The error-driven ranking model of the acquisition of phonotactics: some computational results

Giorgio Magri

SFL UMR 7023 (CNRS and University of Paris 8)

Département de Linguistique Université de Genève 8 March 2016

1. Error-driven learning of phonotactics

3

Phonology = phonotactics + repairs

Phonotactics: knowledge of the language specific acceptability of forms, construed as a categorical distinction: licit vs illicit [Gorman 2013]

Repairs: knowledge of the language specific repairs of illicit forms, as revealed by alternations from URs to SRs: [Kenstowicz and Kisseberth 1977]

Phonology = phonotactics + repairs

Phonotactics: knowledge of the language specific acceptability of forms, construed as a categorical distinction: licit vs illicit [Gorman 2013]

Repairs: knowledge of the language specific repairs of illicit forms, as revealed by alternations from URs to SRs: [Kenstowicz and Kisseberth 1977]

\Box Knowledge of repairs \Rightarrow knowledge of phonotactics:

- if you know alternations, you know what is licit and what is not
- i.e. phonotactics is the *range* of a phonological grammar G

□ Learnability logics:

[Prince and Tesar 2008]

- start by focusing on a smaller aspect of the problem of learning phonology, namely start with the problem of learning the phonotactics
- then use knowledge of phonotactics to bootstrap into knowledge of the whole system of phonological alternations

□ Acquisition phenomenology:

- nine-month-olds react differently to illicit sounds
 [Jusczy
- they thus display knowledge of the target phonotactics
- ► at a stage when morphology is lagging behind [Kazazis 1969; Hayes
- the child has still no access to phonological alternations

(日) (周) (三) (三)

\Box Knowledge of repairs \Rightarrow knowledge of phonotactics:

- if you know alternations, you know what is licit and what is not
- i.e. phonotactics is the *range* of a phonological grammar G

Learnability logics:

[Prince and Tesar 2008]

- start by focusing on a smaller aspect of the problem of learning phonology, namely start with the problem of learning the phonotactics
- then use knowledge of phonotactics to bootstrap into knowledge of the whole system of phonological alternations

□ Acquisition phenomenology:

- nine-month-olds react differently to illicit sounds
- they thus display knowledge of the target phonotactics
- at a stage when morphology is lagging behind [Kazaz
- the child has still no access to phonological alternations

\Box Knowledge of repairs \Rightarrow knowledge of phonotactics:

- if you know alternations, you know what is licit and what is not
- i.e. phonotactics is the *range* of a phonological grammar G

Learnability logics:

[Prince and Tesar 2008]

[Jusczyk et al. 1993]

- start by focusing on a smaller aspect of the problem of learning phonology, namely start with the problem of learning the phonotactics
- then use knowledge of phonotactics to bootstrap into knowledge of the whole system of phonological alternations

□ Acquisition phenomenology:

- nine-month-olds react differently to illicit sounds
- they thus display knowledge of the target phonotactics
- ► at a stage when morphology is lagging behind [Kazazis 1969; Hayes 2004]
- the child has still no access to phonological alternations

イロト イポト イヨト イヨト 二日

\Box Knowledge of repairs \Rightarrow knowledge of phonotactics:

- if you know alternations, you know what is licit and what is not
- i.e. phonotactics is the *range* of a phonological grammar G

Learnability logics:

[Prince and Tesar 2008]

[Jusczyk et al. 1993]

- start by focusing on a smaller aspect of the problem of learning phonology, namely start with the problem of learning the phonotactics
- then use knowledge of phonotactics to bootstrap into knowledge of the whole system of phonological alternations

□ Acquisition phenomenology:

- nine-month-olds react differently to illicit sounds
- they thus display knowledge of the target phonotactics
- ► at a stage when morphology is lagging behind [Kazazis 1969; Hayes 2004]
- the child has still no access to phonological alternations

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

3

3

A B A A B A

< 🗇 🕨

Genève, 8 March 2016 6 / 75

A B A A B A

< 67 ▶

3

A B F A B F

< 17 ▶

A B A A B A

< 17 ▶

- 一司

Two modeling virtues

Memory-free:

[Gibson and Wexler 1994]

- the error-driven learner doesn't keep track of previously seen data
- doesn't need a lexicon of stored forms
- it is therefore suitable to model early acquisition stages

Gradual:

[McLeod et al. 2001]

- the error-driven learner describes a sequence of grammars
- which can be matched with child acquisition paths
- it is therefore suitable to model acquisition gradualness

Two modeling virtues

Memory-free:

[Gibson and Wexler 1994]

- the error-driven learner doesn't keep track of previously seen data
- doesn't need a lexicon of stored forms
- it is therefore suitable to model early acquisition stages

Gradual:

[McLeod et al. 2001]

- the error-driven learner describes a sequence of grammars
- which can be matched with child acquisition paths
- it is therefore suitable to model acquisition gradualness

□ Today, I will focus

- on the early purely phonotactic learning stage
- through error-driven learning
- within the OT implementation of constraint-based phonology

 \Rightarrow error-driven ranking algorithms (EDRAs) for phonotactic learning

□ **Does it work?** Are there guarantees that the learned phonotactics coincides with the target phonotactics?

□ **The right initial question:** "a [learning model] that is powerful enough to account for the *fact* of language acquisition may be a more promising first approximation of an ultimately viable theory than one that is able to describe the *course* of language acquisition, which has been the traditional focus of developmental psycholinguistics" [Pinker 1979]

(日) (同) (日) (日)

□ Today, I will focus

- on the early purely phonotactic learning stage
- through error-driven learning
- within the OT implementation of constraint-based phonology

 \Rightarrow error-driven ranking algorithms (EDRAs) for phonotactic learning

□ **Does it work?** Are there guarantees that the learned phonotactics coincides with the target phonotactics?

□ **The right initial question:** "a [learning model] that is powerful enough to account for the *fact* of language acquisition may be a more promising first approximation of an ultimately viable theory than one that is able to describe the *course* of language acquisition, which has been the traditional focus of developmental psycholinguistics" [Pinker 1979]

(日) (同) (三) (三)

□ Today, I will focus

- on the early purely phonotactic learning stage
- through error-driven learning
- within the OT implementation of constraint-based phonology

 \Rightarrow error-driven ranking algorithms (EDRAs) for phonotactic learning

□ **Does it work?** Are there guarantees that the learned phonotactics coincides with the target phonotactics?

□ **The right initial question:** "a [learning model] that is powerful enough to account for the *fact* of language acquisition may be a more promising first approximation of an ultimately viable theory than one that is able to describe the *course* of language acquisition, which has been the traditional focus of developmental psycholinguistics" [Pinker 1979]

□ Today, I will focus

- on the early purely phonotactic learning stage
- through error-driven learning
- within the OT implementation of constraint-based phonology

 \Rightarrow error-driven ranking algorithms (EDRAs) for phonotactic learning

□ **Does it work?** Are there guarantees that the learned phonotactics coincides with the target phonotactics?

□ **Today**, I will focus

- on the early purely phonotactic learning stage
- through error-driven learning
- within the OT implementation of constraint-based phonology

 \Rightarrow error-driven ranking algorithms (EDRAs) for phonotactic learning

□ **Does it work?** Are there guarantees that the learned phonotactics coincides with the target phonotactics?

2. OT implementation

Giorgio Magri (CNRS)

- ∢ ≣ → 10 / 75 Genève, 8 March 2016

3

□ The core data unit is a comparison between two candidate mappings for the same underlying form: (/ŋp/, [m]) versus (/ŋp/, [mb])

□ Languages differ in which candidate beats the other (stricken out):

- (/ŋp/, [m]) beats (/ŋp/, [mb]) according to Indonesian
- ▶ (/ŋp/, [mb]) beats (/ŋp/, [m]) according to Quechua

 \square A set of constraints map these phonological comparisons into \mathbb{R}^n

□ The core data unit is a comparison between two candidate mappings for the same underlying form: (/ŋp/, [m]) versus (/ŋp/, [mb])

□ Languages differ in which candidate beats the other (stricken out):

- (/ η p/, [m]) beats (/ η p/, [mb]) according to Indonesian
- (/ŋp/, [mb]) beats (/ŋp/, [m]) according to Quechua

 \Box A set of constraints map these phonological comparisons into \mathbb{R}^n

□ The core data unit is a comparison between two candidate mappings for the same underlying form: (/ŋp/, [m]) versus (/ŋp/, [mb])

□ Languages differ in which candidate beats the other (stricken out):

- (/ η p/, [m]) beats (/ η p/, [mb]) according to Indonesian
- (/ŋp/, [mb]) beats (/ŋp/, [m]) according to Quechua

 \square A set of constraints map these phonological comparisons into \mathbb{R}^n

□ The core data unit is a comparison between two candidate mappings for the same underlying form: (/ŋp/, [m]) versus (/ŋp/, [mb])

□ Languages differ in which candidate beats the other (stricken out):

- ▶ (/ŋp/, [m]) beats (/ŋp/, [mb]) according to Indonesian
- ► (/ŋp/, [mb]) beats (/ŋp/, [m]) according to Quechua

 \Box A set of constraints map these phonological comparisons into \mathbb{R}^n

$$(/gp/, [m]) \text{ beats } (/gp/, [mb]) \implies \longrightarrow_{NODEL} \longrightarrow_{NODEL} NODEL$$

 A grammar corresponds to a hyperplane that leaves all its comparisons on one side

A grammar is described by assigning constraint weights which define the corresponding hyperplane [Prince and Smolensky 200-

Giorgio Magri (CNRS)

EDRAs and phonotactics

□ The core data unit is a comparison between two candidate mappings for the same underlying form: (/ŋp/, [m]) versus (/ŋp/, [mb])

□ Languages differ in which candidate beats the other (stricken out):

- (/ η p/, [m]) beats (/ η p/, [mb]) according to Indonesian
- ► (/ŋp/, [mb]) beats (/ŋp/, [m]) according to Quechua

 \Box A set of constraints map these phonological comparisons into \mathbb{R}^n

- □ A grammar corresponds to a hyperplane that leaves all its comparisons on one side
- A grammar is described by assigning constraint weights which define the corresponding hyperplane [Prince and Smolensky 2004]

Giorgio Magri (CNRS)

EDRAs and phonotactics

- □ Are there restrictions on the hyperplanes that correspond to actual phonological grammars?
- The OT empirical generalization: [Prince and Smolensky 2004] natural language phonologies display no additive/gang-up effects

Equivalently, natural language phonologies...

- ... correspond to hyperplanes whose weights decay exponentially
- ... correspond to very titled hyperplanes
-can be re-parametrized with rankings
- ... enforce strict domination

This is a currently open typological debate

[Pater 2007]

 "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]

(日) (同) (三) (三)

- □ Are there restrictions on the hyperplanes that correspond to actual phonological grammars?
- The OT empirical generalization: [Prince and Smolensky 2004] natural language phonologies display no additive/gang-up effects

Equivalently, natural language phonologies...

- ... correspond to hyperplanes whose weights decay exponentially
- ... correspond to very titled hyperplanes
-can be re-parametrized with rankings
- ... enforce strict domination

This is a currently open typological debate

[Pater 2007]

 "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]

(日) (周) (三) (三)

□ Are there restrictions on the hyperplanes that correspond to actual phonological grammars?

The OT empirical generalization: [Prince and Smolensky 2004] natural language phonologies display no additive/gang-up effects

Equivalently, natural language phonologies...

- ... correspond to hyperplanes whose weights decay exponentially
- ... correspond to very titled hyperplanes
- ... can be re-parametrized with rankings
- ... enforce strict domination
- This is a currently open typological debate

[Pater 2007]

 "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]

イロト 不得下 イヨト イヨト

- □ Are there restrictions on the hyperplanes that correspond to actual phonological grammars?
- The OT empirical generalization: [Prince and Smolensky 2004] natural language phonologies display no additive/gang-up effects

Equivalently, natural language phonologies...

- ... correspond to hyperplanes whose weights decay exponentially
- ... correspond to very titled hyperplanes
- ... can be re-parametrized with rankings
- ... enforce strict domination

This is a currently open typological debate

[Pater 2007]

 "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]

イロト イポト イヨト イヨト 二日

3

EDRA model

3

イロト イポト イヨト イヨト

EDRA model: representation of the current grammar

- The algorithm maintains a current hypothesis of the target OT grammar, namely a current constraint ranking
- □ This current ranking is represented numerically:

[Boersma 1998]

- each constraint is assigned a ranking value
- big ranking value \leftrightarrow high ranked constraint
- these ranking values are collected in a ranking vector (RV) θ

Current RV is initialized and updated through a five step loop

EDRA model: representation of the current grammar

- The algorithm maintains a current hypothesis of the target OT grammar, namely a current constraint ranking
- □ This current ranking is represented numerically:

[Boersma 1998]

- each constraint is assigned a ranking value
- \blacktriangleright big ranking value \leftrightarrow high ranked constraint
- these ranking values are collected in a ranking vector (RV) θ

Current RV is initialized and updated through a five step loop

- A TE N - A TE N

EDRA model: representation of the current grammar

- The algorithm maintains a current hypothesis of the target OT grammar, namely a current constraint ranking
- □ This current ranking is represented numerically:

[Boersma 1998]

- each constraint is assigned a ranking value
- \blacktriangleright big ranking value \leftrightarrow high ranked constraint
- these ranking values are collected in a ranking vector (RV) θ
- Current RV is initialized and updated through a five step loop

- A TE N - A TE N

Optimal repairs are subject to two desiderata:

- cross the line and always end up with a licit form
- but do not land too far away from the target

□ Two types of OT constraints:

- markedness: work towards neutralization of contrast (e.g. *NC)
- ▶ faithfulness: work towards preservation of contrast (e.g. IDENT_{voice})

Optimal repairs are subject to two desiderata:

- cross the line and always end up with a licit form
- but do not land too far away from the target

□ Two types of OT constraints:

- markedness: work towards neutralization of contrast (e.g. *NC)
- ► faithfulness: work towards preservation of contrast (e.g. IDENT_{voice})

Giorgio Magri (CNRS)

EDRAs and phonotactics

17 / 75

□ Initialization of current RV:

[Smolensky 1996b,a; Jusczyk, Smolensky, and Allocco 2002]

- faithfulness constraints start with a small initial ranking value
- markedness constraints start with a large initial ranking value
- \Rightarrow the initial $\mathcal{M}\gg\mathcal{F}$ predicts only unmarked forms to be licit
- The psycholinguistic literature seems to make the opposite assumption! [Davidson, Jusczyk, and Smolensky 2004; Mazuka, Cao, Dupoux, and Christophe 2013

18 A.

□ Initialization of current RV:

[Smolensky 1996b,a; Jusczyk, Smolensky, and Allocco 2002]

- faithfulness constraints start with a small initial ranking value
- markedness constraints start with a large initial ranking value
- \Rightarrow the initial $\mathcal{M}\gg\mathcal{F}$ predicts only unmarked forms to be licit
- The psycholinguistic literature seems to make the opposite assumption! [Davidson, Jusczyk, and Smolensky 2004; Mazuka, Cao, Dupoux, and Christophe 2011]

EDRA model: training SR

- □ At each iteration, the model is trained on a SR **y** assumed to be licit relative to the target phonotactics
- No assumptions whatsoever are made on this infinite sequence of training data [Cesa-Bianchi and Lugosi 2006]

EDRA model: reconstruction of the UR

□ At each iteration, the model assumes a fully faithful UR **x** for the current training SR **y**: x = y [Prince and Tesar 2004]

- This assumption only makes sense if there are no representational differences between SRs and URs
- This assumption is sound if the target grammar is idempotent: does not repair phonotactically licit forms
- □ Idempotency holds "by and large" but not always: chain shifts $(a \rightarrow e \rightarrow i)$

< 口 > < 同 >

EDRA model: reconstruction of the UR

- □ At each iteration, the model assumes a fully faithful UR x for the current training SR y: x = y [Prince and Tesar 2004]
- This assumption only makes sense if there are no representational differences between SRs and URs [Moreton 2004]
- This assumption is sound if the target grammar is idempotent: does not repair phonotactically licit forms
 [Magri 2016]
- □ Idempotency holds "by and large" but not always: chain shifts $(a \rightarrow e \rightarrow i)$

Giorgio Magri (CNRS)

Genève, 8 March 2016 20 / 75

< 口 > < 同 >

EDRA model: reconstruction of the UR

- □ At each iteration, the model assumes a fully faithful UR x for the current training SR y: x = y [Prince and Tesar 2004]
- This assumption only makes sense if there are no representational differences between SRs and URs [Moreton 2004]
- This assumption is sound if the target grammar is idempotent: does not repair phonotactically licit forms
- □ Idempotency holds "by and large" but not always: chain shifts $(a \rightarrow e \rightarrow i)$

< 口 > < 同 >

EDRA model: choice of the loser SR

- \Box At each iteration, the model compares the intended winner ${\bf y}$ with some properly chosen loser ${\bf z}$
- □ **Rule I:** if there exists a loser SR **z** able to trigger an update, choose one such loser, so as not to waste data [Tesar and Smolensky 1998]
- □ Rule II: If there are multiple such losers, choose a loser SR z which is "as close as possible" to the intended winner SR y [Magri and Kager 2015]

- A TE N - A TE N

< □ > < ---->

EDRA model: choice of the loser SR

- \Box At each iteration, the model compares the intended winner ${\bf y}$ with some properly chosen loser ${\bf z}$
- □ **Rule I:** if there exists a loser SR **z** able to trigger an update, choose one such loser, so as not to waste data [Tesar and Smolensky 1998]
- □ Rule II: If there are multiple such losers, choose a loser SR z which is "as close as possible" to the intended winner SR y [Magri and Kager 2015]

EDRA model: choice of the loser SR

- \Box At each iteration, the model compares the intended winner ${\bf y}$ with some properly chosen loser ${\bf z}$
- □ **Rule I:** if there exists a loser SR **z** able to trigger an update, choose one such loser, so as not to waste data [Tesar and Smolensky 1998]
- □ Rule II: If there are multiple such losers, choose a loser SR **z** which is "as close as possible" to the intended winner SR **y** [Magri and Kager 2015]

EDRA model: check and update

- □ At each iteration, model checks if the winner mapping (x, y) beats the loser mapping (x, z) according to the current RV
- □ If that is the case, the learner has nothing to learn from the current piece of data, loops back, and waits for more data
- □ Otherwise, the learner properly updates the current RV in response to its failure on the current comparison (**x**, **y**) versus (**x**, **z**)

3. Convergence, efficiency, consistency

Giorgio Magri (CNRS)

∃ → Genève, 8 March 2016 23 / 75

3

Consistency: Can we guarantee that the set of forms predicted licit is at least as large as the set of target licit forms?

- Convergence: equivalently, can we guarantee the EDRA only makes a finite number of errors?
- Efficiency: furthermore, can we guarantee the number of errors grows slowly with the number of constraints?

Consistency: Can we guarantee that the set of forms predicted licit is at least as large as the set of target licit forms?

- Convergence: equivalently, can we guarantee the EDRA only makes a finite number of errors?
- Efficiency: furthermore, can we guarantee the number of errors grows slowly with the number of constraints?

Consistency: Can we guarantee that the set of forms predicted licit is at least as large as the set of target licit forms?

- Convergence: equivalently, can we guarantee the EDRA only makes a finite number of errors?
- Efficiency: furthermore, can we guarantee the number of errors grows slowly with the number of constraints?

Consistency: Can we guarantee that the set of forms predicted licit is at least as large as the set of target licit forms?

- Convergence: equivalently, can we guarantee the EDRA only makes a finite number of errors?
- Efficiency: furthermore, can we guarantee the number of errors grows slowly with the number of constraints?

Consistency: Can we guarantee that the set of forms predicted licit is at least as large as the set of target licit forms?

- Convergence: equivalently, can we guarantee the EDRA only makes a finite number of errors?
- Efficiency: furthermore, can we guarantee the number of errors grows slowly with the number of constraints?

< ロト < 同ト < ヨト < ヨト

Consistency: Can we guarantee that the set of forms predicted licit is at least as large as the set of target licit forms?

- Convergence: equivalently, can we guarantee the EDRA only makes a finite number of errors?
- Efficiency: furthermore, can we guarantee the number of errors grows slowly with the number of constraints?

イロト 不得下 イヨト イヨト

Consistency: Can we guarantee that the set of forms predicted licit is at least as large as the set of target licit forms?

- Convergence: equivalently, can we guarantee the EDRA only makes a finite number of errors?
- Efficiency: furthermore, can we guarantee the number of errors grows slowly with the number of constraints?

Demotion component:

- decrease ranking value of (undominated) loser-preferring constraints
- by a certain amount, say 1 for concreteness
- □ Promotion component:
 - increase ranking value of winner-preferring constraints
 - ▶ by a certain promotion amount, call it $p \ge 0$

Examples:

- p = 0: (gradual) EDCD
- ▶ *p* = 1: (non-stochatic) GLA

Tesar and Smolensky 1998

[Boersma 1997, 1998]

□ **Question:** how to choose *p* so that we get efficient convergence?

Demotion component:

- decrease ranking value of (undominated) loser-preferring constraints
- by a certain amount, say 1 for concreteness

Promotion component:

- increase ranking value of winner-preferring constraints
- ▶ by a certain promotion amount, call it $p \ge 0$

Examples:

- p = 0: (gradual) EDCD
- ▶ *p* = 1: (non-stochatic) GLA

[Tesar and Smolensky 1998]

[Boersma 1997, 1998]

Question: how to choose p so that we get efficient convergence?

Demotion component:

- decrease ranking value of (undominated) loser-preferring constraints
- by a certain amount, say 1 for concreteness

Promotion component:

- increase ranking value of winner-preferring constraints
- by a certain promotion amount, call it $p \ge 0$

Examples:

- p = 0: (gradual) EDCD
- *p* = 1: (non-stochatic) GLA

[Tesar and Smolensky 1998]

[Boersma 1997, 1998]

□ **Question:** how to choose *p* so that we get efficient convergence?

Demotion component:

- decrease ranking value of (undominated) loser-preferring constraints
- by a certain amount, say 1 for concreteness

Promotion component:

- increase ranking value of winner-preferring constraints
- by a certain promotion amount, call it $p \ge 0$

Examples:

- p = 0: (gradual) EDCD
- p = 1: (non-stochatic) GLA

[Tesar and Smolensky 1998]

[Boersma 1997, 1998]

Question: how to choose *p* so that we get efficient convergence?

Demotion component:

- decrease ranking value of (undominated) loser-preferring constraints
- by a certain amount, say 1 for concreteness

Promotion component:

- increase ranking value of winner-preferring constraints
- by a certain promotion amount, call it $p \ge 0$

Examples:

- p = 0: (gradual) EDCD
- p = 1: (non-stochatic) GLA

[Tesar and Smolensky 1998]

[Boersma 1997, 1998]

Question: how to choose *p* so that we get efficient convergence?

A complete theory of convergence

First result of this talk

Efficient convergence holds iff the promotion amount p is calibrated namely smaller than the inverse of the number of winner-preferrers:

☐ Some boasting:

- complete theory: necessary and sufficient
- no assumptions on initialization, URs, losers
- extends to noisy setting
- ▶ as well as to the stochastic implementation used for variation [Boersma 1998

< <>></>

A complete theory of convergence

First result of this talk

Efficient convergence holds iff the promotion amount p is calibrated namely smaller than the inverse of the number of winner-preferrers:

Some boasting:

- complete theory: necessary and sufficient
- no assumptions on initialization, URs, losers
- extends to noisy setting
- ▶ as well as to the stochastic implementation used for variation [Boersma 1998]

[Magri to appearb]

Expect the model to behave similarly for similar values of p

3

$\mathsf{Discussion}/\mathsf{I}$

 \Box Expect the model to behave similarly for similar values of p

$\mathsf{Discussion}/\mathsf{I}$

 \Box Expect the model to behave similarly for similar values of p

 $\square p = \frac{1}{w+0}$

 \Box Expect the model to behave similarly for similar values of p

 $\square p = \frac{1}{w}$ is a breaking point for both convergence and modeling

 \Box Expect the model to behave similarly for similar values of p

- "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]
- "a [...] possibility is that demands of learnability provide a pressure for strict domination among constraints, [although] it remains an open problem to formally characterize exactly what is essential about strict domination to guarantee efficient learning"
- □ Efficient convergence in OT can be guaranteed with no assumptions on the constraints: it follows from OT's "tilted planes"

[Magri to appeara]

- "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]
- "a [...] possibility is that demands of learnability provide a pressure for strict domination among constraints, [although] it remains an open problem to formally characterize exactly what is essential about strict domination to guarantee efficient learning"
- □ Efficient convergence in OT can be guaranteed with no assumptions on the constraints: it follows from OT's "tilted planes"

[Magri to appeara]

31 / 75

Genève, 8 March 2016

- "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]
- "a [...] possibility is that demands of learnability provide a pressure for strict domination among constraints, [although] it remains an open problem to formally characterize exactly what is essential about strict domination to guarantee efficient learning"
- □ Efficient convergence in OT can be guaranteed with no assumptions on the constraints: it follows from OT's "tilted planes"

- "That strict domination governs grammatical constraint interaction is not currently explained" [Prince and Smolensky 1997]
- "a [...] possibility is that demands of learnability provide a pressure for strict domination among constraints, [although] it remains an open problem to formally characterize exactly what is essential about strict domination to guarantee efficient learning"
- □ Efficient convergence in OT can be guaranteed with no assumptions on the constraints: it follows from OT's "tilted planes"

(日) (同) (三) (三)

Restrictiveness: Can we guarantee that at every iteration the set of forms predicted licit is not larger than the set of target licit forms?

- Convergence (⊆)
- + Restrictiveness (\supseteq)
- = Correctness
- Unfortunately, restrictiveness is a much trickier business than convergence!

< ロト < 同ト < ヨト < ヨト

Restrictiveness: Can we guarantee that at every iteration the set of forms predicted licit is not larger than the set of target licit forms?

Convergence (⊆) ⊥ Restrictiveness (⊃)

- = Correctness
- Unfortunately, restrictiveness is a much trickier business than convergence!

イロト 不得下 イヨト イヨト

Restrictiveness: Can we guarantee that at every iteration the set of forms predicted licit is not larger than the set of target licit forms?

- Convergence (⊆)
- + Restrictiveness (\supseteq)
- = Correctness
- Unfortunately, restrictiveness is a much trickier business than convergence!

∃ → (∃ →

Restrictiveness: Can we guarantee that at every iteration the set of forms predicted licit is not larger than the set of target licit forms?

- **Convergence** (\subseteq)
- + Restrictiveness (\supseteq)
- = Correctness
- Unfortunately, restrictiveness is a much trickier business than convergence!

Given:

[Fodor and Sakas 2005]

- a finite OT typology specified through candidates and constraints
- ▶ a finite set of data consisting of *consistent* URs/SRs pairs
- □ Find: a ranking over the constraint set which is
 - consistent: the corresponding grammar enforces the training mappings
 - restrictive: there is no other consistent ranking which yields a more restrictive phonotactics
- □ **Size:** max {number of constraints, number of candidates}

Second result of this talk

This formulation of the Subset problem in OT is intractable

- [Magri 2013]
- despite the algorithm being allowed to list all candidates
- even if the problem is restricted to the simplest disjunctive structure

(Reduction from CyclicOrderingProblem).

Giorgio Magri (CNRS)

Given:

[Fodor and Sakas 2005]

- a finite OT typology specified through candidates and constraints
- ▶ a finite set of data consisting of *consistent* URs/SRs pairs
- □ Find: a ranking over the constraint set which is
 - consistent: the corresponding grammar enforces the training mappings
 - restrictive: there is no other consistent ranking which yields a more restrictive phonotactics

□ **Size:** max {number of constraints, number of candidates}

Second result of this talk

This formulation of the Subset problem in OT is intractable

[Magri 2013]

- despite the algorithm being allowed to list all candidates
- even if the problem is restricted to the simplest disjunctive structure

(Reduction from CYCLICORDERINGPROBLEM).

Giorgio Magri (CNRS)

Given:

[Fodor and Sakas 2005]

- a finite OT typology specified through candidates and constraints
- ▶ a finite set of data consisting of *consistent* URs/SRs pairs
- □ Find: a ranking over the constraint set which is
 - consistent: the corresponding grammar enforces the training mappings
 - restrictive: there is no other consistent ranking which yields a more restrictive phonotactics
- □ Size: max {number of constraints, number of candidates}

Second result of this talk

This formulation of the Subset problem in OT is intractable

- [Magri 2013
- despite the algorithm being allowed to list all candidates
- even if the problem is restricted to the simplest disjunctive structure

(Reduction from CYCLICORDERINGPROBLEM).

Given:

[Fodor and Sakas 2005]

- a finite OT typology specified through candidates and constraints
- ▶ a finite set of data consisting of *consistent* URs/SRs pairs
- □ Find: a ranking over the constraint set which is
 - consistent: the corresponding grammar enforces the training mappings
 - restrictive: there is no other consistent ranking which yields a more restrictive phonotactics
- □ Size: max {number of constraints, number of candidates}

Second result of this talk

This formulation of the Subset problem in OT is intractable

- [Magri 2013]
- despite the algorithm being allowed to list all candidates
- $-\!\!-\!$ even if the problem is restricted to the simplest disjunctive structure

(Reduction from CyclicOrderingProblem).

[Galil and Megiddo 1977]

□ Not specific to OT:

- "complexity problems are largely independent of the learning paradigm, as all frameworks encounter them" [Clark and Lappin 2011]
- intractability result different from previous OT-specific ones [Idsardi 2006]

□ Restrictiveness requires assumptions: [Barton, Berwick, and Ristad 1987]

- "[intractable] pbms don't have any special structure that would support an efficient solution algorithm, so there's little choice but brute force"
- they "might well be characterized as unnatural": "there is every reason to believe that natural language has an intricate computational structure that is not reflected in combinatorial search methods"
- they "leave unmentioned some constraints of the natural problem"

If the child solves it, the problem has got to be solvable!

Two possible types of assumptions:

- restrictiveness through assumptions on the target pattern, for any underlying constraint set
- restrictiveness through assumptions on the constraint set, for any target pattern in the corresponding typology

Giorgio Magri (CNRS)

□ Not specific to OT:

- "complexity problems are largely independent of the learning paradigm, as all frameworks encounter them" [Clark and Lappin 2011]
- intractability result different from previous OT-specific ones [Idsardi 2006]

□ Restrictiveness requires assumptions:

[Barton, Berwick, and Ristad 1987]

- "[intractable] pbms don't have any special structure that would support an efficient solution algorithm, so there's little choice but brute force"
- they "might well be characterized as unnatural": "there is every reason to believe that natural language has an intricate computational structure that is not reflected in combinatorial search methods"
- they "leave unmentioned some constraints of the natural problem"

If the child solves it, the problem has got to be solvable!

Two possible types of assumptions:

- restrictiveness through assumptions on the target pattern, for any underlying constraint set
- restrictiveness through assumptions on the constraint set, for any target pattern in the corresponding typology

Giorgio Magri (CNRS)

□ Not specific to OT:

- "complexity problems are largely independent of the learning paradigm, as all frameworks encounter them" [Clark and Lappin 2011]
- intractability result different from previous OT-specific ones [Idsardi 2006]

□ Restrictiveness requires assumptions:

[Barton, Berwick, and Ristad 1987]

- "[intractable] pbms don't have any special structure that would support an efficient solution algorithm, so there's little choice but brute force"
- they "might well be characterized as unnatural": "there is every reason to believe that natural language has an intricate computational structure that is not reflected in combinatorial search methods"
- they "leave unmentioned some constraints of the natural problem"

If the child solves it, the problem has got to be solvable!

- **Two possible types of assumptions:**
 - restrictiveness through assumptions on the target pattern, for any underlying constraint set
 - restrictiveness through assumptions on the constraint set, for any target pattern in the corresponding typology

Giorgio Magri (CNRS)

□ Not specific to OT:

- "complexity problems are largely independent of the learning paradigm, as all frameworks encounter them" [Clark and Lappin 2011]
- intractability result different from previous OT-specific ones [Idsardi 2006]

□ Restrictiveness requires assumptions:

[Barton, Berwick, and Ristad 1987]

- "[intractable] pbms don't have any special structure that would support an efficient solution algorithm, so there's little choice but brute force"
- they "might well be characterized as unnatural": "there is every reason to believe that natural language has an intricate computational structure that is not reflected in combinatorial search methods"
- they "leave unmentioned some constraints of the natural problem"

If the child solves it, the problem has got to be solvable!

□ Two possible types of assumptions:

- restrictiveness through assumptions on the target pattern, for any underlying constraint set
- restrictiveness through assumptions on the constraint set, for any target pattern in the corresponding typology

Giorgio Magri (CNRS)

□ Not specific to OT:

- "complexity problems are largely independent of the learning paradigm, as all frameworks encounter them" [Clark and Lappin 2011]
- intractability result different from previous OT-specific ones [Idsardi 2006]

□ Restrictiveness requires assumptions:

[Barton, Berwick, and Ristad 1987]

- "[intractable] pbms don't have any special structure that would support an efficient solution algorithm, so there's little choice but brute force"
- they "might well be characterized as unnatural": "there is every reason to believe that natural language has an intricate computational structure that is not reflected in combinatorial search methods"
- they "leave unmentioned some constraints of the natural problem"

If the child solves it, the problem has got to be solvable!

□ Two possible types of assumptions:

- restrictiveness through assumptions on the target pattern, for any underlying constraint set
- restrictiveness through assumptions on the constraint set, for any target pattern in the corresponding typology

Faithfulness constraints and phonotactics

Velar inventories:

- let's focus of segment inventories
- ▶ out of the four velar obstruents: [g], [k], [y], [x]
- ► here are some representative examples: $[g k \neq x] [g k \neq x]$

 \Box **Phonology:** relative ranking of \mathcal{F} -constraints does matter

□ **Phonotactics:** relative ranking of *F*-constraints does not matter

NoDorFric | all \mathcal{F} constraints | emaining \mathcal{M} constraint: NoDorFric, NoVoiStop

イロト 不得下 イヨト イヨト 二日

Faithfulness constraints and phonotactics

Velar inventories:

- let's focus of segment inventories
- ▶ out of the four velar obstruents: [g], [k], [y], [x]
- here are some representative examples: [g k ¥ ×] [g k ¥ ×]

□ **Phonology:** relative ranking of *F*-constraints does matter

 \Box **Phonotactics:** relative ranking of \mathcal{F} -constraints does not matter

NoDorFric | all \mathcal{F} constraints | remaining \mathcal{M} constraints NoDorFric, NoVoiStop | all \mathcal{F} constraints | remaining \mathcal{M} constraints

イロト 不得下 イヨト イヨト 二日

Faithfulness constraints and phonotactics

Velar inventories:

- let's focus of segment inventories
- out of the four velar obstruents: [g], [k], [χ], [x]
- ► here are some representative examples: [g k +] [g k +]

□ **Phonology:** relative ranking of *F*-constraints does matter

□ **Phonotactics:** relative ranking of *F*-constraints does not matter

 $\begin{array}{ccc} \textbf{NoDorFric} & \textbf{NoDorFric}, \textbf{NoVoiStop} \\ | \\ all \ \mathcal{F} \ constraints & all \ \mathcal{F} \ constraints \\ | \\ remaining \ \mathcal{M} \ constraints & remaining \ \mathcal{M} \ constraints \end{array}$

イロト イポト イヨト イヨト 二日

An assumption on the target phonotactic pattern

Intuition:

- \blacktriangleright OT constraints come in two varieties: ${\cal F}$ and ${\cal M}$ constraints
- relative ranking of *F* constraints determines how illicit forms are repaired
- but it contributes little to the distinction between licit/illicit forms
- namely, it is irrelevant for phonotactics

□ Formalization:

A phonotactic pattern is \mathcal{F} -irrelevant (relative to a certain constraint set) provided it can be generated by

$$\mathcal{M}_{top} \gg \mathcal{F} \gg \mathcal{M}_{bottom}$$

for some partition $\mathcal{M}_{top}, \mathcal{M}_{bottom}$ of the markedness constraints

□ How general is this assumption?

- some authors have (implicitly) assumed it is universal [Hayes and Wilson :
- it really depends on the theory of markedness:
 - phonetic grounding
 - positional faitthfulness

[Hayes and Steriade 2004]

A B > A
 A
 B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

An assumption on the target phonotactic pattern

□ Intuition:

- \blacktriangleright OT constraints come in two varieties: ${\cal F}$ and ${\cal M}$ constraints
- relative ranking of $\mathcal F$ constraints determines how illicit forms are repaired
- but it contributes little to the distinction between licit/illicit forms
- namely, it is irrelevant for phonotactics

Formalization:

A phonotactic pattern is $\mathcal{F}\text{-irrelevant}$ (relative to a certain constraint set) provided it can be generated by

$$\mathcal{M}_{top} \gg \mathcal{F} \gg \mathcal{M}_{bottom}$$

for some partition $\mathcal{M}_{\textit{top}}, \mathcal{M}_{\textit{bottom}}$ of the markedness constraints

How general is this assumption?

- some authors have (implicitly) assumed it is universal [Hayes and Will
- it really depends on the theory of markedness:
 - phonetic grounding
 - positional faitthfulness

[Hayes and Steriade 2004]

An assumption on the target phonotactic pattern

□ Intuition:

- \blacktriangleright OT constraints come in two varieties: ${\cal F}$ and ${\cal M}$ constraints
- relative ranking of $\mathcal F$ constraints determines how illicit forms are repaired
- but it contributes little to the distinction between licit/illicit forms
- namely, it is irrelevant for phonotactics

Formalization:

A phonotactic pattern is $\mathcal{F}\text{-irrelevant}$ (relative to a certain constraint set) provided it can be generated by

$$\mathcal{M}_{top} \gg \mathcal{F} \gg \mathcal{M}_{bottom}$$

for some partition $\mathcal{M}_{\textit{top}}, \mathcal{M}_{\textit{bottom}}$ of the markedness constraints

How general is this assumption?

- ▶ some authors have (implicitly) assumed it is universal [Hayes and Wilson 2008]
- it really depends on the theory of markedness:
 - phonetic grounding
 - positional faitthfulness

[Hayes and Steriade 2004]

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

3

프 에 에 프 어

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2
$$p \leq \frac{1}{w + \Delta}$$
 with $\Delta(m) \simeq \frac{m}{k \log m}$

Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

□ Mild boasting:

- ▶ a restrictiveness result for at least a large majority of patterns
- virtually no assumptions on the constraints (Hp4 very mild)
- no assumptions on the subroutine for the choice of the loser

(4) (E) (A) (E) (A)

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2
$$p \leq rac{1}{w+\Delta}$$
 with $\Delta(m) \simeq rac{m}{k\log m}$

Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

□ Mild boasting:

- a restrictiveness result for at least a large majority of patterns
- virtually no assumptions on the constraints (Hp4 very mild)
- no assumptions on the subroutine for the choice of the loser

(B)

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2
$$p \leq rac{1}{w+\Delta}$$
 with $\Delta(m) \simeq rac{m}{k\log m}$

Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

□ Faithfulness constraints militate in favor of contrast preservation

- $\hfill\square$ restrictiveness thus requires them to be ranked as low as possible
- $\hfill\square$ i.e., to be promoted little from their initial low ranking position
- □ Hp2 indeed requires the promotion amount to be small

E 5 4 E 5

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2
$$p \leq rac{1}{w+\Delta}$$
 with $\Delta(m) \simeq rac{m}{k\log m}$

Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

□ Faithfulness constraints militate in favor of contrast preservation

- $\hfill\square$ restrictiveness thus requires them to be ranked as low as possible
- $\hfill\square$ i.e., to be promoted little from their initial low ranking position
- □ Hp2 indeed requires the promotion amount to be small

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2 $p \leq \frac{1}{w + \Delta}$ with $\Delta(m) \simeq \frac{m}{k \log m}$

Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

□ Suppose **x** is a target illicit phonological form

 \Box x is neutralized to some licit candidate form y by target grammar

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

- **Hp2** $p \leq \frac{1}{w + \Delta}$ with $\Delta(m) \simeq \frac{m}{k \log m}$
- Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

- □ Suppose **x** is a target illicit phonological form
- $\hfill\square$ x is neutralized to some licit candidate form y by target grammar

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

- **Hp2** $p \leq \frac{1}{w + \Delta}$ with $\Delta(m) \simeq \frac{m}{k \log m}$
- Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

 \Box Suppose x is a target illicit phonological form

 \Box x is neutralized to some licit candidate form y by target grammar

- symmetry requires that vice versa \mathbf{x} be a candidate of \mathbf{v}
- Plausible if candidacy defined in terms of phonological operations

Giorgio Magri (CNRS)

Genève, 8 March 2016

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2 $p \leq \frac{1}{w + \Delta}$ with $\Delta(m) \simeq \frac{m}{k \log m}$

Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

In order for the *F*-irrelevance assumption to bite, there have got to be enough faithfulness constraints

- □ faithfulness distinciveness ensures precisely that
- □ as it requires that any two candidate SRs \mathbf{y}, \mathbf{z} for the same UR \mathbf{x} be distinguished by at least a faithfulness constraint: $F(\mathbf{x}, \mathbf{y}) \neq F(\mathbf{x}, \mathbf{z})$
- Plausible assumption to connect candidates and constraints

イロト 不得下 イヨト イヨト

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2 $p \le \frac{1}{w + \Delta}$ with $\Delta(m) \simeq \frac{m}{k \log m}$ **Hp3** the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

- \Box In order for the $\mathcal{F}\text{-irrelevance}$ assumption to bite, there have got to be enough faithfulness constraints
- $\hfill\square$ faithfulness distinciveness ensures precisely that
- □ as it requires that any two candidate SRs \mathbf{y}, \mathbf{z} for the same UR \mathbf{x} be distinguished by at least a faithfulness constraint: $F(\mathbf{x}, \mathbf{y}) \neq F(\mathbf{x}, \mathbf{z})$
- Plausible assumption to connect candidates and constraints

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is \mathcal{F} -irrelevant

Hp2
$$p \leq \frac{1}{w + \Delta}$$
 with $\Delta(m) \simeq \frac{m}{k \log m}$

Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

□ Idea of the proof:

- ▶ By Hp1, the target ranking is $\mathcal{M}_{top} \gg \mathcal{F} \gg \mathcal{M}_{bottom}$
- ▶ By Hp2, the EDRA model learns that $\mathcal{M}_{top} \gg^{tar} \mathcal{F}$
- By Hp3 and Hp4, that suffices for restrictiveness

Step 1 Step 2

イロト イポト イヨト イヨト 二日

Third result of this talk

The EDRA model is restrictive provided:

[Magri in preparation]

Hp1 the target/training phonotactic pattern is $\mathcal{F}\text{-}\textsc{irrelevant}$

Hp2
$$p \leq rac{1}{w+\Delta}$$
 with $\Delta(m) \simeq rac{m}{k\log m}$
Hp3 the candidacy relation is symmetric

Hp4 faithfulness constraints are distinctive

\Box Idea of the proof:

- By Hp1, the target ranking is $\mathcal{M}_{top} \gg \mathcal{F} \gg \mathcal{M}_{bottom}$
- By Hp2, the EDRA model learns that $\mathcal{M}_{top} \gg^{tar} \mathcal{F}$
- By Hp3 and Hp4, that suffices for restrictiveness

Step 1 Step 2

(人間) とうき くうとう う

 \Box EDRA only demotes as much as needed:

[Tesar and Smolensky 1998]

- the top ranked constraint is never demoted
- the second top ranked constraint demoted by at most 1
- the third top ranked constraint demoted by at most 2

▶ ...

 \Box EDRA only demotes as much as needed:

[Tesar and Smolensky 1998]

- the top ranked constraint is never demoted
- the second top ranked constraint demoted by at most 1
- the third top ranked constraint demoted by at most 2

▶ ...

 \Box The EDRA's ranking dynamics for \mathcal{M}_{top} thus looks as follows:

 \Box EDRA only demotes as much as needed:

[Tesar and Smolensky 1998]

- the top ranked constraint is never demoted
- the second top ranked constraint demoted by at most 1
- the third top ranked constraint demoted by at most 2

▶ ...

 \Box The EDRA's ranking dynamics for \mathcal{M}_{top} thus looks as follows:

 \Box EDRA only demotes as much as needed:

[Tesar and Smolensky 1998]

- the top ranked constraint is never demoted
- the second top ranked constraint demoted by at most 1
- the third top ranked constraint demoted by at most 2

▶ ...

 \Box The EDRA's ranking dynamics for \mathcal{M}_{top} thus looks as follows:

$\hfill\square$ EDRA only demotes as much as needed:

[Tesar and Smolensky 1998]

- the top ranked constraint is never demoted
- the second top ranked constraint demoted by at most 1
- the third top ranked constraint demoted by at most 2

▶ ...

 \Box The EDRA's ranking dynamics for \mathcal{M}_{top} thus looks as follows:

 $\Box \ \mathcal{M}_{\textit{top}}$ need to be ranked high and indeed stay high

Giorgio Magri (CNRS)

 \Box As we have seen, \mathcal{M}_{top} stay above $\theta^{init} - m$:

 \Box As we have seen, \mathcal{M}_{top} stay above $\theta^{init} - m$:

 \Box The target ranking condition $\mathcal{M}_{top} \gg \mathcal{F}$ is thus learned

 \Box As we have seen, \mathcal{M}_{top} stay above $\theta^{init} - m$:

□ If promotion amount *p* is null or small, \mathcal{F} stays lower than $\theta^{init} - m$: $p = \frac{1}{w + \Delta} \qquad \Delta(m) \simeq \frac{m}{k \log m}$

□ As good as we might have hoped for:

• $\Delta(m)$ needs to increase with *m* and cannot be constant

• yet, the rate of increase (derivative) of $\Delta(m)$ decreases with m

 \square The target ranking condition $\mathcal{M}_{top}\gg\mathcal{F}$ is thus learned

 \Box As we have seen, \mathcal{M}_{top} stay above $\theta^{init} - m$:

□ If promotion amount *p* is null or small, \mathcal{F} stays lower than $\theta^{init} - m$: $p = \frac{1}{w + \Lambda}$ $\Delta(m) \simeq \frac{m}{k \log m}$

□ As good as we might have hoped for:

• $\Delta(m)$ needs to increase with *m* and cannot be constant

• yet, the rate of increase (derivative) of $\Delta(m)$ decreases with m

 \Box The target ranking condition $\mathcal{M}_{top} \gg \mathcal{F}$ is thus learned

 \Box As we have seen, \mathcal{M}_{top} stay above $\theta^{init} - m$:

□ If promotion amount *p* is null or small, \mathcal{F} stays lower than $\theta^{init} - m$: $p = \frac{1}{w + \Lambda} \qquad \Delta(m) \simeq \frac{m}{k \log m}$

□ As good as we might have hoped for:

• $\Delta(m)$ needs to increase with *m* and cannot be constant

• yet, the rate of increase (derivative) of $\Delta(m)$ decreases with m

 \Box The target ranking condition $\mathcal{M}_{top} \gg \mathcal{F}$ is thus learned

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016

54 / 75

Step 2: $\mathcal{M}_{top} \gg \mathcal{F}$ suffices for restrictiveness

Suppose \mathbf{x} is illicit and thus neutralized to \mathbf{y} by the target phonology

Giorgio Magri (CNRS)

Genève, 8 March 2016 55 / 75

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016

56 / 75

M′ √ ≷	
$\begin{array}{cccc} & & & \\ F'F''\cdots & & F'F''\cdots & \checkmark \end{array}$	

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 57 / 75

target ranking	learned ranking	pre /x/→[x] \	fers ∕s ∕x∕→[y]	pref ∕y∕→[x] v:	f ers s ∕y ∕→[y]
	M' 2	\checkmark		\checkmark	
M	\$ <i>M</i> ረ ጌ		\checkmark		
M'M"	ج ۸″…	\checkmark			
/ F'F"	{ F'F"	\checkmark			

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 58 / 75

target ranking	learned ranking	pre /x/→[x] v	fers s /x/→[y]	pref ∕y/→[x] v:	f ers s ∕y /→[y]
	C }				\checkmark
	\$ M' 2	\checkmark		\checkmark	
M	\$ <i>M</i> ረ ጌ		\checkmark		
M'M"	ج ج M''	\checkmark			
/ F'F"	{ ='F"	\checkmark			

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 59 / 75

target ranking	learned ranking	prefers /x/ \rightarrow [x] vs /x/ \rightarrow [y]		prefers ∕y/→[x] vs ⁄y/→[y]	
	F {				\checkmark
	{ M′ ₹	\checkmark		\checkmark	
M	\$ <i>M</i> { ጌ		\checkmark		
M'M"	م م م	\checkmark			
/ F'F"	{ ='F"	\checkmark			

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 60 / 75

target ranking	learned ranking	pre /x/→[x] v	fers rs ∕x∕→[y]	pref ∕y/→[x] v:	f ers s ∕y /→[y]
	C {				\checkmark
	\$ M' 3	\checkmark		\checkmark	
M	\$ <i>M</i> ያ ጌ		\checkmark		
M'M"	۶ م M"	\checkmark			
/ F'F"	{ F'F"	\checkmark			

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 61 / 75

target ranking	learned ranking	pre /x/→[x] v	fers rs ∕x∕→[y]	pref ∕y∕→[x] v:	f ers s ∕y /→[y]
	M 2				\checkmark
	\$ M' 2	\checkmark		\checkmark	
M	\$ <i>M</i> ያ ጌ		\checkmark		
M'M"	۶ م ۳″	\checkmark			
/ F'F"	{ F'F"	\checkmark			

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 62 / 75

target ranking	learned ranking	pre /x/→[x] v	fers s /x/→[y]	pref ∕y/→[x] v:	ers ₅ <mark>/y</mark> /→[y]
	M		\checkmark		\checkmark
	\$ M' \$	\checkmark		\checkmark	
M	\$ <i>M</i> ያ ጌ		\checkmark		
М'М"	۶ ۲ M"	\checkmark			
/ F'F"	{ F′F″	\checkmark			

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 63 / 75

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 64 / 75

5. Conclusions

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 65 / 75

3

▲□▶ ▲圖▶ ▲厘▶ ▲厘≯

Second result of this talk

The OT problem of the acquisition of phonotactics (stated as a Subset problem) is intractable, even in the best conditions [Magri 2013]

- □ GL usually motivated through poverty of the stimulus arguments: child's linguistic input is ambiguous, incomplete, degenerate [Thomas 20]
- Poverty of the stimulus arguments are difficult to make:
 - empirical side: they are about child input
 - ► theoretical side: what suffices for learnability [Clark and Lappin 2011]
- Results such as the one above show that learning is hard even when the input is rich and idealized:
 - pairs of underlying and surface representations
 - pristine and uncorrupted
 - no hidden structure
- □ From poverty of the stimulus to hardness of the task: intractability results provide further ammunition for GL

Second result of this talk

The OT problem of the acquisition of phonotactics (stated as a Subset problem) is intractable, even in the best conditions [Magri 2013]

□ GL usually motivated through poverty of the stimulus arguments: child's linguistic input is ambiguous, incomplete, degenerate [Thomas 2002]

□ Poverty of the stimulus arguments are difficult to make:

- empirical side: they are about child input
- theoretical side: what suffices for learnability [Clark and Lappin 2011]
- Results such as the one above show that learning is hard even when the input is rich and idealized:
 - pairs of underlying and surface representations
 - pristine and uncorrupted
 - no hidden structure

□ From poverty of the stimulus to hardness of the task: intractability results provide further ammunition for GL

Second result of this talk

The OT problem of the acquisition of phonotactics (stated as a Subset problem) is intractable, even in the best conditions [Magri 2013]

- GL usually motivated through poverty of the stimulus arguments: child's linguistic input is ambiguous, incomplete, degenerate [Thomas 2002]
- □ Poverty of the stimulus arguments are difficult to make:
 - empirical side: they are about child input
 - theoretical side: what suffices for learnability

[Clark and Lappin 2011]

- Results such as the one above show that learning is hard even when the input is rich and idealized:
 - pairs of underlying and surface representations
 - pristine and uncorrupted
 - no hidden structure

□ From poverty of the stimulus to hardness of the task: intractability results provide further ammunition for GL

Giorgio Magri (CNRS)

EDRAs and phonotactics

Genève, 8 March 2016 66 / 75

Second result of this talk

The OT problem of the acquisition of phonotactics (stated as a Subset problem) is intractable, even in the best conditions [Magri 2013]

- GL usually motivated through poverty of the stimulus arguments: child's linguistic input is ambiguous, incomplete, degenerate [Thomas 2002]
- □ Poverty of the stimulus arguments are difficult to make:
 - empirical side: they are about child input
 - ► theoretical side: what suffices for learnability [Clark and Lappin 2011]
- Results such as the one above show that learning is hard even when the input is rich and idealized:
 - pairs of underlying and surface representations
 - pristine and uncorrupted
 - no hidden structure

□ From poverty of the stimulus to hardness of the task: intractability results provide further ammunition for GL

Second result of this talk

The OT problem of the acquisition of phonotactics (stated as a Subset problem) is intractable, even in the best conditions [Magri 2013]

- GL usually motivated through poverty of the stimulus arguments: child's linguistic input is ambiguous, incomplete, degenerate [Thomas 2002]
- □ Poverty of the stimulus arguments are difficult to make:
 - empirical side: they are about child input
 - ► theoretical side: what suffices for learnability [Clark and Lappin 2011]
- Results such as the one above show that learning is hard even when the input is rich and idealized:
 - pairs of underlying and surface representations
 - pristine and uncorrupted
 - no hidden structure
- □ From poverty of the stimulus to hardness of the task: intractability results provide further ammunition for GL

Giorgio Magri (CNRS)

EDRAs and phonotactics

First result of this talk

The EDRA model converges efficiently under the OT mode of constraint interaction ("tilted planes" assumption) [Tesar and Smolensky 1998; Pater 2008; Magri 2012]

Third result of this talk

The EDRA model is restrictive when the target/training phonotactic pattern is \mathcal{F} -irrelevant (under mild additional assumptions) [Magri in preparation]

□ Current skepticism about phonological universals:

- "the study of universals is fraught with difficulties"
- "there appear to be so few absolute universals"
- "the quest for universals has failed"

 This is because phonology has focused on the wrong type of universals: "every language has a coronal stop" [Hyman 2008; Blevins

[Evans and Levinson 2009]

[Hyman 2008]

[Maddieson 1984]

[van Oostendorp 2013]

イロト 不得下 イヨト イヨト

First result of this talk

The EDRA model converges efficiently under the OT mode of constraint interaction ("tilted planes" assumption) [Tesar and Smolensky 1998; Pater 2008; Magri 2012]

Third result of this talk

The EDRA model is restrictive when the target/training phonotactic pattern is \mathcal{F} -irrelevant (under mild additional assumptions) [Magri in preparation]

□ Current skepticism about phonological universals:

- "the study of universals is fraught with difficulties"
- "there appear to be so few absolute universals"
- "the quest for universals has failed"
- This is because phonology has focused on the wrong type of universals: "every language has a coronal stop" [Hyman 2008; Blevins 2009]

[Evans and Levinson 2009]

[Hyman 2008]

[Maddieson 1984]

[van Oostendorp 2013]

イロト 不得下 イヨト イヨト

First result of this talk

The EDRA model converges efficiently under the OT mode of constraint interaction ("tilted planes" assumption) [Tesar and Smolensky 1998; Pater 2008; Magri 2012]

Third result of this talk

The EDRA model is restrictive when the target/training phonotactic pattern is \mathcal{F} -irrelevant (under mild additional assumptions) [Magri in preparation]

□ Current skepticism about phonological universals:

- "the study of universals is fraught with difficulties"
- "there appear to be so few absolute universals"
- "the quest for universals has failed"
- This is because phonology has focused on the wrong universals: "every language has a coronal stop" [Hyman 2008; Blevins 2009]
- The right universals are motivated by computational considerations (learnability, algorithm for production and interpretation)

Giorgio Magri (CNRS)

EDRAs and phonotactics

[Evans and Levinson 2009]

[Hyman 2008]

[Maddieson 1984]

[van Oostendorp 2013]

Thanks!

3

(3) (3) (3)

Image: A matrix

References I

- Barton, G. Edward, Robert Berwick, and Eric Sven Ristad. 1987. *Computational complexity and natural language*. Cambridge, MA: MIT Press.
- Beckman, Mary E. 1999. *Positional faithfulness: An Oprimality Theretic treatment of phonological asymmetries*. New York: Garland Publishing (Outstanding dissertations in Linguistics).
- Blevins, Juliette. 2009. Another universal bites the dust: Northwest Mekeo lacks coronal phonemes. *Oceanic Linguistics* 48.1:264–273.
- Boersma, Paul. 1997. How we learn variation, optionality and probability. In *Proceedings of the Institute of Phonetic Sciences (IFA) 21*, ed. Rob van Son, 43–58. University of Amsterdam: Institute of Phonetic Sciences.
- Boersma, Paul. 1998. Functional phonology. Doctoral Dissertation, University of Amsterdam, The Netherlands. The Hague: Holland Academic Graphics.
- Cesa-Bianchi, Nicolò, and Gábor Lugosi. 2006. *Prediction, learning, and games*. Cambridge University Press.
- Clark, Alexander, and Shalom Lappin. 2011. *Linguistic nativism and the poverty of the stimulus*. Wiley-Blackwell.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

References II

- Davidson, Lisa, Peter W. Jusczyk, and Paul Smolensky. 2004. The initial and final states: Theoretical implications and experimental explorations of richness of the base. In *Constraints in phonological acquisition*, ed. R. Kager, J. Pater, and W. Zonneveld, 158–203. Cambridge University Press.
- Evans, Nicholas, and Stephen C. Levinson. 2009. The myth of language universals: Language diversity and its importance for cognitive science. *Behavioral and Brain Sciences* 32.5:429–448.
- Fodor, Janet Dean, and William Gregory Sakas. 2005. The Subset Principle in syntax: costs of compliance. *Linguistics* 41:513–569.
- Galil, Zvi, and Nimrod Megiddo. 1977. Cyclic ordering is NP-complete. *Theoretical Computer Science* 5:179–182.
- Gibson, Edward, and Kenneth Wexler. 1994. Triggers. Linguistic Inquiry 25:407-454.
- Gorman, Kyle. 2013. Generative phonotactics. Doctoral Dissertation, University of Pennsylvania.
- Hayes, Bruce. 2004. Phonological acquisition in Optimality Theory: The early stages. In Constraints in phonological acquisition, ed. René Kager, Joe Pater, and Wim Zonneveld, 158–203. Cambridge: Cambridge University Press.

References III

- Hayes, Bruce, and Donca Steriade. 2004. Introduction: the phonetic bases of phonological markedness. In *Phonetically based phonology*, ed. Bruce Hayes, Robert Kirchner, and Donca Steriade, 1–33. Cambridge University Press.
- Hayes, Bruce, and Colin Wilson. 2008. A maximum entropy model of phonotactics and phonotactic learning. *Linguistic Inquiry* 39:379–440.
- Hyman, Larry. 2008. Universals in phonology. In *The linguistic review*, ed. Harry van der Hulst.
- Idsardi, William. 2006. A simple proof that Optimality Theory is computationally intractable. *Linguistic Inquiry* 37.2:271–275.
- Jusczyk, P. W., A. D. Friederici, J. M. I. Wessels, V. Y. Svenkerud, and A. Jusczyk. 1993. Infants' sensitivity to the sound patterns of native language words. *Journal of Memory and Language* 32:402–420.
- Jusczyk, Peter, Paul Smolensky, and Theresa Allocco. 2002. How english-learning infants respond to markedness and faithfulness constraints. *Language Acquisition* 10:31–73.
- Kazazis, Kostas. 1969. Possible evidence for (near-)underlying forms in the speech of a child. In Papers from the Fifth Regional Meeting of the Chicago Linguistic Society (CLS5), ed. Robert I. Binnick, Alice Davison, Georgia McGreen, and Jerry L. Morgan, 382–388. Chicago, IL: Chicago Linguistic Society.

References IV

- Kenstowicz, Michael, and Charles W. Kisseberth. 1977. *Topics in phonological theory*. New York: Academic Press.
- Legendre, Gèraldine, Antonella Sorace, and Paul Smolensky. 2006. The optimality theory/harmonic grammar connection. In *The harminic mind*, ed. Paul Smolensky and Gèraldine Legendre, 903–966. Cambridge, MA: MIT Press.

Maddieson, Ian. 1984. Patterns of sounds. Cambridge University Press.

- Magri, Giorgio. 2012. Convergence of error-driven ranking algorithms. *Phonology* 29:213–269.
- Magri, Giorgio. 2013. The complexity of learning in OT and its implications for the acquisition of phonotactics. *Linguistic Inquiry* 44.3:433–468.
- Magri, Giorgio. 2016. Idempotency in Optimality Theory. Submitted manuscript.
- Magri, Giorgio. in preparation. Some restrictiveness results for the calibrated error-driven ranking algorithm. Manuscript.
- Magri, Giorgio. to appeara. Error-driven learning in OT and HG: a comparison. $Phonology \ .$
- Magri, Giorgio. to appearb. Noise robustness and stochastic tolerance of OT error-driven ranking algorithms. *Journal of Logic and Computation*.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

References V

- Magri, Giorgio, and René Kager. 2015. How to choose successful losers. In *Proceedings* of MOL 14: the 14th meeting on Mathematics of Language.
- Mazuka, Reiko, Yvonne Cao, Emmanuel Dupoux, and Anne Christophe. 2011. The development of a phonological illusion: a cross-linguistic study with japanese and french infants. *Developmental Science* 14.4:693–699.
- McLeod, S., J. van Doorn, and V. Reed. 2001. Consonant cluster development in two-year-olds: General trends and individual differences. *Journal of Speech, Language and Hearing Research* 44:1144–1172.
- Moreton, Elliott. 2004. Non-computable functions in Optimality Theory. In *Optimality theory in phonology: A reader*, ed. John J. McCarthy, 141–163. Malden: MA: Wiley-Blackwell.
- van Oostendorp, Marc. 2013. Phonology between theory and data. In L'interface langage-cognition / the language-cognition interface. actes du 19e congrès international des linguistes (langue et cultures, 45), ed. S.R. Anderson, J. Moeschler, and F. Reboul, 289–306. Genève - Paris: Libraire Droz.

Pater, Joe. 2007. "the power of weighted constraints". Talk delivered at Johns Hopkins.

Pater, Joe. 2008. Gradual learning and convergence. Linguistic Inquiry 39:334-345.

Pinker, S. 1979. Formal models of language learning. Cognition 7:217-282.

References VI

- Prince, Alan, and Paul Smolensky. 1997. "optimality: From neural networks to universal grammar". *Science* 275:1604–1610.
- Prince, Alan, and Paul Smolensky. 2004. Optimality Theory: Constraint interaction in generative grammar. Oxford: Blackwell. As Technical Report CU-CS-696-93, Department of Computer Science, University of Colorado at Boulder, and Technical Report TR-2, Rutgers Center for Cognitive Science, Rutgers University, New Brunswick, NJ, April 1993. Also available as ROA 537 version.
- Prince, Alan, and Bruce Tesar. 2004. Learning phonotactic distributions. In *Constraints in phonological acquisition*, ed. R. Kager, J. Pater, and W. Zonneveld, 245–291. Cambridge University Press.
- Prince, Alan, and Bruce Tesar. 2008. Using phonotactics to learn phonological alternations. In *Proceedings of CLS 39*, –.
- Smolensky, Paul. 1996a. The initial state and Richness of the Base in Optimality Theory. John Hopkins Technical Report.
- Smolensky, Paul. 1996b. On the comprehension/production dilemma in child language. *Linguistic Inquiry* 27.4:720–731.
- Tesar, Bruce, and Paul Smolensky. 1998. Learnability in Optimality Theory. *Linguistic Inquiry* 29:229–268.
- Thomas, M. 2002. Development of the concept of the poverty of the stimulus. *The Linguistic Review* 18.1-2:51–71.

Giorgio Magri (CNRS)