
Neural Network Techniques

in Dependency Parsing

Joakim Nivre

Uppsala University

Linguistics and Philology

Neural Network Techniques in Dependency Parsing 1(18)

Overall Plan

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Neural Network Techniques in Dependency Parsing 2(18)

Taking Stock

2007

2014

Graph-based Parsers
Global Inference
Global Learning

Local Feature Scope

Transition-based Parsers
Local Inference
Local Learning

Global Feature Scope

Graph-based Parsers
Global Inference
Global Learning

Global Feature Scope

Transition-based Parsers
Global Inference
Global Learning

Global Feature Scope

beam search
perceptron
dynamic oracles
dynamic programming
more features
etc.

higher-order chart parsing
pruning
ILP
dual decomp
mildly non-projective
etc.

LAS: 83.8 v. 83.6
[McDonald & Nivre 2007]

LAS: 85.8 v. 85.5
[Zhang et al. 2013]

Evaluated on overlapping 9 languages in studies

Neural Network Techniques in Dependency Parsing 3(18)

Neural Network Techniques

I Empirical results have improved substantially since 2014
I Neural networks techniques yield more effective features:

I Features are learned (not hand-crafted)
I Features are continuous and dense (not discrete and sparse)
I Features can be tuned to (multiple) specific tasks
I Features can capture unbounded dependencies

I Parsing architectures remain essentially the same

Neural Network Techniques in Dependency Parsing 4(18)

Learning Features [Titov and Henderson 2007]

relation between wi and wj . Word wi is then
popped from the stack.

2. The decision Right-Arcr adds an arc from the
word wi on top of the stack to the next input
word wj and selects the label r for the relation
between wi and wj .

3. The decision Reduce pops the word wi from
the stack.

4. The decision Shiftwj shifts the word wj from
the queue to the stack.

Unlike the original definition in (Nivre et al., 2004)
the Right-Arcr decision does not shift wj to the
stack. However, the only thing the parser can do
after a Right-Arcr decision is to choose the Shiftwj

decision. This subtle modification does not change
the actual parsing order, but it does simplify the def-
inition of our graphical model, as explained in sec-
tion 4.
We use a history-based probability model, which

decomposes the probability of the parse according
to the parser decisions:

P (T) = P (D1, ..., Dm) =
�

t

P (Dt|D1, . . . , Dt�1),

where T is the parse tree and D1, . . . , Dm is its
equivalent sequence of parser decisions. Since we
need a generative model, the action Shiftwj also pre-
dicts the next word in the queue I , wj+1, thus the
P (Shiftwi |D1, . . . , Dt�1) is a probability both of
the shift operation and the word wj+1 conditioned
on current parsing history.1
Instead of treating eachDt as an atomic decision,

it is convenient to split it into a sequence of elemen-
tary decisions Dt = dt

1, . . . , d
t
n:

P (Dt|D1, . . . , Dt�1) =
�

k

P (dt
k|h(t, k)),

1In preliminary experiments, we also considered look-
ahead, where the word is predicted earlier than it appears at the
head of the queue I , and “anti-look-ahead”, where the word is
predicted only when it is shifted to the stack S. Early predic-
tion allows conditioning decision probabilities on the words in
the look-ahead and, thus, speeds up the search for an optimal
decision sequence. However, the loss of accuracy with look-
ahead was quite signifi cant. The described method, where a
new word is predicted when it appears at the head of the queue,
led to the most accurate model and quite effi cient search. The
anti-look-ahead model was both less accurate and slower.

Figure 1: An ISBN for estimating P (dt
k|h(t, k)).

where h(t, k) denotes the parsing history
D1, . . . , Dt�1, dt

1, . . . , d
t
k�1. We split Left-Arcr

andRight-Arcr each into two elementary decisions:
first, the parser decides to create the corresponding
arc, then, it decides to assign a relation r to the
arc. Similarly, we decompose the decision Shiftwj

into an elementary decision to shift a word and a
prediction of the word wj+1. In our experiments we
use datasets from the CoNLL-X shared task, which
provide additional properties for each word token,
such as its part-of-speech tag and some fine-grain
features. This information implicitly induces word
clustering, which we use in our model: first we
predict a part-of-speech tag for the word, then a set
of word features, treating feature combination as an
atomic value, and only then a particular word form.
This approach allows us to both decrease the effect
of sparsity and to avoid normalization across all the
words in the vocabulary, significantly reducing the
computational expense of word prediction.

4 An ISBN for Dependency Parsing

In this section we define the ISBN model we use for
dependency parsing. An example of this ISBN for
estimating P (dt

k|h(t, k)) is illustrated in figure 1. It
is organized into vectors of variables: latent state
variable vectors St� = st�

1 , . . . , st�
n , representing an

intermediate state at position t�, and decision vari-
able vectors Dt� , representing a decision at position
t�, where t� � t. Variables whose value are given at
the current decision (t, k) are shaded in figure 1, la-
tent and current decision variables are left unshaded.
As illustrated by the edges in figure 1, the prob-

ability of each state variable st�
i (the individual cir-

cles in St�) depends on all the variables in a finite
set of relevant previous state and decision vectors,

148

I Incremental Sigmoid Belief Network (ISBN)

I Learns complex features using binary latent variables

I Captures dependencies at arbitrarily long distances

I First generative model for transition-based parsing

Neural Network Techniques in Dependency Parsing 5(18)

Learning Dense Features [Chen and Manning 2014]

A Fast and Accurate Dependency Parser using Neural Networks 17

Model Architecture

Motivation | Model | Experiments | Analysis

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

Input layer

Hidden layer

Output layer

Softmax probabilities

I MaltParser with MLP instead of SVM (greedy, local)

I But 2 percentage points better LAS on PTB/CTB!?

Neural Network Techniques in Dependency Parsing 6(18)

Traditional Features [Chen and Manning 2014]

A Fast and Accurate Dependency Parser using Neural Networks 10

Traditional Features

Motivation | Model | Experiments | Analysis

0 0 0 1 0 0 1 0 0 0 1 0binary, sparse
dim =106 ~ 107

…

Indicator
features lc(s2).t = PRP ^ s2.t = VBZ ^ s1.t = JJ

lc(s2).w = He ^ lc(s2).l = nsubj ^ s2.w = has

s2.w = has ^ s2.t = VBZ

s1.w = good ^ s1.t = JJ ^ b1.w = control

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

I Sparse – but lexical features and interaction features crucial

I Incomplete – unavoidable with hand-crafted feature templates

I Expensive – accounts for 95% of computing time

Neural Network Techniques in Dependency Parsing 7(18)

Dense Features [Chen and Manning 2014]

A Fast and Accurate Dependency Parser using Neural Networks 13

Indicator Features Revisited

Motivation | Model | Experiments | Analysis

Our$Solution:$Neural$Networks!$
Learnadenseandcompact$feature$representation

0.1dense
dim = 200 0.9 -0.2 0.3 -0.1 -0.5…

ROOT has VBZ

He PRP

nsubj

has VBZ good JJ control NN . .

Stack Bu↵er

Correct transition: SHIFT

1

A Fast and Accurate Dependency Parser using Neural Networks

• We$represent$each$word$asadFdimensional$dense$vector$(i.e.,$
word$embeddings).
• $Similar$words$expect$to$have$close$vectors.

15

Distributed Representations

come

go

werewas

is
good

Motivation | Model | Experiments | Analysis

I Sparse – dense features capture similarities (words, pos, dep)

I Incomplete – neural network learns interaction features

I Expensive – matrix multiplication with low dimensionality

Neural Network Techniques in Dependency Parsing 8(18)

PoS Embeddings [Chen and Manning 2014]

A Fast and Accurate Dependency Parser using Neural Networks 31

POS Embeddings

Motivation | Model | Experiments | Analysis (van der Maaten and Hinton 2008)

Neural Network Techniques in Dependency Parsing 9(18)

Dep Embeddings [Chen and Manning 2014]

A Fast and Accurate Dependency Parser using Neural Networks 32

Dependency Embeddings

Motivation | Model | Experiments | Analysis

Neural Network Techniques in Dependency Parsing 10(18)

The Power of Embeddings

One-Hot (discrete, sparse) Embedding (continuous, dense)

I Inherently much more expressive (R× D vs. 1)

I Can capture similarities between items (sparsity)

I Can be pre-trained on large unlabeled corpora (OOV)

I Can be learned/tuned specifically for the parsing task

Neural Network Techniques in Dependency Parsing 11(18)

Neural Dependency Parsing

I Dominated by transition-based approaches
I Two main lines of work:

I More powerful (recurrent) neural networks
[Dyer et al. 2015, Kiperwasser and Goldberg 2016]

I Global optimization and beam search
[Weiss et al. 2015, Andor et al. 2016]

I Additional themes:
I Character-based models for morphologically rich languages

[Ballesteros et al. 2015]
I Cross-lingual embeddings and typological features

[Ammar et al. 2016]

Neural Network Techniques in Dependency Parsing 12(18)

Stack-LSTM [Dyer et al. 2015]

overhasty
an decision was

amod

REDUCE-LEFT(amod)

SHIFT

���� ����

�
��

�

…

SH
IFT
RE
D-L

(am
od
)

…

made

S B

A

� �

pt

root

TO
PTOP

TOP

Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing; B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReLU nonlinearity to produce the parser state embedding pt. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.

the probability of the parser action at time t as:

p(zt | pt) =
exp

�
g>

zt
pt + qzt

�
P

z02A(S,B) exp
�
g>

z0pt + qz0
� ,

where gz is a column vector representing the (out-
put) embedding of the parser action z, and qz is
a bias term for action z. The set A(S, B) repre-
sents the valid actions that may be taken given the
current contents of the stack and buffer.5 Since
pt = f(st,bt,at) encodes information about all
previous decisions made by the parser, the chain
rule may be invoked to write the probability of any
valid sequence of parse actions z conditional on
the input as:

p(z | w) =

|z|Y

t=1

p(zt | pt). (1)

3.2 Transition Operations

Our parser is based on the arc-standard transition
inventory (Nivre, 2004), given in Figure 3.

5In general, A(S, B) is the complete set of parser actions
discussed in §3.2, but in some cases not all actions are avail-
able. For example, when S is empty and words remain in B,
a SHIFT operation is obligatory (Sartorio et al., 2013).

Why arc-standard? Arc-standard transitions
parse a sentence from left to right, using a stack
to store partially built syntactic structures and
a buffer that keeps the incoming tokens to be
parsed. The parsing algorithm chooses an action
at each configuration by means of a score. In
arc-standard parsing, the dependency tree is con-
structed bottom-up, because right-dependents of a
head are only attached after the subtree under the
dependent is fully parsed. Since our parser recur-
sively computes representations of tree fragments,
this construction order guarantees that once a syn-
tactic structure has been used to modify a head, the
algorithm will not try to find another head for the
dependent structure. This means we can evaluate
composed representations of tree fragments incre-
mentally; we discuss our strategy for this below
(§3.4).

3.3 Token Embeddings and OOVs

To represent each input token, we concatenate
three vectors: a learned vector representation for
each word type (w); a fixed vector representa-
tion from a neural language model (w̃LM), and a
learned representation (t) of the POS tag of the to-
ken, provided as auxiliary input to the parser. A

decisionoverhastyan

det

overhasty decision

an

cmod head

head
mod

amod

amod

c1
rel

c2

det
rel

Figure 5: The representation of a depen-
dency subtree (above) is computed by re-
cursively applying composition functions to
hhead, modifier, relationi triples. In the case of
multiple dependents of a single head, the recur-
sive branching order is imposed by the order of
the parser’s reduce operations (below).

objective with respect to the model parameters.
The computations for a single parsing model were
run on a single thread on a CPU. Using the dimen-
sions discussed in the next section, we required
between 8 and 12 hours to reach convergence on a
held-out dev set.6

Parameter optimization was performed using
stochastic gradient descent with an initial learn-
ing rate of ⌘0 = 0.1, and the learning rate was
updated on each pass through the training data as
⌘t = ⌘0/(1 + ⇢t), with ⇢ = 0.1 and where t is the
number of epochs completed. No momentum was
used. To mitigate the effects of “exploding” gra-
dients, we clipped the `2 norm of the gradient to 5
before applying the weight update rule (Sutskever
et al., 2014; Graves, 2013). An `2 penalty of
1⇥ 10�6 was applied to all weights.

Matrix and vector parameters were initialized
with uniform samples in ±

p
6/(r + c), where r

and c were the number of rows and columns in the
structure (Glorot and Bengio, 2010).

Dimensionality. The full version of our parsing
model sets dimensionalities as follows. LSTM
hidden states are of size 100, and we use two lay-
ers of LSTMs for each stack. Embeddings of the
parser actions used in the composition functions
have 16 dimensions, and the output embedding
size is 20 dimensions. Pretained word embeddings
have 100 dimensions (English) and 80 dimensions
(Chinese), and the learned word embeddings have

6Software for replicating the experiments is available
from https://github.com/clab/lstm-parser.

32 dimensions. Part of speech embeddings have
12 dimensions.

These dimensions were chosen based on in-
tuitively reasonable values (words should have
higher dimensionality than parsing actions, POS
tags, and relations; LSTM states should be rela-
tively large), and it was confirmed on development
data that they performed well.7 Future work might
more carefully optimize these parameters; our re-
ported architecture strikes a balance between min-
imizing computational expense and finding solu-
tions that work.

5 Experiments

We applied our parsing model and several varia-
tions of it to two parsing tasks and report results
below.

5.1 Data
We used the same data setup as Chen and Manning
(2014), namely an English and a Chinese parsing
task. This baseline configuration was chosen since
they likewise used a neural parameterization to
predict actions in an arc-standard transition-based
parser.

• For English, we used the Stanford Depen-
dencency (SD) treebank (de Marneffe et al.,
2006) used in (Chen and Manning, 2014)
which is the closest model published, with
the same splits.8 The part-of-speech tags
are predicted by using the Stanford Tagger
(Toutanova et al., 2003) with an accuracy
of 97.3%. This treebank contains a negligi-
ble amount of non-projective arcs (Chen and
Manning, 2014).

• For Chinese, we use the Penn Chinese Tree-
bank 5.1 (CTB5) following Zhang and Clark
(2008),9 with gold part-of-speech tags which
is also the same as in Chen and Manning
(2014).

Language model word embeddings were gener-
ated, for English, from the AFP portion of the En-
glish Gigaword corpus (version 5), and from the
complete Chinese Gigaword corpus (version 2),

7We did perform preliminary experiments with LSTM
states of 32, 50, and 80, but the other dimensions were our
initial guesses.

8Training: 02-21. Development: 22. Test: 23.
9Training: 001–815, 1001–1136. Development: 886–

931, 1148–1151. Test: 816–885, 1137–1147.

Stackt Buffert Action Stackt+1 Buffert+1 Dependency
(u, u), (v, v), S B REDUCE-RIGHT(r) (gr(u,v), u), S B u

r! v

(u, u), (v, v), S B REDUCE-LEFT(r) (gr(v,u), v), S B u
r v

S (u, u), B SHIFT (u, u), S B —

Figure 3: Parser transitions indicating the action applied to the stack and buffer and the resulting stack
and buffer states. Bold symbols indicate (learned) embeddings of words and relations, script symbols
indicate the corresponding words and relations.

linear map (V) is applied to the resulting vector
and passed through a component-wise ReLU,

x = max {0,V[w; w̃LM; t] + b} .

This mapping can be shown schematically as in
Figure 4.

overhasty JJUNK decision NNdecision

x2 x3

t2 t3w2w̃LM
2 w̃LM

3 w3

Figure 4: Token embedding of the words decision,
which is present in both the parser’s training data
and the language model data, and overhasty, an
adjective that is not present in the parser’s training
data but is present in the LM data.

This architecture lets us deal flexibly with out-
of-vocabulary words—both those that are OOV in
both the very limited parsing data but present in
the pretraining LM, and words that are OOV in
both. To ensure we have estimates of the OOVs in
the parsing training data, we stochastically replace
(with p = 0.5) each singleton word type in the
parsing training data with the UNK token in each
training iteration.

Pretrained word embeddings. A veritable cot-
tage industry exists for creating word embeddings,
meaning numerous pretraining options for w̃LM
are available. However, for syntax modeling prob-
lems, embedding approaches which discard order
perform less well (Bansal et al., 2014); therefore
we used a variant of the skip n-gram model in-
troduced by Ling et al. (2015), named “structured
skip n-gram,” where a different set of parameters
is used to predict each context word depending on
its position relative to the target word. The hy-
perparameters of the model are the same as in the
skip n-gram model defined in word2vec (Mikolov

et al., 2013), and we set the window size to 5, used
a negative sampling rate to 10, and ran 5 epochs
through unannotated corpora described in §5.1.

3.4 Composition Functions
Recursive neural network models enable complex
phrases to be represented compositionally in terms
of their parts and the relations that link them
(Socher et al., 2011; Socher et al., 2013c; Her-
mann and Blunsom, 2013; Socher et al., 2013b).
We follow this previous line of work in embed-
ding dependency tree fragments that are present in
the stack S in the same vector space as the token
embeddings discussed above.

A particular challenge here is that a syntactic
head may, in general, have an arbitrary number
of dependents. To simplify the parameterization
of our composition function, we combine head-
modifier pairs one at a time, building up more
complicated structures in the order they are “re-
duced” in the parser, as illustrated in Figure 5.
Each node in this expanded syntactic tree has a
value computed as a function of its three argu-
ments: the syntactic head (h), the dependent (d),
and the syntactic relation being satisfied (r). We
define this by concatenating the vector embed-
dings of the head, dependent and relation, apply-
ing a linear operator and a component-wise non-
linearity as follows:

c = tanh (U[h;d; r] + e) .

For the relation vector, we use an embedding of
the parser action that was applied to construct the
relation (i.e., the syntactic relation paired with the
direction of attachment).

4 Training Procedure

We trained our parser to maximize the conditional
log-likelihood (Eq. 1) of treebank parses given
sentences. Our implementation constructs a com-
putation graph for each sentence and runs forward-
and backpropagation to obtain the gradients of this

I LSTM encoding of parser configurations (S, B, A)

I Stack elements recursively composed of word representations

Neural Network Techniques in Dependency Parsing 13(18)

Bi-LSTM [Kiperwasser and Goldberg 2016]

the

s2

jumped

s1

over

s0

the

b0

lazy

b1

dog

b2

ROOT

b3

fox

brown

Configuration:

Scoring:

LSTMf

xthe

concat

LSTMf

xbrown

concat

LSTMf

xfox

concat

LSTMf

xjumped

concat

LSTMf

xover

concat

LSTMf

xthe

concat

LSTMf

xlazy

concat

LSTMf

xdog

concat

LSTMf

xROOT

concat

LSTM b
s0

LSTM b
s1

LSTM b
s2

LSTM b
s3

LSTM b
s4

LSTM b
s5

LSTM b
s6

LSTM b
s7

LSTM b
s8

Vthe Vbrown Vfox Vjumped Vover Vthe Vlazy Vdog VROOT

MLP

(ScoreLeftArc, ScoreRightArc, ScoreShift)

Figure 1: Illustration of the neural model scheme of the transition-based parser when calculating the scores of the
possible transitions in a given configuration. The configuration (stack and buffer) is depicted on the top. Each transition
is scored using an MLP that is fed the BiLSTM encodings of the first word in the buffer and the three words at the top
of the stack (the colors of the words correspond to colors of the MLP inputs above), and a transition is picked greedily.
Each xi is a concatenation of a word and a POS vector, and possibly an additional external embedding vector for the
word. The figure depicts a single-layer BiLSTM, while in practice we use two layers. When parsing a sentence, we
iteratively compute scores for all possible transitions and apply the best scoring action until the final configuration is
reached.

transition-based parsing framework assumes a tran-
sition system, an abstract machine that processes
sentences and produces parse trees. The transition
system has a set of configurations and a set of tran-
sitions which are applied to configurations. When
parsing a sentence, the system is initialized to an ini-
tial configuration based on the input sentence, and
transitions are repeatedly applied to this configura-
tion. After a finite number of transitions, the system
arrives at a terminal configuration, and a parse tree
is read off the terminal configuration. In a greedy
parser, a classifier is used to choose the transition
to take in each configuration, based on features ex-
tracted from the configuration itself. The parsing al-
gorithm is presented in Algorithm 1 below.

Given a sentence s, the parser is initialized with
the configuration c (line 2). Then, a feature func-
tion �(c) represents the configuration c as a vector,
which is fed to a scoring function SCORE assign-
ing scores to (configuration,transition) pairs. SCORE

Algorithm 1 Greedy transition-based parsing
1: Input: sentence s = w1, . . . , xw, t1, . . . , tn,

parameterized function SCORE✓(·) with param-
eters ✓.

2: c INITIAL(s)
3: while not TERMINAL(c) do
4: t̂ arg maxt2LEGAL(c) SCORE✓

�
�(c), t

�

5: c t̂(c)

6: return tree(c)

scores the possible transitions t, and the highest
scoring transition t̂ is chosen (line 4). The transition
t̂ is applied to the configuration, resulting in a new
parser configuration. The process ends when reach-
ing a final configuration, from which the resulting
parse tree is read and returned (line 6).

Transition systems differ by the way they define
configurations, and by the particular set of transi-
tions available to them. A parser is determined by

318

I Bi-LSTM encodes global context in word representations

I Exploration with dynamic oracles prevent error propagation

Neural Network Techniques in Dependency Parsing 14(18)

Global Normalization [Andor et al. 2016]

Local Global
Each ZL(d1:j�1; ✓) is a local normalization term.
The probability of a sequence of decisions d1:n is

pL(d1:n) =

nY

j=1

p(dj |d1:j�1; ✓)

=
exp

Pn
j=1 ⇢(d1:j�1, dj ; ✓)Qn

j=1 ZL(d1:j�1; ✓)
. (2)

Beam search can be used to attempt to find the
maximum of Eq. (2) with respect to d1:n. The
additive scores used in beam search are the log-
softmax of each decision, ln p(dj |d1:j�1; ✓), not
the raw scores ⇢(d1:j�1, dj ; ✓).

In contrast, a Conditional Random Field (CRF)
defines a distribution pG(d1:n) as follows:

pG(d1:n) =
exp

Pn
j=1 ⇢(d1:j�1, dj ; ✓)

ZG(✓)
, (3)

where

ZG(✓) =
X

d01:n2Dn

exp

nX

j=1

⇢(d01:j�1, d
0
j ; ✓)

and Dn is the set of all valid sequences of deci-
sions of length n. ZG(✓) is a global normalization
term. The inference problem is now to find

argmax
d1:n2Dn

pG(d1:n) = argmax
d1:n2Dn

nX

j=1

⇢(d1:j�1, dj ; ✓).

Beam search can again be used to approximately
find the argmax.

2.3 Training

Training data consists of inputs x paired with gold
decision sequences d⇤1:n. We use stochastic gradi-
ent descent on the negative log-likelihood of the
data under the model. Under a locally normalized
model, the negative log-likelihood is

Llocal(d
⇤
1:n; ✓) = � ln pL(d⇤1:n; ✓) = (4)

�
nX

j=1

⇢(d⇤1:j�1, d
⇤
j ; ✓) +

nX

j=1

lnZL(d⇤1:j�1; ✓),

whereas under a globally normalized model it is

Lglobal(d
⇤
1:n; ✓) = � ln pG(d⇤1:n; ✓) =

�
nX

j=1

⇢(d⇤1:j�1, d
⇤
j ; ✓) + lnZG(✓). (5)

A significant practical advantange of the locally
normalized cost Eq. (4) is that the local parti-
tion function ZL and its derivative can usually be
computed efficiently. In contrast, the ZG term in
Eq. (5) contains a sum over d01:n 2 Dn that is in
many cases intractable.

To make learning tractable with the globally
normalized model, we use beam search and early
updates (Collins and Roark, 2004; Zhou et al.,
2015). As the training sequence is being decoded,
we keep track of the location of the gold path in
the beam. If the gold path falls out of the beam
at step j, a stochastic gradient step is taken on the
following objective:

Lglobal�beam(d⇤1:j ; ✓) =

�
jX

i=1

⇢(d⇤
1:i�1, d

⇤
i ; ✓) + ln

X

d0
1:j2Bj

exp

jX

i=1

⇢(d0
1:i�1, d

0
i; ✓). (6)

Here the set Bj contains all paths in the beam
at step j, together with the gold path prefix d⇤1:j .
It is straightforward to derive gradients of the
loss in Eq. (6) and to back-propagate gradients to
all levels of a neural network defining the score
⇢(s, d; ✓). If the gold path remains in the beam
throughout decoding, a gradient step is performed
using Bn, the beam at the end of decoding.

3 The Label Bias Problem

Intuitively, we would like the model to be able
to revise an earlier decision made during search,
when later evidence becomes available that rules
out the earlier decision as incorrect. At first
glance, it might appear that a locally normal-
ized model used in conjunction with beam search
or exact search is able to revise earlier deci-
sions. However the label bias problem (see Bottou
(1991), Collins (1999) pages 222-226, Lafferty
et al. (2001), Bottou and LeCun (2005), Smith
and Johnson (2007)) means that locally normal-
ized models often have a very weak ability to re-
vise earlier decisions.

This section gives a formal perspective on the
label bias problem, through a proof that globally
normalized models are strictly more expressive
than locally normalized models. The theorem was
originally proved5 by Smith and Johnson (2007).

5More precisely Smith and Johnson (2007) prove the
theorem for models with potential functions of the form
⇢(di�1, di, xi); the generalization to potential functions of
the form ⇢(d1:i�1, di, x1:i) is straightforward.

2444

Each ZL(d1:j�1; ✓) is a local normalization term.
The probability of a sequence of decisions d1:n is

pL(d1:n) =

nY

j=1

p(dj |d1:j�1; ✓)

=
exp

Pn
j=1 ⇢(d1:j�1, dj ; ✓)Qn

j=1 ZL(d1:j�1; ✓)
. (2)

Beam search can be used to attempt to find the
maximum of Eq. (2) with respect to d1:n. The
additive scores used in beam search are the log-
softmax of each decision, ln p(dj |d1:j�1; ✓), not
the raw scores ⇢(d1:j�1, dj ; ✓).

In contrast, a Conditional Random Field (CRF)
defines a distribution pG(d1:n) as follows:

pG(d1:n) =
exp

Pn
j=1 ⇢(d1:j�1, dj ; ✓)

ZG(✓)
, (3)

where

ZG(✓) =
X

d01:n2Dn

exp

nX

j=1

⇢(d01:j�1, d
0
j ; ✓)

and Dn is the set of all valid sequences of deci-
sions of length n. ZG(✓) is a global normalization
term. The inference problem is now to find

argmax
d1:n2Dn

pG(d1:n) = argmax
d1:n2Dn

nX

j=1

⇢(d1:j�1, dj ; ✓).

Beam search can again be used to approximately
find the argmax.

2.3 Training

Training data consists of inputs x paired with gold
decision sequences d⇤1:n. We use stochastic gradi-
ent descent on the negative log-likelihood of the
data under the model. Under a locally normalized
model, the negative log-likelihood is

Llocal(d
⇤
1:n; ✓) = � ln pL(d⇤1:n; ✓) = (4)

�
nX

j=1

⇢(d⇤1:j�1, d
⇤
j ; ✓) +

nX

j=1

lnZL(d⇤1:j�1; ✓),

whereas under a globally normalized model it is

Lglobal(d
⇤
1:n; ✓) = � ln pG(d⇤1:n; ✓) =

�
nX

j=1

⇢(d⇤1:j�1, d
⇤
j ; ✓) + lnZG(✓). (5)

A significant practical advantange of the locally
normalized cost Eq. (4) is that the local parti-
tion function ZL and its derivative can usually be
computed efficiently. In contrast, the ZG term in
Eq. (5) contains a sum over d01:n 2 Dn that is in
many cases intractable.

To make learning tractable with the globally
normalized model, we use beam search and early
updates (Collins and Roark, 2004; Zhou et al.,
2015). As the training sequence is being decoded,
we keep track of the location of the gold path in
the beam. If the gold path falls out of the beam
at step j, a stochastic gradient step is taken on the
following objective:

Lglobal�beam(d⇤1:j ; ✓) =

�
jX

i=1

⇢(d⇤
1:i�1, d

⇤
i ; ✓) + ln

X

d0
1:j2Bj

exp

jX

i=1

⇢(d0
1:i�1, d

0
i; ✓). (6)

Here the set Bj contains all paths in the beam
at step j, together with the gold path prefix d⇤1:j .
It is straightforward to derive gradients of the
loss in Eq. (6) and to back-propagate gradients to
all levels of a neural network defining the score
⇢(s, d; ✓). If the gold path remains in the beam
throughout decoding, a gradient step is performed
using Bn, the beam at the end of decoding.

3 The Label Bias Problem

Intuitively, we would like the model to be able
to revise an earlier decision made during search,
when later evidence becomes available that rules
out the earlier decision as incorrect. At first
glance, it might appear that a locally normal-
ized model used in conjunction with beam search
or exact search is able to revise earlier deci-
sions. However the label bias problem (see Bottou
(1991), Collins (1999) pages 222-226, Lafferty
et al. (2001), Bottou and LeCun (2005), Smith
and Johnson (2007)) means that locally normal-
ized models often have a very weak ability to re-
vise earlier decisions.

This section gives a formal perspective on the
label bias problem, through a proof that globally
normalized models are strictly more expressive
than locally normalized models. The theorem was
originally proved5 by Smith and Johnson (2007).

5More precisely Smith and Johnson (2007) prove the
theorem for models with potential functions of the form
⇢(di�1, di, xi); the generalization to potential functions of
the form ⇢(d1:i�1, di, x1:i) is straightforward.

2444

in practice, we provide a sentence compression ex-
ample where the local model completely fails. We
then demonstrate that a globally normalized pars-
ing model without any lookahead features is al-
most as accurate as our best model, while a locally
normalized model loses more than 10% absolute
in accuracy because it cannot effectively incorpo-
rate evidence as it becomes available.

Finally, we provide an open-source implemen-
tation of our method, called SyntaxNet,1 which
we have integrated into the popular TensorFlow2

framework. We also provide a pre-trained,
state-of-the art English dependency parser called
“Parsey McParseface,” which we tuned for a bal-
ance of speed, simplicity, and accuracy.

2 Model

At its core, our model is an incremental transition-
based parser (Nivre, 2006). To apply it to different
tasks we only need to adjust the transition system
and the input features.

2.1 Transition System

Given an input x, most often a sentence, we define:
• A set of states S(x).
• A special start state s† 2 S(x).
• A set of allowed decisions A(s, x) for all s 2

S(x).
• A transition function t(s, d, x) returning a

new state s0 for any decision d 2 A(s, x).
We will use a function ⇢(s, d, x; ✓) to compute the
score of decision d in state s for input x. The
vector ✓ contains the model parameters and we
assume that ⇢(s, d, x; ✓) is differentiable with re-
spect to ✓.

In this section, for brevity, we will drop the de-
pendence of x in the functions given above, simply
writing S, A(s), t(s, d), and ⇢(s, d; ✓).

Throughout this work we will use transition sys-
tems in which all complete structures for the same
input x have the same number of decisions n(x)
(or n for brevity). In dependency parsing for ex-
ample, this is true for both the arc-standard and
arc-eager transition systems (Nivre, 2006), where
for a sentence x of length m, the number of deci-
sions for any complete parse is n(x) = 2 ⇥ m.3

1http://github.com/tensorflow/models/tree/master/syntaxnet
2http://www.tensorflow.org
3Note that this is not true for the swap transition system

defined in Nivre (2009).

A complete structure is then a sequence of deci-
sion/state pairs (s1, d1) . . . (sn, dn) such that s1 =
s†, di 2 S(si) for i = 1 . . . n, and si+1 =
t(si, di). We use the notation d1:j to refer to a de-
cision sequence d1 . . . dj .

We assume that there is a one-to-one mapping
between decision sequences d1:j�1 and states sj :
that is, we essentially assume that a state encodes
the entire history of decisions. Thus, each state
can be reached by a unique decision sequence
from s†.4 We will use decision sequences d1:j�1

and states interchangeably: in a slight abuse of
notation, we define ⇢(d1:j�1, d; ✓) to be equal to
⇢(s, d; ✓) where s is the state reached by the deci-
sion sequence d1:j�1.

The scoring function ⇢(s, d; ✓) can be defined
in a number of ways. In this work, following
Chen and Manning (2014), Weiss et al. (2015),
and Zhou et al. (2015), we define it via a feed-
forward neural network as

⇢(s, d; ✓) = �(s; ✓(l)) · ✓(d).

Here ✓(l) are the parameters of the neural network,
excluding the parameters at the final layer. ✓(d) are
the final layer parameters for decision d. �(s; ✓(l))
is the representation for state s computed by the
neural network under parameters ✓(l). Note that
the score is linear in the parameters ✓(d). We next
describe how softmax-style normalization can be
performed at the local or global level.

2.2 Global vs. Local Normalization

In the Chen and Manning (2014) style of greedy
neural network parsing, the conditional probabil-
ity distribution over decisions dj given context
d1:j�1 is defined as

p(dj |d1:j�1; ✓) =
exp ⇢(d1:j�1, dj ; ✓)

ZL(d1:j�1; ✓)
, (1)

where

ZL(d1:j�1; ✓) =
X

d02A(d1:j�1)

exp ⇢(d1:j�1, d
0; ✓).

4It is straightforward to extend the approach to make use
of dynamic programming in the case where the same state
can be reached by multiple decision sequences.

2443

in practice, we provide a sentence compression ex-
ample where the local model completely fails. We
then demonstrate that a globally normalized pars-
ing model without any lookahead features is al-
most as accurate as our best model, while a locally
normalized model loses more than 10% absolute
in accuracy because it cannot effectively incorpo-
rate evidence as it becomes available.

Finally, we provide an open-source implemen-
tation of our method, called SyntaxNet,1 which
we have integrated into the popular TensorFlow2

framework. We also provide a pre-trained,
state-of-the art English dependency parser called
“Parsey McParseface,” which we tuned for a bal-
ance of speed, simplicity, and accuracy.

2 Model

At its core, our model is an incremental transition-
based parser (Nivre, 2006). To apply it to different
tasks we only need to adjust the transition system
and the input features.

2.1 Transition System

Given an input x, most often a sentence, we define:
• A set of states S(x).
• A special start state s† 2 S(x).
• A set of allowed decisions A(s, x) for all s 2

S(x).
• A transition function t(s, d, x) returning a

new state s0 for any decision d 2 A(s, x).
We will use a function ⇢(s, d, x; ✓) to compute the
score of decision d in state s for input x. The
vector ✓ contains the model parameters and we
assume that ⇢(s, d, x; ✓) is differentiable with re-
spect to ✓.

In this section, for brevity, we will drop the de-
pendence of x in the functions given above, simply
writing S, A(s), t(s, d), and ⇢(s, d; ✓).

Throughout this work we will use transition sys-
tems in which all complete structures for the same
input x have the same number of decisions n(x)
(or n for brevity). In dependency parsing for ex-
ample, this is true for both the arc-standard and
arc-eager transition systems (Nivre, 2006), where
for a sentence x of length m, the number of deci-
sions for any complete parse is n(x) = 2 ⇥ m.3

1http://github.com/tensorflow/models/tree/master/syntaxnet
2http://www.tensorflow.org
3Note that this is not true for the swap transition system

defined in Nivre (2009).

A complete structure is then a sequence of deci-
sion/state pairs (s1, d1) . . . (sn, dn) such that s1 =
s†, di 2 S(si) for i = 1 . . . n, and si+1 =
t(si, di). We use the notation d1:j to refer to a de-
cision sequence d1 . . . dj .

We assume that there is a one-to-one mapping
between decision sequences d1:j�1 and states sj :
that is, we essentially assume that a state encodes
the entire history of decisions. Thus, each state
can be reached by a unique decision sequence
from s†.4 We will use decision sequences d1:j�1

and states interchangeably: in a slight abuse of
notation, we define ⇢(d1:j�1, d; ✓) to be equal to
⇢(s, d; ✓) where s is the state reached by the deci-
sion sequence d1:j�1.

The scoring function ⇢(s, d; ✓) can be defined
in a number of ways. In this work, following
Chen and Manning (2014), Weiss et al. (2015),
and Zhou et al. (2015), we define it via a feed-
forward neural network as

⇢(s, d; ✓) = �(s; ✓(l)) · ✓(d).

Here ✓(l) are the parameters of the neural network,
excluding the parameters at the final layer. ✓(d) are
the final layer parameters for decision d. �(s; ✓(l))
is the representation for state s computed by the
neural network under parameters ✓(l). Note that
the score is linear in the parameters ✓(d). We next
describe how softmax-style normalization can be
performed at the local or global level.

2.2 Global vs. Local Normalization

In the Chen and Manning (2014) style of greedy
neural network parsing, the conditional probabil-
ity distribution over decisions dj given context
d1:j�1 is defined as

p(dj |d1:j�1; ✓) =
exp ⇢(d1:j�1, dj ; ✓)

ZL(d1:j�1; ✓)
, (1)

where

ZL(d1:j�1; ✓) =
X

d02A(d1:j�1)

exp ⇢(d1:j�1, d
0; ✓).

4It is straightforward to extend the approach to make use
of dynamic programming in the case where the same state
can be reached by multiple decision sequences.

2443

Each ZL(d1:j�1; ✓) is a local normalization term.
The probability of a sequence of decisions d1:n is

pL(d1:n) =

nY

j=1

p(dj |d1:j�1; ✓)

=
exp

Pn
j=1 ⇢(d1:j�1, dj ; ✓)Qn

j=1 ZL(d1:j�1; ✓)
. (2)

Beam search can be used to attempt to find the
maximum of Eq. (2) with respect to d1:n. The
additive scores used in beam search are the log-
softmax of each decision, ln p(dj |d1:j�1; ✓), not
the raw scores ⇢(d1:j�1, dj ; ✓).

In contrast, a Conditional Random Field (CRF)
defines a distribution pG(d1:n) as follows:

pG(d1:n) =
exp

Pn
j=1 ⇢(d1:j�1, dj ; ✓)

ZG(✓)
, (3)

where

ZG(✓) =
X

d01:n2Dn

exp

nX

j=1

⇢(d01:j�1, d
0
j ; ✓)

and Dn is the set of all valid sequences of deci-
sions of length n. ZG(✓) is a global normalization
term. The inference problem is now to find

argmax
d1:n2Dn

pG(d1:n) = argmax
d1:n2Dn

nX

j=1

⇢(d1:j�1, dj ; ✓).

Beam search can again be used to approximately
find the argmax.

2.3 Training

Training data consists of inputs x paired with gold
decision sequences d⇤1:n. We use stochastic gradi-
ent descent on the negative log-likelihood of the
data under the model. Under a locally normalized
model, the negative log-likelihood is

Llocal(d
⇤
1:n; ✓) = � ln pL(d⇤1:n; ✓) = (4)

�
nX

j=1

⇢(d⇤1:j�1, d
⇤
j ; ✓) +

nX

j=1

lnZL(d⇤1:j�1; ✓),

whereas under a globally normalized model it is

Lglobal(d
⇤
1:n; ✓) = � ln pG(d⇤1:n; ✓) =

�
nX

j=1

⇢(d⇤1:j�1, d
⇤
j ; ✓) + lnZG(✓). (5)

A significant practical advantange of the locally
normalized cost Eq. (4) is that the local parti-
tion function ZL and its derivative can usually be
computed efficiently. In contrast, the ZG term in
Eq. (5) contains a sum over d01:n 2 Dn that is in
many cases intractable.

To make learning tractable with the globally
normalized model, we use beam search and early
updates (Collins and Roark, 2004; Zhou et al.,
2015). As the training sequence is being decoded,
we keep track of the location of the gold path in
the beam. If the gold path falls out of the beam
at step j, a stochastic gradient step is taken on the
following objective:

Lglobal�beam(d⇤1:j ; ✓) =

�
jX

i=1

⇢(d⇤
1:i�1, d

⇤
i ; ✓) + ln

X

d0
1:j2Bj

exp

jX

i=1

⇢(d0
1:i�1, d

0
i; ✓). (6)

Here the set Bj contains all paths in the beam
at step j, together with the gold path prefix d⇤1:j .
It is straightforward to derive gradients of the
loss in Eq. (6) and to back-propagate gradients to
all levels of a neural network defining the score
⇢(s, d; ✓). If the gold path remains in the beam
throughout decoding, a gradient step is performed
using Bn, the beam at the end of decoding.

3 The Label Bias Problem

Intuitively, we would like the model to be able
to revise an earlier decision made during search,
when later evidence becomes available that rules
out the earlier decision as incorrect. At first
glance, it might appear that a locally normal-
ized model used in conjunction with beam search
or exact search is able to revise earlier deci-
sions. However the label bias problem (see Bottou
(1991), Collins (1999) pages 222-226, Lafferty
et al. (2001), Bottou and LeCun (2005), Smith
and Johnson (2007)) means that locally normal-
ized models often have a very weak ability to re-
vise earlier decisions.

This section gives a formal perspective on the
label bias problem, through a proof that globally
normalized models are strictly more expressive
than locally normalized models. The theorem was
originally proved5 by Smith and Johnson (2007).

5More precisely Smith and Johnson (2007) prove the
theorem for models with potential functions of the form
⇢(di�1, di, xi); the generalization to potential functions of
the form ⇢(d1:i�1, di, x1:i) is straightforward.

2444

I Global normalization → sum over all transition sequences

I Approximation using beam search and early update

Neural Network Techniques in Dependency Parsing 15(18)

Evaluation

System UAS LAS Approach
Zhang and Nivre (2011) 93.5 91.9 Transition, struct perc, beam
Martins et al. (2013) 92.9 90.6 Graph, 3rd-order, dual decomp
Zhang and McDonald (2014) 92.9 90.6 Graph, 3rd-order, cube pruning

Dyer et al. (2015) 93.1 90.9 Transition, LSTM, greedy
Kiperwasser et al. (2016) 93.9 91.9 Transition, LSTM/MLP, greedy
Weiss et al. (2015) 94.0 92.0 Transition, MLP, beam
Andor et al. (2016) 94.6 92.8 Transition, MLP global, beam

Evaluation on WSJ with Stanford Dependencies

Neural Network Techniques in Dependency Parsing 16(18)

Taking Stock Again

I Traditional architectures persist
I When will we see a new dependency parsing algorithm?
I Do we even need parsing algorithms?

I Transition-based parsers dominate
I Rich features trump global learning/inference?
I Or will the empire strike back?

I Predicting the future is hard . . .

Neural Network Techniques in Dependency Parsing 17(18)

Coming Up Next

1. Basic notions of dependency grammar and dependency parsing

2. Graph-based and transition-based dependency parsing

3. Advanced graph-based parsing techniques

4. Advanced transition-based parsing techniques

5. Neural network techniques in dependency parsing

6. Multilingual parsing from raw text to universal dependencies

Neural Network Techniques in Dependency Parsing 18(18)

References and Further Reading

References and Further Reading

I Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah Smith.
2016.
Many languages, one parser. Transactions of the Association for Computational
Linguistics, 4:431–444.

I Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta,
Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016.
Globally normalized transition-based neural networks. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 2442–2452.

I Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015.
Improved transition-based parsing by modeling characters instead of words with
lstms. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pages 349–359.

I Danqi Chen and Christopher Manning. 2014.
A fast and accurate dependency parser using neural networks. In Proceedings of the
Conference on Empirical Methods in Natural Language Processing, pages 740–750.

I Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith.
2015.

Neural Network Techniques in Dependency Parsing 18(18)

References and Further Reading

Transition-based dependency parsing with stack long short-term memory. In
Proceedings of the 53rd Annual Meeting of the Association for Computational
Linguistics, pages 334–343.

I Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing using bidirectional lstm feature
representations. Transactions of the Association for Computational Linguistics,
4:313–327.

I Ivan Titov and James Henderson. 2007.
A latent variable model for generative dependency parsing. In Proceedings of the
10th International Conference on Parsing Technologies, pages 144–155.

I David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015.
Structured training for neural network transition-based parsing. In Proceedings of
the 53rd Annual Meeting of the Association for Computational Linguistics and the
7th International Joint Conference on Natural Language Processing (Volume 1:
Long Papers), pages 323–333.

Neural Network Techniques in Dependency Parsing 18(18)

	References and Further Reading

