both have endpoint ‘think’

ROOT What do you think arrived ?

aux

auxaux aux

aux
aux

Advanced Graph-Based Parsing Techniques 28(33)



Approximate Higher-Order Non-Projective Parsing

1-Endpoint-Crossing

I Can we design an algorithm that parses all and only
1-endpoint-crossing trees?

I Pitler et al. [2013] provides the solution

I Pitler’s algorithm works by defining 5 types of intervals

i j

Interval representing a 
contiguous sub-tree from i to j

Only edges with 
endpoint at left may 
cross exterior point p

Both

Neither

Only edges with 
endpoint at right may 
cross exterior point p

i j i j

i ji j

p p

p p

I Location of exterior point, direction of arcs, etc, controlled via
variables, similar to Eisner [1996] projective formulation

Advanced Graph-Based Parsing Techniques 29(33)



Approximate Higher-Order Non-Projective Parsing

1-Endpoint-Crossing

I On CoNLL-X data sets [Buchholz and Marsi 2006]

Class Tree coverage Run-time

Projective 80.8 O(n3)
Well-nested block-degree 2 98.4 O(n7)

Gap-Minding 95.1 O(n5)
1-Endpoint-Crossing 98.5 O(n4)

[Pitler et al. 2013]

Macro average over Arabic, Czech, Danish, Dutch, Portuguese

Advanced Graph-Based Parsing Techniques 30(33)



Approximate Higher-Order Non-Projective Parsing

1-Endpoint-Crossing

I Good empirical coverage and low run-time

I Can be linguistically motivated [Pitler et al. 2013]

der mer em Hans es huus hälfed aastriiche

aux
nsubj

amod

prep

amod

root

I Phrase-impenetrability condition (PIC) [Chomsky 1998]

I Only head and edge words of phrase accessible to sentence
I Long-distance elements leave chain of traces at clause edges
I Pitler et al. [2013] conjecture: PIC implies 1-endpoint-crossing

Advanced Graph-Based Parsing Techniques 31(33)



Approximate Higher-Order Non-Projective Parsing

1-Endpoint-Crossing

I Pitler [2014]: 1-endpoint-crossing + third-order
I Merge of Pitler et al. [2013] and Koo and Collins [2010]
I Searches 1-endpoint-crossing trees
I Scores higher-order features when no crossing arc present
I O(n4) – identical to third-order projective!
I Significant improvements in accuracy

Advanced Graph-Based Parsing Techniques 32(33)



Approximate Higher-Order Non-Projective Parsing

Coming Up Next

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

References and Further Reading

I Shane Bergsma and Colin Cherry. 2010.
Fast and accurate arc filtering for dependency parsing. In Proceedings of the 23rd
International Conference on Computational Linguistics (COLING), pages 53–61.

I Manuel Bodirsky, Marco Kuhlmann, and Mathias Möhl. 2005.
Well-nested drawings as models of syntactic structure. In Tenth Conference on
Formal Grammar and Ninth Meeting on Mathematics of Language.

I Bernd Bohnet. 2010.
Very high accuracy and fast dependency parsing is not a contradiction. In
Proceedings of the 23rd International Conference on Computational Linguistics,
pages 89–97. Association for Computational Linguistics.

I Sabine Buchholz and Erwin Marsi. 2006.
CoNLL-X shared task on multilingual dependency parsing. In Proceedings of the
Tenth Conference on Computational Natural Language Learning, pages 149–164.

I Xavier Carreras. 2007.
Experiments with a higher-order projective dependency parser. In Proceedings of
the Joint Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning (EMNLP-CoNLL), pages 957–961.

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

I Noam Chomsky. 1998.
Minimalist inquiries: The framework. MIT Working Papers in Linguistics, MIT,
Department of Linguistics.

I Y. J. Chu and T. J. Liu. 1965.
On the shortest arborescence of a directed graph. Science Sinica, 14:1396–1400.

I Markus Dreyer, David A Smith, and Noah A Smith. 2006.
Vine parsing and minimum risk reranking for speed and precision. In Proceedings of
the Tenth Conference on Computational Natural Language Learning, pages
201–205. Association for Computational Linguistics.

I J. Edmonds. 1967.
Optimum branchings. Journal of Research of the National Bureau of Standards,
71B:233–240.

I Jason M. Eisner. 1996.
Three new probabilistic models for dependency parsing: An exploration. In
Proceedings of the 16th International Conference on Computational Linguistics
(COLING), pages 340–345.

I Carlos Gómez-Rodŕıguez, John Carroll, and David Weir. 2011.
Dependency parsing schemata and mildly non-projective dependency parsing.
Computational Linguistics, 37(3):541–586.

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

I Keith Hall and Václav Novák. 2005.
Corrective modeling for non-projective dependency parsing. In Proceedings of the
Ninth International Workshop on Parsing Technology, pages 42–52. Association for
Computational Linguistics.

I Keith Hall. 2007.
K-best spanning tree parsing. In Proceedings of the Association for Computational
Linguistics (ACL).

I He He, Hal Daumé III, and Jason Eisner. 2013.
Dynamic feature selection for dependency parsing. In Proceedings of Empirical
Methods in Natural Language Processing (EMNLP).

I Terry Koo and Michael Collins. 2010.
Efficient third-order dependency parsers. In Proceedings of the 48th Annual
Meeting of the Association for Computational Linguistics, pages 1–11. Association
for Computational Linguistics.

I Terry Koo, Alexander M Rush, Michael Collins, Tommi Jaakkola, and David
Sontag. 2010.
Dual decomposition for parsing with non-projective head automata. In Proceedings
of the 2010 Conference on Empirical Methods in Natural Language Processing,
pages 1288–1298. Association for Computational Linguistics.

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

I Xuezhe Ma and Hai Zhao. 2012.
Fourth-order dependency parsing. In Proceedings of the Conference on
Computational Linguistics (COLING), pages 785–796.

I André FT Martins, Noah A Smith, and Eric P Xing. 2009.
Concise integer linear programming formulations for dependency parsing. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and
the 4th International Joint Conference on Natural Language Processing of the
AFNLP: Volume 1-Volume 1, pages 342–350. Association for Computational
Linguistics.

I André FT Martins, Noah A Smith, Pedro MQ Aguiar, and Mário AT Figueiredo.
2011.
Dual decomposition with many overlapping components. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 238–249.
Association for Computational Linguistics.

I André FT Martins, Miguel B Almeida, and Noah A Smith. 2013.
Turning on the turbo: Fast third-order non-projective turbo parsers. In Proceedings
of the Association for Computational Linguistics.

I Ryan McDonald and Joakim Nivre. 2007.

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

Characterizing the errors of data-driven dependency parsing models. In Proceedings
of the Join Conference on Empirical Methods in Natural Language Processing and
the Conference on Computational Natural Language Learning (EMNLP-CoNLL).

I Ryan McDonald and Fernando Pereira. 2006.
Online learning of approximate dependency parsing algorithms. In Proceedings of
the 11th Conference of the European Chapter of the Association for Computational
Linguistics (EACL), pages 81–88.

I Ryan McDonald and Giorgio Satta. 2007.
On the complexity of non-projective data-driven dependency parsing. In
Proceedings of the 10th International Conference on Parsing Technologies (IWPT),
pages 122–131.

I Tetsuji Nakagawa. 2007.
Multilingual dependency parsing using global features. In EMNLP-CoNLL, pages
952–956.

I Emily Pitler, Sampath Kannan, and Mitchell Marcus. 2012.
Dynamic programming for higher order parsing of gap-minding trees. In
Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages
478–488. Association for Computational Linguistics.

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

I Emily Pitler, Sampath Kannan, and Mitchell Marcus. 2013.
Finding optimal 1-endpoint-crossing trees. Transactions of the Association for
Computational Linguistics (TACL).

I Emily Pitler. 2014.
A crossing-sensitive third-order factorization for dependency parsing. Transactions
of the Association for Computational Linguistics (TACL).

I Sebastian Riedel and James Clarke. 2006.
Incremental integer linear programming for non-projective dependency parsing. In
Proceedings of the 2006 Conference on Empirical Methods in Natural Language
Processing, pages 129–137. Association for Computational Linguistics.

I Sebastian Riedel, David Smith, and Andrew McCallum. 2012.
Parse, price and cut: delayed column and row generation for graph based parsers.
In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning, pages
732–743. Association for Computational Linguistics.

I Alexander M Rush and Slav Petrov. 2012.
Vine pruning for efficient multi-pass dependency parsing. In Proceedings of the
2012 Conference of the North American Chapter of the Association for

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

Computational Linguistics: Human Language Technologies, pages 498–507.
Association for Computational Linguistics.

I Giorgio Satta and Marco Kuhlmann. 2013.
Efficient parsing for head-split dependency trees. Transactions of the Association
for Computational Linguistics, 1(July):267–278.

I David A Smith and Jason Eisner. 2008.
Dependency parsing by belief propagation. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, pages 145–156. Association
for Computational Linguistics.

I David Weiss, Benjamin Sapp, and Ben Taskar. 2010.
Sidestepping intractable inference with structured ensemble cascades. In
Proceesings of Neural Information Processing Systems (NIPS).

I Hao Zhang and Ryan McDonald. 2012.
Generalized higher-order dependency parsing with cube pruning. In Proceedings of
the 2012 Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, pages 320–331. Association for
Computational Linguistics.

I Liang Zhang, Huang, Kai Zhao, and Ryan McDonald. 2013.

Advanced Graph-Based Parsing Techniques 33(33)



References and Further Reading

Online learning for inexact hypergraph search. In Proceedings of Empirical Methods
in Natural Language Processing.

Advanced Graph-Based Parsing Techniques 33(33)


	Introduction
	Exact Higher-Order Projective Parsing
	Approximate Higher-Order Projective Parsing
	Higher-Order Non-Projective Parsing
	Approximate Higher-Order Non-Projective Parsing
	Appendix
	References and Further Reading


