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Abstract. We give the first complete proof of the strict positivity of the

simplicial volume of compact locally symmetric spaces covered by SL3R/SO(3)

and show why the proof in [Sa82] is incorrect.

1. Introduction

The aim of this paper is twofold: On the one hand, we want to give a simple
proof of the following theorem.

Theorem 1. Let M be a compact locally symmetric space whose universal cover
is SL3R/SO(3). Then the simplicial volume of M is strictly positive.

On the other hand, we show why the proof in [Sa82] of the same result for
locally symmetric space whose universal cover is SLnR/SO(n), where n ≥ 2, is
incomplete.

Theorem 1 is complementary to a result which has remarkably just recently
been proven by Lafont and Schmidt in almost full generality thus answering affir-
matively a conjecture of Gromov.

Theorem 2 ([LaSch05]). Let M be a compact locally symmetric space whose
universal cover is a globally symmetric space of noncompact type and not isomorphic
to SL3R/SO(3). Then the simplicial volume of M is strictly positive.

All proofs of the positivity of the simplicial volume of locally symmetric spaces
rely on a uniform bound on the volume of certain top dimensional simplices in their
universal cover. In [InYa82], Inoue and Yano generalize ideas of Thurston [Th78]
in order to show that the volume of geodesic simplices in any (fixed) symmetric
space of real rank one is uniformly bounded, thus proving Theorem 2 in this case.
In [LaSch05] the simplices in consideration are constructed with the barycenter
method, and the obtained volume bound strongly relies on previous work by Connell
and Farb [CoFa03]. Note that the proof in [LaSch05] does not cover the case of
SL3R, so that the present paper contains the only volume bound on simplices in
SL3R/SO(3) leading to a proof of Theorem 3.
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The simplices we investigate here are those introduced in [Sa82], namely convex
simplices in the trace 1 model of the symmetric space SLnR/SO(n). The mistake
in [Sa82] is that it is assumed that the euclidean barycenter of the simplices is
invariant under isometries of the symmetric space - which is false. Once observed,
this error is easy to point out: Theorem 7.4 in [Sa82] - which would imply the
claimed result - is not proven as stated. This is explained in the last section of this
paper. For more details, see also [Bu05]. Note that we do not see how to fix this
gap in any straightforward way.

The proof we present here for n = 3 is substantially different from Savage’s
even though we do bound the volume of the same simplices. The various estimates
which we use to do so are much sharper, so that the integral we are left with is
easier to bound. For n = 2, our method shows without using the transitivity of
SL2R on nondegenerated ideal geodesic simplices of SL2R/SO(2) that the area of
those simplices is up to a sign constant.

This paper is structured as follows: We start by giving some models for the
symmetric spaces SLnR/SO(n) and discussing the geometry of their boundaries
in Section 2. In Section 3 we indicate how Theorem 1 reduces to proving that
the volume of certain simplices of the symmetric space is uniformly bounded. The
volume forms for our models of symmetric space are computed in Section 4 and in
Section 5 we exhibit a formula for the volume of simplices. We treat the simple
example of n = 2 in Section 6 and the more complicated case n = 3 in Section 7.
Finally, Savages’s proof is discussed in Section 8.

2. The geometry of the symmetric space

Let Symn denote the space of n by n real valued symmetric matrices and let
Posn be the subset of positive definite matrices,

Symn = {S ∈ Mn(R) | S = St},
Posn = {S ∈ Symn | xSxt > 0 for every 0 6= x ∈ Rn}.

The space of symmetric matrices is a vector space of dimension n(n + 1)/2. The
set {Eij |1 ≤ i ≤ j ≤ n}, where Eii is the matrix having the (i, i)-coefficient
equal to 1 and all others equal to 0 while Eij is the matrix having the (i, j) and
(j, i)-coefficients equal to 1 and all others equal to 0, furnishes a natural basis of
Symn. Let {e1, ..., en(n+1)/2} be the canonical basis of Rn(n+1)/2. There exists
a unique bijection between the sets {Eij |1 ≤ i ≤ j ≤ n} and {e1, ..., en(n+1)/2}
preserving the lexicographic and natural orders respectively. This bijection induces
an isomorphism Symn

∼= Rn(n+1)/2. We will abuse notation and view an element
of Symn both as an n by n matrix and as a vector in Rn(n+1)/2 (via this specific
isomorphism). In particular, we shall consider the determinant of n(n+1)/2 vectors
of Rn(n+1)/2 as a function on the product of n(n + 1)/2 copies of Symn, thus as a
map

det : (Symn)n(n+1)/2 −→ R.

The groups GLnR and SLnR act on the space Mn(R) of n by n real valued
matrices according to the rule

ρg : Mn(R) −→ Mn(R)
S 7−→ gSgt,
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for every g in GLnR or SLnR. Note that this action is linear. In fact, it is given
by the natural inclusion GLnR ↪→GLn2R defined by g 7−→ g⊗ g. In particular, the
character of this representation of GLnR is

GLnR −→ R
g 7−→ det(g)2n.

The action of GLnR obviously restricts to an action on the vector space of sym-
metric, respectively anti-symmetric, matrices and it can be checked that the cor-
responding characters are g 7→ det(g)n+1 and g 7→ det(g)n−1 respectively. As a
consequence, if S1, ..., Sd are symmetric matrices and g is an element of GLnR,
then

(2.1) det(gS1g
t, ..., gSdg

t) = det(g)n+1 det(S1, ..., Sd).

The space Posn is as an open subset of Symn naturally a smooth manifold. Its
tangent space at each point is, by translation, identified with Symn. The action ρg

on Symn restricts to an action which we still denote by ρg on Posn. Because it is
linear on Symn, the induced map on the tangent space is again given as

(ρg)∗ : Symn −→ Symn

S 7−→ gSgt.

It is a standard fact - which we shall not explicitly need here - that the space
Posn can be endowed with a Riemannian metric for which the transformations ρg

are isometries for every g in GLnR. In fact, the scalar product on TSPosn
∼=Symn,

for S in Posn, can be taken as 〈X, Y 〉S =Tr(S−1XS−1Y ), for every X, Y in Symn.
(Note that a different scaling of this product is also common.)

Let Posdet
n denote the hyperspace of Posn consisting of those positive definite

matrices with determinant equal to 1. It has dimension

d =
n(n + 1)

2
− 1.

For further use, define a map π as the composition of the natural projection of Posn

onto Posdet
n with the inclusion Posdet

n ⊂Posn:

π : Posn −→ Posn

S 7−→ 1
det(S)1/n S.

The action of SLnR on Posn restricts to an action on Posdet
n . Note that this

action is by isometries with respect to the Riemannian metric induced from Posn.
The stabilizer of the identity is clearly equal to SO(n), so that the space Posdet

n

is one possible model for the symmetric space SLnR/SO(n). But we could choose
a different normalization, for example consider the space Postrn consisting of all
positive definite matrices with trace equal to 1. The action of SLnR on Postrn needs
then to be normalized also, and is given as

ρtr
g (S) =

1
tr(gSgt)

gSgt,

for every S in Postrn and g in SLnR. The model Postrn has two major advantages:
First, it is a bounded subset of the space of symmetric matrices, and as such has
a natural compactification Postrn =Postrn ∪ ∂Postrn . Second, it is a convex subset of
the space of symmetric matrices. Thus, given any i + 1 points S0, ..., Si in Postrn or



4 MICHELLE BUCHER-KARLSSON

possibly in its boundary, we have a canonical choice of i-simplex σ(S0, ..., Si) given
by taking the convex linear combination of the Sj ’s:

σ(S0, ..., Si)(t0, ..., ti) =
i∑

j=0

tjSj ,

for every (t0, ..., ti) in ∆i. Such a simplex - which we can of course also define
for points S0, ..., Si in Posn - is called a straight simplex. If the vertices S0, ..., Si

are all in the boundary of Posn, then we say that the simplex is ideal. Note that
this in fact provides us with a natural i-filling of the symmetric space SLnR/SO(n).
Observe that lines in the trace 1 model of the symmetric space are the distinguished
geodesics with respect to the Hilbert’s metric of the convex set Postrn (see [dlH93]),
but they are in general not geodesics for the Riemannian metric indicated above.

Let ∂Posn denote the boundary of Posn with respect to the induced topology
from Symn and set Posn =Posn∪∂Posn. The boundary ∂Posn of Posn decomposes
in n− 2 subsets according to the rank of its matrices. As we shall eventually want
to bound the volume of straight simplices in Postrn with rank 1 matrices as vertices,
we will restrict our attention to this subset of the boundary. Any rank 1 matrix
with positive nonzero eigenvalue belongs to ∂Posn and has the form

g


1 0 ... 0
0
... 0
0

 gt = ge1e
t
1gt,

for some g in GLnR. Thus, taking x = ge1 ∈ Rn, we see that such a matrix can be
written as xxt, which shows that the map

R : Rn \ {0} −→ ∂Posn

x 7−→ xxt

surjects onto the rank 1 matrices of ∂Posn. The preimage of R(x) is clearly {x,−x}.
Furthermore, the map R is GLnR-equivariant:

R(gx) = gR(x)gt,

for every x in Rn and g in GLnR.
Since ‖x‖2

2 =Tr(R(x)), the restriction of R to the unit sphere Sn−1 has image
contained in Postrn . Abusing notation, we also denote this map by R:

R : Sn −→ ∂Postrn
x 7−→ xxt.

Note that this map is also equivariant with respect to the natural action of GLn(R)
on Sn−1 (given by x 7→ gx/ ‖gx‖2) and the action ρtr

g on Postrn .
Observe that the subspace of Posn (respectively Postrn ) consisting of rank 1

boundary points is homeomorphic to (Rn \ {0}) /± 1 (respectively Pn−1R).

3. Bounded cohomology and simplicial volume

It is well known that the positivity of the simplicial volume of a compact locally
symmetric manifold covered by SLnR/SO(n) is equivalent to the surjectivity of the
comparison map

H∗
c,b(SLnR) −→ H∗

c (SLnR)
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between the bounded continuous and the continuous real valued cohomology of
SLnR in top degree, that is, in degree d = n(n + 1)/2 − 1. For a proof of this
equivalence, see for example [Bu04, Ch. 3.2.6].

It is a standard fact that the real valued continuous cohomology of SLnR in
degree i is isomorphic to the SLnR-invariant differential i-forms on the symmet-
ric space SLnR/SO(n), which we denote by Ai(SLnR/SO(n))SLnR and in top di-
mension d, it is easy to see that Ad(SLnR/SO(n))G, and hence Hd

c (SLnR), is
1-dimensional. Indeed, that it is at most 1-dimensional follows from the transitiv-
ity of the action of SLnR on its symmetric space and from the fact that the latter
space has dimension d. Furthermore, a nontrivial SLnR-invariant d-form on Postrn
(or Posdet

n ) will be exhibited in the next section. This form

ωtr ∈ Ad(Postrn )G

shall be called the volume form. This is a slight abuse of terminology since it is only
the volume form in the proper Riemannian sense of the word after an appropriate
rescaling of the metric. But in any case, it is well defined up to a nonzero constant,
which is all we need here.

The isomorphism between invariant differential forms on the symmetric space
and the continuous cohomology of SLnR can be described explicitly as shown by
Dupont in [Du76]:

Ai(SLnR/SO(n))G −→ H∗
c (SLnR)

α 7−→ [cx(α)],

where cx(α) is an SLnR-invariant i-cocycle given, for g0, ..., gi in SLnR, as

cx(α)(g0, ..., gi) =
∫

σ(g0·x,...,gi·x)

α,

with x a fixed base point in SLnR/SO(n) and σ an i-filling. In the trace model
Postrn of the symmetric space SLnR/SO(n), the i-filling can be chosen as the straight
simplices

σ(S0, ..., Si) : ∆i −→ Postrn
(t0, ..., ti) 7−→

∑i
j=0 tjSj ,

for every S0, ..., Si in Postrn , which we already defined in the previous section. More-
over, if the integration of a simplex with vertices in the boundary ∂Postrn is well
defined, then one can similarly define an i-cocycle on SLnR as

cξ(α)(g0, ..., gi) =
∫

σ(g0·ξ,...,gi·ξ)
α,

where now ξ lies on the boundary ∂Postrn , which is a measurable cocycle and repre-
sents the same cohomology class as cx(α), for any x in Postrn . This is the case in top
dimension. Let thus R be a boundary point in ∂Postrn . It follows from the previous
discussion that cR(ωtr) is a cocycle representing a generator of Hd

c (SLnR), so that
Theorem 1 will follow at once from the following theorem:

Theorem 3. There exists C in R such that, for every rank 1 vertices R0, ..., R5

in ∂Postr3 , the inequality ∣∣∣∣∣
∫

σ(R0,...,R5)

ωtr

∣∣∣∣∣ ≤ C
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holds, where σ(R0, ..., R5) : ∆5 −→Postr3 is the straight simplex given, for every
(t0, ..., t5) in ∆5, by

σ(R0, ..., R5)(t0, ..., t5) =
5∑

j=0

tjRj .

An alternative argument to see how Theorem 3 implies the positivity of the
simplicial volume is given by Savage ([Sa82, Section 2 and Theorem 5.3]).

4. The volume form

We start by exhibiting in Proposition 1 a differential d-form ω on Posn which
is invariant under the action of SLnR. This form ω restricted to Posdet

n will be our
volume form on the determinant model of the symmetric space SLnR/SO(n). Note
that this proposition is Theorem 4.1 in [Sa82] but the proof we give here is much
simpler.

Recall that symmetric matrices S = (sij)1≤i,j≤n in Mn(R) are identified to their
images in Rd+1, via the isomorphism given in Section 2. The matrix S thus becomes
a vector with entries s0, ..., sd, where the si’s just correspond to a relabelling of the
sij ’s, for i ≤ j, the relabelling being in fact given by the lexicographic order on
{(i, j) | 1 ≤ i ≤ j ≤ n}.

Proposition 1. The differential d-form

ω =
d∑

i=0

(−1)isids0 ∧ ... ∧ d̂si ∧ ... ∧ dsd

on Posn is invariant under the action of SLnR given by S 7−→ gSgt.

Proof. One only need to observe that, for S in Posn and X1, ..., Xd vectors
in TSPosn

∼=Symn, we have

ωS(X1, ..., Xd) = det(S, X1, ..., Xd).

The SLnR-invariance is then a simple consequence of (2.1). Indeed, one has

ρ∗g(ω)S(X1, ..., Xd) = ωρg(S)(ρg∗(X1), ..., ρg∗(Xd))

= det(gSgt, gX1g
t, ..., gXdg

t)

= det(g)n+1 det(S, X1, ..., Xd)

= ωS(X1, ..., Xd),

for every g in SLnR. �

Because the volume form ωtr on the trace model Postrn of the symmetric space
is clearly equal to the restriction to Postrn of the pullback of ω by π, we now compute
π∗(ω). Again, those computations are already present in [Sa82] and can be found
there in the proof of Proposition 4.3.

Proposition 2. The pullback of ω by π is given by

π∗(ω) =
1

det(S)(n+1)/2
ω.
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Proof. The induced map π∗ : TPosn → TPosn on the tangent bundle of Posn

furnishes for each point S in Posn a map TSPosn
∼=Symn → Tπ(S)Posn

∼=Symn

given, when viewed as a map on the space Symn of symmetric matrices, by the
(d + 1)-square matrix (∂πi/∂sj(S))0≤i,j≤d. Let us compute its coefficients:

∂πi

∂sj
(S) =


−1

(det S)2/n si
∂

∂sj
(detS)1/n if i 6= j,

1
(det S)2/n

(
det(S)1/n − Si

∂
∂sj

(detS)1/n
)

if i = j.

The matrix (∂πi/∂sj(S))0≤i,j≤d thus takes the form(
∂πi

∂sj
(S)
)

0≤i,j≤d

=

=
1

(detS)1/n

Idd −
1

(detS)1/n

 S0

...
Sd

( ∂

∂s0
(detS)1/n...

∂

∂sd
(detS)1/n

) .

For any symmetric matrix X in Symn, there exists a real number λX ∈ R (depend-
ing also on S) such that

∂πij

∂sk`
(S)(X) =

1
(detS)1/n

X + λXS.

If now, X1, ..., Xd are arbitrary vectors in TSPosn
∼=Symn, we have

π∗(ω)S(X1, ..., Xd) = ωπ(S)(π∗(X1), ..., π∗(Xd))

= det( 1
det(S)1/n S, 1

(det S)1/n X1 + λX1S, ..., 1
(det S)1/n Xn + λXn

S)

= 1
det(S)(d+1)/n det(S, X1, ..., Xn)

= 1
det(S)(n+1) ωS(X1, ..., Xn),

since d = n(n + 1)/2− 1. �

Lemma 1. Let S0, ..., Sd be matrices in Posn and µ0, ..., µd be nonvanishing real
numbers. Then ∫

σ(S0,...,Sd)

π∗(ω) =
∫

σ(µ0S0,...,µdSd)

π∗(ω).

Proof. This is a simple consequence of Stoke’s theorem. After all, the singular
simplices π ◦ σ(S0, ..., Sd) and π ◦ σ(µ0S0, ..., µdSd) have the same image. They are
only parametrized differently, but surely have the same volume as we shall now
prove: Define a homotopy H : ∆d × [0, 1] →Posdet

n between π∗σ and π∗σ as

H(x, t) = π((1− t)σ(x) + tσ(x)),

for x in ∆d and t in [0, 1]. The map H enjoys the property that for every inclusion of
face ∆d−1 ↪→ ∆d, the image H(∆d−1× [0, 1]) is at most (d−1)-dimensional so that
its volume must vanish. Now since the volume form is a closed form (any SLnR-
invariant form on SLnR/SO(n) is automatically closed), the volume of H(∂(∆d ×
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[0, 1])) is zero, so that ∫
π∗σ(S0,...,Sd)

ω =
∫

π∗σ(µ0S0,...,µdSd)

ω,

as desired. �

In view of Lemma 1 we are now interested in the restriction of π∗(ω) not only
to Postrn but to different affine subspaces of Posn.

Proposition 3. If A = {S ∈ Posn |
∑d

i=0 λisi = 1} is a d-dimensional affine
subspace of Posn for some λi ∈ R , then π∗(ω) restricted to A takes the form

λ−1
0

det(S)(n+1)/2
ds1 ∧ ds2 ∧ ... ∧ dsd.

Note that it is automatic that λ0 is nonzero. Indeed, it follows from A being a
d-dimensional subspace of Posn, that it must contain a positive multiple of E1, say
µE1, where µ > 0. Thus the condition Σλisi = 1 becomes λ0µ = 1 for S = µE1.

Proof. For the second assertion of the proposition, let A = {S ∈ Posn |∑d
i=0 λisi = 1} be a d-dimensional subspace of Posn and recall that λ0 6= 0.

Derivating the relation
∑d

i=0 λisi = 1 gives

ds0 = −λ−1
0

d∑
i=1

λidsi.

Substituting ds0 by the right hand side of the above equation leads to

ds0 ∧ ... ∧ d̂si ∧ ... ∧ dsn = (−1)iλ−1
0 λids1 ∧ ... ∧ dsn,

for every i between 0 and d. Indeed, if i = 0, there is nothing to prove. Suppose
i > 0, then

ds0 ∧ ... ∧ d̂si ∧ ... ∧ dsn =

−λ−1
0

d∑
j=1

λjdsj

 ∧ ds1 ∧ ... ∧ d̂si ∧ ... ∧ dsn

= −λ−1
0 λjdsi ∧ ds1 ∧ ... ∧ d̂si ∧ ... ∧ dsn

= (−1)iλ−1
0 λids1 ∧ ... ∧ dsn.

The form π∗(ω) restricted to A thus takes the form

π∗(ω) =
1

det(S)(n+1)/2

d∑
i=0

(−1)isids0 ∧ ... ∧ d̂si ∧ ... ∧ dsn

=
1

det(S)(n+1)/2

(
d∑

i=0

λ−1
0 λisi

)
ds1 ∧ ... ∧ dsn

=
λ−1

0

det(S)(n+1)/2
ds1 ∧ ... ∧ dsn,

as claimed. �
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Observe that in particular, our volume form ωtr on the trace model Postrn of
the symmetric space, which is equal to the pullback of ω by π restricted to Postrn is
given by

ωtr = π∗(ω)|Postrn
=

1
det(S)(n+1)/2

ds1 ∧ ... ∧ dsd.

This is Proposition 4.3 in [Sa82].

5. A volume formula

We shall now exhibit a simple formula for the computation of the volume of a
simplex of the form π ◦σ, where σ is a straight simplex. This expression is implicit
in [Sa82] (at least in the case where the Ri’s are rank 1 boundary points in ∂Postrn )
and is used there in the beginning of the proof of Theorem 7.4.

Theorem 4. Let R0, ..., Rd be positive definite matrices in Posn. Then∫
σ(R0,...,Rd)

π∗(ω) = det(R0, ..., Rd)
∫

∆d

dt1...dtd
det(Σd

i=0tiRi)(n+1)/2
.

Of course, the variable t0, in the above integral, is to be understood as being
equal to 1− t1 − ...− td.

Proof. Let A be the affine linear combination of the Ri’s, that is,

A = {S ∈ Posn | S = Σd
i=0tiRi, ti ∈ R}.

Clearly, there exists real numbers λ0, ..., λd such that

A = {S ∈ Posn | Σd
i=0λisi = 1}.

If A has dimension strictly smaller than d, then both the right and the left hand
side of the equality of the theorem are 0. Otherwise, by Proposition 3, the form
π∗(ω) restricted to A takes the form

λ−1
0

det(S)(n+1)/2
ds1 ∧ ... ∧ dsd.

Let σ : ∆d → Posn be the straight singular simplex σ(R0, ..., Rd), so that

σ(t0, ..., td) = Σd
i=0tiRi = R0 + Σd

i=1ti (Ri −R0) ,

where the last equality comes from the relation t0 + ...+ td = 1. We then have that

Vol(x0, ..., xd) =
∫

π∗(σ)

ω =
∫

σ

π∗(ω)

=
∫

σ

λ−1
0

det(S)(n+1)/2
ds1 ∧ ... ∧ dsd

=
∫

∆d

|det(σ′)| λ−1
0

det(σ(t0, ..., td))(n+1)/2
dt1 · ... · dtd,

from the chain rule. Since σ is a linear map, its Jacobian |det(σ′)| is easy to
compute. Indeed,

∂σj

∂ti
(t0, ..., td) = (Ri)j − (R0)j ,
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so that |det(σ′)| is the determinant of the d vectors R1 − R0, ..., Rd − R0 with the
0-coordinate removed. Since every Ri by definition belongs to A, we have for the
0-coordinate of Ri −R0 :

(Ri)0 − (R0)0 = λ−1
0

d∑
j=1

λj ((Ri)j − (R0)j).

Let us now compute the determinant of the d + 1 vectors R0, R1, ..., Rd:

det(R0, R1, ..., Rd) = det(R0, R1 −R0, ..., Rd −R0).

The first row of the matrix (R0, R1 − R0, ..., Rd − R0) (corresponding to the 0-
coordinate of each column vector) is

(λ−1
0 − Σd

j=1λ
−1
0 λj (R0)j ,Σd

j=1λ
−1
0 λj ((R1)j − (R0)j , ..., λj ((Rd)j − (R0)j) =

= (λ−1
0 , 0, ..., 0)−

d∑
j=1

λ−1
0 λj

(
(R0)j , (R1)j − (R0)j , ..., (Rd)j − (R0)j

)
,

and the latter sum is clearly a linear combination of the rows 1 up to d of the matrix
(R0, R1 −R0, ..., Rd −R0). Thus

det(R0, R1 −R0, ..., Rd −R0) = det


λ−1

0 0
(R0)1

...
(R0)d

((Ri)j − (R0)j)1≤j,i≤n

 ,

which shows that

det(R0, R1, ..., Rd) = λ−1
0 |det(σ′)| ,

and finishes the proof of the theorem. �

The following lemma, which is Theorem 5.1 in [Sa82] provides a better under-
standing of the denominator of the integrand appearing in Theorem 4, when the
vertices Ri all have rank 1 so that they take the form Ri = xix

t
i for some vectors

xi in Rn. It is proven by means of elementary linear algebra.

Lemma 2. Let x1, ..., xN be vectors in Rn, then

det

(
N∑

i=1

tixix
t
i

)
=

∑
j1<...<jn

(
n∏

i=1

tji

)
det(xj1 , ..., xjn)2,

for any real positive numbers t1, ..., tN .

Proof of Lemma 2. First note that upon replacing every vector xi by t
1/2
i xi

we can without loss of generality assume that t0 = ... = tN = 1. Let x1, ..., xN be
vectors in Rn. Let xj

i denote the j-th coordinate of the vector xi, so that

xi =

 x1
i
...

xn
i

 ,
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for i = 1, .., N . Observe that the j-th column of the matrix xix
t
i is equal to xj

ixi.
By the multilinearity of the determinant, we have

det

(
N∑

i=1

xix
t
i

)
= det

(
N∑

i=1

x1
i xi, ...,

N∑
i=1

xn
i xi

)

=
N∑

i1,...,in=1

x1
i1 · ... · x

n
in

det(xi1 , ..., xin).

Obviously, if ik = i` for some 1≤ k 6= ` ≤ n, then det(xi1 , ..., xin
) vanishes, so

that it is enough to sum over indices i1, ..., in which are all distinct. Those can be
written in a unique way as iτ(1), ..., iτ(n), where i1 < ... < in and τ is a permutation
of the set {1, ..., n}. The above expression can thus be rewritten as∑

1≤i1<...<in≤N

∑
τ∈Sn

x1
iτ(1)

· ... · xn
iτ(n)

det(xiτ(1) , ..., xiτ(n)) =

=
∑

1≤i1<...<in≤N

(∑
τ∈Sn

sign(τ)x1
iτ(1)

· ... · xn
iτ(n)

)
det(xi1 , ..., xin)

=
∑

1≤i1<...<in≤N det(xi1 , ..., xin
)2,

as desired. �

6. The case n = 2

For n = 2 the symmetric space SL2R/SO(2) is, upon rescaling the metric
appropriately, isometric to the 2-dimensional hyperbolic space. Of course, using the
transitivity of the action of SL2R on oriented triples of distinct points on ∂Postr2 ,
it is readily seen that the area of nondegenerated ideal geodesic triangles is up to
a sign constant. We shall however reprove this elementary fact, mainly in order to
exemplify in this simple case the method we will use in the next section for SL3R.
Note that we will do so without using the transitivity of SL2R on the boundary of
the symmetric space Postr2 .

Lemma 3. Let x, y, z be vectors in R2. Then

det(R(x), R(y), R(z)) = det(x, y) det(x, z) det(y, z).

Proof. This is a straightforward consequence of the Vandermonde determi-
nant formula: Let xi, yi, zi, for i = 1, 2 denote the coordinates of x, y, z respectively.
By definition, the left hand side of the desired equality is equal to

det

 x1x1 y1y1 z1z1

x1x2 y1y2 z1z2

x2x2 y2y2 z2z2

 = x2
1y

2
1z2

1 det

 1 1 1
x2/x1 y2/y1 z2/z1

(x2/x1)
2 (y2/y1)

2 (z2/z1)
2

 .

The latter matrix being a Vandermonde matrix, its determinant is equal to(
x2

x1
− y2

y1

)(
y2

y1
− z2

z1

)(
z2

z1
− x2

x1

)
.

Multiplying this expression by x2
1y

2
1z2

1 , we clearly obtain the right hand side of the
Lemmas’s equation. �
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Let x0, x1, x2 be arbitrary points on S1 and let σ : ∆2 →Postr2 be the straight
singular simplex

σ = σ(R(x0), R(x1), R(x2)).

Observe that if the points R(x0), R(x1), R(x2) are not all distinct (which happens
precisely when xi = ±xj for some i 6= j), the simplex σ is degenerated and hence
has zero area. Let us thus assume that this is not the case. Set

D0 = det(y, z), D1 = det(z, x), D2 = det(x, y),

and note that the Di’s are all nonzero. Define another straight singular simplex
σ : ∆2 →Pos2 as

σ = σ(R(D0x0), R(D1x1), R(D2x2)).

Since R(Dixi) = D2
i R(xi), for i = 0, 1, 2, we are in the situation of Lemma 1, so

that ∫
σ

ωtr =
∫

σ

π∗(ω) =
∫

σ

π∗(ω).

The latter integral is, by Theorem 4 equal to

det(R(D0x0), R(D1x1), R(D2x2))
∫

∆2

dt1dt2
det(σ(t0, t1, t2))3/2

.

On the one hand, we now get from Lemma 3 that

det(R(D0x0), R(D1x1), R(D2x2)) =

= det(D0x0, D1x1) det(D1x1, D2x2) det(D2x2, D0x0)
= (D0D1D2)3.

On the other hand, we have, with the help of Lemma 2, the following expression
for the denominator of the integrand:

det(σ(t0, t1, t2))3/2 = det(t0R(D0x0) + t1R(D1x1) + t2R(D2x2))3/2

= (t0t1 det(D0x0, D1x1)2 + t0t2 det(D0x0, D2x2, )2 + t1t2 det(D1x1, D2x2)2)3/2

= |D0D1D2|3 (t0t1 + t0t2 + t1t2)3/2.

Thus, we are now reduced to the simple expression∫
σ

π∗(ω) =
(D0D1D2)3

|D0D1D2|3
∫

∆2

dt1dt2
(t0t1 + t0t2 + t1t2)3/2

= ±
∫

∆2

dt1dt2
(t0t1 + t0t2 + t1t2)3/2

.

Observe that the latter integral can be computed and is in fact equal to 2π. (The
form ω is only up to a constant the Riemannian volume form corresponding to the
hyperbolic metric.)

7. The case n = 3

We are now ready to prove Theorem 3, that is, that the form ωtr = π∗(ω)|Postr3

is uniformly bounded when integrated on straight ideal simplices of Postr3 with rank
1 vertices. The proof consists of a succession of reductions.
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First reduction. We show that it is enough to bound those straight simplices
with rank 1 vertices σ(R(x1), ..., R(x6)) for which three among the six vectors
x1, ..., x6 of R3 span a 2-dimensional subspace. Thus, we will prove that Theo-
rem 3 is a consequence of the following proposition:

Proposition 4. There exists a positive constant K such that for every nonzero
vectors x1, x2, x3, y1, y2, y3 in R3 such that x1, x2, x3 span a 2-dimensional vector
space the inequality∫

σ(R(x1),R(x2),R(x3),R(y1),R(y2),R(y3))

π∗(ω) ≤ K

holds.

To see how Proposition 4 implies Theorem 3, let x1, ..., x6 be arbitrary vectors
of R3. If there exists 1 ≤ i 6= j ≤ 6 such that xi = ±xj , then R(xi) = R(xj) and the
simplex σ(R(x1), ..., R(x6)) is degenerated so that its volume is zero. Let us thus
assume that this is not the case, so that the vector spaces 〈x1, x2〉 and 〈x3, x4〉 are
2-dimensional. Being subspaces of R3, their intersection is at least 1-dimensional.
Let x0 be a point of norm 1 on the intersection of the spaces 〈x1, x2〉 and 〈x3, x4〉.
By the cocycle relation, we have

Vol(σ(R(x1), ..., R(x6)) =
6∑

i=1

(−1)i+1Vol(σ(R(x0), R(x1), ..., R̂(xi), ..., R(x6)).

We claim that each of the simplex appearing in the right hand side of the equality
is a as in Proposition 4. Indeed, if i is equal to 1 or 2, then we have that x0, x3, x4

span a 2-dimensional subspace, and if i is greater or equal to 3, then x0, x1, x2 do.
Thus, the volume of an arbitrary simplex with rank 1 boundary points is bounded
by 6 times the maximal volume of a special simplex, so that the constant C of
Theorem 3 can be taken to be equal to 6K, where K is the constant of Proposition
4.

The advantage of considering this type of simplices is in the simple expression
which we have to express the determinant of their vertices, as shown in the next
proposition.

Proposition 5. Let x1, x2, x3 ∈ R3 be spanning a 2-dimensional vector space
and y1, y2, y3 ∈ R3 be arbitrary vectors. Then

det(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3)) =

= det(x1, x2, y3) det(x1, y2, x3) det(y1, x2, x3) det(y1, y2, y3).

Proof. We start by proving the proposition in the particular case when

x1 = e1, x2 = e2 and y3 = e3.

Since x3 belongs to the plane generated by x1 and x2, its third coordinate must
vanish, so that it takes the form

x3 =

 x3
1

x3
2

0

 .
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Also, we denote by yi
j the j-th coordinate of yi, so that

yi =

 yi
1

yi
2

yi
3

 ,

for i = 1, 2, 3. The matrix (R(x1), R(x2), R(x3), R(y1), R(y2), R(y3)) now takes the
explicit form 

1 0 x3
1x

3
1

0 0 x3
1x

3
2

0 1 x3
2x

3
2

∗

0
y1
1y1

3 y2
1y2

3 y3
1y3

3

y1
2y1

3 y2
2y2

3 y3
2y3

3

y1
3y1

3 y2
3y2

3 y3
3y3

3

 .

Its determinant is clearly equal to the product of the determinants of the two 3 by
3 matrices on the diagonal, that is,

det

 1 0 x3
1x

3
1

0 0 x3
1x

3
2

0 1 x3
2x

3
2

det

 y1
1y1

3 y2
1y2

3 y3
1y3

3

y1
2y1

3 y2
2y2

3 y3
2y3

3

y1
3y1

3 y2
3y2

3 y3
3y3

3

 = x3
2x

3
1y

1
3y2

3y3
3 det(y1, y2, y3).

Since det(x1, x2, y3) = 1 and y3
3 = 1, it thus remain to prove that

det(x1, y2, x2) det(y1, x2, x3) = x3
2x

3
1y

1
3y2

3 .

But this is readily computed: We have

det(x1, y2, x3) = det

 1 y2
1 x3

1

0 y2
2 x3

2

0 y2
3 0

 = −y2
3x3

2

and

det(y1, x2, x3) = det

 y1
1 0 x3

1

y1
2 1 x3

2

y1
3 0 0

 = −y1
3x3

1.

Let now the xi’s and the yi’s be arbitrary vectors of R3 as in the hypothesis
of the proposition. If the vectors x1, x2, y3 were not linearly independent, the
face generated by R(x1), R(x2), R(x3) and R(y3) of the simplex spanned by the
R(xi)’s and R(yi)’s would be contained in a 2-dimensional subspace (isomorphic
to the trace model of the symmetric space SL2R/SO(2)) of the boundary of the
symmetric space. But a face generated by 4 points is degenerated if its dimension
is strictly smaller than 3. Thus, the determinant of the R(xi)’s and R(yi)’s has to
vanish. As for the right hand side of the equality, we have det(x1, x2, y3) = 0.

Let us now assume that the vectors x1, x2, y3 are linearly independent. There
exists a unique element g in GL3R such that x1 = ge1, x2 = ge2 and y3 = ge3.
Define x̃i = g−1xi and ỹi = g−1yi, for i = 1, 2, 3. In view of equality (2.1) of
Section 2, we have

det(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3)) =

= det(g)4 det(R(x̃1), R(x̃2), R(x̃3), R(ỹ1), R(ỹ2), R(ỹ3)).
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By our above computations, the latter expression is equal to

det(g)4 det(x̃1, x̃2, ỹ3) det(x̃1, ỹ2, x̃3) det(ỹ1, x̃2, x̃3) det(ỹ1, ỹ2, ỹ3) =

= det(x1, x2, y3) det(x1, y2, x3) det(y1, x2, x3) det(y1, y2, y3),

and the proposition is proven. �

Remark 1. For arbitrary vectors x1, x2, x3y1, y2, y3 in R3, we can more gen-
erally prove that

det(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3)) =

= det(x1, x2, y3) det(x1, y2, x3) det(y1, x2, x3) det(y1, y2, y3)
− det(y1, y2, x3) det(y1, x2, y3) det(x1, y2, y3) det(x1, x2, x3),

which clearly implies Proposition 5 since in this case det(x1, x2, x3) = 0.

Second reduction. Let x1, x2, x3 in S2 be spanning a 2-dimensional subspace of
R3 and y1, y2, y3 be arbitrary points in S2. Let ε be a positive number, typically
small. We claim that, if the straight simplex with vertices R(xi) and R(yi) is
nondegenerated, then, upon interchanging x2 with x3 and replacing yi by −yi,
there exists g in SL3R such that

1
‖gx1‖2

gx1 = e1,
1

‖gx2‖2

gx2 =

 cos 2π
3

sin 2π
3
0

 ,
1

‖gx3‖2

gx3 =

 − sin 2π
3

cos 2π
3
0

 ,

and furthermore ∥∥∥∥ 1
‖gyi‖2

gyi − e3

∥∥∥∥
2

≤ ε,

for i = 1, 2, 3. To see that, start by sending the plane generated by x1, x2, x3 onto
the plane 〈e1, e2〉 and use the transitivity of SL2R on triple of distinct points of
P 1R to achieve the first condition. Then act with a diagonal matrix with diagonal
entries λ−1, λ−1, λ2, where λ is big enough for the second condition to be achieved.

We have now shown that Proposition 4 follows from Proposition 6 below. Note
that the constants K appearing in both propositions can be taken to be equal.

Proposition 6. There exists a positive constant K such that if

x1 =

 1
0
0

 , x2 =

 cos 2π
3

sin 2π
3
0

 , x3 =

 − sin 2π
3

cos 2π
3
0

 ,

and y1, y2, y3 are vectors of R3 satisfying∥∥∥∥ 1
‖gyi‖2

gyi − e3

∥∥∥∥
2

≤ ε,

for i = 1, 2, 3, then∣∣∣∣∣
∫

σ(R(x1),R(x2),R(x3),R(y1),R(y2),R(y3))

π∗(ω)

∣∣∣∣∣ ≤ K.
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Proof of Proposition 6. Let x1, x2, x3 and y1, y2, y3 be as in the proposition. To
simplify the notation, set

D0 = det(y1, y2, y3),

D1 = det(y1, x2, x3),

D2 = det(x1, y2, x3),

D3 = det(x1, x2, y3).

Observe that if the simplex is nondegenerated, then the Di’s are nonzero. Let us
assume that this is the case and let x1, x2, x3 and y1, y2, y3 be the following nonzero
vectors of R3:

x1 = |D0D1|1/2
x1, x2 = |D0D2|1/2

x2, x3 = |D0D3|1/2
x3,

y1 = |D2D3|1/2
y1, y2 = |D1D3|1/2

y2, y3 = |D1D2|1/2
y3.

Let σ and σ be the two straight simplices, σ, σ : ∆5 → Pos3, defined respectively
as

σ = σ(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3))

and
σ = σ(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3)).

By Lemma 1 we have ∫
σ

ωtr =
∫

σ

π∗(ω) =
∫

σ

π∗(ω),

and the latter integral can be, by Theorem 4, rewritten as

det(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3))
∫

∆5

τ

det(σ(t0, ..., t5))2
,

where τ = dt1 ∧ ... ∧ dt5.
Clearly, it is now enough to bound the above expression when the integral is

taken over an arbitrary simplex of the first barycentric subdivision of ∆5. Let thus
≺ be an arbitrary order on the set {0, ..., 5} and let

∆5
≺ = {(t0, ..., t5) ∈ ∆5 | ti ≤ tj whenever i ≺ j}

be the corresponding subsimplex of ∆5. For obvious symmetry reasons, it will be
easier to write the coordinates of a point in ∆5 as (r1, r2, r3, s1, s2, s3). On ∆5

≺, we
have

ri1 ≤ ri2 ≤ ri3 and sj1 ≥ sj2 ≥ sj3 ,

for some ik, jk such that {i1, i2, i3} = {j1, j2, j3} = {1, 2, 3}. Let λ be the permu-
tation of {1, 2, 3} sending ik to jk, for k = 1, 2, 3.

Before going any further, we need some preliminary easy estimates: It is clear
that because, for any 1 ≤ i 6= j ≤ 3, the absolute value of the determinant
det(xi, xj , e3) is equal to

√
3/2, it follows from the hypothesis of the proposition,

that √
3/2− ε ≤ |det(xi, xj , yk)| ≤

√
3/2 + ε,

for every 1 ≤ i, j, k ≤ k with i 6= j. In particular,

(7.1)
√

3/2− ε ≤ |D1| , |D2| , |D3| ≤
√

3/2 + ε.
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Using this estimates, we can further compute the inequalities:

det(y1, y2, y3)
2 = D2

1D
2
2D

2
3 det(y1, y2, y3)2 = (D0D1D2D3)2

≥ D2
0

(√
3/2− ε

)6

,(7.2)

and for 1 ≤ i, j, k ≤ 3 with i 6= j,

(7.3) det(xi, xj , yk)2 ≥ D2
0DiDj

(√
3/2− ε

)2

det(xi, xj , yk)2 ≥ D2
0

(√
3/2− ε

)6

.

Recall that we are left with finding a bound for
(7.4)

det(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3))
∫

∆5
≺

τ

det(σ(r1, r2, r3, s1, s2, s3))2
,

where τ is now the differential 5-form on ∆5
≺ consisting of the wedge of the dif-

ferentials of all but one coordinate (which is well defined since the sum of the
coordinates is equal to a constant). On the one hand, we now see from Proposition
5 and Equation (7.1) that

det(R(x1), R(x2), R(x3), R(y1), R(y2), R(y3)) =

= det(y1, y2, y3) det(x1, x2, y3) det(x1, y2, x3) det(y1, x2, x3)
= (D0D1D2D3)

4 ≤ D4
0

(√
3/2 + ε

)12
.

On the other hand, Lemma 2 allows us to express det(σ(r1, r2, r3, s1, s2, s3)) as a
sum of expressions of the form t1t2t3 det(z1, z2, z3)2, where {t1, t2, t3} ⊂ {r1, r2, r3,

s1, s2, s3} and the zi’s are the corresponding vectors among the xj ’s and yj ’s. As
all the summands are positive, restricting to a subsum we obtain the majoration

det(σ(r1, r2, r3,s1, s2, s3)) ≥
≥ s1s2s3 det(y1, y2, y3)2 + sλ(1)r2r3 det(yλ(1), x2, x3)2

+ r1sλ(2)r3 det(x1, yλ(2), x3)2 + r1r2sλ(3) det(x1, x2, yλ(3))2

≥ D2
0

(√
3/2− ε

)6 (
s1s2s3 + sλ(1)r2r3 + r1sλ(2)r3 + r1r2sλ(3)

)
,

where the last inequalities follows from (7.2) and (7.3). It remains to plug into (7.4)
those two last inequalities so as to obtain the bound∣∣∣∣∣∣
∫

σ|∆5
≺

π∗(ω)

∣∣∣∣∣∣ ≤(√
3/2 + ε√
3/2− ε

)12 ∫
∆5
≺

τ(
s1s2s3 + sλ(1)r2r3 + r1sλ(2)r3 + r1r2sλ(3)

)2 .

The theorem will now follow from the next lemma, where we show that the
latter integral (which clearly is independent of the starting points xi and yi) con-
verges. Note that this integral only converges for specific orders on the vertices
(we could not have r1 and sλ(1) as the two smallest coordinates for example): This
is why we first chose an order and then used the appropriate majoration on the
denominator of our integral.
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Lemma 4. Let ∆5
≺ be such that for (r1, r2, r3, s1, s2, s3) in ∆5

≺, the inequalities
r1 ≥ r2 ≥ r3 and s1 ≤ s2 ≤ s3 hold. Then the integral∫

∆5
≺

τ

(s1s2s2 + s1r2r3 + r1s2r3 + r1r2s3)
2

converges.

Proof. We begin with an easy assertion.

Claim 1. For any positive real numbers αi, βi satisfying αi, βi ≥ 2/3 and αi +
βi = 2, for i = 1, 2, 3, we have

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
2 ≥ rα1

1 rα2
2 rα3

3 sβ3
3 sβ2

2 sβ1
1 .

Proof of Claim. We start by showing that whenever {i, j, k} = {1, 2, 3}, we
have

s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3 ≥ max{si(sjskrjrk)1/2, ri(sjskrjrk)1/2}.

To see that, observe that by symmetry, we can without loss of generality assume
that i = 1, j = 2 and k = 3. Since all the summands of the right hand side of the
inequality are positive, we clearly have

s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3 ≥ max{s1s2s3 + s1r2r3, r1s2r3 + r1r2s3}.

From the inequality between arithmetic and geometric means we further have

s1 (s2s3 + r2r3) ≥ s1(s2s3r2r3)1/2 and r1 (s2r3 + r2s3) ≥ r1 (s2s3r2r3)
1/2

,

as desired.
Let now αi and βi be arbitrary positive real numbers, for i = 1, 2, 3. From the

above inequalities, we compute

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
α1+β1 ≥ rα1

1 (r2r3s2s3)α1/2sβ1
1 (r2r3s2s3)β1/2

= rα1
1 sβ1

1 (r2r3s2s3)(α1+β1)/2,

Similarly, we obtain the two inequalities

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
α2+β2 ≥ rα2

2 sβ2
2 (r1r3s1s3)(α2+β2)/2

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
α3+β3 ≥ rα3

3 sβ3
3 (r1r2s1s2)(α3+β3)/2.

For αi, βi’s as in the Claim, we set αi = αi − 2/3 ≥ 0 and βi = βi − 2/3 ≥ 0.
Note that for each i, we have αi + βi = 2/3. We can now apply each of the three
above inequalities and we obtain

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
2 ≥

≥
(
rα1
1 sβ1

1 (r2r3s2s3)1/3
)(

rα2
2 sβ2

2 (r1r3s1s3)1/3
)(

rα3
3 sβ3

3 (r1r2s1s2)1/3
)

= rα1
1 rα2

2 rα3
3 sβ3

3 sβ2
2 sβ1

1 ,

as claimed. �
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We start the proof of the lemma by a preliminary case, to illustrate our strategy.
Suppose the defining order ≺ of ∆5

≺ would give

r1 ≥ r2 ≥ r3 ≥ s3 ≥ s2 ≥ s1.

Then we apply Claim 1 to α1 = 5/4, β1 = 3/4 and α2 = β2 = α3 = β3 = 1, so that

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
2 ≥ r

5/4
1 r2r3s3s2s

3/4
1 .

Define ϕ : ∆5
≺ → ∆5

< to be the natural bijection mapping the order ≺ to the
(anti-)natural order < on the indices of (t0, ..., t5), so that

ϕ(r1, r2, r3, s3, s2, s1) = (t0, t1, t2, t3, t4, t5).

(In particular, ti ≥ tj whenever i < j.) The integral of the lemma can now be
rewritten as ∫

∆5
<

dt1 · ... · dt5

t
5/4
0 t1t2t3t4t

3/4
5

,

and is easily estimated. Observe that the integral consists of integrating the vari-
ables t5 to t1 with for each ti, for i = 2, ..., 5, the integration bounds 0 to ti−1 and
0 to 1/2 for i = 1. Note also that t0 ≥ 1/6. Let us now compute a bound for this
integral:∫

∆5
<

dt1 · ... · dt5

t
5/4
0 t1t2t3t4t

3/4
5

≤ 65/4

∫
∆5

<

dt1 · ... · dt5

t1t2t3t4t
3/4
5

= 65/4

∫
∆4

<

t
1/4
4

dt1 · ... · dt4
t1t2t3t4

= 65/4

∫
∆3

<

t
1/4
3

dt1dt2dt3
t1t2t3

= 65/4

∫
∆2

<

t
1/4
2

dt1dt2
t1t2

= 65/4

∫ 1/2

0

t
1/4
1

dt1
t1

= 65/4 · 4 ·
(

1
2

)1/4

.

Let now ≺ be an arbitrary order defining ∆5
≺ and suppose that for (r1, r2, r3,

s1, s2, s3) in ∆5
≺, the inequalities r1 ≥ r2 ≥ r3 and s1 ≤ s2 ≤ s3 hold. It is clear

that either r1 or s3 is maximal and either r3 or s1 is minimal. We distinguish four
cases:

(1) If r1 is maximal, we set α1 = 5/4 and β1 = 3/4.
(a) If s1 is minimal, we further define α2 = β2 = α3 = β3 = 1. From

Claim 1, we get

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
2 ≥ r

5/4
1 r2r3s3s2s

3/4
1 .

If ϕ : ∆5
≺ → ∆5

< is the natural map preserving the respective orders,
we see that the integral of the lemma becomes precisely the same
integral as in the preliminary case.

(b) If r3 is minimal, we instead put α3 = 3/4, β3 = 5/4 and α2 = β2 = 1.
From Claim 1, we now get

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
2 ≥ r

5/4
1 r2r

3/4
3 s

5/4
3 s2s

3/4
1 .

Again, let ϕ : ∆5
≺ → ∆5

< be the natural map preserving the respective
orders. The denominator of the resulting integral is now

t
5/4
0 tγ1

1 tγ2
2 tγ3

3 tγ4
4 t

3/4
5 ,

where two of the γi’s are equal to 1, one is equal to 5/4 and another
is equal to 3/4. Furthermore, if γi = 5/4 and γj = 3/4 then i < j
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(which comes from that s3 ≥ s1). Explicitly, this means that the
denominator is one of

t
5/4
0 t

5/4
1 t2t3t

3/4
4 t

3/4
5 , t

5/4
0 t

5/4
1 t2t

3/4
3 t4t

3/4
5 , t

5/4
0 t

5/4
1 t

3/4
2 t3t4t

3/4
5 ,

t
5/4
0 t1t

5/4
2 t3t

3/4
4 t

3/4
5 , t

5/4
0 t1t

5/4
2 t

3/4
3 t4t

3/4
5 , t

5/4
0 t1t2t

5/4
3 t

3/4
4 t

3/4
5 .

But as in the preliminary case, one can compute a bound (which is
the same) for the corresponding integrals.

(2) If s3 is maximal, we set α3 = 3/4 and β3 = 5/4.
(a) If s1 is minimal, we further define α1 = 5/4, β1 = 3/4 and α2 = β2 =

1. We have, from Claim 1, that

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
2 ≥ r

5/4
1 r2r

3/4
3 s

5/4
3 s2s

3/4
1 .

This gives exactly the same integrals as in case 1(b).
(b) If r3 is minimal, we instead put α1 = β1 = α2 = β2 = 1. The

inequality obtained from Claim 1 now takes the form

(s1s2s3 + s1r2r3 + r1s2r3 + r1r2s3)
2 ≥ r1r2r

3/4
3 s

5/4
3 s2s1.

Once again, we are back to computing the integral of the preliminary
case.

�

Remark 2. The same method shows that certain ideal simplices in the higher
dimensional symmetric spaces Postrn , n ≥ 4, have a uniformly bounded volume.
Those simplices are those for which up to a renumbering of their vertices, for every
i between 2 and n− 1, the i(i + 1)/2 first vertices lie in a copy of Postri in ∂Postrn .
Thus, all but the first step of our proof for n = 3 generalize to higher dimensions.

8. On Savage’s proof

In this last section, we will briefly explain the proof presented in [Sa82] of the
positivity of the simplicial volume of compact manifolds covered by SLnR/SO(n)
is false. For more details, we refer the reader to [Bu05], where we go through
Savage’s computation step by step. As mentioned in the introduction, the mistake
in [Sa82] is that it is not realized that the considered barycentric subdivisions are
not invariant under isometries of the symmetric space.

Savage starts with arbitrary rank 1 matrices P0, ..., Pd in ∂Postrn and aims at
bounding the volume of the straight singular simplex

σ : ∆d −→ Postrn
(t0, ..., td) 7−→

∑d
i=0 tiPi.

By symmetry, it is enough to bound the volume of σ restricted to the simplex ∆d
0

of the first barycentric subdivision ∆d:

∆d
0 = {(t0, ..., td) | t0 ≥ ... ≥ td}.

Such a bound would imply the positivity of the simplicial volume.
Using the high transitivity of SLnR on rank 1 boundary points, Savage puts

his simplex in a special position, as we extract in the next Theorem. It is simple to
prove and we refer the reader to either [Sa82], beginning of Section 7, or [Bu05,
Theorem 2].
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Theorem 5. Let P0, ..., Pd be rank 1 matrices in ∂Postrn generating a nonde-
generated simplex. Then there exists g in SLnR and integers 0 = β1 < ... < βn ≤ d
satisfying

βi ≤
(i− 1)i

2
such that

ρtr
g (Pβi

) = Ei = eie
t
i,

and furthermore P1, ..., Pβi−1 lie in a copy of Postri−1 in ∂Postrn , for every i in
{1, ..., n}.

The group element g in SLnR appearing in Theorem 5 induces an isometry ρtr
g

of the symmetric space, which we denote by h, in accordance with the notation in
[Sa82]. The simplex that Savage now wants to bound, is the restriction to ∆d

0 of
the composition of σ with h - and this would of course imply the desired theorem
- but what he actually bounds is the restriction to ∆d

0 of the straight simplex
f = σ(h(P0), ..., h(Pd)). And in general, not only

f |∆d
0
6= h ◦ σ|∆d

0
,

but more problematically, f(∆d
0) 6= h ◦ σ(∆d

0) and hence∫
f(∆d

0)

ωtr 6=
∫

h◦σ(∆d
0)

ωtr.

(Note that if we had not restricted to the first barycentric subdivision, but instead
considered f and σ on the whole simplex ∆d, then of course we would still have
that f 6= h ◦ σ but the integral would agree, since the image of f and h ◦ σ would
in this case be equal.)

This mistake, once observed, is easy to point out. Indeed, a volume bound for
h ◦ σ|∆d

0
is claimed in Theorem 7.4 of [Sa82], but the proven bound is a volume

bound for f |∆d
0
. In passing, Savage seems to have assumed that f |∆d

0
= h ◦ σ|∆d

0
.

Before we can state the unproven Theorem 7.4, and its true proven version, we need
some more notation. Choose wi on the unit sphere of Rn such that h(Pi) = wiw

t
i ,

for i = 0, ..., d. Let 〈., .〉 be the standard scalar product on Rn. Choose α1, ..., αn

between 0 and d such that 〈wαi
, en〉 has maximal absolute value. Note that by

construction, β1 < ... < βn−1 ≤ αi, for i = 1, .., n.
Unproven Theorem 7.4 of [Sa82]. Notation as above. Let T be a subset of the

image of h ◦ σ|∆d
0

and let ∆T ⊂ ∆0 be its preimage ∆T = (h ◦ σ)−1 (T ). Then
there exists a constant C(n) such that

Vol(T ) ≤ C(n)
∣∣∣∣ n∏
i=1

〈wαi
, en〉

∣∣∣∣ ∫
∆T

dt1...dtd((
Πn−1

k=1 tβk

) (
Σn

i=1tαi
〈wαi

, en〉2
))(n+1)/2

.

The wrong proof. The first equation of the proof - which is correct - just
relies on the fact that the volume form is, up to a constant denoted by C0(n), the
form ωtr computed in either Theorem 4.3 in [Sa82] or Proposition 3 here. Thus
one has

Vol(T ) =
∫

T

C0(n)

(det(S))(n+1)/2
dx1 ∧ ... ∧ dxd.

The mistake is now that Savage applies the change of variable formula to the map
f : ∆d

0 →Postrn , while he replaces the integrand, not by f−1(T ) as he should, but
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by ∆T = (h ◦ σ)−1 (T ). In this way, he concludes, using his Theorem 5.14 (Lemma
2 here) that

Vol(T ) =
∫

∆T

C0(n)dt1 · ... · dtd

(det(f(t1, ..., td)))
(n+1)/2

=
∫

∆T

C0(n)dt1 · ... · dtd

(Σj1<...<jn (Πn
i=1tji) det(wj1 , ..., wjn))(n+1)/2

,

while he should have concluded that

Vol(T ) =
∫

f−1(T )

C0(n)dt1 · ... · dtd

(Σj1<...<jn
(Πn

i=1tji
) det(wj1 , ..., wjn

))(n+1)/2
.

The rest of the computations are correct, so that the true statement is contained
in the next theorem. �

True Theorem 7.4. Notation as above. Let T be a subset of the image of h ◦ σ
and let ∆T ⊂ ∆0 be its preimage ∆T = (f)−1 (T ). Then there exists a constant
C(n) such that

Vol(T ) ≤ C(n)
∣∣∣∣ n∏
i=1

〈wαi , en〉
∣∣∣∣ ∫

∆T

dt1...dtd((
Πn−1

k=1 tβk

) (
Σn

i=1tαi
〈wαi

, en〉2
))(n+1)/2

.

After pages of unnecessarily complicated computations, Savage concludes that
the integrand appearing in (both versions of) Theorem 7.4 is uniformly bounded
when integrated on the simplex ∆d

0. And of course, this now only implies that the
simplex f(∆d

0) has uniformly bounded volume, but not (h ◦ σ) (∆d
0) as is claimed.

We do not see any way to save the proof in [Sa82]: Theorem 7.4 is the starting
point for the only volume bound given in [Sa82] and it can not be used to prove
that the volume of h ◦ σ (and hence σ) is bounded, since in fact it diverges when
integrated on the whole simplex ∆d.

References

[Bu04] M. (Bucher-)Karlsson, Characteristic classes and bounded cohomology, Ph.D. Thesis,

ETHZ (2004).
[Bu05] M. Bucher-Karlsson, A detailed study of Savage’s paper ”The space of positive Definite

matrices and Gromov’s invariant”, preprint (2005).
[CoFa03] C. Connel, B. Farb, The degree theorem in higher rank, J. Diff. Geom. 65 (2003), no.

1, 19-59.

[Du76] J. Dupont, Simplicial de Rham cohomology and characteristic classes of flat bundles,
Topology Vol. 15 (1976), 233-245.

[Gr82] M. Gromov, Volume and bounded cohomology, Inst. Hautes Études Sci. Publ. Math.
No. 56 (1982), 5–99.

[dlH93] P. de la Harpe, On Hilbert’s metric for simplices, Geometric group theory, Vol. 1

(Sussex, 1991), London Math. Soc. Lecture Note Ser. 181 (1993), 97–119.
[InYa82] H. Inoue, K. Yano, The Gromov invariant of negatively curved manifolds, Topology

Vol. 21 (1982), 83-89.

[LaSch05] J.-F. Lafont, B. Schmidt, Simplicial volume of closed locally symmetric spaces of non-
compact type, preprint (2005).

[Sa82] R.P. Savage Jr. The space of positive definite matrices and Gromov’s invariant. Trans.
Amer. Math. Soc. 274 (1982), no. 1, 239–263.

[Th78] W. Thurston, Geometry and topology of 3-manifolds, Lecture Notes, Princeton (1978).



SIMPLICIAL VOLUME OF SPACES COVERED BY SL3R/SO(3) 23

Department of Mathematics, Royal Institute of Technology, 100 44 Stockholm,

Sweden

E-mail address: mickar@math.kth.se


