

Neural Network Techniques in Dependency Parsing

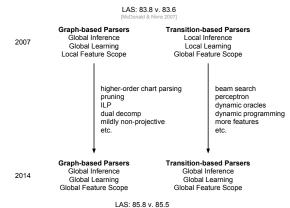
Joakim Nivre

Uppsala University Linguistics and Philology

Overall Plan

- 1. Basic notions of dependency grammar and dependency parsing
- 2. Graph-based and transition-based dependency parsing
- 3. Advanced graph-based parsing techniques
- 4. Advanced transition-based parsing techniques
- 5. Neural network techniques in dependency parsing
- 6. Multilingual parsing from raw text to universal dependencies

Taking Stock



[Zhang et al. 2013]

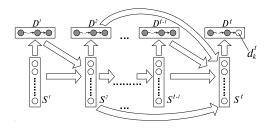
Evaluated on overlapping 9 languages in studies

Neural Network Techniques

Empirical results have improved substantially since 2014

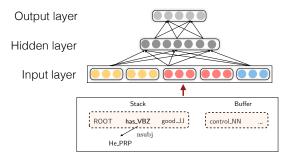
- Neural networks techniques yield more effective features:
 - Features are learned (not hand-crafted)
 - Features are continuous and dense (not discrete and sparse)
 - Features can be tuned to (multiple) specific tasks
 - Features can capture unbounded dependencies
- Parsing architectures remain essentially the same

Learning Features [Titov and Henderson 2007]



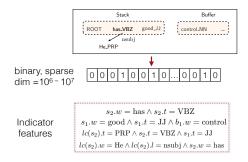
- Incremental Sigmoid Belief Network (ISBN)
- Learns complex features using binary latent variables
- Captures dependencies at arbitrarily long distances
- First generative model for transition-based parsing

Learning Dense Features [Chen and Manning 2014]



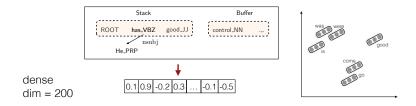
- MaltParser with MLP instead of SVM (greedy, local)
- But 2 percentage points better LAS on PTB/CTB!?

Traditional Features [Chen and Manning 2014]



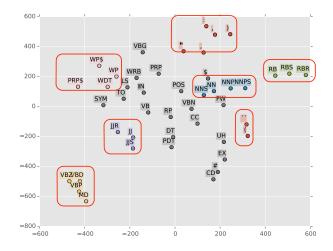
- Sparse but lexical features and interaction features crucial
- Incomplete unavoidable with hand-crafted feature templates
- Expensive accounts for 95% of computing time

Dense Features [Chen and Manning 2014]

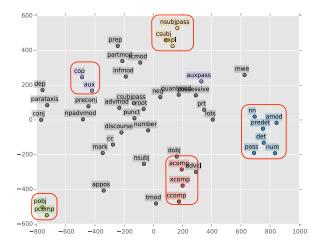


- Sparse dense features capture similarities (words, pos, dep)
- Incomplete neural network learns interaction features
- Expensive matrix multiplication with low dimensionality

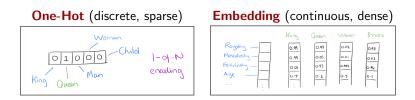
PoS Embeddings [Chen and Manning 2014]



Dep Embeddings [Chen and Manning 2014]



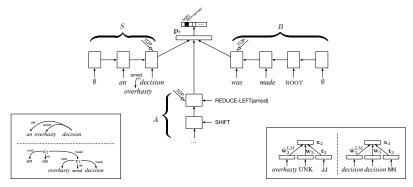
The Power of Embeddings



- Inherently much more expressive ($\mathcal{R} \times D$ vs. 1)
- Can capture similarities between items (sparsity)
- Can be pre-trained on large unlabeled corpora (OOV)
- Can be learned/tuned specifically for the parsing task

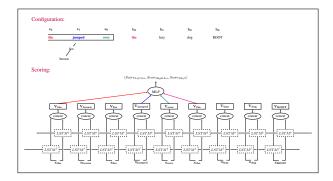
Neural Dependency Parsing

- Dominated by transition-based approaches
- Two main lines of work:
 - More powerful (recurrent) neural networks
 [Dyer et al. 2015, Kiperwasser and Goldberg 2016]
 - ► Global optimization and beam search [Weiss et al. 2015, Andor et al. 2016]
- Additional themes:
 - Character-based models for morphologically rich languages [Ballesteros et al. 2015]
 - Cross-lingual embeddings and typological features [Ammar et al. 2016]



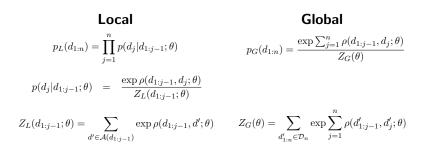
- LSTM encoding of parser configurations (S, B, A)
- Stack elements recursively composed of word representations

Bi-LSTM [Kiperwasser and Goldberg 2016]



- Bi-LSTM encodes global context in word representations
- Exploration with dynamic oracles prevent error propagation

Global Normalization [Andor et al. 2016]



- ▶ Global normalization → sum over all transition sequences
- Approximation using beam search and early update

Evaluation

System	UAS	LAS	Approach
Zhang and Nivre (2011)	93.5	91.9	Transition, struct perc, beam
Martins et al. (2013)	92.9	90.6	Graph, 3rd-order, dual decomp
Zhang and McDonald (2014)	92.9	90.6	Graph, 3rd-order, cube pruning
Dyer et al. (2015)	93.1	90.9	Transition, LSTM, greedy
Kiperwasser et al. (2016)	93.9	91.9	Transition, LSTM/MLP, greedy
Weiss et al. (2015)	94.0	92.0	Transition, MLP, beam
Andor et al. (2016)	94.6	92.8	Transition, MLP global, beam

Evaluation on WSJ with Stanford Dependencies

Taking Stock Again

- Traditional architectures persist
 - When will we see a new dependency parsing algorithm?
 - Do we even need parsing algorithms?
- Transition-based parsers dominate
 - Rich features trump global learning/inference?
 - Or will the empire strike back?
- Predicting the future is hard

Coming Up Next

- 1. Basic notions of dependency grammar and dependency parsing
- 2. Graph-based and transition-based dependency parsing
- 3. Advanced graph-based parsing techniques
- 4. Advanced transition-based parsing techniques
- 5. Neural network techniques in dependency parsing
- 6. Multilingual parsing from raw text to universal dependencies

References and Further Reading

- Waleed Ammar, George Mulcaire, Miguel Ballesteros, Chris Dyer, and Noah Smith. 2016.
 Many languages, one parser. Transactions of the Association for Computational Linguistics, 4:431–444.
- Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman Ganchev, Slav Petrov, and Michael Collins. 2016. Globally normalized transition-based neural networks. In Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2442–2452.
- Miguel Ballesteros, Chris Dyer, and Noah A. Smith. 2015. Improved transition-based parsing by modeling characters instead of words with Istms. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 349–359.
- Danqi Chen and Christopher Manning. 2014. A fast and accurate dependency parser using neural networks. In Proceedings of the Conference on Empirical Methods in Natural Language Processing, pages 740–750.
- Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and Noah A. Smith. 2015.

Transition-based dependency parsing with stack long short-term memory. In *Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics*, pages 334–343.

- Eliyahu Kiperwasser and Yoav Goldberg. 2016. Simple and accurate dependency parsing using bidirectional lstm feature representations. *Transactions of the Association for Computational Linguistics*, 4:313–327.
- Ivan Titov and James Henderson. 2007.
 A latent variable model for generative dependency parsing. In *Proceedings of the* 10th International Conference on Parsing Technologies, pages 144–155.
- David Weiss, Chris Alberti, Michael Collins, and Slav Petrov. 2015. Structured training for neural network transition-based parsing. In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pages 323–333.