
Advanced Transition-Based

Parsing Techniques

Joakim Nivre

Uppsala University
Linguistics and Philology

Based on previous tutorials with Ryan McDonald

Advanced Transition-Based Parsing Techniques 1(37)

Introduction

Overall Plan

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Advanced Transition-Based Parsing Techniques 2(37)

Introduction

Plan for this Lecture

I Improved learning and inference
I Beam search and structured prediction
I Easy-first parsing
I Dynamic oracles

I Non-projective parsing using online reordering

I Joint morphological and syntactic analysis

Advanced Transition-Based Parsing Techniques 3(37)

Introduction

Transition-Based Parsing Trade-Off

I Advantages:
I Highly efficient parsing – linear time complexity with constant

time oracles and transitions
I Rich history-based feature representations – no rigid

constraints from inference algorithm

I Drawback:
I Sensitive to search errors and error propagation due to greedy

inference and local learning

I The major question in transition-based parsing has been how
to improve learning and inference, while maintaining high
efficiency and rich feature models

Advanced Transition-Based Parsing Techniques 4(37)

Improved Learning and Inference

Beam Search

I Maintain the k best hypotheses [Johansson and Nugues 2006]:

Parse(w1, . . . ,wn)
1 Beam ← {([]S , [0, 1, . . . , n]B , { })}
2 while ∃c ∈ Beam [Bc 6= []]
3 foreach c ∈ Beam
4 foreach t
5 Add(t(c), NewBeam)
6 Beam ← Top(k, NewBeam)
7 return G = ({0, 1, . . . , n},ATop(1, Beam))

I Note:
I Score(c0, . . . , cm) =

∑m
i=1 w · f(ci−1, ti)

I Simple combination of locally normalized classifier scores
I Marginal gains in accuracy

Advanced Transition-Based Parsing Techniques 5(37)

Improved Learning and Inference

Structured Prediction

I Parsing as structured prediction [Zhang and Clark 2008]:
I Minimize loss over entire transition sequence
I Use beam search to find highest-scoring sequence

I Factored feature representations:

f(c0, . . . , cm) =
m∑
i=1

f(ci−1, ti)

I Online learning from oracle transition sequences:
I Structured perceptron [Collins 2002]
I Early update [Collins and Roark 2004]
I Max-violation update [Huang et al. 2012]

Advanced Transition-Based Parsing Techniques 6(37)

Improved Learning and Inference

Beam Size and Training Iterations

[Zhang and Clark 2008]

Advanced Transition-Based Parsing Techniques 7(37)

Improved Learning and Inference

The Best of Two Worlds?

I Like graph-based dependency parsing (MSTParser):
I Global learning – minimize loss over entire sentence
I Non-greedy search – accuracy increases with beam size

I Like (old school) transition-based parsing (MaltParser):
I Highly efficient – complexity still linear for fixed beam size
I Rich features – no constraints from parsing algorithm

Advanced Transition-Based Parsing Techniques 8(37)

Improved Learning and Inference

Precision by Dependency Length

2 4 6 8 10 12 14

0.4

0.5

0.6

0.7

0.8

0.9 MST
Malt
ZPar

[Zhang and Nivre 2012]

Advanced Transition-Based Parsing Techniques 9(37)

Improved Learning and Inference

Even Richer Feature Models

ZPar Malt

Baseline 92.18 89.37
+distance +0.07 –0.14
+valency +0.24 0.00
+unigrams +0.40 –0.29
+third-order +0.18 0.00
+label set +0.07 +0.06
Extended 93.14 89.00

[Zhang and Nivre 2011, Zhang and Nivre 2012]

I Adding graph-based features may require special techniques
[Zhang and Clark 2008, Bohnet and Kuhn 2012]

Advanced Transition-Based Parsing Techniques 10(37)

Improved Learning and Inference

The Need for Speed

I Beam search helps but slows down the parser
I What can we do to maintain the highest speed?

I Easy-first parsing – give up left-to-right incremental search
I Dynamic oracles – learn how to recover from errors

I These two ideas can be combined

Advanced Transition-Based Parsing Techniques 11(37)

Improved Learning and Inference

Easy-First Non-Directional Parsing

I Process dependencies from easy to hard (not left to right) and
from local to global (bottom up) [Goldberg and Elhadad 2010]

Configuration: (L,A) [L = List, A = Arcs]

Initial: ([0, 1, . . . , n], { })

Terminal: ([0],A)

Attach-Right(i , k):
([v1, . . . , vm],A) ⇒ ([v1, . . . , vi−1, vi+1, . . . , vm],A ∪ {(vi+1, vi , k)})

Attach-Left(i , k):
([v1, . . . , vm],A) ⇒ ([v1, . . . , vi , vi+2, . . . , vm],A ∪ {(vi , vi+1, k)})

Advanced Transition-Based Parsing Techniques 12(37)

Improved Learning and Inference

Parsing Algorithm

I Given an oracle o that selects the highest-confidence
transition o(c), parsing is deterministic:

Parse(w1, . . . ,wn)
1 c ← ([0, 1, . . . , n], { })
2 while length(Lc) > 1
3 t ← o(c)
4 c ← t(c)
5 return G = ({0, 1, . . . , n},Ac)

I Number of possible transitions grows with sentence length

I Parsing in O(n log n) time with priority heap

Advanced Transition-Based Parsing Techniques 13(37)

Improved Learning and Inference

Parsing Example

(1) ATTACHRIGHT(2)

a brown fox jumped with joy

-157

-27

-68

403

-197

-47

-152

-243

231

3

(2) ATTACHRIGHT(1)

a fox

brown

jumped with joy
-52

314

-159

0

-176

-146

246

12

(3) ATTACHRIGHT(1)

fox

a brown

jumped with joy

-133

270

-149

-154

246

10

(4) ATTACHLEFT(2)

jumped

fox

a brown

with joy

-161

-435

186

-2

(5) ATTACHLEFT(1)

jumped

fox

a brown

with

joy

430

-232

(6)

jumped

fox

a brown

with

joy

Figure 1: Parsing the sentence “a brown fox jumped with joy”. Rounded arcs represent possible actions.

tionally intensive sampling-based methods (Naka-
gawa, 2007). As a result, these models, while accu-
rate, are slow (O(n3) for projective, first-order mod-
els, higher polynomials for higher-order models, and
worse for richer tree-feature models).

We propose a new category of dependency pars-
ing algorithms, inspired by (Shen et al., 2007): non-
directional easy-first parsing. This is a greedy, de-
terministic parsing approach, which relaxes the left-
to-right processing order of transition-based pars-
ing algorithms. By doing so, we allow the ex-
plicit incorporation of rich structural features de-
rived from both sides of the attachment point, and
implicitly take into account the entire previously de-
rived structure of the whole sentence. This exten-
sion allows the incorporation of much richer features
than those available to transition- and especially to
graph-based parsers, and greatly reduces the local-
ity of transition-based algorithm decisions. On the
other hand, it is still a greedy, best-first algorithm
leading to an efficient implementation.

We present a concrete O(nlogn) parsing algo-
rithm, which significantly outperforms state-of-the-
art transition-based parsers, while closing the gap to
graph-based parsers.
2 Easy-first parsing
When humans comprehend a natural language sen-
tence, they arguably do it in an incremental, left-to-

right manner. However, when humans consciously
annotate a sentence with syntactic structure, they
hardly ever work in fixed left-to-right order. Rather,
they start by building several isolated constituents
by making easy and local attachment decisions and
only then combine these constituents into bigger
constituents, jumping back-and-forth over the sen-
tence and proceeding from easy to harder phenom-
ena to analyze. When getting to the harder decisions
a lot of structure is already in place, and this struc-
ture can be used in deciding a correct attachment.

Our parser follows a similar kind of annotation
process: starting from easy attachment decisions,
and proceeding to harder and harder ones. When
making later decisions, the parser has access to the
entire structure built in earlier stages. During the
training process, the parser learns its own notion of
easy and hard, and learns to defer specific kinds of
decisions until more structure is available.

3 Parsing algorithm

Our (projective) parsing algorithm builds the parse
tree bottom up, using two kinds of actions: AT-
TACHLEFT(i) and ATTACHRIGHT(i) . These
actions are applied to a list of partial structures
p1, . . . , pk, called pending, which is initialized with
the n words of the sentence w1, . . . , wn. Each ac-

[Goldberg and Elhadad 2010]

Advanced Transition-Based Parsing Techniques 14(37)

Improved Learning and Inference

Oracles Revisited

I How do we train the easy-first parser?
I Recall our training procedure for greedy parsers:

I Reconstruct oracle transition sequence for each sentence
I Construct training data set D = {(c, t) | o(c) = t}
I Maximize accuracy of local predictions o(c) = t

I Presupposes a unique optimal transition for each configuration
I Does not make sense for the easy-first parser
I Turns out to be a bad idea in general

Advanced Transition-Based Parsing Techniques 15(37)

Improved Learning and Inference

Online Learning with a Conventional Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([], [0, 1, . . . , nj], { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← o(c,Ti)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← to(c)
11 return w

I Oracle o(c,Ti) returns the optimal transition for c and Ti

Advanced Transition-Based Parsing Techniques 16(37)

Improved Learning and Inference

Online Learning with a Conventional Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([], [0, 1, . . . , nj], { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← o(c,Ti)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← to(c)
11 return w

I Oracle o(c,Ti) returns the optimal transition for c and Ti

Advanced Transition-Based Parsing Techniques 16(37)

Improved Learning and Inference

Conventional Oracle for Arc-Eager Parsing

o(c,T) =


Left-Arc if top(Sc) ← first(Bc) in T
Right-Arc if top(Sc) → first(Bc) in T
Reduce if ∃v < top(Sc) : v ↔ first(Bc) in T
Shift otherwise

I Correct:
I Derives T in a configuration sequence Co,T = c0, . . . , cm

I Problems:
I Deterministic: Ignores other derivations of T
I Incomplete: Valid only for configurations in Co,T

Advanced Transition-Based Parsing Techniques 17(37)

Improved Learning and Inference

Oracle Parse

Transitions:

Stack Buffer Arcs

[] [ROOT, He, sent, her, a, letter, .]

ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH

Stack Buffer Arcs

[ROOT] [He, sent, her, a, letter, .]

ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA

Stack Buffer Arcs

[ROOT, He] [sent, her, a, letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA

Stack Buffer Arcs

[ROOT] [sent, her, a, letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH

Stack Buffer Arcs

[ROOT, sent] [her, a, letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH-RA

Stack Buffer Arcs

[ROOT, sent, her] [a, letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH-RA-SH

Stack Buffer Arcs

[ROOT, sent, her, a] [letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH-RA-SH-LA

Stack Buffer Arcs

[ROOT, sent, her] [letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH-RA-SH-LA-RE

Stack Buffer Arcs

[ROOT, sent] [letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH-RA-SH-LA-RE-RA

Stack Buffer Arcs

[ROOT, sent, letter] [.] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH-RA-SH-LA-RE-RA-RE

Stack Buffer Arcs

[ROOT, sent] [.] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Oracle Parse

Transitions: SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

Stack Buffer Arcs

[ROOT, sent, .] [] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT He sent her a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 18(37)

Improved Learning and Inference

Non-Determinisim

Transitions:
SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-RA

Stack Buffer Arcs

[ROOT, sent, her] [a, letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 19(37)

Improved Learning and Inference

Non-Determinisim

Transitions:
SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-RA-RE

Stack Buffer Arcs

[ROOT, sent] [a, letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 19(37)

Improved Learning and Inference

Non-Determinisim

Transitions:
SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-RA-RE-SH

Stack Buffer Arcs

[ROOT, sent, a] [letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 19(37)

Improved Learning and Inference

Non-Determinisim

Transitions:
SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-RA-RE-SH-LA

Stack Buffer Arcs

[ROOT, sent] [letter, .] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 19(37)

Improved Learning and Inference

Non-Determinisim

Transitions:
SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-RA-RE-SH-LA-RA

Stack Buffer Arcs

[ROOT, sent, letter] [.] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 19(37)

Improved Learning and Inference

Non-Determinisim

Transitions:
SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-RA-RE-SH-LA-RA-RE

Stack Buffer Arcs

[ROOT, sent] [.] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 19(37)

Improved Learning and Inference

Non-Determinisim

Transitions:
SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-RA-RE-SH-LA-RA-RE-RA

Stack Buffer Arcs

[ROOT, sent, .] [] ROOT
root−→ sent

He
sbj←− sent

sent
iobj−→ her

a
det←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 19(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH

Stack Buffer Arcs

[ROOT, sent] [her, a, letter, .] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH

Stack Buffer Arcs

[ROOT, sent, her] [a, letter, .] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH

Stack Buffer Arcs

[ROOT, sent, her, a] [letter, .] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA

Stack Buffer Arcs

[ROOT, sent, her] [letter, .] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA-SH

Stack Buffer Arcs

[ROOT, sent, her, letter] [.] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA-SH-SH [3/6]

Stack Buffer Arcs

[ROOT, sent, letter, .] [] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA

Stack Buffer Arcs

[ROOT, sent, her] [letter, .] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA

Stack Buffer Arcs

[ROOT, sent] [letter, .] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA-RA

Stack Buffer Arcs

[ROOT, sent, letter] [.] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA-RA-RE

Stack Buffer Arcs

[ROOT, sent] [.] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .

ROOT She sent him a letter .
ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Non-Optimality

Transitions:

SH-RA-LA-SH-RA-SH-LA-RE-RA-RE-RA

SH-RA-LA-SH-SH-SH-LA-SH-SH [3/6]

SH-RA-LA-SH-SH-SH-LA-LA-RA-RE-RA [5/6]

Stack Buffer Arcs

[ROOT, sent, .] [] ROOT
root−→ sent

He
sbj←− sent

a
det←− letter

her
?←− letter

sent
dobj−→ letter

sent
p−→ .ROOT She sent him a letter .

ROOT pron verb pron det noun .

root

nsubj iobj det

dobj

p

Advanced Transition-Based Parsing Techniques 20(37)

Improved Learning and Inference

Dynamic Oracles

I Optimality:
I A transition is optimal if the best tree remains reachable
I Best tree = argminT ′ L(T ,T ′)

I Oracle:
I Boolean function o(c, t,T) = true if t is optimal for c and T
I Non-deterministic: More than one transition can be optimal
I Complete: Correct for all configurations

I New problem:
I How do we know which trees are reachable?

Advanced Transition-Based Parsing Techniques 21(37)

Improved Learning and Inference

Reachability for Arcs and Trees

I Arc reachability:
I An arc wi → wj is reachable in c iff wi → wj ∈ Ac ,

or wi ∈ Sc ∪ Bc and wj ∈ Bc (same for wi ← wj)

I Tree reachability:
I A (projective) tree T is reachable in c iff every arc in T is

reachable in c

I Arc-decomposable systems [Goldberg and Nivre 2013]:
I Tree reachability reduces to arc reachability
I Holds for some transition systems but not all

I Arc-eager and easy-first are arc-decomposable
I Arc-standard is not decomposable

Advanced Transition-Based Parsing Techniques 22(37)

Improved Learning and Inference

Oracles for Arc-Decomposable Systems

o(c, t,T) =

{
true if [R(c) − R(t(c))] ∩ T = ∅
false otherwise

where R(c) ≡ {a | a is an arc reachable in c }

Arc-Eager

o(c, LA,T) =

{
false if ∃w ∈ Bc : s ↔ w ∈ T (except s ← b)
true otherwise

o(c,RA,T) =

{
false if ∃w ∈ Sc : w ↔ b ∈ T (except s → b)
true otherwise

o(c,RE,T) =

{
false if ∃w ∈ Bc : s → w ∈ T
true otherwise

o(c, SH,T) =

{
false if ∃w ∈ Sc : w ↔ b ∈ T
true otherwise

Notation: s = node on top of the stack S

b = first node in the buffer B

Advanced Transition-Based Parsing Techniques 23(37)

Improved Learning and Inference

Online Learning with a Dynamic Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([]S , [w1, . . . ,wnj]B , { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← argmaxt∈{t|o(c,t,Ti)}w · f(c, t)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← choice(to(c), t∗(c))
11 return w

I Ambiguity: use model score to break ties
I Exploration: follow model prediction even if not optimal

Advanced Transition-Based Parsing Techniques 24(37)

Improved Learning and Inference

Online Learning with a Dynamic Oracle

Learn({T1, . . . ,TN})
1 w← 0.0
2 for i in 1..K
3 for j in 1..N
4 c ← ([]S , [w1, . . . ,wnj]B , { })
5 while Bc 6= []
6 t∗ ← argmaxt w · f(c, t)
7 to ← argmaxt∈{t|o(c,t,Ti)}w · f(c, t)
8 if t∗ 6= to
9 w← w + f(c, to)− f(c, t∗)

10 c ← choice(to(c), t∗(c))
11 return w

I Ambiguity: use model score to break ties
I Exploration: follow model prediction even if not optimal

Advanced Transition-Based Parsing Techniques 24(37)

Improved Learning and Inference

[Goldberg and Nivre 2012]

Advanced Transition-Based Parsing Techniques 25(37)

Improved Learning and Inference

Ambiguity and Exploration

I Lessons from dynamic oracles:
I Do not hide spurious ambiguity from the parser – exploit it
I Let the parser explore the consequences of its own mistakes

I Related work:
I Bootstrapping [Choi and Palmer 2011]
I Selectional branching [Choi and McCallum 2013]
I Non-monotonic parsing [Honnibal et al. 2013]
I Dynamic parsing strategy [Sartorio et al. 2013]

Advanced Transition-Based Parsing Techniques 26(37)

Non-Projective Parsing

Non-Projective Parsing

I So far only projective parsing models
I Non-projective parsing harder even with greedy inference

I Non-projective: n(n − 1) arcs to consider – O(n2)

I Projective: at most 2(n − 1) arcs to consider – O(n)

I Also harder to construct dynamic oracles
I Conjecture: arc-decomposability presupposes projectivity

Advanced Transition-Based Parsing Techniques 27(37)

Non-Projective Parsing

Previous Approaches

I Pseudo-projective parsing [Nivre and Nilsson 2005]

I Preprocess training data, post-process parser output
I Approximate encoding with incomplete coverage
I Relatively high precision but low recall

I Extended arc transitions [Attardi 2006]

I Transitions that add arcs between non-adjacent subtrees
I Upper bound on arc degree (limited to local relations)
I Exact dynamic programming algorithm [Cohen et al. 2011]

I List-based algorithms [Covington 2001, Nivre 2007]

I Consider all word pairs instead of adjacent subtrees
I Increases parsing complexity (and training time)
I Improved accuracy and efficiency by adding “projective

transitions” [Choi and Palmer 2011]

Advanced Transition-Based Parsing Techniques 28(37)

Non-Projective Parsing

Novel Approaches

I Online reordering [Nivre 2009, Nivre et al. 2009]:
I Reorder words during parsing to make tree projective
I Add a special transition for swapping adjacent words
I Quadratic time in the worst case but linear in the best case

I Multiplanar parsing [Gómez-Rodŕıguez and Nivre 2010]:
I Factor dependency trees into k planes without crossing arcs
I Use k stacks to parse each plane separately
I Linear time parsing with constant k

Advanced Transition-Based Parsing Techniques 29(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Projectivity and Word Order

I Projectivity is a property of a dependency tree only in relation
to a particular word order

I Words can always be reordered to make the tree projective
I Given a dependency tree T = (V ,A, <), let the projective

order <p be the order defined by an inorder traversal of T with
respect to < [Veselá et al. 2004]

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

0 1 2 6 7 3 4 5 8 9

root

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 30(37)

Non-Projective Parsing

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: ([0], [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,A) ⇒ (S |j , i |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:
1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees
I T is projective with respect to <p but not (necessarily) <

Advanced Transition-Based Parsing Techniques 31(37)

Non-Projective Parsing

Transition System for Online Reordering

Configuration: (S ,B,A) [S = Stack, B = Buffer, A = Arcs]

Initial: ([], [0, 1, . . . , n], { })

Terminal: ([0], [],A)

Shift: (S , i |B,A) ⇒ (S |i ,B,A)

Right-Arc(k): (S |i |j ,B,A) ⇒ (S |i ,B,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,A) ⇒ (S |j ,B,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,A) ⇒ (S |j , i |B,A) 0 < i < j

I Transition-based parsing with two interleaved processes:
1. Sort words into projective order <p

2. Build tree T by connecting adjacent subtrees
I T is projective with respect to <p but not (necessarily) <

Advanced Transition-Based Parsing Techniques 31(37)

Non-Projective Parsing

Example Transition Sequence

[]S [ROOT, A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT]S [A, hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, A]S [hearing, is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, A, hearing]S [is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing]S [is, scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, is]S [scheduled, on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, is, scheduled]S [on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled]S [on, the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on]S [the, issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on, the]S [issue, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on, the, issue]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on, issue]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled, on]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

pobj

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, on]S [scheduled, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

pobj

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing]S [scheduled, today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

prep

pobj

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, hearing, scheduled]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

prep

pobj

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled]S [today, .]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled, today]S [.]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled]S [.]B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled, .]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT, scheduled]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

det aux

nsubj

prep

pobj

det

tmod

p

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Example Transition Sequence

[ROOT]S []B

ROOT A hearing is scheduled on the issue today .
ROOT det noun verb verb prep det noun adv .

root

det aux

nsubj

prep

pobj

det

tmod

Advanced Transition-Based Parsing Techniques 32(37)

Non-Projective Parsing

Analysis

I Correctness:
I Sound and complete for the class of non-projective trees

I Complexity for greedy or beam search parsing:
I Quadratic running time in the worst case
I Linear running time in the average case

I Works well with beam search and structured prediction

Czech German
LAS UAS LAS UAS

Projective 80.8 86.3 86.2 88.5
Reordering 83.9 89.1 88.7 90.9

[Bohnet and Nivre 2012]

Advanced Transition-Based Parsing Techniques 33(37)

Joint Morphological and Syntactic Analysis

Morphology and Syntax

I Morphological analysis in dependency parsing:
I Crucially assumed as input, not predicted by the parser
I Pipeline approach may lead to error propagation
I Most PCFG-based parsers at least predict their own tags

I Recent interest in joint models for morphology and syntax:
I Graph-based [McDonald 2006, Lee et al. 2011, Li et al. 2011]
I Transition-based [Hatori et al. 2011, Bohnet and Nivre 2012]

I Can improve both morphology and syntax

Advanced Transition-Based Parsing Techniques 34(37)

Joint Morphological and Syntactic Analysis

Transition System for Morphology and Syntax

Configuration: (S ,B,M,A) [M = Morphology]

Initial: ([], [0, 1, . . . , n], { }, { })

Terminal: ([0], [],M,A)

Shift(p): (S , i |B,M,A) ⇒ (S |i ,B,M ∪ {(i ,m)},A)

Right-Arc(k): (S |i |j ,B,M,A) ⇒ (S |i ,B,M,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,M,A) ⇒ (S |j ,B,M,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,M,A) ⇒ (S |j , i |B,M,A) 0 < i < j

I Transition-based parsing with three interleaved processes:
I Assign morphology when words are shifted onto the stack
I Optionally sort words into projective order <p

I Build dependency tree T by connecting adjacent subtrees

Advanced Transition-Based Parsing Techniques 35(37)

Joint Morphological and Syntactic Analysis

Transition System for Morphology and Syntax

Configuration: (S ,B,M,A) [M = Morphology]

Initial: ([], [0, 1, . . . , n], { }, { })

Terminal: ([0], [],M,A)

Shift(p): (S , i |B,M,A) ⇒ (S |i ,B,M ∪ {(i ,m)},A)

Right-Arc(k): (S |i |j ,B,M,A) ⇒ (S |i ,B,M,A ∪ {(i , j , k)})

Left-Arc(k): (S |i |j ,B,M,A) ⇒ (S |j ,B,M,A ∪ {(j , i , k)}) i 6= 0

Swap: (S |i |j ,B,M,A) ⇒ (S |j , i |B,M,A) 0 < i < j

I Transition-based parsing with three interleaved processes:
I Assign morphology when words are shifted onto the stack
I Optionally sort words into projective order <p

I Build dependency tree T by connecting adjacent subtrees

Advanced Transition-Based Parsing Techniques 35(37)

Joint Morphological and Syntactic Analysis

Parsing Richly Inflected Languages

I Full morphological analysis: lemma + postag + features
I Beam search and structured predication
I Parser selects from k best tags + features
I Rule-based morphology provides additional features

I Evaluation metrics:
I PM = morphology (postag + features)
I LAS = labeled attachment score

Czech Finnish German Hungarian Russian
PM LAS PM LAS PM LAS PM LAS PM LAS

Pipeline 93.0 83.1 88.8 79.9 89.1 91.8 96.1 88.4 92.6 87.4
Joint 94.4 83.5 91.6 82.5 91.2 92.1 97.4 89.1 95.1 88.0

[Bohnet et al. 2013]

Advanced Transition-Based Parsing Techniques 36(37)

Coming Up Next

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Advanced Transition-Based Parsing Techniques 37(37)

References and Further Reading

References and Further Reading

I Giuseppe Attardi. 2006.
Experiments with a multilanguage non-projective dependency parser. In
Proceedings of the 10th Conference on Computational Natural Language Learning
(CoNLL), pages 166–170.

I Bernd Bohnet and Jonas Kuhn. 2012.
The best of both worlds – a graph-based completion model for transition-based
parsers. In Proceedings of the 13th Conference of the European Chpater of the
Association for Computational Linguistics (EACL), pages 77–87.

I Bernd Bohnet and Joakim Nivre. 2012.
A transition-based system for joint part-of-speech tagging and labeled
non-projective dependency parsing. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 1455–1465.

I Bernd Bohnet, Joakim Nivre, Igor Boguslavsky, Richárd Farkas, Filip Ginter, and
Jan Hajič. 2013.
Joint morphological and syntactic analysis for richly inflected languages.
Transactions of the Association for Computational Linguistics, 1:415–428.

I Jinho D. Choi and Andrew McCallum. 2013.

Advanced Transition-Based Parsing Techniques 37(37)

References and Further Reading

Transition-based dependency parsing with selectional branching. In Proceedings of
the 51st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1052–1062.

I Jinho D. Choi and Martha Palmer. 2011.
Getting the most out of transition-based dependency parsing. In Proceedings of the
49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 687–692.

I Shay B. Cohen, Carlos Gómez-Rodŕıguez, and Giorgio Satta. 2011.
Exact inference for generative probabilistic non-projective dependency parsing. In
Proceedings of the 2011 Conference on Empirical Methods in Natural Language
Processing, pages 1234–1245.

I Michael Collins and Brian Roark. 2004.
Incremental parsing with the perceptron algorithm. In Proceedings of the 42nd
Annual Meeting of the Association for Computational Linguistics (ACL), pages
112–119.

I Michael Collins. 2002.
Discriminative training methods for hidden markov models: Theory and
experiments with perceptron algorithms. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 1–8.

Advanced Transition-Based Parsing Techniques 37(37)

References and Further Reading

I Michael A. Covington. 2001.
A fundamental algorithm for dependency parsing. In Proceedings of the 39th
Annual ACM Southeast Conference, pages 95–102.

I Yoav Goldberg and Michael Elhadad. 2010.
An efficient algorithm for easy-first non-directional dependency parsing. In Human
Language Technologies: The 2010 Annual Conference of the North American
Chapter of the Association for Computational Linguistics (NAACL HLT), pages
742–750.

I Yoav Goldberg and Joakim Nivre. 2012.
A dynamic oracle for arc-eager dependency parsing. In Proceedings of COLING
2012, pages 959–976.

I Yoav Goldberg and Joakim Nivre. 2013.
Training deterministic parsers with non-deterministic oracles. Transactions of the
Association for Computational Linguistics, 1:403–414.

I Carlos Gómez-Rodŕıguez and Joakim Nivre. 2010.
A transition-based parser for 2-planar dependency structures. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics, pages
1492–1501.

I Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. 2011.

Advanced Transition-Based Parsing Techniques 37(37)

References and Further Reading

Incremental joint pos tagging and dependency parsing in chinese. In Proceedings of
5th International Joint Conference on Natural Language Processing (IJCNLP),
pages 1216–1224.

I Matthew Honnibal, Yoav Goldberg, and Mark Johnson. 2013.
A non-monotonic arc-eager transition system for dependency parsing. In
Proceedings of the Seventeenth Conference on Computational Natural Language
Learning, pages 163–172.

I Liang Huang and Kenji Sagae. 2010.
Dynamic programming for linear-time incremental parsing. In Proceedings of the
48th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 1077–1086.

I Liang Huang, Suphan Fayong, and Yang Guo. 2012.
Structured perceptron with inexact search. In Proceedings of the 2012 Conference
of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pages 142–151.

I Richard Johansson and Pierre Nugues. 2006.
Investigating multilingual dependency parsing. In Proceedings of the Tenth
Conference on Computational Natural Language Learning (CoNLL), pages
206–210.

Advanced Transition-Based Parsing Techniques 37(37)

References and Further Reading

I Marco Kuhlmann, Carlos Gómez-Rodŕıguez, and Giorgio Satta. 2011.
Dynamic programming algorithms for transition-based dependency parsers. In
Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics (ACL), pages 673–682.

I John Lee, Jason Naradowsky, and David A. Smith. 2011.
A discriminative model for joint morphological disambiguation and dependency
parsing. In Proceedings of the 29th Annual Meeting of the Association for
Computational Linguistics (ACL), pages 885–894.

I Zhenghua Li, Min Zhang, Wanxiang Che, Ting Liu, Wenliang Chen, and Haizhou
Li. 2011.
Joint models for chinese pos tagging and dependency parsing. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing (EMNLP),
pages 1180–1191.

I Ryan McDonald. 2006.
Discriminative Training and Spanning Tree Algorithms for Dependency Parsing.
University of Pennsylvania. Ph.D. thesis, PhD Thesis.

I Joakim Nivre and Jens Nilsson. 2005.
Pseudo-projective dependency parsing. In Proceedings of the 43rd Annual Meeting
of the Association for Computational Linguistics (ACL), pages 99–106.

Advanced Transition-Based Parsing Techniques 37(37)

References and Further Reading

I Joakim Nivre, Marco Kuhlmann, and Johan Hall. 2009.
An improved oracle for dependency parsing with online reordering. In Proceedings
of the 11th International Conference on Parsing Technologies (IWPT’09), pages
73–76.

I Joakim Nivre. 2007.
Incremental non-projective dependency parsing. In Proceedings of Human
Language Technologies: The Annual Conference of the North American Chapter of
the Association for Computational Linguistics (NAACL-HLT), pages 396–403.

I Joakim Nivre. 2009.
Non-projective dependency parsing in expected linear time. In Proceedings of the
47th Annual Meeting of the Association for Computational Linguistics (ACL),
pages 351–359.

I Francesco Sartorio, Giorgio Satta, and Joakim Nivre. 2013.
A transition-based dependency parser using a dynamic parsing strategy. In
Proceedings of the 51st Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 135–144.

I Katerina Veselá, Havelka Jiri, and Eva Hajicová. 2004.

Advanced Transition-Based Parsing Techniques 37(37)

References and Further Reading

Condition of projectivity in the underlying dependency structures. In Proceedings of
the 20th International Conference on Computational Linguistics (COLING), pages
289–295.

I Anssi Yli-Jyrä. 2003.
Multiplanarity – a model for dependency structures in treebanks. In Proceedings of
the Second Workshop on Treebanks and Linguistic Theories (TLT), pages 189–200.

I Yue Zhang and Stephen Clark. 2008.
A tale of two parsers: Investigating and combining graph-based and
transition-based dependency parsing. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP), pages 562–571.

I Yue Zhang and Joakim Nivre. 2011.
Transition-based parsing with rich non-local features. In Proceedings of the 29th
Annual Meeting of the Association for Computational Linguistics (ACL), pages
188–193.

I Yue Zhang and Joakim Nivre. 2012.
Analyzing the effect of global learning and beam-search on transition-based
dependency parsing. In Proceedings of COLING 2012: Posters, pages 1391–1400.

Advanced Transition-Based Parsing Techniques 37(37)

	Introduction
	Improved Learning and Inference
	Non-Projective Parsing
	Joint Morphological and Syntactic Analysis
	References and Further Reading

