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Abstract. We give new lower bounds for the simplicial volume of fiber bun-
dles, when the fiber is a surface, improving the lower bounds of Hoster and

Kotschick [Proc. of the AMS Vol 129 Nr 4 (2001)]. Our bounds are new also

in the product case. Furthermore, for fiber bundles E with fiber F over a base
space B we show that the simplicial volume of E is greater or equal to the

simplicial volume of the product F ×B when E has dimension smaller or equal

to 4.

1. Introduction

Let M be a closed oriented m-dimensional manifold. In his seminal paper [3],
Gromov introduced the homotopy invariant simplicial volume of M for its many
connections to Riemannian geometry. Recall that it is defined as the infimum of
the L1-seminorm of the real valued fundamental class [M ] ∈ Hm(M,R) of M , that
is

‖M‖ = inf {Σ |aσ| : [M ] is represented by Σaσσ} .

It is easy to see that manifolds admitting self maps of degree greater or equal to
2 have to have vanishing simplicial volume. Thus the simplicial volume of spheres
and tori is zero. More generally, manifolds having amenable fundamental group
have vanishing simplicial volume. The first nontrivial examples are given by sur-
faces Σg of genus g ≥ 2 which have ‖Σg‖ = 2 |χ(Σg)| = 4(g − 1). If Σg is en-
dowed with a hyperbolic structure, then it follows that the simplicial volume is
proportional to the volume of Σg. This phenomenon generalizes to all Riemannian
manifolds, and is known as Gromov-Thurston’s Proportionality Principle [3, 7].
For hyperbolic manifolds, the proportionality constant is equal to the supremum of
the volumes of geodesic simplices in the hyperbolic space. In particular, since this
constant is finite, this shows that the volume of hyperbolic manifolds is a homo-
topy invariant, generalizing also to odd dimensions this fundamental consequence
of Gauss-Bonnet’s Theorem.

In this note, we will investigate the behavior of this classical invariant under
natural operations such as products and fiber bundles. In particular, we will give
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new lower bounds for the value of the simplicial volume of surface bundles, improv-
ing the known bounds of Hoster and Kotschick [4]. The present bounds are new
also in the product case.

1.1. Products. Let M,N be closed oriented manifolds of respective dimen-
sions m,n. The simplicial volume of the product M × N has lower and upper
bounds as multiples of the product of the simplicial volumes:

(1.1) ‖M‖ ‖N‖ ≤ ‖M ×N‖ ≤
(
m+ n
m

)
‖M‖ ‖N‖ .

This was first observed by Gromov [3]. We will recall below how to use bounded
cohomology to prove the lower inequality. The upper inequality relies on the fact
that the product ∆m × ∆n of the standard m-simplex ∆m and the standard n-
simplex ∆n can be canonically triangulated in (m+ n)!/(m!n!) simplices.

The inequalities in (1.1) are interesting since they show that the simplicial
volume of a product is zero if and only if the simplicial volume of one of the factor
is zero, and it is often important to understand if the simplicial volume vanishes or
not. However, the given bounds are most probably never sharp when they are not
zero. For example, it is shown in [2] that if M and N are surfaces, then

(1.2) ‖M ×N‖ =
3
2
‖M‖ ‖N‖ .

When one of the factor is a surface, we improve the lower inequality in (1.1)
by an asymptotic factor of 2:

Theorem 1.1. Let F be an oriented closed surface, and B an oriented closed
manifold of dimension p− 2. Then

‖F ×N‖ ≥


2 (p−1)

p ‖F‖ ‖N‖ if p is even,

2 p
p+1 ‖F‖ ‖N‖ if p is odd.

Those lower bounds are sharp for p = 4, but again, it is very likely that they
are not sharp in all other nontrivial cases. For example, we could show that the
simplicial volume of the product of three surfaces is greater or equal to 45/11 times
the product of the simplicial volume of the factors. For the product of four and
five surfaces, Laurent Bartholdi found the amusing factors 105/4 and 14175/227
respectively for the lower bounds (computed by computer).

Theorem 1.1 will follow from Theorem 1.2 below.

1.2. Fiber bundles. For fiber bundles, one cannot expect upper bounds as
in (1.1) in general, since there exists 3-dimensional manifolds M admitting a hyper-
bolic structure (hence with ‖M‖ 6= 0) which fiber over the circle (and

∥∥S1
∥∥ = 0).

For the lower bound, Hoster and Kotschick showed in [4] that if E is an oriented
surface bundle with fiber an oriented surface F and base space B, then

‖E‖ ≥ ‖F‖ ‖B‖ .

For other fiber spaces, no lower bound seems to be known. We improve here the
lower bounds of Hoster and Kotschick by an asymptotic factor of 2:
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Theorem 1.2. Let E be an oriented surface bundle with fiber an oriented sur-
face F over an oriented closed manifold B of dimension p− 2. Then

‖E‖ ≥


2 (p−1)

p ‖F‖ ‖N‖ if p is even,

2 p
p+1 ‖F‖ ‖N‖ if p is odd.

Corollary 1.3. Let E be a fiber bundle with fiber F over a closed oriented
manifold B. If dim(E) ≤ 4, then

‖E‖ ≥ ‖F ×B‖ .

The only nontrivial case of the corollary is when dim(F ) = dim(B) = 2, which
immediately follows from Theorem 1.2 and Formula (1.2).

Since the simplicial volume tends to be bigger for more complicated manifolds,
it seems reasonable to expect that Corollary 1.3 further holds without any restric-
tion on the dimension of E.

We already saw an example of a fiber bundle for which ‖B‖ = 0 but ‖E‖ 6= 0,
namely a 3-dimensional manifold E fibering over the circle. To the question whether
the same can happen for the fiber, that is, if there can exist bundles E with ‖E‖ 6= 0,
for which the fiber satisfies ‖F‖ = 0, we have only the partial negative answer:

Lemma 1.4. Suppose that E is a fiber bundle for which the fundamental group
of the fiber is amenable. Then ‖E‖ = 0.

This is a straightforward consequence of a corollary of Gromov [3, Section 3.1] of
the difficult Vanishing Theorem. Indeed, it immediately follows from the fact that if
a closed manifold X can be mapped into a manifold Y with dim(Y ) < dim(X) such
that the preimage of every point of Y has an “amenable” (see [3] for a definition)
neighborhood in X, then ‖X‖ = 0.

The proof of Theorem 1.2 is given in Section 3.

2. Bounded cohomology and a cocycle norm inequality

Simplicial volumes are in practice mostly computed through the dual L∞-
seminorm on real valued singular (or group) cohomology. The dual L∞-norm of a
singular cochain c is defined as

‖c‖∞ = sup {|c(σ)| : σ : ∆q →M is a singular simplex} .
The cohomology of the subcocomplex of bounded singular cochains is by definition
the bounded cohomology H∗b (M) of M . The inclusion of cocomplexes induces a
comparison map c : H∗b (M) → H∗(M) on the cohomology groups. The L∞-norm
on the space of cochains induces seminorms on H∗b (M) and on H∗(M) (where we
allow the value +∞ on the latter cohomology group): The seminorm of a coho-
mology class β is defined as the infimum of the L∞-norm of the singular cocycles
representing β. It is a straightforward consequence of Hahn-Banach Theorem (see
[3] or [1]) that if βM ∈ Hm(M) is dual to the (real valued) fundamental cycle
[M ] ∈ Hm(M), then

(2.1) ‖M‖ =
1

‖βM‖∞
.

Similarly, the sup norm can be considered on the space of π1(M)-invariant
cochains c : π1(M)q+1 → R, and the cohomology of the subcocomplex of bounded
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cochains gives the bounded group cohomology H∗b (π1(M)). Again, the inclusion
of cocomplexes induces a comparison map c : H∗b (π1(M)) → H∗(π1(M)), and
seminorms are defined as above on the group cohomology.

There are natural maps H∗(π1(M)) → H∗(M) and H∗b (π1(M)) → H∗b (M).
While the former map is surely not an isomorphism in general, it is a remarkable the-
orem of Gromov [3], that the latter map is in fact an isometric isomorphism. Thus, if
‖M‖ > 0, then βM ∈ Hm(M) is in the image ofHm

b (π1(M)) ∼= Hm
b (M)→ Hm(M).

In particular the seminorm ‖βM‖∞ is equal to the infimum of the sup norm of all
bounded π1(M)-invariant group cocycles b : π1(M)m+1 → R representing a coho-
mology class being sent to βM . We refer the reader to [3] for more details.

More generally, the L∞-norm is also defined for arbitrary q-cochains c : Y q+1 →
R as the supremum of the absolute value of the evaluation of c on (q + 1)-tuples
of points in Y q+1. A q-cochain is said to be a q-cocycle if the (q + 2)-cochain δc
vanishes, where δ denotes the homogeneous coboundary operator defined as

δc(y0, ..., yq+1) =
q+1∑
i=0

(−1)ic(y0, ...., ŷi, ..., yq+1),

for (q+2)-tuples (y0, ..., yq+1) ∈ Y q+2. The cup product of a p-cochain b : Y p+1 → R
and a q-cochain c : Y q+1 → R is defined to be the (p+ q)-cochian given as

b ∪ c(y0, ..., yp+q) = b(y0, ..., yp)c(yp, ..., yp+q),

for (q + p+ 1)-tuples (y0, ..., yp+q) ∈ Y p+q+1. Note the obvious upper bound

‖b ∪ c‖∞ ≤ ‖b‖∞ ‖c‖∞
inducing the lower bound in (1.1) for the simplicial volume of products. Stronger
bounds can be obtained by alternating the cup product. If c : Y q+1 → R is a
q-cochain, define a cochain Alt(c) : Y q+1 → R by alternating c, that is,

Alt(c)(y0, ...., yq) =
1

(q + 1)!

∑
σ∈Sq+1

sign(σ)c(yσ(0), ..., yσ(q)).

The orientation cocycle on the circle S1 is defined as follows. Choose an orien-
tation on S1 and define Or : (S1)3 → R as

Or(x0, x1, x2) =


+1 if x0, x1, x2 are cyclically positively oriented,
−1 if x0, x1, x2 are cyclically negatively oriented,
0 if the points x0, x1, x2 are not all distinct.

It is straightforward to check that Or is an alternating cocycle.

Proposition 2.1. Let c : Y p−1 → R be a (p− 2)-cocycle on Y . Then

‖Alt(Or ∪ c)‖∞ ≤


k

2(k−1) ‖c‖∞ if k is even,

k+1
2k ‖c‖∞ if k is odd.

Proof. Since Alt(Or ∪ c) = Alt(Or ∪ Alt(c)) and ‖Alt(c)‖∞ ≤ ‖c‖∞, we can
without loss of generality assume that c is alternating. Let (z0, ..., zp) be a (k+ 1)-
tuple of points zi = (xi, yi) ∈ S1 × Y . We show that the evaluation of Alt(Or ∪ c)
on (z0, ..., zp) is bounded as in the statement of the proposition.

If there exists xi = xj with i 6= j, define x−i , respectively x+
i , to be points on

S1, obtained from xi by moving xi in the negative, respectively positive direction,
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and close enough to xi so that no other point xk, for 0 ≤ k ≤ p, k 6= i, lies between
xi and x−i , or xi and x+

i . (Although it could be that xk = xi for some k 6= i.) Note
that for all 0 ≤ k, ` ≤ p, we have

Or(xi, xk, x`) =
1
2
[
Or(x−i , xk, x`) + Or(x+

i , xk, x`)
]
.

Thus, setting z−i = (x−i , yi) and z+
i = (x+

i , yi), it follows that the evaluation of
Alt(Or ∪ c) on (z0, ..., zi, ..., zp) is equal to

1
2
[
Alt(Or ∪ c)(z0, ..., z−i , ..., zp) + Alt(Or ∪ c)(z0, ..., , z+

i , ..., zp)
]
.

In particular, the evaluation of Alt(Or∪c) on (z0, ..., zp) is bounded by the maximum
between Alt(Or∪c)(z0, ..., z−i , ..., zp) and Alt(Or∪c)(z0, ..., z+

i , ..., zp). By induction,
we can thus without loss of generality assume that the xi’s are all distincts.

Since Alt(Or∪ c) is alternating, up to permuting the points zi, we can suppose
that the xi are positively cyclically ordered on S1. In other words, Or(xi, xj , xk) =
+1 whenever 0 ≤ i < j < k ≤ p. By definition, we have that the evaluation of
Alt(Or ∪ c) on (z0, ..., zp) is equal to

1
(p+ 1)!

∑
σ∈Sp+1

sign(σ)Or(xσ(0), xσ(1), xσ(2))c(yσ(2), ..., yσ(p)).

Translating the summation by the permutation (0 2), which is of odd order but
will, after permuting xσ(0) and xσ(2), change the sign in Or(xσ(0), xσ(1), xσ(2)), we
see that we can rewrite the sum as

1
(p+ 1)!

∑
σ∈Sp+1

sign(σ)Or(xσ(0), xσ(1), xσ(2))c(yσ(0), yσ(3),..., yσ(p)).

Since every permutation in Sym(p + 1) can be written as the composition of a
permutation of {1, ..., p} and a power of the cycle τ = (0 1 ... p), we decompose the
sum according to its value on σ(0) as

1
p+ 1

p∑
k=0

(−1)k

p!

∑
σ∈Sp

sign(σ)Or(xτk(0), xτkσ(1), xτkσ(2))c(yτk(0), yτkσ(3)..., yτkσ(p)).

We will now show that the summand corresponding to τ = id satisfies the inequality

1
p!

∑
σ∈Sp

sign(σ)Or(x0, xσ(1), xσ(2))c(y0, yσ(3)..., yσ(p)) ≤


p

2(p−1) ‖c‖∞ if p is even,

p+1
2p ‖c‖∞ if p is odd.

and by symmetry, the proposition will follow. As both Or and c are alternating, we
can average only over those permutations for which σ(1) < σ(2) and σ(3) < ... <
σ(p) (the so called (2, p− 2)-shuffles). Writing σ(1) = i and σ(2) = j, we see that
since Or(x0, xi, xj) = +1, the left hand side of the previous inequality becomes

2
p(p− 1)

p−1∑
i=1

(−1)i+1

p∑
j=i+1

(−1)jc(y0, y1, ..., ŷi, ..., ŷj , ..., yp).



6 MICHELLE BUCHER

In view of the cocycle relation for c, we can rewrite the sum over j as

c(y3, ..., ŷi, ..., , yp) +
i−1∑
j=1

(−1)jc(y0, y1, ..., ŷj , ..., ŷi, ..., , yp).

The original sum contains p−i summands, and the latter sum contains i summands,
we thus get less summands if we replace the original sum by the latter one whenever
2i ≤ p. When p = 2q is even, the whole expression will, up to the factor 2/(p(p−1)
hence be a sum of

1 + 2 + ...+ (q − 1) + q + (q − 1) + ...+ 2 + 1 = 2
q(q − 1)

2
+ q = q2 =

p2

4
evaluations of c, giving the claimed upper bound

2
p2/4

p(p− 1)
‖c‖∞ =

p

2(p− 1)
‖c‖∞ .

When p = 2q + 1 is odd, the whole expression will, up to the factor 2/(p(p− 1) be
a sum of

1 + 2 + ...+ (q − 1) + q + q + (q − 1) + ...+ 2 + 1 = 2
(q + 1)q

2
=

(p− 1)(p+ 1)
4

evaluations of c, giving the claimed upper bound

2
(p− 1)(p+ 1)/4

p(p− 1)
‖c‖∞ =

p+ 1
2p
‖c‖∞ .

�

3. Surface bundles: proof of Theorem 1.2

The inequality being trivial if the fiber F is the sphere or the torus, as in that
case ‖F‖ = 0 (and also ‖E‖ = 0 by Lemma 1.4), we can assume that the genus of
F is greater or equal to 2. Also, we suppose that ‖B‖ > 0.

Let e(Tπ) ∈ H2(E) be the Euler class of the vertical bundle

Tπ = {X ∈ TE|π∗(X) = 0}

of the bundle π : E → B. Let βB ∈ Hp−2(B) and βE ∈ Hp(E) denote the duals of
the respective fundamental classes [B] ∈ Hp−2(B) and [E] ∈ Hp(E). as observed
in [4], we have

βE =
1

χ(F )
e(Tπ) ∪ π∗(βB).

It is shown in [6, Proposition 4.1], that e(Tπ) is the image via Hp−2(π1E) →
Hp−2(E) of the pullback by a homomorphism ρ : π1(E) → Homeo+(S1) of the
Euler class in H2(Homeo+(S1)) which can be represented by 1

2Or. The homo-
morphism ρ is obtained by composing the lift of the holonomy π1B → Mg to
π1E →Mg,∗, whereMg andMg,∗ denote the mapping class groups π0(Diff+(Σg))
and π0(Diff+(Σg, b0)) respectively, with the natural homomorphism

Mg,∗ −→ Homeo+(S1).

See [6] for more details.
Since ‖B‖ > 0 it follows that βB is in the image of Hp−2

b (π1(B)) ∼= Hp−2
b (B)→

Hp−2(B). Let b : (π1(B))p−1 → R be an arbitrary bounded cocycle representing a
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cohomology class being mapped to βB . Then the cup product 1/(2χ(F ))ρ∗(Or) ∪
π∗(b) and hence also its alternation

Alt
(

1
2χ(F )

ρ∗(Or) ∪ π∗(b)
)

: π1(E)p+1 −→ R

represent a cohomology class in Hp(π1E) which is mapped to βE . We thus get
from Proposition 2.1 that

‖βE‖∞ ≤
1

2 |χ(F )|
‖ρ∗(Or) ∪ π∗(b)‖∞ ≤


p

2(p−1)

‖b‖∞
‖F‖ if p is even,

p+1
2p

‖b‖∞
‖F‖ if p is odd.

Taking the infimum over all such b’s, we get the same inequality with ‖βB‖∞
instead of ‖b‖∞, and the theorem now follows from that ‖E‖ = 1/ ‖βE‖∞ and
‖B‖ = 1/ ‖βB‖∞.
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