EXERCISES ON HOLOMORPHIC POISSON BRACKETS POISSON 2016

1. Poisson surfaces

1.1. Given any constant $\lambda \in \mathbb{C}$, define a Poisson bracket on \mathbb{C}^2 by the formula

$${x,y}_{\lambda} = \lambda xy,$$

where x, y are the standard coordinates on \mathbb{C}^2 . Show that the brackets $\{\cdot, \cdot\}_{\lambda}$ and $\{\cdot, \cdot\}_{\lambda'}$ are isomorphic if and only if $\lambda = \pm \lambda'$. Conclude that the isomorphism class of a Poisson structure on \mathbb{C}^2 depends on more information than just the divisor on which it vanishes.

1.2. Amongst all the possible singularities of a curve in \mathbb{C}^2 , there are three special classes called A, D and E—the simple singularities [1]. They are the zero sets of the polynomials in the following table:

Let f be one of these polynomials, and define a Poisson structure π on \mathbb{C}^2 by

$$\pi = f\partial_x \wedge \partial_y.$$

Let $\widetilde{\pi}$ be the Poisson structure obtained by blowing up π at the origin in \mathbb{C}^2 . Describe the divisor $D \subset \widetilde{\mathbb{C}}^2$ on which $\widetilde{\pi}$ vanishes.

- **1.3.** Let π be a holomorphic Poisson structure on $\mathbb{C} \times \mathbb{P}^1$, and let $\mathsf{D} \subset \mathbb{C} \times \mathbb{P}^1$ be its divisor of zeros. Describe the possible intersections of D with the locus $\{0\} \times \mathbb{P}^1 \subset \mathbb{C} \times \mathbb{P}^1$.
- **1.4.** Let $\phi: X \to Y$ be a ruled surface, i.e. a holomorphic locally trivial fibration, where Y is a smooth compact curve and the fibres are isomorphic to the projective line \mathbb{P}^1 . Let π be a Poisson structure on X, and let $D \subset X$ be its divisor of zeros.
 - (a) Using the results of the previous exercise, show that D has the form

$$\mathsf{D} = \widetilde{\mathsf{Y}} + \sum_{p \in \mathsf{Y}} m_p \mathsf{F}_p$$

where $\mathsf{F}_p = \phi^{-1}(p) \subset \mathsf{X}$ is the fibre over p, the multiplicities $m_p \in \mathbb{Z}_{\geq 0}$ are zero for all but finitely many $p \in \mathsf{Y}$, and the divisor $\widetilde{\mathsf{Y}}$ falls into one of the following two classes:

(i) $\widetilde{Y} \subset X$ is a reduced curve and the restriction

$$\phi|_{\widetilde{\mathsf{Y}}}:\widetilde{\mathsf{Y}}\to\mathsf{Y}$$

is generically two-to-one.

(ii) Y = 2S, where $S \subset X$ is a section of the fibration.

(b) Show that case (i) above is impossible if the genus of Y is at least two. *Hint:* use adjunction, and the fact that a compact curve admits no nonconstant maps to curves of higher genus. If you wish, you may assume that \widetilde{Y} is smooth, but this hypothesis is not actually necessary.

2. Poisson threefolds

- **2.1.** Construct a Poisson structure on \mathbb{C}^3 that has no nonconstant Casimir functions. *Hint:* use the vector fields $x\partial_x, y\partial_y$ and $z\partial_z$ in coordinates x, y, z.
- **2.2.** Let $X \subset \mathbb{P}^4$ be the smooth quadric threefold, given by

$$\mathsf{X} = \left\{ [x_0 : x_1 : x_2 : x_3 : x_4] \in \mathbb{P}^4 \mid x_0^2 + x_1^2 + x_2^2 + x_3^2 + x_4^2 = 0 \right\}.$$

Then the anticanonical divisors $D \subset X$ are precisely the divisors of the form

$$D = \{ [x_0 : x_1 : x_2 : x_3 : x_4] \in X \mid F(x_0, \dots, x_4) = 0 \}$$

where F is a homogeneous cubic polynomial. Taking this fact as given, construct a Poisson structure on X using pencils. Describe the base locus of your pencil.

3. Poisson subspaces and degeneracy loci

- **3.1.** Let w, x, y, z denote the standard coordinates on \mathbb{C}^4 . Find equations for the degeneracy loci $\mathsf{D}_0(\pi)$ and $\mathsf{D}_2(\pi)$ of the following Poisson structures, and describe the degeneracy loci geometrically:
 - (a) The Poisson bivector

$$\pi = wx \, \partial_w \wedge \partial_x + uv \, \partial_u \wedge \partial_v$$

(b) The Poisson structure π with elementary brackets

$$\{w, x\} = x$$
 $\{x, y\} = z^2 + \lambda xy$
 $\{w, y\} = y$ $\{y, z\} = x^2 + \lambda yz$
 $\{w, z\} = z$ $\{z, x\} = y^2 + \lambda zx$

where $\lambda \in \mathbb{C}$ is a constant.

(c) The bivector

$$\pi = Z \wedge \partial_w$$

where Z is a vector field satisfying $[Z, \partial_w] = 0$.

3.2. Let X be a complex manifold, and let Y be an analytic subspace, defined by an ideal $\mathcal{I} \subset \mathcal{O}_X$. The *reduced subspace* $Y_{\rm red} \subset Y \subset X$ is the unique analytic subspace of X that has the same underlying points as Y, but has no nilpotent elements in its algebra of functions. It is defined by the *radical ideal*

$$\sqrt{\mathcal{I}} = \left\{ f \in \mathcal{O}_{\mathsf{X}} \,\middle|\, f^k \in \mathcal{I} \text{ for some } k \in \mathbb{Z}_{>0} \right\}$$

(a) Suppose that $Z \in \mathcal{T}_X$ is a vector field on X such that Z is tangent to Y, in the sense that

$$Z(\mathcal{I}) \subset \mathcal{I}$$
.

(Hence the flow of Z preserves the ideal defining $\mathsf{Y}.$) Show that Z is also tangent to $\mathsf{Y}_{\mathrm{red}}.$

(b) Suppose that π is a Poisson structure on X, and Y is a Poisson subspace. Conclude that $Y_{\rm red}$ is also a Poisson subspace.

(c) Equip $X = \mathbb{C}^3$ with the linear Poisson bivector

$$\pi = x \,\partial_y \wedge \partial_z + y \,\partial_z \wedge \partial_x + z \,\partial_x \wedge \partial_y,$$

corresponding to the Lie algebra $\mathfrak{so}(3,\mathbb{C})$. Find an analytic subspace $Y\subset X$ such that Y_{red} is a Poisson subspace, but Y is not. Thus the converse of (b) fails in general.

3.3. Let π be the linear Poisson structure associated with the Lie algebra $\mathfrak{sl}(3,\mathbb{C})$. Show that the origin is the only symplectic leaf of dimension ≤ 2 .

References

[1] V. I. Arnol'd, Normal forms of functions near degenerate critical points, the Weyl groups A_k, D_k, E_k and Lagrangian singularities, Funkcional. Anal. i Priložen. 6 (1972), no. 4, 3–25. MR0356124 (50 #8595)