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INTRODUCTION

From November 1993 to February 1994, Vaughan Jones gave an introductory Lecture

Course on C

�

-algebras in Lausanne, for the \Troisi�eme Cycle Romand de Math�ematiques"

(some lectures were prepared by P.H. and by Alain Valette). The audience was very hete-

rogeneous, consisting of a mixture of beginners and of mature mathematicians, most of

them working quite outside the �eld of functional analysis, as well as a few physicists. One

of the \leit-motives" was to illustrate the theory with the �nite dimensional situation. One

of the goals was to get a reasonable understanding of the CAR algebra, as it is used for

the representation theory of loop groups of compact Lie groups.

During the academic year 1994/95, Pierre de la Harpe has given a similar set of lec-

tures in Geneva, for the \Diplôme d'

�

Etudes Sup�erieures en math�ematiques de la r�egion

l�emanique", with the extra fantasy of writing up notes. More often than not, it has been

di�cult to obtain an acceptable compromise between the desire to keep some of the light-

ness of the spoken lectures on one hand, and the heavy need to �ll in details as be�ts a

written exposition on the other hand. The result is as follows, so far for the �rst chapters

only. It is possible that these notes will be improved and completed at some future date.

Any comment will be welcome. Thanks are due to Roland Bacher for his help in

proofreading the present notes. The �rst author is responsible for mistakes which could

be left in what follows.
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CHAPTER 1. BOUNDED OPERATORS ON HILBERT SPACES

1.a. Recall on Hilbert spaces

In these notes, H will denote a complex Hilbert space. The scalar product

h�j�i

of two vectors �; � 2 H is antilinear in � and linear in �: The norm of � 2 H is given by

k�k =

p

h�j�i

and we let

H(1) = f� 2 H j k�k � 1g

denote the closed unit ball in H:

For any subset S of H; the closed linear subspace

S

?

= f � 2 H j h� j �i = 0 for all � 2 S g

is the orthogonal of S: Observe that

�

S

?

�

?

� S; and that S � T ) S

?

� T

?

for subsets

S; T of H: In case S is a linear subspace of H; then

�

S

?

�

?

= S is the closure of S:

Though we assume that the reader has some knowledge about Hilbert spaces, e.g. as

in Chapters four and �ve of [Ru1], we shall recall (without proof) the following �ve basic

facts.

1.1. Cauchy-Schwarz inequality. One has

j h�j�i j � k�k k�k

for all �; � 2 H:

1.2. Projections on convex subsets. Let C be a non empty closed convex subset of

H and let � 2 H: There exists a unique vector �

C

2 C such that

k� � �

C

k = min

�2C

k� � �k :

If C is moreover a closed subspace (meaning linear subspace) of H; then the assignment

� 7! �

C

is linear and one has

k�k

2

= k�

C

k

2

+ k� � �

C

k

2

:
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2 1. BOUNDED OPERATORS

1.3. Riesz representation theorem. Let � : H ! C be a continuous linear functional.

Then there exists a unique vector � 2 H such that

�(�) = h�j�i

for all � 2 H; moreover k�k = sup fj�(�)j : � 2 H(1)g :

This result is due independently to F. Riesz (C.R. Acad. Sc. Paris, 144 (1907) 1409-

1411) and M. Fr�echet (Ibid., 1414-1416).

1.4 Bounded = continuous for linear mappings. Let H;H

0

be two Hilbert spaces and

let a : H ! H

0

be a linear mapping. Then the three following conditions are equivalent:

(i) the quantity kak = supfka�k j � 2 H(1)g is bounded,

(ii) a is continuous,

(iii) a is continous at one point of H:

If a ful�lls conditions (i) to (iii) above, then a is a bounded linear operator from H to

H

0

and kak is its norm. The set of all such bounded linear operators, furnished with the

norm a 7! kak ; is a Banach space denoted by

B (H;H

0

) :

Let H

00

be a third Hilbert space, let a 2 B (H;H

0

) and let b 2 B (H

0

;H

00

) : It follows

straightforwardly from the de�nitions that ba 2 B (H;H

00

) and that

kbak � kbk kak :

One writes B(H) instead of B (H;H) : The norm a 7! kak makes B(H) a Banach algebra

which has a unit, namely the identity operator of H written id

H

or simply 1: (A normed

algebra is a complex algebra A given together with a norm a 7! kak such that kabk �

kak kbk for all a; b 2 A: A Banach algebra is a normed algebra which is complete.)

1.5 Open mapping Theorem. Let H;H

0

be two Hilbert spaces and let a : H ! H

0

be

a bounded linear operator which is onto. Then a is open, so that in particular there exists

a number � > 0 such that

f� 2 H

0

j k�k < �g � a (f� 2 H j k�k < 1g) :

1.6. Remarks. The three �rst facts recalled above belong really to Hilbert space theory.

On the other hand, 1.4 and 1.5 hold in much more general settings : see e.g. Theorems

1.32 and 2.11 in [Ru2].

On several occasions, we will use other standard results of functional analysis, such as

the analytic form of the Hahn-Banach theorem, on extensions of linear forms

(see e.g. 2.16 and 6.9),

the geometric form of the Hahn-Banach theorem, on separating convex sets (2.16),

the Banach-Steinhaus theorem , on uniform boundedness (2.19),

the Krein-Milman theorem, on extreme points of convex sets (6.14).
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1.7. Notations. Among standard examples of Hilbert spaces, there is the space C

n

with

its canonical scalar product

h(�

1

; :::; �

n

) j (�

1

; :::; �

n

)i =

n

X

j=1

�

j

�

j

;

the space of square-summable sequences indexed by N

`

2

=

(

� = (�

n

)

n�0

�

�

�

�

�

n

2 C and

1

X

n=0

j�

n

j

2

<1

)

and the space of square-summable measurable functions on a measure space (X;�)

L

2

(X;�) =

�

� : X ! C

�

�

�

Z

X

j�(x)j

2

d�(x) <1

�

where � is (abusively !) identi�ed to its equivalence class modulo the relation of equality

�-almost everywhere; in case the choice of � is clear (for example the Lebesgue measure

on a measurable subset of R

n

), one writes simply L

2

(X):

1.8. Separability. Most Hilbert spaces arising \naturally" in analysis are separable (i.e.

contain countable dense subsets, or equivalently have countable orthonormal bases). But

there is for example a \respectable" non separable Hilbert space in the theory of almost

periodic functions, of which we recall the following.

Let C(R) denote the algebra of all continuous functions from R to C (for the pointwise

product). Let f 2 C(R): For � > 0; a number t 2 R is called an �-almost period if

sup

x2R

jf(x + t) � f(x)j < �: Say that f 2 C(R) is almost periodic if, for any � > 0; there

exists ` = `(f; �) such that any real interval of length ` contains an �-almost period of f:

One shows that almost periodic functions are bounded, that they constitute a subalgebra

AP (R) of C(R); and that the limit

hf jgi = lim

T!1

1

T

Z

T

0

f(x)g(x)dx

exists for all f; g 2 AP (R): The space obtained by completion of AP (R) with respect to

this scalar product is a Hilbert space in which

�

t 7! e

i�t

�

�2R

is an uncountable orthonormal basis. More on this in [Fav] and in Section VI.5 of [Kat].

Another motivation for introducing non separable Hilbert spaces comes from the study

of the Calkin algebra and is alluded to in Remark 6.9.
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1.b. Adjoints and norms of operators.

Let H;H

0

be two Hilbert spaces and let a : H ! H

0

be a bounded linear operator.

1.9. Proposition. There exists a unique bounded linear operator a

�

: H

0

!H such that

ha

�

�j�i = h�ja�i

for all � 2 H and � 2 H

0

:

Proof. For each � 2 H

0

; one has a continuous linear form

�

H ! C

� 7! h �ja�i

and thus by Riesz theorem a unique vector � 2 H such that

h�j�i = h�ja�i

for all � 2 H: If a

�

is de�ned to be the assignment � 7! �; it is easy to check that a

�

is

linear and bounded. �

1.10. De�nition. The operator a

�

2 B(H

0

;H) is the adjoint of a:

One has obviously (a

�

)

�

= a as well as (�a + �b)

�

= �a

�

+ �b

�

for all a; b 2 B(H;H

0

)

and �; � 2 C :

1.11. Proposition. One has

kak = sup f j h�ja�i j : � 2 H(1) ; � 2 H

0

(1) g = ka

�

k

for all a 2 B(H;H

0

):

Proof. By the Cauchy-Schwarz inequality and by the de�nition of kak ; one has

j h�ja�i j � k�k ka�k � k�k kak k�k

for all � 2 H and � 2 H

0

; so that

kak � sup f j h�ja�i j : � 2 H(1) ; � 2 H

0

(1) g :

For the opposite inequality, we may assume a 6= 0 and we choose � > 0 such that � < kak =2:

Choose then � 2 H(1) such that ka�k � kak � � and set � = a�= ka�k 2 H

0

(1): Then

j h�ja�i j = ka�k � kak � �: Hence

sup f j h�ja�i j : � 2 H(1) ; � 2 H

0

(1) g � kak :

As j h�ja�i j = j h�ja

�

�i j for all � 2 H and � 2 H

0

; the last equality follows. �
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1.12. Corollary. One has

ka

�

ak = kak

2

for all a 2 B(H;H

0

):

Proof. One has

ka

�

ak � ka

�

k kak = kak

2

and

kak

2

= sup

�2H(1)

ha�ja�i = sup

�2H(1)

h�ja

�

a�i � ka

�

ak

so that ka

�

ak = kak

2

: �

1.13. Remark. Let A denote an involutive algebra, namely a complex algebra A given

together with an involution

�

A!A

a 7!a

�

such that

(a + b)

�

= a

�

+ b

�

(�a)

�

= �a

�

(ab)

�

= b

�

a

�

(a

�

)

�

= a

for all a; b 2 A and �; � 2 C :

Let a 7! kak be a norm on A such that kabk � kak kbk for all a 2 A: Then the equality

ka

�

ak = kak

2

for all a 2 A implies the equality ka

�

k = kak for all a 2 A: Indeed, assuming the �rst of

these, one has

ka

�

k

4

= kaa

�

k

2

= kaa

�

aa

�

k � kak ka

�

ak ka

�

k � kak

3

ka

�

k

so that ka

�

k

3

� kak

3

for all a 2 A: Similarly kak

3

� ka

�

k

3

:

An involutive algebra A with a norm satisfying ka

�

k = kak for all a 2 A is called

a normed involutive algebra, and a Banach involutive algebra if it is moreover complete.

In Chapter 4, we will de�ne abstract C

�

-algebras: they are Banach involutive algebras

satisfying ka

�

ak = kak

2

: Group algebras such as `

1

(Z) and L

1

(R) provide examples of

Banach involutive algebras which are not C

�

-algebras (see n

o

4.9).

A �-representation of an involutive algebra A on a Hilbert space H is a linear map

� : A ! B(H) such that �(ab) = �(a)�(b) and �(a

�

) = �(a)

�

for all a; b 2 A:

1.14. Norm of �nite dimensional operators. Consider an operator a 2 B(H;H

0

)

and assume that the space H is �nite dimensional. Let �

1

; :::; �

n

denote the eigenvalues of

a

�

a 2 B(H): Then

kak =

q

max

1�j�n

�

j

:
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The proof is left as an exercise for the reader. (For an arbitrary operator a; see n

os

2.8

and 4.22 below.)

1.15. Multiplication operators. Set H = L

2

(R); choose f 2 L

1

(R) and de�ne

M

f

2 B(H) by

(M

f

�) (x) = f(x)�(x)

for all � 2 H and for almost all x 2 R: Then it is easy to check that

kM

f

k = kfk

1

where kfk

1

denotes the essential supremum of f:

This can be generalized to H = L

2

(X;�) and f 2 L

1

(X;�) for any measure space

(X;�): These multiplication operators are basic examples of the theory; the reader is en-

couraged to study Chapter 6 of [Hal].

1.c. Classes of bounded operators.

In this section, we consider a Hilbert space H and bounded operators in B(H):

1.16. Self-adjoint and positive operators. The operator a 2 B(H) is called self-

adjoint if a

�

= a; an operator a is self-adjoint if and only if h� j a�i 2 R for all � 2 H; as

it follows easily from the so-called polarization identity

h� j a�i =

1

4

h� + �ja(� + �)i �

1

4

h� � �ja(� � �)i

�

i

4

h� + i�ja(� + i�)i +

i

4

h� � i�ja(� � i�)i

which holds for any operator a and any pair (�; �) of vectors in H:

For example a multiplication operator M

f

on L

2

(X;�) is self-adjoint if and only if the

function f 2 L

1

(X;�) is real-valued.

The operator a 2 B(H) is called positive if h� j a�i � 0 for all � 2 H: Such an operator

is necessarily self-adjoint, as we have just seen. (Aside : on a real Hilbert space, there exist

operators a such that a

�

6= a and h�ja�i � 0 for all vectors �:)

For example, any operator of the form a = b

�

b for some b 2 B(H) is positive, and

conversely (if a is positive, then a = b

�

b with b =

p

a; see Problem 95 in [Hal] and x 4.E

below). A multiplication operator M

f

on L

2

(X;�) is positive if and only if the function

f 2 L

1

(X;�) satis�es f(x) 2 R

+

for �-almost all x 2 X:
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1.17. Proposition. If a 2 B(H) is self-adjoint then

kak = sup f j h�ja�i j : � 2 H(1) g

(compare with Proposition 1.11.)

Proof. Set K = sup f j h�ja�i j : � 2 H(1) g : For all �; � 2 H(1); one has

Re h�ja�i =

1

2

fh�ja�i+ h�ja�ig

=

1

4

fh� + �ja(� + �)i+ h� � �ja(� � �)ig

and then also

jRe h�ja�i j

=

K

4

n

k� + �k

2

+ k� � �k

2

o

=

K

2

n

k�k

2

+ k�k

2

o

� K

It follows that

j h�ja�i j = max

�2R

jRe




e

i�

�ja�

�

j � K

namely that kak � K by Proposition 1.11. The opposite inequality K � kak is an

immediate consequence of the Cauchy-Schwarz inequality. �

1.18. Projections. An operator p 2 B(H) is called a projection if p

2

= p and p

�

= p:

Using 1.2, one shows easily that there is a canonical bijection between projections in B(H)

and closed subspaces of H given by p! p(H):

Projections in B(H) are consequently ordered: p

1

� p

2

if p

1

(H) is a subspace of p

2

(H);

equivalently if p

1

p

2

= p

1

: Similarly, two projections p

1

; p

2

in B(H) are said to be orthogonal

if the spaces p

1

(H) and p

2

(H) are orthogonal, equivalently if p

1

p

2

= 0:

A multiplication operator M

f

on L

2

(X;�) is a projection if and only if the function

f 2 L

1

(X;�) is the caracteristic function of a measurable subset of X:

1.19. Isometries. An operator w 2 B(H;H

0

) is an isometry if it satisfes w

�

w = 1; or

equivalently kw(�)k = k�k for all � 2 H:

The basic observation to record is that, when H is in�nite dimensional, an isometry

w 2 B(H) needs not be onto. The most famous example is the unilateral shift s 2 B(`

2

)

de�ned by

s (�

0

; �

1

; �

2

; :::) = (0; �

0

; �

1

; ; :::)

for all � = (�

n

)

n�0

2 `

2

: Using Fourier analysis, one may also view `

2

as the space of

continuous functions on the closed unit disc of C which are holomorphic in the open unit
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disc, and s as the operator of multiplication by z: More on this operator in Chapters 9 and

14 of [Hal].

1.20. Unitaries. An operator u 2 B(H) is unitary if it is isometric and onto, or equiv-

alently (as a consequence of the open mapping Theorem) if u

�

u = uu

�

= 1: The unitary

group of H is

U(H) = f u 2 B(H) j uu

�

= u

�

u = 1 g :

In case dim

C

H = n <1; it is a compact Lie group usually denoted by U(n):

A multiplication operator M

f

on L

2

(X;�) is unitary if and only if jf(x)j = 1 for �-

almost all x 2 X:

Let (X;B; �) be a probability space. For a measure preserving transformation T : X !

X; one de�nes a unitary operator u

T

on L

2

(X) by (u

T

�)(x) = �(T

�1

x) for all � 2 L

2

(X)

and x 2 X: The study of this operator u

T

is important in ergodic theory; see e.g. xx 25

and 26 in [Wal] and Chapter 2 in [Zim].

1.21. Partial isometries. For an operator w 2 B(H;H

0

); the �ve following conditions

are equivalent

(i) (w

�

w)

2

= w

�

w;

(ii) (ww

�

)

2

= ww

�

;

(iii) ww

�

w = w;

(iv) w

�

ww

�

= w

�

;

(v) there are two closed subspaces E � H ; E

0

� H

0

such that w is the composition

of the projection of H onto E;

of an isometry of E onto E

0

;

and of the inclusion of E

0

into H

0

:

If these conditions hold, then

w

�

w is the projection of H onto E;

ww

�

is the projection of H

0

onto E

0

;

and w is called a partial isometry with initial space E and initial projection w

�

w; with

�nal space F and �nal projection w

�

w: For example, the matrix

�

0 0

1 0

�

de�nes a partial

isometry on the Hilbert space C

2

with initial space the �rst axis and with �nal space the

second axis.

For more on partial isometries, see Chapter 13 of [Hal].

1.22. Normal operators and eigenvalues. An operator a on H is normal if a

�

a = aa

�

;

or equivalently if ka

�

�k = ka�k for all � 2 H:

For example, self-adjoint operators and unitary operators are obviously normal, but the

unilateral shift is not.

If a normal operator a has two eigenvectors corresponding to di�erent eigenvalues, these

vectors are orthogonal (the argument is the same as in �nite dimensions). There are

however two important facts to note. The �rst one is that a normal operator may have no
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eigenvector at all, as it is the case for the self-adjoint multiplication operator M de�ned

on L

2

([0; 1]) by

�

Mf

�

(t) = tf(t)

for all f 2 L

2

([0; 1]) and t 2 [0; 1]: The second one is that an operator on a separable

Hilbert space which is not normal may have uncountably many eigenvalues. For example,

if s is the unilateral shift introduced in n

o

1.19, one has

s

�

(1; z; z

2

; z

3

; :::) = z(1; z; z

2

; z

3

; :::)

for all z 2 C such that jzj < 1 (for more on the spectrum of s

�

; see Solution 67 in [Hal]).
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CHAPTER 2. ALGEBRAS OF OPERATORS : DEFINITIONS AND

FINITE DIMENSIONAL EXAMPLES

In many parts of mathematics, an \algebra" is understood to have a unit. This is not

so in functional analysis, where examples of algebras include spaces of continous functions

vanishing at in�nity such as C

o

(R); group algebras such as L

1

(R) or C

�

(R); and various

other C

�

-algebras without units.

However, in this chapter, we concentrate on C

�

-algebras with units and we postpone to

4.5 a general discussion on \adding units" (but see Remark 2.24.i).

2.a. C

�

-algebras of operators

Let H be a complex Hilbert space.

2.1. De�nition. A C

�

-algebra of operators on H is an involutive subalgebra of B(H)

which is closed for the norm topology. (A subalgebra A of B(H) is involutive if a

�

2 A

whenever a 2 A; see 1.13. For the de�nition of the norm on B(H); see 1.4; for the equality

ka

�

ak = kak

2

; see 1.12.)

Given a C

�

-algebra A on H; a sub-C

�

-algebra B of A is an involutive subalgebra of A

which is closed for the norm topology.

2.2. Trivial examples. The algebra B(H) itself is a C

�

-algebra of operators on H: So is

the algebra of complex multiples of the identity, which is isomorphic to C :

2.3. Algebras of continuous functions. Let X be a compact space, let � be a positive

measure on X such that �(U) > 0 for any nonempty open subset U of X; and let L

2

(X;�)

denote the resulting Hilbert space.

Let C(X) be the algebra of continuous functions on X: Recall from 1.15 that each

f 2 C(X) de�nes a multiplication operator M

f

2 B

�

L

2

(X;�)

�

: Then

A =

�

M

f

2 B

�

L

2

(X;�)

�

j f 2 C(X)

	

is a C

�

-algebra of operators on H: The condition on � implies that the mapping f 7!M

f

is injective, so that C(X) and A are isomorphic algebras.

Observe that the measure � does not play an important role for A: This is a �rst

motivation for the space-free de�nition of Section 4.A.

2.4. Separability. A C

�

-algebra is separable if it contains a countable dense subset.

It is easy to see that the algebra B(H) is separable if and only if H (or equivalently

B(H)) is �nite dimensional.

Typeset by A

M

S-T

E

X

1
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Indeed, suppose H is in�nite dimensional. If H is separable, one may identify H with

`

2

. Then, for any subset S of N; the characteristic function of S provides a multiplication

operator a

S

2 B(`

2

); moreover ka

S

� a

T

k � 1 if S; T are distinct subsets of N: As there

are uncountably many subsets of N; it follows that B(H) is not separable. (A variant of

this argument, using the multiplication operators in L

2

([0; 1]) de�ned by the characteristic

functions of subintervals, appears in Solution 83 of [Hal].) If H is not separable, H is the

direct sum of `

2

and of another space, and the argument above can be adapted easily.

We leave it as an exercise for the reader to check that the algebra A � C(X) of Example

2.3 is separable if and only if the compact space X is separable.

In the same sense that \most" compact spaces \of interest" are separable, \most" C

�

-

algebras \of interest" are separable. But there are important counterexamples to this

statement, and B(H) is of course the �rst of them. Note however that, viewed as a von

Neumann algebra with the strong topology, B(H) is separable if and only if H is separable

(see 2.19 below).

2.5. Matrix algebras. Given an integer n � 1 and the Hilbert space C

n

; we identify

the algebra B(C

n

) with the algebra M

n

(C ) of n-by-n complex matrices. Thus M

n

(C ) is a

C

�

-algebra of operators on C

n

; the involution is given by

(a

�

)

j;k

= a

k;j

for all a 2M

n

(C ) and j; k 2 f1; :::; ng; and the norm is given by

a 7�! kak = sup

�2C

n

k�k�1

ka�k =

q

max

1�j�n

�

j

where �

1

; :::; �

n

denote the eigenvalues of a

�

a; as in 1.14. Recall the basic fact

ka

�

ak = kak

2

for all a 2M

n

(C ):

2.6. Lemma. On the involutive algebraM

n

(C ); the only norm � such that �(a

�

a) = �(a)

2

for all a 2M

n

(C ) is the operator norm a 7! kak :

Proof. Consider some matrix a 2 M

n

(C

n

) and the matrix d = a

�

a: It is enough to show

that �(d) = kdk :

Let �

1

; :::; �

n

denote the eigenvalues of d; arranged in such a way that �

1

� ::: � �

n

� 0:

For r 2 R

+

; the limit lim

k!1

�

d

r

�

k

is 0 if r > �

1

and does not exist if r < �

1

: It follows

that

�

1

= inf

(

r 2 R

+

�

�

�

�

lim

k!1

�

d

r

�

k

= 0

)

= inf

(

r 2 R

+

�

�

�

�

lim

l!1

�

d

r

�

2

l

= 0

)

:
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Now saying that a sequence of vectors in a �nite dimensional complex vector space (here

the space of matrices of order n) converges to 0 means by de�nition that the sequence of

the norms of these vectors converges to 0 (for some norm, because all norms are equivalent

in �nite dimensions). In particular one has

�

1

= inf

(

r 2 R

+

�

�

�

�

lim

l!1

�

 

�

d

r

�

2

l

!

= 0

)

:

By hypothesis on �; one has �(d

2

) = �(d

�

d) = �(d)

2

; and thus also �

�

d

2

l

�

= �(d)

2

l

for

each l � 0: Hence

�

 

�

d

r

�

2

l

!

=

�

�(d)

r

�

2

l

and

�

1

= �(d):

As

�

1

= ka

�

ak = kdk

by 1.14, one has �(d) = kdk and the proof is complete.

Observe that one has in particular �(ab) � �(a)�(b) for all a; b 2M

n

(C

n

): �

2.7. Proposition. Let A be a subalgebra of M

n

(C ) such that a

�

2 A as soon as a 2 A:

The only norm � : A ! R

1

such that �(a

�

a) = �(a)

2

for all a 2 M

n

(C ) is the operator

norm a 7! kak :

Proof. The proof of Lemma 2.6 applies verbatim. �

2.8. Remark. (i) The previous proposition shows that

involutive subalgebras of M

n

(C )

are the same as

sub-C

�

-algebras of M

n

(C ) with a norm satisfying ka

�

ak = kak

2

.

For algebras containing 1, we will see in Proposition 2.13 below that they are also the same

as von Neumann algebras on C

n

:

(ii) Note that one has �(ab) � �(a)�(b) for all a and b in A as a consequence of the

proof of the proposition, not as an a priori hypothesis.

(iii) Proposition 2.7 holds in in�nite dimensions. More precisely, let A be a complex

involutive algebra which is also a Banach space for a norm � such that �(a

�

a) = �(a)

2

for

all a 2 A: Then one has necessarily �(ab) � �(a)�(b) for all a; b 2 A by an argument due

to Araki and Elliott [ArE]. It is then classical that �(a)

2

is the spectral radius of a

�

a; so

that � is the unique norm for which A is a C

�

-algebra: see Corollary 4.22 below.
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2.9. Matrix units. In the matrix algebra M

n

(C ); for each j and k in f1; :::; ng; let e

j;k

denote the matrix which has a 1 at the intersection of the j

th

row and of the k

th

column,

and 0 's elsewhere. Then one has

(e

j;k

)

�

= e

k;j

e

j;k

e

l;m

= �

k;l

e

j;m

n

X

i=1

e

i;i

= 1

for all j; k; l;m 2 f1; :::; ng:

Given any C

�

-algebra, a system (w

j;k

)

1�j;k�n

of n

2

elements in A is called a system of

matrix units of order n if one has

(w

j;k

)

�

= w

k;j

w

j;k

w

l;m

= �

k;l

w

j;m

for all j; k; l;m 2 f1; :::; ng and if the w

j;k

's are not all zero (note that w

j;k

6= 0 for some

j; k implies w

j;k

6= 0 for all j; k 2 f1; :::; ng). Observe that the w

j;j

's of such a system are

pairwise orthogonal projections, and that the w

j;k

's (j 6= k) are partial isometries.

To any such system corresponds an injective homomorphism � given by �(e

j;k

) = w

j;k

from the C

�

-algebra M

n

(C ) onto the subalgebra of A linearly generated by the w

j;k

's;

when A has a unit, �(1) = 1 if and only if

n

X

i=1

w

i;i

= 1:

Consider a C

�

-algebra A which is �-isomorphic toM

n

(C ) for some n � 1 and a sequence

p

1

; :::; p

m

of pairwise orthogonal and minimal projections in A (with of coursem � n). We

leave it to the reader to check that one may �nd a system of matrix units (w

j;k

)

1�j;k�n

in

A such that w

j;j

= p

j

for all j 2 f1; :::;mg:

2.9

bis

. Exercice. Let A be a C

�

-algebra with unit and let M be a sub-C

�

-algebra of A

containing the unit. Consider the relative commutant

M

0

\A = fa 2 A j am =ma for all m 2Mg:

If M �M

n

(C ) is a full matrix-algebra, the map

� :

(

M 
 (M

0

\A) �! A

m
 a 7�! ma

is an isomorphism.

[ Indication. Let (e

i;j

)

1�i;j�n

be matrix units inM: For each a 2 A and i; j 2 f1; :::; ng;

set

a

i;j

=

n

X

k=1

e

k;i

a e

j;k

:
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Check that a

i;j

e

p;q

= e

p;q

a

i;j

for all p; q 2 f1; :::; ng; so that a

i;j

2M

0

\ A; and that

X

1�i;j�n

e

i;j

a

i;j

=

X

1�i;j�n

e

i;i

a e

j;j

= a

so that � is onto. If

P

1�i;j�n

e

i;j


 a

i;j

2 Ker�; then

n

X

k=1

e

k;p

0

@

X

1�i;j�n

e

i;j

a

i;j

1

A

e

q;k

=

n

X

k=1

e

k;k

a

p;q

= a

p;q

= 0

for all p; q 2 f1; :::; ng; so that � is injective. ]

2.b. The von Neumann Density Theorem

2.10. Commutants. Let H be a Hilbert space and let S be a subset of B(H): The

commutant of S is the subalgebra

S

0

=

n

a 2 B(H)

�

�

�

as = sa for all s 2 S

o

of B(H): One writes S

00

for (S

0

)

0

; and S

000

for (S

00

)

0

; etc. Observe that

(*)

S

00

� S and

S � T =) S

0

� T

0

for all S; T � B(H):

Let S be a subset of B(H) which is self-adjoint (i.e. s 2 S () s

�

2 S). Then S

0

is

an involutive sub-algebra of B(H): It is of course true that S

0

is closed with respect to the

norm, so that S

0

is a C

�

-algebra of operators on H; but the norm topology is often not the

most interesting on S

0

(it is rarely separable).

2.11. Lemma. Let S be a self-adjoint subset of B(H); let E be a closed subspace of H

and let p be the orthogonal projection of H onto E: Then

E is S-invariant () p 2 S

0

:

Proof. Let us show =) : Suppose E is S-invariant. Then sp = psp for all s 2 S: As S is

self-adjoint on has also ps = (s

�

p)

�

= (ps

�

p)

�

= psp for all s 2 S: This shows that p 2 S

0

:

�

2.12. De�nition. A von Neumann algebra on H is an involutive subalgebra A of B(H)

such that A

00

= A: A factor on H is a von Neumann algebra A such that the center A

0

\A

is reduced to C id

H

:

For each self-adjoint subset S of B(H); the commutant S

0

is a von Neumann algebra

on H: Indeed, by (*), one has on one hand S

0

� S

000

; and on the other hand S � S

00

=)

S

0

� S

000

: This shows one may de�ne von Neumann algebras on H as commutants of

self-adjoints subsets in B(H):

For example, let G be a group and let � : G! U(H) be a unitary representation. Then

�(G)

0

is a von Neumann algebra on H: Lemma 2.11 shows that projections in �(G)

0

are in

natural bijection with closed G-invariant subspaces of H: (Usually, in practice, G is locally

compact and � is continuous, but this is not necessary for the observation above.)
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2.13. Proposition (von Neumann's Density Theorem in �nite dimensions). Let

A be a involutive subalgebra of M

n

(C ) which contains the unit matrix. Then A

00

= A; i.e.

A is a von Neumann algebra on C

n

:

Proof. Let K denote the orthogonal sum of n copies of C

n

: Let

� :M

n

(C ) �! B(K)

denote the representation of M

n

(C ) on K given by the diagonal action. Consider also an

orthonormal basis (v

1

; :::; v

n

) of C

n

; the vector

v =

0

@

v

1

.

.

.

v

n

1

A

2 K

and the orthogonal projection p of K onto the subspace �(A)v: Lemma 2.11 shows that

p 2 �(A)

0

:

We may write any element in B(K) as a n-by-n matrix with entries in M

n

(C ); in other

words we may identify B(K) with M

n

(M

n

(C )) : Then, we claim that

�(A)

0

=M

n

(A

0

):

(Caution: the �rst prime denotes a commutant in B(K) and the second a commutant in

B(C

n

):) Indeed, for

x = (x

j;k

)

1�j;k�n

2M

n

(M

n

(C )) = B(K);

the equations

�(a)x =

0

B

@

a 0 : : : 0

0 a : : : 0

: : : : : : : : : : : :

0 0 : : : a

1

C

A

0

B

@

x

1;1

x

1;2

: : : x

1;n

x

2;1

x

2;2

: : : x

2;n

: : : : : : : : : : : :

x

n;1

x

n;2

: : : x

n;n

1

C

A

=

0

B

@

x

1;1

x

1;2

: : : x

1;n

x

2;1

x

2;2

: : : x

2;n

: : : : : : : : : : : :

x

n;1

x

n;2

: : : x

n;n

1

C

A

0

B

@

a 0 : : : 0

0 a : : : 0

: : : : : : : : : : : :

0 0 : : : a

1

C

A

= x�(a)

for all a 2 A are equivalent to

x

j;k

2 A

0

for all j; k 2 f1; :::; ng:

Similarly one has

�(A

00

) �M

n

(A

0

)

0

(it is easy to see, but not useful just here, that the equality holds).
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Consider now a self-adjoint element b 2 A

00

: By the previous step one has

�(b) 2 �(A

00

) �M

n

(A

0

)

0

= �(A)

00

so that �(b) commutes with p 2 �(A

0

); the same holds for �(b

�

): Hence the subspace �(A)v

is invariant by �(b); by Lemma 2.11 again. In particular

�(b)

�

�(1)v

�

=

0

@

bv

1

.

.

.

bv

n

1

A

2 �(A)v

so that b acts on each of v

1

: : : v

n

as an operator of A: This means precisely that b 2 A:

We have shown that any element b 2 A

00

is also in A: �

2.14. Comment. This proposition will be an essential tool in Section 2.C for the study

of involutive algebras of operators in �nite dimensions. The end of the present Section

2.B will not be used in these notes before Section 6.C; Theorem 2.17 however is one of

the most fundamental result in the theory of operator algebras. It �rst appeared in 1929

[vNe]. There is a bicommutant theorem in pure algebra of which the ultimate form seems

to be due to Jacobson [Jac]. But results like Proposition 2.13 are much older, probably

going back to E. Noether [Di2, page 11].

2.15. Topologies on B(H): We know already the norm topology on B(H): There are

many other useful topologies on B(H); of which we de�ne two here. For a good introduction

to some of the others, see [StZ] (Chapter I, Comments to Chapter 5, and Chapter 8).

Strong topology. For any a 2 B(H) and � 2 H; set

V

�

(a) =

n

b 2 B(H)

�

�

�

k(b � a)�k < 1

o

:

Finite intersections of the V

�

(a) 's constitute a basis of neighbourhoods of a in B(H) for a

locally convex Hausdor� topology on B(H) which is called the strong topology.

Weak topology. For any a 2 B(H) and �; � 2 H; set

V

�;�

(a) =

n

b 2 B(H)

�

�

�

jh�j(b� a)�ij < 1

o

:

Finite intersections of the V

�;�

(a) 's constitute a basis of neighbourhoods of a in B(H) for

a locally convex Hausdor� topology on B(H) which is called the weak topology.

It is easy to check that the one-sided multiplication L

a

: b 7! ab and R

a

: b 7! ba

are continuous on B(H) for the strong topology, and also for the weak topology; however

(a; b) 7! ab is neither strongly nor weakly continuous. The adjoint a 7! a

�

is continuous

for the weak topology, but not for the strong topology.

The most important topology for physics is the weak topology, because the quantities

h�j(b � a)�i are related to the \transition probabilities".
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2.16. Proposition. (i) The weak topology on B(H) is weaker than the strong topology,

which is itself weaker than the norm topology.

(ii) A linear form � : B(H) ! C is strongly continuous if and only if it is weakly

continuous.

(iii) A convex subset of B(H) is strongly closed if and only if it is weakly closed.

(iv) On the unitary group U(H) of H; the weak topology coincides with the strong

topology; they make U(H) a topological group.

(v) The comparisons of (i) are strict as soon as H is in�nite dimensional.

Proof. (i) We leave this to the reader.

(ii) We follow [StZ]. Assume that � is strongly continuous. There exist �

1

; :::; �

n

2

H � f0g such that

j�(x)j �

n

X

k=1

kx�

k

k

for all x 2 B(H): On B(H)

n

; de�ne a semi-norm p by

p(x

1

; :::; x

n

) =

n

X

k=1

kx

k

�

k

k ;

on the diagonal D of B(H)

n

; de�ne a linear form

~

� by

~

�(x; x; :::; x) = �(x):

As j

~

�(x; :::; x)j � p(x; :::; x) for all (x; :::; x) 2 D; the Hahn-Banach theorem shows that

there exists a linear form � on B(H)

n

which extends

~

� and which is such that

j�(x

1

; :::; x

n

)j � p(x

1

; :::; x

n

)

for all x

1

; :::; x

n

2 B(H):

For each k 2 f1; ::; ng; let �

k

be the linear form on B(H) de�ned by

�

k

= �(0; :::; 0; x; 0; :::; 0) (x in kth place).

Then j�

k

(x)j � kx�

k

k for all x 2 B(H): As any vector in H is of the form x�

k

for some

x 2 B(H); it follows that the linear form

�

H �! C

x�

k

7�! �

k

(x)

is well de�ned and bounded. By Riesz' theorem, there exists �

k

2 H such that �

k

(x) =

h�

k

jx�

k

i ; and this holds for all x 2 B(H): As �(x) = �(x; :::; x) =

P

n

k=1

�

k

(x); one has

�nally

�(x) =

n

X

k=1

h�

k

jx�

k

i
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so that � is clearly weakly continuous.

The converse implication follows from (i).

(iii) This is a straight consequence of (ii) and of the geometric form of the Hahn-Banach

Theorem.

(iv) Let us check that the mapping U(H)

weak

! U(H)

strong

is continuous. For this,

given a strong neighbourhood of 1 in U(H) of the form

O

strong

=

�

u 2 U(H) j k(u� 1)�k < 1

	

for some � 2 H and an element u

0

2 O

strong

; it is enough to �nd a weak neighbourhhod

O

weak

of u

0

in U(H) such that O

weak

� O

strong

: If � = 1� k(u

0

� 1)�k ; one may set

O

weak

=

8

>

<

>

:

v 2 U(H)

�

�

�

�

�

j hu

0

�j(v � u

0

)�i j <

1

2

�

2

j h�j(u

�

0

� v

�

)u

0

�i j <

1

2

�

2

9

>

=

>

;

(recall that the map a 7! a

�

is weakly continuous). For v 2 O

weak

; one has then

k(v � u

0

)�k

2

= h�j(1� u

�

0

v)�i + h�j(1� v

�

u

0

)�i < �

2

and consequently

k(v � 1)�k � k(v � u

0

)�k + k(u

0

� 1)�k < 1;

namely v 2 O

strong

:

(v) For simplicity of notations, we assume H to be separable. Let (e

n

)

n�1

be an or-

thonormal basis of H:

For each n � 1; let p

n

denote the projection of H onto the span of fe

1

; :::; e

n

g: Then

p

n

converges to id

H

strongly, but not in the norm topology. Hence the strong topology is

strictly weaker than the norm topology.

Let s be the unilateral shift de�ned by se

n

= e

n+1

for all n � 1 (see 1.19). Then,

for any p; q � 1; the scalar product he

p

js

k

e

q

i is zero for k large enough. It follows that

lim

k!1

h�js

k

�i = 0 for all �; � 2 H; namely that the powers s

k

converge weakly to 0 when

k !1: As







s

k

�







= k�k for all k � 1 and � 2 H; the powers s

k

do not converge strongly

to 0: Hence the weak topology is strictly weaker than the strong topology. �

2.17. Von Neumann's Density Theorem. Let A be an involutive subalgebra of B(H)

which contains id

H

: Then A is strongly dense in A

00

:

Proof. Let b 2 A

00

be a self-adjoint element, let �

1

; :::; �

n

be vectors in H; let � > 0; and let

V =

n

x 2 B(H)

�

�

�

k(x � b)�

j

k < � for j 2 f1; :::; ng

o

be a basic strong neighbourhood of b in B(H):We have to show that there exists an element

in A \ V; and we follow the proof of Proposition 2.13.
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Let K denote the orthogonal sum of n copies of H and let � : B(H)! B(K) denote the

diagonal representation. Consider the vector

� =

0

B

@

�

1

.

.

.

�

n

1

C

A

2 K

and the orthogonal projection p of K onto the closure in K of the supspace �(A)�: Then

p 2 �(A)

0

by Lemma 2.11.

Using precisely the same argument as in the proof of Proposition 2.13, one sees that

�(b)(�) =

0

B

@

b�

1

.

.

.

b�

n

1

C

A

2 �(A)�:

In particular, there exists a 2 A such that k(b � a)�

j

k < � for all j 2 f1; :::; ng; namely

there exists a 2 A \ V: �

2.18. Corollary. Let A be an involutive subalgebra of B(H) which contains id

H

: The

following are equivalent:

(i) A is a von Neumann algebra, i.e. A

00

= A;

(ii) A is strongly closed in B(H);

(iii) A is weakly closed in B(H):

Proof. One has (i) =) (iii) because commutants are weakly closed, (iii) =) (ii) because

the strong topology is stronger than the weak one, and (ii) =) (i) by von Neumann's

Density Theorem. �

2.19. Separability. Let H be a separable Hilbert space and let (�

n

)

n2N

be a countable

dense sequence in the unit ball of H: On the unit ball of B(H); the strong topology can be

de�ned by the distance

d

s

(a; b) =

X

n2N

1

2

n

k(a � b)(�

n

)k

and the weak topology by

d

w

(a; b) =

X

m;n2N

1

2

m+n

�

�

h�

m

j (a � b)(�

n

)i

�

�

:

Each of these makes the unit ball of B(H) a second countable complete metric space. If A

is a von Neumann algebra on H; the same facts hold for the unit ball of A: It follows that a

von Neumann algebra on a separable Hilbert space can always be generated by a countable

set of elements. More on this (together with the canonical references to Bourbaki) in [DvN,

x I.3].

Recall that sequences are appropriate to study the topology of metrizable spaces (see

Bourbaki, Topologie g�en�erale, chap. 9, x 2, n

o

6). To study general topological spaces, one
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needs more e�cient tools such as �lters or nets (the choice depends on cultural background:

see e.g. Problem L in Chapter 2 of [Kel]). This is demonstrated by the following fact; we

copy the argument from [DvN, x I.3, exercice 3].

If H is an in�nite dimensional separable Hilbert space, then B(H) with the strong topo-

logy is not metrizable. Indeed, consider an orthonormal basis (e

n

)

n�1

of H and, for each

n � 1; the orthogonal projection P

n

of H onto C e

n

: Set T

m;n

= P

m

+mP

n

and consider

the set T = fT

m;n

g

m�1;n�1

: We claim �rstly that 0 is in the strong closure of T ; and

secondly that no sequence from T converges strongly to 0 in B(H): The two claims imply

clearly that the strong topology on B(H) is not metrizable.

For the �rst claim, consider � > 0 and � =

P

n�1

�

n

e

n

2 H: For m large enough, one

has j�

m

j < �; then, for n large enough, one has j�

n

j < �=m; thus

kT

m;n

(�)k � j�

m

j+mj�

n

j � 2�:

It follows that 0 is in the strong closure of T : For the second claim, assume ab absurdo that

some sequence

�

T

m

j

;n

j

�

j�1

of elements of T converges strongly to 0: The Banach-Steinhaus

theorem implies that sup

j�1







T

m

j

;n

j







� 1: It follows �rstly that m

j

� m for some integer

m; and one may assume that m

j

= m is independent on j: But then

�

P

m

+mP

n

j

�

j�1

does not converge strongly to zero, in contradiction with the hypothesis. This proves the

second claim.

2.20. Exercise. (i) Let H be a Hilbert space and let p; q be two projections in B(H):

Then the sequence of n

th

term (pqp)

n

converges strongly, and its limit is the projection

onto the space p(H) \ q(H):

(ii) Let A be a von Neumann algebra on H and let p; q 2 A be two projections. Then

the projection p ^ q of H onto the closed linear span of p(H) and q(H) belongs to A:

Hints. Prove �rst (i) when H is �nite dimensional. For the general case, use Proposition

4.44 below. The claim in (ii) follows from that in (i) because p^q = 1 �

�

(1�p)_(1�q)

�

:

If this hint is not enough, see e.g. Problem 95 in [Hal].

2.c. Operator algebras with units on finite dimensional spaces

2.21. Preview. Let A be an involutive subalgebra of B(H) for some �nite dimensional

Hilbert space H: For the time being, assume that A contains the identity operator of H;

written id

H

or simply 1. We are going to show that one has an isomorphism of the form

A �

r

M

j=1

M

n

j

(C )

or in other words that A is a multi-matrix algebra. We are also going to make precise the

embedding of

L

r

j=1

M

n

j

(C ) in B(H):
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One could prove this using classical results of algebra: a �nite dimensional involutive

algebra is semi-simple, hence the direct sum of its simple two-sided ideals, and each of these

is isomorphic to some full matrix algebra because the underlying �eld is C : (Some further

points on this are sketched in Appendix II.a of [GHJ].) But we are using below another

method, dealing �rstly with abelian C

�

-algebras of operators, secondly with factors, and

�nally with the general case.

Recall from 2.13 that one has

f involutive subalgebras of M

n

(C ) with 1 g

= f von Neumann algebras on C

n

g

(see also 2.8.i).

2.22. Lemma. Let A denote an involutive subalgebra of M

n

(C ); let a 2 A be a self-

adjoint element and let �

1

; :::; �

s

denote the distinct non zero eigenvalues of a: Then there

exist orthogonal projections q

1

; :::; q

s

2 A such that

a =

s

X

k=1

�

k

q

k

:

Proof. By the spectral theorem for self-adjoint matrices, one may write a =

P

s

k=1

�

k

q

k

with the q

k

's being orthogonal projections in M

n

(C ): For each k 2 f1; :::; sg; there exists

a polynomial f

k

such that f

k

(�

l

) = �

k;l

(Kronecker delta), and f

k

(0) = 0; for example the

Lagrange polynomial

f

k

(T ) =

T

�

k

Q

1�l�s;l 6=k

(T � �

l

)

Q

1�l�s;l 6=k

(�

k

� �

l

)

:

One has consequently q

k

= f

k

(a) 2 A for each k 2 f1; :::; sg: �

2.23. Proposition. Let A be an abelian involutive subalgebra of M

n

(C ): Let P =

fp

1

; :::; p

r

g be the set of minimal projections in A: Then

A =

r

M

j=1

C p

j

:

Proof. Let a 2 A be self-adjoint. By Lemma 2.22, one may write a =

P

s

k=1

�

k

q

k

with the

�

k

's in R

�

and the q

k

's in A:

Let k 2 f1; :::; sg: For each j 2 f1; :::; rg; the projections p

j

and q

k

commute, so that

p

j

q

k

is also a projection; one has p

j

q

k

2 f0; p

j

g and q

k

=

P

r

j=1

p

j

q

k

by de�nition of P:

Hence a =

P

r

j=1

�

j

p

j

; each �

j

being the non zero eigenvalue �

k

indexed by that k for

which p

j

q

k

6= 0:

As each a 2 A is the sum of two self-adjoint elements, this ends the proof. �

2.24. Remarks. (i) The abelian C

�

-algebra A of Proposition 2.23 contains the unit

1 = id

H

if and only if

P

r

j=1

p

j

= 1: Observe however that, in all cases,

P

r

j=1

p

j

is a

multiplicative unit in A which is consequently an algebra with unit.

(ii) The algebra A of 2.23 is isomorphic to the \algebra of continuous functions" of 2.3

for a space X with r points and for the counting measure on X:
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2.25. Lemma. Let A be a sub-C

�

-algebra of M

n

(C ) containing 1: Then any element a

in A is a linear combination of four unitaries in A:

Proof. As

a = kak

a+ a

�

2 kak

� i kak

ia� ia

�

2 kak

;

it is enough to check that any self-adjoint element b of norm 1 in A is a linear combination

of two unitaries. By Lemma 2.22 there exist real numbers �

1

; :::; �

s

in [�1; 1] (zero allowed

this time !) and orthogonal projections q

1

; :::; q

s

in A such that

P

s

k=1

q

k

= 1 and b =

P

s

k=1

�

k

q

k

: Then

u =

s

X

k=1

�

�

k

+ i

q

1� �

2

k

�

q

k

is unitary and b =

1

2

(u+ u

�

); which ends the proof.

Functional calculus (Theorem 4.24) shows that this proof carries over to any C

�

-algebra

with unit, with u = b+ i

p

1� b

2

: �

2.26. Proposition. Let A be a factor on H � C

n

and let p; q 2 A be two projections

distinct from 0: Then there exists a 2 A such that paq 6= 0:

Proof. For each unitary u in A; let p

u

= upu

�

2 A be the projection of H onto u(p(H)):

Let e denote the projection of H onto the subspace E of H spanned by the u(p(H)) 's; one

has e 2 A by 2.20.i. The space E is obviously invariant by any unitary in A; hence also

by any element in A (see Lemma 2.25). Hence e 2 A

0

(Lemma 2.11). As A is a factor,

e 2 C id

H

: As e 6= 0 (because p 6= 0), one has e = 1:

Suppose now ab absurdo that paq = 0 for all a 2 A: Then upu

�

q = 0 for all unitary

element u 2 A; hence eq = q = 0; which is preposterous. �

The previous argument carries over to in�nite dimensions, so that Proposition 2.26 holds

for an arbitrary factor (see also [DvN], chap. I, x 1, Corollary 3 of Proposition 7). But the

following argument works in �nite dimensions only.

Another proof. Let du denote the Haar measure of mass 1 on the compact group

U(A) = fu 2 A j u

�

u = uu

�

= 1 g

and set z =

R

U(A)

uqu

�

du: By invariance of the Haar measure, one has vz = zv for all

v 2 U(A); hence z 2 Z(A) by the previous lemma. Moreover, if tr : M

n

(C ) ! C denotes

the usual trace, one has

tr(z) =

Z

U(A)

tr(uqu

�

)du =

Z

U(A)

tr(q)du = tr(q) 6= 0

and consequently z 6= 0: It follows that z is a nonzero multiple of the identity.

Suppose ab absurdo that paq = 0 for all a 2 A: Then puqu

�

= 0 for all u 2 U(A); so

that pz = 0 by integration on U(A): But this is absurd because p 6= 0 and z is a nonzero

multiple of 1: �
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2.27. Lemma. Let A be an involutive subalgebra of M

n

(C ) and let p 2 A be a projection

distinct from 0: Then p is minimal (among projections of A distinct from 0; for the ordering

recalled in 1.18) if and only if pAp � C :

Proof. Assume �rstly that p is minimal. Let a 2 pAp be a self-adjoint element distinct

from 0: By Lemma 2.22, one may write a =

P

s

k=1

�

k

q

k

with the �

k

's in Rn0 and the q

k

's

in pAp: For each k 2 f1; :::; sg; one has therefore pq

k

= q

k

; so that q

k

= p by minimality

of p: In other words, one may write a = �p: It follows that dim

C

(pAp) = 1:

Assume secondly that p is not minimal, and let p

1

; p

2

2 A be two nonzero orthogonal

projections in A such that p = p

1

+ p

2

: It is then obvious that dim

C

(pAp) � 2: �

2.28. Remark. The previous lemma does not hold for in�nite dimensional C

�

-algebras.

Indeed, it is easy to check that 1 is a minimal projection in C([0; 1]); or more generally in

C(X) for any connected compact space X: But an appropriate phrasing holds for any von

Neumann algebra (see e.g. Proposition 4.10 in [StZ]).

2.29. Proposition. Let A be a factor on H � C

n

: Then there exists a divisor m of n

such that A �M

m

(C ):

Moreover, for each minimal projection p of A; the space p(H) is a (n=m)-dimensional

subspace of H:

Proof. Let e 2 A be a projection which is maximal for the property \eAe is a full matrix

algebra" (this makes sense because of Lemma 2.27). For the �rst claim, we have to show

that e = 1: We assume ab absurdo that e 6= 1 and we shall reach a contradiction.

Lef f 2 A; f 6= 0 be a projection which is minimal for the property \fe = 0". Then f

is minimal in A; so that fAf � C by Lemma 2.27. By Proposition 2.26, one may choose

a 2 A such that eaf 6= 0: One has also (eaf)

�

eaf = fa

�

eaf 6= 0: Hence there exists

� 2 C n 0 so that fa

�

eaf = �f ; indeed

� kf�k

2

= � h� j f�i = heaf� j eaf�i � 0

for all � 2 C

n

; and � > 0: Set w = �

�1=2

eaf: As w

�

w =

1

�

fa

�

eaf = f; the matrix w is a

partial isometry with initial projection f: As eww

�

= ww

�

; the �nal projection of w is a

sub-projection of e; moreover, as f is minimal in A; it follows that ww

�

is also a minimal

projection in A; and a fortiori in eAe:

Let m � 1 be the integer such that eAe �M

m

(C ) and let (w

j;k

)

1�j;k�m

be a system of

matrix units in eAe: One may assume that w

m;m

= ww

�

(see the end of 2.9). We may now

extend (w

j;k

)

1�j;k�m

to a system of matrix units of order m+ 1 according to the scheme

w

1;1

: : : w

1;m

w

1;m

w

.

.

.

.

.

.

.

.

.

.

.

.

w

m;1

: : : w

m;m

w

m;m

w

w

�

w

m;1

: : : w

�

w

m;m

f

so that (e + f)A(e + f) is a full matrix algebra of order m + 1: (More precisely we set

w

k;m+1

= w

k;m

w and w

m+1;k

= w

�

w

m;k

for all k 2 f1; :::;mg; as well as w

m+1;m+1

= f:)
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This is in contradiction with the de�nition of e: It follows that e = 1; namely that A is

a full matrix algebra.

Consider now the restriction to A of the usual trace tr : M

n

(C ) ! C : As w

�

1;k

w

1;k

=

w

k;k

and w

1;k

w

�

1;k

= w

1;1

; the projections w

1;1

and w

k;k

have the same trace, for all

k 2 f1; :::;mg; this value of the trace is precisely n=m; and the proof is complete. �

2.30. De�nition. The integer n=m in 2.29 is called the multiplicity of the representation

of M

m

(C ) into M

n

(C ):

For example

8

>

>

<

>

>

:

M

2

(C ) �! M

6

(C )

x 7�!

0

@

x 0 0

0 x 0

0 0 x

1

A

is a representation of multiplicity 3. Proposition 2.29 shows that any involutive subalgebra

of M

6

(C ) which contains 1 and which is isomorphic to M

2

(C ) is conjugated to the image

of the above inclusion.

2.31. Theorem. Let H � C

n

be a �nite dimensional space and let A be an involutive

subalgebra of B(H) �M

n

(C ) containing 1: Let p

1

; :::; p

r

be the minimal projections in the

center Z(A) of A: Then there are strictly positive integers n

1

; :::; n

r

such that p

j

Ap

j

�

M

n

j

(C ) for all j 2 f1; :::; rg; and

A �

r

M

j=1

M

n

j

(C ):

Moreover, if �

j

denotes the multiplicity of the representation of p

j

Ap

j

in B (p

j

H) ; then

P

r

i=1

�

j

n

j

= 1:

Proof. One has

A =

r

M

j=1

p

j

Ap

j

by de�nition of the p

j

's and Z(A) =

L

r

j=1

C p

j

by Proposition 2.23. The theorem follows

from the previous proposition. �

2.32. Remark. Some studies have been devoted to \real C

�

-algebras". In �nite di-

mensions, they are direct sums of matrix algebras over the reals, the complex or the

quaternions.

2.d. Examples of operator algebras on finite dimensional spaces

2.33. Example. Let V be a Hilbert space of dimension n � 2: Let (v

j

)

j2Z=nZ

be an

orthonormal basis indexed by the cyclic group of order n: Let ! be a primitive n

th

root of



16 2. FINITE DIMENSIONAL OPERATOR ALGEBRAS

1: De�ne two unitary operators a; b on V by

a(v

j

) = v

j+1

b(v

j

) = !

j

v

j

for all j 2 Z=nZ; so that ba = !ab: Then the von Neumann algebra generated by a and b

is B(V ) �M

n

(C ):

Proof. Let A be the von Neumann algebra generated by a and b: As !

j

6= !

k

for j; k 2

Z=nZ; j 6= k; the only operators which commute with b are the diagonal operators. Among

diagonal operators, the only ones which commute with a are clearly the scalar multiples

of the identity. Hence A

0

= C id

V

; so that A = A

00

= B(V ): �

2.34. Remarks. (i) It is easy to check that the abstract complex algebra A presented by

two generators �; � and three relations

�

n

= 1 ; �

n

= 1 ; �� = !��

is of dimension � n

2

: It follows from Example 2.33 that A �M

n

(C ):

(ii) Let ! be a primitive m

th

root of 1 for some divisor m of n: De�ne a; b 2M

n

(C ) by

the same formulas as above. One may show that the von Neumann algebra on V generated

by a and b is isomorphic to M

m

(C ) � :::�M

m

(C ); with n=m factors.

(iii) Let H be an in�nite dimensional Hilbert space and let (v

j

)

j2Z

be an orthonormal

basis indexed by the in�nite cyclic group. Choose an irrational number � 2]0; 1[ and set

! = e

i2��

: De�ne two unitary operators a; b on H by

a(v

j

) = v

j+1

b(v

j

) = !

j

v

j

for all j 2Z: Observe that

ba = !ab:

The same argument as in the previous example shows that the von Neumann algebra

generated by a and b is B(H) itself. In other words, the so-called irrational rotation algebra

A

�

; namely the C

�

-algebra of operators on H generated by a and b; acts irreducibly on H

(because its commutant A

0

�

is reduced to C ).

2.35. Example. Let V be a Hilbert space of dimension n � 2: Let v

1

; :::; v

n

be an

orthonormal basis of V: The tensor product V 
 V is naturally a Hilbert space which has

an orthonormal basis (v

j


 v

k

)

1�j;k�n

: Consider the three projections

e

1

onto the subspace C (v

1

+ :::+ v

n

) 
 V of V 
 V

e

2

onto the subspace �

1�j�n

C (v

j


 v

j

) of V 
 V

e

3

onto the subspace V 
 C (v

1

+ :::+ v

n

) of V 
 V:
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Then one has

e

1

e

2

e

1

=

1

n

e

1

e

2

e

1

e

2

=

1

n

e

2

e

2

e

3

e

2

=

1

n

e

2

e

3

e

2

e

3

=

1

n

e

3

e

1

e

3

= e

3

e

1

:

Moreover the von Neumann algebra on V 
 V generated by e

1

; e

2

is isomorphic to

(

C �M

2

(C ) if n � 3

M

2

(C ) if n = 2:

Proof. For all j; k 2 f1; :::; ng; one computes successively

e

1

(v

j


 v

k

) =

1

n

X

1�l�n

v

l


 v

k

e

2

(v

j


 v

k

) = �

j;k

v

j


 v

k

e

1

e

2

e

1

(v

j


 v

k

) =

1

n

2

X

l

v

l


 v

k

=

1

n

e

1

(v

j


 v

k

)

e

2

e

1

e

2

(v

j


 v

k

) =

1

n

�

j;k

v

j


 v

k

=

1

n

e

2

(v

j


 v

k

)

e

1

e

3

(v

j


 v

k

) =

1

n

2

X

l;m

v

l


 v

m

= e

3

e

1

(v

j


 v

k

):

The formulae for the products of the e

j

's follow.

[A digression on the braid group on n strings (n � 4) could be in order here.]

Let A

0

be the unital subalgebra of B(V 
 V ) generated by e

1

and e

2

: As any word in

e

1

; e

2

can be written as a scalar multiple of one of the words

(*) 1 = empty word ; e

1

; e

2

; e

1

e

2

; e

2

e

1

;

one has dim

C

(A

0

) � 5: As

e

2

e

1

(v

1


 v

2

) =

1

n

v

2


 v

2

6= 0 = e

1

e

2

(v

1


 v

2

);

the algebra A

0

is not commutative. Hence A

0

contains a two-sided ideal isomorphic to

M

2

(C ): If n � 3; we leave it to the reader to check that the �ve words in (�) are linearly

independent in B(V 
 V ): (Hint: evaluate a linear combination of these on the vectors

v

1


 v

2

and v

2


 v

2

:) It follows that

n � 3 =) A

0

� C �M

2

(C ):
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If n = 2; one checks that 2(e

1

+ e

2

� e

1

e

2

� e

2

e

1

) = id

V
V

; so that dim

C

A � 4; and thus

A �M

2

(C ): �

2.36. Example. Let the notations be as in 2.35, and assume that n � 3: Then the von

Neumann algebra on V 
 V generated by e

1

; e

2

and e

3

is isomorphic to

C �M

3

(C ) �M

2

(C ):

Proof. Let A be the unital subalgebra of B(V 
 V ) generated by e

1

; e

2

and e

3

: As any

word in these can be written as a scalar multiple of one of the words

(**)

e

1

e

2

e

1

e

2

e

3

e

1

e

1

e

3

e

1

e

3

e

2

e

2

e

1

e

2

e

1

e

3

e

2

e

1

e

3

e

2

1 e

2

e

2

e

3

e

3

e

3

e

2

e

3

e

2

e

1

one has dim

C

(A) � 14:

Let j; k 2 f1; :::; ng be such that jj � kj � 2: The line spanned by

v

j


 v

k

� v

j+1


 v

k

� v

j


 v

k+1

+ v

j+1


 v

k+1

is in the kernel of e

1

; e

2

and e

3

: In particular, this line is invariant by A; and it follows

that A contains a two-sided ideal isomorphic to C :

Any unital homomorphism � : A ! C � B(C ) has to map e

1

; e

2

; e

3

onto 0 (because

e

2

1

= e

1

=) �(e

1

) 2 f0; 1g and e

1

e

2

e

1

=

1

n

e

1

=) �(e

1

) = 0; and so on). Hence there is a

unique unital homomorphism from A to C ; so that A contains a unique two-sided ideal of

dimension 1:

Let W be the subspace of V 
 V spanned by

w

d

=

X

j

v

j


 v

j

and w

s

=

X

j;k

v

j


 v

k

:

One has

e

1

(w

d

) =

1

n

w

s

e

1

(w

s

) = w

s

e

2

(w

d

) =

1

n

w

d

e

2

(w

s

) = w

d

e

3

(w

d

) =

1

n

w

s

e

3

(w

s

) = w

s

so that W is invariant by A: As W is clearly irreducible by A; it follows that A contains

a two-sided ideal isomorphic to M

2

(C ):
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Consider the orthogonal W

?

of W in V 
 V: On W

?

; the projection e

1

e

3

acts as 0,

because the image of V 
 V by e

1

e

3

is the subspace Cw

s

of W: We may choose a unit

vector

�

2

2 W

?

\ Im(e

2

)

(for example an appropriate scalar multiple of v

1


v

1

�v

2


v

2

would do). Set �

1

= e

1

(

p

n�

2

)

and �

3

= e

3

(

p

n�

2

): One has

h�

1

j�

1

i = n he

1

e

2

(�

2

)je

1

e

2

(�

2

)i = n h�

2

je

2

e

1

e

2

(�

2

)i = 1

and similarly h�

2

j�

2

i = 1: Let X be the subspace of W

?

spanned by the three unit vectors

�

1

; �

2

; �

3

: One has

h�

2

j�

1

i =

p

n he

2

(�

2

)je

1

e

2

(�

2

)i =

p

n h�

2

je

2

e

1

e

2

(�

2

)i =

1

p

n

h�

2

j�

3

i =

p

n he

2

(�

2

)je

3

e

2

(�

2

)i =

p

n h�

2

je

2

e

3

e

2

(�

2

)i =

1

p

n

h�

1

j�

3

i = n he

1

(�

2

)je

3

(�

2

)i = n h�

2

je

1

e

3

(�

2

)i = 0:

As n � 3; it follows that dim

C

(X) = 3: Now X is clearly invariant by A; and one has

consequently a morphism of �-algebras

� : A �! B(X)

such that �(1) = 1:

One has e

2

(�

2

) = �

2

by de�nition of e

2

; one computes

e

2

(�

1

) = e

2

e

1

(

p

ne

2

�

2

) =

1

p

n

�

2

and similarly e

2

(�

3

) =

1

p

n

�

2

: Hence �(e

2

) is the orthogonal projection of X onto C �

2

:

Similarly �(e

1

) [respectively �(e

3

)] is the orthogonal projection of X onto C �

1

[resp. C �

3

].

It is then straightforward to check that the resulting representation of A inX is irreducible,

so that the morphism � is onto. It follows that A contains a two-sided ideal isomorphic to

M

3

(C ):

Now dim

C

(C �M

3

(C ) �M

2

(C )) = 14; and the conclusion follows. �

2.37. Exercice. The notation being as in the previous examples, set

f

1

= e

2

e

1

e

3

e

2

f

2

= e

1

e

3

and let J be the sub-C

�

-algebra of A generated by f

1

and f

2

:
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(i) Check that f

2

1

=

1

n

f

1

; f

2

2

= f

2

and that

f

1

f

2

f

1

=

1

n

2

f

1

f

2

f

1

f

2

=

1

n

2

f

2

:

(ii) Show that

J � C �M

2

(C ):

(Hint: mimick the argument used in 2.35 for A

0

:)

(iii) Check that

e

1

f

1

= f

2

f

1

; e

2

f

1

= f

1

; e

3

f

1

= f

2

f

1

e

1

f

2

= f

2

; e

2

f

2

= nf

1

f

2

; e

3

f

2

= f

2

so that J is a two-sided ideal in A:

2.38. Exercice. Let � be a �nite group. The group algebra C [�] is the space of functions

�! C for the convolution product de�ned by

(a ? b)(
) =

X

a

�




0

�

b

�




00

�

(summation over pairs (


0

; 


00

) 2 ��� satisfying 


0




00

= 
). It has a natural multiplicative

basis (�




)


2�

; where �




2 C [�] denotes the characteristic function of f
g:

(i) Let `

2

(�) denote the vector space of C [�] given together with the scalar product

de�ned by

hajbi =

X


2�

a(
)b(
):

By convolution, one may view C [�] as a subalgebra of B

�

`

2

(�)

�

: Check that it is indeed

an involutive subalgebra and that, for each a 2 C [�]; the adjoint of the left-multiplication

operator b 7! a ? b is the left-multiplication operator b 7! a

�

? b where

a

�

(
) = a (


�1

)

for all 
 2 �:

(ii) Let

^

� denote the set of equivalence classes of irreducible unitary representations of

�: The elementary theory of representations of �nite groups shows that one has

C [�] �

M

�2

^

�

M

d(�)

(C )

where d(�) denotes the degree of �: Write down explicitly the list of these numbers d(�)

for

an abelian group of order n (n � 1);

the dihedral group D

n

of order 2n (n � 1);

the symmetric group S

n

of n letters (n � 4);

the alternated group A

n

of n letters (n � 4):

We will come back on C

�

-group-algebras in Number 4.1.

2.39. Exercice. Structure of the generic Temperley-Lieb algebras.
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CHAPTER 3. COMPACT AND HILBERT-SCHMIDT OPERATORS

Let H and H

0

denote Hilbert spaces.

3.a. Compact operators

3.1. De�nition. A bounded operator a : H ! H

0

is �nite rank if the image a(H) is �nite

dimensional.

The linear space of such operators is denoted by

F(H;H

0

):

We write F(H) instead of F(H;H):

3.2. Lemma. For any bounded operator a : H ! H

0

; one has

Im(a

�

) = Ker(a)

?

Ker(a

�

) = Im(a)

?

:

Proof. It is straightforward to check that Im(a

�

) � Ker(a)

?

; and also that (Im(a

�

))

?

�

Ker(a); namely that Im(a

�

) � Ker(a)

?

: The �rst equality follows. The second is obtained

by exchanging a and a

�

: �

3.3. Proposition. The space F(H) is a self-adjoint two-sided ideal in the C

�

-algebra

B(H):

Proof. The subspace F(H) is obviously a two-sided ideal. It is self-adjoint by the previous

lemma. �

3.4. Recall of vocabulary. Let X be a topological space. A subset Y of X is relatively

compact if its closure Y is compact. Assume moreover that X is a metric space with

distance d: A subset Y of X is precompact if, for every real number � > 0; there exists a

�nite subset S of Y such that Y � [

x2S

B(x; �); where B(x; �) denotes the open ball of

center x and of radius �:

Inside a complete metric space, a subset is relatively compact if and only if it is pre-

compact. See e.g. 3.17.5 in [Di1].

3.5. De�nition. A bounded operator a : H ! H

0

is compact if the image by a of the

closed unit ball H(1) in H is relatively compact in H

0

:

The linear space of all compact operators from H to H

0

is denoted by

K(H;H

0

):

We write K(H) instead of K(H;H):

Typeset by A

M

S-T

E

X

1
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3.6. Remark. (This is in some sense for experts only, and can be ignored in a �rst

reading.) Let a : H ! H

0

be a bounded operator. Then

a(H(1)) is relatively compact in H

0

() a(H(1)) is compact.

Proof. (See also n

os

5.2 to 5.4 in [Dou].) We introduce the weak topology on H; of which

a basis of neighbourhoods of 0 consists of the �nite intersections of the sets of the form

V

�

= f � 2 H j jh� j �ij < 1 g

where � 2 H; � 6= 0: It follows from Tychono�'s theorem that the unit ball H(1) is compact

with respect to this weak topology. One checks that the linear map a : H ! H

0

; which is by

hypothesis continuous for the norm topologies, is also continuous for the weak topologies

(more on this in Problem 130 of [Hal]). Hence a(H(1)) is weakly compact in H

0

(because

it is the continuous image of a compact set !).

Assume now that a(H(1)) is relatively compact in H

0

; we claim that a(H(1)) is closed in

H

0

(these notions being with respect to the norm topology). For each � in the norm closure

of a(H(1)); there exists a (generalized) sequence (�

j

)

j�0

in H(1) such that (a (�

j

))

j�0

converges towards � (for the norm topology, and a fortiori also for the weak topology).

Upon replacing (�

j

)

j�0

by a subsequence, one may assume that (�

j

)

j�0

converges weakly

towards some � 2 H(1): By weak continuity of a; one has then � = a(�) 2 a(H(1)): This

proves the claim, and the implication) of the remark.

The implication ( is obvious. �

3.7. Lemma. (i) The space of compact operatorsK(H;H

0

) is closed in the space B(H;H

0

)

of all operators.

(ii) The space of �nite rank operators F(H;H

0

) is dense in the space K(H;H

0

):

Proof. (i) Let (a

j

)

j�0

be a sequence in K(H;H

0

) which converges toward some a 2

B(H;H

0

):

Choose a number � > 0: There exists an integer n � 0 such that ka� a

n

k < � and there

exists a �nite subset S in H(1) such that

a

n

(H(1)) �

[

�2S

B(a

n

(�); �)

because a

n

is compact. Hence, for each � 2 H(1); there exists � 2 S such that

ka(�)� a(�)k � ka(�)� a

n

(�)k + ka

n

(�) � a

n

(�)k + ka

n

(�) � a(�)k � 3�:

In other words one has

a(H(1)) �

[

�2S

B(a(�); 3�):

It follows that a(H(1)) is precompact, namely that a 2 K(H;H

0

):
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(ii) Let a 2 K(H;H

0

): For all � > 0 there is a �nite subset f�

1

; :::; �

n

g in H(1) such

that the closed balls of radius � and of centers the a(�

j

) 's cover a(H(1)): Let E be the

�nite dimensional subspace of H

0

generated by the a(�

j

) 's and let p denote the orthogonal

projection of H

0

onto E: Then pa 2 F(H;H

0

): For all � 2 H(1); there exists j 2 f1; :::; ng

such that ka(�) � a(�

j

)k � �: This shows that ka� pak � �; and the proof is complete. �

3.8. Remark. The proof of Claim (ii) in the previous lemma relies essentially on the

orthogonal projection p; and does not carry over to general Banach spaces. Indeed, P.

En
o showed in 1973 that there are Banach spaces for which the norm closure of �nite

rank operators is strictly contained in the space of compact operators (see [Enf] or [LiT,

Section 1.e]).

3.9. Proposition. The space K(H) is a closed self-adjoint two-sided ideal in the C

�

-

algebra B(H):

In particular K(H) is a C

�

-algebra of operators on H:

Proof. It is straightforward to check that K(H) is a two-sided ideal in B(H); which is closed

by Claim (i) of the previous lemma. Claim (ii) of the same Lemma implies that K(H) is

self-adjoint, because F(H) is self-adjoint. �

3.10. Examples. Let H be a separable in�nite dimensional Hilbert space given together

with an orthonormal basis (�

j

)

j2N

and let (�

j

)

j2N

be a sequence of complex numbers which

converges to zero. Then the diagonal operator a de�ned by

a�

j

= �

j

�

j

for all j 2 N is compact, because it is a norm limit of operators of �nite rank. We will

show in Proposition 3.15 that any compact operator which is also self-adjoint is of this

form (with real �

j

's).

For each function f 2 L

2

([0; 1]� [0; 1]); the operator a

f

with kernel f is de�ned by

(a

f

(�)) (x) =

Z

1

0

f(x; y)�(y)dy

for all � 2 L

2

([0; 1]) and x 2 [0; 1]: It is a compact operator on L

2

([0; 1]): See Problem 135

in [Hal].

3.11. Lemma. (i) The unit ball of the Hilbert space H is precompact if and only if H is

�nite dimensional.

(ii) Let a 2 K(H;H

0

) and let E be a closed linear subspace of H

0

which is contained in

the image of a: Then E is �nite dimensional.

Proof. (i) Let us check thatH(1) is not precompact ifH is in�nite dimensional. Let (�

j

)

j2N

be an orthonormal subset of H: Then the open subsets

�

� 2 H(1) j k� � �

j

k �

1

p

2

�

are non empty, pairwise disjoint and of constant diameters. The claim follows.
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(ii) Let p denote the orthogonal projection of H

0

onto E: Then pa : H ! E is a bounded

operator which is onto. It follows from the open mapping theorem 1.5 that there exists a

non empty ball in E which is contained in pa(H(1)): Hence dim

C

(E) <1 by (i). �

3.12. Examples. Let H be in�nite dimensional. The identity operator on H is not

compact. (This is a straightforward consequence of part (ii) in the previous lemma.)

Consequently, any invertible operator on H is not compact.

The next target is Proposition 3.15, which constitutes an epsilon of spectral theory.

3.13. Observation. Let �; � 2 H(1) be two unit vectors such that jh� j �ij = 1: Then

there exists � 2 R such that � = e

i�

�:

3.14. Lemma. Let a be a compact self-adjoint operator on H: Then one at least of the

numbers kak ;�kak is an eigenvalue of a:

Proof. We may assume without loss of generality that kak = 1; hence that







a

3







= 1:

(Indeed, it is obvious that







a

3







� kak

3

= 1: If one had







a

3







< 1 one would also have







a

4







�







a

3







kak < 1 = kak

4

; in contradiction with Corollary 1.12.) By Proposition 1.17,

there exists a sequence (�

j

)

j2N

such that

lim

j!1




�

j

j a

3

�

j

�

= lim

j!1

ha�

j

j a(a�

j

)i 2 f1;�1g:

Upon replacing (�

j

)

j2N

by a subsequence, one may assume by compacity of a that the

sequence (a (�

j

))

j2N

converges to some � 2 H(1): Then

h� j a�i 2 f1;�1g

and the proof follows from the previous observation. �

3.15. Proposition. Let a be a compact self-adjoint operator on H: Then there exists an

orthonormal basis (�

j

)

j2J

consisting of eigenvectors of a; and the corresponding sequence

(�

j

)

j2J

of eigenvalues converges to 0:

Proof. (We assume for simplicity of the notations that H is in�nite dimensional.) Set

a

0

= a and let �

0

2 H(1) be an eigenvector of a of eigenvalue �

0

2 fka

0

k ;�ka

0

kg : Then

a is an orthogonal sum of the operator �

0

id on C �

0

and of a compact self-adjoint operator

a

1

on the subspace H

1

= �

?

0

of H; moreover ka

1

k � kak :

By induction, one constructs in the same way an orthonormal sequence (�

k

)

k2K

of

eigenvectors of a and a sequence (�

k

)

k2K

of corresponding eigenvalues. It follows from

Lemma 3.11.ii that the latter sequence converges to zero. Then a is an orthogonal sum of

a diagonal operator (see Example 3.10) on the closed subspace H

0

of H spanned by the �

j

's and of the zero operator on (H

0

)

?

: One manufactures an orthonormal basis (�

j

)

j2J

as

in the proposition by concatenating (�

k

)

k2K

and an orthonormal basis of (H

0

)

?

: �

3.16. Exercice. Assume H is a separable in�nite dimensional Hilbert space.
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(i) For any non trivial two-sided ideal J of B(H); show that

F(H) � J � K(H)

(for the second inclusion, use Lemma 3.11.ii).

(ii) Show that the Calkin algebra B(H)=K(H) is simple (more on this in [Har]).

(iii) For any a 2 K(H); it is known that there exists a two-sided ideal J in B(H) such

that

a 2 J $ K(H)

(see [Sal]).

3.b. Hilbert-Schmidt operators

3.17. De�nition. A bounded operator a : H ! H

0

is Hilbert-Schmidt if it is compact

and if the series (�

j

)

j2J

of the eigenvalues of a

�

a is summable. The Hilbert-Schmidt norm

of such an operator is

kak

2

=

s

X

j2J

�

j

:

3.18. Lemma. Let a : H ! H

0

be a bounded operator. Let (�

j

)

j2J

be an orthonormal

basis of H and let (�

k

)

k2K

be an orthonormal basis of H

0

: The three families of non

negative real numbers

�

ka�

j

k

2

�

j2J

;

�

ka

�

�

k

k

2

�

k2K

;

�

j h�

k

j a�

j

i j

2

�

j2J;k2K

are simultaneously summable or not. If they are summable, the three sums have the same

value, which depends consequently only on a and not on the choosen basis.

Proof. By Parseval's equality, one has

ka�

j

k

2

=

X

k

0

2K

j h�

k

0

j a�

j

i j

2

and ka

�

�

k

k

2

=

X

j

0

2J

j h�

j

0

j a

�

�

k

i j

2

for all j 2 J and k 2 K: If any of the families above is summable, one has

X

j2J

ka�

j

k

2

=

X

j2J;k2K

j h�

k

j a�

j

i j

2

=

X

j2J;k2K

j h�

j

j a

�

�

k

i j

2

=

X

k2K

ka

�

�

k

k

2

and the proof is complete. �
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3.19. Proposition. (i) Let a 2 B(H;H

0

); let (�

j

)

j2J

be an orthonormal basis of H and

let (�

k

)

k2K

be an orthonormal basis of H

0

: Let (a

k;j

)

k2K;j2J

be the resulting J-times-K

matrix, where a

k;j

= h�

k

j a�

j

i: The three following conditions are equivalent

a is a Hilbert-Schmidt operator,

X

j2J

ka�

j

k

2

<1;

X

k2K;j2J

ja

k;j

j

2

<1:

If they hold, then

kak

2

=

X

j2J

ka�

j

k

2

=

X

k2K;j2J

ja

k;j

j

2

;

and the adjoint a

�

of a is also a Hilbert-Schmidt operator such that

ka

�

k

2

= kak

2

� kak :

Proof. Exercice. �

3.20. Proposition. The set of all Hilbert-Schmidt operators form H to itself constitute

a self-adjoint two-sided ideal in B(H) which is complete for the Hilbert-Schmidt norm

a 7! kak

2

and in which �nite rank operators are dense.

Moreover the ideal of Hilbert-Schmidt operators is itself a Hilbert space for the scalar

product de�ned by

ha j bi =

X

j2J

ha�

j

j b�

j

i

where (�

j

)

j2J

is an orthonormal basis of H:

Proof. Exercice.

In case dim

C

(H) < 1; observe that hajbi = trace(a

�

b); this carries over to the in�nite

dimensional case in terms of the canonical trace, de�ned on the appropriate two-sided ideal

of trace class operators. �

3.21. Remark. For the theory of operator ideals in general and of Hilbert-Schmidt

operators in particular, the classical book is that by R. Schatten [Sch]. For one (out of

many) more recent exposition of Hilbert-Schmidt operators, see [Sim].

3.22. Example. For each f 2 L

2

([0; 1]� [0; 1]) ; the operator a

f

2 B

�

L

2

([0; 1])

�

de�ned

in 3.10 by

(a

f

(�)) (x) =

Z

1

0

f(x; y)�(y)dy

is a Hilbert-Schmidt operator; see Problems 135-6 in [Hal]. Indeed, it can be shown that

any Hilbert-Schmidt operator on L

2

([0; 1]) is of this form (and this carries over from [0; 1]

to an arbitrary �-�nite measure space); see Section II.2 in [Sch].
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3.23. Example. Let T denote the unit circle in the complex plane, furnished with its

usual measure d�(e

it

) =

1

2�

dt for t 2 [0; 2�]: Let (e

n

)

n2Z

denote the orthonormal basis of

L

2

(T) used for Fourier series, de�ned by

e

n

(t) = e

int

for all t 2 [0; 2�]: The Hardy space H

2

(T) is de�ned by

H

2

(T) =

�

� 2 L

2

(T)

�

�

�

he

�n

j �i =

1

2�

Z

1

0

e

int

�(t)dt = 0 for all n > 0

�

and is a closed subspace of L

2

(T) (it is just the orthogonal of fe

�1

; e

�2

; :::g). We denote

by p the orthogonal projection of L

2

(T) onto H

2

(T):

Recall that each f 2 L

1

(T) de�nes a multiplication operator M

f

2 B

�

L

2

(T)

�

: In case

f is continuously di�erentiable, f 2 C

1

(T); we claim that

(*) pM

f

�M

f

p is a Hilbert-Schmidt operator.

To prove this last statement, consider the matrices of the operators p andM

f

with respect

to the basis (e

n

)

n2Z

: On one hand one has

p !

0

B

B

B

B

B

B

B

B

B

@

::: ::::: ::::: ::::: ::::: ::::: ::::: :::

::: 0 0 0 0 0 0 :::

::: 0 0 0 0 0 0 :::

::: 0 0 0 0 0 0 :::

::: 0 0 0 1 0 0 :::

::: 0 0 0 0 1 0 :::

::: 0 0 0 0 0 1 :::

::: ::::: ::::: ::::: ::::: ::::: ::::: :::

1

C

C

C

C

C

C

C

C

C

A

On the other hand, if f =

P

n2Z

c

n

e

n

;

M

f

!

0

B

B

B

B

B

B

B

B

B

@

::: ::::: ::::: ::::: ::::: ::::: ::::: :::

::: c

0

c

�1

c

�2

c

�3

c

�4

c

�5

:::

::: c

1

c

0

c

�1

c

�2

c

�3

c

�4

:::

::: c

2

c

1

c

0

c

�1

c

�2

c

�3

:::

::: c

3

c

2

c

1

c

0

c

�1

c

�2

:::

::: c

4

c

3

c

2

c

1

c

0

c

�1

:::

::: c

5

c

4

c

3

c

2

c

1

c

0

:::

::: ::::: ::::: ::::: ::::: ::::: ::::: :::

1

C

C

C

C

C

C

C

C

C

A

It follows that

pM

f

�M

f

p !

0

B

B

B

B

B

B

B

B

B

@

::: ::::: ::::: ::::: ::::: ::::: ::::: :::

::: 0 0 0 c

�3

c

�4

c

�5

:::

::: 0 0 0 c

�2

c

�3

c

�4

:::

::: 0 0 0 c

�1

c

�2

c

�3

:::

::: c

3

c

2

c

1

0 0 0 :::

::: c

4

c

3

c

2

0 0 0 :::

::: c

5

c

4

c

3

0 0 0 :::

::: ::::: ::::: ::::: ::::: ::::: ::::: :::

1

C

C

C

C

C

C

C

C

C

A
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This is a Hilbert-Schmidt operator if and only if the matrix is square summable, namely

if and only if f is in the so-called Sobolev space

H

1

2

(T) =

(

f =

X

n2Z

c

n

e

n

�

�

�

X

n2Z

njc

n

j

2

< 1

)

:

(This notation is standard; do not confuse the \H" in the Hardy space H

2

(T) and the

\H" in the Sobolev space above.) If f 2 C

1

(T); then

P

n2Z

n

2

jc

n

j

2

< 1; and a fortiori

f 2 H

1

2

(T); this proves (*).

3.24. Exercise. Let A be the C

�

-algebra of operators on `

2

generated by the unilateral

shift of 1.19. Show that A contains the C

�

-algebra K(`

2

) of all compact operators on `

2

:
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CHAPTER 4. ABSTRACT C

�

-ALGEBRAS

AND FUNCTIONAL CALCULUS

4.a. Definition and first examples

4.1. C

�

-group algebras. We begin by a motivation for De�nition 4.2 (see another one

in 2.3).

Let G be a locally compact group and let � denote a left invariant Haar measure on

G: One introduces the Hilbert space L

2

(G;�); usually written L

2

(G) for simplicity. (Any

other left invariant measure on G is of the form c� for some c 2 R

�

+

; and changing � to c�

just amounts to multiplying all scalar products by c:) The left regular representation u of

G in L

2

(G) is given by

(u

g

�) (h) = �

�

g

�1

h

�

for all g; h 2 G and � 2 L

2

(G): It is a unitary representation in the following sense: each

u

g

is a unitary operator on L

2

(G); the assignment g 7! u

g

is a homomorphism from the

group G to the unitary group of L

2

(G); and the mapping (g; �) 7! u

g

(�) is continuous from

G�H to H:

The reduced C

�

-algebra of G is the C

�

-algebra C

�

red

(G) of operators on L

2

(G) generated

by the operators of the form

R

G

f(g)u

g

dg; for f 2 L

1

(G): In particular, if the group G is

discrete - we then rather write � instead of G and `

2

(�) instead of L

2

(G) - then C

�

red

(�)

is generated by the unitaries u




's for 
 2 �:

For a group � endowed with the counting measure, the space `

2

(�) has a canonical basis

(�




)


2�

where �




: �! C is the characteristic function of f
g:We write e the unit element

of �: The linear mapping

� :

(

C

�

red

(�) �! `

2

(�)

a 7�! a(�

e

)

is injective. To see this, one introduces the right regular representation v of � in `

2

(�)

de�ned by

(v




�) (


0

) = � (


0


)

for all 
; 


0

2 � and � 2 `

2

(�): The operators u




and v




0

commute for all 
; 


0

2 �: Consider

a; b 2 C

�

red

(�) such that �(a) = �(b): As a and b commute with the v




's, one has

a (�




) = av




(�

e

) = v




a (�

e

) = v




b (�

e

) = bv




(�

e

) = b (�




)

for all 
 2 �; and this shows that a = b:

It follows that any a 2 C

�

red

(�) can be written as a sum

a =

X


2�

�




u




:
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We leave it to the reader to check that k�(a)k

`

2

(�)

� kak for all a 2 C

�

red

(�): There isn't

any simple condition on a family (�




)


2�

of complex numbers which is both necessary and

su�cient for the sum

P


2�

�




u




to represent an operator in C

�

red

(�:) A particular case of

this statement is that there isn't any simple condition on a trigonometric series which is

both necessary and su�cient for the series to be the Fourier series of a continuous function.

Suppose moreover that � is a �nite group. Then C

�

red

(�) is nothing but the usual group

algebra C [�]; with the involution given by (u




)

�

= u

(


�1

)

for all 
 2 �: In particular, there

is a bijective correspondance between unitary representations of � and unit-preserving

*-representations of C

�

red

(�); as already recalled in Exercicr 2.38.

However, if � is in�nite, this correspondence breaks down in general (and more precisely

in the case � is not \amenable"). For example, it is known that the C

�

-algebra C

�

red

(�) is

simple in case � is a non abelian free group [Pow] or a group PSL(n;Z) for some n � 2

[BCH] (see also Section 5.C below). In particular, most unitary representations of such

groups (e.g. those factoring via �nite quotients of the groups) do not correspond to any

*-representation of their reduced C

�

-algebra.

The way to keep a correspondence between unitary representation of a locally compact

group G and *-representations of some group C

�

-algebra is to introduce the so-called

maximal C

�

-algebra C

�

max

(G); which in general does not act naturally on L

2

(G):

This is a strong motivation to introduce abstract C

�

-algebras, not just algebras of

operators on speci�c Hilbert spaces.

4.2. De�nitions. A C

�

-algebra is an involutive algebra A endowed with a norm a 7! kak

such that

(i) kabk � kak kbk for all a; b 2 A;

(ii) ka

�

ak = kak

2

for all a 2 A;

(iii) A is complete for the given norm.

Corollary 1.12 shows that, if H is a Hilbert space, any closed *-algebra of B(H) is a

C

�

-algebra. There is a converse, phrased below as Theorem 6.14.

A sub-C

�

-algebra of a C

�

-algebra A is an involutive subalgebra of A which is complete

for the norm topology.

A morphism � : A ! B between two C

�

-algebras is a linear map such that

�(ab) = �(a)�(b)

�(a

�

) = �(a)

�

for all a; b 2 A: Corollary 4.25 below shows that these conditions imply

k�(a)k � kak

for all a 2 A: If moreover � is injective, Proposition 4.37 shows that k�(a)k = kak for all

a 2 A: (See also n

os

1.3.7 and 1.8.1 in [DC

�

].)

Recall from n

o

1.13 that a representation of a C

�

-algebra A on a Hilbert space H is a

morphism A! B(H):

The following notions are de�ned as in Section 1.C:
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a 2 A is normal if a

�

a = aa

�

;

a 2 A is self-adjoint if a

�

= a;

a 2 A is positive if there exists b 2 A such that a = b

�

b (see also Section 4.E);

p 2 A is a projection if p

�

= p = p

2

;

w 2 A is a partial isometry if w

�

w is a projection;

u 2 A is unitary (when A has a unit) if uu

�

= u

�

u = 1:

4.3. Direct products. Let (A

�

)

�2I

be a family of C

�

-algebras. The product C

�

-algebra

is the subspace of the space of families (a

�

)

�2I

; with a

�

2 A

�

for all � 2 I; such that

sup

�2I

ka

�

k < 1: In this product, the multiplication and the involution are de�ned com-

ponentwise, and the norm is de�ned by







(a

�

)

�2I







= sup

�2I

ka

�

k :

4.4. Remark. Let A be a C

�

-algebra, let

(

A �! B(A)

a 7�! (u

a

: a

0

7! aa

0

)

be its left regular representation and set

ku

a

k = sup

a

0

2A;ka

0

k�1

kaa

0

k :

Then ku

a

k = kak for all a 2 A: This is a straightforward consequence of the relations

kaa

0

k � kak ka

0

k and kaa

�

k = kak ka

�

k :

4.5. Adding a unit. Let A be an involutive algebra. De�ne a new involutive algebra

~

A

as follows. As a vector space, set

~

A = C �A: The involution is de�ned on

~

A by

(�; a)

�

=

�

�; a

�

�

and the product by

(�; a)(�; b) = (��; �b + �a + ab):

In particular A is a two-sided ideal in

~

A which is invariant by the involution. The algebra

~

A has a unit ~e = (1; 0): In case A itself has a unit e; then

~

A is the product of its two-sided

ideals C (~e � e) and A:

If A is moreover an involutive Banach algebra, then

~

A is also an involutive Banach

algebra for the norm de�ned by k(�; a)k = j�j + kak : However, this choice of a norm

on

~

A is often not the best one: for example, if A is a C

�

-algebra, it does not make

~

A a

C

�

-algebra.
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Assume from now on that A is a C

�

-algebra. The de�nition of the appropriate norm on

~

A is more delicate. If A has a unit,

~

A can be viewed as a product C

�

-algebra as in 4.3.

Suppose now that A has no unit. For each x = (�; a) 2

~

A; set

kxk = sup

b2A;kbk�1

kxbk :

Then x 7! kxk is a norm on

~

A which extends the original norm on A by Remark 4.4. Let

us check for example that kxk = 0 implies x = 0: If � = 0; this is because a 7! kak is a

norm on A: If one had kxk = 0 for x = (�; a) with � 6= 0; one would have �b + ab = 0;

hence also

�

��

�1

a

�

b = b for all b 2 A; so that ��

�1

a would be a left-unit for A; hence

��

�1

a

�

would be a right-unit for A; and it would follow that A has a unit, in contradiction

with the hypothesis.

The norm just de�ned makes

~

A complete, because

~

A contains a one-codimensional

complete subspace A:

Let us �nally check that

kx

�

xk = kxk

2

for all x = (�; a) 2

~

A: We may assume without loss of generality that kxk = 1; and we

have to check that kx

�

xk = 1: For each real number r < 1; there exists b 2 A such that

kbk � 1 and kxbk � r: As xb 2 A; one has

kx

�

xk � kb

�

k kx

�

xk kbk � k(xb)

�

xbk = kxbk

2

� r

2

:

As this holds for all r < 1 one has kx

�

xk � 1; and consequently kx

�

xk = 1:

In conclusion,

~

A is naturally a C

�

-algebra whenever A is a C

�

-algebra.

4.6. Example: �nite dimensional C

�

-algebras. Let A be a �nite dimensional algebra.

We know from Theorem 2.31 that

~

A is a direct sum of full matrix algebras. It follows that

the two-sided ideal A of

~

A is also a direct sum of full matrix algebras, and in particular

that any �nite dimensional C

�

-algebra has a unit. Thus Remark 2.24.i applies with the

only change that the p

j

's have to be viewed now as the minimal central projections of A:

4.7. Example: C

�

-algebras of compact operators. Let H be an in�nite dimensional

Hilbert space. The space K(H) of compact operator on H is a C

�

-algebra without unit by

Example 3.12.

The C

�

-algebra obtained by adding a unit is the C

�

-algebra of those operators on H of

the form �id

H

+ a with � 2 C and a 2 K(H):

4.8. Example: C

�

-algebras of continuous functions. Let X be a locally compact

space. The algebra C

o

(X) of continuous functions X ! C which vanish at in�nity is a

C

�

-algebra for the norm de�ned by

kfk = sup

x2X

jf(x)j:
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This algebra has a unit if and only if X is compact, in which case it is the C

�

-algebra C(X)

of all continuous functions on X (see 2.3).

If X is not compact, the C

�

-algebra obtained by adding a unit to C

o

(X) is the algebra

of those continuous functions X ! C which have a limit at in�nity. If X is compact, the

algebra

]

C(X) obtained by the same construction is the algebra of continuous functions on

a space

~

X which is the disjoint union of X and of a point.

4.9. Examples of Banach algebras which are not C

�

-algebras. On the algebra

A = C([�1; 1]) of continuous functions from [�1; 1] to C ; consider the norm de�ned by

kfk = sup

jtj�1

jf(t)j and the involutions de�ned by f

�!

(t) = f(�t): Then A is a Banach

algebra with an involution such that







f

�!







= kfk for all f 2 A: But A is not a C

�

-algebra;

indeed, for f de�ned by f(t) = 0 for t � 0 and f(t) = t for t � 0; one has kfk = 1 and

f

�!

f = 0:

On the convolution algebra A = `

1

(Z); consider the norm de�ned by kck

1

=

P

n2Z

jc(n)j

and the involution de�ned by c

�

(n) = c(�n): Then A is also a Banach algebra with an

involution such that kc

�

k

1

= kck

1

for all c 2 A: But A is not a C

�

-algebra; indeed, for c

de�ned by c(1) = c(0) = �c(�1) = 1 and c(n) = 0 when jnj � 2; one has kck

1

= 3 and

kc

�

ck

1

= 5:

More generally, for any in�nite locally compact abelian groupG; the convolution algebra

L

1

(G) is not a C

�

-algebra.

4.b. Spectrum of an element in a Banach algebra

Part of spectral theory for C

�

-algebra holds for more general algebras. In the present

section, we consider a Banach algebra A with unit (the de�nition has been recalled in 1.4).

4.10. De�nition. For each a 2 A; the spectrum of a is the subset

�(a) = f � 2 C j �� a is not invertible in A g

of the complex plane.

A better notation would be �

A

(a) instead of �(a): As our main interest is C

�

-algebras,

the notation �(a) will turn out to be non-ambiguous (see 4.26 below).

4.11. Lemma. For each a 2 A; the sequence

�

ka

n

k

1

n

�

n�1

is convergent and

lim

n!1

ka

n

k

1

n

= inf

n�1

ka

n

k

1

n

� kak :

Proof. For n � 1; set �

n

= log ka

n

k : One has ka

p+q

k � ka

p

k ka

q

k, hence

�

p+q

� �

p

+ �

q
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for each p; q � 1: It is then a quite standard lemma that the subadditive sequence (�

n

)

n�1

converges to its minimum (see e.g. [PoS], Problem 98 of Part I, page 23). We recall the

proof.

Choose an integer q � 1: Write each integer n � 1 as n = kq + r with k � 0 and

r 2 f0; 1; :::; q � 1g: One has

�

n

n

=

�

kq+r

kq + r

�

�

kq

kq

+

�

r

kq

�

�

q

q

+

�

r

kq

:

It follows that

lim sup

n!1

�

n

n

� inf

q�1

�

q

q

:

As one has obviously inf

q�1

�

q

q

� lim inf

n!1

�

n

n

; one has also

lim

n!1

�

n

n

= inf

q�1

�

q

q

and the proof is complete. �

4.12. De�nition. The spectral radius of a 2 A is the real number

�(a) = lim

n!1

ka

n

k

1

n

:

Equivalently, �(a)

�1

is the radius of convergence of the series

P

1

n=0

�

n

a

n

:

Observe that one has �(a) � kak :

4.13. Lemma. (i) Let a 2 A and let � 2 C :

If j�j < �(a)

�1

; the element 1� �a is invertible in A:

If j�j > �(a); then � =2 �(a):

(ii) The set A

inv

of invertible elements in A is open and the map

(

A

inv

�! A

inv

a 7�! a

�1

is continuous.

Proof. (i) If �(�a) = j�j�(a) < 1; it follows from the de�nition above that the series

P

1

n=0

�

n

a

n

is convergent, and its limit is (1 � �a)

�1

:

If j�j > �(a); the previous claim implies that �� a = �

�

1� (�)

�1

a

�

is invertible.

(ii) Let a 2 A

inv

: For each b 2 A such that kb� ak <







a

�1







�1

the element

b = a

�

1� a

�1

(a � b)

�
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is in A

inv

because �

�

a

�1

(a � b)

�

�







a

�1

(a � b)







< 1: Hence A

inv

is open. If kb� ak �

1

2







a

�1







�1

; one has moreover







b

�1

� a

�1







=
















1

X

n=0

�

a

�1

(a � b)

�

n

a

�1

� a

�1
















�

1

X

n=1







a

�1

(a � b)







n







a

�1







�







a

�1







2

ka� bk

1� ka

�1

(a � b)k

� 2







a

�1







2

ka � bk

and it follows that a 7! a

�1

is a continuous transformation of A

inv

: �

4.14. Proposition. For each a 2 A; the spectrum �(a) is a non empty compact subset of

C which is contained in the closed disc of radius �(a) centered at the origin, and a fortiori

in the closed disc of radius kak around the origin.

Moreover the spectral radius of a is given by

�(a) = supf r � 0 j there exists � 2 �(a) such that j�j = r g

(as its name indicates).

Proof. The �rst part of the previous Lemma shows that �(a) is contained in the closed

disc of radius �(a) around the origin, and the second part shows in particular that �(a) is

closed in C : Hence the spectrum �(a) is compact.

The second part of this Lemma shows also that (� � a)

�1

is given around any �

0

2

C n �(a) by an entire series in �� �

0

; namely that the resolvant of a

(

C n �(a) �! A

� 7�! (�� a)

�1

is an analytic mapping. If �(a) were empty, the resolvant would be a non constant bounded

holomorphic function de�ned on the whole of C ; in contradiction with Liouville's theorem.

Hence the spectrum �(a) is non empty.

If �(a) = 0; it is clear that �(a) = f0g: Assume now that �(a) 6= 0: If the spectrum �(a)

were contained in some closed disc centered at the origin of radius r < �(a); the resolvant

� 7! (� � a)

�1

= �

�1

�

1� �

�1

a

�

�1

would be analytic in the domain de�ned by j�j > r:

Then the map z 7! (1�za)

�1

would be de�ned and analytic in the open disc of radius r

�1

around 0; and its Taylor series at the origin

P

1

n=0

z

n

a

n

would have a radius of convergence

r

�1

> �(a)

�1

: This would contradict the de�nition of �(a); hence the proof is complete.

(For a proof which does not use the theory of analytic mappings, see Theorems 7 and 8 in

x5 of [BoD].) �

4.15. Gelfand-Mazur Theorem (1938). A Banach algebra with unit in which all

elements distinct from 0 are invertible is isomorphic to the �eld of complex numbers.

Proof. For each a in such a Banach algebra A; there exists � 2 C such that � � a is non

invertible, hence by hypothesis such that �� a = 0; or a 2 C : �



8 4. ABSTRACT C

�

-ALGEBRAS AND FUNCTIONAL CALCULUS

4.16. Examples of spectra. Let e 2 A be an idempotent, e

2

= e: Then the spectrum

of e is contained in f0; 1g: For each � 2 C n f0; 1g; the resolvent of e is given by

(�� e)

�1

=

1� �� e

�(1� �)

:

Let a 2 A be an element such that a

n

= 1 for some integer n � 2: Let C

n

denote the

cyclic group of n

th

roots of 1: For each � 2 C

n

; set

p

�

=

1

n

X

0�j�n�1

�

�j

a

j

2 A:

Then it is straightforward to check that

p

�

p

�

= �

�;�

p

�

for all �; � 2 C

n

;

X

�2C

n

p

�

= 1;

X

�2C

n

�p

�

= a:

It follows that one has

(z � a)

�1

=

X

�2C

n

1

z � �

p

�

for each z 2 C n C

n

; and that the spectrum of a is contained in C

n

:

4.17. Spectra of multiplication operators. Let c = (c

n

)

n2N

2 `

1

be a bounded

sequence of complex numbers and let M

c

be the corresponding multiplication operator on

`

2

: Then the spectrum of M

c

is the closure in C of the set f z 2 C j there exists n 2

N such that z = c

n

g: In particular, any compact subset of C is the spectrum of some

bounded operator on `

2

:

More generally, let (X;�) be a measure space and let f 2 L

1

(X;�): The spectrum of

the multiplication operator M

f

on L

2

(X;�) is the closure of the essential range

f z 2 C j �

�

f

�1

(V)

�

> 0 for every neighbourhood V of z in C g

of f: For details, see Problems 48 to 52 in [Hal].

4.18. Lemma. Let f 2 C [T ] be a polynomial with complex coe�cients. Then

�(f(a)) = f(�(a))

for all a 2 A:

Proof. The lemma holds for constant polynomials because spectra are not empty by the

previous proposition. We may therefore assume that f is not constant. In the proof below,
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we will use repeatedly the following fact : if a is a product a

1

:::a

n

of commuting factors in

an algebra, then a is invertible if and only if each a

j

is invertible.

Let �

o

2 �(a): Let g be the polynomial such that f(T ) � f(�

o

) = (T � �

o

)g(T ): As

a� �

o

is not invertible,

f(a) � f(�

o

) = (a � �

o

)g(a)

is not invertible. Hence f(�

o

) 2 �(f(a)):

Let �

o

2 �(f(a)): There exists complex numbers c; �

1

; :::; �

n

such that f(T ) � �

0

=

c(T � �

1

):::(T � �

n

); hence such that

f(a) � �

o

= c(a� �

1

):::(a � �

n

):

As f(a) � �

0

is not invertible, there exists j 2 f1; :::; ng such that a� �

j

is not invertible.

As f(�

j

) = �

0

; this shows that �

o

2 f(�(a)): �

4.19. Remark. Let K be an algebraically closed �eld and let A be a K-algebra with unit.

One may mimick De�nition 4.10 for the spectrum �(a) � K of any element a in A: One

has a natural morphism of algebras

(

K[T ] �! A

f 7�! f(a):

for which Lemma 4.18 and its proof hold without change.

Much of spectral theory has the following goal: under appropriate hypothesis on A and

on a (say with K = C ), show that Lemma 4.18 holds for more general functions.

For example, let A be a Banach algebra with unit and let a 2 A: If f is a function

de�ned and holomorphic in an open neighbourhood U of the spectrum �(a) and if 
 is an

appropriate curve in U n �(a) surrounding �(a); then one may de�ne

f(a) =

1

2i�

Z




f(z) (z � a)

�1

dz

and one shows that �(f(a)) = f(�(a)): For this holomorphic functional calculus, see for

example x I.4 of [Bou] or the end of Chapter 2 in [StZ].

Other examples include functions continuous on the spectrum of a normal element in a

C

�

-algebra (see Theorems 4.24 and 4.35), and functions Borel measurable on the spectrum

of a normal element in a von Neumann algebra (see Section 4.F).

4.c. Spectrum of an element in a C

�

-algebra

Let A be a C

�

-algebra with unit. We denote by T the unit circle of the complex plane.
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4.20. Proposition. (i) For each a 2 A; the spectrum of a

�

is �(a):

(ii) If a 2 A is self-adjoint, its spectrum is in R:

(iii) If u 2 A is unitary, its spectrum is in T:

Proof. (i) For � 2 C ; the element � � a

�

is invertible (say with inverse b), if and only if

�� a is invertible (with inverse b

�

).

(ii) Let � = x + iy 2 �(a); with x; y 2 R: For each t 2 R the number x + i(y + t) is in

�(a + it): As

ka+ itk

2

= k(a � it)(a + it)k =







a

2

+ t

2







� kak

2

+ t

2

;

Proposition 4.14 implies that

jx+ i(y + t)j

2

= x

2

+ (y + t)

2

� kak

2

+ t

2

and this inequality can also be written as

2yt � kak

2

� x

2

� y

2

:

As this has to hold for all t 2 R; one has y = 0:

(iii) Let � 2 �(u): Observe that � 6= 0; because u is invertible, and that �

�1

2 �(u

�1

);

because �

�1

� u

�1

= ��

�1

(� � u)u

�1

is not invertible. As j�j � kuk = 1 and j�

�1

j �







u

�1







= 1 by Proposition 4.14, one has � 2 T: �

4.21. Corollary. (i) Let a 2 A be a normal element. Then

�(a) = kak :

In particular, if a 2 A is self-adjoint, then one at least of kak ;�kak is in the spectrum

�(a):

(ii) Let H be a Hilbert space and let a 2 B(H) be a self-adjoint element. Set

m(a) = inf

�2H

k�k�1

h�ja�i and M(a) = sup

�2H

k�k�1

h�ja�i :

then

� � [m(a);M(a)]:

Proof. (i) Assume �rst that a is self-adjoint. From the de�nition of C

�

-algebras, one has










a

2

k










= kak

2

k

for all k � 0; hence

�(a) = lim

k!1










a

2

k










2

�k

= kak :
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It follows from Propositions 4.14 and 4.20.ii that at least one of the numbers kak ;�kak

is in �(a):

Assume now that a is normal. Then

�(a

2

) �







a

2







by Lemma 4.11

� kak

2

= ka

�

ak = �(a

�

a) by the argument above

= lim

n!1

k(a

�

a)

n

k

1=n

by de�nition of �

= lim

n!1

k(a

�

)

n

a

n

k

1=n

because a is normal

� lim

n!1

k(a

�

)

n

k

1=n

lim

n!1

ka

n

k

1=n

= �(a

�

)�(a) by de�nition of �

= �(a)

2

by proposition 4.20.i

= �(a

2

) by Lemma 4.18.

Hence all inequalities are equalities, and �(a)

2

= kak

2

:

(ii) Recall from Proposition 1.17 that kak = maxf�m(a);M(a)g: Set � =

1

2

(M(a) +

m(a)) and r =

1

2

(M(a)�m(a)); so that m(a��) = �r andM(a��) = r: One has �rstly

ka� �k = r by Proposition 1.17, secondly �(a � �) � [�r; r] by Propositions 4.14 and

4.20, and �nally � � [m(a);M(a)] by (a trivial case of) Lemma 4.18. �

4.22. Corollary. For any a 2 A one has

kak

2

= � (a

�

a) :

4.23. Remark. There are elements a 2 A such that �(a) < kak : The simplest example

is probably the nilpotent operator a =

�

0 1

0 0

�

2 B(C

2

): Another example is the Volterra

integration operator V de�ned on L

2

([0; 1]) by

(V f)(x) =

Z

x

0

f(t)dt:

It is a quasi-nilpotent operator, namely one with spectral radius equal to zero. See Problem

80 and Solution 147 in [Hal].

4.24. Theorem (Continuous functional calculus for bounded self-adjoint ope-

rators). Let A be a C

�

-algebra with unit, let a 2 A be a self-adjoint element, and let

C(�(a)) be the C

�

-algebra of continuous functions on the spectrum of a (as in 4.8). Then

there exists a unique morphism of C

�

-algebra

(

C(�(a)) �! A

f 7�! f(a)
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which maps the constant function 1 [respectively the inclusion of �(a) in C ] to the operator

id

H

[resp. to a]. Moreover, one has

�(f(a)) = f(�(a))

for all f 2 (�(a)):

Proof. Let P(�(a)) denote the involutive subalgebra of C(�(a)) consisting of the restrictions

to �(a) of the polynomial functions R! C ; and let C [a] denote the involutive subalgebra

of A consisting of the elements f(a) with f 2 C [T ] a complex polynomial in one variable.

It is a straightforward consequence of Lemma 4.18 and of Corollary 4.21 that kf(a)k =

supf jf(�)j j � 2 �(a) g for every f 2 C [T ]; namely that the obvious morphism

(

P(�(a)) �! C [a]

f 7�! f(a)

is well de�ned and isometric (and a fortiori injective !). By the Weierstrass Approximation

Theorem, this has an isometric extension from C(�(a)) onto the sub-C

�

-algebra C

�

(a) of A

generated by a (which is also the closure of C [a] in A). We �x now a function f 2 C(�(a));

and we have to check that �(f(a)) = f(�(a)):

Consider �rst � 2 f(�(a)): Choose � 2 �(a) such that � = f(�): Let (f

n

)

n2N

be a

sequence in P(�(a)) with limit f: Then (f

n

(�)� f

n

(a))

n2N

converges to � � f(a): As

f

n

(�) � f

n

(a) is not invertible for each n 2 N by Lemma 4.18, it follows from Lemma

4.13.ii (the set of non invertible elements in A is closed) that � 2 �(f(a)): Hence f(�(a)) �

�(f(a)):

Consider then � 2 C n f(�(a)): The function g de�ned by g(t) = (� � f(t))

�1

is in

C(�(a)) and g(a) = (�� f(a))

�1

; so that � =2 �(f(a)): Hence �(f(a)) � f(�(a)): �

This Theorem carries over to normal operators : see Theorem 4.35 below.

4.25. Corollary. Let A be a Banach involutive algebra (see 1.13), let B be a C

�

-algebra

and let � : A ! B be a linear map such that �(aa

0

) = �(a)�(a

0

) and �(a

�

) = �(a)

�

for

all a; a

0

2 A: Then

k�(a)k � kak

for all a 2 A:

Proof. Suppose �rst that A and B have units and that �(1) = 1: For each x 2 A; one has

obviously �(�(x)) � �(x): In case x = a

�

a for some a 2 A; this implies

k�(a)k

2

= k�(x)k = sup f r > 0 j r 2 �(�(x)) g

� sup f r > 0 j r 2 �(x) g � kxk � kak

2

:

For the general case, the Corollary follows from the same argument applied to the natural

morphism

~

� :

(

~

A �!

~

B

(�; a) 7�! (�;�(a))

(see 4.5). �
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4.26. Proposition. Let B be a C

�

-algebra with unit, let A � B be a sub-C

�

-algebra

containing the unit and let a 2 B: Then a is invertible in A if and only if it is invertible in

B: More generally, the spectra

�

A

(a) = f � 2 C j �� a is not invertible in A g

and

�

B

(a) = f � 2 C j �� a is not invertible in B g

co��ncide.

Proof. It is obvious that �

A

(a) � �

B

(a):

Let now � 2 �

A

(a) be a boundary point of �

A

(a): We claim that � 2 �

B

(a): Indeed, let

(�

n

)

n2N

be a sequence in C n�

A

(a) which converges to �: Set x

n

= (�

n

�a)

�1

2 A for each

n 2 N: If � � a were invertible in B; say with inverse x; then x would be the limit of the

x

n

's by Lemma 4.13.ii, so that x would be an inverse of �� a in A; in contradiction with

the hypothesis � 2 �

A

(a): This proves that � 2 �

B

(a); as claimed. (For the argument so

far, it is enough to assume that A and B are Banach algebras with unit. They need not

be C

�

-algebras.)

In particular, if a 2 A is self-adjoint, all points in �

A

(a) are boundary points because

�

A

(a) � R by Proposition 4.20.ii, and thus �

A

(a) = �

B

(a):

Let a 2 A be an arbitrary element and let � 2 C : If � � a is invertible in B; then

(�� a

�

)(�� a) and (�� a)(�� a

�

) are both self-adjoint elements in A which are invertible

in B: Hence they are invertible in A by the previous argument. Thus �� a is both right-

invertible and left-invertible, namely invertible in A: It follows that �

A

(a) = �

B

(a): �

4.27. Corollary on polar decomposition. Let H;H

0

be two Hilbert spaces and let

a : H ! H

0

be a bounded operator. Then there exists a pair (w; p) where

w is a partial isometry from H to H

0

;

p is a positive operator on H

such that a = wp:

Moreover, there is a unique such pair (w; p) for which Ker(w) = Ker(p); and it satis�es

a

�

a = p

2

: This is called the polar decomposition of a:

Proof. The positive part of the polar decomposition of an operator a is given by p =

p

a

�

a:

For more details, see Problem 105 of [Hal], or almost any other book dealing with operators

on Hilbert spaces.

Alternatively, one may de�ne an appropriate bounded increasing sequence of self-adjoint

operators with strong limit

p

a

�

a (see Proposition 4.44 below, as well as Problems 94 and

95 in [Hal]). �

4.28. Exercise. Let A be a C

�

-algebra with unit and let e

0

; e

1

2 A be two projections.

(i) If ke

1

� e

0

k is small enough, show that there exists a unitary element u 2 A such

that e

1

= ue

0

u

�

:
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(ii) If there exists a continuous path of projections

�

[0; 1]! A

t 7! e

t

, show that the same

conclusion holds.

(iii) Suppose moreover that there exists a tower A

1

� A

2

� ::: of sub-C

�

-algebras of A

such that A

1

=

S

n�0

A

n

is dense in A (examples will be discussed in Chapter 6). For each

projection e 2 A; show that there exists a unitary element u 2 A such that ueu

�

2 A

1

:

(iv) Suppose moreover that 1 2 A

1

: For each unitary u 2 A and for each � > 0; show

that there exists a unitary v 2 A

1

such that kv � uk < �:

[Indications. (i) Set �rst g = 1 � e

0

� e

1

+ 2e

0

e

1

: Check that e

0

g = ge

1

; and that g is

invertible if ke

1

� e

0

k is small enough. Use functional calculus to de�ne u = g(g

�

g)

�1=2

;

check it solves (i), and that (ii) follows.

(iii) Let x 2 A

1

be such that x

�

= x and such that ke� xk is small enough, and let

n � 1 be such that x 2 A

n

: Using functional calculus in A

n

; one �nds a projection f 2 A

n

such that kf � ek is small, so that (iii) follows from (i).

(iv) Choose � > 0 (to be precised later), let x 2 A

1

be such that kx� uk < � and let

n � 1 be such that x 2 A

n

: By polar decomposition in A

n

one has a unitary v 2 A

n

such

that x = v

p

x

�

x; and kv � uk < f(�) for some function f such that lim

�!0

f(�) = 0: Thus

one may choose � such that kv � uk < �: ]

The results of this exercise are used in Example 5.10 and in Exercice 6.33.

4.d. Gelfand-Naimark Theorem

4.29. Characters of abelian algebra. Let A be a commutative complex algebra. A

character on A is a linear map � : A ! C distinct from zero such that

�(ab) = �(a)�(b)

for all a; b 2 A: The set of all characters on A is denoted by X(A): If A has a unit, observe

that �(1) = 1 for any � 2 X(A): If A has no unit, any character � on A extends uniquely

to a character ~� on

~

A; de�ned by ~�(�; a) = �+ �(a) for all (�; a) 2

~

A: Moreover X(

~

A) is

naturally identi�ed to the union of X(A) and of the character (�; a) 7! � of

~

A:

If A is a commutative Banach algebra with unit, any character � on A satis�es

(*) sup

a2A;kak�1

j�(a)j � 1

for all a 2 A; and in particular any character on A is continuous. Indeed, for such a � and

for all a 2 A; one has obviously �(a) 2 �(a); hence j�(a)j � kak by Proposition 4.14. If

moreover A is a commutative C

�

-algebra with unit, any character � on A satis�es also

(**) �(a

�

) = �(a)

for all a 2 A: Indeed, if a

�

= a then �(a) 2 �(a) � R by Proposition 4.20. Hence, for any

a 2 A; one has

�(a

�

) = �

�

a+ a

�

2

+ i

ia � ia

�

2

�

= �

�

a + a

�

2

�

+ i�

�

ia� ia

�

2

�

= �(a)
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as claimed in (**). Properties (*) and (**) of characters hold also in a C

�

-algebra A

without unit (consider the extension of characters from A to

~

A).

For any commutative complex algebra A; one de�nes on X(A) the topology of pointwise

convergence. If A is a commutative Banach algebra with unit, (*) shows that there is a

natural injection of X(A) into the product of copies of the closed unit disc indexed by

the unit ball of A; it follows then essentially from Tychono�'s Theorem that X(A) is a

compact space. If A is a commutative Banach algebra without unit, X(A) is a locally

compact space with one-point-compacti�cation canonically identi�ed with X(

~

A): In all

cases (with or without unit), the Gelfand transform is the homomorphism

G : A �! C

o

(X(A))

de�ned by G(a)(�) = �(a) for all a 2 A and � 2 X(A) (the notation C

o

is that of 4.8).

It is known that the locally compact space X(A) is metrizable if and only if the com-

mutative C

�

-algebra A is separable.

4.30. Lemma. Let A be a commutative Banach algebra with unit and let G : A !

C(X(A)) be the corresponding Gelfand transform. Then

�(G(a)) = �(a)

for all a 2 A:

Proof. Let � 2 �(G(a)): There exists � 2 X(A) such that

(�� G(a))(�) = �(�� a) = 0:

Hence �� a is not invertible, and � 2 �(a):

Let � 2 �(a): By Zorn's Lemma, there exists a maximal ideal J in A which contains

� � a; observe that J is closed in A (see Lemma 4.14.ii). Then A=J is both a Banach

algebra and a �eld, and thus is isomorphic to the �eld of complex numbers by Gelfand-

Mazur Theorem 4.15. The canonical projection A ! A=J can be viewed as a character

� 2 X(A) such that �(� � a) = 0: Hence (� � G(a))(�) = 0; and � 2 �(G(a)): �

4.31. Gelfand-Naimark Theorem (1943). Let A be a commutative C

�

-algebra. Then

the Gelfand transform

G : A ! C

o

(X(A))

de�ned in 4.29 is an isometrical isomorphism (the norm on the right-hand side being as in

Example 4.8).

Proof. The image of G separates points of X(A); indeed, if �

1

; �

2

2 X(A) are distinct

characters, there exists a 2 A such that �

1

(a) 6= �

2

(a); namely such that G(a)(�

1

) 6=

G(a)(�

2

): Observe also that

G(a

�

) = G(a)

�

for all a 2 A by (**) of 4.29. Moreover, if A has a unit, the image of G contains the

constants. It follows from Weierstrass Approximation Theorem that the image of the

Gelfand transform is a dense subalgebra of C

o

(X(A)):
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Moreover, one has

kG(a)k

2

= kG(a

�

a)k

= �(G(a

�

a)) by Corollary 4.21

= �(a

�

a) by Lemma 4.30

= kak

2

by Corollary 4.21 again

for all a 2 A: Hence G is isometric and this ends the proof. �

4.32. Corollary. Let A be a commutative C

�

-algebra with unit and let a 2 A: Assume

that a generates A: Then the mapping

(

X(A) �! �(a)

� 7�! �(a)

is an homeomorphism.

Proof. The mapping is continuous, and its image is �(a) by the proof of Lemma 4.30.

To show that the mapping is injective, consider �

1

; �

2

2 X(A) such that �

1

(a) = �

2

(a):

The set f b 2 A j �

1

(b) = �

2

(b) g is a sub-C

�

algebra of A which contains 1; it is therefore

A itself, and �

1

= �

2

:

Hence the mapping is a homeomorphism. �

4.33. Ideals. Let X be a locally compact space and let A = C

o

(X) be the corresponding

abelian C

�

-algebra. For any ideal J of A; let

V (J ) =

n

x 2 X

�

�

f(x) = 0 for all f 2 J

o

be the \variety of J ", which is a closed subset of X: For any subset Y of X; let

I(Y ) =

n

f 2 A

�

�

f(y) = 0 for all y 2 Y

o

be the \ideal of Y ", which is a closed ideal of A: One has obvious inclusions J � I(V (J ))

and Y � V (I(Y )): Indeed, it is not di�cult to show that

J = I(V (J )) and Y = V (I(Y ))

for any J and Y as above; see e.g. [Bou], chap. I, x 3, n

o

2, Proposition 1. (The statement

compares with the Hilbert's Nullstellensatz, but is not nearly as deep !)

This establishes a bijective correspondance between closed ideals in A and closed sub-

spaces of the character space X(A): Here is another way to describe the same bijection.

In one direction, any C

�

-algebra quotient A! B = A=J provides inside X(A) the closed

subspace of those characters on A which factor through B: In the other direction, one may
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identify A to C

0

(X(A)); and each closed subspace Y of X(A) provides the quotient of A

consisting of the restrictions to Y of the continuous functions on X(A):

In particular, maximal ideals in A (which are necessarily closed) correspond bijectively

to characters on A; and also to points in X(A):

4.34. Exercise. In the C

�

-algebra C([0; 1]); show that the principal ideal J generated by

the function \t" is not closed.

Hint: the function t 7!

p

t is not in J ; but the sequence of n

th

term

t 7�!

8

>

<

>

:

nt if t �

1

n

2

p

t if t �

1

n

2

shows that it is in J : For other examples of ideals which are not closed, see Exercise IX.4.2

in [Dun].

4.35. Theorem (Continuous functional calculus for normal operators). Let A be

a C

�

-algebra with unit, let a 2 A be a normal element and let C

�

(a) be the C

�

-subalgebra

of A generated by a: Then there exists a unique morphism of C

�

-algebra

(

C(�(a)) ! C

�

(a)

f 7! f(a)

such that 1(a) = 1 and �(a) = a (where � 2 C(�(a)) denotes the inclusion of �(a) in C ):

Moreover one has

�(f(a)) = f(�(a))

for all f 2 C(�(a)):

Proof. The space of polynomials in z and z is dense in C(�(a)): As any morphism C(�(a)) !

C

�

(a) is continuous by Corollary 4.25, the claim of unicity follows.

Let X denote the spectrum of the algebra C

�

(a) and let

G : C(X) �! C

�

(a)

denote the Gelfand isomorphism of Theorem 4.31. By Corollary 4.32, we may identify X

with �(a); and this shows the existence of the morphism C(�(a)) ! C

�

(a):

Let f 2 C(�(a)): One has f(a) = G(f): The spectrum of f(a) in A coincides with the

spectrum of f(a) in C

�

(a) by Proposition 4.26, hence with the spectrum of f in C(�(a))

because G is an isomorphism, hence with f(�(a)) by Example 4.17. �

4.36. Lemma. Let A;B be commutative C

�

-algebras with units, let � : A ,�!B be an

injective morphism such that �(1

A

) = 1

B

and let � : X(B) ! X(A) be the map de�ned

on the character spaces by �(�) = � �� for all � 2 X(B): Then � is continuous and onto.

Proof. The continuity of � is a straightforward consequence of the continuity of �; proved

in Corollary 4.25. Thus the image of � is a compact subset of X(A); say K:
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Suppose ab absurdo that � is not onto. Identifying A and C(X(A)); we may choose

continuous functions a

1

; a

2

2 C(X(A)) such that a

1

6= 0 ; a

2

(x) = 1 for all x 2 K and

a

1

a

2

= 0: Then �(�(a

2

)) = 1 for all � 2 X(B); which implies that �(a

2

) is invertible in B:

But this is absurd because �(a

1

) 6= 0 by injectivity of � and �(a

1

)�(a

2

) = �(a

1

a

2

) = 0:

�

4.37. Proposition. Let A;B be C

�

-algebras and let � : A ,�!B be an injective mor-

phism. Then

k�(a)k = kak

for all a 2 A: In particular, the image of � is closed in B; and is indeed a sub-C

�

-algebra

of B:

Proof. Suppose �rst that a

�

= a: Upon restricting � to the sub-C

�

-algebra of A generated

by a; one may assume that A and B are both abelian. Without loss of generality, one may

also assume that A and B have units and that �(1

A

) = 1

B

: In this case, we denote by X

the character space of A; by Y that of B and by � : Y ! X the restriction map of the

previous lemma. For all a 2 A; one has

kak = sup

�2X

j�(a)j = sup

 2Y

j�( )(a)j = sup

 2Y

j (�(a))j = k�(a)k :

Going back to the general case of arbitrary C

�

-algebras and of a non necessary self-

adjoint element a; one has then

k�(a)k =

p

k�(a

�

ak =

p

ka

�

ak = kak

and the proof is complete. �

4.38. Sub-C

�

-algebras of abelian C

�

-algebras. Let B be a commutative C

�

-algebra

with unit and let Y denote its character space.

Let A be a sub-C

�

-algebra of B containing the unit and let X denote the character

space of A: One has by restriction of characters a continuous map

� : Y �! X

which is onto by Lemma 4.36.

Conversely, let � : Y ! X be a surjective continuous map of Y onto some compact

space X: Then

A

X

=

�

b 2 C(Y ) j there exists a 2 C(X) such that b = a � �

	

is a sub-C

�

-algebra of B containing the unit.

Thus there is a bijective correspondance between unital sub-C

�

-algebras of B and com-

pact quotients of Y:
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4.39. Proposition. Let A;B be two commutative C

�

-algebras with units and let � :

A ! B be a morphism of C

�

-algebras such that �(1

A

) = 1

B

: Then there exists a closed

subset Z of the character space X(A) of A and a surjective continuous map � : X(B) ! Z

such that the diagram

A �! C(X(A)) X(A)

# # "

A=Ker� �! C(Z) Z

# # "

B �! C(X(B)) X(B)

commutes, where horizontal arrows denote Gelfand isomorphisms and where the top [re-

spectively bottom] right vertical arrow is given by the restriction of functions from X(A)

to Z [resp. by the composition of functions with the quotient map X(B) ! Z].

Proof. The image of the inclusion A=Ker� ,�!B is a sub-C

�

-algebra of B; because this

image is closed by Proposition 4.37. Thus the proposition follows from Numbers 4.33 and

4.38. �

4.e. The positive cone of a C

�

-algebra

4.40. Notations. Let A be a C

�

-algebra. We denote by

A

sa

=

n

a 2 A

�

�

a

�

= a

o

the Banach space of its self-adjoint elements and we let

A

+

=

n

a 2 A

sa

�

�

�(a) � R

+

o

denote the positive cone of A (this terminology is justi�ed by Proposition 4.43 below). In

case A has no unit, the spectrum �(a) of a 2 A is understood in the algebra

~

A obtained

from A by adding a unit.

For a; b 2 A

sa

; we write a � 0 if a 2 A

+

and a � b if a� b � 0:

4.41. Lemma. Let A be a C

�

-algebra with unit.

(i) For a 2 A

sa

such that kak � 1; one has

a 2 A

+

() k1� ak � 1:

(ii) The set A

+

is closed in A

sa

:

Proof. (i) If a 2 A

+

; one has �(a) � [0; kak] � [0; 1]: Thus �(1 � a) is again in [0; 1]; so

that k1� ak � 1 by Corollary 4.21.

If k1� ak � 1; one has �(a � 1) � [�1; 1] by Propositions 4.20 and 4.14. Then �(a) =

1 + �(a � 1) � [0; 2] � R

+

so that a 2 A

+

:

(ii) For a 2 A

sa

one has a 2 A

+

() kkak � ak � kak by (i), so that A

+

is closed in

A

sa

: �
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4.42. Lemma. Let A be a complex algebra with unit and let a; b 2 A: Then

�(ab) [ f0g = �(ba) [ f0g:

In particular, if A is a C

�

-algebra and if b 2 A; then �(bb

�

) � R

+

if and only if �(b

�

b) � R

+

:

Proof. Let � 2 C

�

be such that � � ab has an inverse, say x. Set y = �

�1

(1 + bxa): Then

(�� ba)y = 1 + bxa � ba�

�1

� b�

�1

(abx)a

= 1 + bxa � ba�

�1

� b�

�1

(�x � 1)a = 1

and similarly y(�� ba) = 1: It follows that � � ba is invertible with inverse y: �

4.43. Proposition. Let A be a C

�

-algebra. For each a 2 A

sa

; the three following

properties are equivalent

(i) �(a) � R

+

; namely a 2 A

+

;

(ii) there exists b 2 A such that a = b

�

b;

(iii) there exists b 2 A

sa

such that a = b

2

:

Moreover

(iv) A

+

is a closed convex cone in A

sa

;

(v) A

+

\ (�A

+

) = f0g:

Proof. Let a 2 A

sa

: The implication (iii) =) (i) follows from Proposition 4.20.ii, which

implies that �(b) � R; and from Lemma 4.18, which implies that any � 2 �(a) is of the

form � = �

2

for some � 2 �(b): The implication (i) =) (iii) follows from Theorem 4.24

because ony may set b =

p

a: The implication (iii) =) (ii) is obvious.

Assume that A has a unit. Then A

+

is closed by Lemma 4.41, and �a is obviously in

A

+

whenever � 2 R

+

and a 2 A

+

: Let a; b 2 A

+

be such that kak � 1 and kbk � 1: One

has k1� ak � 1 and k1� bk � 1 by Lemma 4.41, so that













1�

1

2

(a+ b)













�

1

2

k1� ak+

1

2

k1� bk � 1

and

1

2

(a + b) 2 A

+

by the same Lemma. It follows that (iv) holds. Let a 2 A

+

\ (�A

+

) ;

then �(a) = f0g; so that a = 0 by Corollary 4.21. This shows (v).

If A has no unit, claims (iv) and (v) follow from the case with unit by 4.5.

Let us �nally prove the implication (ii) =) (iii). Let f

+

; f

�

2 C(R) be de�ned by

f

+

(t) = sup(t; 0) f

�

(t) = sup(�t; 0)

for all t 2 R: For a = b

�

b as in (ii), set

a

+

= f

+

(a) 2 A

sa

a

�

= f

�

(a) 2 A

sa

x

+

=

p

f

+

(a) 2 A

sa

x

�

=

p

f

�

(a) 2 A

sa

and observe that

a = a

+

� a

�

= x

2

+

� x

2

�

x

+

x

�

= 0
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because similar relations hold in C(R): On one hand, one has

(*) � (x

�

b

�

) (x

�

b

�

)

�

= �x

�

ax

�

= �x

�

x

2

+

x

�

+ x

4

�

= x

4

�

2 A

+

(the inclusion holds because (iii) =) (i)). On the other hand, writing x

�

b

�

= s + it with

s; t 2 A

sa

; one has

(x

�

b

�

)

�

(x

�

b

�

) = � (x

�

b

�

) (x

�

b

�

)

�

+ (s + it)(s � it) + (s � it)(s + it)

= � (x

�

b

�

) (x

�

b

�

)

�

+ 2s

2

+ 2t

2

2 A

+

(the inclusion holds because � (x

�

b

�

) (x

�

b

�

)

�

2 A

+

; as shown above, and because 2s

2

+

2t

2

2 A

+

). It follows from (v) and from Lemma 4.42 that

(**) (x

�

b

�

) (x

�

b

�

)

�

2 A

+

:

Finally (*) and (**) imply x

4

�

= 0; so that x

�

= 0 and a = x

2

+

: �

4.f. Borel functional calculus

In this Section 4.F, we do not give full proofs and we refer, among many other good

sources, to [Bea], [ReS] and [StZ]. We denote by H a complex Hilbert space. Recall that

the strong topology on B(H) has been de�ned in Section 2.B.

4.44. Proposition. Let (a

n

)

n2N

be a sequence of positive operators in B(H) and let

b 2 B(H) be such that

0 � a

n

� a

n+1

� b

for all n 2 N: Then there exists a positive operator a 2 B(H) which is the strong limit of

the a

n

's, namely which is such that

a� = lim

n!1

a

n

�

for all � 2 H; moreover a

n

� a � b for all n 2 N: We write

a

n

" a:

Proof (sketch). For each n 2 N and � 2 H; set q

n

(�) = h�ja

n

�i and

q(�) = lim

n!1

q

n

(�) = sup

n2N

q

n

(�):

Observe that

h�ja

n

�i =

1

4

n

q

n

(� + �)� q

n

(� � �)� iq

n

(� + i�) + iq

n

(� � i�)

o
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and de�ne a sesquilinear form s on H by

s(�; �) =

1

4

n

q(� + �)� q(� � �)� iq(� + i�) + iq(� � i�)

o

:

Using Riesz Theorem 1.3, one obtains an operator a such that s(�; �) = h�ja�i for all

�; � 2 H; and it is obvious that a is the weak limit of (a

n

)

n2N

: One may also check that a

is the strong limit of (a

n

)

n2N

; see Solution 94 of [Hal] for the details. �

4.45. Example. Consider the Hilbert space L

2

([0; 1]): For each t 2 [0; 1]; let P

t

be

the multiplication operator by the characteristic function of [0; t]: If (t

n

)

n2N

is a sequence

which converges to 1; then P

t

n

" id

H

:

4.46. Notations. Let a 2 B(H) be a self-adjoint operator on H: For each t 2 R; let

e

t

: �(a) ! R be the function de�ned by e

t

(s) = 1 if s < t and e

t

(s) = 0 if s � t: Choose

a sequence (f

t;n

)

n�1

in C(�(a)) such that 0 � f

t;n

(s) � f

t;n+1

(s) � e

t

(s) for all n � 1 and

s 2 �(a); and also such that lim

n!1

f

t;n

(s) = e

t

(s) for all s 2 �(a): By Proposition 4.44,

the sequence (f

t;n

(a))

n�1

converges strongly to an operator in B(H) that we denote by E

t

:

4.47. Spectral measure of a self-adjoint operator. Let a 2 B(H) be a self-adjoint

operator on H: Set � = inf

�2H; k�k�1

h�ja�i and � = sup

�2H; k�k�1

h�ja�i: For each t 2 R;

let E

t

be de�ned as in 4.46. Then one has:

(i) each E

t

is a projection on H;

(ii) E

s

� E

t

whenever s � t;

(iii) E

s

" E

t

if s " t (notations as in 4.44),

(iv) t � � ) E

t

= 0;

(v) t > � ) E

t

= 1;

(vi) for b 2 B(H); one has ba = ab if and only if bE

t

= E

t

b for all t 2 R

The family (E

t

)

t2R

is called the spectral measure of the self-adjoint operator a:

Conversely, any family (E

t

)

t2R

satisfying (i) to (v) above (for some �; � 2 Rwith � � �)

de�nes a self-adjoint operator

a =

Z

�+0

�

tdE

t

with spectral measure (E

t

)

t2R

:

4.48. Notations. Let � be a compact metric space. We denote by B(�) the *-algebra

of bounded complex-valued Borel functions on �: By a theorem of Baire, it is also the

smallest family of complex-valued functions on � which contains the continuous functions

and which is closed under pointwise limits (see the indications for Exercise 11.46 in [HeS]).

One may de�ne a norm by kfk = sup

t2�

jf(t)j and an involution by f

�

(t) = f(t); then

B(�) becomes what has to be called a pre-C

�

-algebra (i.e. satis�es all conditions to be a

C

�

-algebra, but completeness), and C(�) a sub-C

�

-algebra of B(�):

However, in most cases and for example for � = [0; 1], observe �rstly that B(�) is not

complete, and secondly that its completion is a C

�

-algebra which is not separable (see the

discussion in 2.4).
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For � � R; we denote by P(�) the involutive subalgebra of B(�) consisting of the

restrictions to � of the polynomial functions R! C : (Observe that dim

C

P(�) <1 in case

� is a �nite subset of R; and that P(�) is isomorphic to C [T ] if � is an in�nite set.)

4.49. Theorem (Borel functional calculus). Let a 2 B(H) be a self-adjoint operator

on H: Then the natural map P(�(a)) ! B(H) has a unique extension

� : B(�(a))! B(H)

such that the following holds:

if (f

n

)

n2N

is a sequence in B(�(a)) such that sup

n2N

sup

s2�(a)

jf

n

(s)j <1 and which

tends pointwise to a function f 2 B(�(a)); then �(f

n

) tends strongly to �(f) in B(H):

Moreover the restriction of � to C(�(a)) coincides with the morphism of continuous func-

tional calculus (4.24).

On the proof. For details, see Chapter 2 in [StZ], as well as Proposition 2.3 in [Bea], or n

o

106 in [RiN].

The uniqueness is a straightforward consequence of the Theorem of Baire recalled in

4.48.

The proof of the existence of � uses tools of classical analysis such as the Lebesgue-

Stieltjes integral and the Lebesgue dominated convergence theorem.

For the last claim, one may use the following theorem of Dini (see n

o

7.2.2 in [Di1]): let �

be a compact metric space and let (f

n

)

n�1

be a pointwise increasing sequence of continuous

functions � ! R which converges pointwise to a continuous function f : � ! R: Then

(f

n

)

n�1

converges to f in the norm topology of C(�): �

4.50. Corollary (Schur's Lemma). Let H be a Hilbert space and let S be a selfadjoint

subset of B(H): The following are equivalent.

(i) S is topologically irreducible. More precisely, the only S-invariant closed subspaces

of H are f0g and H:

(ii) The commutant of S is trivial. More precisely, the only operators a 2 B(H) such

that as = sa for all s 2 S are the homothecies a 2 C id

H

:

Proof. (i) ) (ii) Let a 2 B(H) be an operator which commutes with S: If a is self-adjoint,

then a 2 C id

H

by the argument below. The general case follows because any a 2 B(H) is

a linear combination of two self-adjoint operators.

Suppose that a is self-adjoint, commutes with S, and is not a homothecy. We shall reach

a contradiction. There exist two distinct points �; � in the spectrum of a: Let f; g 2 C(�(a))

be such that

f(�) 6= 0 g(�) 6= 0 fg = 0:

De�neH

f

to be the closure inH of the image of f(a): For each s 2 S; one has sf(a) = f(a)s;

hence s(H

f

) � H

f

: As f(a) 6= 0; one has H

f

6= f0g; and thus H

f

= H by the irreducibility

assumption (i). Hence

g(a)(H) = g(a)f(a)H � g(a)f(a)H = (gf)(a)H = f0g



24 4. ABSTRACT C

�

-ALGEBRAS AND FUNCTIONAL CALCULUS

because gf = 0; and this is absurd because g(a) 6= 0:

(ii)) (i) The assumption (ii) implies that the only projections in B(H) which commute

with S are 0 and id

H

; which is another phrasing of (i); see Lemma 2.11. �

4.51. Proposition. Let � : A ! B(H) be a representation of C

�

-algebra A on a Hilbert

space H: The following are equivalent:

(i) the only A-invariant closed subspaces of H are f0g and H;

(ii) the only projection p 2 B(H) which commute with �(A) are 0 and 1;

(iii) the commutant �(A)

0

= f b 2 B(H) j b�(a) = �(a)b for all a 2 A g

is reduced to C :

Proof. The equivalence (i) () (ii) follows from Lemma 2.11 and (ii) () (iii) is a partic-

ular case of Schur's Lemma.

For other equivalent conditions, see Proposition 6.21 below. �

4.52. De�nition. A representation � : A ! B(H) of a C

�

-algebra A on a Hilbert space

H is irreducible if it satis�es the conditions of the previous proposition.

4.53. Remark. Observe that the morphism � of Theorem 4.49 needs not be an injection.

Indeed, let t 2 �(a) be a spectral value of a which is not an eigenvalue of a; and let

�

t

2 B(�(a)) denote the characteristic function of ftg: Then �

t

6= 0 in B(�(a)); but �(�

t

) = 0

in B(H): For example, if a 2 B

�

L

2

([0; 1])

�

is de�ned by (a�)(s) = s�(s); one has �(�

t

) = 0

for all t 2 [0; 1] = �(a):

4.54. Towards a \Lebesgue functional calculus". Let a 2 B(H) be a self-adjoint

operator on H: For each pair �; � of vector in H; the linear map

(

C

�

�(a)

�

�! C

f 7�! h�jf(a)�i

de�nes a bounded measure �

�;�

on �(a): It can be shown that there exists a measure � on

�(a) such that

�

�;�

� � for all �; � 2 H

(where � indicates absolute continuity), such that any measure � satisfying �

�;�

� � for

all �; � 2 H satis�es also � � �; and that the measure class of � is well de�ned by these

requirements. The Gelfand isomorphism C(�(a)) ! C

�

(a) has then a natural extension

L

1

�

�(a); �

�

�! W

�

(a)

which is an isomorphism of the von Neumann algebra L

1

�

�(a); �

�

onto the von Neumann

algebra generated by a in B(H): See [DvN, Appendice I] or Corollary X.2.9 in [DuS].
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CHAPTER 5. TWO FAMILIES OF EXAMPLES :

AF-ALGEBRAS AND REDUCED C

�

-GROUP-ALGEBRAS

A separable C

�

-algebra A is approximately �nite dimensional, or more simply AF, if

there exists a nested sequence A

1

� A

2

� ::: of �nite dimensional sub-C

�

-algebras of A of

which the union is dense in A: Before giving in Section 5.B examples of AF-algebras, we

need some preliminaries on the inclusions A

n

� A

n+1

; and this is exposed in Section 5.A.

Group algebras are very brie
y discussed in Section 5.C.

5.a. Pairs and towers of finite dimensional

C

�

-algebras, and their Bratteli diagrams

5.1. Examples of Bratteli diagrams. We know from Section 2.B how to describe �nite

dimensional C

�

-algebras. A good device to describe an inclusion of one such an algebra in

another is its Bratteli diagram. Before the actual de�nition, we give two examples.

The mapping

8

>

>

<

>

>

:

C �M

2

(C ) �! M

3

(C ) �M

5

(C ) �M

2

(C )

(x; y) 7�!

0

@

�

x 0

0 y

�

;

0

@

x 0 0

0 y 0

0 0 y

1

A

; y

1

A

de�nes a pair of �nite dimensional C

�

-algebras with Bratteli diagram as in Figure 1.i.

Observe that the inclusion is unital, and correspondingly that each weight on the right of

the diagram is the sum (with multiplicities) of the related weights on the left : 3 = 1 + 2;

5 = 1 + 2

:

2; and 2 = 2:

The mapping

8

>

>

<

>

>

:

M

3

(C ) �M

2

(C ) �M

2

(C ) �! M

9

(C ) �M

7

(C )

(x; y; z) 7�!

0

@

0

@

x 0 0

0 x 0

0 0 0

1

A

;

0

@

x 0 0

0 y 0

0 0 z

1

A

1

A

de�nes a pair of �nite dimensional C

�

-algebras with Bratteli diagram as in Figure 1.ii.

Observe that the inclusion is not unital, and correspondingly that 2

:

3 < 9:

Figure 1, (i) and (ii).

Typeset by A

M

S-T

E

X

1
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5.2. De�nition of Bratteli diagrams for pairs. Let A � B be a pair of �nite

dimensional C

�

-algebras. We know from Section 2.B that there are integers

m

1

; :::;m

r

; n

1

; :::; n

s

� 1

such that

r

M

j=1

M

m

j

(C ) � A � B �

s

M

k=1

M

n

k

(C ):

Denote by e

1

; :::; e

r

the minimal central projections in A and by f

1

; :::; f

s

the minimal

central projections in B: One has

e

j

A �M

m

j

(C ) and f

k

B �M

n

k

(C )

for all j 2 f1; :::; rg and k 2 f1; :::; sg:

Given j 2 f1; :::; rg and k 2 f1; :::; sg; de�ne the multiplicity �

k;j

2 N as follows. If p

j

is

a minimal projection in e

j

A; then f

k

p

j

is a sum of �

k;j

minimal projections in f

k

B (one

may say that �

k;j

is the rank of f

k

p

j

in f

k

B). Then the data

~m = (m

j

)

1�j�r

; ~n = (n

k

)

1�k�s

; � = (�

k;j

)

1�k�s;1�j�r

determine completely (up to �-isomorphism) the pair A � B: The matrix � is known as

the inclusion matrix of the pair A � B:

The Bratteli diagram of the inclusion A � B is a bipartite graph, which has weights on

vertices and multiplicities on edges, and which has

r vertices with respective weights m

1

; :::;m

r

;

s vertices with respective weights n

1

; :::; n

s

;

one edge of multiplicity �

k;j

between the vertex of weight m

j

and the vertex of weight n

k

(of course edges of multiplicity zero are \nonedges"!). Observe that one has

�~m � ~n;

by which we mean

P

r

j=1

�

k;j

m

j

� n

k

for all k 2 f1; :::; sg: Moreover the pair A � B is

unital (i.e. the unit in A co��ncides with the unit in B) if and only if

�~m = ~n:

5.3. Remark. The notations being as in 5.2, one may show that the following are

equivalent:

the rank �

k;j

of f

k

p

j

in f

k

B;

the number of A-simple modules in the restriction to e

j

A

of the simple B-module corresponding to f

k

,

the number of simple modules in the restriction to B

k

of the induction from A to B
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of the simple A-module corresponding to e

j

:

Moreover, the matrix � is also the matrix with respect to the canonical basis of the map

K

0

(A) � Z

r

�! Z

s

� K

0

(B)

induced by the inclusion A ,�!B on the corresponding Grothendieck groups.

5.4. Examples associated to pairs of �nite groups. Let H be a �nite group and let

G be a subgroup of H: The group algebras provide an example

C [G] � C [H]

of unital pair of �nite dimensional C

�

-algebras. The corresponding Bratteli diagram en-

codes standard informations on the irreducible complex representations of G and H: As a

sample of examples, we give in Figure 2 the Bratteli diagrams for the inclusions

S

2

� S

3

A

3

� S

3

S

3

� S

4

A

4

� S

4

where S

n

[respectively A

n

] denotes the symmetric [resp. alterating] group on n letters.

Figure 2.

5.5. Bratteli diagrams for towers. A tower of C

�

-algebras is a nested sequence

A

0

� A

1

� ::: � A

n

� A

n+1

� :::

of C

�

-algebras, each included in the next. The Bratteli diagram of a tower of �nite di-

mensional C

�

-algebras is obtained by concatenation of the Bratteli diagrams for the pairs

A

0

� A

1

, A

1

� A

2

; ... .

As a �rst example, consider a separable Hilbert space H: Choose a nested sequence

V

1

� V

2

� ::: of subspaces of H such that dim

C

V

n

= n for each n � 1 and such that the

union of the V

n

's is dense in H: For each n � 1; identify B(V

n

) with the sub-C

�

-algebra

of B(H) of those operators mapping V

n

into itself and V

?

n

onto 0: Then

B(V

1

) � B(V

2

) � ::: � B(V

n

) � B(V

n+1

) � :::

is a tower of �nite-dimensional C

�

-algebras; its Bratteli diagram is the half-line [1;1[ with

vertices at the integers 1; 2; 3; ::: (Figure 3). Adding units, one �nds the tower

C id

H

+ B(V

1

) � C id

H

+ B(V

2

) � ::: � C id

H

+ B(V

n

) � C id

H

+ B(V

n+1

) � :::

and the second Bratteli diagram of Figure 3.
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Figure 3.

As a second example, consider the Cantor ternary set X: For each n 2 N; de�ne an

algebra A

n

of continuous functions on X as follows:

A

0

is the algebra of constant functions,

A

1

is the algebra of functions constant on X \ [0;

1

3

] and X \ [

2

3

; 1];

.............................................................................. ....................

A

n

is the algebra of functions constant on X \ [

j

3

n

;

j+1

3

n

] for each j 2 f0; 1; :::; 3

n

� 1g:

.............................................................................. ....................

Then

A

0

� A

1

� ::: � A

n

� A

n+1

� :::

is a tower of �nite dimensional abelian C

�

-algebras with Bratteli diagram a regular rooted

tree where each vertex is of weight 1 and has two successors, as in Figure 4.

Figure 4.

5.b. AF-algebras

For simplicity, all C

�

-algebras appearing in this section are assumed to be separable.

5.6. De�nition. A separable C

�

-algebra A is said to be an approximately �nite dimen-

sional C

�

-algebra, or simply an AF-algebra, if there exists a tower A

0

� A

1

� ::: of �nite

dimensional sub-C

�

-algebras of A such that the union [

n2N

A

n

is dense in A:

It is sometimes self-understood that an AF-algebra is in�nite dimensional.

5.7. First examples. The algebra K(H) of compact operators on a separable in�nite

dimensional Hilbert space is an AF-algebra; the same holds for the algebra C 1

H

+K(H):

Also, the algebra of continuous functions on the Cantor ternary set is a commutative

AF-algebra. All this follows from 5.5 above.

On the other hand, if X is connected compact space which is neither empty nor reduced

to one point, then the only �nite-dimensional sub-C

�

-algebra of C(X) is the algebra of

constant functions. In particular, C(X) is not an AF-algebra.

IfX is a secound countable compact space, then C(X) is an AF-algebra if and only ifX is

totally disconnected (this is part of Proposition 3.1 in [Br2]), namely if and only if X is zero

dimensional (this is standard dimension theory - see e.g. [HuW]). Recall that a compact

space which is totally disconnected and secound countable is always homeomorphic to a

closed subset of the unit interval.
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5.8. Inductive limits. Let A

0

� A

1

� ::: be a tower of C

�

-algebras, and let A

1

denote

the union of the A

n

's. Then A

1

is an involutive algebra (see the de�nition in 1.13).

Moreover, each a 2 A

1

has a norm

kak =

p

spectral radius of a

�

a

where either the norm or the spectral radius may be computed in any A

n

such that a 2 A

n

:

If A denotes the completion of A

1

with respect to this norm, it is obvious that A is a

C

�

-algebra, called the inductive limit of the tower (A

n

)

n2N

:

Observe that, in case all A

n

's have units and all inclusions A

n

,�!A

n+1

are unital, then

A has a unit. Conversely, if A has a unit, upon replacing whenever necessary each A

n

by

C 1 +A

n

(and this is easily seen to be necessary for �nitely many n 's only), then one may

assume that all A

n

's and all inclusions are unital.

We will apply this to towers of �nite dimensional C

�

-algebras: each such tower de�nes

an AF-algebra.

5.9. UHF-algebras. Let (k

j

)

j�1

be a sequence of integers, with k

j

� 2: For each n � 1;

the algebra

A

n

=

n

O

j=1

M

k

j

(C ) � M

k

1

k

2

:::k

n

(C )

is a full matrix algebra, and the assignment

x 7! x
 1

k

n+1

(where 1

k

n+1

denotes the unit in M

k

n+1

(C ) ) de�nes a pair A

n

� A

n+1

: The resulting

tower is described by its Bratteli diagram, indicated in Figure 5. The resulting inductive

limit C

�

-algebra

1

O

j=1

M

k

j

(C )

is an AF-algebra known as a UHF-algebra (for Uniformly HyperFinite), or sometimes as a

Glimm algebra [Gli].

Figure 5.

5.10. Example. Consider the UHF-algebras

A =

1

O

j=1

M

2

(C )

j

and B =

1

O

j=1

M

3

(C )

j

where M

k

(C )

j

denotes a copy of M

k

(C ) for each j � 1 and for k 2 f2; 3g: These two

UHF-algebras are known to be non-isomorphic.
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Here is a sketch of the proof. Let tr : A ! C be a normalised trace on A; namely a

linear map such that tr(1) = 1; tr(a

�

a) � 0 and tr(aa

0

) = tr(a

0

a) for all a; a

0

2 A: It

follows from the unicity of the trace on a matrix algebra that there is a unique trace on

A: Let now D

A

be the subgroup of the additive group R generated by the numbers tr(e);

where e is a projection in A: Using Exercise 4.28, one may check that

D

A

� Z

�

1

2

�

is the ring of 2-adic integers.

The same consideration for B gives rise to the group

D

B

� Z

�

1

3

�

which is not isomorphic to D

A

(because D

B

is 3-divisible and D

A

is not). Thus the

C

�

-algebra B is not isomorphic to A:

(In a more sophisticated terminology, D

A

is the image tr(K

0

(A)) of the Grothendieck

group of A by the canonical map K

0

(A) ! C induced by the trace.)

More generally, given any set S of prime numbers, let (k

j

)

j�1

be a sequence of integers

with k

j

2 S for each j � 1 and jfj � 1 j k

j

= sgj =1 for each s 2 S: Then the associated

UHF-algebra gives rise to the group

D

(S)

� Z

��

1

s

�

s2S

�

:

For two sets S;S

0

of prime numbers, one has D

(S)

� D

(S

0

)

if and only if S = S

0

: It follows

that there are uncountably many pairwise nonisomorphic UHF-algebras.

Similar considerations provide a complete classi�cation of UHF-algebras, �rstly estab-

lished in J. Glimm's thesis; see [Gli], Theorem 6.4.6 in [Ped] and n

o

6.1 in [Ell]. The groups

which appear in the classi�cation are torsion-free abelian groups of rank 1; they have been

classi�ed by R. Baer (1937); see x 85 in Volume II of [Fuc].

5.11. Example (Bratteli). The two diagrams of Figure 6 de�ne two algebras which are

isomorphic.

Figure 6.

Indeed, jumping through the even-numbered 
oors of the left-hand diagram of Figure 6,

one obtains �rstly the left-hand diagram of Figure 7. Building new intermediate 
oors,

one obtains secondly the right-hand diagram of Figure 7. Jumping again through every

other 
oor, one obtains �nally the right-hand diagram of Figure 6.
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Figure 7.

5.12. Isomorphisms of AF-algebras. Let A;B be two AF-algebras. Let A

0

� A

1

� :::

[respectively A

0

� A

1

� :::] be a tower of �nite dimensional sub-C

�

-algebras of A [resp.

B] with union A

1

dense in A [resp. B

1

dense in B].

The two towers are isomorphic if there exists isomorphisms A

n

� B

n

which commute

with the tower inclusions. If the towers are isomorphic, then A and B are isomorphic (this

is easy, but does require some argument !); the converse does not hold, as Example 5.11

shows dramatically.

It is a theorem of Bratteli that the C

�

-algebras A and B are isomorphic if and only

the involutive algebras A

1

and B

1

are isomorphic. Thus, the study of AF-algebras is

in some sense equivalent to that of involutive algebras of countable complex dimensions

which are locally �nite dimensional, i.e. such that any �nite subset is contained in a �nite

dimensional sub-involutive-algebra.

5.13. Another de�nition. A separable C

�

-algebra A is a AF-algebra if and only if the

following holds:

For any �nite subset fa

1

; :::; a

n

g of A and for any � > 0;

there exist a �nite dimensional sub-C

�

-algebra B of A and a subset fb

1

; :::; b

n

g of B

such that ka

j

� b

j

k < � for j 2 f1; :::; ng:

This is Theorem 2.2 of [Bra].

5.14. Stability. The class of AF-algebras has remarkable stability properties. For exam-

ple, it is easy to check that

closed two-sided ideals of AF-algebras are AF-algebras,

quotient C

�

-algebras of AF-algebras are AF-algebras,

C

�

-tensor products of AF-algebras of AF-algebras are AF-algebras.

A much deeper fact is the following result of L.G. Brown : if

0 ! J ! A ! B ! 0

is a short exact sequence of C

�

-algebras such that J and B are AF-algebras, then A is

also a AF-algebra. See [Bro], and Theorem 9.9 in [E�].

A sub-C

�

-algebra of a AF-algebra needs not be a AF-algebra. Indeed, a famous isomor-

phism problem about the so-called irrational rotation algebras (which are far from being

AF-algebras) has been solved by embedding them in appropriate AF-algebras [PiV].

For an easier example, consider a connected separable compact metric space Y and a

continuous map p from the Cantor ternary set X onto Y [HeS, Exercice 6.100]. One may

identify via p the C

�

-algebra C(Y ); which is not AF, to a sub-C

�

-algebra of C(X); which

is AF (see 5.7).

Let G be a �nite group of automorphisms of a AF-algebra and let A

G

denote the

corresponding sub-C

�

-algebra of �xed points. It has been an open question for quite some
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time to know whether A

G

is necessarily AF. The answer is no, because B. Blackadar [Bl2]

has constructed an automorphism of order 2 on the CAR-algebra (see Chapter 7), namely

an action of Z=2Zon CAR(H); such that CAR(H)

Z=2Z

is not AF (it is a C

�

-algebra with

K

1

-group not reduced to zero).

5.15. On the classi�cation of AF-algebras. Example 5.10 shows that there are large

classes of AF-algebras, and Example 5.11 shows that it is not always easy to decide whether

two AF-algebras given by two inductive systems are isomorphic or not. To cope with these

problems, G. Elliott has made good use of K-theory.

Let A be a C

�

-algebra. The Grothendieck group K

0

(A) is, as always, the abelian group

of projective A-modules of �nite type, up to stable isomorphisms. But C

�

-algebraists

rather view it as de�ned via appropriate equivalence classes of projections in the C

�

-

algebra A
K(H); where H denotes an in�nite dimensional separable Hilbert space. If A

has a unit, we denote its class in K

0

(A) by [1

A

] (this can also be viewed as the class of the

free A-module of rank one.)

The positive part K

0

(A)

+

of K

0

(A) is the set of classes in K

0

(A) which can be rep-

resented by actual projections (or actual A-modules), rather than by formal di�erences

of these. In general, the pair (K

0

(A);K

0

(A)

+

) is far from being an ordered group.

For example, for the so-called \Cuntz algebra" 0

n

; where n � 2 is an integer, one has

K

0

(O

n

)

+

= K

0

(O

n

) �Z=(n�1)Z: But there are important classes of C

�

-algebras, includ-

ing AF-algebras, for which (K

0

(A);K

0

(A)

+

) is an ordered group, namely for which one

has

K

0

(A)

+

�K

0

(A)

+

= K

0

(A) and K

0

(A)

+

\ (�K

0

(A)

+

) = f0g:

For details, see Chapter III in [Bl1].

It is a remarkable result, due to Elliott (1976), that AF-algebras can be classi�ed in

terms of K-theory. In particular, let A;B be two AF-algebras with units. If there exists

an isomorphism of abelian groups � : K

0

(A) ! K

0

(B) such that � ([1

A

]) = [1

B

] and

� (K

0

(A)

+

) = K

0

(B)

+

; then A and B are isomorphic as C

�

-algebras.

Ordered groups coming from AF-algebras are countable (because AF-algebras are sep-

arable) and have two special properties: they are so-called \unperforated groups" which

have the \Riesz Interpolation Property". It is another remarkable result, due to E�ros,

Handelman and Shen (1980), that any countable ordered group with these two properties

is the Grothendieck group of an AF-algebra.

For all this, we refer to the original papers and to [E�].

5.16. Example. Consider the tower

B

1

= M

2

(C ) � ::: � B

n

=

n

O

j=1

M

2

(C )

j

� B

n+1

=

n+1

O

j=1

M

2

(C )

j

� ::: � B =

1

O

j=1

M

2

(C )

j

as in 5.10 above, and let � : S

3

! U(2) �M

2

(C ) be an irreducible unitary representation

of the symmetric group on 3 letters. For each n � 1; the group S

3

acts by automorphisms
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on B

n

according to

g(x) =

0

@

n

O

j=1

�(g)

1

A

x

0

@

n

O

j=1

�(g)

1

A

�1

for each g 2 S

3

and x 2 B

n

: The action extends to

S

1

n=1

B

n

and to the C

�

-algebra B: For

each n � 1; let A

n

= B

S

3

n

denote the sub-C

�

-algebra of elements in B

n

�xed by S

3

: Our

purpose is to indicate why the Bratteli diagram for the tower

A

1

� ::: � A

n

� A

n+1

� ::: �

1

[

n=1

A

n

is as indicated in Figure 8.

Figure 8.

Let us �rst recall that S

3

has three irreducible representations (over C ) which we de-

note by � (as above), � (the identity) and � (the signature). The corresponding table of

characters is shown in Figure 9.

Figure 9.

It follows that tensor products by � of the irreducible representations of S

3

decompose as

(*) �
 � � � � 
 � � � � � � � � 
 � � �:

One may encode these information about the pair (S

3

; �) in the graph of Figure 10.

Figure 10.

More generally, given a �nite group G and a representation � of G; information on

decompositions of tensor products by � may be encoded in the associated McKay repre-

sentation graph de�ned as follows: the set of vertices is the set

^

G of irreducible complex

representations of G; and there is one directed edge of multiplicity m

j;k

from �

j

2

^

G to

�

k

2

^

G; where the m

j;k

's are given by

�

j


 � �

M

�

k

2

^

G

m

j;k

�

k

:
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If m

j;k

=m

k;j

for all paire (�

j

; �

k

) ; one draws usually the undirected graph corresponding

to the graph just de�ned, as we have shown in Figure 10. More on this in [FoM] and

[McK].

Now, for each n � 1; the algebra A

n

= B

S

3

n

of elements in B

n

�xed by S

3

is precisely

the commutant in B

n

of the representation

�


n

: S

3

�!

n

O

j=1

M

2

(C )

j

:

Thus, if a

n

; b

n

; c

n

are the integers de�ned by

�


n

� a

n

�� b

n

� � c

n

�

one has

A

n

� M

a

n

(C ) �M

b

n

(C ) �M

c

n

(C ):

It is clear that these integers are recursively de�ned by (*) above, namely by Figure 10, or

more transparently by Figure 8.

Observe in Figure 8 that each edge is the symmetrical image of an edge on the previous


oor, but for �ve initial edges which constitute a so-called a�ne Coxeter graph of type

~

D

5

:

It is an observation of John McKay that �nite subgroups of SU(2) provide in the same

way the following list:

binary dihedral group of order 4n !

~

D

n+2

(n � 2)

binary tetrahedral group of order 24 !

~

E

6

binary octahedral group of order 48 !

~

E

7

binary tetrahedral group of order 120 !

~

E

8

:

The graphs

~

A

n

appear also naturally in McKay's list, but the presentation above has

to be slightly modi�ed for them, because the analogue of � above is reducible for cyclic

subgroups of SU(2):

5.17. Exercise. Let A

0

� A

1

� ::: be a tower of C

�

-algebras and let A be the inductive

limit C

�

-algebra, as in 5.8.

(i) Let J be a closed two-sided ideal of A; and set J

n

= J \ A

n

for each n � 0: Show

that

J =

[

n�0

J

n

:

(ii) Show that A has no non trivial closed two-sided ideal if and only if, for each m � 0

and for each non zero a 2 A

m

; there exists n � m such that the closed two-sided ideal of

A

n

generated by a is A

n

itself.

(iii) If the A

k

's are all �nite dimensional (so that A is AF), state a condition equivalent

to those of (ii) in terms of the Bratelli diagram of the tower A

0

� A

1

� :::.
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(iv) Show that a UHF-algebra A with unit is simple, namely that the only two-sided

ideals of A are f0g and A itself.

[Indication for the implication a 2 A ; a =2 [

n

J

n

) a =2 J of (i). Consider the canonical

projections � : A! A=J and �

�

: A ! A=

�

[

n

J

n

�

: Set � = k�

�

(a)k > 0: For each n large

enough, there exists a

n

2 A

n

such that ka

n

� ak � �=2: If �

n

: A

n

! A

n

=J

n

denotes the

canonical projection at level n; one has

k�

n

(a

n

)k = inf

b2J

n

ka

n

� b

n

k � inf

b2[

n

J

n

ka

n

� bk = k�

�

(a

n

)k � �=2:

As the canonical inclusion A

n

=J

n

,�!A=J is an isometry, one has also

k�(a)k = lim

n!1

k�

n

(a

n

)k � �=2:

Thus a =2 J :

Claim (iv) is a consequence of (iii) because, in a C

�

-algebra with unit A, the only

two-sided ideal which is dense in A is A itself. But it can also be checked as follows.

If A = 


1

j=1

M

k

j

(C ) is a UHF-algebra, every quotient A! A=J is faithful on the simple

algebra 


n

j=1

M

k

j

(C ) for all n � 1; hence is faithful on A itself.]

5.18. Exercise. Let A be an AF C

�

-algebra and let B be a �nite dimensional sub-C

�

-

algebra of A: Show that the relative commutant

B

0

\ A =

�

a 2 A j ab = ba for all b 2 B

	

is an AF algebra. [If necessary, see the solution in Lemma 3.1 of [HeR].]

5.19. Exercise. Let A =

N

1

j=1

M

2

(C )

j

be as in Example 5.10 and let

A

1

=

[

n�1

0

@

n

O

j=1

M

2

(C )

j

1

A

� A;

so that any x 2 A

1

has �nite spectrum. Write down elements of A with in�nite spectra.

5.c. On reduced group C

�

-algebras

In this section, we consider a countable group � endowed with the counting measure,

the Hilbert space `

2

(�) together with its usual orthonormal basis (�




)


2�

; the reduced

C

�

-algebra C

�

red

(�) and the linear injection

� :

(

C

�

red

(�) �! `

2

(�)

a 7�! a(�

e

)

de�ned in number 4.1.
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5.20. Proposition. The reduced C

�

-algebra of the in�nite cyclic group is isomorphic to

the algebra of continuous functions on the unit circle of the complex plane:

C

�

red

(Z) � C(T):

Proof. Let d� =

1

2�

d� denote the usual Lebesgue (or Haar!) measure on

T= fz 2 C j jzj = 1g:

The \Fourier transform" is an invertible isometry

F : `

2

(Z)�! L

2

(T; d�)

by Plancherel theorem (also called here Parseval theorem).

Let T (T) denote the subspace of L

2

(T; d�) consisting of trigonometric polynomials.

There is by de�nition a bijection

�

C [Z]�! T (T)

a 7�! â

de�ned by â(z) =

P

finite

n2Z

a(n)z

n

for all z 2 T: (The algebra C [Z] of Laurent polynomials

is often denoted by C [z; z

�1

].) For each a 2 C [Z]; let

�(a) : `

2

(Z) �! `

2

(Z)

denote as in 4.1 the convolution by a; and let

M

â

: L

2

(T; d�) 7�! L

2

(T; d�)

denote as in 1.15 the multiplication by â: A straightforward computation shows that one

has M

â

= F�(a)F

�1

for all a 2 C [Z]: In other terms, the diagram

�

C [Z] ,�! B(`

2

(Z)

# #

M

T (T) ,�! B

�

L

2

(T; d�)

�

is commutative, where the left-hand side vertical arrow is the bijection a 7! â and where

the right-hand side vertical arrow is the bijection x 7! FxF

�1

:

Now C

�

red

(Z) is by de�nition the norm closure of �(C [Z]) in B

�

`

2

(Z)

�

; and it fol-

lows from the Weierstrass approximation theorem that C(T) is isomorphic (via multiplica-

tion operators) to the norm closure of M (T (T)) in B

�

L

2

(T; d�)

�

: Thus the isomorphism

C [Z]! T (T) extends to an isomorphism C

�

red

(Z)! C(T): �
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5.21. Proposition. Let G be a locally compact abelian group and let

^

G denote its

Pontryagin dual. Then one has

C

�

red

(G) � C

0

(

^

G):

Proof. The argument of the previous proof carries over, modulo Pontryagin theory of

duality for locally compact abelian groups. �

5.22. Proposition (Powers). Let � be a non abelian free group. Then C

�

red

(�) is a

simple C

�

-algebra.

Proof. We refer to [Po2]. �

5.23. Proposition. Let � be a group PSL(n;Z) for some n � 2; or more generally a

lattice in a connected real semi-simple Lie group without compact factors and with center

reduced to f1g: Then C

�

red

(�) is a simple C

�

-algebra.

Proof. We refer to [BCH1] and [BCH2]. �

5.24. Remark. As already mentioned in 4.1, the two previous propositions show that,

in general, a unitary representation � ! U(H) does not correspond to any representation

C

�

red

(�) ! B(H): There is another C

�

-algebra C

�

max

(�) of which the representation do

correspond to the unitary representations of �; and for which we refer to [DC

�

].

There is a canonical morphism

C

�

max

(�) �! C

�

red

(�)

which is always onto and which is an isomorphism if and only if � is amenable. Any group

� for which there exists a short exact sequence

1 �! F �! � �! S �! 1

with F �nite and S solvable is amenable. For linear groups, i.e. for groups having faithful

representations in GL(n; C ) for some n � 1; the converse holds : if such a group is

amenable, then there exists a short exact sequence as above [Tit].



P. de la Harpe and V. Jones, July 1995.

CHAPTER 6. STATES AND THE GNS-CONSTRUCTION

The letters GNS refer to I.M. Gelfand, M.A. Naimark [GeN, 1943] and I. Segal [Seg,

1947].

6.a. States

6.1. De�nition. Let A be a C

�

-algebra. A linear form � : A! C is positive if �(a

�

a) � 0

for all a 2 A:

Observe that there is a Cauchy-Schwarz inequality for a positive linear form � :

j�(b

�

a)j

2

� �(b

�

b)�(a

�

a)

for all a; b 2 A:

6.2. Proposition. Let A be a C

�

-algebra with unit.

(i) A positive linear form � on A is bounded, and

k�k = �(1):

(ii) A bounded linear form � on A such that k�k = �(1) is positive.

Proof. (i) For each a 2 A one has ka

�

ak 1� a

�

a � 0 by Lemma 4.41, hence

�(a

�

a) � ka

�

ak�(1):

Using Cauchy-Schwarz inequality (6.1), we have consequently

j�(a)j � �(1)

1=2

�(a

�

a)

1=2

� ka

�

ak

1=2

�(1) = kak �(1):

It follows that k�k � �(1):

(ii) Upon replacing � by �= k�k ; we may assume that �(1) = 1:

Let us �rst show that � takes real values on self-adjoint elements. Choose a 2 A ; a

�

= a;

and let �; � 2 R be such that �(a) = �+ i�: For each � 2 R one has

ka+ i�k

2

= k(a � i�)(a + i�)k =







a

2

+ �

2







= kak

2

+ �

2

(the last equality because of Corollary 4.21) and consequently

�

2

+ 2�� + �

2

� j�+ i(� + �)j

2

= j�(a+ i�)j

2

� kak

2

+ �

2

;

this implies � = 0:

Typeset by A

M

S-T

E

X

1



2 6. STATES AND THE GNS-CONSTRUCTION

Let us show that � takes positive values on positive elements. Choose h 2 A ; 0 � h � 1:

Then

j1� �(h)j = j�(1� h)j � k1� hk � 1

and consequently �(h) � 0: �

6.3. De�nitions. A state on a C

�

-algebra A is a linear form on A which is positive and

of norm 1: The state space S

A

of A is the set of all states on A:

If A has a unit, it follows straightforwardly from Proposition 6.2 that S

A

is a convex

subset of the dual of A: The same fact holds for C

�

-algebras without units (but the proof

is not completely trivial: see e.g. n

os

2.1.5 and 2.1.6 in [DC*]).

A state � on a C

�

-algebra A is extreme, or pure, if it has the following property: if

�

0

; �

1

are states on A and if t 2]0; 1[ is a real number such that � = (1� t)�

0

+ t�

1

; then

�

0

= �

1

:

6.4. Etymology. In quantum mechanics, there are models where the universe (??? or the

system to analyze ???) is described by some complex Hilbert space H: An \observable" is

a (possibly unbounded) self-adjoint operator a on H; and the spectrum �(a) is the set of

possible outcomes of a measure of a:

To each local system corresponds a C

�

-algebra A of bounded operators on H: If such a

system is in a state �; the average of many measures of the observable a is a number �(a):

There are abstract considerations which justify that the assignment a 7! �(a) should be

linear and positive.

The superposition principle of quantum mechanics gives rise to the notion of pure state,

one which cannot be obtained as a superposition of other states.

6.5. Examples. (i) Let A be a C

�

-algebra of operators on a Hilbert space H which

contains id

H

and let � 2 H(1) be a vector of norm 1: Then the linear form

!

�

�

A �! C

a 7�! h�ja�i

is positive. One has !

�

= 1 if moreover id

H

2 A (or more generally if moreover AH = H

- see [DC

�

, 2.4.3]) and in this case !

�

is called a vector state. Observe that

!

�

= !

e

it

�

for all t 2 R:

Proposition 6.11 below shows that these vector states are in some sense the only states

on C

�

-algebras.

(ii) Let X be a compact space. For any probability measure � on X; the map

�

�

:

8

<

:

C(X) �! C

f 7�!

Z

X

f(x)d�(x)



6. STATES AND THE GNS-CONSTRUCTION 3

is a state on the abelian C

�

-algebra C(X): All states on C(X) are of this form by a theorem

of F. Riesz (see Theorem 2.14 in [Ru1], and do not confuse this theorem of Riesz with the

one recalled in 1.3). Pure states correspond bijectively to Dirac measures on X:

(iii) Let A be the dense �-subalgebra of C([0; 1]) of polynomial functions R! C and let

� : A ! C be the linear form de�ned by �(f) = f(2): Then one has

�(f

�

f) � 0

for all f 2 A but � is not continuous with respect to the norm kfk = sup

0�t�1

jf(t)j:

Indeed, if (f

n

)

n�1

is the sequence in A de�ned by f(t) = t

n

; then kf

n

k = 1 and �(f

n

) = 2

n

for all n � 1:

6.6. Remark. Let � be a state on a �nite dimensional C

�

-algebra A: We know from x

2.B that A =

L

r

j=1

A

j

where each A

j

is isomorphic to a full matrix algebra. For each

j 2 f1; :::; rg; let �

j

: A

j

! C be the composition of the canonical inclusion A

j

� A and

of �: Then �

j

is a state on A

j

and � is in the appropriate sense the sum of the �

j

's.

Thus, to understand states on �nite dimensional C

�

-algebras, it is essentially su�cient to

understand states on full matrix algebras.

For the de�nition of the positive cone M

n

(C )

+

in the next proposition, see 4.40.

6.7. Proposition. Consider an integer n � 1 and a state � on the C

�

-algebra M

n

(C ):

Then there exists a positive matrix h 2M

n

(C )

+

such that trace(h) = 1 and

�(a) = trace(ha)

for all a 2M

n

(C ):

The state � is pure if and only if h is a projection of rank 1:

Proof. The bilinear form de�ned on M

n

(C ) by (a; b) 7! trace(ab) is non degenerate, be-

cause trace(a

�

a) =

P

n

j;k=1

ja

j;k

j

2

for all a = (a

j;k

)

1�j;k�n

: Hence, for every linear form

� on M

n

(C ); there exists h 2 M

n

(C ) such that �(a) = trace(ha) for all a 2 M

n

(C ):

Assuming now that � is a state, we have to check that h is positive and of trace 1:

For all a 2 A; one has

trace

�

(h� h

�

)a

�

= trace(ha) � trace(ha

�

) = �(a) � �(a

�

) = 0:

It follows that h = h

�

: Thus there are orthogonal minimal projections p

1

; :::; p

n

2 M

n

(C )

and real numbers t

1

; :::; t

n

such that h =

P

n

k=1

t

k

p

k

: For all j 2 f1; :::; ng; one has t

j

=

trace(hp

j

) = �(p

j

) � 0: In other words, the matrix h is positive. Also trace(h) = �(1) = 1:

The last statement is now straightforward. �

6.8. Remark. Let H be an in�nite dimensional Hilbert space. There is a notion of

trace-class operator on H : they are compact operators h on H such that

X

�2I

he

�

jhe

�

i <1
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for all orthonormal basis (e

�

)

�2I

of H; and they have a trace de�ned by

trace(h) =

X

�2I

he

�

jhe

�

i

(this number trace(h) is indeed independent of the choice of the orthonormal basis). For

such a trace-class operator h which is moreover positive and of trace 1; the linear form

a 7! trace(ha) is a state on B(H): It is known that any state on B(H) which is normal

is of this form: see e.g. Theorem 1.15.3 in [Sak]. (A linear form is said to be normal if

it is continuous with respect to the so-called ultra-weak topology, or equivalently to the

so-called ultra-strong topology - see e.g. [StZ], Corollary 1.6 of Chapter 1.)

Exercise: �nd the positive trace-class operators h of trace 1 for which the state a 7!

trace(ha) is pure.

There are states on B(H) which are not normal. For example, consider a representation

� : B(H)=K(H) �! B(L)

of the Calkin algebra of H in some Hilbert space L; and let p : B(H) ! B(H)=K(H)

denote the canonical projection. For any vector � 2 L; the state ! de�ned on B(H) by

!(a) = h�j�(p(a))�i vanishes on K(H) and consequently is not normal. For the existence of

representations such as �; see Theorem 6.11 below, or more constructively Calkin's original

paper. It is known that � is necessarily faithful (because the Calkin algebra is simple) and

that L is necessarily not separable [Cal].

6.9. Proposition. Let A be a C

�

-algebra and let a 2 A ; a 6= 0: Then there exists a

state � on A such that �(a

�

a) > 0:

Proof. We know from Proposition 4.43 that A

+

is a closed convex cone in A

sa

: As �a

�

a =2

A

+

; the Hahn-Banach theorem shows that there exists a linear form

~

� : A

sa

! R of norm

1 which is positive on A

+

and strictly negative on �a

�

a: The C -linear extension � of

~

� to

A is a state such that �(�a

�

a) < 0: �

6.10. Topology on the state space. Let A be a C

�

-algebra. We denote by B

A

the

space of positive linear form on A of norm � 1; together with the topology of pointwise

convergence; this is obviously a convex subset in the dual of A; and it is a compact space

(a consequence of Tychono� theorem). As already observed in 6.3, the state space S

A

is

a convex subset of B

A

: The set of extreme points of B

A

is clearly the union of f0g and of

the space P (A) of pure states, because a form � 2 B

A

such that 0 < k�k < 1 cannot be

an extreme point of B

A

(indeed � = (1� t)0 + t� k�k for t = k�k).

If A has a unit, S

A

is the intersection of B

A

with the closed a�ne hyperplane of equation

�(1) = 1; so that S

A

is a compact space.

If A has no unit, S

A

is a locally compact space which is non compact ([BrR], Theorem

2.3.15).

If A = C

0

(X) is an abelian C

�

-algebra, we have already observed in Example 6.5 that

P (A) is in bijective correspondance with X (via Dirac measures), and one may check that

this bijection is an homeomorphism. If A = M

n

(C ) for some integer n � 1; Proposition
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6.7 shows that P (A) is in natural bijection with the projective space P

n�1

(C ) of lines

in C

n

(i.e. of orthogonal projections of rank 1 in M

n

(C )), and again this bijection is a

homeomorphism. These examples show that P (A) is an interesting topological space.

The quotient space of P (A) by the relation of equivalence for states (see De�nition 6.23

below) is the dual

^

A of A; and the quotient topology is the Jacobson topology on

^

A [DC

�

,

x 3].

6.b. The GNS-construction

Recall from 4.2 that a representation of a C

�

-algebra A on a Hilbert space H is a linear

map � : A ! B(H) such that �(ab) = �(a)�(b) and �(a

�

) = �(a)

�

for all a; b 2 A; from

Corollary 4.25 that these conditions imply k�(a)k � kak for all a 2 A; and from Proposition

4.37 that a faithful (= injective) representation satis�es moreover k�(a)k = kak for all

a 2 A:

6.11. Theorem (GNS construction). Let A be a C

�

-algebra with unit and let � :

A! C be a state.

(i) Then there exist

! a Hilbert space H

�

;

! a representation �

�

: A! B (H

�

) ;

! a vector �

�

2 H

�

of norm 1

such that

�(a) = h�

�

j �(a)�

�

i

for all a 2 A and such that �

�

is cyclic for �

�

(namely such that �

�

(A)�

�

= H

�

).

(ii) The triple (H

�

; �

�

; �

�

) is unique up to isomorphism in the following sense. Let H

be a Hilbert space, let � : A ! B(H) be a representation and let � 2 H be a unit vector

such that �(a) = h�j�(a)�i for all a 2 A and such that � is cyclic for �: Then there exists

a unitary isomorphism u : H

�

! H such that �(a) = u�

�

(a)u

�

for all a 2 A and such that

u (�

�

) = �:

Proof. (i) Set V

�

= f a 2 A j �(a

�

a) = 0 g: For a 2 V

�

and b 2 A; one has also �(b

�

a) = 0

by Cauchy-Schwarz inequality. Thus

V

�

= f a 2 A j �(b

�

a) = 0 for all b 2 A g

and V

�

is a closed left ideal in A: The positive sesquilinear form (b; a) 7! �(b

�

a) on A

de�nes a positive sesquilinear form on the quotient A=V

�

given by

hb + V

�

j a+ V

�

i = �(b

�

a)

for all a; b 2 A: This makes A=V

�

a prehilbert space. We de�ne H

�

to be its completion,

and �

�

2 H

�

to be the vector 1 + V

�

2 A=V

�

� H

�

:
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For each a 2 A; let L

a

: A=V

�

! A=V

�

denote the left multiplication b+ V

�

7! ab+ V

�

:

To compute kL

a

k ; consider the positive linear form de�ned on A by a 7! �(b

�

ab); which

is of norm �(b

�

b) by Proposition 6.2.i. One has

hL

a

(b + V

�

) j L

a

(b + V

�

)i = �(b

�

a

�

ab) � kak

2

�(b

�

b) = kak

2

hb + V

�

j b+ V

�

i

for all a 2 A; so that kL

a

k � kak : Thus L

a

extends to a bounded operator on H

�

that

we denote by �

�

(a): The map �

�

: A ! B (H

�

) is clearly a representation such that

�(a) = h�

�

j�

�

(a)�

�

i for all a 2 A and such that �

�

(A)�

�

= A=V

�

= H

�

:

(ii) For all a; b 2 A; one has

h�

�

(b)�

�

j �

�

(a)�

�

i = h�

�

j �

�

(b

�

a)�

�

i = h� j �(b

�

a)�i = h�(b)� j �(a)�i :

As the �

�

(a)�

�

's [respectively the �(a)� 's] are dense in H

�

[resp. in H], there exists an

isomorphism u : H

�

! H such that u�

�

(a)�

�

= �(a)� for all a 2 A: We leave it to the

reader to �nish the proof. (See [DC

�

, 2.4.1] if necessary.) �

6.12. Example. Let us revisit the previous proof in case A = M

n

(C ) and � : A ! C

given by �(a) = trace(ap); where

p =

0

B

B

@

1 0 : : : 0

0 0 : : : 0

.

.

.

.

.

. : : :

.

.

.

0 0 : : : 0

1

C

C

A

is a projection of rank one. One has

V

�

=

8

>

>

<

>

>

:

0

B

B

@

0 � : : : �

0 � : : : �

.

.

.

.

.

. : : :

.

.

.

0 � : : : �

1

C

C

A

9

>

>

=

>

>

;

� M

n

(C ):

Thus, if e

1

denotes the �rst vector of the canonical basis of C

n

; the map A! C

n

de�ned

by a 7! a(e

1

) factors as an isomorphism A=V

�

! C

n

: The scalar product de�ned via � on

this A=V

�

� C

n

is given by

hb j ai = �

0

B

B

B

@

0

B

B

@

b

1

� : : : �

b

2

� : : : �

.

.

.

.

.

. : : :

.

.

.

b

n

� : : : �

1

C

C

A

�

0

B

B

@

a

1

� : : : �

a

2

� : : : �

.

.

.

.

.

. : : :

.

.

.

a

n

� : : : �

1

C

C

A

1

C

C

C

A

= �

0

B

B

@

P

b

j

a

j

� : : : �

� � : : : �

.

.

.

.

.

. : : :

.

.

.

� � : : : �

1

C

C

A

=

n

X

j=1

b

j

a

j

and is thus nothing but the standard scalar product on C

n

: The representation �

�

is the

tautological representation of M

n

(C ) on C

n

:
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6.13. Proposition. Let A be a C

�

-algebra with unit, let � be a state on A and let

�

�

: A ! B(H

�

) be the representation obtained by the GNS-construction.

Then the representation �

�

is irreducible if and only if the state � is pure.

Proof. Suppose �rst that �

�

is reducible. There exist two orthogonal projections p; q 2

�

�

(A)

0

; both distinct from 0; such that p+ q = 1: Observe that p�

�

6= 0; because

�

�

(A)p�

�

= p�

�

(A)�

�

= pH

�

6= f0g;

and similarly that q�

�

6= 0: De�ne two states �

0

and �

1

on A by

�

0

(a) =

hp�

�

j �

�

(a)p�

�

i

kp�

�

k

2

;

�

1

(a) =

hq�

�

j �

�

(a)q�

�

i

kq�

�

k

2

so that � = kp�

�

k

2

�

0

+ kq�

�

k

2

�

1

:

To prove that � is not pure, it remains to check that �

0

6= �

1

: But this is clear because

one has �

0

(p) = 1 and, as qp = 0; one has �

1

(p) = 0:

Suppose now that � is not pure, namely that there exist two distinct states �

0

; �

1

on A

and a number t 2]0; 1[ such that � = (1�t)�

0

+t�

1

: The sesquilinear form (a; b) 7! �

0

(a

�

b)

on A de�nes a sesquilinear form on H

�

; let's denote it by (�; �) 7! [�j�]; and it follows from

Riesz Theorem 1.3 that there exists a bounded operator (indeed a positive one) h on H

�

such that [�j�] = h�jh�i for all �; � 2 H

�

: A straightforward computation shows that

h 2 �

�

(A)

0

:

To prove that �

�

is reducible, it remains to check that h =2 C id

H

: But this is clear,

because h 2 C id

H

would imply �

0

= �: �

6.14. Theorem (Gelfand-Naimark, 1943). Let A be a C

�

-algebra.

(i) There exists a Hilbert space H and a faithful representation � of A on H: If A is

separable, H can be chosen separable.

(ii) For each a 2 A; there exists an irreducible representation � of A such that �(a) 6= 0:

Sketch of proof. (i) Let a 2 A; a 6= 0: Let �

a

be as in Proposition 6.9 a state on A such that

�

a

(a

�

a) > 0: Let �

a

: A ! B(H

a

) be the corresponding GNS representation, with cyclic

vector denoted by �

a

: Then k�

a

(a)�

a

k

2

= �

a

(a

�

a) > 0; so that �

a

(a) 6= 0: The Hilbert sum

of the �

a

's over a set of a 's which is dense in A provides a faithful representation of A:

(ii) This follows from the Krein-Milman theorem, which shows in this context that the

set of all states is the weakly closed convex hull of the set of pure states.

For more on this, see e.g. Th�eor�eme 2.7.3 in [DC

�

]. �

6.15. Corollary (Gelfand-Raikov, 1943). For any locally compact group G and for

any g 2 G distinct from the unit element, there exists an irreducible continuous unitary

representation � of G such that �(g) 6= 1:

Proof. See e.g. Corollaire 13.6.6 in [DC

�

]. �
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6.16. Proposition. Let A be a C

�

-algebra, let � : A ! B(H) be a representation of A;

let � 2 H be a unit vector and let � denote the state on A de�ned by

�(a) = h�j�(a)�i :

Then the GNS-representation �

�

is a subrepresentation of �: In particular, if � is irre-

ducible, then �

�

and � are unitarily equivalent.

Proof. This is a straightforward consequence of the unicity part of Theorem 6.11. �

6.c. The Kaplansky density theorem, and some applications.

6.17. Comment. Let A be an involutive subalgebra of H containing id

H

and let a 2 A

00

:

Von Neumann Density Theorem (2.17) shows that there exists a generalized sequence in

A which converges strongly to a; but it gives no information on the norms. For this, the

following is useful.

Whereas the theorem of von Neumann is strictly about von Neumann algebras, the theo-

rem of Kaplansky mixes the C

�

-algebra structure and the von Neumann algebra structure.

6.18. Kaplansky Density Theorem. Let A;B be two involutive algebras of operators

on a Hilbert space H such that

id

H

2 A � B � B(H)

and such that A is strongly dense in B: Then the unit ball of A is strongly dense in the

unit ball of B:

6.19. Lemma. In the hypothesis of the previous theorem, the self-adjoint part A

sa

of A

is strongly dense in the self-adjoint part B

sa

of B:

Proof of Lemma. If A is strongly dense in B; then A is a fortiori weakly dense in B: As

the mapping

8

<

:

B(H) �! B(H)

x 7�!

1

2

(x + x

�

)

is weakly continuous, the self-adjoint part A

sa

= f a 2 Aja

�

= a g of A is weakly dense in

B

sa

: Thus the lemma follows from Proposition 2.16.iii, according to which a convex subset

of B(H) which is weakly closed is automatically strongly closed.

Observe that x 7!

1

2

(x + x

�

) needs not be strongly continuous, so that the argument

using the weak topology cannot be avoided. �

6.20. Proof of Theorem 6.18. We assume for simplicity that A and B are C

�

-algebras

of operators in H; and we leave it to the reader to check that this hypothesis is harmless

(because the norm topology is stronger than the strong topology).
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Consider b 2 B such that kbk � 1:We have to show that any basic strong neighbourhood

V of b in B(H) has a non empty intersection with the unit ball of A: As the case b = 0 is

clear, there is no loss of generality in assuming from now on that kbk = 1:

Assume �rstly that b

�

= b: Let f : [�1; 1] ! [�1; 1] be the function de�ned by

f(t) = 2t=(1 + t

2

): Calculus shows that f is a homeomorphism; let g denote the inverse

homeomorphism. By continuous functional calculus, one may de�ne y = g(b) 2 B; and

one has

b =

2y

1 + y

2

:

Consider a �nite sequence of vectors �

1

; :::; �

n

2 H; a number � > 0 and the strong neigh-

bourhood

V =

�

c 2 B(H)

�

�

�

k(c� b)�

j

k < � for j 2 f1; :::; ng

�

of b in B(H): We have to show that there exists a 2 A \ V such that kak � 1:

By the previous lemma, there exists a self-adjoint element x 2 A

sa

such that

k(x � y)b�

j

k <

�

2

for each j 2 f1; :::; ng







(x � y)(1 + y

2

)

�1

�

j







<

�

4

for each j 2 f1; :::; ng:

One sets a = 2x(1 + x

2

)

�1

2 A

sa

: As t 7! 2t(1 + t

2

)

�1

maps the whole of R onto [�1; 1];

one has kak � 1: One computes

a� b =

2x

1 + x

2

�

2y

1 + y

2

= 2

1

1 + x

2

�

x(1 + y

2

)� (1 + x

2

)y

�

1

1 + y

2

= 2

1

1 + x

2

(x � y)

1

1 + y

2

+ 2

x

1 + x

2

(y � x)

y

1 + y

2

= 2

1

1 + x

2

(x � y)

1

1 + y

2

+

1

2

a(y � x)b:

It follows that

k(a � b)�

i

k � 2













1

1 + x

2

























(x � y)

1

1 + y

2

�

j













+

1

2

kak k(x � y)b�

j

k < �

namely that a 2 V:

Consider now the general case (b not necessarily self-adjoint). The operator

�

0 b

b

�

0

�

2M

2

(B)

is self-adjoint, and its norm is the same as that of b: AsM

2

(A) is strongly dense inM

2

(B);

the previous argument applies and there exists a self-adjoint element

�

a

1;1

a

1;2

a

2;1

a

2;2

�

2 A

sa

of norm at most 1 which approximates

�

0 b

b

�

0

�

in the strong topology. In particular

a

1;2

2 A is of norm at most one and approximates b in the strong topology. �
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6.21. Proposition. Let � : A! B(H) be a representation of a C

�

-algebra A on a Hilbert

space H: The following are equivalent:

(i) the only A-invariant closed subspaces of H are f0g and H;

(ii) the only A-invariant subspaces of H are f0g and H;

(iii) for all �nite sequences �

1

; :::; �

n

in H and for all u 2 U(H); there exists

a unitary element v in A such that u(�

j

) = �(v)(�

j

) for all j 2 f1; :::; ng:

(If A has no unit or if �(1) 6= id

H

; statement (iii) should be understood

for v 2

~

A - see 4.5 - and for the canonical extension of � to

~

A:)

Proof. We refer to [DC

�

,th�eor�eme 2.8.3] or to [Ped, Theorems 2.7.5 and 3.13.2]. The proof

depends strongly on Kaplansky's density theorem. � (For other equivalent conditions, see

Proposition 4.51.)

6.22. Remark. The equivalence (i) () (ii) is sometimes expressed as follows: a repre-

sentation of A is topologically irreducible if and only if it is algebraically irreducible.

6.23. De�nition. Let A be a C

�

-algebra. Two representations � : A ! B(H

�

) and

� : A ! B(H

�

) are equivalent if there exists a surjective isometry u : H

�

! H

�

such that

�(a) = u�(a)u

�

for all a 2 A:

Similarly, two states � and  on A are equivalent if the GNS-representations �

�

and �

 

of A are equivalent.

6.24. Examples. (i) Let �

1

; �

2

be two states on a C

�

-matrix algebra M

n

(C ); and let

h

1

; h

2

2 M

n

(C )

+

be the corresponding positive matrices, as in Proposition 6.7. Then �

1

and �

2

are equivalent if and only if h

1

and h

2

have the same rank.

(ii) Let X be a compact space, let �

1

; �

2

be two states on the abelian C

�

-algebra

C(X) and let �

1

; �

2

be the corresponding probability measures on X: Then �

1

and �

2

are

equivalent states if and only if �

1

and �

2

are equivalent measures. The proof involves

essentially the Radon-Nikodym theorem; see Theorem 2.2.2 in [Arv] for details.

6.25. Proposition. Let A be a C

�

-algebra with unit and let �

1

; �

2

be two pure states

on A: Then �

1

and �

2

are equivalent if and only if there exists a unitary element v 2 A

such that

�

2

(a) = �

1

(vav

�

)

for all a 2 A:

Proof. For j 2 f1; 2g; let (H

j

; �

j

; �

j

) denote the GNS data associated to the state �

j

as in

Theorem 6.11.

Suppose that there exists a unitary v 2 A such that �

2

(a) = �

1

(vav

�

) for all a 2 A: Set

�

0

1

= �

1

(v

�

)�

1

: Then

h�

2

j �

2

(a)�

2

i = �

2

(a) = �

1

(vav

�

) = h�

1

j �

1

(vav

�

)�

1

i = h�

0

1

j �

1

(a)�

0

1

i

for all a 2 A: Hence �

1

and �

2

are equivalent by the unicity part of Theorem 6.11.
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Suppose conversely that �

1

and �

2

are equivalent. There exists an isomorphism u :

H

1

! H

2

such that �

2

(a) = u�

1

(a)u

�

for all a 2 A: As

ku

�

(�

2

)k = k�

1

k = 1

there exists a unitary operator on H which maps u

�

(�

2

) to �

1

; hence there exists by

Proposition 6.21 a unitary v 2 A such that �

1

(v)u

�

(�

2

) = �

1

: Then

�

2

(a) = h�

2

j �

2

(a)�

2

i = hu

�

�

2

j �

1

(a)u

�

�

2

i

= h�

1

(v

�

)�

1

j �

1

(a)�

1

(v

�

)�

1

i = h�

1

j �

1

(vav

�

)�

1

i

= �

1

(vav

�

)

for all a 2 A: �

Let �; be two states on a C

�

-algebra. As states are by de�nition of norm 1; one has

k��  k � 2: The next result appeared in [GlK].

6.26. Theorem (Glimm-Kadison). Let �; be two pure states on a C

�

-algebra A such

that k��  k < 2: Then � and  are equivalent.

Proof. Denote by �

�

: A ! B(H

�

) and �

 

: A ! B(H

 

) the GNS-representations de�ned

by � and  ; and let � : A! B(H

�

�H

 

) denote the direct sum �

�

� �

 

:

Let x =

�

r s

t u

�

2 B(H

�

�H

 

) be an element in the commutant of �(A); namely be

such that

�

r s

t u

��

�

�

(a) 0

0 �

 

(a)

�

=

�

�

�

(a) 0

0 �

 

(a)

��

r s

t u

�

for all a 2 A: One has t�

�

(a) = �

 

(a)t for all a 2 A; hence also

t

�

t�

�

(a) = �

�

(a)t

�

t for all a 2 A;

tt

�

�

 

(a) = �

 

(a)tt

�

for all a 2 A:

Similarly s

�

s commutes with �

 

(a) and ss

�

commutes with �

�

(a) for all a 2 A: As �

�

; �

 

are irreducible (Proposition 6.16), Schur's lemma implies that t

�

t and ss

�

[respectively tt

�

and s

�

s] are scalar multiples of the identity on H

�

[resp. H

 

]. It follows that there exist

constants � � 0; � � 0 and unitary isomorphisms

~

t : H

�

! H

 

; ~s : H

 

! H

�

such that

t = �

~

t ; s = �~s:

Let us now assume that � and  are not equivalent, so that we have to prove that

k��  k = 2: As t = �

~

t satis�es t�

�

(a) = �

 

(a)t for all a 2 A; one has necessarily t = 0:

Similarly, s = 0: Hence any operator in the commutant of �(A) is of the form

�

� 0

0 �

�

;

and one has

�

1 0

0 �1

�

2 �(A)

00

� B (H

�

�H

 

) :
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By Kaplansky Density Theorem, there exists a generalized sequence (x

�

)

�2I

in the unit

ball of A such that

�(x

�

) =

�

�

�

(x

�

) 0

0 �

 

(x

�

)

�

�!

�

1 0

0 �1

�

(strong convergence). In particular, if �

�

2 H

�

and �

 

2 H

 

are the GNS cyclic vectors,













�

�

�

(x

�

) 0

0 �

 

(x

�

)

��

�

�

0

�

�

�

�

�

0

�













�! 0













�

�

�

(x

�

) 0

0 �

 

(x

�

)

��

0

�

 

�

+

�

0

�

 

�













�! 0

and this implies

h�

�

j �

�

(x

�

)�

�

i �! 1 i:e: �(x

�

) ! 1

h�

 

j �

 

(x

�

)�

 

i �! �1 i:e:  (x

�

) ! �1 :

This shows that

j

�

��  

�

(x

�

)j ! 2

and thus, because kx

�

k � 1 for all � 2 I;

k��  k = 2

as was to be proved. �

6.26

bis

. Exercice. Two representations �

1

: A ! B(H

1

) and �

2

: A ! B(H

2

) of a C

�

-

algebra A are said to be quasi-equivalent if there exists an isomorphism of von Neumann

algebras � : �

1

(A)

00

! �

2

(A)

00

such that �(�

1

(a)) = �

2

(a) for all a 2 A (equivalent

de�nitions in [DvN, n

0

5.3]).

Let �; be two states on A such that k��  k < 2: If � is pure, show that the corres-

ponding GNS-representations �

�

and �

 

are quasi-equivalent.

Let (�

n

)

n�1

be a sequence of pure states on A which converge to a state  on A in the

norm : lim

n!1

k � �

n

k = 0: Show that  is pure, and equivalent to �

n

for n� 1: [This

is Corollary 4.8 in [Kad].]

6.27. Proposition. Let A be a C

�

-algebra of operators on a Hilbert space H; let �; � 2

H(1) be two vectors of norm 1 and let !

�

; !

�

be the corresponding vector states, de�ned

as in Example 6.5.

(i) One has

k!

�

� !

�

k � k� + �k k� � �k ;

k!

�

� !

�

k � 2

p

1 � jh� j �ij

2

:
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(ii) Assume moreover that A is irreducible on H: Then

k!

�

� !

�

k � 1 � jh� j �ij

2

:

Proof. (i) For each a 2 A; one has

jh� j a�i � h� j a�ij =

1

2

�

�

h� + � j a(� � �)i + h� � � j a(� + �)i

�

�

� kak k� + �k k� � �k

by the Cauchy-Schwarz inequality, and the �rst inequality follows. For the second one,

upon replacing � by e

it

� for some t 2 R; we may assume that h� j �i is real. Then

k� + �k

2

= h� j �i + 2h� j �i+ h� j �i = 2 (1 + h� j �i)

k� � �k

2

= h� j �i � 2h� j �i+ h� j �i = 2 (1� h� j �i)

and the inequalities of (i) follow.

(ii) Consider the projection p

�

of H onto the line C �; given by

p

�

(�) = h� j �i �

for all � 2 H: By Kaplanski density theorem, there exists a sequence (a

n

)

n�1

in the unit

ball of A such that

a

n

� 7�! p

�

(�) and a

n

� 7�! p

�

(�)

when n 7! 1: One has

lim

n!1

!

�

(a

n

) = lim

n!1

ha

n

� j �i = 1

lim

n!1

!

�

(a

n

) = lim

n!1

ha

n

� j �i = jh� j �ij

2

lim

n!1

(!

�

� !

�

) (a

n

) = 1 � jh� j �ij

2

and Claim (ii) follows. �

6.d. Limit states on AF-algebras

6.28. States as limit states. Let A be an AF-algebra with unit, and let A

0

� A

1

� :::

be a tower of �nite dimensional sub-C

�

-algebras of A such that the identity of A is in A

0

and such that

A =

[

n�0

A

n

:

For each n � 0; let �

n

be a state on A

n

; we assume that the restriction to A

n

of �

n+1

coincides with �

n

: Let �

1

:

S

n�o

A

n

! C be the resulting linear form. As k�

n

k = 1 for

all n � 0; the form �

1

extends to a state � : A! C called the limit of the �

n

's.

Any state � on A is the limit of the restrictions �jA

n

's.
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6.29. Proposition. Let A =

S

n�0

A

n

be an AF-algebra and let � = lim

n!1

�

n

be a

state on A as in the previous number. If �

n

is pure for each n � 0 then � is pure.

Proof. Let �

0

; �

1

be states on A and let t 2]0; 1[ be such that � = (1� t)�

0

+ t�

1

: For each

n � 0 one has �

n

= (1� t) (�

0

jA

n

) + t (�

1

jA

n

) by restriction to A

n

; hence �

0

jA

n

= �

1

jA

n

by purity of �

n

: It follows that �

0

= �

1

: �

6.30. Product states on tensor products of two C

�

-algebras. Let A;B be two

C

�

-algebras and let � : A ! C ;  : B ! C be two states. To avoid technicalities on

tensor products, we assume here that A and B are �nite dimensional, so that the tensor

product A
B is obviously a C

�

-algebra. Then

�
  :

8

<

:

A
B �! C

X

i

a

i


 b

i

7�!

X

i

�(a

i

) 

(

b

i

)

is a state. Indeed, the GNS construction provides data (�

�

;H

�

; �

�

) and (�

 

;H

 

; �

 

)

associated to � and  ; hence also a representation

�

�


 �

 

: A
B �! B (H

�


H

 

)

and a unit vector �

�


 �

 

2 H

�


H

 

: As

(�
  )

 

X

i

a

i


 b

i

!

=

X

i

�(a

i

) (b

i

) =

X

i

h�

�

j�

�

(a

i

)�

�

i h�

 

j�

 

(a

i

)�

 

i

=

*

�

�


 �

 

�

�

�

�

�

 

X

i

�

�

(a

i

)
 �

 

(b

i

)

!

�

�


 �

 

+

for all

P

i

a

i


 b

i

2 A
B; the linear form �
  is indeed a state, as claimed.

States of this form are called product states on A
B:

All this carries over to arbitrary C

�

-algebras as long as one deals with the so-called

maximal tensor product A


max

B:

States on tensor products are far from all being product states. This is intuitively clear

from Proposition 6.8: given two integers k; l � 1; the state space of M

k

(C ) [respectively

of M

l

(C ); of M

k

(C ) 
 M

l

(C ) � M

kl

(C )] is of dimension

k(k+1)

2

� 1 [resp.

l(l+1)

2

� 1,

kl(kl+1)

2

� 1] and

k(k + 1)

2

� 1 +

l(l + 1)

2

� 1 <

kl(kl+ 1)

2

� 1

as soon as k � 2 and l � 2: See also the exercice below.

6.31. Exercice. Let ! be the linear form de�ned on M

2

(C ) 
M

2

(C ) by

!

��

a b

c d

�




�

a

0

b

0

c

0

d

0

��

=

1

2

(aa

0

+ dd

0

):
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Check that ! is a state which is not a product state.

[Indication. The two linear forms mapping

�

a b

c d

�




�

a

0

b

0

c

0

d

0

�

to aa

0

and dd

0

are product states on M

2

(C ) 
M

2

(C ); so that ! is indeed a state.

Let !

p

be a product state, given by an expression of the form

!

p

��

a b

c d

�




�

a

0

b

0

c

0

d

0

��

=

trace

��

a b

c d

��

r s

s 1� r

��

trace

��

a

0

b

0

c

0

d

0

��

r

0

s

0

s

0

1� r

0

��

where

�

r s

s 1� r

�

and

�

r

0

s

0

s

0

1� r

0

�

positive matrices. Suppose (ab absurdo) that ! =

!

p

; evaluate on tensor products of elementary 2-by-2-matrices, and see that one arrives at

a contradiction.]

6.32. Product states on UHF-algebras. Let A be a UHF-algebra and let (k

j

)

j�1

be

a sequence of integers, with k

j

� 2 for all j; such that

A =

1

O

j=1

M

k

j

(C )

(see 5.9). For each j � 1; choose a positive matrix h

j

2M

k

j

(C ) of trace 1: For each n � 1;

the linear form

�

n

:

n

O

j=1

M

k

j

(C ) �M

k

1

k

2

:::k

n

(C ) �! C

de�ned by �

n

(x) = tr

�

�

N

n

j=1

h

j

�

x

�

is a state. The resulting state � on A is called a

product state. We write

�(x) = tr

0

@

0

@

1

O

j=1

h

j

1

A

x

1

A

for all x 2 A:

6.33. Exercice. Consider the UHF algebra

A =

1

O

j=1

M

2

(C )

j
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of Example 5.16. Given a sequence � = (�

j

)

j�1

of real numbers in [0; 1]; de�ne a product

state �

�

on A by

�

�

= tr

0

@

0

@

1

O

j=1

�

�

j

0

0 1� �

j

�

1

A

x

1

A

for all a 2 A:

(i) Check that �

�

is the unique tracial state (see 5.10) on A if and only if �

j

=

1

2

for all

j � 1:

(ii) Show that �

�

is pure if and only if �

j

2 f0; 1g for all j � 1:

(iii) Let � = (�

j

)

j�1

and �

0

=

�

�

0

j

�

j�1

be two sequences of 0 's and 1 's. Show that the

states �

�

and �

�

0

are equivalent if and only if there exists n � 1 such that �

j

= �

0

j

for all

j � n:

(iv) Deduce from (iii) that A has uncountably many pairwise inequivalent irreducible

representations.

[Indication. (ii) If 0 < �

j

< 1 for some j � 1; it is easy to write �

�

as a non trivial

convex combination of two distinct states. Conversely, suppose �

j

2 f0; 1g for all j � 1:

Let �

0

; �

00

be two states on A and let t 2]0; 1[ be such that �

�

= (1 � t)�

0

+ t�

00

: Check

that the restrictions of �

�

; �

0

; �

00

to

N

1

j=1

M

2

(C )

j

coincide for all n � 1; so that one has

�

�

= �

0

= �

00

:

(iii) If �

j

= �

0

j

for j � n; use the fact that

N

n

j=1

M

2

(C )

j

has a unique irreducible

representation (up to equivalence).

Suppose conversely that �

�

and �

�

0

are equivalent. By Proposition 6.25 and Exercice

4.28, there exists an integer n � 1 and a unitary element v 2 A

n

such that

j�

�

0

(x) � �

�

(vxv

�

)j < 1

for all x 2 A ; kxk � 1: For any j > n; let e

j

= 1
:::
1


�

1 0

0 0

�


1
::: 2 A; where the

matrix

�

1 0

0 0

�

appears in the j

th

place; as �

�

0

(e

j

) = �

0

j

and �

�

(ve

j

v

�

) = �

�

(e

j

) = �

j

;

one has j�

0

j

� �

j

j < 1; namely �

0

j

= �

j

:]

6.34. Remarks on Powers' factors. Let A be as in the previous exercice. For each

� 2]0;

1

2

[; set � =

�

1��

2]0; 1[; let �

�

be the state on A associated to the constant sequence

� = (�;�; �; :::); and let �

�

: A ! B(H

�

) be the corresponding GNS representation. The

von Neumann algebras

R

�

= �

�

(A)

00

generated by the image of �

�

is known to be a factor, indeed a factor of type III, and

the R

�

's are known to be pairwise nonisomorphic factors of type III [Po1]. They are

the Powers' factors. This family of factors has played a central rôle in the theory of von

Neumann algebras (works of Pukanzky and Glimm before [Po1], works of Araki, Woods,

Krieger and Connes after [Po1], to quote but a few).
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CHAPTER 7. THE ALGEBRA OF

CANONICAL ANTICOMMUTATION RELATIONS

7.a. The full Fock space.

7.1. Tensor products of Hilbert spaces. Let H

1

;H

2

be two Hilbert spaces. We denote

by H

1

�H

2

the tensor product of H

1

and H

2

viewed as complex vector spaces.

Recall that, by de�nition of the tensor product, any bilinear map H

1

�H

2

! C gives

rise to a linear form on H

1

�H

2

; similarly, any R-bilinear map � : H

1

�H

2

! C such that

� (i�

1

; �

2

) = � (�

1

; i�

2

) = �i� (�

1

; �

2

) for all (�

1

; �

2

) 2 H

1

�H

2

gives rise to an antilinear

form on H

1

�H

2

: It follows that the form

�

H

1

�H

2

�H

1

�H

2

�! C

(�

1

; �

2

; �

1

; �

2

) 7�! h�

1

j�

1

i h�

2

j�

2

i

gives rise to a sesquilinear form h:::j:::i on H

1

�H

2

such that

h�

1


 �

2

j�

1


 �

2

i = h�

1

j�

1

i h�

2

j�

2

i

for all �

1

; �

1

2 H

1

and �

2

; �

2

2 H

2

:

Any � 2 H

1

�H

2

may be written � =

P

n

i=1

�

1;i


 �

2;i

: The Gram-Schmidt orthogona-

lization process shows that there is no loss of generality in assuming that the sequence

(�

2;i

)

1�i�n

is orthogonal. Then h�j�i =

P

n

i=1

k�

1;i

k

2

k�

2;i

k

2

: It follows that the sesquilinear

form de�ned above is positive de�nite on H

1

�H

2

:

The completion of H

1

�H

2

with respect to this scalar product is a Hilbert space which

is called the tensor product of H

1

and H

2

; and which is denoted by H

1


H

2

:

If (e

1;�

)

�2I

and (e

2;�

)

�2K

are respectively orthonormal basis in H

1

and H

2

; it is easy to

check that (e

1;�


 e

2;�

)

(�;�)2I�K

is an orthonormal basis ofH

1


H

2

: IfH

1

= L

2

(X

1

; �

1

) and

H

2

= L

2

(X

2

; �

2

) for measure spaces (X

1

; �

1

) and (X

2

; �

2

); one may check that H

1


H

2

is isomorphic to L

2

(X

1

�X

2

; �

1

� �

2

):

Tensor products H

1


 :::
H

n

of n � 2 Hilbert spaces are de�ned similarly.

Caution. The reader may remember that the \algebraic" tensor product can be de�ned

by a universal property summed up in the canonical isomorphism

Lin (H

1

�H

2

;H

3

) � Bil (H

1

;H

2

;H

3

)

(see e.g. Bourbaki, Alg�ebre, Chapitre II, page II.51). There is a Banach space H

1




�

H

2

, which is a completion of H

1

� H

2

, such that the space of bounded linear operators

H

1




�

H

2

! H

3

is canonically isomorphic to the space of bounded bilinear operators

Typeset by A

M

S-T

E

X

1
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H

1

�H

2

! H

3

; but this so-called projective tensor product is not in general isomorphic to

the Hilbert space tensor product H

1


H

2

de�ned here.

7.2. The full Fock space of a Hilbert space. Let H be a Hilbert space. For each

integer n � 0; set

H


n

= H
 :::
H (n copies)

with the convention H


0

= C : The full Fock space or the exponential of H is the Hilbert

space direct sum

EXP (H) =

M

n�0

H


n

:

Observe that there is a canonical inclusion of the tensor algebra

L

alg

n�0

H

�n

in EXP (H);

with dense image.

If H

1

;H

2

are two Hilbert spaces, there is a natural isomorphism

EXP (H

1

�H

2

) � EXP (H

1

) 
EXP (H

2

)

which motivates the notation. For each � 2 H; one may de�ne

EXP (�) =

1

M

n=0

1

p

(n!)

�


n

;

one has then hEXP (�)jEXP (�)i = exp h�j�i for all �; � 2 H: If �

1

; :::; �

k

are pairwise

distinct vectors in H; it can be shown that EXP (�

1

); :::; EXP (�

k

) are linearly independent

vectors in EXP (H) [Gui, Proposition 2.2].

One may view EXP as a functor from the category of Hilbert spaces and contractions

(namely operators of norms at most 1) to the category of Hilbert spaces with distinguished

unit vectors (the vector 1 2 C � H


0

� EXP (H)) and contractions preserving the

distinguished vectors.

7.3. The operators `(�). Let H be a Hilbert space. For each vector � 2 H and each

integer n � 0; the linear map H


n

! H


(n+1)

de�ned by

�

1


 :::
 �

n

7�! � 
 �

1


 :::
 �

n

extends to a bounded operator

H


n

�! H


(n+1)

of norm k�k : As the later norm is independent of n; the direct sum over n � 0 of these

operators is a bounded operator

`(�) : EXP (H) �! EXP (H)

of norm k�k : On has obviously

h�

0


 �

1


 :::
 �

n

j � 
 �

0

1


 :::
 �

0

n

i = hh�j�

0

i �

1


 :::
 �

n

j �

0

1


 :::
 �

0

n

i
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for each n � 0 and �

0

; :::; �

n

; �

0

1

; :::; �

0

n

2 H; so that the adjoint `(�)

�

of `(�) is given by

`(�)

�

(�

0


 :::
 �

n

) = h�j�

0

i �

1


 :::
 �

n

:

It is then equally obvious that

`(�)

�

`(�) = h�j�i id

EXP (H)

for all �; � 2 H:

7.4. Digression on the C

�

-algebra C

�

(`(H)): This is the C

�

-algebra of operators on

EXP (H) generated by the operators `(�); for all � 2 H:

If H is in�nite dimensional, C

�

(`(H)) is the so-called Cuntz algebra O

1

of [Cun].

Suppose H is of �nite dimension, say n; and let e

1

; :::; e

n

be an orthonormal basis of H:

Then

p =

n

X

j=1

`(e

j

)`(e

j

)

�

is an orthogonal projection of EXP (H): One may show that p is independent of the choice

of the orthonormal basis. If h1�pi denotes the principal two-sided ideal generated by 1�p

in C

�

(`(H)); one has a short exact sequence

0 �! K � h1� pi �! C

�

(`(H)) �! O

n

�! 0

where K denotes the algebra of compact operators on some separable in�nite dimensional

Hilbert space and where O

n

is the n

th

Cuntz algebra. (See [Cun, Proposition 3.1], as well

as [VDN, Proposition 1.5.9].)

Let S

j

denote the image of `(�) in O

n

: One has the relations

S

�

j

S

k

= �

j;k

j; k 2 f1; :::; ng

n

X

j=1

S

j

S

�

j

= 1

which show that O

n

is generated by the isometries S

1

; :::; S

n

and that the image projections

of the S

j

's add up to 1:

7.B. The Fock space and the definition of the CAR C

�

-algebra.

7.5. The antisymmetric Fock space. Consider a Hilbert space H; an integer n � 1

and the tensor product H


n

: There is a unitary representation � 7! u

�

of the symmetric

group on n letters S

n

on the space H


n

de�ned by

u

�

(�

1


 :::
 �

n

) = �

�(1)


 :::
 �

�(n)

for �

1

; :::; �

n

2 H:
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We de�ne

V

n

H to be the subspace of H


n

of vectors on which S

n

acts by the signature,

and we denote by

P

n

=

1

n!

X

�2S

n

(�1)

�

u

�

the orthogonal projection of H


n

onto

V

n

H; where (�1)

�

denotes the signature of the

permutation �: For �

1

; ::; �

n

2 H; we write

�

1

^ ::: ^ �

n

=

p

n! P

n

(�

1


 :::
 �

n

) 2

n

^

H:

Observe the factor

p

n!; which is crucial below. One has of course

�

�(1)

^ ::: ^ �

�(n)

= (�1)

�

�

1

^ ::: ^ �

n

for all � 2 S

n

:

The antisymmetric Fock space of H is the Hilbert space direct sum

F(H) =

M

n�0

n

^

H

where

V

0

H = C by convention. It is also called the Fermi Fock space, or here shortly the

Fock space of H: It is important to realize that

V

n

H and F(H) are de�ned as subspaces

of H


n

and EXP (H) respectively; scalar products of vectors in these spaces do not have

to be further de�ned, but the following proposition is important for computations.

7.6. Proposition. Let �

1

; :::; �

n

; �

1

; :::; �

n

2 H: Then

h�

1

^ ::: ^ �

n

j �

1

^ ::: ^ �

n

i = det

�

h�

j

j�

k

i

1�j;k�n

�

:

Proof. One has

h�

1

^ ::: ^ �

n

j �

1

^ ::: ^ �

n

i

=

D

p

n! P

n

(�

1


 :::
 �

n

) j

p

n! P

n

(�

1


 :::
 �

n

)

E

by de�nition

= n! h�

1


 :::
 �

n

j P

n

(�

1


 :::
 �

n

)i because P

n

= P

�

n

= P

2

n

=

X

�2S

n

Y

1�j�n

(�1)

�




�

j

j�

�(j)

�

by de�nition of P

n

= det

�

h�

j

j�

k

i

1�j;k�n

�

where the last equality is one possible de�nition of the determinant (see Bourbaki, Alg�ebre,

Chapitre III, page III.94). �



7. THE CAR ALGEBRA 5

7.7. Remarks. (i) Here is a �rst consequence of Proposition 7.6: if (e

�

)

�2I

is an orthonor-

mal basis of H indexed by a totally ordered set I; then vectors of the form

e

�

1

^ ::: ^ e

�

n

with �

1

; :::; �

n

2 I and �

1

< ::: < �

n

constitute an orthonormal basis of

V

n

H:

(ii) Here is a second consequence: for �

1

; :::; �

n

; �

1

; :::; �

n

2 H; one has

h�

1

^ ::: ^ �

n

j �

1

^ ::: ^ �

n

i = 0

if and only if the linear span of f�

1

; :::; �

n

g contains a nonzero vector which is orthogonal

to the linear span of f�

1

; :::; �

n

g:

(iii) If n � 2; it is important to note that the vector e

�

1


 :::
 e

�

n

; of norm 1 in H


n

; is

projected by P

n

onto the vector

1

p

n!

e

�

1

^ ::: ^ e

�

n

; not onto the unit vector e

�

1

^ ::: ^ e

�

n

!

7.8. Lemma. Let H

1

;H

2

be two Hilbert spaces; for n � 1; let L : H


n

1

! H

2

be a

bounded operator such that Lu

�

= (�1)

�

L for all � 2 S

n

(where u

�

is as in 7.5). Then

L (�

1

^ ::: ^ �

n

) =

p

n! L (�

1


 :::�

n

)

for all �

1

; :::; �

n

2 H:

Proof. One has

L (�

1

^ ::: ^ �

n

) =

p

n! L P

n

(�

1


 :::
 �

n

)

=

1

p

n!

L

 

X

�2S

n

(�1)

�

u

�

(�

1


 :::
 �

n

)

!

=

1

p

n!

X

�2S

n

L (�

1


 :::
 �

n

)

=

p

n! L (�

1


 :::
 �

n

)

�

7.9. The operators a

n

(�): Consider a Hilbert space H; a vector � 2 H and an integer

n � 0: De�ne an operator A

n

(�) : H


n

!

V

n+1

H by

A

n

(�)

�

�

1


 :::
 �

n

�

=

1

p

n!

� ^ �

1

^ ::: ^ �

n

=

r

(n+ 1)!

n!

P

n+1

�

� 
 �

1


 :::
 �

n

�

for all �

1

; :::; �

n

2 H; it is clearly a bounded operator of norm at most

q

(n+1)!

n!

k�k : By

the previous lemma, one has

(*) A

n

(�)

�

�

1

^ ::: ^ �

n

�

=

p

(n + 1)! P

n+1

�

� 
 �

1


 :::
 �

n

�

:
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We denote the restriction of A

n

(�) to

V

n

H by

a

n

(�) :

8

<

:

n

^

H �!

n+1

^

H

�

1

^ ::: ^ �

n

7�! � ^ �

1

^ ::: ^ �

n

and one has ka

n

(�)k �

p

(n + 1)! k�k by (�): But we shall see in Corollary 7.11 below

that, notwithstanding what the above estimate may suggest, the norm of a

n

(�) is in fact

independent on n.

7.10. Proposition. For �; � 2 H; one has

a

�

n

(�)a

n

(�) + a

n�1

(�)a

�

n�1

(�) = h�j�i id

V

n

H

a

n+1

(�)a

n

(�) + a

n+1

(�)a

n

(�) = 0

Proof. Let �

1

; :::; �

n+1

;  

1

; :::;  

n

2 H: By Lemma 7.6, one has

h�

1

^ ::: ^ �

n+1

j � ^  

1

^ ::: ^  

n

i

= det

0

B

B

@

h�

1

j�i h�

1

j 

1

i : : : h�

1

j 

n

i

h�

2

j�i h�

2

j 

1

i : : : h�

2

j 

n

i

.

.

.

.

.

.

.

.

.

.

.

.

h�

n+1

j�i h�

n+1

j 

1

i : : : h�

n+1

j 

n

i

1

C

C

A

=

n+1

X

j=1

(�1)

j+1

h�

j

j�i

D

�

1

^ :::

^

j::: ^ �

n+1

j  

1

^ ::: ^  

n

E

=

*

n+1

X

j=1

(�1)

j+1

h�j�

j

i�

1

^ :::

^

j::: ^ �

n+1

�

�

�

 

1

^ ::: ^  

n

+

by expansion of the determinant in terms of the �rst column. It follows that the adjoint

of a

n

(�) is given by

a

�

n

(�) (�

1

^ ::: ^ �

n+1

) =

n+1

X

j=1

(�1)

j+1

h�j�

j

i�

1

^ :::

^

j::: ^ �

n+1

:

One has consequently

a

�

n

(�)a

n

(�) ( 

1

^ ::: ^  

n

) = h�j�i  

1

^ ::: ^  

n

+

n

X

j=1

(�1)

j

h�j 

j

i � ^  

1

^ :::

^

j::: ^  

n

a

n�1

(�)a

�

n�1

(�) ( 

1

^ ::: ^  

n

) = � ^

n

X

j=1

(�1)

j+1

h�j 

j

i  

1

^ :::

^

j::: ^  

n

and the �rst relation follows. We leave it to the reader to check the second one. �
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7.11. Corollary. For each � 2 H; � 6= 0 and for all n � 0; the operator

1

k�k

2

a

�

n

(�)a

n

(�) is

a projection on

V

n

H: In particular

ka

n

(�)k = k�k

for all n � 0 and for all � 2 H:

Proof. Using the two relations of Proposition 7.10 (case � = �), one has

(a

�

n

(�)a

n

(�))

2

= a

�

n

(�)

�

k�k

2

id

^

n+1

H

� a

�

n+1

(�)a

n+1

(�)

�

a

n

(�) = k�k

2

a

�

n

(�)a

n

(�)

and the corollary follows. �

7.12. De�nition. For each � 2 H; the corresponding creation operator

a(�) : F(H) �! F(H)

is the direct sum of the a

n

(�) 's on the

V

n

H 's; it is a bounded operator of norm k�k

which depends linearly on �: Its adjoint is the annihilation operator a

�

(�) which depends

antilinearly on �: If k�k = 1; then a

�

(�)a(�) and a(�)a

�

(�) are projections in B(F(H)):

The CAR algebra is the C

�

-algebra CAR(H) of operators on F(H) generated by the

creation operators. It is a C

�

-algebra with unit. The map

(

H �! CAR(H)

� 7�! a(�)

is a linear isometry. One has the CAR relations

a

�

(�)a(�) + a(�)a

�

(�) = h�j�i 1

a(�)a(�) + a(�)a(�) = 0

for all �; � 2 H:

7.13. Remarks. (i) Let (e

�

)

�2I

be an orthonormal basis of H; and set x

�

= a(e

�

) for

each � 2 I: Then (x

�

)

�2I

generate CAR(H) as a C

�

-algebra. This is because the map

a : H ! CAR(H) is an isometry; thus, for any � =

P

�2I

�

�

e

�

2 H; the creation operator

a(�) is a limit in CAR(H) of �nite linear combinations of the x

�

's.

(ii) We have chosen to denote by � 7! a(�) the linear map giving creation operators, as

in [PoS], [Sla]. In many references, our a(�) is denoted by a

�

(�); so that � 7! a(�) is an

anti-linear map corresponding to annihilation operator .... [BrR], [Eva].

7.14. On physics and etymology. There are di�culties to build up consistent theories

obeying both quantum requirements and relativistic requirements. One di�culty is that

any description of one particle has to include a description of arbitrarily many particles.

This motivates the introduction of a formalism which can describe an arbitrary number

of particles. In case of fermions (e.g. of electrons), if one particle has states which can be
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described by vectors in a Hilbert space H; then states with n particles are described by

vectors in

V

n

H and the operator

a(�) : �

1

^ ::: ^ �

n

7! � ^ �

1

^ ::: ^ �

n

\creates" one more fermion in state �: (This \creation" being in fact an annihilation in

case � lies in the linear space spanned by the �

j

's, in accordance with the Pauli exclusion

principle.)

7.C. The CAR algebra as an UHF-algebra.

What we retain from the construction of 7.B is that, for any Hilbert space H; there is

a C

�

-algebra with unit CAR(H) and a linear map a : H ! CAR(H) such that the CAR

relations hold, namely such that

a

�

(�)a(�) + a(�)a

�

(�) = h�j�i 1

a(�)a(�) + a(�)a(�) = 0

for all �; � 2 H; and such that a(H) generates CAR(H) as a C

�

-algebra.

7.15. Lemma. Let H be a Hilbert space of dimension 1; let � 2 H be a unit vector and

set x = a(�):

Then CAR(H) is isomorphic to M

2

(C ): More precisely the operators

e

1;1

= x

�

x e

1;2

= x

�

e

2;1

= x e

2;2

= xx

�

constitue a system of matrix units in CAR(H) such that e

1;1

+ e

2;2

= 1; and this system

linearly generates CAR(H):

Proof. The CAR relations read here

x

�

x+ xx

�

= 1 and x

2

= 0:

Repeating the proof of Corollary 7.11

(x

�

x)

2

= x

�

(1� x

�

x)x = x

�

x

we see that e

1;1

is a projection. Other relations, such as e

1;1

e

1;2

= e

1;2

; are equally

straightforward to check. �
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7.16. Lemma. Let A be a C

�

-algebra with unit, and let A

1

; :::; A

n

be pairwise com-

muting sub-C

�

-algebras of A which contain 1: Assume that A

j

is isomorphic to a matrix

algebra M

k

j

(C ) for each j 2 f1; :::; ng; and set k =

Q

n

j=1

k

j

: Then the sub-C

�

-algebra of

A generated by A

1

[ ::: [A

n

is isomorphic to M

k

(C ):

Proof. The multilinear map

�

A

1

� :::�A

n

�! A

(a

1

; :::; a

n

) 7�! a

1

a

2

:::a

n

de�nes a linear map � : A

1


 :::
A

n

! A: The commutation hypothesis implies that � is

a morphism of C

�

-algebras. The domain of � is isomorphic to the matrix algebra

M

k

1

(C ) 
 :::
M

k

n

(C ) �M

k

(C ):

As this algebra is simple and as � is obviously non zero, � is one-to-one and its image is

precisely the sub-C

�

-algebra generated by A

1

[ ::: [A

n

: �

7.17. Lemma. Let H be a Hilbert space and let V � H be a subspace of dimension

n < 1: Then the sub-C

�

-algebra C

�

(a(V )) of CAR(H) generated by a(V ) is isomorphic

to

M

2

n

(C ):

Proof. Choose an orthonormal basis fv

1

; :::; v

n

g of V and set x

j

= a(v

j

) for all j 2 f1; ::; ng:

The CAR relations read

x

�

j

x

k

+ x

k

x

�

j

= �

j;k

;

x

j

x

k

+ x

k

x

j

= 0

(1 � j; k � n). For each l 2 f0; 1:::; ng; set

u

l

=

l

Y

j=1

�

1� 2x

j

x

�

j

�

with u

0

= 1: For each j 2 f1; :::; ng; we know from Lemma 7.15 that x

j

x

�

j

is a projection;

thus 1 � 2x

j

x

�

j

is a selfadjoint unitary (namely a unitary of square 1). From the CAR

relations we know also that the x

j

x

�

j

's commute pairwise; thus u

l

is a self-adjoint unitary

for all l 2 f1; :::; ng:

Set also

e

(l)

1;1

= u

l�1

x

�

l

x

l

u

l�1

= x

�

l

x

l

e

(l)

1;2

= u

l�1

x

�

l

e

(l)

2;1

= x

l

u

l�1

e

(l)

2;2

= x

l

x

�

l

where the equality u

l�1

x

�

l

x

�

u

l�1

= x

�

l

x

l

holds because x

�

l

x

l

commutes with u

l�1

(observe

that x

�

l

x

l

and x

j

x

�

j

commute for all l; j 2 f1; :::; ng).
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We claim �rstly that e

(l)

j;k

and e

(m)

j

0

;k

0

commute if l 6= m: Indeed, one computes successively

�

1� 2x

j

x

�

j

�

x

j

�

1� 2x

j

x

�

j

�

= x

j

�

1� 2(1� x

�

j

x

j

)

�

= �x

j

�

1� 2x

j

x

�

j

�

x

l

�

1� 2x

j

x

�

j

�

= x

l

if j 6= l

and

u

m

x

l

u

m

=

�

�x

l

if l �m

x

l

if l > m

One has then, say if l < m;

e

(l)

2;1

e

(m)

2;1

= x

l

u

l�1

x

m

u

m�1

= +x

l

x

m

u

l�1

u

m�1

by the computation above (m > l � 1)

= �x

m

x

l

u

m�1

u

l�1

because u

l�1

u

m�1

= u

m�1

u

l�1

and x

l

x

m

+ x

m

x

l

= 0

= +x

m

u

m�1

x

l

u

l�1

by the computation above (l �m� 1)

= e

(m)

2;1

e

(l)

2;1

and more generally e

(l)

j;k

e

(m)

j

0

;k

0

= e

(m)

j

0

;k

0

e

(l)

j;k

for all j; k; j

0

; k

0

2 f1; 2g by similar computations.

We claim secondly that

�

e

(l)

j;k

�

1�j;k�2

is a system of matrix units of order 2 for each

l 2 f1; :::; ng: This follows from arguments as in the proof of Lemma 7.15.

Thus, for each l 2 f1; :::; ng; the system

�

e

(l)

j;k

�

1�j;k�2

generates a sub-C

�

-algebra of

C

�

(a(V )) isomorphic to M

2

(C ); and these sub-C

�

-algebras pairwise commute. Lemma

7.17 follows now from Lemma 7.16.

The trick of introducing the u

l

's to obtain commuting systems of matrix units is taken

from [PoS]. �

7.18. Theorem. Let H be a separable Hilbert space. If H is of �nite dimension n; then

CAR(H) �M

2

n

(C ):

If H is in�nite dimensional, then

CAR(H) �

1

O

j=1

M

2

(C )

j

is a UHF-algebra as in example 5.10.

Proof. In case dim

C

H <1; the claim is contained in the previous lemma.

If dim

C

H = 1; choose an orthonormal basis (e

n

)

n�1

of H: For each n � 1; let V

n

denote the subspace of H generated by fe

1

; :::; e

n

g and set A

n

= C

�

(a(V

n

)): Then one has

a tower

A

1

�M

2

(C ) � ::: � A

n

�M

2

n

(C ) � :::

of subalgebras of CAR(H): Their union is dense in CAR(H); by the argument of Remark

7.13. The claim follows. �
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7.19. Corollary. The action of the CAR algebra CAR(H) in the Fock space F(H) is

irreducible

Proof. If H is of �nite dimension, say n < 1; then F(H) is of dimension 2

n

and, by

comparison of dimensions, one has CAR(H) = B

�

F(H)

�

:

If H is in�nite dimensional, let (V

n

)

n�1

and (A

n

)

n�1

be as in the proof of Theorem

7.18. If \primes" denote commutants in B

�

F(H)

�

; one has

CAR(H)

0

=

\

n�1

A

0

n

:

For each n � 1; the commutant A

0

n

consists of operators of the form

�

C 0

0 �

�

with respect

to the decomposition F(H) = F(V

n

)�F(V

n

)

?

: As

S

n�1

F(V

n

) is dense in F(H); it follows

that

T

n�1

A

0

n

= C and this ends the proof.

Alternatively, one may also observe that 1 2 C �

V

0

H � F(H) is a cyclic vector for

the representation of CAR(H) on F(H); and then observe that the corresponding state on

CAR(H) is pure by Proposition 6.29.

We present �nally a third proof using Schur's lemma. Let T be a bounded operator on

F(H) which commutes with a(�) and a

�

(�) for all � 2 H; let us show that T is a scalar

multiple of the identity. Denote by 
 the vector 1 2 C �

V

0

H and let �

1

; :::; �

m

; �

1

; :::; �

n

be vectors in H:

The scalar product

(*) h �

1

^ ::: ^ �

m

j T (�

1

^ ::: ^ �

n

) i

is equal to h a(�

1

):::a(�

m

)
 j a(�

1

):::a(�

n

)T
 i ; and is thus zero if n > m; it is also equal

to h a(�

1

):::a(�

m

)T

�


 j a(�

1

):::a(�

n

)
 i ; and is thus zero if m > n:

In case m = n; observe �rstly that there exists some � 2 C such that

a

�

(�

n

):::a

�

(�

1

)a(�

1

):::a(�

n

)
 = �


because there are as many annihilator operators a

�

(�

j

) 's as creation operators a(�

k

) 's.

Observe then that � is given by

� = h 
 j �
 i = h a(�

1

):::a(�

n

)
 j a(�

1

):::a(�

n

)
 i

= h�

1

^ ::: ^ �

n

j �

1

^ ::: ^ �

n

i :

One has �nally

h�

1

^ ::: ^ �

n

j T (�

1

^ ::: ^ �

n

) i = h T

�


 j a

�

(�

n

):::a

�

(�

1

)a(�

1

):::a(�

n

)
 i

= h T

�


 j �
i = h 
 j T
 i h�

1

^ ::: ^ �

n

j �

1

^ ::: ^ �

n

i

and it follows that T = h
jT
i id

F(H)

: Thus CAR(H) acts irreducibly on F(H): �
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7.20. Remark. Let again 
 denote the unit vector 1 2 C �

V

0

H � F(H): Let

l 2 f1; 2; :::g and j; k 2 f1; 2g; with the notations of the proof of Lemma 7.17, one has

x

�

l

(
) = 0 and x

�

l

x

l

(
) = 
; so that

D


 j e

(l)

j;k




E

=

(

1 if (j; k) = (1; 1)

0 if (j; k) 2 f(1; 2); (2; 1); (2; 2)g :

It follows that the vector state !




(x) = h
jx
i co��ncides with the state �

�

of Exercice

6.33 corresponding to the constant sequence � = (1; 1; 1; :::):

7.21. Theorem. Let H be a Hilbert space. There exists a C

�

algebra CAR(H) with unit

and an linear map a : H ! CAR(H) such that

(i) as a C

�

algebra, CAR(H) is generated by a(H);

(ii) one has the CAR relations

a

�

(�)a(�) + a(�)a

�

(�) = h�j�i 1

a(�)a(�) + a(�)a(�) = 0:

Moreover the pair

�

a;CAR(H)

�

is unique in the following sense:

for any pair

�

a

0

; CAR

0

(H)

�

satisfying properties (i) and (ii),

there exists an isomorphism � : CAR(H) ! CAR

0

(H) such that a

0

= � � a:

Proof. The existence part of the theorem has been proved in Section 7.B.

The unicity part is a straightforward consequence of the analysis of the present Section

7.C. (As already stated early in 7.C, we have only used the CAR relations of (ii), not the

actual construction of 7.B.)

The previous arguments carries over with minor adjustments to the case of a non sep-

arable Hilbert space H: �

7.22. Corollary. For any unitary operator u on H; there is a unique automorphism

Bog(u) of CAR(H) such that

Bog(u) (a(�)) = a(u(�))

for all � 2 H: Moreover, the resulting \representation"

Bog : U(H) �! Aut

�

CAR(H)

�

is continuous for the strong topology on U(H) and the topology of pointwise norm conver-

gence on Aut

�

CAR(H)

�

:

Proof. Observe that the map

a

u

:

(

H �! CAR(H)

� 7�! a (u(�))
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satis�es the CAR relations. The �rst claim of the Corollary follows, by the unicity part of

the previous previous theorem.

The topology of pointwise norm convergence is the topology on Aut

�

CAR(H)

�

for which

a basis of neighbourhoods of the identity is the family of �nite intersections of sets of the

form

�

� 2 Aut

�

CAR(H)

�

j k�(x) � xk < 1

	

with x 2 CAR(H): We leave it to the reader to check that this topology makes

Aut

�

CAR(H)

�

a topological group. We recall from Proposition 2.16 that U(H) with the

strong topology is also a topological group. (Indeed these are two Polish groups if H is

separable.)

As one has

Bog(u)

�

a(�)

�

� a(�) = a

�

u(�)� �

�

for all u 2 U(H) and � 2 H; the continuity of Bog follows from the fact that a(H) generates

CAR(H) and from the fact that a : H ! CAR(H) is an isometric inclusion. �

7.23. Remarks (i) The automorphisms Bog(u) are called Bogoliubov automorphisms.

(ii) The Bogoliubov action of the \continuous group" U(H) on the C

�

-algebra

N

1

j=1

M

2

(C ) is quite remarkable. Indeed, this algebra has a \commutative analogue"

N

1

j=1

(C �C ) which is the C

�

-algebra of continuous functions on the standard Cantor set,

and no continuous group may act nontrivially on a totally disconnected space.

7.24. Example. There is a canonical action of the group SO(2) of complex numbers of

modulus 1 on H; given by (e

i�

; �) 7! e

i�

�: Thus, there is a family (�

�

)

�2SO(2)

of automor-

phisms of CAR(H) such that

�

�

(a(�)) = a

�

e

i�

�

�

for all � 2 [0; 2�] and for all � 2 H: In the tensor product picture (see Theorem 7.18), it

can be checked that

�

�

0

@

1

O

j=1

�

a

j

b

j

c

j

d

j

�

1

A

=

0

@

1

O

j=1

�

e

i�=2

0

0 e

�i�=2

�

1

A

0

@

1

O

j=1

�

a

j

b

j

c

j

d

j

�

1

A

0

@

1

O

j=1

�

e

�i�=2

0

0 e

i�=2

�

1

A

=

0

@

1

O

j=1

�

a

j

e

i�

b

j

e

�i�

c

j

d

j

�

1

A

for all

1

O

j=1

�

a

j

b

j

c

j

d

j

�

2

1

O

j=1

M

2

(C )

j

� CAR(H) :

More generally, for any locally compact group G and any unitary representation of G

on a Hilbert space H; there is an associated action of G on CAR(H):
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7.25. Exercise. Let A be a C

�

-algebra, let x

1

; :::; x

n

2 A and set

u

2j�1

= x

j

+ x

�

j

u

2j

=

1

i

�

x

j

� x

�

j

�

for all j 2 f1; :::; ng: Show that one has the CAR relations

x

�

j

x

k

+ x

k

x

�

j

= �

j;k

and x

j

x

k

+ x

k

x

j

= 0

for all j; k 2 f1; :::; ng if and only if the following holds:

u

1

; :::; u

2n

are self-adjoint unitaries

u

l

u

m

= �u

m

u

l

for all l;m 2 f1; :::; 2ng with l 6= m:

(It follows that representations of a CAR-algebra CAR(H) can be interpreted in terms of

representations of an appropriate group. More on this in [Gui, Proposition 3.4].)

7.26. Exercice. An antilinear operator on H is a R-linear map v : H ! H such that

v(i�) = �iv(�) for all � 2 H and kvk = supf kv(�)k j � 2 H ; k�k � 1 g < 1: Such an

operator has an adjoint v

�

de�ned by

h v

�

� j � i = h � j v� i

for all �; � 2 H:

Let u be a linear operator on H and let v be an antilinear operator on H such that

u

�

u+ v

�

v = uu

�

+ vv

�

= 1

u

�

v + v

�

u = uv

�

+ vu

�

= 0 ;

namely such that

�

u

�

v

�

v

�

u

�

��

u v

v u

�

=

�

1 0

0 1

�

and

�

u v

v u

��

u

�

v

�

v

�

u

�

�

=

�

1 0

0 1

�

:

Show that there is a unique automorphism � of CAR(H) such that

�(a(�)) = a(u(�)) + a

�

(v(�))

for all � 2 H:

7.27. Remark on the CCR-algebra. For physical reasons, it is equally important to

study algebras of Canonical Commutation Relations, which are C

�

-algebras acting on the

symmetric parts of spaces of the form EXP (H): A nice introduction to these is the volume

of Petz' lectures [Pet].

7.28. Remark on Cli�ord algebras. Let V be a vector space (say here over the reals)

and let q : V ! R be a quadratic form. The Cli�ord algebra Cliff(V; q) is the quotient of
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the tensor algebra of V by the two-sided ideal generated by (v 
 v � q(v)1)

v2V

: There is

a canonical inclusion � : V ! Cliff(V; q); and the pair (Cliff(V; q); �) has the following

universal property: maps f from V to a real algebra A with unit such that f(v)

2

= q(v)1

A

for all v 2 V are in natural bijection with homomorphisms of algebras F : Cliff(V; q) ! A;

the correspondence being such that F (�(v)) = f(v) for all v 2 V: For the theory of Cli�ord

algebras, see an introduction in Chapter III of [Ch2], or the book [Ch1].

Let H

R

be a real Hilbert space. We denote by Cliff

0

(H

R

) the Cli�ord algebra de�ned

as above for the quadratic form q : � 7! k�k

2

: Let H be a complex Hilbert space, and let

H

R

denote the underlying real Hilbert space. The R-linear map

f :

(

H

R

�! CAR(H)

� 7�! a(�) + a(�)

�

satis�es f(�)

2

= k�k

2

for all � 2 H

R

(a straightforward consequence of the CAR relations).

Hence, using the universal property of Cli�ord algebras, one has a morphism of algebras

Cliff

0

(H

R

) 


R

C �! CAR(H)

which can be shown to be an injection with dense image.

One may then approach the theory of the CAR algebra by viewing it �rstly as a Cli�ord

algebra [PlR]. For example, as Cli�ord algebras are naturally Z=2Z-graded, one may use

graded tensor products to �nd out the structure of CAR(H) when H is �nite dimensional,

as in [ABS]; the introduction of the u

l

's in the proof of Lemma 7.17 makes it possible to

forget the grading at this point.
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CHAPTER 8. QUASI-FREE STATES ON THE CAR ALGEBRA

In this chapter, H denotes a Hilbert space, CAR(H) the corresponding CAR algebra

and a : H ! CAR(H) the canonical linear isometric immersion, as in the previous chapter.

We start here the study of states on CAR(H) which are sometimes called \free", but more

traditionally (and with no particular reason) \quasi-free".

8.a. Definition of the quasi-free states.

8.1. Two-point function of a state on the CAR-algebra. Let ! be a state on

the CAR-algebra CAR(H): For �; � 2 H; set

h�j�i

!

= ! (a

�

(�)a(�)) :

Then h�j�i

!

is a sesqui-linear form on H; and

j h�j�i

!

j � ka

�

(�)a(�)k � k�k k�k

for all �; � 2 H because k!k � 1: Hence there exists a well de�ned operator b on H such

that

!(a

�

(�)a(�)) = h�jb�i

for all �; � 2 H; and one has kbk � 1: As ! is positive, one has h�jb�i = !(a

�

(�)a(�)) � 0

for all � 2 H; namely 0 � b � 1:

8.2. Theorem. Let b 2 B(H) be a self-adjoint operator such that 0 � b � 1: Then there

exists a unique state �

b

on CAR(H) such that

�

b

�

a

�

(�

m

)a

�

(�

m�1

):::a

�

(�

1

) a(�

1

)a(�

2

):::a(�

n

)

�

= �

m;n

det

�

h�

j

j b�

k

i

1�j�m;1�k�n

�

for all �

1

; :::; �

m

; �

1

; :::; �

n

2 H:

8.3. De�nition. The state �

b

on CAR(H) is called the quasi-free state of covariance b:

A direct veri�cation that the formula of Theorem 8.2 de�nes a state would be cumber-

some (especially for the proof of positivity). Our strategy will be to prove Theorem 8.2 in

the special case of a projection, and then to use the well-known \two-by-two-matrix-trick"

(compare with the proof of Kaplansky Density Theorem 6.18).

The unicity part of the theorem is straightforward, because linear combinations of ele-

ments of the form a

�

(�

m

):::a

�

(�

1

)a(�

1

):::a(�

n

) are dense in CAR(H); see Remark 7.13.
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2 8. QUASI-FREE STATES

8.4. Lemma. Theorem 8.2 holds in case H is �nite dimensional and b is a projection,

written p below.

In this case, �

p

is the vector state de�ned by the Fock representation and by a unit

vector v 2 F(H) corresponding to the subspace Im(p) of H:

Comment. Let Grass

r

denote the Grassmannian of subspaces of H of some dimension r:

Recall that there is a classical embedding

pl : Grass

r

�! P

 

r

^

H

!

� P

�

F(H)

�

(where P(K) denotes the projective space of a space K and where pl refers to Pl�ucker)

de�ned as follows : for an element V of Grass

r

; consider a basis v

1

; :::; v

r

of V and let

pl(V ) be the line de�ned by v

1

^ :::^v

r

(see e.g. [Di3], x 3, n

0

5). Observe that, if v

1

; :::; v

r

is an orthonormal basis of V; the unit vector v

1

^ :::^ v

r

2 ^

r

H is well de�ned by V up to

multiplication by a complex number of modulus 1; a fortiori, the corresponding state on

CAR(H) depends only on V:

Proof. Let r be the codimension of the image of p and let s be its dimension. Choose

orthonormal basis

v

1

; :::; v

r

of (1� p)(H)

w

1

; :::; w

s

of p(H):

Consider the vector v = v

1

^ ::: ^ v

r

2 F(H) and the vector state !

v

on CAR(H); such

that

!

v

(a

�

(�

m

):::a

�

(�

1

)a(�

1

):::a(�

n

)) = hv j a

�

(�

m

):::a

�

(�

1

)a(�

1

):::a(�

n

)vi

for all �

1

; :::; �

m

; �

1

; :::; �

n

2 H:

We claim that the formula of Theorem 8.2 holds with �

p

= !

v

; namely that

(*) !

v

(a

�

(�

m

):::a

�

(�

1

)a(�

1

):::a(�

n

)) = �

m;n

det

�

h�

j

j p�

k

i

1�j�m;1�k�n

�

for all �

1

; :::; �

m

; �

1

; :::; �

n

2 H:

As both terms of (�) are anti-multilinear in the �

j

's and multilinear in the �

k

's, it

su�ces to check (�) in case �

1

; :::; �

m

; �

1

; :::; �

n

are vectors in some basis of H; and indeed

in the basis fv

1

; :::; v

r

; w

1

; :::; w

s

g of H:

Now

!

v

(a

�

(�

m

):::a

�

(�

1

)a(�

1

):::a(�

n

)) = h�

1

^ ::: ^ �

m

^ v j �

1

^ ::: ^ �

n

^ vi

is clearly 0 if at least one of the �

j

's or the �

k

's is in fv

1

; :::; v

r

g; or if m 6= n: Similarly

the right-hand term of (�) is 0 if one of these hold (because pv

i

= 0 for i 2 f1; :::; rg). So

it su�ces to consider the case in which m = n and in which all the �

j

's and �

k

's are in

fw

1

; :::; w

s

g: In this case, using Proposition 7.6, one has

!

v

(a

�

(�

n

):::a

�

(�

1

)a(�

1

):::a(�

n

)) = h�

1

^ ::: ^ �

n

^ v

1

::: ^ v

r

j �

1

^ ::: ^ �

n

^ v

1

::: ^ v

r

i

= det

0

@

h�

j

j�

k

i

1�j;k�n

0

0 (�

j;k

)

1�j;k�r

1

A

= det

�

h�

j

j�

k

i

1�j;k�n

�
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and this proves Formula (�). �

8.5. Lemma. Theorem 8.2 holds in case b is a projection, written p below.

Proof. One may choose a tower

V

1

� V

2

� ::: � V

n

� V

n+1

� :::

of �nite dimensional subspaces of H such that

V

n

= p(V

n

) � (1 � p)(V

n

)

for all n � 1 and such that

S

n�1

V

n

is dense in H: For each n � 1; let �

n

denote the state

on the sub-C

�

-algebra CAR(V

n

) of CAR(H) de�ned as in the proof of Lemma 8.4. It is

clear that �

n

coincides with the restriction of �

n+1

from CAR(V

n+1

) to CAR(V

n

): Thus,

in the formula of Theorem 8.2, one may take for �

p

the limit state de�ned by the �

n

's

(see Number 6.28). �

8.6. Lemma. Let H be a Hilbert space and let b 2 B(H) be such that 0 � b � 1: Then

p =

�

b

p

b(1 � b)

p

b(1 � b) 1� b

�

is a projection on H�H and

p

�

�

0

�

=

�

b�

�

�

2 H�H:

Proof: straightforward. �

8.7. End of proof of Theorem 8.2. Let b be as in Theorem 8.2, let p be as in Lemma

8.6, and let

�

p

: CAR(H�H) �! C

be the state de�ned as in the proof of Lemma 8.5. Let �

b

denote the restriction of �

p

to

the sub-C

�

-algebra CAR(H) of CAR(H�H) corresponding to the �rst factor of the direct

sum. Then the formula of Theorem 8.2 holds for �

b

: �

8.8. Proposition. Let p 2 B(H) be a projection. Then the quasi-free state �

p

of

covariance p is pure.

Proof. In case H is �nite dimensional, CAR(H) is the space of all operators on F(H); and

in particular is irreducible on F(H): As the proof of Lemma 8.4 shows that �

p

is a vector

state on CAR(H); it is indeed a pure state (see Proposition 6.16).

In case H is in�nite dimensional, the argument of Lemma 8.5 shows that �

p

is a limit

state of states �

n

: CAR(V

n

)! C ; so that �

p

is again pure by Proposition 6.29. �
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8.9. Remark. Conversely, it is easy to show that a quasi-free state �

b

of covariance b is

pure if and only if b is a projection.

It is also known that the states �

b

are always factorial: see [PoS, Lemma 1.3] for the easy

case of an operator b with pure point spectrum, and [PoS, Theorem 5.1] for the general

case.

8.10. On states with two-point functions de�ned by projections. For each integer

n � 0; let F

n

= F

n

CAR(H) denote the subspace of CAR(H) linearly generated by products

of the form c

1

(�

1

)c

2

(�

2

):::c

k

(�

k

) where k � n; where each c

j

holds for either a or a

�

and

where �

1

; :::; �

k

are vectors in H: The �ltration (F

n

)

n�0

de�ned this way has the following

property : if � is any permutation of f1; :::; ng; then

c

�(1)

�

�

�(1)

�

) ::: c

�(n)

�

�

�(n)

�

� c

1

(�

1

) ::: c

n

(�

n

) mod F

n�2

for all c

1

; :::; c

n

2 fa; a

�

g and for �

1

; :::; �

n

2 H (this is a straightforward consequence of

the CAR relations).

Let ! be a state on CAR(H) with two-point function de�ned by a projection p on H;

namely such that

! (a

�

(�

1

)a(�

2

)) = h�

1

jp�

2

i

for all �

1

; �

2

2 H: (We do not assume a priori that ! is a quasi-free state, even though it

will follow from the analysis below.) Denote by �

!

: CAR(H) ! B(H

!

) the representation

and by 


!

the cyclic vector obtained by the GNS construction.

For � 2 Im(1� p) one has

k�

!

(a(�)) 


!

k

2

= ! (a

�

(�)a(�)) = h�jp�i = 0

and consequently

�

!

(a(�)) 


!

= 0:

For � 2 p(H) one has

k�

!

(a

�

(�)) 


!

k

2

= !

�

k�k

2

� a

�

(�)a(�)

�

= k�k

2

� h�jp�i = 0

and consequently

�

!

(a

�

(�)) 


!

= 0:

Let n � 2: For x 2 F

n

of the form c

1

(�

1

) ::: c

n

(�

n

) as above, the n-point function

!

�

c

1

(�

1

) ::: c

n

(�

n

)

�

= h 


!

j �

!

(c

1

(�

1

) ::: �

!

(c

n

(�

n

))


!

i

is zero as soon as one at least of

c

1

= a

�

and �

1

2 Im(1� p)

c

1

= a and �

1

2 Im(p)

c

n

= a and �

n

2 Im(1� p)

c

n

= a

�

and �

n

2 Im(p)
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holds. It follows that one has :

for any x 2 F

n

there exists y 2 F

n�2

such that !(y) = !(x) .

We have proved the following :

a state on CAR(H) with 2-point functions of the form

!

�

a

�

(�

1

)a(�

2

)

�

= h�

1

jp�

2

i for some projection p on H

is necessarily the quasi-free state of covariance p:

8.11. Quasi-free states and the GNS-construction. Given a complex Hilbert space

K; denote by K the conjugate space. Recall that there is a R-linear bijection

(

K �! K

� 7�! �

such that (z�) = z � and




�j�

0

�

K

=




�

0

j�

�

K

for all z 2 C and �; �

0

2 K: One has clearly

a canonical isomorphism

F

�

K

�

� F(K)

at the level of Fock spaces.

Consider a projection p on H: We de�ne the Hilbert space

�

p

(K) = F

�

(1� p)(H)

�

O

F(p(H)):

We denote by the same symbol 1 the unit vector in C = ^

0

(1 � p)(H) and the unit vector

in C = ^

0

p(H); and we set




p

= 1
 1 2 �

p

(H):

Let D be the parity operator in F

�

(1� p)(H)

�

; de�ned by

Dx =

8

>

>

>

>

>

<

>

>

>

>

>

:

x for all x 2

M

n�0

2n

^

�

(1� p)(H)

�

� F

�

(1� p)(H)

�

�x for all x 2

M

n�0

2n+1

^

�

(1 � p)(H)

�

� F

�

(1 � p)(H)

�

:

For

� = � � � 2 (1 � p)(H) � p(H) = H

we de�ne

A

p

(�) = A

p

(� � �) = a

�

(�)
 1 + D 
 a(�) 2 B (�

p

(H)) :
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We leave it as an exercice for the reader to check that the CAR relations

A

�

p

(� � �)A

p

(�

0

� �

0

) + A

p

(�

0

� �

0

)A

�

p

(� � �) = h� � � j �

0

+ �

0

i

A

p

(� � �)A

p

(�

0

� �

0

) + A

p

(�

0

� �

0

)A

p

(� � �) = 0

hold for all � � �; �

0

� �

0

2 H (with p� = 0 ; p� = � ; p�

0

= 0 ; p�

0

= �

0

). Thus the

assignment

� = � + � 2 H 7�! A

p

(�) = a

�

(�) 
 1 + D 
 a(�) 2 B (�

p

(H))

extends to a representation

�

p

: CAR(H) �! B (�

p

(H)) :

The vector state !

p

de�ned by the representation �

p

and by the (clearly cyclic) vector 


p

satis�es

!

p

�

�

p

�

a(� � �

�

�

�

p

�

a(�

0

� �

0

�

�

= hA

p

(� � �)


p

jA

p

(�

0

� �

0

)


p

i = h�j�

0

i

= h� � �jp(�

0

+ �

0

)i

for all � � � ; �

0

� �

0

2 (1 � p)(H = �p(H) = H: It follows from 8.2 and 8.10 that !

p

is

the quasi-free state of covariance p:

8.12. On Dirac holes.

See the discussion in [KaR], Section 4.2.

8.13. Example. On the Hilbert space H = L

2

(T); consider the (unbounded !) self-

adjoint operator H = �i

d

d�

and the corresponding one parameter unitary group (U

t

)

t2T

de�ned by

U

t

= e

it

(

�i

d

d�

)

or

(U

t

f) (�) = f(� + t)

for all f 2 L

2

(T) and � 2 T: Let (e

n

)

n2Z

be the usual basis of L

2

(T); de�ned by e

n

(�) =

e

in�

: As �i

d

d�

is diagonal with respect to this basis, it is straightforward to compute the

spectrum of H which is

�(H) = Z:

If H is to be a model of a Hamiltonian for a physical system, there is a problem because

�(H) is not bounded below whereas the energy should be bounded below.

Let H

2

(T) = spanf(e

n

)

n�0

g be the Hardy space and let p 2 B(L

2

(T)) be the orthogonal

projection of L

2

(T) onto H

2

(T); as in Example 3.23. For all t 2 T the unitary operator U

t

commutes with p: It follows that the automorphism �

t

of CAR(H) induced by U

t

(via the

usual formula �

t

(a(�)) = a(U

t

(�)); see Corollary 7.32) and the quasi-free state �

p

satisfy

�

p

�

t

= �

p
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for all t 2 T: Thus there exists a unitary operator u

t

on �

p

(H) such that

�

p

(�

t

(x)) = u

t

�

p

(x)u

�

t

for all t 2 T and for all x 2 CAR(H); see 6.11.ii.

The Hilbert space �

p

(H) has an orthonormal basis of vectors of the form

X = �

p

�

a

�

(�

1

):::a

�

(�

k

)a(�

1

):::a(�

l

)

�




GNS

p

where

�

i

= e

�m

i

2 (1 � p)(H) ; m

i

> 0 for 1 � i � k

�

j

= e

n

j

2 p(H) ; n

j

� 0 for 1 � j � l:

As U

t

e

n

= exp(

p

�1nt)e

n

for all n 2 Z; one has

u

t

�

p

�

a

�

(�

1

):::a

�

(�

k

)a(�

1

):::a(�

l

)

�




GNS

p

�

p

�

a

�

(U

t

�

1

):::a

�

(U

t

�

k

)a(U

t

�

1

):::a(U

t

�

l

)

�




GNS

p

exp

�

p

�1(m

1

+ :::+m

k

+ n

1

:::+ n

l

)

�

�

p

(a

�

(�

1

):::a

�

(�

k

)a(�

1

):::a(�

l

)) 


GNS

p

and U

t

acts on X by multiplication by

exp

�

p

�1(m

1

+ :::+m

k

+ n

1

:::+ n

l

)

�

:

In particular, the in�nitesimal generator of (U

t

)

t2T

has positive spectrum, contained inside

N:

The crucial point is that the process of \second quanti�cation", namely of replacing

H by �

p

(H), makes the spectrum of the \Hamiltonian" positive. It is the conjugation in

(1� p)(H) which restores positivity of the spectrum.

8.b. Equivalence of quasi-free states.

We show in Theorem 8.24 below a su�cent condition for the equivalence of two quasi-

free states CAR(H):

8.14. Theorem. Let H be a Hilbert space, let p; q be two projections on H and let �

p

; �

q

be the corresponding quasi-free states on CAR(H): Then

k�

p

� �

q

k � 2 kp� qk

2

where k�k

2

denotes a Hilbert-Schmidt norm.
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8.15. Lemma. Let p; q be two projections on a �nite dimensional Hilbert space H: Let

�

1

; :::; �

n

be the eigenvalues of the operator c = (1 � p)(1 � q)(1 � p) acting on the space

(1� p) (H) ; where n = dim

C

((1 � p)(H)) :

(i) If dim

C

(p(H)) 6= dim

C

(q(H)) one has kp � qk

2

� 1 :

(ii) If dim

C

(p(H)) = dim

C

(q(H)) one has kp� qk

2

2

= 2

P

n

j=1

(1� �

j

) :

Proof. Let tr : B(H) ! C denote the usual trace. By de�nition of the Hilbert-Schmidt

norm (De�nition 3.18), one has

kp � qk

2

2

= tr((p � q)

�

(p � q)) = tr(p + q � pq � qp) = tr(p) + tr(q) � 2tr(qpq)

because tr(pq) = tr(p

2

q) = tr(pqp) = tr(qp):

Assume �rstly that dim

C

(p(H)) > dim

C

(q(H)); so that tr(p) � tr(q) � 1: As tr(q) �

tr(qpq); one has

kp � qk

2

2

= tr(p) � tr(q) + 2

�

tr(q) � tr(qpq)

�

� 1

and (i) follows.

Assume secondly that dim

C

(p(H)) = dim

C

(q(H)); so that tr(p) = tr(q): One has

kp� qk

2

2

= k(1� p)� (1 � q)k

2

2

= 2

h

tr(1 � p) � tr

�

(1� p)(1 � q)(1 � p)

�

i

= 2

h

tr

0

(1� p) � tr

0

�

(1� p)(1 � q)(1 � p)

�

i

= 2

n

X

j=1

(1 � �

j

)

where tr

0

denotes the usual trace on B

�

(1 � p)(H)

�

; which is also the natural restriction

to this algebra of operators of the trace tr on B(H): �

8.16. Lemma. Theorem 8.14 holds if dim(H) <1:

Proof. If dim

C

(p(H)) 6= dim

C

(q(H)); one has 2 kp� qk

2

� 2 by the previous lemma and

there is nothing to prove (recall that states have norm 1). We assume from now on that

dim

C

(p(H)) = dim

C

(q(H)) and we choose

an orthonormal basis v

1

; :::; v

n

of (1 � p)(H);

an orthonormal basis w

1

; :::; w

n

of (1� q)(H):

Set v = v

1

^ ::: ^ v

n

2 F

�

(1 � p)(H)

�

and w = w

1

^ ::: ^ w

n

2 F

�

(1 � q)(H)

�

: We know

from the proof of Lemma 8.4 that �

p

co��ncides with the vector state !

v

on CAR(H); and

similarly that �

q

= !

w

: From Propositions 6.27.i and 7.6 one has

k�

p

� �

q

k = k!

v

� !

w

k � 2

p

1� jh v j w ij

2

= 2

r

1�

�

�

�

det

�

h v

j

j w

k

i

1�j;k�n

�

�

�

�

2

:
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Let b =

�

b

j;k

�

1�j;k�n

denote the matrix

�

h v

j

jw

k

i

�

1�j;k�n

and set c = bb

�

: On one

hand we have

�

�

det(b)

�

�

2

= det(b)det(b

�

) = det(c):

On the other hand c is the matrix of the linear map

(1 � p)(1 � q)(1 � p) : (1� p)(H) �! (1� p)(H)

with respect to the basis fv

1

; :::; v

n

g ; indeed :

(1� p)(1 � q)(1� p)v

i

= (1� p)(1 � q)v

i

= (1� p)

0

@

n

X

j=1

hw

j

jv

i

iw

j

1

A

=

n

X

j;k=1

hw

j

jv

i

i hv

k

jw

j

i v

k

=

n

X

j;k=1

(b

�

)

j;i

b

k;j

v

k

=

n

X

k=1

c

k;i

v

k

for all i 2 f1; :::; ng: If �

1

; :::; �

n

2 [0; 1] denote the eigenvalues of c, one has

k�

p

� �

q

k

2

� 4

�

1� det(c)

�

= 4

0

@

1 �

n

Y

j=1

�

j

1

A

:

Because of Claim (ii) of the previous lemma, it su�ces to show that

(*) 1 �

n

Y

j=1

�

j

�

n

X

j=1

(1� �

j

):

Assume inductively that 1�

Q

k

j=1

�

j

�

P

k

j=1

(1� �

j

) for some k 2 f1; :::; n� 1g (this

is tautological for k = 1). As �

k+1

� 1 one has �

k+1

�

Q

k+1

j=1

�

j

�

P

k

j=1

(1��

j

): Adding

1� �

k+1

on both sides, one obtains

1 �

k+1

Y

j=1

�

j

�

k+1

X

j=1

(1� �

j

):

This shows (�); and ends the proof. �
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8.17. Lemma. Theorem 8.14 holds if dim(H) =1:

Proof. If kp� qk

2

=1; there is nothing to show. We assume from now on that kp� qk

2

<

1: In particular (p � q)

2

is a positive compact operator on H: Observe that

Ker

�

(p � q)

2

�

= Ker(p � q): By the spectral theorem for compact self-adjoint operators,

there exists an orthogonal decomposition

H =

 

M

i2I

W

i

!

M

Ker(p � q)

and a family (�

i

)

i2I

of strictly positive numbers, pairwise distinct, such that

(a) each W

i

is a �nite dimensional subspace of H

(b) (p � q)

2

= �

i

on W

i

(I may be a �nite set or an in�nite set). Moreover, as (p� q)

2

commutes with p and q;

(c) Ker(p � q) and each W

i

is invariant by p and by q:

We claim that there exists a nested sequence V

1

� V

2

� ::: � V

n

� V

n+1

� ::: of

subspaces of H such that

(d) each V

n

is �nite dimensional, and

[

n�1

V

n

is dense in H

(e) each V

n

is invariant by p and by q .

To check this, consider �rstly the case where dim

C

(Ker(p � q)) <1; so that I is in�nite,

say I = f1; 2; :::g: It su�ces to set

V

n

=

 

n

M

i=1

W

i

!

M

Ker(p � q) :

In the general case, observe that

Ker(p � q) =

�

Ker(p � q) \Ker(p)

�

M

�

Ker(p � q) \ Im(p)

�

(one may of course write Ker(q) for Ker(p) and Im(q) for Im(p)). Let (�

j

)

j2J

be an

orthonormal basis of Ker(p�q)\Ker(p) and let (�

k

)

k2K

be a basis of Ker(p�q)\Im(p):

If all of I; J;K are in�nite sets, say f1; 2; :::g; set

V

n

=

 

n

M

i=1

W

i

!

M

0

@

n

M

j=1

C �

j

1

A

M

 

n

M

k=1

C �

k

!

:

If some of I; J;K are �nite sets, proceed similarly with truncated sums for n large.
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Let p

n

2 B(V

n

) denotes the restriction of p to V

n

; one has

�

p

jCAR(V

n

) = �

p

n

because these two states on CAR(V

n

) are given by the same formula (see Theorem 8.2).

As

S

n�1

CAR(V

n

) is dense in CAR(H); one has

k�

p

� �

q

k = lim

n!1

k�

p

n

� �

q

n

k :

One has also

kp� qk

2

= lim

n!1

kp

n

� q

n

k

2

:

Finally one has k�

p

n

� �

q

n

k � 2 kp

n

� q

n

k

2

for all n � 1 by the previous lemma, so that

k�

p

� �

q

k � 2 kp� qk

2

as was to be proved. �

8.18. Remarks. It follows from Theorem 8.14 and 6.26 that, if kp � qk

2

< 1 , then �

p

and �

q

are equivalent. But see the stronger statement of Theorem 8.24 below.

7.8.bis. Lemma. Let H

1

;H

2

;H

3

be three Hilbert spaces. For m � 1; n � 1; let L :

H


m

1


H


n

2

! H

3

be a bounded operator such that Lu

�

= (�1)

�

L for all � 2 S

m

and

Lu

�

= (�1)

�

L for all � 2 S

n

: Then

L

�

(�

1

^ ::: ^ �

m

) 
 (�

1

^ ::: ^ �

n

)

�

=

p

m!n! L

�

�

1


 :::
 �

m


 �

1


 :::
 �

n

�

for all �

1

; :::; �

m

2 H

1

and �

1

; :::; �

n

2 H

2

:

Proof. Let P

m

: H


m

1

!

V

m

H

1

and P

n

: H


n

2

!

V

n

H

2

be de�ned as in 7.5. One has

L

�

(�

1

^ ::: ^ �

m

) 
 (�

1

^ ::: ^ �

n

)

�

=

p

m!n! L

�

P

m

(�

1


 :::
 �

m

)
 P

n

(�

1


 :::
 �

n

)

�

=

1

p

m!n!

L

0

B

@

X

�2S

m

�2S

n

(�1)

�

u

�

(�

1


 :::
 �

m

)
 (�1)

�

u

�

(�

1


 :::
 �

n

)

1

C

A

=

1

p

m!n!

L

0

B

@

X

�2S

m

�2S

n

�

1


 :::
 �

m


 �

1


 :::
 �

n

1

C

A

=

p

m!n!L (�

1


 :::
 �

m


 �

1


 :::
 �

n

) :

�
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8.19. Lemma. Let V be a closed subspace of H: The isomorphism

V � V

?

�

�! H

induces an isometric isomorphism of Hilbert spaces

F(V )
F(V

?

)

�

�! F(H):

Proof. Given two integers m � 0 and n � 0; one has a linear map

T :

8

>

>

<

>

>

:

(


m

V )


�




n

V

?

�

�!

m+n

^

H

(�

1


 :::
 �

m

)
 (�

1


 :::
 �

n

) 7�!

r

(m+ n)!

m!n!

P

m+n

(�

1


 :::
 �

m


 �

1


 :::
 �

n

) :

By the previous lemma, T restricts to a linear map

8

<

:

(^

m

V ) 


�

^

n

V

?

�

�!

m+n

^

H

(�

1

^ ::: ^ �

m

)
 (�

1

^ ::: ^ �

n

) 7�! �

1

^ ::: ^ �

m

^ �

1

^ ::: ^ �

n

:

The sum of the latter maps onm � 0 and n � 0 provide the isomorphismF(V )
F(V

?

) �

F(H): �

8.20. Remark. One has obvious inclusions

i

V

: CAR(V ) ,�! CAR(H) and i

V

?

: CAR(V

?

) ,�! CAR(H);

of which the �rst has already appeared in Lemma 7.17. These could be used to de�ne an

isomorphism from the appropriate graded tensor product of CAR(V ) and CAR(V

?

) onto

CAR(H): As we have not introduced any graded tensor product, we have to make use of

a unitary operator analogous to the u

l

's of the proof of Lemma 7.17.

8.21. Lemma. Let V be a �nite dimensional Hilbert space. There exists a unitary

element u 2 CAR(V ) such that u

2

= 1 and

ua(v)u = a(�v)

for all v 2 V:

Proof. Let (v

1

; :::; v

n

) be an orthonormal basis of V and set

u =

n

Y

j=1

�

1� 2a(v

j

)a(v

j

)

�

�

:

The proof of Lemma 7.17 shows that u has the required properties.

(Here is another argument to show the existence of u: Let � be the Bogoliubov auto-

morphism of CAR(H) de�ned by �(a(v)) = a(�v) for all v 2 V ; as CAR(V ) is a matrix

alegbra, � is inner, so that there exists a unitary u 2 CAL(V ) with the desired properties.)

�
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8.22. Proposition. Let V be a �nite dimensional subspace of a Hilbert space H; let

b 2 B(H) be a self-adjoint operator such that 0 � b � 1 and b(V ) � V; as in Theorem 8.2,

and let u 2 CAR(V ) be a self-adjoint unitary element, as in Lemma 8.21. Then theere

exists a unique morphism of C

�

-algebras

 : CAR(V ) 
 CAR(V

?

) �! CAR(H)

such that

a(�) 
 1 7�! a(�)

1
 a(�) 7�! ua(�)

for all � 2 V and � 2 V

?

: Moreover  is an isomorphism and one has

�

b

�  = �

(bjV )


 �

(bjV

?

)

:

Proof. The inclusion V � H provides an inclusion

 

1

: CAR(V ) �! CAR(H)

such that  

1

(a(�)) = a(�) for all � 2 V:

For all � 2 V

?

; one has ua(�) = a(�)u: Consequently, for �

1

; �

2

2 V

?

; one has

�

ua(�

1

)

�

�

ua(�

2

) + ua(�

2

)

�

ua(�

1

)

�

�

= a(�

1

)

�

a(�

2

) + a(�

2

)a(�

1

)

�

= h�

1

j�

2

i

and similarly

ua(�

1

)ua(�

2

) + ua(�

2

)ua(�

1

) = 0:

It follows from Theorem 7.21 that there exists a morphism

 

2

: Car(V

?

) �! CAR(H)

such that  

2

(a(�)) = ua(�) for all � 2 V

?

:

For � 2 V and � 2 V

?

; one has

 

1

�

a(�)

�

 

2

�

a(�)

�

= uua(�)ua(�) = ua(��)a(�) = ua(�)a(�) =  

2

�

a(�)

�

 

1

�

a(�)

�

:

Hence the images of  

1

and  

2

commute and the application

 :

(

CAR(V ) 
 CAR(V

?

) �! CAR(H)

m
 x 7�! mx

is a morphism of C

�

-algebras.

The image of  contains a(�) for all � 2 H; so that  is onto. As CAR(V ) and CAR(V

?

)

are simple, so is their tensor product, and  is an injection. This proves the proposition.

�
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8.23. Theorem. Let p; q 2 B(H) be two projections which di�er by a Hilbert-Schmidt

operator. Then the states �

p

and �

q

on CAR(H) are equivalent.

Proof. The proof of Lemma 8.17 shows that there exists a �nite dimensional subspace V

of H which is invariant by p and q; and such that







(p � q)jV

?







2

< 1:

One has also

�

p

= �

(pjV )


 �

(pjV

?

)

and �

q

= �

(qjV )


 �

(qjV

?

)

by the previous proposition.

As �

(pjV )

and �

(qjV )

are two pure states on the matrix algebra CAR(V ); they are neces-

sarily equivalent. As







(p � q)jV

?







2

< 1; the states �

(pjV

?

)

and �

(qjV

?

)

are equivalent

by Remark 8.18.i. It follows that �

p

and �

q

are equivalent. �

8.24. Remarks. Let b; c 2 B(H) be self-adjoint operators such that 0 � b; c � 1 (not

necessarily projections) and let �

b

; �

c

be as in Theorem 8.2. One may show more generally

that �

b

and �

c

are equivalent if and only if both b

1

2

� c

1

2

and (1 � b)

1

2

� (1 � c)

1

2

are

Hilbert-Schmidt operators. (this is the main theorem in [PoW]).

8.c. The projective representation of the restricted unitary group

8.25. Lemma. Let A be a C

�

-algebra with unit, let � be an automorphism of A; and

let � be a state on A: Let �

�

and �

��

be the GNS-representations de�ned by the states �

and � � �: Then there exists a unitary operator u : H

�

!H

��

such that

u�

�

�

�(a)

�

= �

��

�

a

�

u

for all a 2 A:

Proof. We use the notations of Theorem 6.11. The application

(

A �! A

a 7�! �

�1

(a)

maps V

�

isomorphically onto V

��

: It induces a linear map A=V

�

! A=V

��

which is unitary

because

hb + V

�

ja+ V

�

i

�

= �(b

�

a) = ��

�

�

�1

(b

�

)�

�1

(a)

�

=




�

�1

(b) + V

��

j�

�1

(a) + V

��

�

��

for all a; b 2 A; and thus an isometric isomorphism u : H

�

! H

��

such that u�

�

(a) =

�

��

�

�

�1

(a)

�

u for all a 2 A: �
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8.26 Lemma. Let A be a C

�

-algebra with unit, let � be an automorphism of A; and let

� be a state on A such that � and � � � are equivalent. Let �

�

and �

��

be the GNS-

representations de�ned by the states � and � � �: Then there exists a unitary operator v

on H

GNS

�

such that

v�

�

�

�(a)

�

v

�

= �

�

�

a

�

for all a 2 A:

If ~v is another unitary operator such that ~v�

�

�

�(a)

�

~v

�

= �

�

�

a

�

for all a 2 A; then

there exists a complex number z of modulus 1 such that ~v = zv:

Proof. By the previous lemma, there exists a unitary operator u : H

�

! H

��

such that

u�

�

�

�(a)

�

= �

��

�

a

�

u

for all a 2 A: By the hypothesis of equivalence, there exists a unitary operator u

0

: H

��

!

H

�

such that

u

0

�

��

= �

�

(a)u

0

for all a 2 A: It is enough to set v = u

0

u:

The last statement is a consequence of Schur's lemma. �

8.27. De�nition. Let p 2 B(H) be a projection. We de�ne the restricted unitary group

U

res;p

(H) = f u 2 U(H) j kpu� upk

2

<1 g

of the unitary group U(H): It is a proper subgroup in case dim

C

(p(H)) and dim

C

((1�p)(H))

are both in�nite.

Denote by B(H)

s

the space of all operators on H with the strong topology, and by

HS(H) the space of all Hilbert-Schmidt operators on H with the topology of the Hilbert-

Schmidt norm. The natural topology on U

res;p

(H) for what follows is that induced by the

inclusion

8

<

:

U

res;p

(H) �! B(H)

s

�HS(H)

u 7�!

�

pup+ (1� p)u(1� p) ; pu� up

�

:

It makes it a topological group.

8.28. Proposition. Let p 2 B(H) be a projection and let u 2 U

res;p

(H): Then there

exists a unitary operator

~

�

p

(u) on �

p

(H) such that

~

�

p

(u)a(�)

~

�

p

(u)

�

= a(u(�))

for all � 2 H:

Proof. For u 2 U(H); let �

u

denote the automorphism of CAR(H) de�ned by

�

u

(a(�)) = a(u(�))
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for all � 2 H: If �

p

is the quasi-free state of covariance p; one has

�

�

p

� �

u

�

(a

�

(�)a(�)) = �

p

(a

�

(u(�))a(u(�))) = hu�jpu�i = �

u

�

pu

(a

�

(�)a(�))

for all �; � 2 H; so that

�

p

� �

u

= �

u

�

pu

:

If moreover u 2 U

res;p

(H); one has

ku

�

pu� pk

2

= kpu� upk

2

< 1

and �

p

� �

u

; �

p

are equivalent.

The proposition follows from the previous lemma. �

8.29. What next. Observe that

~

�

p

(u) is well de�ned up to a complex number of modulus

one. Thus one has a well de�ned elememt �

p

(u) 2 PU

�

�

p

(H)

�

and it is straightforward

to check that the resulting map

(

U

res;p

(H) �! PU

�

�

p

(H)

�

u 7�! �

p

(u)

is a projective representation of the restricted unitary group (more on this in

Chapter 9).

It can be shown to be a continuous projective representation.

In case H is a Hilbert space of the form

L

2

�

S

1

; C

n

�

and p is the projection on the corresponding Hardy space, loop groups of the form

C

1

�

S

1

; SU(n)

�

are naturally subgroups of U

res;p

(H); and one obtains by restriction projective representa-

tions of these loop groups.

For more on this, the canonical reference is the book by A. Priestley and G. Segal [PrS].



P. de la Harpe and V. Jones, July 1995.

CHAPTER 9. UNITARY PROJECTIVE

REPRESENTATIONS OF GROUPS.

9.a.Generalities on unitary projective representations

9.1. The projective unitary group of a Hilbert space Let H be a complex Hilbert

space and let U(H) denote the unitary group of H: We denote by T the group of complex

numbers of modulus 1 and we identify it with the subgroup of unitary homotheties of H:

We denote by

PU(H) = U(H)=T

the quotient group and by

p : U(H) ! PU(H)

the canonical projection.

We consider U(H) endowed with the strong topology of operators (or equivalently with

the weak topology, see Proposition 2.16.iv) and PU(H) with the quotient topology. In

case H is of �nite dimension n; the group PU(H) is the Lie group U(n)=T� SU(n)=C

n

(where C

n

denotes here the group of n

th

roots of unity).

9.2. A digression on symmetry operations and Wigner's theorem. Let PH

denote the projective space of lines in H: There is an application

t :

(

PH� PH �! [0; 1]

(�; �) 7�! jh�j�ij

2

where �; � 2 H are unit vectors which represent the lines �; � respectively. An automor-

phism of PH is a bijection � : PH ! PH such that

t(��; ��) = t(�; �)

for all �; � 2 PH: Every unitary operator u on H provides obviously an automorphism

of PH; which depends only on the class of u in PU(H): In the formalism of quantum

mechanics, it is a fundamental result of E. Wigner ([Wig], [Bar]) that PU(H) is a subgroup

of index 2 in the group of all automorphisms of PH (the other automorphisms are classes

modulo T of anti-unitary operators on H).

9.3. De�nition. Let G be a locally compact group and let H be a Hilbert space. A

unitary projective representation of G on H is a continuous group homomorphism

� : G �! PU(H):

Typeset by A

M

S-T

E

X

1
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Such a � admits a lifting if there exists a continuous unitary representation ~� : G! U(H)

such that � = p � ~�:

9.4. Examples. (i) Any continuous unitary representation ~� : G ! U(H) provides a

continuous unitary projective representation � : G ! PU(H) by composition with the

canonical projection p : U(H) ! PU(H):

(ii) The unit 2-by-2 matrix and the Pauli matrices

�

x

=

�

0 1

1 0

�

�

y

=

�

0 �i

i 0

�

�

z

=

�

1 0

0 �1

�

provide a unitary projective representation of the Klein group V= Z=2Z�Z=2Zon C

2

:

Observe that

�

x

�

y

= ��

y

�

x

= i�

z

�

y

�

z

= ��

z

�

y

= i�

x

�

z

�

x

= ��

x

�

z

= i�

y

so that, in particular, this � : V! PU(2) does not admit any lifting.

(iii) Any unitary representation � : SU(2)! U(N) provides a projective representation

� of the rotation group SO(3) such that the diagram

SU(2)

�

�! U(N)

# #

SO(3)

�

�! PU(N)

commutes. In case � is \the" irreducible representation of SU(2) of dimension N (which

is well de�ned up to equivalence), it is known that � admits a lifting if and only if

�

�

�1 0

0 �1

�

is the identity on C

N

; namely if and only if N is odd.

9.5. Cocycles and coboundaries. Let G be a group. A T-valued 2-cocycle on G is a

map


 : G �G �! T

such that


(g; h)
(gh; k) = 
(g; hk)
(h; k)

for all g; h; k 2 G: The set of all T-valued 2-cocycles on G is denoted by

Z

2

(G;T)

and is an abelian group, for the multiplication de�ned by 


1




2

: (g; h) 7! 


1

(g; h)


2

(g; h):

For any map � : G! T; the map

�� :

(

G �G �! T

(g; h) 7�! �(g)�(h)�(gh)

�1
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is a 2-cocycle. Cocycles of this form are called T-valued 2-coboundaries on G and the set

of all these is a subgroup

B

2

(G;T)

of Z

2

(G;T):

The second cohomology group of G in T is the quotient group

H

2

(G;T) = Z

2

(G;T)=B

2

(G;T):

9.6. The cohomology class of a unitary projective representation. Let G be a

group and let � : G ! PU(H) be a unitary projective representation of G on a Hilbert

space H:

For each g 2 G; choose u

g

2 U(H) such that �(g) = p(u

g

): For each pair (g; h) 2 G�G;

let 
(g; h) denote the number in T such that

u

g

u

h

= 
(g; h)u

gh

:

Using associativity in U(H); one computes for all g; h; k 2 G

(u

g

u

h

) u

k

= 
(g; h)u

gh

u

k

= 
(g; h)
(gh; k)u

ghk

= u

g

(u

h

u

k

) = u

g


(h; k)u

hk

= 
(g; hk)
(h; k)u

ghk

so that (g; h) 7! 
(g; h) is a cocycle in Z

2

(G;T):

Let g 7! u

0

g

denote another choice of representatives, such that �(g) = p(u

0

g

): For

each g 2 G; let �(g) denote the number in T such that u

0

g

= �(g)u

g

: De�ne as before




0

: G�G! T by u

0

g

u

0

h

= 


0

(g; h)u

0

gh

: Then




0

(g; h) = �(g)�(h)�(gh)

�1


(g; h)

so that 
 and 


0

de�ne the same class [
] 2 H

2

(G;T): This class depends only on �:

9.7. Proposition. Let G be a group, let � : G ! PU(H) be a unitary projective repre-

sentation of G on a Hilbert space H and let [
] 2 H

2

(G;T) be the associated cohomology

class. Then � admits a lifting ~� : G! U(H) if and only if [
] = 1:

Proof. See e.g. [Kir]. �

9.8. Remarks. (i) The previous proposition carries over to topological groups and

continuous representations, but there are subtle points about various classes of coycles

(Borel-measurable, continuous, ...). See [Mac] and quote perhaps C.C. Moore, Trans.

AMS 113 (1964) 40-63 and 64-86, and 221 (19??) 1-33 and 35-58.

(ii) It can be checked that the cohomology class of Example 4.ii is not 1; and that the

cohomology class of Example 4.iii is 1 if and only if N is odd.
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9.b. Some projective representations of symplectic groups

The purpose of this Section is to expose a family of standard examples of projective

representations, involving �nite symplectic groups.

9.9. Symplectic spaces. Let F be a �eld and let V be a �nite dimensional vector space

over F: A symplectic form on V is a bilinear form

! : V � V �! F

which is non degenerate (i.e. if v 2 V is such that either !(v; V ) = 0 or !(V; v) = 0; then

v = 0) and alternating (i.e. !(v; v) = 0 for all v 2 V ).

Let ! be a symplectic form on V: It is a classical result that the dimension of V is even,

say dim

F

(V ) = 2n; and that there exists a symplectic basis, namely a basis f�

1

; :::; �

2n

g

such that the matrix

�

(!(�

j

; �

k

)

1�j;k�2n

�

has the form

�

0 I

�I 0

�

where I [respectively 0] denote the n-by-n unit matrix [resp. null matrix]. See e.g. [Art,

Theorem 3.7] or [MiH, x I.3].

9.10. Symplectic groups. Given a symplectic form ! on a space V as above, the

corresponding symplectic group is the group

Sp(V; !) =

n

g 2 GL(V )

�

�

!(gv; gw) = !(v;w) for all v;w 2 V

o

:

The result quoted above on symplectic bases shows that this group depends only on the

�eld F and the dimension 2n of V; and it is denoted by

Sp(2n;F):

We collect now some classical facts about these groups.

(i) The centre of Sp(2n;F) is reduced to f�id

V

g: It is of order 2 if the characteristic of

F is not 2; and of order 1 if this characteristic is 2 [Art, Theorem 3.26].

The quotient of Sp(2n;F) by its center is the projective symplectic group denoted by

PSp(2n;F): In the ATLAS, one writes also S

2n

(q) for PSp(2n;F

q

):

(ii) If F

q

denotes the �nite �eld with q elements,

jSp(2n;F

q

)j = q

n

2

n

Y

j=1

�

q

2j

� 1

�
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[Art, x III.6]. In particular

jSp(2;F

2

)j = 6 jSp(2;F

3

)j = 24 jSp(4;F

2

)j = 720:

It can be shown that

PSp(2;F

2

) is isomorphic to the symmetric group S

3

;

PSp(2;F

3

) is isomorphic to the alternating group A

4

;

PSp(4;F

2

) is isomorphic to the symmetric group S

6

;

PSp(4;F

3

) is the group of order 25

:

920 = 2

6

3

4

5 which turns up as the group

of the 27 straight lines of a cubic surface,

PSp(6;F

2

) is the group of order 1

:

451

:

520 = 4(9!) which turns up as the group

of the 28 double tangents to a plane curve of degree four.

(iii) With the exceptions of Sp(2;F

2

) ; Sp(2;F

3

) and Sp(4;F

2

); the group Sp(2n;F)

does not contain any normal subgroup which is proper and not contained in its center

[Art, Theorem 5.1].

It follows that the corresponding group PSp(2n;F) is simple, with the three exceptions

PSp(2;F

2

) ; PSp(2;F

3

) and PSp(4;F

2

):

9.11. Remark. Let � : F ! T be an additive character of the �eld F: Then the map

(

V � V �! T

(v;w) 7�! �

�

!(v;w)

�

is a cocycle in Z

2

(V

add

;T); where V

add

denotes the abelian group underlying the vector

space V:

9.12. Metapectic algebras. Let F be a �nite �eld, let � : F ! T be an additive

character of F and let (V; !) be a �nite dimensional symplectic space of dimension 2n over

F: The corresponding metaplectic algebra Met

�

(2n;F) is the complex involutive algebra

with basis (e

v

)

v2V

; with the multiplication de�ned by

e

v

e

w

= �(!(v;w))e

v+w

for all v;w 2 V and with the involution de�ned by

(e

v

)

�

= e

�v

for all v 2 V: It is straightforward to check that these make Met

�

(2n;F) an associative

algebra with involution, with unit e

0

; its complex dimension is q

2n

; where q is the cardi-

nality of F: For each v 2 V; the basis element e

v

is invertible with inverse e

�v

; moreover

one has

e

v

e

w

(e

v

)

�1

= �(2!(v;w))e

w
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for all v;w 2 V:

9.13. A representation of the metaplectic algebra. For each v 2 V; let u

v

be the

operator on the q

2n

-dimensional Hilbert space `

2

(V ) de�ned by

(u

v

�)(x) = �(!(v; x))�(v � x)

for all � 2 `

2

(V ) and x 2 V: It is straightforward to check that u

v

is unitary for each v 2 V

and that

u

v

u

w

= �(!(v;w))u

v+w

(u

v

)

�

= u

�v

for all v;w 2 V: Consequently the map e

v

7! u

v

de�nes a �-representation

� : Met

�

(2n;F) �! B(`

2

(V ))

of the metaplectic algebra.

This representation is faithful. Indeed, let (c

v

)

v2V

be a family of complex numbers such

that �

�

P

v2V

c

v

e

v

�

= 0: Then

�

�

�

P

v2V

c

v

e

v

�

�

�

(0) =

P

v2V

c

v

�(!(v; x))�(�v) = 0: This

implies c

v

= 0 for all v 2 V:

At this point, we know thatMet

�

(2n;F) is a C

�

-algebra of dimension q

2n

: Let us assume

moreover that

(a) F is the prime �eld F

p

of characteristic p;

(b) p 6= 2,

(c) � is not the unit character of F

p

:

It follows that �

2

: F

p

! T is faithful. We claim now that the center of the metaplectic al-

gebra is reduced to the scalar multiples of the identity, so that the C

�

-algebraMet

�

(2n;F

p

)

is isomorphic to the full matrix algebra M

p

n

(C ): Let x =

P

v2V

c

v

e

v

2Met

�

(2n;F

p

) be a

central element. Then

u

w

�(x) =

X

v2V

c

v

�(!(w; v))u

v+w

=

X

v2V

c

v

�(!(v;w))u

v+w

= �(x)u

w

for all w 2 V; namely

c

v

�(2!(w; v)) = c

v

for all v;w 2 V: If c

v

6= 0 then !(V; v) = 0 by hypothesis (a) to (c), so that v = 0 by the

non-degeneracy of !: This proves the claim.

We can sum up these results as follows.

9.14. Proposition. Let F

p

be the prime �eld of characteristic p 6= 2 and let � : F

p

! T

be an additive character distinct from the unit character. Then one has

Met

�

(2n;F

p

) � M

p

n

(C )
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(isomorphism of C

�

-algebras).

9.15. Exercise. The hypothesis being as in the previous proposition, let L be a La-

grangian subspace of V; namely a n-dimensional subspace of V on which the restriction of

! is identically zero. Show that the linear span of (e

l

)

l2L

is a maximal self-adjoint algebra

in Met

�

(2n;F):

9.16. Exercise. Let L be a Lagrangian subspace of V � (F

p

)

2n

: Check that

f

L

= p

�n

X

l2L

e

l

is an idempotent of Met

�

(2n;F

p

):

Consider the linear map � : Met

�

(2n;F

p

) ! C de�ned by � (e

0

) = 1 and � (e

v

) = 0 if

v 2 V; v 6= 0: Check that � is the normalised trace on Met

�

(2n;F

p

) � M

p

n

(C ): Compute

� (f

L

) and deduce that f

L

is a minimal idempotent of Met

�

(2n;F

p

):

More generally, for any additive character � : L! T; check that

f

L

= p

�n

X

l2L

�(l)e

l

is a minimal idempotent of Met

�

(2n;F

p

):

9.17. Exercise. Show that there exists a basis s

1

; :::; s

2n

of V such that

!(s

j

; s

k

) =

8

>

<

>

:

1 if k = j + 1

�1 if k = j � 1

0 if jk � jj 6= 1:

for j; k 2 f1; :::; 2ng: Set � = �(1); which is a primitive p

th

root of unity, and set u

j

= e

s

j

for 1 � j � 2n: Check that

u

p

j

= 1 for allj 2 f1; :::; 2ng;

u

j

u

j+1

= �

2

u

j+1

u

j

if j 2 f1; :::; 2n� 1g;

u

j

u

k

= u

j

u

k

if jj � kj � 2:

De�ne then

e

j

=

1

p

p�1

X

k=0

(u

j

)

k

and check that one has

e

2

j

= e

j

(1 � j � 2n);

e

j

e

j+1

e

j

�

1

p

e

j

= e

j+1

e

j

e

j+1

�

1

p

e

j+1

= 0 (1 � j � 2n� 1);

e

j

e

k

= e

k

e

i

(1 � j; k � 2n ; jk � jj � 2):
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De�ne also

�

0

j

=

1

p

p

p�1

X

r=0

�

r

2

u

r

j

and check that one has

�

0

j

is unitary (1 � j � 2n);

�

0

j

�

0

j+1

�

0

j

= �

0

j+1

�

0

j

�

0

j+1

(1 � j � 2n� 1);

�

0

j

�

0

k

= �

0

k

�

0

j

(1 � j; k � 2n ; jk � jj � 2):

If B

2n+1

denotes the group of braids on 2n+1 strings with the usual Artin's generators

�

1

; :::; �

2n

; show that

�

j

7�!

 

p

2

� 1 +

p

p

2

� 4p

2

!

e

j

� (1� e

j

)

de�nes a representation of B

2n+1

, which is unitary if and only if p = 3: (See [Jon].)

Similarly

�

j

7�! �

0

j

de�nes a unitary representation of B

2n+1

for all odd prime p: (See [GoJ].)

9.18. The metaplectic projective representation of Sp(2n;F

p

). There is an

obvious action of the symplectic group by �-automorphisms of the metaplectic algebra

(

Sp(2n;F) �! Aut

�

Met

�

(2n;F)

�

g 7�! �

g

given by �

g

(e

v

) = e

gv

for all g 2 Sp(2n;F) and v 2 V: With the assumptions (a) to

(c) of 9.13, the algebra Met

�

(2n;F

p

) is a full matrix algebra by Proposition 9.14; thus

all its �-automorphisms are inner, of the form x 7! uxu

�

for some unitary element u 2

Met

�

(2n;F

p

); we write abusively u 2 U(p

2n

): Observe that u is not uniquely de�ned by the

automorphism, but that is class u 2 PU(p

2n

) is well de�ned. Thus, one has a projective

representation

(

Sp(2n;F

p

) �! PU(p

2n

)

g 7�! u

g

such that �

g

(x) = u

g

xu

�

g

for all g 2 Sp(2n;F

p

) and x 2Met

�

(2n;F

p

); where u

g

2 U(p

2n

)

is some representant of u

g

:



9. PROJECTIVE REPRESENTATIONS 9

9.19. Proposition. (i) The above projective representation lifts to a representation

Sp(2n;F) ! U(p

2n

):

(ii) The latter representation is a direct sum of p

n

equivalent representations

�

j

: Sp(2n;F

p

)! U(p

n

):

(iii) Each �

j

splits as the direct sum of two irreducible representations, of dimensions

p

n

+1

2

and

p

n

�1

2

:

Proof. Find a good reference !!! or give the argument ???

9.20. Comment. Let H

L

�Met

�

(2n;F

p

) be a minimal left-ideal of the form

�

Met

�

(2n;F

p

)

�

f

L

;

where f

L

is as in Exercise 9.16. One has the following correspondence with the material

of Chapter 8 (and of further chapters).

Met

�

(2n;F

p

) ! CAR(H)

Sp(2n;F

p

) ! U

res

(H)

H

L

! �

p

(H)

Sp(2n;F

p

) acts on Met

�

(2n;F

p

) ! U

res

(H) acts on CAR(H)

Met

�

(2n;F

p

) irreducible on H

L

! CAR(H) irreducible on �

p

(H)

Sp(2n;F

p

) projective on H

L

! U

res

(H) projective on �

p

(H)

Sp(2n;F

p

) lifts !!!!!!! U

res

(H) does not lift :
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