Simplicial volume of locally symmetric spaces covered by
SLs;R/SO(3)

Michelle Bucher-Karlsson

ABSTRACT. We give the first complete proof of the strict positivity of the
simplicial volume of compact locally symmetric spaces covered by SL3R/SO(3)
and show why the proof in [Sa82] is incorrect.

1. Introduction

The aim of this paper is twofold: On the one hand, we want to give a simple
proof of the following theorem.

THEOREM 1. Let M be a compact locally symmetric space whose universal cover
is SL3R/SO(3). Then the simplicial volume of M s strictly positive.

On the other hand, we show why the proof in [Sa82] of the same result for
locally symmetric space whose universal cover is SL,R/SO(n), where n > 2, is
incomplete.

Theorem 1 is complementary to a result which has remarkably just recently
been proven by Lafont and Schmidt in almost full generality thus answering affir-
matively a conjecture of Gromov.

THEOREM 2 ([LaSch05]). Let M be a compact locally symmetric space whose
universal cover is a globally symmetric space of noncompact type and not isomorphic
to SL3R/SO(3). Then the simplicial volume of M is strictly positive.

All proofs of the positivity of the simplicial volume of locally symmetric spaces
rely on a uniform bound on the volume of certain top dimensional simplices in their
universal cover. In [InYa82], Inoue and Yano generalize ideas of Thurston [Th78]
in order to show that the volume of geodesic simplices in any (fixed) symmetric
space of real rank one is uniformly bounded, thus proving Theorem 2 in this case.
In [LaSch05] the simplices in consideration are constructed with the barycenter
method, and the obtained volume bound strongly relies on previous work by Connell
and Farb [CoFa03]. Note that the proof in [LaSch05] does not cover the case of
SL3R, so that the present paper contains the only volume bound on simplices in
SL3R/SO(3) leading to a proof of Theorem 3.
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The simplices we investigate here are those introduced in [Sa82], namely convex
simplices in the trace 1 model of the symmetric space SL,,R/SO(n). The mistake
in [Sa82] is that it is assumed that the euclidean barycenter of the simplices is
invariant under isometries of the symmetric space - which is false. Once observed,
this error is easy to point out: Theorem 7.4 in [Sa82] - which would imply the
claimed result - is not proven as stated. This is explained in the last section of this
paper. For more details, see also [Bu05]. Note that we do not see how to fix this
gap in any straightforward way.

The proof we present here for n = 3 is substantially different from Savage’s
even though we do bound the volume of the same simplices. The various estimates
which we use to do so are much sharper, so that the integral we are left with is
easier to bound. For n = 2, our method shows without using the transitivity of
SLoR on nondegenerated ideal geodesic simplices of SLoR/SO(2) that the area of
those simplices is up to a sign constant.

This paper is structured as follows: We start by giving some models for the
symmetric spaces SL,R/SO(n) and discussing the geometry of their boundaries
in Section 2. In Section 3 we indicate how Theorem 1 reduces to proving that
the volume of certain simplices of the symmetric space is uniformly bounded. The
volume forms for our models of symmetric space are computed in Section 4 and in
Section 5 we exhibit a formula for the volume of simplices. We treat the simple
example of n = 2 in Section 6 and the more complicated case n = 3 in Section 7.
Finally, Savages’s proof is discussed in Section 8.

2. The geometry of the symmetric space

Let Sym,, denote the space of n by n real valued symmetric matrices and let
Pos,, be the subset of positive definite matrices,

Sym,, = {S € M,(R) | S =S},
Pos,, = {S € Sym,, | 2Sz" > 0 for every 0 # = € R"}.

The space of symmetric matrices is a vector space of dimension n(n + 1)/2. The
set {Ei]1 < i < j < n}, where Ej; is the matrix having the (i,%)-coefficient
equal to 1 and all others equal to 0 while FE;; is the matrix having the (¢,7) and
(4, 1)-coefficients equal to 1 and all others equal to 0, furnishes a natural basis of
Symy,. Let {ei,...,en(n+1)/2} be the canonical basis of R™"+1)/2 " There exists
a unique bijection between the sets {E;;|1 < i < j < n} and {e1, ..., €n(nt1)/2}
preserving the lexicographic and natural orders respectively. This bijection induces
an isomorphism Sym,, = R™*"*+1)/2 We will abuse notation and view an element
of Sym,, both as an n by n matrix and as a vector in R™"*+1)/2 (via this specific
isomorphism). In particular, we shall consider the determinant of n(n+1)/2 vectors
of R™"+1)/2 a5 a function on the product of n(n + 1)/2 copies of Sym,,, thus as a
map

det : (Sym,)"""V/2 R,

The groups GL,R and SL,R act on the space M, (R) of n by n real valued
matrices according to the rule

Py My(R) M, (R)

—
S — gS¢',
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for every g in GL,R or SL,R. Note that this action is linear. In fact, it is given
by the natural inclusion GL,R <—GL,2R defined by g — g ® g. In particular, the
character of this representation of GL,R is

GL,R — R
g — det(g)®".

The action of GL,R obviously restricts to an action on the vector space of sym-
metric, respectively anti-symmetric, matrices and it can be checked that the cor-
responding characters are g +— det(g)"™! and g ~— det(g)"~! respectively. As a
consequence, if Si,...,Sg are symmetric matrices and ¢ is an element of GL,R,
then

(2.1) det(gS1g’, ..., gSag") = det(g)" " det(S1, ..., Sy).

The space Pos,, is as an open subset of Sym,, naturally a smooth manifold. Its
tangent space at each point is, by translation, identified with Sym,,. The action p,
on Sym,, restricts to an action which we still denote by p, on Pos,,. Because it is
linear on Sym,,, the induced map on the tangent space is again given as

(pg), : Sym,, — Sym,
S +— gSgt.

It is a standard fact - which we shall not explicitly need here - that the space
Pos,, can be endowed with a Riemannian metric for which the transformations p,
are isometries for every g in GL,R. In fact, the scalar product on TsPos,, ZSym,,,
for S in Pos,, can be taken as (X,Y) s =Tr(S7'XS7Y), for every X,Y in Sym,,.
(Note that a different scaling of this product is also common.)

Let Posd®* denote the hyperspace of Pos,, consisting of those positive definite
matrices with determinant equal to 1. It has dimension

1

de nn+1) B
2

For further use, define a map 7 as the composition of the natural projection of Pos,,

1.

onto Posd®® with the inclusion Pos{®* CPos,,:
w:Pos, — Pos,,
1
S IR

The action of SL,R on Pos,, restricts to an action on Posd®t. Note that this
action is by isometries with respect to the Riemannian metric induced from Pos,,.
The stabilizer of the identity is clearly equal to SO(n), so that the space Posdet
is one possible model for the symmetric space SL,R/SO(n). But we could choose
a different normalization, for example consider the space Pos!’ consisting of all
positive definite matrices with trace equal to 1. The action of SL,R on Pos needs

then to be normalized also, and is given as

1
tr S — S t
Py (S) (g5 7%

for every S in Pos!" and g in SL,R. The model Pos!' has two major advantages:
First, it is a bounded subset of the space of symmetric matrices, and as such has

a natural compactification Pos} =Pos* U dPos!’. Second, it is a convex subset of
the space of symmetric matrices. Thus, given any ¢ + 1 points Sy, ..., S; in Pos? or
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possibly in its boundary, we have a canonical choice of i-simplex (S, ..., S;) given
by taking the convex linear combination of the .S;’s:

O'(So, ceey Si)(to, ...7ti) = th5j7
7=0

for every (to,...,t;) in A’. Such a simplex - which we can of course also define
for points Sy, ..., S; in Pos,, - is called a straight simplex. If the vertices Sy, ...,.S;
are all in the boundary of Pos,,, then we say that the simplex is ideal. Note that
this in fact provides us with a natural -filling of the symmetric space SL,,R/SO(n).
Observe that lines in the trace 1 model of the symmetric space are the distinguished
geodesics with respect to the Hilbert’s metric of the convex set Pos! (see [dIH93]),
but they are in general not geodesics for the Riemannian metric indicated above.

Let OPos,, denote the boundary of Pos,, with respect to the induced topology
from Sym,, and set Pos,, =Pos,, UOPos,,. The boundary dPos,, of Pos,, decomposes
in n — 2 subsets according to the rank of its matrices. As we shall eventually want
to bound the volume of straight simplices in Pos" with rank 1 matrices as vertices,
we will restrict our attention to this subset of the boundary. Any rank 1 matrix
with positive nonzero eigenvalue belongs to 0Pos,, and has the form

10 .. 0
0 t t
9] . g9' = geieige,

0
for some g in GL,R. Thus, taking z = ge; € R", we see that such a matrix can be
written as za?, which shows that the map

R: R"\{0} — OPos,

x —  xaxt

surjects onto the rank 1 matrices of 9Pos,,. The preimage of R(x) is clearly {z, —z}.
Furthermore, the map R is GL,R-equivariant:

R(gx) = gR(z)g",
for every z in R™ and ¢ in GL,R.
Since ||ac||§ =Tr(R(z)), the restriction of R to the unit sphere S"~! has image
contained in Pos!’. Abusing notation, we also denote this map by R:

R: S — OPosY

X [ — IIt.

Note that this map is also equivariant with respect to the natural action of GL,,(R)
on S™~! (given by x — gz/ ||gx||,) and the action p!" on Pos};.

Observe that the subspace of Pos,, (respectively Pos!’) consisting of rank 1
boundary points is homeomorphic to (R™ \ {0}) / & 1 (respectively P"~1R).

3. Bounded cohomology and simplicial volume

It is well known that the positivity of the simplicial volume of a compact locally
symmetric manifold covered by SL,R/SO(n) is equivalent to the surjectivity of the
comparison map

:,b(SLnR) I H:(SLnR)
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between the bounded continuous and the continuous real valued cohomology of
SL,R in top degree, that is, in degree d = n(n + 1)/2 — 1. For a proof of this
equivalence, see for example [Bu04, Ch. 3.2.6].

It is a standard fact that the real valued continuous cohomology of SL,R in
degree i is isomorphic to the SL,R-invariant differential i-forms on the symmet-
ric space SL,R/SO(n), which we denote by A*(SL,R/SO(n))5*F and in top di-
mension d, it is easy to see that A?(SL,R/SO(n))¥, and hence HZ(SL,R), is
1-dimensional. Indeed, that it is at most 1-dimensional follows from the transitiv-
ity of the action of SL,,R on its symmetric space and from the fact that the latter
space has dimension d. Furthermore, a nontrivial SL,,R-invariant d-form on Pos!
(or Posd®t) will be exhibited in the next section. This form

W' € AY(Posth)¢

shall be called the volume form. This is a slight abuse of terminology since it is only
the volume form in the proper Riemannian sense of the word after an appropriate
rescaling of the metric. But in any case, it is well defined up to a nonzero constant,
which is all we need here.

The isomorphism between invariant differential forms on the symmetric space
and the continuous cohomology of SL,R can be described explicitly as shown by
Dupont in [Du76]:

AY(SL,R/SO(n))¢ — H}(SL,R)
a— [co(a)],
where ¢, (o) is an SL,R-invariant i-cocycle given, for go, ..., g; in SL,R, as
ce()(goy -y gi) = i a,
(g90°T,..,9:"T)

with z a fixed base point in SL,R/SO(n) and ¢ an i-filling. In the trace model
Pos®’ of the symmetric space SL,R/SO(n), the i-filling can be chosen as the straight
simplices
(S0, ..., 5:) : Al —  Pos’

(to,nts) = i otiS;,
for every Sy, ..., S; in Pos!’, which we already defined in the previous section. More-
over, if the integration of a simplex with vertices in the boundary OPos' is well
defined, then one can similarly define an i-cocycle on SL,R as

ce(@) (g0, - 9i) = /e
o(90°§5--,9:°€)
where now ¢ lies on the boundary dPos!, which is a measurable cocycle and repre-
sents the same cohomology class as ¢, («), for any = in Post’. This is the case in top
dimension. Let thus R be a boundary point in dPos!’. It follows from the previous
discussion that cr(w') is a cocycle representing a generator of H?(SL,R), so that
Theorem 1 will follow at once from the following theorem:

THEOREM 3. There exists C' in R such that, for every rank 1 vertices Ry, ..., Rs
in OPosk’, the inequality
/ wtr
a(Ro,..,Rs)

<C
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holds, where (R, ...,R5) : A> —PoslT" is the straight simplex given, for every
(to, ...,t5) m As, by

5

O’(Ro, ceey R5)(t0, ...,t5) = thRj.
j=0

An alternative argument to see how Theorem 3 implies the positivity of the
simplicial volume is given by Savage ([Sa82, Section 2 and Theorem 5.3]).

4. The volume form

We start by exhibiting in Proposition 1 a differential d-form w on Pos,, which
is invariant under the action of SL,R. This form w restricted to Posi® will be our
volume form on the determinant model of the symmetric space SL,,R/SO(n). Note
that this proposition is Theorem 4.1 in [Sa82] but the proof we give here is much
simpler.

Recall that symmetric matrices S = (s;;)1<i,j<n i M, (R) are identified to their
images in R?*!, via the isomorphism given in Section 2. The matrix S thus becomes
a vector with entries s, ..., s4, where the s;’s just correspond to a relabelling of the
s45’s, for i < j, the relabelling being in fact given by the lexicographic order on
{(,9) |1 <i<j<n}

ProrosiTION 1. The differential d-form

d
w = Z(—l)isidso A A 38\1 A...Ndsq
i=0

on Pos, is invariant under the action of SL,R given by S — gSgt.

PROOF. One only need to observe that, for S in Pos, and X, ..., X4 vectors
in TsPos,, ZSym,,, we have

o.)s(Xl, . Xd) = det(S, X1, ..., Xq).
The SL,R-invariance is then a simple consequence of (2.1). Indeed, one has

Py(w)s(X1, ..., Xa) = wp,(5)(Pgs(X1), .., pgs(Xa))
= det(gS9", 9X19", ..., gXag")
= det(g)" ! det(S, X1, ..., X4)
=ws(X1, ..., Xa),

for every g in SL,R. O

Because the volume form w'" on the trace model Pos!’ of the symmetric space
is clearly equal to the restriction to Pos!’ of the pullback of w by 7, we now compute
7*(w). Again, those computations are already present in [Sa82] and can be found
there in the proof of Proposition 4.3.

PrOPOSITION 2. The pullback of w by 7 is given by

N _ 1
™ (W) - det(S)(n+1)/2w
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PRrROOF. The induced map 7, : TPos,, — TPos,, on the tangent bundle of Pos,,
furnishes for each point S in Pos, a map TsPos, =Sym, — T, )Pos, =Sym,
given, when viewed as a map on the space Sym,, of symmetric matrices, by the
(d + 1)-square matrix (9m;/9s;(S)) Let us compute its coefficients:

0<4,j<d"
e Sine (det S)1/7 if i # 7,
O (5) = ’
as' - n e .
J Gty (det(8)!/" = Sigl (det)/7) i i =

The matrix (9m;/95;(5))y<; j<4 thus takes the form

87‘(1
(as (8 )) -
J 0<i,j<d
S(]

_ IS S 9 o n
= (det S)1/7 Idq ooy | (aSO(detS) gy (detS)

d
For any symmetric matrix X in Sym,,, there exists a real number Ax € R (depend-

ing also on S) such that

amj 1
X)=— X+ x5
&SM ) (det S)l/n + X

If now, X1, ..., X4 are arbitrary vectors in TsPos,, =Sym,,, we have

W*(w)s(Xl, ...,Xd) = wﬂ(s)(ﬂ'*(Xl), ...,W*(Xd))

:det( S. L X, +)\X157 éXn—f—)\XnS)

? (det S)1/m 3 (det §)1/n

1
det(S)1/n

= m det(S, X]_, 7Xn)

= WWS(Xhm,Xn),

sinced=n(n+1)/2 - 1. O

LEMMA 1. Let Sy, ..., Sy be matrices in Pos,, and pq, ..., jtq be nonvanishing real
numbers. Then

*

T (w) :/ ™ (w).
a(S0,..-,54) o(po0So,-. - 1haSa)

PRrROOF. This is a simple consequence of Stoke’s theorem. After all, the singular
simplices 7o o(Sy, ..., Sq) and m o o (1gSo, .-, 4aSq) have the same image. They are
only parametrized differently, but surely have the same volume as we shall now
prove: Define a homotopy H : A? x [0, 1] —Posd®* between 7.0 and 7,7 as

H(z,t) =7((1 —t)o(x) + to(x)),
for z in A4 and ¢ in [0, 1]. The map H enjoys the property that for every inclusion of
face A9~! < A4 the image H(A?! x [0,1]) is at most (d — 1)-dimensional so that
its volume must vanish. Now since the volume form is a closed form (any SL,,R-
invariant form on SL,R/SO(n) is automatically closed), the volume of H(9(A4 x
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[0,1])) is zero, so that

..........

as desired. |

In view of Lemma 1 we are now interested in the restriction of 7*(w) not only
to Pos but to different affine subspaces of Pos,.

PROPOSITION 3. If A= {S € Pos, | Z?:o Ais; = 1} is a d-dimensional affine
subspace of Pos, for some A; € R | then 7*(w) restricted to A takes the form

Aot

dot(s) st A ds2 A A dsa

Note that it is automatic that Ag is nonzero. Indeed, it follows from A being a
d-dimensional subspace of Pos,,, that it must contain a positive multiple of E7, say
wE7, where p > 0. Thus the condition X\;s; = 1 becomes Agu = 1 for S = pFEj.

PRrROOF. For the second assertion of the proposition, let A = {S € Pos,, |
Z?:o Ais; = 1} be a d-dimensional subspace of Pos, and recall that Ao # 0.
Derivating the relation Z?:o Ais; = 1 gives

d
dso = =Ny " Y Nids;.

=1

Substituting dsg by the right hand side of the above equation leads to
dso A . Adsi A . Adsy = (—1)' A3 " Agdsy A ... A ds,

for every i between 0 and d. Indeed, if i = 0, there is nothing to prove. Suppose
i > 0, then

d
dso A e Ndsi Ao Ndsy = | =50 Nidsj | Adsi Ao Adsi A Ndsy,
j=1
= Ay Njds; Adsy A Ads A Adsy,
= (=1 Nidsy A ... Adsy,.

The form 7*(w) restricted to A thus takes the form

d
7 (w) = W Z;(—l) sidsg N\ ... \Nds; A ... Ndsy,

d
1 § : -1
= W < )\0 A181> d51 VANRTRVAN dSn

1=0
—1
AO

= WdSI AN dSn,

as claimed. O
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Observe that in particular, our volume form w' on the trace model Pos!’ of
the symmetric space, which is equal to the pullback of w by 7 restricted to Pos is
given by

tr

W = 1 (W) |pegtr = dsy A ... Ndsg.

1
det(S)(+1)/2
This is Proposition 4.3 in [Sa82].

5. A volume formula

We shall now exhibit a simple formula for the computation of the volume of a
simplex of the form 7 o o, where o is a straight simplex. This expression is implicit
in [Sa82] (at least in the case where the R;’s are rank 1 boundary points in 9Post)
and is used there in the beginning of the proof of Theorem 7.4.

THEOREM 4. Let Ry, ..., Rq be positive definite matrices in Pos,. Then
dti...dtg

* =det(Ro, ..., R .

/U(Ro,.i.,Rd)7T (w) = det( 2 /Ad det(S ot R; ) (n+1D)/2

Of course, the variable ¢y, in the above integral, is to be understood as being
equal to 1 —t; — ... — tg.

PrOOF. Let A be the affine linear combination of the R;’s, that is,
A={S€Pos, |S=3!,t;R; t; € R}.
Clearly, there exists real numbers A, ..., Ay such that
A={S€Pos, | ¢ \s; =1}

If A has dimension strictly smaller than d, then both the right and the left hand
side of the equality of the theorem are 0. Otherwise, by Proposition 3, the form
7*(w) restricted to A takes the form

Aot
stl A ... Adsg.
Let o : A% — Pos,, be the straight singular simplex o (Ry, ..., Rq), so that

o (to, s ta) = SiotiR; = Ro + X{_1ti (Ri — Ro),

where the last equality comes from the relation ¢g+ ... +t; = 1. We then have that

Vol(x07...7md):/ w:/w*(w)
7 (0) o

Aot
- /g stl Ao Adsqg
)\71
= d t / 0
/Ad |det(a”)]| det (o (to, ~--,td))(n+1)/2

from the chain rule. Since o is a linear map, its Jacobian |det(c’)| is easy to
compute. Indeed,

dty - ... dtg,

9o,

ot (th “~atd) = (RZ)] - (RO)]"
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so that |det(o’)| is the determinant of the d vectors Ry — Ry, ..., Rq — Ry with the
0-coordinate removed. Since every R; by definition belongs to A, we have for the
0-coordinate of R; — Ry :

d
(Ri)o — (Ro)y = Ay Z)‘j ((Rs); — (Ro)j)-

Let us now compute the determinant of the d + 1 vectors Ry, Ry, ..., Rg:
det(Ro, Rl, ceey Rd) = det(Ro, R1 — Ro, ceey Rd - R()).

The first row of the matrix (Rg, R1 — Ro, ..., Rqg — Ro) (corresponding to the 0-
coordinate of each column vector) is

()‘61 - E?:I)‘al)‘j (RO)j ) 2?:1/\61>\j ((Rl)j - (RO)j s A ((Rd)j - (RO)j> =
d
= (010,00 = Y AT ((Ro)j ,(R1); — (Ro); s (Ra),; — (Ro)j) :

and the latter sum is clearly a linear combination of the rows 1 up to d of the matrix
(Ro, Ry — Ry, ..., Rqg — Rp). Thus
At 0

det(Ro, R1 — Ry, ..., Rqg — Ro) = det (R_O)l
’ o : ((R:i); — (Ro)j)i<jii<n |’
(Ro) 4
which shows that

det(Ro, Ry, ..., Rq) = Ay ' |det(a”)],

and finishes the proof of the theorem. ([

The following lemma, which is Theorem 5.1 in [Sa82] provides a better under-
standing of the denominator of the integrand appearing in Theorem 4, when the
vertices R; all have rank 1 so that they take the form R; = x;x! for some vectors
z; in R™. It is proven by means of elementary linear algebra.

LEMMA 2. Let x1,...,xn be vectors in R™, then

N n
det ( E tﬂﬂzl‘,f) = E <H tji) det(Sle, ...,Ijn)2,
i=1 =1

J1<.<Jn
for any real positive numbers tq,...,tx.

Proor oF LEMMA 2. First note that upon replacing every vector z; by tg/233i
we can without loss of generality assume that {g = ... =ty = 1. Let z1,...,ox be
vectors in R™. Let 2] denote the j-th coordinate of the vector x;, so that

Ti = )
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for i = 1,..,N. Observe that the j-th column of the matrix z;z! is equal to xZ ;.
By the multilinearity of the determinant, we have

N N N
det (Z :clx;t) = det <Z riz;, ,Zx?:cl>
i=1 i=1 i=1

j— 1 n . .
= E xy g det(zy, e, 2,).

i1yein=1

Obviously, if i = iy for some 1< k # £ < n, then det(x;,,...,x;,) vanishes, so
that it is enough to sum over indices i1, ..., 4, which are all distinct. Those can be
written in a unique way as i, (1), ..., ir(n), Where iy < ... < i, and 7 is a permutation
of the set {1,...,n}. The above expression can thus be rewritten as

1 n —
E E Ty gy e T det(@ e T, ) =

1<i1<...<in<N T7€Sn

— El§i1<...<in§N (ETGS" sign(T)x}T(l) s 33?7(”)> det(ziy, ..., xs,)

= Zl§i1<...<in§N det(zi,, ..., i,)?,

as desired. O

6. The case n =2

For n = 2 the symmetric space SLyR/SO(2) is, upon rescaling the metric
appropriately, isometric to the 2-dimensional hyperbolic space. Of course, using the
transitivity of the action of SLoR on oriented triples of distinct points on OPost,
it is readily seen that the area of nondegenerated ideal geodesic triangles is up to
a sign constant. We shall however reprove this elementary fact, mainly in order to
exemplify in this simple case the method we will use in the next section for SLsR.
Note that we will do so without using the transitivity of SLoR on the boundary of
the symmetric space Posy.

LEMMA 3. Let x,y, z be vectors in RZ. Then
det(R(x), R(y), R()) = det(z, y) det(z, 2) det(y, 2).

Proor. This is a straightforward consequence of the Vandermonde determi-
nant formula: Let x;,y;, z;, for i = 1,2 denote the coordinates of x, y, z respectively.
By definition, the left hand side of the desired equality is equal to

1T Y1Y1 2121 1 1 1
det [ 172 viye 2120 | = afy?zidet T2/71 , Y2/Y1 , z2/21 ,
ToTo YoYs 2229 (xo/21)" (y2/11)” (22/71)

The latter matrix being a Vandermonde matrix, its determinant is equal to

G362 2)
T1 Y1 Y1 21 21 Z1 '

Multiplying this expression by x2y222, we clearly obtain the right hand side of the
Lemmas’s equation. [
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Let xg, 1, 22 be arbitrary points on S! and let o : A2 —Pos¥ be the straight
singular simplex

o =0o(R(xp), R(x1), R(x2)).

Observe that if the points R(xzg), R(x1), R(x2) are not all distinct (which happens
precisely when x; = +x; for some i # j), the simplex o is degenerated and hence
has zero area. Let us thus assume that this is not the case. Set

DO = det(yvz)a Dl = det(z,x), D2 = det(x,y),

and note that the D;’s are all nonzero. Define another straight singular simplex

7 : A% —Pos, as
o = O’(R(Dozo), R(Dlllfl), R(DQ:EQ))

Since R(D;z;) = D?R(x;), for i = 0,1,2, we are in the situation of Lemma 1, so

that
[ =7 = [=w.

The latter integral is, by Theorem 4 equal to

dtidts
det(R(D D D '
et(R(Dyzo), R(D121), R 2$2))/A2 det(@(to, t1, 2))3/2

On the one hand, we now get from Lemma 3 that

det(R(Dozo), R(D121), R(Dax2)) =

= det(D()SIio, Dlxl) det(Dlxl, DQ!EQ) det(Dng, DQIE(])
= (DoD1Ds)?.

On the other hand, we have, with the help of Lemma 2, the following expression
for the denominator of the integrand:

det(&(to, t1, tg))3/2 = det(toR(D()Q?o) + t1R(D1$1) + tQR(DQ.Z‘Q))3/2

= (tot1 det(Doxo, D171)? + tota det(Doxg, Daxa, ) + tita det(Dyx1, Daxa)?)3/?
= |D0D1D2|3 (toty + tota + t1te)3/2.

Thus, we are now reduced to the simple expression

/71'*(0)) _ (DOD1D2)3/ dtldtg
o |DoDy Dy |* Jaz (tots + tota + tits)3/?

/ dtydts
Az (tot1 + tota + tita)3/2

Observe that the latter integral can be computed and is in fact equal to 27. (The
form w is only up to a constant the Riemannian volume form corresponding to the
hyperbolic metric.)

7. The case n = 3

We are now ready to prove Theorem 3, that is, that the form w" = 7*(w)|postr
is uniformly bounded when integrated on straight ideal simplices of Pos§ with rank
1 vertices. The proof consists of a succession of reductions.
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First reduction. We show that it is enough to bound those straight simplices
with rank 1 vertices o(R(z1),..., R(zs)) for which three among the six vectors
z1,...,x¢ of R? span a 2-dimensional subspace. Thus, we will prove that Theo-
rem 3 is a consequence of the following proposition:

PROPOSITION 4. There exists a positive constant K such that for every nonzero
vectors x1, T2, T3, Y1, Y2, Y3 n R> such that x1,x2,23 span a 2-dimensional vector
space the inequality

/ m™(w) <K
o(R(z1),R(z2),R(xs),R(y1), R(y2), R(y3))

holds.

To see how Proposition 4 implies Theorem 3, let =1, ..., x4 be arbitrary vectors
of R3. If there exists 1 < i # j < 6 such that z; = +x;, then R(z;) = R(z;) and the
simplex o(R(x1), ..., R(x¢)) is degenerated so that its volume is zero. Let us thus
assume that this is not the case, so that the vector spaces (x1,z2) and (x3,z4) are
2-dimensional. Being subspaces of R3, their intersection is at least 1-dimensional.
Let z be a point of norm 1 on the intersection of the spaces (x1,z2) and (x3,x4).
By the cocycle relation, we have

6 —_—
Vol(o(R(z1), ..., R(z6)) = 2:(—1)“r1\/'01(0(17%(m())7 R(x1), ..., R(x;), ..., R(xs)).-

i=1

We claim that each of the simplex appearing in the right hand side of the equality
is a as in Proposition 4. Indeed, if 7 is equal to 1 or 2, then we have that xg, x3, 24
span a 2-dimensional subspace, and if i is greater or equal to 3, then xg, x1, x2 do.
Thus, the volume of an arbitrary simplex with rank 1 boundary points is bounded
by 6 times the maximal volume of a special simplex, so that the constant C of
Theorem 3 can be taken to be equal to 6 K, where K is the constant of Proposition
4.

The advantage of considering this type of simplices is in the simple expression
which we have to express the determinant of their vertices, as shown in the next
proposition.

PROPOSITION 5. Let x', 22,23 € R? be spanning a 2-dimensional vector space
and y',y?,y> € R? be arbitrary vectors. Then

det(R(xl), R(xz)v R(xg)a R(y1)7 R(y2)7 R(yg)) =
= det(a', 2%, y%) det(a', y*, 2%) det(y', 2%, %) det(y', 4, y°).
PRrROOF. We start by proving the proposition in the particular case when
z! =€, 2% = ey and y® = e3.

Since 23 belongs to the plane generated by x' and 22, its third coordinate must
vanish, so that it takes the form
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Also, we denote by ! the j-th coordinate of y*, so that
ui
y=1 v |
Y3
for i = 1,2,3. The matrix (R(z!), R(z?), R(z?), R(y"), R(y?), R(y®)) now takes the

explicit form

1 0 a3z3
0 0 zia3 *
0 1 a3a3
Yivs YiY3  Yivs
0 Y3 YSY5 Y3y

Ysys VY3 Y3V
Its determinant is clearly equal to the product of the determinants of the two 3 by
3 matrices on the diagonal, that is,

1 0 2343 yiy% ygyé viys s L s
det [ 0 0 afad |det| ways w3y w3y | = asatysysysdet(y’,v°,y°).
0 1 axdal Y3z Y3Y3 Y33

Since det(x!,22,y3) = 1 and y3 = 1, it thus remain to prove that
det(xt,y?, 2?) det(y', 22, 2°) = a3atysys.

But this is readily computed: We have

1oy af
det(z',y?,2%) =det | 0 w3 23 | =—yie3
0 y3 0
and
yp 0 a3
det(y', 2 2%) =det | y3 1 23 | = —yizd.
y; 0 0

Let now the z'’s and the y*’s be arbitrary vectors of R? as in the hypothesis
of the proposition. If the vectors z',z?,y> were not linearly independent, the
face generated by R(z'), R(2?), R(z®) and R(y?®) of the simplex spanned by the
R(z%)’s and R(y')’s would be contained in a 2-dimensional subspace (isomorphic
to the trace model of the symmetric space SLaR/SO(2)) of the boundary of the
symmetric space. But a face generated by 4 points is degenerated if its dimension
is strictly smaller than 3. Thus, the determinant of the R(z%)’s and R(y")’s has to
vanish. As for the right hand side of the equality, we have det(z!, 22, y3) = 0.

Let us now assume that the vectors z', z2,y3 are linearly independent. There
exists a unique element g in GL3R such that ! = ge;, 22 = ge, and y3 = ges.
Define 7¢ = g~ '2¢ and §* = g~ '¢¢, for i = 1,2,3. In view of equality (2.1) of
Section 2, we have

det(R(z"), R(z*), R(z%), R(y"), R(y*), R(y°)) =
= det(g)" det(R(@"), R(z%), R(Z°), R(¥"), R(5*), R(¥*))-



SIMPLICIAL VOLUME OF SPACES COVERED BY SL3R/SO(3) 15

By our above computations, the latter expression is equal to

det(g)* det(z", 7%, %) det(z', 5, 7°) det(y", 7, 7°) det(y", 9%, §°) =
= det(a', 2%, y%) det(z', y%, %) det(y', 2%, 2%) det(y', y°, y°),
and the proposition is proven. ([
REMARK 1. For arbitrary vectors x', 2%, 23y, 4%,y in R3, we can more gen-
erally prove that
det(R(z"), R(2%), R(«*), R(y"), R(y*), R(y*)) =

= det(2', 22, ) det(at, 92, %) det(y*, 2%, 2®) det(y', y?, 4*)
—det(y', y?, 2®) det(y*, 22, 3)det( Ly yP) det(a!, 22, 2?),

which clearly implies Proposition 5 since in this case det(x!, x2,23) = 0.

Second reduction. Let x1,x2, 3 in S? be spanning a 2-dimensional subspace of
R3 and 1, y2,ys be arbitrary points in S2. Let € be a positive number, typically
small. We claim that, if the straight simplex with vertices R(x;) and R(y;) is
nondegenerated, then, upon interchanging xo with z3 and replacing y; by —y;,
there exists g in SL3R such that

27 _ 27
1 1 cos g 1 sin J
——gr1=e€1, ————gr2= [ sing |, ———gr3= cos 5 |,
Toal, Tgwall, ] Tgasll, 3
and furthermore
gy1||2 2

for i = 1,2,3. To see that, start by sending the plane generated by x1, 2, z3 onto
the plane (e1,e2) and use the transitivity of SLoR on triple of distinct points of
P'R to achieve the first condition. Then act with a diagonal matrix with diagonal
entries A~1, A™1, A2, where ) is big enough for the second condition to be achieved.
We have now shown that Proposition 4 follows from Proposition 6 below. Note
that the constants K appearing in both propositions can be taken to be equal.

PROPOSITION 6. There exists a positive constant K such that if

1 cos %” —sin 27”
r1=\| 0], x2= sin %” , T3 = cos 27” ,
0 0 0

and y1,y2,y3 are vectors of R3 satisfying

gYyi —

H gyl 2

fori1=1,23, then

o(R(z1),R(z2),R(w3), R(y1), R(y2), R(y3))
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Proof of Proposition 6. Let x1, x2, x3 and y1, y2, y3 be as in the proposition. To
simplify the notation, set

DO - det(yla Y2, y3)a

Dy = det(y1, 2, 73),

D2 = det(xh Y2, xB)v

D3 = det(z1, 22, y3).

Observe that if the simplex is nondegenerated, then the D;’s are nonzero. Let us
assume that this is the case and let T, 72,73 and ¥, ¥, Y3 be the following nonzero
vectors of R3:

71 = |DoD1|"? &1, To = |DoDs|"? 22, T3 =|DoDs|"? 3,
Uy = |DaDs|"?y1, Ty = [DiDs|"?ya, s = |DiDo|"?ys.

Let 0 and & be the two straight simplices, 0,7 : A® — Poss, defined respectively
as

o = o(R(x1), R(x2), R(z3), R(y1), R(y2), R(y3))
and

o= O—(R(fl)a R(EQ)a R(EB)a R(?l)a R(?Q)v R(?:&))

By Lemma 1 we have
/wtr = / ™ (w) = /7r*(w)7

and the latter integral can be, by Theorem 4, rewritten as

det(R(z). R(@2), B(E). Ry R5o) R) [ g —s

where 7 = dt| A ... A dts.

Clearly, it is now enough to bound the above expression when the integral is
taken over an arbitrary simplex of the first barycentric subdivision of A%. Let thus
=< be an arbitrary order on the set {0, ...,5} and let

A% = {(tg,...,ts) € A® | t; < t; whenever i < j}

be the corresponding subsimplex of A®. For obvious symmetry reasons, it will be
easier to write the coordinates of a point in A® as (71, 72,73, 51, 52, 3). On Ai7 we
have

Tiy S Tip < Tig and Sj1 > Sja > Sjas
for some iy, ji such that {i1,i2,93} = {j1,42,43} = {1,2,3}. Let A be the permu-
tation of {1,2,3} sending iy to ji, for k =1,2,3.

Before going any further, we need some preliminary easy estimates: It is clear
that because, for any 1 < i # j < 3, the absolute value of the determinant
det(z;, x5, e3) is equal to V/3/2, it follows from the hypothesis of the proposition,
that

V3/2 — e < |det(xs, 75, yx)| < V3/2 +e,

for every 1 <1i,j,k < k with i # j. In particular,
(7.1) V3/2 —e <|Di|, | D, |Ds| < V3/2 +e.
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Using this estimates, we can further compute the inequalities:
det(71,92,75)° = Di D3 D3 det(y1, y2,y3)* = (DoD1D2D3)?
(7.2) > D2 (\/5/2 = 5)6 :
and for 1 <4, j, k <3 with i # j,
(7.3) det(Ts, T;,7,)? > DED;D; (ﬁ/z - 5)2det(xi,xj,yk)2 > D2 (\/5/2 - 6)6.

Recall that we are left with finding a bound for
(7.4)

det(R(E). R(z). Rm:). B0). R RTy) [ | g

T

where 7 is now the differential 5-form on A® consisting of the wedge of the dif-
ferentials of all but one coordinate (which is well defined since the sum of the
coordinates is equal to a constant). On the one hand, we now see from Proposition
5 and Equation (7.1) that

det(R(fl)v R(EQ)v R(fi’))a R(yl)a R(y2)7 R(?S)) -

= det<yl7y2?y3) det(fl7§2ay3) det<£1,y2aj3) det<y17§2; 53)
= (DoDy D2y D3)* < D} (V3/2+¢)

On the other hand, Lemma 2 allows us to express det(a(ry1, 72,73, 51, 52,53)) as a
sum of expressions of the form ¢tots det(z1, 22, 23)%, where {t1,ta,t3} C {ry, 72,73,
s1, 82,83} and the z;’s are the corresponding vectors among the T;’s and ﬂj’s. As
all the summands are positive, restricting to a subsum we obtain the majoration

det(a(r1,72,73,51, 52,53)) >
> 515953 det (71, Y2, J3)? + sa)r2rs det(Yy ), T2, T3)?
+T1Sx(2)T3 det(fl, y)\(Q),f;g)z + r1T25)(3) det(z1, T, %(3))2
6
> D} (\/5/2 - s) (313253 + sx1)rar3 + r1SA(2)T3 + 7“17’28,\(3)) ,

where the last inequalities follows from (7.2) and (7.3). It remains to plug into (7.4)
those two last inequalities so as to obtain the bound

1
V3/2+e T
V3/2 —¢ 5 2
A% (815283 + Sx(1)T2T'3 + T1Sx(2)T3 + T1725x(3))

The theorem will now follow from the next lemma, where we show that the
latter integral (which clearly is independent of the starting points z; and y;) con-
verges. Note that this integral only converges for specific orders on the vertices
(we could not have 71 and sy(;) as the two smallest coordinates for example): This
is why we first chose an order and then used the appropriate majoration on the
denominator of our integral.
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LEMMA 4. Let A5 be such that for (r1,r9,73, 81,52, 3) in A5, the inequalities
r1 > 19 > 13 and s1 < so < s3 hold. Then the integral

/0 S182S8 +$7 1 +7 Sa7 +) T2S
2
;(122 17273 15273 123)

converges.
PrOOF. We begin with an easy assertion.

CrLaM 1. For any positive real numbers oy, B; satisfying o, 8; > 2/3 and o; +
Bi =2, fori=1,2,3, we have

2
(s18283 + s17rors + r182r3 + T1Tres83)” > Tflr?r??’s%s?sfl.

PRrOOF OF CrLAIM. We start by showing that whenever {i,j, k} = {1,2, 3}, we
have

1/2 1/2
518283 + 817213 + 118273 + r1resy > max{s;(s;sk7;rk) / 73 (858KT5T8) / }.

To see that, observe that by symmetry, we can without loss of generality assume
that i =1, j = 2 and k = 3. Since all the summands of the right hand side of the
inequality are positive, we clearly have

518983 + S17or3 + T1S2T3 + 111283 > max{513233 + 8171913,718273 + r1r233}.

From the inequality between arithmetic and geometric means we further have

51 (5253 + ror3) > s1(s2537973)"/% and ry (a7 + r253) > 71 (s2537973) 2

)

as desired. o
Let now @; and (3; be arbitrary positive real numbers, for ¢ = 1,2,3. From the
above inequalities, we compute

RN P ( ai/2 B1/2

sfl (ror3sass)

) (@+81) /2,

(515283 + s17a13 + 115273 + r1T283) T9T35283)

T B
=rts] (rorgsass

Similarly, we obtain the two inequalities

az+B2 > raz ﬁz( )(TQ+@)/2

(818283 + 817273 + 118273 + r17283)" 1735153

(515283 + s179T3 + 118273 + T1r253)a3+ﬁ3 > 3ol (r1r28182)(073+63)/2.

For a;, 8;’s as in the Claim, we set @; = a; — 2/3>0and ; = 3 —2/3 > 0.
Note that for each i, we have a7 + §; = 2/3. We can now apply each of the three
above inequalities and we obtain

2
(s18283 + S172T3 + 118273 + T11283)" >

> (7"1&715?1(7“27“33253) /3> ( oz 62(7’17"38183)1/3) (7’?0)738?73(7“17"28182)1/3>

1,002, (3 53 62 ﬂl
=Ty Ty T3°83° 89787,

as claimed. O
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We start the proof of the lemma by a preliminary case, to illustrate our strategy.
Suppose the defining order < of A% would give

Ty >To>T3 > 83 2> 82 > S1.
Then we apply Claim 1 to a3 =5/4,31 = 3/4 and ag = B2 = a3 = 3 = 1, so that

2 5/4 3/4
(s18283 + s17rors + r18ar3 + T1res3)” > 7’1/ 7’21"3535251/ .

Define ¢ : A5 — A2 to be the natural bijection mapping the order < to the
(anti-)natural order < on the indices of (tg, ..., t5), so that

©(r1,72,73, 83, 52,51) = (o, t1,t2, 13,14, t5).
(In particular, ¢; > t; whenever ¢ < j.) The integral of the lemma can now be
rewritten as
/ dty - ... dts
as £ttty st
and is easily estimated. Observe that the integral consists of integrating the vari-
ables t5 to t; with for each ¢;, for ¢« = 2, ..., 5, the integration bounds 0 to ¢;_; and
0 to 1/2 for ¢ = 1. Note also that t; > 1/6. Let us now compute a bound for this
integral:
dtl '...'dt5 <65/4 dtl '...'dt5 _65/4 t1/4dtl '...'dt4
s /4, L . 3/4 = s 3/4 T o totat
A tO t1t2t3t4t5 AY t1t2t3t4t5 AL 1020304
_ 65/4/ t1/4dt1dt2dt3 _ 65/4/ t1/4dt1dt2
As O titots A2 2 tity

2
<

12 dt 1\ /4
:65/4/ t}/4t71 —6%/4. 4. (2> .
0 1

Let now < be an arbitrary order defining A% and suppose that for (r1,ra, 73,
S1, 82, 83) in Ai, the inequalities 71 > r9 > r3 and s; < so < s3 hold. It is clear
that either r; or s3 is maximal and either r3 or s; is minimal. We distinguish four
cases:
(1) If vy is maximal, we set oy = 5/4 and 8; = 3/4.
(a) If s1 is minimal, we further define ag = B3 = a3 = #3 = 1. From
Claim 1, we get

3
<

2 5/4 3/4
(s18283 + s17rors + r182r3 + T17r283)” > 7'1/ T27"3838281/ .

If o : A5 — A2 is the natural map preserving the respective orders,
we see that the integral of the lemma becomes precisely the same
integral as in the preliminary case.

(b) If r3 is minimal, we instead put ag = 3/4, 83 = 5/4 and as = 35 = 1.
From Claim 1, we now get

2 5/4  3/4 5/4  3/4
(818283 + S179r3 + r182r3 + r171983)" > 7"1/ r2r3/ 53/ 3231/ .

Again, let ¢ : A5, — AS be the natural map preserving the respective
orders. The denominator of the resulting integral is now
3/4

5 9

o/ R )
where two of the 7;’s are equal to 1, one is equal to 5/4 and another
is equal to 3/4. Furthermore, if 7, = 5/4 and ~; = 3/4 then i < j
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(which comes from that s3 > s1). Explicitly, this means that the
denominator is one of

S L 2 0 (N S 0 T S S i Y S

to/ S Mgt A3 D S 3 ) A
But as in the preliminary case, one can compute a bound (which is
the same) for the corresponding integrals.
(2) If s3 is maximal, we set g = 3/4 and B3 = 5/4.
(a) If s1 is minimal, we further define oy = 5/4, 81 = 3/4 and ag = By =
1. We have, from Claim 1, that

2 5/4  3/4 5/4  3/4
(s18283 + s17ror3 + 1182713 + T1Tre83)” > 7’1/ T2r3/ 53/ 3251/ .

This gives exactly the same integrals as in case 1(b).
(b) If 75 is minimal, we instead put a; = 81 = ag = B2 = 1. The
inequality obtained from Claim 1 now takes the form
(s15283 + s1rars + r15273 + r1r283)2 > r1r2r§/4sg/45251.
Once again, we are back to computing the integral of the preliminary
case.

O

REMARK 2. The same method shows that certain tdeal simplices in the higher
dimensional symmetric spaces Pos, n > 4, have a uniformly bounded volume.
Those simplices are those for which up to a renumbering of their vertices, for every
i between 2 and n — 1, the i(i + 1)/2 first vertices lie in a copy of Pos!" in OPos!".

Thus, all but the first step of our proof for n = 3 generalize to higher dimensions.

8. On Savage’s proof

In this last section, we will briefly explain the proof presented in [Sa82] of the
positivity of the simplicial volume of compact manifolds covered by SL,R/SO(n)
is false. For more details, we refer the reader to [Bu05], where we go through
Savage’s computation step by step. As mentioned in the introduction, the mistake
in [Sa82] is that it is not realized that the considered barycentric subdivisions are
not invariant under isometries of the symmetric space.

Savage starts with arbitrary rank 1 matrices Py, ..., Py in OPos? and aims at
bounding the volume of the straight singular simplex

o: Al —  Pos!"
d
(to,...,td) [— Zi:O tiPZ‘.

By symmetry, it is enough to bound the volume of ¢ restricted to the simplex Ag
of the first barycentric subdivision A%:

Ad = {(to, "'7td) | tO > .. > td}

Such a bound would imply the positivity of the simplicial volume.

Using the high transitivity of SL,R on rank 1 boundary points, Savage puts
his simplex in a special position, as we extract in the next Theorem. It is simple to
prove and we refer the reader to either [Sa82], beginning of Section 7, or [Bu05,
Theorem 2].
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THEOREM 5. Let Py, ..., Py be rank 1 matrices in OPos! generating a nonde-
generated simplex. Then there exists g in SL,R and integers 0 = 31 < ... < B, <d
satisfying
(i—1)

i <
B <2

such that
py (Ps,) = Ei = e;ei,
and furthermore Pi, ..., P, _1 lie in a copy of Post", in OPost", for every i in

{1,...,n}.

The group element g in SL,,R appearing in Theorem 5 induces an isometry pgr
of the symmetric space, which we denote by h, in accordance with the notation in
[Sa82]. The simplex that Savage now wants to bound, is the restriction to Ad of
the composition of o with h - and this would of course imply the desired theorem
- but what he actually bounds is the restriction to AZ of the straight simplex
f=0(h(Py),...,h(Pg)). And in general, not only

f|Ag # h°U|Ag7
but more problematically, f(Ag) # h o o(Ad) and hence

/ wtr 7& / wtr .
(a9 hoa (AF)

(Note that if we had not restricted to the first barycentric subdivision, but instead
considered f and ¢ on the whole simplex A%, then of course we would still have
that f # h o o but the integral would agree, since the image of f and h o o would
in this case be equal.)

This mistake, once observed, is easy to point out. Indeed, a volume bound for
hoo|ag is claimed in Theorem 7.4 of [Sa82], but the proven bound is a volume
bound for f|aa. In passing, Savage seems to have assumed that f|r¢ = h o o|aq.
Before we can state the unproven Theorem 7.4, and its true proven version, we need
some more notation. Choose w; on the unit sphere of R™ such that h(P;) = w;w},
for i =0,...,d. Let (.,.) be the standard scalar product on R"™. Choose a1, ..., o,
between 0 and d such that (w,,,e,) has maximal absolute value. Note that by
construction, 61 < ... < OBp_1 < ay, fori=1,..,n.

Unproven Theorem 7.4 of [Sa82]. Notation as above. Let T be a subset of the
image of hoo|xs and let Ap C Ag be its preimage Ap = (hoo) " (T). Then
there exists a constant C(n) such that

v dty...dtg
1 el [ T
= A (i) (Sita, (wasen)®) )

THE WRONG PROOF. The first equation of the proof - which is correct - just
relies on the fact that the volume form is, up to a constant denoted by Cy(n), the
form w' computed in either Theorem 4.3 in [Sa82] or Proposition 3 here. Thus
one has

Vol(T') < C(n)

Co(n)
Vol(T') = / T
T (det(S))
The mistake is now that Savage applies the change of variable formula to the map
f: Ad —Pos'T, while he replaces the integrand, not by f~(T) as he should, but

n’

dxi A ... Ndzg.
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by Ap = (hoo)™" (T). In this way, he concludes, using his Theorem 5.14 (Lemma
2 here) that

Co(n)dt1 et dtd
Vol(T) :/ (nt1)/2
Ar (det(f(tla sy td)))
/ Co(n)dt1 t e -dtd
Ar (Sj<zg, (0 ;) det(wy, oy, ) D2
while he should have concluded that

Co(n)dt1 LR 'dtd
Vol(T) = /71 . ey
1) (Bji<.<jn (H7gty,) det(wyy -y wy, )

The rest of the computations are correct, so that the true statement is contained
in the next theorem. (]

True Theorem 7.4. Notation as above. Let T' be a subset of the image of hoo
and let Ap C Ag be its preimage Ap = (f) "' (T). Then there exists a constant
C(n) such that

n

H <wom en>

i=1

Vol(T') < C(n)

/ dty...dtq |
Ar ((Hz;hﬂk) (E?:;Ltai <wa“6n>2))(n+1)/g

After pages of unnecessarily complicated computations, Savage concludes that
the integrand appearing in (both versions of) Theorem 7.4 is uniformly bounded
when integrated on the simplex Ad. And of course, this now only implies that the
simplex f(A¢) has uniformly bounded volume, but not (ko o) (Ag) as is claimed.

We do not see any way to save the proof in [Sa82]: Theorem 7.4 is the starting
point for the only volume bound given in [Sa82] and it can not be used to prove
that the volume of h o o (and hence o) is bounded, since in fact it diverges when
integrated on the whole simplex A<
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