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Abstract

We prove that primary characteristic classes of flat G-bundles can
be represented by cocycles taking only finitely many values on singular
simplices when G is a real algebraic group. Gromov previously showed
that a bounded representative exists. In contrast to Gromov’s proof, we
do not rely on Hironaka’s resolution of singularity. Instead our method
involves standard techniques of semi-algebraic sets.

1 Introduction

The first boundedness property of characteristic numbers of flat bundles is prob-
ably Milnor’s characterization of flat bundles over surfaces ([Mi58]), later gen-
eralized to the unoriented case by Wood ([Wo71]).

Theorem 1 (Milnor-Wood inequality) Let ξ be a SL2R-bundle over a sur-
face Σg of genus g ≥ 1. The bundle ξ is flat if and only if its Euler class
ε(ξ) ∈ H2(Σg) satisfies

|ε(ξ)[Σg]| ≤ g − 1.

This result, or more precisely one of its implications, can in a natural way
be put in the context of singular bounded cohomology. Indeed, the following
theorem proven by Ivanov and Turaev in [IvTu82] shows that the Euler class
of any flat SLnR-bundle can be represented by a bounded cocycle. (A singular
cocycle is said to be bounded, if its set of values on singular simplices is bounded,
or equivalently, if its norm ‖.‖∞ is finite. See Section 2 for further details.)

Theorem 2 If ξ is a flat SLnR-bundle over a CW-complex B, then its Euler
class ε(ξ) ∈ Hn(B) satisfies

‖ε(ξ)‖∞ ≤
1
2n

.

This bound on the Euler class, together with the knowledge of the `1-norm
of the fundamental class of a surface Σg (also called simplicial volume) implies
half of the Milnor-Wood inequality, as pointed out by Ghys in [Ghys87] (see
also [Ghys99]). It is a simple consequence of the duality of the two norms.
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In his seminal paper [Gr82], Gromov generalized the boundedness of the
Euler class of flat bundles to all characteristic classes:

Theorem 3 Let G be a real algebraic subgroup of GLn(R). Then every primary
characteristic class of flat G-bundle can be represented by a bounded cocycle.

As explained further in Section 3, by a (primary) characteristic class of flat
G-bundles is meant a cohomology class in the image of H∗(BG) → H∗(BGδ),
where Gδ denotes the group G endowed with the discrete topology.

An immediate corollary of Gromov’s theorem (Theorem 3 here) is that a
topological space with amenable fundamental group does not possess any non-
trivial characteristic class of flat G-bundle, when G is a real algebraic subgroup
of GLn(R).

The hypothesis in the above theorem of Gromov (Theorem 3) that G be
algebraic cannot be removed. Indeed, Goldman gives in [Go81] an example of
a flat G-bundle over the 2-torus with nontrivial characteristic class in degree
2. This class cannot be bounded since the bounded cohomology of the torus is
trivial. The group G considered is the quotient of the Heisenberg group H of
upper triangular unipotent 3 by 3 matrices with the normal subgroup generated
by any central element, and the characteristic class in H2(BG) is the obstruction
to the existence of a section of the universal bundle over BG.

We give in the present paper a new proof of Gromov’s theorem with the
advantage that a representative for every characteristic class of flat bundle can
be found whose set of values on singular simplices is not only bounded, but
furthermore finite. We thus prove:

Theorem 4 Let G be a real algebraic subgroup of GLn(R). Then every primary
characteristic class of flat G-bundle can be represented by a cocycle whose set of
value on singular simplices is finite.

The first step of the proof, which is common to both Gromov’s original
proof of Theorem 3 and our Theorem 4, is to reduce to a simplicial version of
the statement:

Theorem 5 Let G be a real algebraic subgroup of GLn(R) and β ∈ Hq(BG) a
characteristic class. There exists a finite subset I of R such that for every flat
G-bundle ξ over a simplicial complex K, the cohomology class β(ξ) ∈ Hq(|K|)
can be represented by a cocycle whose set of values on the q-simplices of K is
contained in I.

Again, the case of the Euler class was already well known: Sullivan proved in
[Su76] that the Euler class of any flat SLn(R)-bundle over a simplicial complex
can be represented by a simplicial cocycle taking values in {−1, 0, 1} and Smillie
improved this to {−1/2n, 0, 1/2n}.

Let us point out that both the proofs of the simplicial version of the theorem
and the reduction to it are not only completely different from Gromov’s but
also much more elementary. It is in our case only a technical artifice to show
how one can reduce to the simplicial version of the theorem - or to be more
precise, a stronger version of it formulated in Theorem 16 where the simplicial
cocycle can furthermore be chosen to be the pullback by any given classifying
map F : |K| → BGδ of an alternating singular cochain on BGδ. The main

2



difficulty of Theorem 4 thus really lies in the proof of this simplicial version.
While Gromov needs Hironaka’s deep resolution of singularities, our main tool
is the following bounded version of the existence of a finite triangulation of semi-
algebraic sets as developed by Benedetti and Risler in [BeRi90], from which the
following theorem can be deduced:

Theorem 6 Let X be a compact semi-algebraic set, with a semi-algebraic tri-
angulation T . Let K be a simplicial complex and f : |K| → X a semi-algebraic
map, whose complexity is uniformly bounded on every simplex of K. Then there
exists a simplicial approximation of f on a uniformly bounded refinement of K.

The latter theorem appears in this note, in a slightly modified and adapted
form as the Technical Lemma 15.

This paper is structured as follows: We start in Section 2 by a quick re-
minder on singular bounded cohomology. In Section 3 we present the model of
classifying space we chose to work with and define characteristic classes of flat
bundles. In Section 4 we define semi-algebraic sets and present all the technical
results to be needed in the proof of the simplicial version of our main theorem,
which we carry through in Section 5. After introducing the necessary tool of
inverse limits, we prove the singular version of our main theorem and discuss
some alternative proofs in Section 6 .
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I am much grateful to my advisor Marc Burger for his support and encourage-
ment. For enlightening discussions I owe special thanks to Johan Dupont and
François Labourie.

2 Bounded cohomology

We review here, mainly in order to fix the notation, the very basics of the theory
of singular bounded cohomology, a theory which was introduced by Gromov in
[Gr82].

Let X be a topological space. The space Cq(X) of singular q-chains on
X is defined to be the (real) vector space over the basis of singular simplices
Sq(X) = {σ : ∆q → X | σ is continuous}. Endowed with its natural boundary
operator ∂ : Cq(X) → Cq−1(X) it becomes a complex whose homology is the
singular homology H∗(X) of X. The `1-norm corresponding to the canonical
basis Sq(X) of Cq(X) is defined as

‖z‖1 =
∑

σ

|zσ|, for z =
∑

σ

zσσ ∈ Cq(X).

This norm induces a semi-norm on the homology of X. If X is an oriented,
compact manifold of dimension n, the `1-norm of its fundamental class [X] ∈
Hn(X) is called the simplicial volume of X.

While the singular cohomology of X is obtained from the cochain complex
C∗(X) defined as the algebraic dual of the space of chains, let us instead con-
sider the topological dual of the normed space Cq(X): The space of (singular)

3



bounded cochains on X is defined as

Cq
b (X) = {c ∈ Cq(X) | ‖c‖∞ <∞},

where

‖c‖∞ = sup{|c(z)| | z ∈ Cq(X), ‖z‖1 = 1}
= sup{|c(σ)| | σ ∈ Sq(X)}.

The dual coboundary operator on C∗(X) restricts to bounded cochains, so that
one defines the (singular) bounded cohomology H∗b (X) of the space X to be the
homology of the complex (C∗b (X), δ). Note however that this is not a cohomol-
ogy theory: the excision axiom does not hold.

We will say that a cohomology class [c] ∈ Hq(X) is bounded if it can be
represented by a bounded cocycle, or equivalently, if it is contained in the image
of the comparison map

Hq
b (X) −→ Hq(X),

induced by the inclusion of complexes C∗b (X) ↪→ C∗(X).

3 Classifying space and characteristic classes

Classifying space and characteristic classes

Let G be a topological group. A principal G-bundle ξG = PG→ BG is said to
be universal if for every principal G-bundle ξ = P → B over a CW-complex B
there exists a classifying map f : B → BG, unique up to homotopy, such that
the bundle ξ is isomorphic to the pull back f∗(ξG). The base space BG of the
universal bundle ξG is called the classifying space. We shall exhibit a possible
model for BG below, or more precisely, a finite dimensional approximation
classifying all bundles over simplicial complexes of bounded dimension.

A characteristic class c assigns to any principal G bundle ξ over a topological
space B a cohomology class c(ξ) ∈ Hq(B) such that if f : B′ → B is a continuous
map then c(f∗(ξ)) = f∗(c(ξ)) ∈ Hq(B′). Characteristic classes are easily seen
to be in one to one correspondence with the cohomology of some (and hence
any) classifying space BG.

There are many equivalent definitions for the flatness of principal G-bundles.
Let us just introduce the ones which we will use in the present note. Denote by
Gδ the group G endowed with the discrete topology. The set theoretic inclusion
Gδ → G induces a map BGδ → BG between the corresponding classifying
spaces. A principal G-bundle is said to be flat if its classifying map factorizes,
up to homotopy, through BGδ, or equivalently, if there exists a covering of its
base space and transition functions relative to this covering which are locally
constant. In the differentiable setting, this is the same as to require that the
bundle can be endowed with a connection with vanishing curvature.

A (primary) characteristic class of flat bundles is now simply a cohomology
class in the image of the map

H∗(BG) −→ H∗(BGδ),

which is induced from the mapping BGδ → BG. Observe that Gromov’s The-
orem (Theorem 3 here) now admits the following reformulation:
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Theorem 7 Let G be a real algebraic group. The image of the map H∗(BG)→
H∗(BGδ) is included in the image of the comparison map H∗b (BGδ)→ H∗(BGδ).

The first examples of both nontrivial flat bundles and nontrivial character-
istic classes were given by Milnor in [Mi58], where flat bundles over surfaces
are characterized in terms of their Euler class. Further examples comprise the
Kähler class and the Euler class in higher degree.

While the standard Chern and Pontrjagin classes, and more generally any
characteristic classes in the image of the Chern-Weil homomorphism are trivial
on flat bundles since the latter homomorphism is given by evaluation on a
curvature tensor, one gets more examples of nontrivial characteristic classes of
flat bundles whenever the Chern-Weil homomorphism is not surjective.

3.1 The model of classifying space

Let n and q be positive natural numbers and set N = (q + 1)n. The space of
n-frames in Rq, which we denote by Frn(RN ), consists of ordered n-tuples of
linearly independent vectors in RN . It is naturally identified with the set of N
times n matrices with linearly independent columns. There is a natural action
of GLn(R) from the right (and one of GLN (R) from the left) simply given by
matrix multiplication.

Let now G be a closed subgroup of GLn(R). Define

PGq = Frn(RN ) and BGq = PGq/G,

and let πG : PGq → BGq denote the natural projection. It is easy to check
that we have thus obtained a principal G-bundle which we denote by ξG

q . For a
frame A in PGq, we denote by [A]G its image by the projection map πG, that
is, its equivalence class in the quotient BGq = PGq/G.

Observe that for G =GLn(R), the space BGq is precisely the Grassmanian
manifold of n-dimensional vector subspaces of RN , and in general BGq is a fiber
bundle over the Grassmanian, with fiber diffeomorphic to GLn(R)/G.

3.2 The classifying map for bundles over simplicial com-
plexes

Let G be a closed subgroup of GLn(R). Let K be a simplicial complex of
dimension q, and ξ a principal G-bundle over the geometric realization of K.
Let us write π for the bundle map of ξ. We would now like to exhibit a finite
covering of |K| on which the bundle ξ can be trivialized. If we were ready to
consider coverings with arbitrarily many subsets, we could consider the covering

{star(v)}v∈K0 .

Indeed, as the stars are contractible, the bundle ξ is trivial over them. However,
we would like to bound the number of sets in the covering independently of
the simplicial complex (but depending on the dimension q). To do so, we will
consider the stars in the first barycentric subdivision of K and take union of
stars of barycenters of simplices of K of the same dimension.

More precisely, let Kbar denote the first barycentric subdivision of K, and
observe that the stars in Kbar of two barycenters of simplices of K of same
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dimension are always disjoint. Defining Si to be the open subset of |Kbar|
consisting of the union of the stars (in Kbar) of all barycenters of i-dimensional
simplices of K,

Si =
∐

s∈K,
Dims=i

starKbar(b
s),

we conclude that we get a finite covering {S0, ..., Sq} of |Kbar| such that the
bundle ξ is trivial when restricted to any of the Si’s. Let

φi : π−1(Si) −→ Si ×G

be some local trivialization of the bundle ξ and

gij : Si ∩ Sj −→ GLn(R)

be the corresponding transition functions.
For every i between 0 and q, define a continuous G-equivariant map f i :

π−1(Si)→ PGq as

f i(u) =



t0g0i(π(u))g
...

tigii(π(u))g
...

tngni(π(u))g

 ,

where u belongs to π−1(Si), the image of u via φi is φi(u) = (π(u), g), and
π(u) = Σq

j=0tjb
sj , with bsj the vertex in Kbar corresponding to the barycenter of

the j-th dimensional simplex sj of K. Of course, the matrix is to be understood
as an N times n matrix consisting of (q + 1) blocks of square matrices. If
gji(π(u)) is not defined, then tj is zero, so that we consider tjgji(π(u)) as the
n times n zero matrix. Observe that this N times n matrix really represents a
frame, since the block tigii(π(u))g has non zero determinant.

It follows from the cocycle relations of the transition functions {gij} that
f i = f j on π−1(Si ∩Sj). The maps f i, agreeing on their domain’s intersection,
induce a continuous G-equivariant map

f : P −→ PGq.

Let f : |K| → BGq be the corresponding map on the base spaces, so that if
t = Σq

j=0tib
si , with sj simplices of K of dimension j we have

f(t) =



t0g0i(t)
...

tiIdn

...
tngni(t)


G

,

with i chosen so that ti 6= 0. We have just proven that the map f : |K| → BGq

is a classifying map for the bundle ξ. Consequently, the two bundles ξ and
f∗(ξG

q ) are isomorphic.
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Lemma 8 Let K be a finite q-dimensional simplicial complex and F : |K| →
BGδ a continuous map. Then there exists, for the bundle F ∗(PGδ), a classifying
map f : |K| → BG as above such that for every simplices k1, k2 of K and affine
isomorphism α : |k1| → |k2|, if F ||k1| = F ||k2| ◦ α, then f ||k1| = f ||k2| ◦ α.

Proof. Let {Si}qi=0 be the covering of |K| as defined above. Since the classi-
fying map f is defined uniquely in terms of transition functions relative to the
covering {Si}qi=0, it is clear that to prove the lemma, it is enough to exhibit
such transition functions such that for every affine isomorphism α : |k1| → |k2|,
if F ||k1| = F ||k2| ◦α, then gij(α(x)) = gij(x), for every i, j and x in |k1|∩Si∩Sj .

Any section τi : Si → F ∗(PGδ)|Si
gives rise to a trivialization

ϕi : Si ×Gδ −→ F ∗(PGδ)|Si

(x, g) 7−→ τi(x)g

(and conversely). Because Gδ is discrete, such a section is completely deter-
mined by its value on one point of every connected component of Si. For
every x ∈ F (K0

bar) ⊂ BGδ, pick y(x) ∈ PGδ in the fiber over x and let
τi : Si → F ∗(PGδ)|Si

be the sections determined by

τi(bsi) = (bsi , y(F (bsi))) ∈ F ∗(PGδ)|Si
,

for every barycenter bsi ∈ K0
bar of an i-dimensional simplex si of K. The

transition functions are then given, for x ∈ Si ∩ Sj , by the relation

gij(x)τj(x) = τi(x).

By construction, if α : |k1| → |k2| is an affine isomorphism satisfying F ||k1| =
F ||k2| ◦ α, then

F ∗(PGδ)||k1|∩Si

(α,Id)−−−−→ F ∗(PGδ)||k2|∩Si

τi

x xτi

|k1| ∩ Si
f−−−−→ |k2| ∩ Si

so that the transition functions satisfy, for every i, j and x in |k1| ∩ Si ∩ Sj , the
relation

gij(α(x)) = gij(x),

which finishes the proof of the lemma.

4 Semi-algebraic sets

The aim of this section is to introduce all standard results on semi-algebraic
sets which we will need for our proof of Theorem 5. For the sake of conciseness,
we omit most proofs, and invite the interested reader to consult Chapter 2 of
the book [BeRi90] by Benedetti and Risler.
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4.1 Definitions and first properties

A subset X of Rn is said to be semi-algebraic if it admits a representation of
the form

X = ∩s
i=1 ∪

ri
j=1 {x = (x1, ..., xn) ∈ Rn | Pi,j(x) ≥ 0},

where Pi,j(T1, ..., Tn) is a polynomial in n variables belonging to R[T1, ..., Tn]
for every i and j. Such a representation is by no means unique as will soon be
clear.

We can surely measure the complexity of a semi-algebraic set X in terms of
the dimension of the affine space X belongs to, and the minimal number and
degree of the polynomials involved in a representation of X. More precisely, let
R be a representation as above of some semi-algebraic set. Define

C(R) =
s∑

i=1

ri and D(R) = max
i,j
{deg(Pi,j)}.

Let n, c, d ∈ N and set

S(n, c, d) :=

X ⊂ Rn

∣∣∣∣∣∣
X is semi-algebraic and admits
a representation R with
C(R) ≤ c and D(R) ≤ d

 .

We say that a semi-algebraic set X is of complexity S(n, c, d) if X belongs to
S(n, c, d).

For example, algebraic sets are semi-algebraic. In particular, the affine space
Rn is semi-algebraic, and belongs to S(n, 0, 0). The standard q-simplex

∆q = {(t1, ..., tq) ∈ Rq | ti ≥ 0, 1− Σq
i=1ti ≥ 0}

belongs to S(q, q + 1, 1), and more generally, any finite simplicial complex K is
semi-algebraic of complexity S(n, c, 1), where n and c depend on the number of
simplices of K. Observe also that the minimal complexity of a semi-algebraic
set is not well defined: the semi-algebraic set

{x ∈ R | x2 ≥ 1} = {x ∈ R | x ≤ −1} ∪ {x ∈ R | x ≥ 1}

is both of complexity S(1, 1, 2) and S(1, 2, 1).
Let X ⊂ Rn, Y ⊂ Rm be semi-algebraic. A map f : X → Y is called

semi-algebraic if it is continuous and its graph is a semi-algebraic subset of
Rn × Rm. It is moreover called semi-algebraic of complexity S(n, c, d) if its
graph is semi-algebraic of complexity S(n, c, d).

Before enumerating some useful properties of semi-algebraic sets and maps
which we will need in the proof of our Theorem 5, let us introduce some con-
venient notation. Let n1, ..., nq and n be natural numbers (or more generally
functions or various objects). We write n C (n1, ..., nq) if the number n is
bounded by a number depending only on n1, ..., nq. As an example, given a
polynomial f ∈ R[T ], denote by r(f) the number of roots of f , and by deg(f)
the degree of f , then r(f) Cdeg(f).

Lemma 9 If X1, ..., X` are semi-algebraic sets of complexity S(n, c, d), then the
intersection ∩d

i=1Xi is semi-algebraic of complexity S(n, `c, d).
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Lemma 10 Let X and Y be two algebraic subsets of Rn. If X and Y are of
complexity S(n, c, d) then there exists C,D C n, c, d such that their join

X ? Y = {t(x, 0) + (1− t)(y, 1) | 0 ≤ t ≤ 1, x ∈ X, y ∈ Y } ⊂ Rn × R

is semi-algebraic of complexity S(n + 1, C, D).

Theorem 11 (Tarski-Seidenberg) Let n, m, c, d be natural numbers. Then
there exists C,D C n + m, c, d such that for every semi-algebraic sets X ⊂ Rn,
Y ⊂ Rm and for every semi-algebraic map f : X → Y , if A ⊂ X is a semi-
algebraic set of complexity S(n, c, d) and f is of complexity S(n + m, c, d), then
f(A) ⊂ Y is a semi-algebraic subset of Rm of complexity S(m,C,D).

Note that this theorem fails to be true for algebraic sets: consider the pro-
jection of the sphere in the Euclidean plane onto any one dimensional subvec-
torspace.

Corollary 12 Let X ⊂ Rn and Y ⊂ Rm be semi-algebraic sets, f : X → Y a
semi-algebraic map of complexity S(n+m, c, d). Suppose that A ⊂ Y is a semi-
algebraic subset of complexity S(m, c, d), then f−1(A) ⊂ X is semi-algebraic of
complexity S(n, C, D), where C,D C n, m, c, d.

Corollary 13 Let X ⊂ Rn, Y ⊂ Rm and Z ⊂ Rp be semi-algebraic sets,
f : X → Y and g : Y → Z semi-algebraic maps. Suppose that f is of complexity
S(n + m, c, d) and g of complexity S(m + p, c, d). Then the map g ◦ f : X → Z
is semi-algebraic of complexity S(n + p, C, D), where c, d C n, m, p, c, d.

4.2 Triangulations of semi-algebraic sets

Theorem 14 below is the most technical tool which we need for our proof of
Theorem 4. It is a bounded version of the existence of semi-algebraic triangula-
tions of semi-algebraic sets. The unbounded version (that is, the existence of a
semi-algebraic triangulation with no bound on the number or on the complexity
of the simplices) was proven by Hironaka in [Hi74] following the analogous result
by Lojasiewicz for semi-analytic sets. It was then observed by Benedetti and
Risler, that one straightforwardly obtains the corresponding bounded version,
by bounding every step of the constructive proof of Hironaka, as detailed in
[BeRi90, Theorem 2.9.4].

Let X be a semi-algebraic set. A triangulation h : X → |K| of X is said to
be a semi-algebraic triangulation if the homeomorphism h between X and the
geometric realization of the simplicial complex K is semi-algebraic.

Theorem 14 For every compact semi-algebraic set X and every semi-algebraic
subsets X1, . . . , X` ⊂ X, if X1, ..., X` and X are of complexity S(n, c, d) then
there exists a semi-algebraic triangulation

h : X −→ |K|

such that

1. Xi is a finite union of h−1(s) for some simplices s of K, for every i
between 1 and `;
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2. the number of simplices of K is bounded by k, where k C (n, c, d, `);

3. for every simplex s of K the set h−1(s) is semi-algebraic of complexity
S(n, C, D), for some C,D C (n, c, d, `).

It is a straightforward consequence of the existence of semi-algebraic trian-
gulations of semi-algebraic sets that connected subsets of semi-algebraic sets are
semi-algebraic. (This is false for algebraic sets.)

4.3 Semi-algebraicity of the classifying space and classify-
ing map

In the sequel we examine the question of semi-algebraicity for the classifying
space BGq and the classifying map f , which we defined in Section 3, in the case
where the bundle in consideration is flat.

It is clear that the space of n-frames Frn(RN ) is semi-algebraic. Indeed,
recall that it is naturally identified with the set of all N times n matrices with
linearly independent columns. The latter condition being equivalent to the non
vanishing of at least one of the maximal minor, the space Frn(RN ) can be viewed
as a semi-algebraic subset of RNn.

Let G be a real algebraic subgroup of GLnR and let us show that BGq is
semi-algebraic. The main point is that BGq can in a natural way be viewed as
a homogeneous space. Indeed, consider the action of GLNR on BGq (where, as
in Section 3, N = (q + 1)n) given by left matrix multiplication

GLNR×BGq −→ BGq

(A, [X]G) 7−→ [AX]G.

The stabilizer of the point
[

1n

0

]
G

∈ BGq is easily checked to be

H(R) =
{(

g ∗
0 ∗

)
∈ GLN (R)

∣∣∣∣ g ∈ G

}
.

Our space BGq is thus diffeomorphic to the homogeneous space

GLN (R)/H(R).

Since G is algebraic, it is clear that H(R) is a real algebraic subgroup of GLNR.
It is a consequence of a well known theorem of Chevalley that the homogeneous
space

Y (C) = GLN (C)/H(C)

of the corresponding complex algebraic groups is a complex quasi-projective
variety (see [Bo91], §6 or more precisely Theorem 6.8). However, it is in
general false that the real points Y (R) of Y (C) form the homogeneous space
GLN (R)/H(R). To see that let us consider the following examples:

• The quotient of GL1(C) by its finite subgroup {+1,−1} can naturally be
identified with GL1(C) in such a way that the quotient mapping is given
by

GL1(C) −→ GL1(C)
z 7−→ z2.
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But in the real case, the quotient GL1(R)/{+1,−1} is of course not dif-
feomorphic to GL1(R). In fact, it is diffeomorphic to one connected com-
ponent of GL1(R).

• More generally, the quotient of GLn(C) by its orthogonal subgroup O(n, C)
is naturally identified with the space of nondegenerated quadratic forms
over C, or equivalently, the space of symmetric nondegenerated complex
valued (n× n)-matrices. But the nondegenerated quadratic forms over R,
contrarily to the complex case, are not all equivalent, so that the action of
GLn(R) is not transitive: it has precisely n+1 orbits corresponding to the
signature of the nondegenerated symmetric matrices. The homogeneous
space GLn(R)/O(n, R) actually is diffeomorphic to the orbit of the iden-
tity, that is the set of symmetric real valued (n×n)-matrices for which all
eigenvalues are strictly positive. It can thus be viewed as a semi-algebraic
set.

The problem in the two above examples is that the projection map

GLN (C) −→ GLN (C)/H(C) = Y (C),

which is defined over R, is not surjective anymore when restricted to the under-
lying real varieties:

GLN (R) −→ Y (R).

Equivalently, the action of GLNR on Y (R) is not transitive.
Let 1 denote the image of the identity via the projection map GLN (C) −→

Y (C) and let X(R) be its orbit in Y (R) under the action of GLN (R). The
stabilizer of 1 is then clearly

H(C) ∩GLN (R) = H(R),

so that
BGq

∼= GLN (R)/H(R) ∼= X(R).

Because X(R) is a finite union of connected components of Y (R), it is semi-
algebraic. Indeed, it is an easy consequence of Theorem 14 that connected
components of semi-algebraic sets are semi-algebraic.

For further use, define n(BGq) to be equal to the dimension of the affine
space that BGq belongs to. (In particular, BGq then belongs to S(n(BGq), c, d)
for some c, d.)

Because of the universal property of the quotient (see [Bo91], §6), it is readily
seen that the projection map π : PGq =Frn(RN ) → X(R) = BGq is a semi-
algebraic map.

As for the classifying map f described in the previous section, in the case
where the bundle ξ is flat, the transition functions relative to the open covering
described in Section 3 can be chosen to be locally constant. This means that on
every q-dimensional open simplex Int(k) of K, the classifying map f takes the
form

t = (t0, ..., tq) 7−→ f(t) =


t0Idn

t1g10

...
tqgq0


G

,
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where the gi0’s are constant elements of G defined by gi0 = gi0(t), for any t
in Int(k). By continuity, the map f actually has the above form on the whole
(closed) simplex k. We claim that it is semi-algebraic of uniformly bounded
complexity when restricted to any simplex of K. To see that, consider its lift
to PGq =Frn(RN )

t = (t0, ..., tq) 7−→


t0Idn

t1g10

...
tqgq0

 ,

which clearly is an affine map, now that the gij ’s are constant. It is thus semi-
algebraic of uniformly bounded complexity , where the bound only depends on
the dimension, thus on n and q. As mentioned above, the projection PGq →
BGq is a semi-algebraic map, so that the claim follows.

5 Proof of the simplicial version

Theorem 5 Let G be a real algebraic subgroup of GLn(R) and β ∈ Hq(BG)
be a characteristic class. There exists a finite subset I ⊂ R such that for every
flat principal G-bundle ξ over a finite simplicial complex K the cohomology
class β(ξ) ∈ Hq(K) can be represented by a cocycle whose set of value on the
q-simplices of K is contained in I.

Proof. First observe that it is enough to prove the theorem for simplicial
complexes of dimension smaller or equal to q. Indeed, a simplicial q-cocycle is
defined on the q-dimensional simplices and two q-cocycles represent the same
cohomology class if they differ by a coboundary, which also only depends on the
q-skeleton.

Now, any principal G-bundle over a q-dimensional simplicial complex, can
be obtained as the pull back of the approximation to the universal bundle BGq,
where BGq is as in Section 3.1.

The space BGq was shown to be semi-algebraic in Section 4.3, so that in
particular its closure BGq admits, by Theorem 14, a finite semi-algebraic trian-
gulation T which we can chose in such a way that it restricts to a triangulation
of the boundary of BGq. To simplify the notation, we identify BGq with the
geometric realization |T | of its triangulation T . Upon replacing T by its first
barycentric subdivision we can assume that any open simplex contained in BGq

has at least one of its vertex in BGq. Also recall that the classifying map
f : |K| → BGq exhibited in Section 3.2 was proven in Section 4.3 to be semi-
algebraic, and furthermore of complexity bounded independently of the bundle
ξ or even the simplicial complex K, when restricted to any simplex of K.

Our next aim is to find a simplicial approximation of the classifying map
f : |K| → BGq ↪→ |T | (or to be precise, actually an approximation to a map
f : |K| → BGq ↪→ |T | homotopic to f) such that the homotopy between f and
its simplicial approximation has image in BGq. Of course it is a well known fact
that upon passing to an arbitrarily fine subdivision of K this is always possible.
Our main point is now precisely that we only need to refine K in a uniformly
bounded way. This will follow at once from the following Technical Lemma.

12



Lemma 15 (Technical Lemma) There exists a triangulation L of K and a
continuous map f : |K| → |T | = BGq homotopic to f such that

• each simplex of K is triangulated by at most d simplices of L, and the
bound d is independent of ξ or K,

• the interior of every simplex ` of L is mapped by f inside the interior of
some simplex t of T whose interior is contained in BGq,

f(Int(`)) ⊂ Int(t).

We postpone for the time being the proof of the Technical Lemma and show
how the theorem can now be proven. Let Tmax be the biggest subcomplex of
T contained in BGq. The simplicial approximation can be defined as follows:
For every vertex v of L, define ϕ(v) ∈ T 0

max to be any vertex of the only open
simplex of T containing f(v). This indeed defines a simplicial map

ϕ : L −→ Tmax

since if v1, ..., vq generate a q-simplex of L, then f(v1), ..., f(vq) belong to some
(closed) simplex t of T . As the only open simplex containing f(vi), for i ∈
{1, ..., q}, is necessarily contained in t, it follows that ϕ(vi) must be one of the
vertices of t, so that ϕ(v1), ..., ϕ(vq) indeed generate a simplex of T , namely a
face of t. Furthermore, as all ϕ(vi)’s belong to Tmax, the simplex generated by
them also lies in Tmax.

The simplicial map ϕ is easily verified to be a simplicial approximation to
the continuous map f : |K| = |L| → BGq ↪→ |T | : One can check that for every
vertex v in L0, it holds that

f(star(v)) ⊂ star(ϕ(v)).

For our purposes it is however enough to know that the maps |ϕ| and f are ho-
motopic, which is obvious since for every point x in |L| its image f(x) belongs
to the same simplex of T than |ϕ|(x), so that the (positive) convex linear com-
bination of the two maps |ϕ| and f is well defined, thus providing the desired
homotopy. Note that by construction, it is clear that the whole homotopy lies
in BGq.

Let b ∈ Zq(BGq) be an alternating cocycle representing the cohomology
class corresponding to the characteristic class β. We have

β(ξ) = [f∗(b)] = [|ϕ|∗(b)] ∈ Hq(K),

since |ϕ| is homotopic to f , and the latter map is itself, by the Technical Lemma,
homotopic to f . Let IT be the set of values taken by the cocycle b when evaluated
on q-dimensional simplices of Tmax. Of course IT is a finite subset of R since
the simplicial complex Tmax is finite. Set

I =


d′∑

i=1

(−1)εiri

∣∣∣∣∣∣ d′ ≤ d, εi ∈ {0, 1}, ri ∈ IT

 ,

where d is as in the Technical Lemma. It is clear that the set I is finite. Observe
that the cocycle ϕ∗(b), considered as a simplicial cocycle on L clearly enjoys the
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property that its evaluation on q-dimensional simplices of L is contained in IT .
A simplicial cocycle on K, representing β(ξ), is now obtained as follows: the
value of a q-dimensional simplex k of K is the sum of the values of ϕ∗(b) on the
the simplices of L appearing in the triangulation of k, and is hence contained
in I, which finishes the proof of the theorem.

Of course, the so obtained bound is by no means sharp. Observe that it is
composed of two parts: the possible values of a cocycle on BGq = |T | repre-
senting the characteristic class β evaluated on the fixed triangulation T , and
the amount of simplices (the d from the Technical Lemma) needed to refine the
simplicial complex K so as to have a simplicial approximation of the classifying
map. The latter bound can actually be computed effectively.
Proof of the Technical Lemma. We will prove the Lemma inductively by
showing that for every 0 ≤ i ≤ q there exists constants ci, di and mi depending
only on i, the group G and the dimension q of the simplicial complex, a triangu-
lation Li of the i-skeleton Ki of K and a continuous map fi : |K| → |T | = BGq

homotopic to f such that

1. each simplex of Ki is triangulated by at most mi simplices of Li,

2. the image by fi of the interior of every simplex of Li is contained in the
interior of some simplex t of T ,

3. every simplex ` of Li is semi-algebraic of complexity S(i, ci, di),

4. the map fi restricted to any simplex of Ki is semi-algebraic of complexity
S(i + n(BGq), ci, di).

The two first properties are exactly the conclusion of the Technical Lemma
for i = q, and the two last ones are added for inductive purposes. For i = 0, there
is nothing to prove: Take f0 = f and L0 = K0 (so that c0 = n(BGq), d0 = 1 and
m0 = 1). Let us thus assume that a triangulation Li−1 of the (i − 1)-skeleton
of K and a continuous map fi−1 : |K| → |T | satisfying the above properties are
given.

The strategy of the proof is the following: We are going to triangulate each
i-dimensional simplex k of K in such a way that the triangulation on the bound-
ary ∂k of k is precisely the first barycentric subdivision of Li−1. We will thus
automatically obtain a triangulation of the i-skeleton of K. To do so, we subdi-
vide every i-dimensional simplex k in two subsets kint and kext. After defining
the map fi and checking that it satisfies the above property 4 we prove that
there exists triangulations of kint and kext which agree on kint ∩ kext and cor-
respond to the first barycentric subdivision of Li−1 on ∂k. We show that both
the triangulation of kint and kext satisfy the above properties 1, 2 and 3, thus
proving the Technical Lemma.

The subsets kint and kext. Let k be an i-th dimensional simplex of K and
consider the two following subsets of its geometric realization: Choose ε with
0 < ε < 1 and define

kint =


i∑

j=0

tjvj

∣∣∣∣∣∣ ti ≥
ε

1 + i
∀ j = 0, . . . , i,


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and

kext =


i∑

j=0

tjvj

∣∣∣∣∣∣ ∃ j ∈ {0, ..., i} with ti ≤
ε

1 + i

 ,

where of course v0, ..., vi are the vertices of k. The subset kext is the closure
of some sufficiently small neighborhood of the boundary of k so that kext is
homotopically equivalent to ∂k. The subset kint is the closure of k\kext, that is,
a homothetic copy of k centered at the barycenter of k and contraction factor
strictly smaller than 1.

The map fi. Define a continuous map αk : |k| → |k| to be, on kint the
natural affine homothety between kint and k, and on kext the projection from
the barycenter of k onto the boundary ∂k. More precisely, we have

αk

 i∑
j=0

tjvj

 =


∑i

j=0
1

1−ε

(
tj − ε

i+1

)
vj if

∑i
j=0 tjvj ∈ kint,

∑i
j=0

tj−min{ tj | 0≤j≤m}
1−(i+1) min{ tj | 0≤j≤m}vj if

∑i
j=0 tjvj ∈ kext.

Clearly αk is well-defined, continuous and semi-algebraic. Also, since for every
i-dimensional simplex k, the map αk is the identity on ∂k, it defines a continuous
map α : |Ki| → |Ki|. Furthermore, it is obvious that it extends to a continuous
map |K| → |K|, still denoted by α, which we can moreover assume to map every
simplex of K to itself and to be semi-algebraic of complexity S(2q, cα, dα), when
restricted to any simplex of K, where the constants cα and dα do not depend on
anything else than i and q. Such a map α is clearly homotopic to the identity.

Define
fi = fi−1 ◦ α : |K| −→ |T | = BGq.

Since fi−1 is homotopic to f , the same is true for fi and by Corollary 13, the map
fi is, when restricted to any simplex of K, semi-algebraic of complexity S(q +
n(BGq), ci, di), where ci, di C q, n(BGq), cα, dα, ci−1, di−1, and thus ci, di C
q, G, i.

The triangulation of kint. The map α is, when restricted to kint a ho-
mothety from kint to k. Thus the first barycentric subdivision (Li−1)bar of the
triangulation Li−1 restricted to the boundary of k naturally induces, via α, a
triangulation by semi-algebraic simplices of complexity S(ni−1, ci−1, di−1) of the
boundary of kint. We would now like to have a semi-algebraic triangulation of
kint agreeing with the following two families of semi-algebraic subsets:

• The simplices of the triangulation of ∂kint induced by (Li−1)bar.

• The pull back by fi of the simplices of T .

We are of course going to apply Theorem 14 to kint and those two families
of semi-algebraic subsets, so let us first check that the above sets all are of
uniformly bounded complexity, and in uniformly bounded quantity. Note that
kint is of complexity S(i, i + 1, 1).

• Since each simplex of Li−1 is, by induction, of complexity S(i−1, ci−1, di−1),
it follows that each simplex of (Li−1)bar is of complexity S(i−1, ci−1, di−1),
and the same is true for the corresponding simplices in ∂kint.

There are at most (i + 1) ·mi−1 · i! such simplices.
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• Since the semi-algebraic triangulation T of BGq is finite, any simplex t
of T is of complexity S(n(BGq), cT , dT ), for some cT , dT depending only
on G and q. By Corollary 12 it follows that f−1

i (t) is semi-algebraic of
complexity S(q, C, D), where C,D C q, n(BGq), ci, di, cT , dT , thus C,D C
q, G, i. By Lemma 9 we now obtain that f−1

i (t) ∩ kint is semi-algebraic of
complexity S(i, 2max{i + 1, C},max{1, D}) for every simplex t of T .

Of course, the number of such sets is majorized by the number of simplices
of T , which only depends on q and G.

Let us now apply Theorem 14 to kint and its two above given families of
semi-algebraic subsets. We thus obtain a semi-algebraic triangulation Lint of
kint fulfilling the following properties:

1. • The triangulation Lint restricted to the boundary of kint is a re-
finement of the triangulation corresponding to the first barycentric
subdivision of the triangulation Li−1 restricted to ∂k.

• For every simplex t of T , the semi-algebraic set f−1
i (t)∩kint is a finite

union of simplices of Lint, so that the image by fi of the interior of
any simplex of Lint is contained in the interior of some simplex of T .

2. The number of simplices of Lint is bounded by mint, where mint is a
constant depending only on q, G and i.

3. each simplex of Lint is semi-algebraic of complexity S(n, cint, dint), where
cint, dint are constants depending only on q, G and i.

The triangulation of kext. It now remains to triangulate kext in such a
way that the triangulation agrees with the first barycentric subdivision of Li−1

on ∂k and with the triangulation Lint on kext ∩ kint = ∂kint. This triangulation
should of course also enjoy the desired properties. To do so, we consider the
homeomorphism between kext and ∂k × [0, 1] given by

β : kext −→ ∂k × [0, 1]
x =

∑i
j=0 tjvj 7−→ (α(x), i+1

ε min{t0, ..., ti}).

The boundary ∂k ⊂ kext is thus mapped by β to ∂k×{0}, and kext∩kint = ∂kint

to ∂k×{1}. Denote by L0 the first barycentric subdivision of the triangulation
Li−1, and by L1 the triangulation of ∂k corresponding to the triangulation
Lint of kext ∩ kint = ∂kint. By construction, L1 is a refinement of L0. The
triangulation Lint of kint is now easily defined as the inverse image, via β−1 of the
following triangulation of ∂k × [0, 1]: For every simplex {v0 < ... < vi−1} of L0

(where the ordering of the vertices is given from L0 being the first barycentric of
the simplicial complex Li−1), for every simplex {w0, ..., wn} of L1 such that the
geometric realization of the simplex {w0, ..., wn} is contained in the geometric
realization of the simplex {v0, ..., vi−1} and for every m ∈ {0, ..., i − 1} define
the simplex

{(v0, 0), (v1, 0), ..., (vm, 0), (w0, 1), ..., (wn, 1)} of Lext

to be the join of the simplex {(v0, 0), ..., (vi−1, 0)} of L0 × {0} and the simplex
{(w0, 1), ..., (wn, 1)} of L1 × {1}. It is straightforward to check that we have
thus obtained a triangulation of ∂k× [0, 1] and hence of kint. Moreover we have:
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1. A rough bound for the number of simplices of Lext is the number of sim-
plices of L0 plus 1 multiplied by the number of simplices in L1 plus 1. But
now, by induction, the number of simplices of L0 is at most mi−1 times
i, since ∂k has i faces of dimension i− 1, and the number of simplices of
L1 is surely strictly smaller than the number of simplices of Lint, which is
bounded by mint. We thus obtain that the amount of simplices of Lext is
bounded by

mext = (i ·mi−1 + 1) (mint + 1) .

2. Observe that the diagram

kext
β−−−−→ ∂k × [0, 1]yfi

yproj1

|T | fi−1←−−−− ∂k,

where of course proj1 stands for the projection on the first factor, is com-
mutative. The interior of any simplex of Lext is by construction mapped
inside the interior of some simplex of the first barycentric subdivision of
Li−1 and as by induction the image by fi−1 of the interior of any simplex
of Li−1 and hence also of (Li−1)bar is contained in the interior of some
simplex of T the conclusion follows.

3. As L0 is the first barycentric subdivision of Li−1 its simplices are all
semi-algebraic of complexity S(i− 1, ci−1, di−1). Also, L1 being the trian-
gulation Lint on ∂kint it is semi-algebraic of complexity S(i− 1, cint, dint).
By Lemma 10, the join of any simplex of L0 and L1, and thus any simplex
of Lext is semi-algebraic of complexity S(i, cext, dext), where cext,dext C
ci−1, di−1, cint, dint and thus cext,dext C i, G, q.

We prove now a slightly stronger version of Theorem 5, where we show that
if the bundle ξ is induced by a classifying map F : |K| → BGδ, then the
simplicial cocycle can furthermore be chosen in the image of the induced map
F ∗ : Cq

sing(BGδ) → Cq
simpl(K). We assume that our space of singular cochains

consists of alternating cochains, so that the map F ∗ admits the following natural
description: For c in Cq

sing(BGδ) and k an oriented q-simplex of K, that is, a
q-simplex of K together with an ordering of its vertices, we have

F ∗(c)(k) = sign(τ)c(F ◦ |τ |),

where τ : ∆q → k is an isomorphism between the two oriented q-simplices ∆q

and k.

Theorem 16 Let G be a real algebraic subgroup of GLnR and β ∈ Hq(BGδ) a
primary characteristic class. Then there exists a finite subset I ⊂ R such that
for every finite simplicial complex K and every continuous map F : |K| → BGδ,
there exists a cochain b ∈ Cq

sing(BGδ) such that the simplicial cochain F ∗(b) ∈
Cq

simpl(K) is a cocycle representing F ∗(β) and taking values in I when evaluated
on q-simplices.
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Proof. We start the proof with the following claim, which, as we will show
below, is a consequence of the easy Lemma 8 and the proof of Theorem 5.

Claim 17 There exists a cocycle b ∈ Cq
simpl(K) representing F ∗(β) taking val-

ues in I when evaluated on q-simplices of K such that for every affine isomor-
phism α : |k1| → |k2| between the oriented simplices k1, k2 of K, if F ||k1| =
F ||k2| ◦ |α|, then b(k1) = sign(α)b(k2).

Proof of Claim. First note that by Lemma 8, it is enough to prove the claim
with F replaced by a classifying map f : |K| → BG as in Section 3.2.

Second, observe that the triangulation L of K and the simplicial map ϕ :
L → Tmax constructed in the proof of Theorem 5 being defined inductively on
the skeleton of K in such a way that they depend only on the classifying map f ,
can be chosen so that α maps the restriction to k1 of the triangulation L to the
restriction to k2 of the triangulation L and furthermore ϕ = ϕ◦α : L|k1 → Tmax,
whenever α is as in the hypothesis of the claim. It is immediate that the resulting
simplicial cochain on K, constructed as in the proof of Theorem 5, will satisfy
the claimed assertion.

To finish the proof of the theorem, define a cochain b′ ∈ Cq
sing(BGδ) as

follows: If σ : ∆q → BGδ is a singular simplex such that there exists an isomor-
phism τ : ∆q → k, where k is an oriented q-simplex of K, such that σ = F ◦ τ ,
then set

b′(σ) = sign(τ)b(τ(∆q)).

Otherwise, define b′(σ) to be arbitrary. By the claim, the cochain b′ is well
defined. Indeed, suppose that F ◦ τ1 = F ◦ τ2, for isomorphisms τi : ∆q −→ ki,
where i = 1, 2. Then α = τ−1

2 τ1 : k1 → k2 furnishes an isomorphism between
k1 and k2 with sign(α) =sign(τ1)sign(τ2), so that by the claim,

sign(τ1)b(τ1(∆q)) = sign(τ1)b(k1) = sign(τ1)sign(α)b(k2) = sign(τ2)b(τ2(∆q)).

By definition, we have F ∗(b′) = b. Thus, the simplicial cocycle b satisfies all the
requirements of the theorem.

6 Proof of the singular version

We are now almost ready to give a proof of Theorem 4, which will be a simple
consequence of its simplicial version (Theorem 16) by an argument of inverse
limit. We start by recalling the elementary definitions of inverse systems and
limits.

A directed set is a non-empty, partially ordered set (Λ,≥) such that

∀ λ, µ ∈ Λ, ∃ ν ∈ Λ with ν ≥ λ, ν ≥ µ.

An inverse system (Xλ, πµλ) of sets over a directed set Λ is a family of sets
(Xλ)λ∈Λ together with maps πµλ : Xλ → Xµ whenever λ ≥ µ satisfying the two
conditions πλλ = IdXλ

, for every λ in Λ, and πνµπµλ = πνλ, for λ ≥ µ ≥ ν. The
inverse limit of the inverse system (Xλ, πµλ) is defined as

lim
←

Xλ = {(gλ) ∈
∏
λ∈Λ

Xλ | πµλ(gλ) = gµ ∀ λ ≥ µ}.
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The following proposition is a well known and straightforward consequence of
Tychonov’s theorem. It gives a simple criterion for inverse limits to be non-
empty.

Proposition 18 If (Xλ, πµλ) is an inverse system of nonempty compact spaces
over a directed set Λ, then

lim
←

Xλ 6= ∅.

Our main example of directed set and inverse system. Let X be a
nonempty topological space. Set

Λ =
{

(K, σ)
∣∣∣∣ K finite simplicial complex,

σ : |K| → X continuous

}
.

It is nonempty since X is nonempty. Put the following partial order on Λ: Let
(K1, σ1), (K2, σ2) ∈ Λ, then

(K2, σ2) ≥ (K1, σ1) if ∃ a simplicial injection i : K1 → K2

such that σ2 ◦ |i| = σ1.

It is readily seen that Λ is a directed set. Indeed, for (K1, σ1), (K2, σ2) in Λ,
define σ : |K1 tK2| → X as σ(x) = σi(x) if x belongs to |Ki|. It is clear that
(K, σ) ≥ (Ki, σi), for i = 1, 2.

Let X be a topological space, β ∈ Hq
sing(X) a singular cohomology class on

X and I a compact subset of R. For every (K, σ) in Λ, define

Y(K,σ) =
{

b ∈ Zq
simpl(K)

∣∣∣∣ [b] = σ∗(β), b ∈ σ∗(Cq
sing(X)),

b(k) ∈ I ∀ q-simplex k ∈ K

}
.

If (K1, σ1) ≤ (K2, σ2), the simplicial inclusion i : K1 → K2 induces a map

i∗ : Y(K2,σ2) −→ Y(K1,σ1).

Note that from the requirement that any cocycle of Y(K,σ) belongs to the image
of σ∗ it follows that the map i∗ does not depend on the choice of simplicial
injection i. Indeed, suppose j : K1 → K2 is another simplicial injection with
σ2 ◦ |j| = σ1 = σ2 ◦ |i|, then

i∗ ◦ σ∗2 = (σ2 ◦ |i|)∗ = σ∗1 = (σ2 ◦ |j|)∗ = j∗ ◦ σ∗2 ,

so that i∗ and j∗ agree on the image of σ∗2 in which Y(K2,σ2) is contained. Observe
moreover that

• for every (K, σ) in Λ, the map Y(K,σ) → Y(K,σ) is the identity since it is
induced by the identity on K,

• if (K1, σ1) ≤ (K2, σ2) ≤ (K3, σ3) with simplicial injections i : K1 → K2,
j : K2 → K3, then (j ◦ i)∗|Y(K3,σ3)

= (i∗j∗)|Y(K3,σ3)
= i∗|Y(K2,σ2)

◦ j∗|Y(K3,σ3)
.

We have thus proven that {Y(K,σ)} forms an inverse system over Λ.

Proof of Theorem 4. Let G be a real algebraic subgroup of GLnR and β ∈
Hq(BGδ) a primary characteristic class. Let Λ be the directed set constructed
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above for X = BGδ, and {Y(K,σ)} the inverse system obtained from X = BGδ,
β ∈ Hq(BGδ) and the finite subset I of R from Theorem 16. The conclusion of
Theorem 16 is exactly equivalent to Y(K,σ) being nonempty for every (K, σ) in
Λ. Moreover, the Y(K,σ)’s are compact: Indeed, for every (K, σ) in Λ, the space
Y(K,σ) is the subspace of the finite dimensional vector space Zq

simpl(K) formed of
the intersection of an affine subspace (the image of the coboundary δ), a linear
subspace (the image of σ∗), and a compact subset (from that b takes its values
in the finite set I). It now follows from Proposition 18, that the inverse limit of
the inverse system {Y(K,σ)} is nonempty:

∅ 6= lim←−Y(K,σ).

Let thus (b(K,σ)) be an element in the inverse limit, and define a singular cochain
b ∈ Cq

sing(X) by b(σ) = b(∆q,σ)(∆q), for every singular simplex σ : ∆q → X.
It is clear from the definition of b, that the cochain b takes its values in I on
singular simplices.

It remains to show that the cochain b is a cocycle representing β. Let
thus c be an arbitrary cocycle representing β. By the Universal Coefficient
Theorem, it is enough to show that b and c agree on integral singular cycles.
Let z = Σr

i=1aiσi ∈ Zq(X) be such a singular cycle on X, where we can without
loss of generality assume that the coefficients ai lie in {−1,+1}. We want now
to represent the homology class [z] by a continuous map from the realization of
a finite simplicial complex K into X:

Claim 19 Let z = Σr
i=1aiσi be a singular cycle in X with ai = ±1. Then

there exists a closed q-dimensional simplicial complex K and a continuous map
ζ : |K| → X such that the induced map

ζ∗ : C∗sing,alt(X) −→ C∗simpl(K)

satisfies the relation
ζ∗(c) ([K]) = c (z) ,

for every singular, alternating cochain c in Cq
sing,alt(X).

Intuitively, one would like to build up the simplicial complex K from r copies
of the standard simplex ∆q, define ζ on each of those as σi, for i = 1, .., r, and
glue up the (q−1)-faces of the standard simplices according to the cycle relation
of z. However, for the glued up object to be a simplicial complex with the desired
property, we need to add sufficiently many simplices between the copies of the
standard simplices. This will be made more precise in the proof of the claim,
at the end of this section.

Assuming the claim, we are now left with checking that the cochain b and
the cocycle c agree on z: We first show that

b(K,ζ) = ζ∗(b). (1)

To see that, let k be an oriented q-dimensional simplex of K and recall that by
definition of the induced map ζ∗, we have

ζ∗(b)(k) = b(ζ ◦ |τ |),
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where τ is an orientation preserving isomorphism τ : ∆q ∼= k, so that ζ ◦ |τ | :
∆q → X is a singular simplex. By definition of b, we further get

b(ζ ◦ |τ |) = b(∆q,ζ◦|τ |)(∆q).

Let now i : ∆q ∼= k ↪→ K be the simplicial inclusion given by the composition
of τ with the canonical inclusion k ⊂ K. Clearly, the simplicial inclusion i gives
us

(K, ζ) > (∆q, ζ ◦ |τ |),

so that, since (b(K,σ)) belongs to the inverse limit of the Y(K,σ)’s,

b(∆q,ζ◦|τ |) = i∗(b(K,ζ)).

As i∗(∆q) = k, we finally conclude

b(∆q,ζ◦|τ |)(∆q) = b(K,ζ)(k),

which proves Equality (1).
Recall that by definition, b(K,ζ) = ζ∗(b) is a simplicial cocycle representing

ζ∗(β) = ζ∗([c]). In particular, the evaluation of ζ∗(c) and ζ∗(b) on the simplicial
cycle [K] must agree:

ζ∗(b) ([K]) = ζ∗(c) ([K]) . (2)

Applying now Claim 19 to both the cochain b and the cocycle c, we see that
Equation (2) becomes

b (z) = c (z) .

Thus, modulo Claim 19, the Theorem is proven.
Proof of Claim 19. We inductively construct triangulations T q, for q ≥ 0,
of the standard q-simplex ∆q together with simplicial projections pq : T q → tq
onto a favorite simplex tq of T q such that the triangulations T q restrict to
triangulations T q

i , for i = 0, ..., q, of the i-th (q−1)-dimensional face of ∆q which
are isomorphic to T q−1 under the i-th face inclusion ηi : ∆q−1 ∼= |T q−1| ↪→ ∆q.
The subtriangulations of T q arising from j-dimensional faces of ∆q (in short,
j-faces of ∆q) will be called j-faces of T q. Furthermore, T q will be shown to
satisfy the following two properties:

1. For every simplex t in T q and for any 0 ≤ j ≤ q− 1, the boundary ∂t of t
intersects at most one j-face of T q.

2. For every q-simplices t, s in T q, if there exists i 6= j such that t ∩ T q
i 6= ∅

and s∩T q
j 6= ∅ then t possesses a vertex in the interior of ∆q ∼= T q which

does not belong to s.

For q = 0, take T 0 = {∗}. Assume now that pi : T i → ti are constructed for
i < q. View the q-simplex ∆q as

∆q ' ∆q ∪∂∆q ∂∆q × [0, 1],

where ∂∆q is identified with ∂∆q × {0}.
Inductively choose an order of the vertices T q−1 which restricts to the order

on its j-faces given by the j-th face inclusion of the inductively chosen order
on T q−2. Let Sq−1 be the canonical product triangulation of ∆q−1 × [0, 1]
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given by the triangulation T q−1 of ∆q−1 and the triangulation of [0, 1] in one
1-dimensional simplex together with the chosen order on T q−1 and the order
0 < 1 on [0, 1].

Consider now the equivalence relation on Sq−1 defined by

(v, 0) ∼ (w, 0) ⇐⇒ pq−1(v) = pq−1(w),

and let Rq−1 be the refinement of the quotient simplicial complex Sq−1/ ∼
obtained by subdividing once more all q-simplices of Sq−1/ ∼ by adding one
vertex on their barycenter. Thus, a q-simplex of Sq−1/ ∼ is in Rq−1 triangulated
into q +1 simplices of dimension q, while its boundary remains unchanged. The
triangulation Rq−1 of ∆q−1 × [0, 1] restricts to the triangulations

∆q−1 on ∆q−1 × {0},
T q−1 on ∆q−1 × {1}, and
Rq−2 on ((q − 2)-face of ∆q−1)× [0, 1].

In particular, it glues up to a triangulation of ∂∆q × [0, 1]. Denoting by tq the
middle simplex ∆q in ∆q∪∂∆q ∂∆q×[0, 1], we have thus obtained a triangulation
T q of ∆q ' ∆q ∪∂∆q ∂∆q × [0, 1]. Note that the favorite simplex tq comes with
a canonical isomorphism tq ∼= ∆q.

The product triangulation Sq−1 admits a canonical projection Sq−1 → T q−1

and by definition of the quotient Sq−1/ ∼, the composition of this projection
with tq−1 factors through Sq−1/ ∼:

Sq−1

��

// // T q−1
pq−1 // // tq−1.

Sq−1/ ∼
sq−1

55kkkkkkkkkkkkkkkkk

Let rq−1 : Rq−1 → Sq−1/ ∼ denote the simplicial projection obtained by
sending those vertices of Rq−1 which were initially in Sq−1/ ∼ to themselves,
and the new vertices to any of the vertex of the q-simplex in Sq−1/ ∼ which they
are the barycenter of. Observe that the composition sq−1 ◦ rq−1 : Rq−1 → tq−1

restricts to sq−2 ◦ rq−2 : Rq−2 → tq−2 on the subtriangulations Rq−2 of the
((q−2)-face of ∆q−1)× [0, 1]’s. In particular, it glues up to the desired simplicial
projection

pq : T q → tq.

Let us further check that the claimed properties are satisfied:

1. Let t be a simplex in T q. If t = tq, then ∂t is in the interior of T q and does
not meet any proper face of T q. If t 6= tq, then t belongs to ∂∆q×[0, 1] and
hence to one of the triangulations Rq−1 of ∆q−1 × [0, 1] ⊂ ∂∆q × [0, 1].
But then, ∂t ∩ ∂T q is included in ∆q−1 × {1} which is triangulated by
T q−1, so that the assertion follows by induction.

2. Let t, s be q-dimensional simplices in T q. Suppose that there exists i 6= j
such that t∩T q

i 6= ∅ and s∩T q
j 6= ∅. In particular, t and s belong to two

different copies of the triangulation Rq−1 of ∆q−1 × [0, 1] ⊂ ∂∆q × [0, 1]
(corresponding to the i-th and j-th (q − 1)-faces of ∆q). By construction
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of Rq−1, the q-simplex t has a vertex in the interior of Rq−1 (and hence in
the interior of T q), namely the one which is the barycenter of a q-simplex
in Sq−1/ ∼. Since s belongs to a different copy of Rq−1, this vertex of t
can not belong to s.

Let z = Σr
i=1aiσi be a singular cycle in X with ai = ±1. Set Li = T q and

Lij = T q
j , for i = 1, .., r and j = 0, .., q. Define

L = L1

∐
...

∐
Lr

and σ : |L| → X on every |Li| as the composition

σ||Li| : |Li| = |T q| pq−−−−→ |tq| ∼= ∆q σi−−−−→ X

where |tq| ∼= ∆q is the canonical isomorphism described above. Because ∂z = 0,

there exists a finite (in general nonunique) partition S =
s∐

k=1

Sk of the set

S = {(i, j) | i = 1, .., r, j = 0, .., q} such that for every k in {1, .., s}, the set Sk

contains two elements (i, j) 6= (i′, j′) for which we have

σi ◦ ηj = σi′ ◦ ηj′ : ∆q−1 −→ X,

(−1)jai = −(−1)j′ai′ ,

where ηj : ∆q−1 ↪→ ∆q is the j-th face inclusion.
For every j-face Lij of Li, there exists a canonical isomorphism Lij

∼= ∆q−1

such that the composition

Lij
∼= ∆q−1 ηj−−−−→ ∆q ∼= Li

is the canonical inclusion. Define an equivalence relation ∼ on L generated by
the relations

v ∼ w ⇐⇒ ∃k such that v ∈ Lij , w ∈ Li′j′ , for (i, j), (i′, j′) ∈ Sk and
v is mapped to w via the isomorphism Lij

∼= ∆q−1 ∼= Li′j′ ,

where the isomorphisms Lij
∼= ∆q−1 ∼= Li′j′ are the canonical ones described

above.

Lemma 20 v ∼ w implies either v = w or v, w belong to different j-faces of L.

Proof. Suppose v ∼ w and v, w belong to the same j-face F ⊂ Li of L. This
means that there exists a finite sequence of isomorphisms

τr : Lir,jr

∼=−−−−→ Li′r,j′r

with (ir, jr), (i′r, j
′
r) ∈ Sk, for some k, and i′r = ir+1, and such that

w = τR ◦ ... ◦ τ0(v).

Observe now that τR ◦ ... ◦ τ0 induces an automorphism of the face F . Let
f0, ..., fj ∈ {e0, ..., eq} be the vertices of F ⊂ Li

∼= ∆q. By definition of the
equivalence relation ∼, each of the isomorphism τr preserves the order by num-
bering of the vertices {e0, ..., êjr

, ..., eq} ⊂ Lir,jr
∼= ∆q and {e0, ..., êj′r , ..., eq} ⊂

Li′r,j′r
∼= ∆q. In particular, the automorphism of the face F induced by τR◦...◦τ0

preserves the order of the vertices {f0, ..., fj} and has hence to be the identity,
so that v = w.

Define K = L/ ∼ and let p : L→ K denote the canonical projection.
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Lemma 21 The projection p : L → K induces a one-to-one correspondence
between the q-simplices of L and those of K.

Proof. First, we check that p maps q-simplices to q-simplices. To see this, we
show that if 〈v, w〉 is a 1-simplex of L then p(v) 6= p(w). Suppose v ∼ w. By
Lemma 20 and since v 6= w this implies that v and w belong to different i-faces
of L. But this contradicts property 1).

Second, we verify that for any q-simplices k, ` of L, if p(k) = p(`) then k = `.
Let v0, ..., vq be the vertices of k and w0, ..., wq be those of `. If p(k) = p(`) then
up to renumbering the wi’s we have vi ∼ wi for every 0 ≤ i ≤ q. By Lemma
20 this means that either vi = wi or vi and wi belong to different j-faces of L.
Up to permuting the index set {0, ..., q}, we can suppose that vi = wi for i ≤ i0
and vi 6= wi for i > i0, for some −1 ≤ i0 ≤ q. If i0 = q, then k = `. If i0 < q,
then vq and wq belong to different j-faces and hence also to different (closed)
(q − 1)-faces Lij and Li′j′ of L.

If i 6= i′, then k belongs to Li and ` belongs to Li′ 6= Li, so that none of
the vertices of k and ` can agree, and in particular, i0 = −1. Thus, all the
vi’s (and wi’s) belong to the boundary of L, which contradicts the assumption
that k (and `) is q-dimensional: Indeed, if all the vertices of k would lie on the
boundary of Li

∼= T q, then they all would have to lie on the same (q − 1)-face
of Li, since by Property 1) the boundary ∂t of t, which contains {v0, ..., vq}
intersects at most one (q− 1)-face of Li. The vertices of k being contained in a
(q − 1)-dimensional simplicial complex, it now follows that the dimension of k
is strictly smaller than q.

If i = i′, then k and ` are both contained in Li = T q and we have vq ∈
k ∩Lij 6= ∅ and wq ∈ `∩Lij′ 6= ∅, so that by Property 2), k possesses a vertex
in the interior of Li which does not belong to `. But then this vertex can not
be equivalent to any of the vertices in `: contradiction.

Thus, K is obtained from L by identifying the (q−1)-faces Lij with Li′j′ for
every (i, j), (i′, j′) in Sk. Note that no other identification can occur. Observe
that since the diagram

Lij

σ|Lij &&MMMMMMMMMMMM ∼= ∆q−1 ∼= Li′j′

σ|L
i′j′xxpppppppppppp

X

commutes, the map σ : |L| → X automatically factors through |K|. We denote
the resulting map by ζ : |K| → X.

Let k1, ..., kr be the image under the projection p : L→ K of the r favorite
simplices tq ∈ T q ∼= Li ⊂ L, for i = 1, .., r, and let kr+1, ..., kR be the remaining
q-simplices of K. Denote by kj the simplex kj endowed with the orientation
of its vertices giving the affine oriented simplex p−1(kj) ⊂ Li

∼= ∆q the same
orientation as ∆q ∼= Li. For j = 1, ..., R, define bj in {−1,+1} as bj = ai if kj

belongs to p(Li). Observe that bi = ai for i = 1, ..., r.

Lemma 22 The chain ΣR
j=1bjkj in Cq(K) is a simplicial cycle representing the

fundamental cycle [K].

Proof. By construction, it is clear that if ΣR
j=1bjkj is a cycle, then it represents

the fundamental cycle [K]. To check that it is a cycle, note that its boundary
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is a sum of (q − 1)-oriented simplices with coefficients in {−1,+1}, where each
of the (q − 1)-simplices of K appears exactly twice. It thus remains to show
that they appear with opposite sign. For (q − 1)-simplices whose preimage in
L belongs to the interior of L, this is clear. If k is not such a (q − 1)-simplex,
then its preimage by p consists of two (q− 1)-simplices, belonging to Li1,j1 and
Li2,j2 respectively, for some (i1, j1) 6= (i2, j2) ∈ Sk.

Now, k is the m1-th (q − 1)-face of an oriented q-simplex kn1 =
〈
v1
0 , ..., v1

q

〉
of K with p−1(kn1) ∈ Li1 and the m2-th (q − 1)-face of an oriented q-simplex
kn2 =

〈
v2
0 , ..., v2

q

〉
of K with p−1(kn2) ∈ Li2 . In particular, the vertices of k

consists of the sets{
v1
0 , ..., v̂1

m1
, ..., v1

q

}
=

{
v2
0 , ..., v̂2

m2
, ..., v2

q

}
.

Let τ ′` : ∆q → kn`
, for ` = 1, 2, be orientation preserving isomorphisms

mapping ej`
to v`

m`
. (Such isomorphisms exist by definition of the order on the

ki’s.) Let τ` : ∆q−1 →
〈
v`
0, ..., v̂

`
m`

, ..., v`
q

〉
, for ` = 1, 2, be the isomorphisms of

oriented (q−1)-simplices obtained by composing the j`-th (q−1)-face inclusion
ηj`

: ∆q−1 ↪→ ∆q with τ ′`. Observe that

1 = sign(τ ′`) = (−1)j`−m`sign(τ`), for ` = 1, 2.

Moreover, we have the equality of oriented (q − 1)-simplices〈
v1
0 , ..., v̂1

m1
, ..., v1

q

〉
= sign(τ1)sign(τ2)

〈
v2
0 , ..., v̂2

m2
, ..., v2

q

〉
.

Thus, the simplex k appears in ∂
(
ΣR

j=1bjkj

)
as

ai1(−1)m1

〈
v1
0 , ..., v̂1

m1
, ..., v1

q

〉
+ ai2(−1)m2

〈
v2
0 , ..., v̂2

m2
, ..., v2

q

〉
=(

ai1(−1)m1 + ai2(−1)j1−m1(−1)j2−m2
) 〈

v1
0 , ..., v̂1

m1
, ..., v1

q

〉
. (3)

Finally, we use the defining relation (−1)j1ai1 = −(−1)j2ai2 to conclude that
the coefficient in (3) vanishes, which finishes the proof of the lemma.

Let c ∈ C∗sing,alt(X) be a singular, alternating cochain on X. Let τ : ∆q → ki

be the composition of the canonical isomorphism ∆q ∼= tq ⊂ Li ⊂ L and of the
projection p : L→ K. Note that τ is orientation preserving and that ζ◦|τ | = σi.
We thus obtain

ζ∗(c)(ki) = c(ζ ◦ |τ |) = c(σi), for i = 1, ..., r. (4)

Observe that, by construction, the map ζ : |K| → X restricted to any of the
ki’s, for r + 1 ≤ i ≤ R, factors via a simplicial projection through a strictly
lower dimensional simplex. In particular, it is immediate that

ζ∗(c)(ki) = 0, for i = r + 1, ..., R. (5)

Lemma 22, Equalities (4) and (5) now imply

ζ∗(c) ([K]) =
r∑

i=1

ζ∗(c)(ki) +
R∑

i=r+1

ζ∗(c)(ki) =
r∑

i=1

aic(σi) + 0 = c (z) ,

which proves the claim.
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Alternative proofs

Boundedness. If one is merely interested in the boundedness of characteristic
classes of flat bundles, then the following argument furnishes a new proof of
Gromov’s original result (Theorem 3): For every closed real algebraic subgroup
G of GLnR, there exists an approximation BGq to the classifying space which
is a compact manifold and has the property that for every G-bundle over a q-
dimensional simplicial complex K there exists a classifying map f : |K| → BGq

which is semi-algebraic of uniformly bounded complexity on every simplex of K
and piecewise differentiable.

Now any cohomology class β ∈ Hq(BGq) can be represented by a closed
differential q-form ω. Observe that the simplicial cochain

k 7−→
∫

f∗(k)

ω,

where k is an oriented q-dimensional simplex of K, is a cocycle representing
f∗(β) ∈ Hq

simpl(K). Because BGq is compact and f is semi-algebraic of uni-
formly bounded complexity on every simplex k of K, it follows that

∫
f∗(k)

ω is

uniformly bounded, so that f∗(β) is represented by a uniformly bounded cocy-
cle. The bound is independent of K and f .

Finiteness. From appropriate triangulations of the Cartesian products Gi,
for i = 0, ..., q, it is not hard (but rather cumbersome) to exhibit a triangulation
of the model of the classifying space BG given by the join construction which
projects, via the natural projection BG → ∆q onto the first barycentric sub-
division of ∆q. A classifying map f : |K| → BGδ → BG having the property
that composed with the natural projection BG → ∆q, it maps simplices of K
isomorphically to simplices of ∆q (such a map can always be found), does admit
a simplicial approximation, upon passing to the first barycentric subdivision of
K. The set I of Theorem 4 is hence potentially much sharper. However, we are
not aware of explicit triangulations of the products Gi’s.
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[Ghys87] E. Ghys, Groupes d’homéomorphismes du cercle et cohomologie
bornée. The Lefschetz centennial conference, Part III (Mexico City,
1984), Contemp. Math., 58, III, (1987), 81-106.

26



[Ghys99] E. Ghys, Groups acting on the circle. A paper from the 12th Escuela
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