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Overall Plan

Basic notions of dependency grammar and dependency parsing
Graph-based and transition-based dependency parsing
Advanced graph-based parsing techniques

Advanced transition-based parsing techniques

Neural network techniques in dependency parsing
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Multilingual parsing from raw text to universal dependencies
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Taking Stock

LAS: 83.8v. 83.6

Graph-based Parsers Transition-based Parsers
2007 Global Inference Local Inference
Global Learning Local Learning
Local Feature Scope Global Feature Scope
higher-order chart parsing beam search
pruning perceptron
ILP dynamic oracles
dual decomp dynamic programming
mildly non-projective more features
etc. etc.
Graph-based Parsers Transition-based Parsers
2014 Global Inference Global Inference
Global Learning Global Learning
Global Feature Scope Global Feature Scope

LAS: 85.8 v. 85.5

**Evaluated on overlapping 9 languages in studies**
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Neural Network Techniques

» Empirical results have improved substantially since 2014
» Neural networks techniques yield more effective features:

» Features are learned (not hand-crafted)

» Features are continuous and dense (not discrete and sparse)
» Features can be tuned to (multiple) specific tasks

» Features can capture unbounded dependencies

> Parsing architectures remain essentially the same
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Learning Features [Titov and Henderson 2007]

!

v

Incremental Sigmoid Belief Network (ISBN)
Learns complex features using binary latent variables

v

v

Captures dependencies at arbitrarily long distances

v

First generative model for transition-based parsing
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Learning Dense Features [Chen and Manning 2014]
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» MaltParser with MLP instead of SVM (greedy, local)
» But 2 percentage points better LAS on PTB/CTB!?
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Traditional Features [Chen and Manning 2014]
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» Sparse — but lexical features and interaction features crucial
» Incomplete — unavoidable with hand-crafted feature templates

» Expensive — accounts for 95% of computing time
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Dense Features [Chen and Manning 2014]
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» Sparse — dense features capture similarities (words, pos, dep)
» Incomplete — neural network learns interaction features

» Expensive — matrix multiplication with low dimensionality
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PoS Embeddings [Chen and Manning 2014]

600 -
400 -

200-

—200-

—400-

VBZ/BD CE'
eB

_600- ) B

—800- | | | | | r
—600 —400 —200 0 200 400 600

Neural Network Techniques in Dependency Parsing 9(18)



UPPSALA
UNIVERSITET

Dep Embeddings [Chen and Manning 2014]
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The Power of Embeddings

One-Hot (discrete, sparse)

Embedding (continuous, dense)
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Inherently much more expressive (R x D vs. 1)

Can capture similarities between items (sparsity)

Can be pre-trained on large unlabeled corpora (OOV)
Can be learned/tuned specifically for the parsing task
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Neural Dependency Parsing

» Dominated by transition-based approaches
» Two main lines of work:
» More powerful (recurrent) neural networks
[Dyer et al. 2015, Kiperwasser and Goldberg 2016]
» Global optimization and beam search
[Weiss et al. 2015, Andor et al. 2016]
» Additional themes:
» Character-based models for morphologically rich languages
[Ballesteros et al. 2015]
» Cross-lingual embeddings and typological features
[Ammar et al. 2016]
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Stack-LSTM [Dyer et al. 2015]
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» LSTM encoding of parser configurations (S, B, A)

» Stack elements recursively composed of word representations

i
B
Pt A
mat{( RO(Jl w
X
~— REDUCE-LEFT(amod)
A l:::lk SHIFT
|

Xs X3
Wi Wt 1 W WiNts
overhasty UNK  JJ. | decision decision NN

Neural Network Techniques in Dependency Parsing

13(18)



UPPSALA
UNIVERSITET

Bi-LSTM [Kiperwasser and Goldberg 2016]

Configuration:

Scoring:

» Bi-LSTM encodes global context in word representations

» Exploration with dynamic oracles prevent error propagation
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Global Normalization [Andor et al. 2016]
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» Global normalization — sum over all transition sequences

» Approximation using beam search and early update

Neural Network Techniques in Dependency Parsing

15(18) |



u A
UNIVERSITET

Evaluation
System UAS LAS | Approach
Zhang and Nivre (2011) 93.5 91.9 | Transition, struct perc, beam
Martins et al. (2013) 92.9 90.6 | Graph, 3rd-order, dual decomp
Zhang and McDonald (2014) | 92.9 90.6 | Graph, 3rd-order, cube pruning
Dyer et al. (2015) 93.1 90.9 | Transition, LSTM, greedy
Kiperwasser et al. (2016) 93.9 91.9 | Transition, LSTM/MLP, greedy
Weiss et al. (2015) 94.0 92.0 | Transition, MLP, beam
Andor et al. (2016) 94.6 92.8 | Transition, MLP global, beam

Evaluation on WSJ with Stanford Dependencies
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Taking Stock Again

» Traditional architectures persist

» When will we see a new dependency parsing algorithm?
» Do we even need parsing algorithms?

» Transition-based parsers dominate
» Rich features trump global learning/inference?
» Or will the empire strike back?

» Predicting the future is hard ...
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Coming Up Next

Basic notions of dependency grammar and dependency parsing
Graph-based and transition-based dependency parsing
Advanced graph-based parsing techniques

Advanced transition-based parsing techniques

Neural network techniques in dependency parsing

o~ wh =

Multilingual parsing from raw text to universal dependencies
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