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Abstract. In this short text we �rst introduce dynamical zeta functions and trans-

fer operators, illustrating and motivating these notions with a simple one-dimensional

dynamical system. Then we present a commented list of useful references.

1. Introduction and motivation

Transfer operators.

We shall take the point of view that dynamical zeta functions are useful objects

to describe the spectrum of transfer operators. To de�ne a transfer operator, we

use two ingredients:

� a map f : X ! X of a topological or metric space X to itself (the dynamical

system), with the property that f

�1

(x) is an at most countable set for each

x 2 X;

� a weight g : X ! C .

In order to get interesting results, one usually requires additional assumptions:

e.g., the map f is supposed to be locally expanding or hyperbolic, and both the

map f and the weight g should satisfy some smoothness condition (for example

H�older or Lipschitz continuity if X is a metric space, di�erentiability or analyticity

if X has a manifold structure).

A transfer operator is a linear operator L

g

which acts on a suitable vector

space of functions ' : X ! C (e.g., the Banach space of bounded functions if

P

y2f

�1

(x)

jg(y)j <1 for all x) according to the formula:

L

g

'(x) =

X

y2f

�1

(x)

'(y)g(y) : (1)

Before being used in the framework of dynamical systems, transfer operators ap-

peared in statistical mechanics (see the classical treatise on thermodynamic formal-

ism [31]).

These notes were prepared from lectures given by the author at the DMV-Seminar on Clas-
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Example 1. Let us take X = I = [0; 1] the unit interval and f(x) = 2x (mod 1).

We consider �rst the unweighted case, i.e., we set g � 1. Then it is easy to see that

the two-dimensional vector space V

2

of functions ' : I ! C (viewing as equivalent

two functions which di�er on an at most countable set) such that '(x) = '

L

2 C for

0 � x < 1=2, and '(x) = '

R

2 C for 1=2 � x � 1, is preserved by L

g

. In the basis

just described for V

2

, one checks that the matrix of L

g

is simply A =

�

1 1

1 1

�

, the

eigenvalues of which are 0 and 2. Now we make the following trivial observation:

since trA

n

= 2

n

is exactly the cardinality of the set Fix f

n

:= fx 2 I j f

n

(x) = xg

of �xed points of f

n

, the unweighted zeta function de�ned formally by the power

series

�(z) = exp

X

n�1

z

n

n

#Fix f

n

(2)

satis�es

�(z) = exp

X

n�1

z

n

n

trA

n

=

1

det(1� zA)

(3)

(where 1 is just the two by two identity matrix).

Invariant function spaces.

In our �rst, rather trivial, example the (unweighted) dynamical zeta function

(2) was a rational function with poles the inverses of the eigenvalues of the transfer

operator (1) acting on a �nite dimensional vector space. For dynamical systems

having a �nite Markov grammar (e.g. Axiom A di�eomorphisms), this result (in

particular the formula (3), with #Fixf

n

replaced by

P

x2Fix f

n

Q

n�1

k=0

g(f

k

(x))) may

be generalized whenever the weight g is constant or locally constant (see e.g. [20]).

However, for non-constant weights there is in general no obvious �nite dimensional

space preserved by the transfer operator. One needs to �nd an adequate invariant

Banach space (when possible a Hilbert space). It turns out, unfortunately, that

the transfer operator acting on such a Banach space, although bounded, is usually

not compact. We illustrate this remark with our second (and last) example, which

shows also why it is natural to consider non-constant weights.

Example 2.a. Again we take X = I, which we assume to be partitioned into two

sub-intervals L = [0; c[ and R = [c; 1]. We consider now a function f : I ! I such

that the restrictions of f to L and R are monotone and C

2

, with f(R) = I, and

such that f has a C

2

extension

�

f to

�

L with

�

f(

�

L) = I. Finally, we impose the

following important locally expanding condition: there exists � > 1 with j

�

f

0

j � �

on

�

L and jf

0

j � � on R. (From now on we neglect in this example all di�culties

related to the boundary point c.) Now, if we take g = 1=jf

0

j for our weight, we

obtain the key property that Lebesgue measure dx on I is preserved by the dual of

L

g

. By de�nition this means that for any ' 2 L

1

(dx) we have

Z

'(x) dx =

Z

L

g

(')(x) dx (4)

(just use the change of variable formula in an integral), which we abbreviate as

L

�

g

(dx) = dx. It follows that if we �nd a positive �xed point '

0

2 L

1

(dx) for
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L

g

, then we may construct an absolutely continuous f-invariant measure for f by

setting d�

0

= '

0

dx. Indeed, for any bounded ' we get by using (4) that

Z

'(f(x))'

0

(x) dx =

Z

L

g

((' � f)'

0

)(x) dx

=

Z

'(x)L

g

('

0

)(x) dx

=

Z

'(x)'

0

(x) dx :

(5)

(In the second equality of (5) we just used formula (1) for L

g

.) It is therefore natural

to try to understand the spectrum and eigenfunctions of L

g

acting on a suitable

space for g = 1=jf

0

j. Clearly, �nite-dimensional spaces of locally constant functions,

as the vector pace V

2

in Example 1, will not be preserved in general. Unfortunately,

the Banach space L

1

(dx), although invariant under L

g

, is \too big:" the spectrum

of L

g

acting on L

1

(dx) consists in the entire closed unit disc (each point of the

open disk is actually an eigenvalue of in�nite multiplicity, see e.g. [44]). It turns

out that the spectrum of L

g

acting on the Banach space of continuous functions

(with supremum norm) is also the entire unit disc. However, by combining the

contraction property of the two inverse branches of f with the smoothness of f

and g, we will see below that L

g

preserves the \smaller" Banach space C

1

(I) of

C

1

functions (endowed with the norm sup j'j+ sup j'

0

j) and that its spectrum for

this space has a gap. (We shall explain how this spectral property is useful to show

exponential mixing properties for di�erentiable observables.)

Quasicompactness.

For L a bounded linear operator acting on a Banach space B, we de�ne the

essential spectral radius of L to be the smallest nonnegative number � such that the

spectrum of L outside of the disc fz 2 C j jzj � �g consists of isolated eigenvalues of

�nite multiplicity. (This de�nition does not exclude the case where these eigenvalues

accumulate on the circle jzj = �.)

In many interesting situations, including the framework of Example 2, one can

�nd a Banach space B of functions ' : X ! C which is invariant under L

g

and

such that:

� there is an upper bound R for the spectral radius of L

g

: B ! B and an upper

bound R

ess

< R for the essential spectral radius of L

g

: B ! B;

� if one assumes additionally that the weight g is real-valued and strictly positive,

then R > 0 is actually an eigenvalue of L

g

, with a positive eigenfunction '

0

, and

a positive eigenfunctional d�

0

for L

�

g

which is a Borel measure. (In particular,

a trivial modi�cation of the the algebra in (5) implies that d�

0

= '

0

d�

0

is an

f-invariant �nite measure.)

For positive weights, it is often possible to prove under additional assumptions

that the real positive eigenvalue R is simple and is the only eigenvalue of modulus

R. In this case, one says that the transfer operator has a spectral gap, and one has

� := supfjzj j z 2 spectrumL

g

; z 6= Rg < R : (6)
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Example 2.b. In the setting of Example 2.a, one can prove that the spectral radius

of L

1=jf

0

j

acting on C

1

(I) is equal to 1 and that the essential spectral radius is not

larger than 1=� < 1 (see [44] for a better bound). Also, one sees that there is a

positive �xed function '

0

2 C

1

(I). (The �xed eigenfunctional d�

0

is just Lebesgue

measure dx as already mentioned.) Before discussing this example further, we note

that a crucial bound in obtaining these results is the following inequality: for any

1 < � < �, there is a constant C > 0 so that for all ' 2 C

1

(I) and all n � 1:

sup

�

�

d

dx

(L

n

g

')(x)

�

�

�

C

�

n

sup

�

�

d

dx

'(x)

�

�

+ C sup j'j : (7)

(See e.g. [58] for various occurrences of this bound.) To prove (7), expand

L

n

g

'(x) =

X

y:f

n

(y)=x

'(y)

j(f

n

)

0

(y)j

; (8)

and di�erentiate the right-hand-side of (8) with respect to the variable x, applying

the Leibniz formula to each summand. The contraction factor 1=�

n

comes from the

interior derivative which appears when di�erentiating '(y) with respect to x. The

proof of (7) is a simple occurrence of a general phenomenon: the two building blocks

of transfer operators are composition (here, with contracting local inverse branches)

and multiplication by a weight, so that change of variables and the Leibniz formula

(or integration by parts) are the key tools used to obtain bounds.

In fact, one may also show in the situation of Example 2.a that the eigenvalue 1

is simple and is the only eigenvalue of modulus 1. The simplicity of the eigenvalue

is related to the fact that d�

0

= '

0

dx is the unique absolutely continuous invariant

measure of f and that (f; d�

0

) is ergodic. The existence of the gap (i.e., the fact that

� < 1 in the notation of (6)) is linked to mixing properties of (f; d�

0

). Speci�cally,

for any 1 > ~� > � there is a constant C > 0 so that if  

1

2 L

1

(dx) and  

2

2 C

1

(I),

the correlation function

C

 

1

; 

2

(k) =

Z

 

1

� f

k

 

2

d�

0

�

Z

 

1

d�

0

Z

 

2

d�

0

(9)

satis�es

jC

 

1

; 

2

(k)j =

�

�

�

�

Z

�

L

k

g

( 

1

� f

k

 

2

'

0

) � (

Z

 

2

d�

0

) 

1

'

0

�

dx

�

�

�

�

=

�

�

�

�

Z

�

L

k

g

( 

2

'

0

)� (

Z

 

2

d�

0

) '

0

�

 

1

dx

�

�

�

�

� sup

�

�

L

k

g

( 

2

'

0

) � '

0

�

Z

( 

2

'

0

) dx)

�

�

Z

j 

1

j dx

� C ~�

n

(sup j 

2

j+ sup j 

0

2

j)

Z

j 

1

j dx :

(10)

Therefore the correlation functions associated to the unique absolutely continuous

invariant measure d�

0

and C

1

observables decay exponentially fast (with uniform
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rate � ). In the last inequality of (10) we used the spectral decomposition of L

g

given by fjzj j z 2 spectrumL

g

; jzj < 1g [ f1g. (We refer e.g. to [58] for more

details.)

As a last comment, we mention that whenever the map f is piecewise C

r

(for

some r � 3), then the weight g = 1=jf

0

j is piecewise C

r�1

, and the transfer operator

acts on the Banach space C

r�1

(I). One can prove that '

0

2 C

r�1

(I) and that the

essential spectral radius of L

g

is not larger than 1=�

r�1

. When f is piecewise ana-

lytic, the operator L

g

is a compact operator when acting on holomorphic functions

on a complex neighbourhood of I (with a bounded extension to the boundary, and

using the supremum norm). We refer to [43] for the analytic case, and to [47], [48]

for the di�erentiable case where locally expanding maps on more general manifolds

are considered (with g = 1=jdetDf j or more general smooth weights).

Weighted dynamical zeta functions.

We return again to the very general framework of a transfer operator L

g

con-

structed from a dynamical system f and a weight g. Having �xed a Banach space B

for which both claims of the subsection Quasicompactness can be proved, our aim

is to �nd, for various relevant classes of f , g, a suitable de�nition of a (generalized)

trace \tr"L

g

for L

g

(and all its powers). Recall that L

g

acting on B will not be

a compact operator in general. In particular, we shall not require that this gener-

alized trace be related to the sum of the eigenvalues of L

g

(which might form an

uncountable set). Instead, our wish is that the generalized Fredholm determinant,

de�ned formally by

d

g

(z) = exp�

X

n�1

z

n

n

\tr"L

n

g

; (11)

has the properties that:

� d

g

(z) de�nes an analytic function in a disc jzj < R

�1

ess

, where R

ess

is an upper

bound for the essential spectral radius of L

g

: B ! B;

� the zeroes of d

g

(z) in this disc are exactly the inverses of the eigenvalues of

L

g

: B ! B in the corresponding annulus (the order of the zero coinciding with

the algebraic multiplicity of the eigenvalue).

If the two above properties hold, the function d

g

(z) clearly deserves to be called

a generalized Fredholm determinant. We shall see that sometimes the function

�

g

(z) = 1=d

g

(z) has the form

�

g

(z) = exp

X

n�1

z

n

n

X

x2Fix f

n

n�1

Y

k=0

g(f

k

(x)) (12)

which is a general expression for the dynamical zeta function associated to the

dynamics f and the weight g. Note that there are variants for the de�nition of

�

g

(z), in particular when the number of elements in Fix f

n

can be in�nite (even

uncountable, see [71, 72]).

We now illustrate some possible de�nitions in the simple setting of Example 2.a.
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Example 2.c. We consider again our interval map f and the weight g = 1jf

0

j,

assuming that f is piecewise C

r

for some r � 2. There are basically two ways to

de�ne the trace in this framework:

a) The counting trace is de�ned by taking

tr

c

L

g

=

X

y2Fix f

g(y) (13)

(so that tr

c

L

n

g

=

P

y2Fix f

n

Q

n�1

k=0

g(f

k

y), note that the number of terms in the

sum is �nite but grows exponentially in n). With this de�nition, we just get

d

c

g

(z) = 1=�

g

(z) with �

g

de�ned in (12), and one may prove ([48]):

Theorem 1. The power series for �

g

(z) de�nes an analytic function in the disc

of radius 1, with a meromorphic extension to the disc of radius � where its poles

are exactly the inverses of the eigenvalues of L

g

: C

r�1

(I) ! C

r�1

(I) of modulus

larger than 1=� (with correct multiplicity).

b) The at trace is de�ned by setting

tr

[

L

g

=

X

y2Fix f

g(y)

(1 � 1=jf

0

(y)j)

(14)

(and thus tr

[

L

n

g

=

P

y2Fix f

n

(

Q

n�1

k=0

g(f

k

y))=(1 � 1=j(f

n

)

0

(y)j)). Using this de�-

nition of the trace, we get a determinant d

[

g

(z) such that [48]:

Theorem 2. The power series for d

[

g

(z) is analytic in the disc of radius �

r�1

where

its zeroes are exactly the inverses of the eigenvalues of L

g

: C

r�1

(I) ! C

r�1

(I) of

modulus larger than 1=�

r�1

(with correct multiplicity).

The at determinant therefore \sees" more of the spectrum of L

g

than the count-

ing determinant (or zeta function) whenever r � 1 > 1. We refer e.g. to the survey

[8] for a heuristic justi�cation of the formula for the at trace and references to

papers of Atiyah and Bott which inspired the terminology.

Versions of Theorem 1 and Theorem 2 on the counting trace and the at trace

stated in Example 2.c apply to any locally �-expanding C

r

map f : X ! X

and C

r�1

weight g (see [47], [48]). The spectral radius is then bounded by the

exponential of the topological pressure of log jgj.

2. Commented bibliography

The bibliography that we have assembled here is certainly not complete nor

systematic. Although it clearly reects the tastes (and sometimes the ignorance)

of the author, we hope that it can serve as a useful introduction to the reader who

wishes to enter the �eld. We have divided the list of references into several sublists,

hoping to make it more accessible. Many topics have been completely omitted, for

example random dynamical systems. Finally, we have for the sake of conciseness

stated most results in a rather vague and intuitive way: we refer to the cited papers

(or to the surveys [7-13]) for precise formulations.
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0. Foundations.

The �rst sublist contains on the one hand two of the earliest references to dynam-

ical zeta functions in the literature ([1], [6]) and on the other a few useful books in

functional analysis ([2] and [5] contain general background, and [3], [4] specialized

topics useful in particular to read the references in sublists 4.A, 5.A and 7). We

have not attempted to list any elementary books on dynamical systems or ergodic

theory.

1. Surveys.

This list should also include the book of Parry and Pollicott [28] and the �rst

chapter of Ruelle's recent book [66] which contains a pleasant and broad-viewed

introduction to dynamical zeta functions. Reference [11] is a beautiful and com-

prehensive account of the physicist's viewpoint, and contains many applications,

in particular quantum chaos. Reference [7] contains an elementary exposition of

Parry and Pollicott's \prime-orbit theorem" for Axiom A ows. Surveys [8] and

[13] summarize many of the known results. We plan to include the more recent

rigorous breakthroughs in [9].

2. Applications.

There should be many more references here! We have mainly selected a striking

application to Feigenbaum period-doubling ([15], [18]) and a link with Riemann

zeta functions [17].

3. Subshifts of �nite type and Axiom A.

This subsection is the longest one and could actually be much longer: we have

abstained from trying to give references to the original papers (in particular by

Sinai, Ruelle, Bowen, Ratner) establishing the basic results in the ergodic theory

of hyperbolic di�eomorphisms and ows, since there exist some very good books

describing this material (notably [19], [28], and [31]). However, we have listed a

few original papers speci�c to dynamical zeta functions, although the contents of

some of them have been presented in [28].

References [19], [21] contain the basic theory of Axiom A di�eomorphisms and

ows, showing how many of their ergodic properties can be studied (via Markov

partitions and symbolic dynamics) by understanding subshifts of �nite type (and

their suspensions under Lipschitz or H�older return times) with Lipschitz or H�older

weights. The observation of Bowen and Lanford that the unweighted zeta function

of a subshift of �nite type is rational is contained in [20], and the application by

Manning to Axiom A di�eomorphisms (whose unweighted zeta functions (2) are

also rational) appeared in [27].

A succession of results on transfer operators and zeta functions for subshifts of

�nite type f and Lipschitz (or H�older) weights g is contained in [29], [30] (Pollicott),

[33], [34] (Ruelle), and [25], [26] (Haydn). Many of them are collected in the book

[28]. They give bounds on the spectral radius and essential spectral radius of the

transfer operator (1) acting on Lipschitz functions, and say that the weighted zeta

function (12) is meromorphic in a disc where its poles are the inverse eigenvalues

of L

g

in the corresponding annulus. The unweighted zeta function of a ow with
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countably closed orbits is de�ned formally by

�

�

(s) =

Y

�

(1� e

�s`(�)

)

�1

(15)

(where the product is over all closed orbits � , with primitive length `(� )). The

zeta functions �

�

(s) of ows obtained by suspending subshifts of �nite type under

a Lipschitz return time r are shown to be analytic in a half-plane <s > � (� being

actually the topological entropy of the ow), and meromorphic in a larger half-plane

<s > � (the poles there corresponding to values of s such that the operator L

e

�sr

weighted with g = exp(�sr) has the number 1 in its spectrum). Simpli�ed sketches

of some of the proofs may be found in the review [8].

Gallavotti [24] constructed examples of suspensions under Lipschitz return times

where a non-polar singularity was present arbitrarily close to the vertical <s = �.

Ruelle [32] and Pollicott constructed examples of mixing suspensions for which poles

accumulated on the vertical <s = �, showing that topologically mixing Axiom A

ows need not have exponential decay of correlations for the measure of maximal

entropy (or other Gibbs measures).

Very recently, Dolgopyat [23] found su�cient conditions under which the poles

of a mixing Axiom A ow cannot accumulate on the verical <s = �, and showed

that generically the accumulation of these poles when it occurs cannot be \too

fast," ensuring rapid decay (in the sense of Schwartz) of correlations for Gibbs

measures associated to Lipschitz interactions (in particular the SRB measure). He

also showed [22] that in the case of Anosov ows with C

1

stable and unstable

foliations (in particular the geodesic ows on surfaces of negative curvature) the

conditions forbidding the accumulation of poles were satis�ed.

4. The smooth expanding case.

4.A. Analytic expanding case.

Over 20 years, ago Ruelle [43] observed that Grothendieck's theory of nuclear

operators [3, 4] could be applied to transfer operators when both the dynamics

and the weight were analytic (assuming that the dynamics is uniformly locally

expanding). In this case, the operators (acting on a suitable space of bounded

holomorphic functions) are compact, and the at trace

tr

[

L

g

=

X

x2Fix (x)

g(x)

Det (1�Df

�1

(x))

(16)

is actually the sum of the eigenvalues of L

g

. The corresponding determinant d

[

g

(z)

is an entire functions with zeroes the inverses of the eigenvalues of L

g

. Ruelle

applied these powerful results to Anosov di�eomorphisms or ows, under the strong

assumption that their stable/unstable foliations are analytic. This assumption

was required because the strategy then was to reduce to the expanding situation

by projecting along stable manifolds. (It is unfortunately very rarely satis�ed:

the invariant foliations are usually only H�older.) Extensions of these results (in

particular a correction of the asymptotics of the eigenvalues) were obtained by

Fried [36].
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D. Mayer [40, 41] used this approach to study the Gauss map x 7! f1=xg (0 <

x � 1). One striking result in [40] is the proof of the reality of the spectrum of

some weighted transfer operators associated to the Gauss map: this is obtained by

considering the action of the operator on suitable Hilbert spaces of Hardy functions

and proving self-adjointness. The survey [42] discusses some applications.

Papers [35] and [37-39] contain some rather strong results on the spectrum of

transfer operators, mostly for rational or polynomial one-dimensional maps with

rational weights.

4.B. Di�erentiable expanding case.

When the smoothness assumption on the locally expanding dynamics f and the

weight g is weakened from analytic to di�erentiable (i.e., C

r

for some r � 1) one

must abandon the beautiful classical techniques of Grothendieck and work essen-

tially as in the case of subshifts of �nite type (i.e., prove bounds \by hand," using

Taylor expansions to approach the transfer operators by �nite rank operators). This

was �rst done in the C

1

case by Tangerman [49] who showed that the correspond-

ing zeta function (12) was meromorphic in the whole complex plane. Later, Ruelle

[47, 48] studied the case of �nite di�erentiability, proving generalized versions of

Theorems 1 and 2 above (also for \mixed" transfer operators, obtained by summing

{ or integrating { over a family of contractions not necessarily related to a single

map). Fried [45] pushed the analysis a bit further, obtaining in particular results

on the asymptotics of the distribution of eigenvalues.

We also mention in this subsection the articles of Collet-Isola [44] and Holschnei-

der [46] who obtain exact formulas (as opposed to upper bounds) for transfer oper-

ators acting on classes of smooth functions. The introduction of wavelet techniques

by Holschneider is novel, and allows to consider a large class of Banach spaces.

5. The smooth hyperbolic case.

Let us consider now a real analytic transformation f : M ! M of a real an-

alytic manifold and a real analytic weight g : M ! C , assuming that f satis�es

some uniform hyperbolicity condition (such as Anosov). As noted above, if the

foliations of f are analytic too, one can reduce to the analytic expanding setting

of 4.A, in particular the at determinant d

[

g

(z) from the traces (14) is an entire

function (and the zeta function (12), which can be written as a quotient of two

�nite products of at determinants for modi�ed weights, is meromorphic in the

whole complex plane). Foliations being generically only H�older, this reduction to

the noninvertible expanding case only produces zeta functions meromorphic in a

disc (and noncompact transfer operators), just like in the case of subshifts of �nite

type with Lipschitz weight. It is therefore desirable to introduce transfer operators

associated to the \full" invertible hyperbolic system. The price to pay is that one

needs to introduce Banach spaces of \functions" (actually distributions) that are

smooth along unstable manifolds but rough (i.e., functionals over smooth functions)

along stable manifolds (because the inverse map is an expansion along the stable

directions). For Axiom A dynamical systems this was done �rst by Rugh [51, 52]

(di�eomorphisms of surfaces or ows on 3-manifolds) who applied Grothendieck's

theory to show that the associated transfer operators are nuclear, and that the at

determinants d

[

g

(z) are entire. This approach was subsequently extended by Fried

9



[50] to arbitrary dimensions. In particular, it follows from [50] that the geodesic

ow corresponding to an analytic metric of negative curvature on a compact ana-

lytic Riemann manifold extends to a meromorphic function on the whole complex

plane. The relation between the zeroes of d

[

g

(z) and the correlation spectrum has

been partially explored [53].

More recently, Kitaev [54] has used a similar approach to study the at determi-

nants associated to C

r

Anosov di�eomorphisms and C

r

weights, without assuming

additional smoothness of the foliations. (In fact, Kitaev studies mixed transfer

operators obtained by summing over maps which preserve the same cone �elds.)

Here, everything must be done \by hand" and the Banach space of distributions

on which the operator acts is again one of the key di�culties. We also mention

Liverani's paper [55] on the decay of correlation of certain di�erentiable hyperbolic

systems (using Hilbert-type metrics on Birkho� cones of functions), although it is

not connected to the zeta-function approach, because the philosophy involved in

the de�nition of the Birkho� cones is very similar to the ideas of Rugh and Kitaev.

6. The one-dimensional case.

The theory for piecewise monotone interval maps without assuming the existence

of a �nite Markov partition, was developed in parallel to that of Axiom A systems.

The natural Banach space preserved by the transfer operator is the space of func-

tions of bounded variation (as was already observed by Lasota and Yorke, see the

very nice survey [58] for references). There is no at trace in general, and one

simply uses the counting trace and the \ordinary" zeta function (12). Hofbauer

and Keller [59, 60] obtained crucial results, using the countable Markov towers of

Hofbauer, under certain conditions. A rather general result which is the analogue

of Theorem 1 in the Introduction above (assuming that the weight is of bounded

variation and the partition of intervals of monotonicity is generating) was later ob-

tained by Baladi and Keller [57], using again the Hofbauer tower technique. In [66]

Ruelle subsequently used another approach (working with Markovian extensions

with �nitely many symbols, and setting the weight equal to zero to describe the

in�nite grammar of the original dynamics) and obtained further results (in partic-

ular relating the spectral radius to topological entropies). Reference [65] contains

in particular the extension to the case where a �nite or countable set of branches

(not necessarily associated to a single interval map) is considered (see [75] and es-

pecially [76], [71] for variants and simpli�cations of the proof in [65]). The case of

one complex dimension is considered in [67] (see also [71]).

The case of an interval map (e.g. with two branches) which is expanding except

at a single neutral �xed point (f(x) = x and f

0

(x) = 1) is interesting in view of

applications to physics. Prellberg [61] and then Isola [64] show how to study the

original map with the help of an auxiliary induced map which is piecewise (uni-

formly) expanding (with countably many intervals of monotonocity). Isola [61]

proves in certain cases that correlation functions associated with the unique abso-

lutely continuous invariant measure decay polynomially for suitable observables.

The case of Collet-Eckmann (or Benedicks Carleson)-type unimodal maps with

a critical point (in particular from the logistic family) was studied independently by

Keller-Nowicki [62] and Lai-Sang Young [69] who used tower extensions to remove

the singularities in the weight g = 1=jf

0

j of the transfer operator. Ruelle [68]

10



introduced some methods from several complex variables to study directly the zeta

function. Pollicott [63] pushed this approach further.

7. The one-dimensional case: kneading operator approach.

One of the main results in the classical paper [74] by Milnor and Thurston is

a formula for the (unweighted) \negative" zeta function of a piecewise monotone

interval map

�

�

(z) = exp

X

n�1

z

n

n

2#Fix

�

f

n

; (17)

where Fix

�

f

n

is the number of �xed points of f

n

which lie in an interval of mono-

tonicity of f

n

where f

n

is decreasing (such intersections are transverse and therefore

always form a �nite set if f has �nitely many intervals of monotonicity). This for-

mula simply said that 1=�

�

(z) is the determinant of a �nite matrix (the kneading

matrix) whose coe�cients are power series (the kneading invariants)in z associated

to the orbits of the turning point.

In [72], [75], [70], and �nally [73] this result of Milnor and Thurston was extended

by Baladi and Ruelle to the weighted case, where the weight g is supposed to be of

bounded variation, and where the branches considered do not necessarily come from

a single map. (The transfer operators act on functions of bounded variation.) Since

this situation includes the case where in�nitely many (even uncountably many) �xed

points exist, a new trace must be introduced, which is called the sharp trace. Ruelle

[76] also considered similar cases where the weight is smoother. We refer to the

reviews [9, 10] for more details.

Complex analogues of this approach are presented in [71].
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