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Abstract
This work is devoted to the study of characteristic classes of flat bundles from the point of view of
bounded cohomology.

Our main result is a new proof of Gromov’s boundedness of primary characteristic classes of
flat bundles which, in contrast to Gromov’s original proof, does not rely on Hironaka’s resolution
of singularities. Moreover, we point out that a representative for these classes can be found which
in fact only takes a finite set of values (as opposed to merely being bounded) on singular simplices.

The conjectural generalization to secondary characteristic classes of flat bundles is discussed. In
particular, we show that the well known conjecture stating that the simplicial volume of all locally
symmetric spaces of noncompact type is strictly positive would follow from the boundedness of the
secondary characteristic classes of flat bundles.

Résumé
Ce travail consiste en une étude des classes caractéristiques de fibrés plats du point de vue de la
cohomologie bornée.

Notre résultat principal est une nouvelle preuve du théorème de Gromov stipulant que les classes
caractéristiques de fibrés plats peuvent être représentées par des cocycles bornés. Notre preuve,
contrairement à celle de Gromov, ne se base pas sur la résolution de singularités de Hironaka. De
plus, nous montrons que ces classes peuvent être représentées par des cocycles ne prenant qu’un
nombre fini de valeurs sur les simplex singuliers.

La généralisation conjecturale aux classes caractéristiques secondaires de fibrés plats est dis-
cutée. En particulier, nous montrons que la fameuse conjecture énonçant que le volume simplicial
d’un espace compact localement symétrique de type non compact est strictement positif découlerait
de la généralisation du théorème de Gromov aux classes charactéristiques secondaires.





Introduction

The first milestone in the history of bounded cohomology may very well be Milnor’s characteri-
zation of flat oriented vector bundles over surfaces in terms of their Euler number ([Mi58]), later
generalized to the unoriented case by Wood ([Wo71]).

Theorem 1 (Milnor-Wood inequality) Let ξ be a SL2R-bundle over a surface Σg of genus
g ≥ 1. The bundle ξ is flat if and only if its Euler class ε(ξ) ∈ H2(Σg) satisfies

|ε(ξ)[Σg]| ≤ g − 1.

This result, or more precisely one of its implications, can in a natural way be put in the context
of singular bounded cohomology. Indeed, the Euler class was proven to be bounded by Ivanov
and Turaev in [IvTu82]. (A cohomology class is said to be bounded, if it can be represented by a
cocycle whose set of values on singular simplices is bounded, or equivalently, if its norm ‖.‖∞ is
finite. Consult the Appendix for further details.)

Theorem 2 If ξ is a flat SLnR-bundle then

‖ε(ξ)‖∞ ≤
1
2n
.

This bound on the Euler class, together with the knowledge of the 1-norm of the fundamental
class of a surface Σg (also called simplicial volume) implies half of the Milnor-Wood inequality, as
pointed out by Ghys in [Ghys87] (see also [Ghys99]). It is a simple consequence of the duality of
the two norms.

In his seminal paper [Gr82], Gromov generalized the boundedness of the Euler class of flat
bundles to all characteristic classes:

Theorem 3 Let G be an algebraic subgroup of GLn(R). Then every characteristic class of flat
G-bundle can be represented by a bounded cocycle.

An immediate corollary is that a topological space with amenable fundamental group does not
possess any non trivial characteristic class of flat G-bundle, where G is, of course, an algebraic
subgroup of GLn(R).

Another consequence is the vanishing of all characteristic of flat G-bundles whenever G is an
amenable algebraic subgroup of GLn(R) admitting a cocompact lattice. This was well known for
compact groups, for it follows from the fact that the Chern-Weil homomorphism is an isomorphism.
For solvable groups, it can already be obtained from the following result of Goldman and Hirsch

vii



viii INTRODUCTION

(see [GoHi81]): Every flat principal G-bundle is virtually trivial (meaning that there exists a finite
covering of the base space, such that the pulled back bundle is trivial).

The hypothesis in the above Theorem of Gromov (Theorem 3) that G be algebraic can not
be removed. Indeed, Goldman gives in [Go81] an example of a flat G-bundle over the 2-torus
with nontrivial characteristic class in degree 2. This class can not be bounded since the bounded
cohomology of the torus is trivial. The group G in question is the quotient of the Heisenberg
group H of upper triangular unipotent 3 by 3 matrices with the normal subgroup generated by
any central element, and the characteristic class in H2(BG) is the obstruction to the existence of
a section of the projection H → G.

We give here a new proof of Gromov’s theorem with the advantage that a representative for
every characteristic class of flat bundle can be found whose set of values on singular simplices is
not only bounded, but furthermore finite. We thus prove:

Theorem 4 Let G be an algebraic subgroup of GLn(R). Then every characteristic class of flat
G-bundle can be represented by a cocycle whose set of value on singular simplices is finite.

The first step of the proof, which is common to both Gromov’s original proof of Theorem 3
and our Theorem 4, is to reduce to the following simplicial version of the statement:

Theorem 5 Let G be an algebraic subgroup of GLn(R) and β ∈ Hq(BG) a characteristic class.
There exists a finite subset I of R such that for every flat G-bundle ξ over a simplicial complex
K, the cohomology class β(ξ) ∈ Hq(|K|) can be represented by a cocycle whose set of values on the
q-simplices of K is contained in I.

Again, the case of the Euler class was already well known: Sullivan proved in [Su76] that the
Euler class of any flat SLn(R)-bundle over a simplicial complex can be represented by a simplicial
cocycle taking values in {−1, 0, 1} and Smillie improved this to {−1/2n, 0, 1/2n} in [Sm81].

Let us point out, that both the proofs of the simplicial version of the theorem and the reduction
to it are not only completely different from Gromov’s but also much more elementary. It is only a
technical artifice to show how one can reduce to the simplicial version of the theorem. The main
difficulty thus really lies in the proof of this simplicial version. Our main tool is a bounded version
of the existence of a finite triangulation of semi-algebraic sets as developed by Benedetti and Risler
in [BeRi90], whereas Gromov needs Hironaka’s deep resolution of singularities.

One possible generalization of Gromov’s Theorem 3 (or more generally Theorem 4) is the
following conjecture:

Conjecture 6 Every secondary characteristic class in H2q−1(BGδ), for q > 1, can be represented
by a bounded cocycle.

In view of Dupont and Kamber’s result that the continuous cohomology of a connected semisim-
ple Lie group with finite center is generated by primary and secondary characteristic classes (see
[DuKa90, Theorem 5.2]), Conjecture 6 immediately implies the following conjecture:

Conjecture 7 Let G be a connected semisimple Lie group. For any n ≥ 2, the comparison map

Hn
c,b(G,R) −→ Hn

c (G,R)

is surjective.



ix

This question was already raised by Monod and further conjectured in the case of SLnC ([Mo01,
Conjecture 9.3.8]). A straightforward consequence of the latter Conjecture is now a well known
conjecture of Gromov:

Conjecture 8 The simplicial volume of any compact locally symmetric space of non compact type
is strictly positive.

This conjecture is known to hold in the real rank one case, for Thurston proved that a uniform
bound on the volume of geodesic simplices in the corresponding symmetric spaces exists, which
implies both the validity of Conjectures 7 and 8 in this case (see [Th78] and [Gr82]). For locally
symmetric spaces covered by SLnR/SO(n), Conjecture 8 was proven by Savage in [Sa82].

Our exposition is structured as follows: In Chapter 1 we review some elementary notions on
principal bundles and classifying space. Simplicial complexes and their basic properties are exposed
in Chapter 2. Primary and secondary characteristic classes are defined in Chapter 3. The case
of the Euler class is examined there in detail, and the results and conjectures presented in this
introduction are elaborated on. Finally in Chapter 4, after defining semi-algebraic sets and giving
their first properties, we furnish the proof of Theorem 4. Note also that in the Appendix, a quick
review on singular bounded cohomology is given.
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Chapter 1

Bundles

1.1 Principal bundles and classifying spaces

1.1.1 Principal bundles

Let G be a topological group. A topological principal G-bundle ξ is a continuous surjective map

P
ξ = ↓ π

X

between two topological spaces P and X together with a right continuous G-action P × G → P
satisfying

• for every x in X, the preimage π−1(x) of x by π is an orbit for the G-action on P ,

• for every x in X, there exists a neighborhood U of x and a G-equivariant homeomorphism
ψ : π−1(U)→ U ×G, where the G-action on the product U ×G is given by the trivial action
on the first factor, and multiplication from the right on the second, such that the diagram

π−1(U)
ψ−−−−→ U ×G

π ↘ ↙ p1

U

commutes. Of course, the map p1 denotes the projection on the first factor. This last
condition is referred to as local triviality and the map ψ is a local trivialization.

The space P is called the total space and X the base space of the topological principal G-bundle
ξ. Assuming that G is a Lie group we define a smooth principal G-bundle to be a topological
principal G-bundle where all the spaces and maps in consideration are moreover assumed to be
smooth, that is, so that the spaces P and X are smooth manifolds, the map π and the G-action
are smooth, and the local trivializations ψ are diffeomorphisms. Note that by smooth we always
mean infinitely differentiable. Whenever it will be clear from the context if we mean topological
or smooth principal G-bundle we will simply speak about principal G-bundle.

1



2 CHAPTER 1. BUNDLES

The right translation Rg by any element g of the group G is defined as the map

Rg : P −→ P
u 7−→ ug.

It is clear that the base space of any G-bundle is homeomorphic to the quotient of the total
space by the action of the group G. Also, if a group G acts freely on a space P , then the quotient
map P → P/G gives rise to a principal G-bundle.

A bundle map between two topological (smooth) principal G-bundles is a continuous (smooth)
G-equivariant map between the two corresponding total spaces. A bundle map obviously induces
a map between the corresponding base spaces as follows: Let ξi = {πi : Pi → Xi}, for i = 0 and
1, be a topological (smooth) principal G-bundle, and let f : P0 → P1 be a bundle map between ξ0
and ξ1. Define a continuous (smooth) map f : X0 → X1 as

f(x) = π1(f(u)),

for every x in X0 and u in π−1
0 (x). As the map f is G-equivariant and the map π1 is G-invariant,

the map f is well defined. By definition, the diagram

P0
f−−−−→ P1yπ0

yπ1

X0
f−−−−→ X1

commutes. We say that the map f covers the map f .
A bundle map is an isomorphism if it admits an inverse. Observe that an isomorphism neces-

sarily covers a homeomorphism of the corresponding base spaces, and conversely, if a bundle map
covers the identity, or more generally a homeomorphism, then it has to be an isomorphism.

The first example of a principal G-bundle is the product bundle

X ×G
↓
X,

where the bundle map is given by the projection on the first factor, and the action of G on the
product X ×G is trivial on X and by right multiplication on G, that is,

(x, h) · g = (x, hg),

for every (x, h) in X×G and g in G. A principal G-bundle over a base space X is said to be trivial
if it is isomorphic to the product bundle X ×G.

Let ξ = {π : P → X} be a principal G-bundle. A section of ξ is a continuous (smooth) map
s : X → P such that

π ◦ s = IdX .

Lemma 9 A principal G-bundle is trivial if and only if it admits a section.
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Proof. Let ξ = {π : P → X} be a trivial principal G-bundle. By definition, this means that there
exists a G-equivariant invertible map

f : X ×G −→ P

covering the identity. Now the product bundle surely admits a section, for example the trivial
section

s : X −→ X ×G
x 7−→ (x, 1G).

Composing this section with f we obtain the desired section of ξ. Indeed, as π ◦f is the projection
p1 on the first factor of X ×G, we have

π ◦
(
f ◦ s

)
(x) = p1 ◦ s(x) = x.

Conversely, suppose that the principal G-bundle ξ = {π : P → X} admits a section s : X → P .
Define

f : X ×G −→ P
(x, g) 7−→ s(x) · g.

The map f is clearly G-equivariant, and as it covers the identity, it is an isomorphism between the
product bundle and the bundle ξ.

Transition functions

Let ξ = {π : P → X} be a principal G-bundle. Let {Ui}i∈I be a covering by open sets of the base
space X so that the bundle ξ restricted to any Ui, for i in I, is trivial. For every i in I, let

ψi : π−1(Ui)→ Ui ×G

be some local trivializations of the bundle ξ. For i, j in I, we can now consider the composition

Ui ∩ Uj ×G
ψ−1

j |Ui∩Uj×G

−−−−−−−−−→ π−1(Ui ∩ Uj)
ψi|π−1(Ui∩Uj)
−−−−−−−−−→ Ui ∩ Uj ×G,

which surely is a G-equivariant homeomorphism and moreover is the identity on its first factor.
Thus it has the form (x, g) 7−→ (x, f(x, g)) for some continuous function f : Ui ∩ Uj × G → G.
But from the G-equivariance, it follows that f(x, gh) = f(x, g)h, so that the above composition
of local trivializations actually has the form (x, g) 7−→ (x, f(x, 1G)g). We can now define the so
called transition functions

gij : Ui ∩ Uj −→ G

for every i and j in I by gij(x) = f(x, 1G). They satisfy the relation

ψiψ
−1
j (x, g) = (x, gij(x)g),

for every x in Ui ∩ Uj and g in G, and are moreover clearly completely determined by it. Those
functions are of course dependent on the chosen local trivializations. They further fulfill the
following cocycle relations:

• gii(x) = IdG, for every i in I and x in Ui,
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• gij(x)gjk(x) = gik(x), for every i, j, k in I and x in Ui ∩ Uj ∩ Uk.

Note that from the only knowledge of the covering {Ui}i∈I and the transition functions {gij}i,j∈I
it is possible to recover the original bundle ξ = {π : P → X} up to isomorphism. Indeed, consider
the quotient

P ′ =

(∐
i∈I
Ui ×G

)
/ ∼

of the disjoint union of the products Ui ×G by the equivalence relation

Ui ×G 3 (x, gij(x)g) ∼ (x, g) ∈ Uj ×G,

for every x in Ui ∩Uj and g in G. The space P ′ is endowed with the right action of G induced by
the canonical action of G on the products Ui×G. The projection π′ : P ′ → X is induced from the
projections Ui ×G → Ui on the first factor. The principal G-bundle ξ′ = {π′ : P ′ → X} is easily
checked to be isomorphic to the original bundle ξ. Actually, letting

ψi : π−1(Ui) −→ Ui ×G,

for every i in I, be the local trivializations defining the transition functions gij , an isomorphism
between ξ and ξ′ can for example be given by sending any element u in π−1(Ui) to the equivalence
class represented by the element ψi(u) in the product Ui ×G.

Lemma 10 Let {gij}i,j∈I and {hij}i,j∈I be two families of transition functions relative to the
same open covering {Ui}i∈I of some topological space X. Then the two corresponding G-bundles
are isomorphic if and only if there exists maps λi : Ui → G, for every i in I, such that

gij(x) = λi(x)hij(x)(λj(x))−1

for every i, j in I and x in Ui ∩ Uj.

Proof. Let ξ(gij) and ξ(hij) be the two G-bundles obtained by the above procedure from the
systems of transition functions {gij}i,j∈I and {hij}i,j∈I respectively.

Suppose that the two bundles are isomorphic and let the isomorphism be given by a map

f : P (hij) −→ P (gij).

This map being a G-equivariant map covering the identity, it necessarily has the form

(x, g) 7−→ (x, λi(x)g),

for (x, g) in Ui × G and some map λi : Ui → G, when restricted to Ui × G and viewed as a map
from Ui × G to itself. Let x belong to Ui ∩ Uj and let g be a group element. In P (hij) we then
have

Ui ×G 3 (x, hij(x)g) ∼ (x, g) ∈ Uj ×G.

Applying f we thus obtain in P (gij) that

Ui ×G 3 f(x, hij(x)g) = (x, λi(x)hij(x)g) ∼ f(x, g) = (x, λj(x)g) ∈ Uj ×G.
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But in P (gij) we also have that

Ui ×G 3 (x, gij(x)λj(x)g) ∼ (x, λj(x)g) ∈ Uj ×G.

It thus follows that
λi(x)hij(x) = gij(x)λj(x).

Conversely, starting with two systems of transition functions for which there exists maps λi :
Ui → G satisfying the above equality, we can define a map

Ui ×G −→ Ui ×G
(x, g) 7−→ (x, λi(x)g,

which induces a well defined map between the two total spaces P (hij) and P (gij) because of the
equality gij(x) = λi(x)hij(x)(λj(x))−1. This map is further clearly G-equivariant and covers the
identity, so that it lifers the desired isomorphism between the bundles ξ(hij) and ξ(gij).

Pull Backs

Given a principal G-bundle ξ = {π : P → X} and a continuous map f : Y → X, where Y is a
topological space we can consider the pull back of the bundle ξ to Y , denoted by f∗(ξ). This is
the G-bundle over Y with total space

f∗(P ) = {(y, u) ∈ Y × P | f(y) = π(u)},

and of course the bundle map is simply the projection on the first factor. Observe that a bundle
map f : f∗(P )→ P is given by the projection on the second factor.

Lemma 11 Let f : ξ0 → ξ1 be a bundle map between two principal G-bundles. Denote by f :
X0 → X1 the corresponding map of the base spaces. Then

ξ0 ∼= f∗(ξ1).

Proof. Denote, for i = 0, 1, by Pi and πi the total space and bundle map of ξi. The isomorphism
is given by

P0 −→ f∗(P1)
u 7−→ (π0(u), f(u)).

Indeed, this map is well defined because the bundle map f commutes with the projections, it is
G-equivariant, because f is, and it obviously covers the identity map.

A fundamental property of the pull back is its invariance under homotopy. More precisely, the
pull backs of some G-bundle by two homotopic maps give rise to two isomorphic bundles. This
is obtained at once as a corollary of the following theorem, the proof of which are, up to small
adaptations, taken from [Hu66] (Chapter 3, Theorems 4.3 and 4.8).

Theorem 12 Let ξ be a principal G-bundle over X × [0, 1], where X is a paracompact space, with
total space P and bundle map π. Set

r : X × [0, 1] −→ X × [0, 1]
(x, t) 7−→ (x, 1).
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Then there exists a bundle map r covering r:

P
r−−−−→ Py y

B × [0, 1] r−−−−→ B × [0, 1].

Proof. For simplicity, and since it will be all what we need in what follows, we restrict ourselves
to the case when there exists a finite covering {Ui}qi=1 of X such that the bundle ξ restricted to
Ui × [0, 1] is trivial. (The proof of the general case, when the covering is only locally finite, is a
straightforward generalization of this one and can be read in [Hu66].) For i ∈ {1, . . . q}, let

φi : π−1(Ui × [0, 1]) −→ Ui × [0, 1]×G

be the local trivializations. For every i ∈ {1, . . . q}, choose functions

νi : X −→ R

such that

• supp(νi) ⊂ Ui,

•
q∑
i=1

νi(x) = 1 for every x in X.

For every i ∈ {1, . . . q}, define

ui : P −→ P

u 7−→


u if u /∈ π−1(Ui × [0, 1]),
φ−1
i (x,min{t+ νi(x), 1}, g) if u ∈ π−1(Ui × [0, 1]) and

u = φ−1
i (x, t, g).

To see that this defines continuous maps, it is enough to realize, that, the support of νi being
included in Ui, whenever x tends to the boundary of Ui, the value of νi on x tends to zero, and
hence the minimum between t+ νi(x) and 1 goes to the minimum between t and 1, which is equal
to t since t belongs to the interval [0, 1]. Since those maps are G-equivariant, they are bundle
maps. Let

ri : X × [0, 1] −→ X × [0, 1]
(x, t) 7−→ (x,min{t+ νi(x), 1})

be the corresponding base space maps. We now need to prove that

r = rq ◦ rq−1 ◦ · · · ◦ r2 ◦ r1.
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Let (x, t) be in X × [0, 1] and let us compute the composition of the maps ri on it:

rq ◦ rq−1 ◦ · · · ◦ r2 ◦ r1(x, t) = rq ◦ · · · ◦ r3 ◦ r2(x,min{t+ ν1(x), 1})
= rq ◦ · · · ◦ r3(x,min{t+ ν1(x) + ν2(x), 1})
= · · ·

= rq ◦ · · · ◦ ri(x,min{t+
i∑

j=1

νj(x), 1})

= · · ·
= (x,min{t+ ν1(x) + ...+ νq(x), 1)
= (x,min{t+ 1, 1})
= (x, 1)
= r(x, t).

The map
u = uq ◦ uq−1 ◦ · · · ◦ u2 ◦ u1

is thus a bundle map covering r.

Theorem 13 Let X and Y be topological spaces, ξ a principal G-bundle over X and f ' g : Y →
X two homotopic continuous maps, then

f∗(ξ) ∼= g∗(ξ).

Proof. Let h : Y × [0, 1]→ X be the homotopy from f to g, so that h|Y×{0} = f and h|Y×{1} = g.
Then

f∗(ξ) ∼= h∗(ξ)|Y×{0} and g∗(ξ) ∼= h∗(ξ)|Y×{1}.

Apply Theorem 12 to the bundle h∗(ξ) over Y ×[0, 1]. Restricting the bundle map J to π−1(Y ×{0})
we obtain a bundle map

h∗(P )π−1(Y×{0})
rπ−1(Y×{0})−−−−−−−−→ h∗(P )π−1(Y×{1})y y

B × {0}
rπ−1(Y×{0})−−−−−−−−→ B × {1}

covering the identity. It is thus an isomorphism.

Corollary 14 If ξ is a principal G-bundle over a contractible base space, then the bundle is trivial.

Proof. Let X be the contractible base space of ξ. Then the identity IdX of X is homotopic to
some constant map c : X → {x0} ⊂ X. By Theorem 13 the bundle ξ (being the pull back of itself
via the identity map) is thus isomorphic to c∗(ξ), which is the product bundle X × G, since the
condition that c(x) = π(g), for x ∈ X, g ∈ G is empty. (Of course, π denotes the projection map
of ξ.)
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Reduction of bundle

Let H and G be two groups and i : H → G a group homomorphism. Suppose η = {πη : Pη → X}
is a principal H-bundle and ξ = {πξ : Pξ → X} is a principal G-bundle. The bundle ξ is said to be
an extension of η (relative to i), or equivalently, η is a reduction of ξ (relative to i), if there exists
a map f : Pη → Pξ such that

f(π−1
η (x)) ⊂ π−1

ξ (x) for every x in X,
f(uh) = f(u)i(h) for every u in P and h in H.

As a consequence of the fundamental result of Iwasawa ([Iw49]) and Mostow that every con-
nected Lie group is topologically equivalent to product K × E, where K is a maximal subgroup
and E is contractible, one has:

Theorem 15 Let G be a connected Lie group and K be a maximal compact subgroup. Every
principal G-bundle admits a reduction to K.

1.1.2 Classifying spaces

A principal G-bundle ξG = {πG : PG→ BG} is said to be universal if for every principal G-bundle
ξ = {π : P → B} there exists a classifying map f : B → BG, unique up to homotopy, such that
the bundle ξ is isomorphic to the pull back f∗(ξG). The base space BG of the universal bundle ξG
is called the classifying space. Somehow the bundle ξG is the most complicated G-bundle possible:
taking pull backs only simplifies the bundles.

Various constructions of classifying spaces exist. We will describe here a possible model for
linear groups which we will need in our proof of our main theorem.

Space of frames

Let n and q be positive natural numbers and set N = (q + 1)n. The space of n-frames in RN ,
which we denote by Frn(RN ), consists of ordered n-tuples of linearly independent vectors in RN .
It is naturally identified with the set of N times n matrices with linearly independent columns.
There is a natural action of GLn(R) from the right (and one of GLN (R) from the left) simply given
by matrix multiplication, which furnishes a right action of any closed subgroup G of GLnR on the
space of n-frames Frn(RN ). Define

PGq = Frn(RN ) and BGq = PGq/G,

and let πG : PGq → BGq denote the natural projection. We have thus obtained a principal
G-bundle

ξqG = {πG : PGq → BGq} .

For a frame A in PGq =Frn(RN ), that is, a N times n matrix with at least one of its maximal
minor not zero, we denote by [A]G its equivalence class in the quotient BGq = PGq/G, so that
πG(A) = [A]G.

Observe that for G =GLn(R), the space BGq is diffeomorphic to the Grassmanian manifold of
n-dimensional vector subspaces of RN , and in general BGq is a fiber bundle over the Grassmanian,
with fiber diffeomorphic to GLn(R)/G.
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The canonical inclusions Rq ↪→ Rq×{0} ↪→ Rq+1 also produce inclusions Rnq ↪→ Rn(q+1) which
in turn induce canonical G-equivariant inclusions PGq ↪→ PGq+1. Define PG as the limit

PG = limq→∞PGq.

The inclusions being G-equivariant, a right action of G is naturally given on the limit PG. Let
BG be the quotient

BG = PG/G

and denote by πG : PG→ BG the natural projection.

Theorem 16 The bundle ξG = {πG : PG −→ BG} is a universal G-bundle.

The classifying map

Theorem 17 Let G be a subgroup of GLnR and ξ = {π : P → B} be a principal G-bundle.
Suppose that the base space B can be covered by q + 1 open sets U0, ..., Uq relative to which there
exists a partition of unity, and further that the bundle ξ is trivial when restricted to any of the
Ui’s. Then there exists a classifying map f : B → BGq.

What we mean here by classifying map is really that the bundle ξ is isomorphic to the pull
back through f of the approximation ξqG of the universal bundle. We do not claim that the map
f should be unique up to homotopy, which is actually false, so that the terminology of classifying
map is presently slightly abusive. However, the composition of f with the canonical inclusion of
BGq in BG is a classifying map in the true sense of the word.
Proof. Let, for every i between 0 and q,

φi : π−1(Ui) −→ Ui ×G,

be some local trivialization of the bundle ξ and

gij : Ui ∩ Uj −→ GLn(R),

be the corresponding transition functions. Recall that those satisfy the defining equality

φiφ
−1
j (x, g) = (x, gij(x)g)

for every x ∈ Ui ∩ Uj and g ∈ G, and further fulfill the cocycle relations

gii ≡ IdUi ,

gij(x)gjk(x) = gik(x) for every x ∈ Ui ∩ Uj ∩ Uk.

Let {ui}qi=0 be a partition of unity relative to the open covering {Ui}qi=0 of B. Thus, ui is, for
every i between 0 and q, a mapping

ui : B −→ [0, 1]

whose support is strictly contained in Ui, and for each x in B we have

q∑
i=0

ui(x) = 1.
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For every i between 0 and q, define a continuous G-equivariant map f i : π−1(Ui)→ PGq as

f i(u) =



u0(π(u))g0i(π(u))g
...

ui(π(u))gii(π(u))g
...

uq(π(u))gqi(π(u))g

 ,

where u belongs to π−1(Ui) and the image of u via φi is φi(u) = (π(u), g). Of course, the matrix is
to be understood as an N times n matrix consisting of q+1 blocks of square matrices. If gji(π(u))
is not defined, it means that π(u) does not belong to Uj , in which case uj(π(u)) is zero, so that
we consider uj(π(u))gji(π(u)) as the n times n zero matrix. Observe that this N times n matrix
really represents a frame, since the block ui(π(u))gii(π(u))g has non zero determinant.

We claim that it follows from the cocycle relations that f i = f j on π−1(Ui ∩ U j). To see that,
let u belong to π−1(Ui ∩ U j) and assume that i < j. We compute

f i(u) =



u0(π(u))g0i(π(u))g
...

ui(π(u))gii(π(u))g
...

uj(π(u))gji(π(u))g
...

uq(π(u))gqi(π(u))g


=



u0(π(u))g0j(π(u))gji(π(u))g
...

ui(π(u))gij(π(u))gji(π(u))g
...

uj(π(u))gjj(π(u))gji(π(u))g
...

uq(π(u))gqj(π(u))gji(π(u))g


,

which is precisely equal to f j(u) since

φj(u) = φjφ
−1
i (π(u), g) = (π(u), gji(π(u))g).

The maps f i agreeing on their domain’s intersection, they induce a continuous G-equivariant
map

f : P −→ PGq.

Let f : B → BGq be the corresponding map on the base spaces. By Lemma 11 it now follows that
the pulled back bundle f∗(ξqG) is isomorphic to ξ.

The classifying map for bundles over simplicial complexes

Let G be, as before, a subgroup of GLnR and suppose that ξ = {π : P → |K|} is a principal
G-bundle over the geometric realization of some q-dimensional simplicial complex K. (Consult
Chapter 2 for any reminder on the basics on simplicial complexes.) We would like to exhibit
a finite covering of |K| on which the bundle ξ can be trivialized. If we were ready to consider
coverings with arbitrarily many subsets, we could consider the covering

{star(v)}v∈K0 .
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Indeed, the stars being contractible (Lemma 44), the bundle ξ is trivial over them, as follows from
Corollary 14. However, we would like to bound the number of sets in the covering independently
of the simplicial complex (but depending on the dimension q), and here of course K0 can get as
big as one wants. To do so, we will consider the stars in the first barycentric subdivision of K and
take union of stars of barycenters of simplices of K of same dimension.

More precisely, let Kbar denote the first barycentric subdivision of K, and observe that the
stars in Kbar of two barycenters of simplices of K of same dimension are always disjoint. Defining
Si to be the open subset of |Kbar| consisting of the union of the stars (in Kbar) of all barycenters
of i-dimensional simplices of K,

Si =
∐
s∈K,

Dims=i

starKbar(b
s),

we conclude that we get a finite covering {S0, ..., Sq} of |Kbar| ' |K| such that the bundle ξ is
trivial when restricted to any of the Si’s.

This covering of |Kbar| is naturally endowed with a partition of unity. Indeed, every point x in
|Kbar| can uniquely be written as

x =
q∑
i=0

tib
si ,

where bsi is the barycenter of the i-dimensional simplex si of K, the ti’s are all non negative, and
the sum

∑
ti is equal to 1. We can thus define, for every i between 0 and q, functions |Kbar| → [0, 1]

by sending the point x to its coordinate ti. This is not quite a partition of 1 subordinate to the
covering {S0, ..., Sq} of |Kbar| since the support of those functions is not strictly contained in the
corresponding functions. However, since we are in the topological and not the differentiable setting,
the classifying map constructed in the proof of Theorem 17 can be obtained analogously.

Let, for every i between 0 and q,

φi : π−1(Si) −→ Si ×G,

be some local trivialization of the bundle ξ and

gij : Si ∩ Sj −→ GLn(R),

be the corresponding transition functions.
From the proof of Theorem 17 we now directly obtain an explicit classifying map for the bundle

ξ.

Theorem 18 Let ξ be a principal G-bundle over the geometric realization of some q-dimensional
simplicial complex. Then the map

f : |K| −→ BGq

x = Σqj=0tib
si 7−→



t0g0i(x)
...

tiIdn
...

tqgqi(x)


G

,

where i is chosen so that ti 6= 0, is a classifying map for the bundle ξ.
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1.2 Elements of Differential geometry

We review here the theory of connections and curvatures. Our exposition is strongly inspired from
[KoNo63], where the reader is referred to for further details.

1.2.1 Connections

Let G be a Lie group and ξ = {π : P → M} be a smooth principal G-bundle over a manifold
M . For every u in P , let gu be the subspace of the tangent space TuP at u consisting of vectors
tangent to the fibre through u. We call gu the vertical subspace of TuP .

Definition 19 A connection Γ in the principal G-bundle ξ = {π : P →M} is the choice, for each
u in the total space P , of a horizontal subspace Hu of the tangent space TuP at u such that

1. TuP = gu ⊕Hu,

2. Hug = (Rg)∗Hu, for g ∈ G,

3. Hu depends differentially on u, that is, the assignment u 7−→ Hu, viewed as a map P →Grr(TP ),
where Grr(TP ) is the Grassmanian bundle over P consisting of r-planes in TuP (for every
u in P ) and r is equal to the dimension of P minus the dimension of G, is required to be
smooth.

Each vector X in TuP has a unique decomposition X = XG + XH , where XG ∈ gu and
XH ∈ Hu. We call XG vertical, and XH horizontal.

Let ξ and ξ′ be two principal G-bundles and denote by P and P ′ their respective total spaces.
Let f : ξ′ → ξ be a bundle map. Any connection Γ on ξ pulls back, via f , to a connection on ξ′.
Indeed, if Hu is, for u in P the horizontal space of the connection Γ, then define H ′v for ever v in
P ′ as follows:

H ′v = {X ∈ TvP ′ | Tf(X) ∈ Hf(u)}.

The so defined connection is denoted by f∗(Γ).
To each connection Γ, one can now assign a connection 1-form ω in the following way:

Definition 20 The connection form ω ∈ A1(P, g) is defined, for each u in P and for each X in
TuP as ωu(X) = A ∈ g, where A is the unique element in g satisfying (A∗)u = XG.

Note that for every u in P and X in TuP we have that ωu(X) = 0 if and only if X is horizontal.
When no confusion can occur, we sometimes omit the subscript u and write ω(X) instead of ωu(X).

Proposition 21 Let ξ be a principal G-bundle and ω a connection form on ξ. The following hold:

1. ω(A∗) = A, for every A in g,

2. (Rg)∗ω = Ad(g−1)ω, for every g in G.

Conversely, any 1-form ω ∈ A1(P, g) satisfying the two above conditions uniquely determines a
connection Γ whose connection form is ω.
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For a proof, we refer the reader to Proposition 1.1 of Chapter 2 in [KoNo63]. We would just
like to point out, that given a 1-form ω ∈ A1(P, g) satisfying the conditions of the proposition, the
horizontal spaces Hu of the connection Γ are given, for every u in P , as

Hu = {X ∈ TuP | ω(X) = 0}.

We have thus established the equivalence between the knowledge of a connection and a 1-form
in A1(P, g) satisfying the conditions of Proposition 21. For this reason, we will later call connection
forms simply connections. There is one further useful equivalent notion which we will now describe.

Consider the bundle

Pr oj(ξ) =
Pr oj(P )
↓
P,

where the total space Pr oj(P ) over a point u of P is defined to be the space of projectors TuP →
TuP with kernel equal to the vertical space gu. Endow it with the following natural right action
of G:

Proj(P )×G −→ Proj(P )
(h, g) 7−→ hg,

where hg is defined as follows: If h is a projector of TuP , for some u in P , then hg is a projector
of TugP which is defined as

(hg) (X) = Rg−1∗(hug−1(Rg∗X)),

for every X in TugP . This indeed defines an action on Proj(P ), since for every h : TuP → TuP in
Proj(P ) for some u in P , and for every g1, g2 in G, we have, for X in Tug1g2P ,

((hg1)g2)ug1g2(X) = Rg−1
2 ∗

((hg1)ug−1
2

(Rg2∗X))

= Rg−1
2 ∗

Rg−1
1 ∗

(h(ug−1
2 )g−1

1
)(Rg1∗Rg2∗X)

= Rg−1
2 g−1

1 ∗
(hug−1

2 g−1
1

)(R(g1g2)∗X)

= R(g1g2)−1∗(hu(g1g2)−1)(R(g1g2)∗X).

Observe that the projection map π :Proj(P )→ P of the bundle Proj(ξ) is G-equivariant.

Proposition 22 There is a one-to-one correspondence between connections on ξ and smooth G-
equivariant sections of the bundle Pr oj(ξ).

Proof. We only indicate the correspondence, and leave the details to the reader. Given a connec-
tion Γ on ξ one defines the section of the bundle Pr oj(ξ) to be, on every point u of P the projector
(along gu) with image equal to the horizontal space Hu of the connection Γ. Conversely, starting
with a section of the bundle Pr oj(ξ),

h : P −→ Pr oj(P ),

define a connection Γ to have horizontal space Hu, for every u in P , to be equal to the image of
the projector h(u) : TuP → TuP .
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It is now natural to wonder how one goes (directly) from the connection form to a smooth
G-equivariant section of the bundle Pr oj(ξ) and conversely. Starting with a connection form ω,
define a section

h : P −→ Pr oj(P )

as
hu : TuP −→ TuP

X 7−→ X − (ωu(X))∗u,

for every u in P . Conversely, starting with a section h of the bundle Pr oj(ξ), define a connection
form ω, for every u in P and X in TuP , as ωu(X) = A, where A is the unique element of g for
which the following equality holds:

(A∗)u = X − hu(X).

To summarize, we have thus established, for every principal G-bundles, the following corre-
spondence:

{Connections Γ} ←→


Connection forms
ω satisfying
ω(A∗) = A and
(Rg)

∗
ω = Ad

(
g−1

)
ω

←→
 G-equivariant

sections
of Proj(ξ)

 .

The horizontal spaces of a connection Γ are the kernel, respectively the image, of the corresponding
connection form, respectively section of Proj(P ). The relation between connection forms and
section of Proj(P ) is understood from the formula

hu(X) = X − (ωuX)∗u,

where u belongs to P .
With this correspondence in mind, it is now easy to prove the following useful lemma.

Lemma 23 Let ω0 and ω1 be two connection forms with corresponding projectors h0 and h1. Let
moreover ω be any connection form. Then

ω(h0 − h1) = ω1 − ω0.

Proof. We have

(ω(h0 − h1))u (X) = ωu(h0u(X)− h1u(X))
= ωu((X − ω0u(X)∗u)− (X − ω1u(X)∗u))
= ωu((ω1u(X)− ω0u(X))∗u)
= (ω1u − ω0u) (X),

where the last equality follows from the first assertion of Proposition 21.
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The product bundle

Consider the trivial principal G-bundle G → {∗} over a point. Since for every point g in G the
tangent space TgG is actually equal to the vertical space through g, there can exist only one
connection Γ on the latter bundle, namely the one assigning the zero subspace of TgG to any point
g of G.

More generally, consider the product bundle

M ×G
↓
M.

The Maurer-Cartan connection is defined to be the pull back of the unique connection on the
trivial G-bundle over a point via the bundle map

M ×G −→ G
↓ ↓
M −→ {∗}

given by the projection M × G → G on the second factor. The horizontal spaces H(x,g) are then
given, for every (x, g) in the total space M × G, by the canonical direct sum decomposition of
T (M × G) ∼= TM × TG. More precisely, the vertical space g(x,g) corresponds to TgG, and the
horizontal space H(x,g) to TxM .

Existence of connections

Let us recall some elementary facts on projectors sharing the same kernel.

Lemma 24 Let V be a vector space. If p, q : V → V are two projectors with the same kernel, then

p ◦ q = p.

Proof. For any v in V the vector q(v)− v belongs to Ker(q):

q(q(v)− v) = q2(v)− q(v) = q(v)− q(v) = 0.

But since Ker(q) = Ker(p), it follows that

p(q(v)− v) = 0,

and hence
p ◦ q(v) = p(v)

as claimed.

Lemma 25 Let V be a vector space and p0, p1 : V → V two projectors with the same kernel. For
any t in R, the convex linear combination of p0 and p1,

(1− t)p0 + tp1 : V → V,

is again a projector.
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Proof. We have

((1− t)p0 + tp1)
2 = ((1− t)p0 + tp1) ((1− t)p0 + tp1)

= (1− t)2p2
0 + (1− t)tp0p1 + t(1− t)p1p0 + t2p2

1

= (1− t)2p0 + (1− t)tp0 + t(1− t)p1 + t2p1

= (1− t)p0 + tp1,

where of course we have used Lemma 24 and the fact that p0 and p1 are projectors.
It now follows from Lemma 25, that we can more generally form the convex linear combination

of any two sections

h0, h1 : P −→ Pr oj(P )

of the bundle Pr oj(ξ) and obtain a section

(1− t)h0 + th1 : P −→ Pr oj(P ),

for every t in R. Also, if h0 and h1 are chosen to be smooth and G-equivariant, the convex linear
combination will enjoy the same properties. We now claim that the corresponding connection form
is given as

(1− t)ω0 + tω1,

where of course ω0 and ω1 are the connection forms corresponding to the smooth G-equivariant
sections h0 and h1 respectively. To see that, denote by ωt the connection form obtained from
(1− t)h0 + th1 and let A in g be such that (ωt)u(X) = A. Using the above correspondence between
connections forms and sections of the bundle Pr oj(ξ), we have, for every u in P and X in TuP ,

A∗u = X − ((1− t)h0 + th1)u (X)
= (1− t)(X − (h0)uX) + t(X − (h1)uX)
= (1− t)(ω0)u(X)∗u + t(ω1)u(X)∗u
= ((1− t)ω0 + tω1)u(X)∗u,

and hence

(ωt)u = ((1− t)ω0 + tω1)u

as claimed. We have thus proven the following proposition:

Proposition 26 Any convex linear combination of connection forms is again a connection form.

From the existence of a connection on the trivial bundle and Proposition 26, a standard argu-
ment using partition of unity (see for example Theorem 2.1 of Chapter II in [KoNo63]) now leads
to:

Corollary 27 Any principal G-bundle over a paracompact manifold admits a connection.
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1.2.2 Curvature

Let ξ = {π : P → M} be a principal G-bundle endowed with a connection form ω. Let h be the
corresponding section of the bundle Proj(ξ) = {Proj(P ) → P}, so that hu : TuP → TuP is, for
every u in P , the projection along the vertical space gu onto the horizontal space Hu defined by
the connection form ω. The exterior covariant differentiation D : Aq(P, V ) → Aq+1(P, V ), where
V is any (real) vector space, is then defined as follows: for every q-form α ∈ Aq(P, V ) define Dα
by

(Dα)u (X1, ..., Xq+1) = (dα)u(hX1, ..., hXq+1),

for every u in P and X1, ..., Xq+1 in TuP .

Definition 28 The curvature Ω ∈ A2(P, g) of the connection form ω is defined as

Ω = Dω.

Note that Ω is a so called horizontal form, which means that Ω(X,Y ) = 0 whenever X or Y is
vertical.

Also observe that the pull back of a curvature is the curvature of the pull back of the starting
connection.

Proposition 29 (Structure equation) Let ξ = {π : P → M} be a principal bundle endowed
with a connection form ω. Denote by Ω its corresponding curvature. Then for every u ∈ P and
every X,Y ∈ TuP the following equality holds:

dω(X,Y ) = −1
2
[ω(X), ω(Y )] + Ω(X,Y ).

For a proof, see for example Theorem 5.2 of Chapter II in [KoNo63]. As an immediate conse-
quence of the structure equation we obtain:

Corollary 30 Let X,Y be two vectors in TuP . If X and Y are horizontal, then

ω([X,Y ]) = −2Ω(X,Y ),

and if X or Y is vertical, then

dω(X,Y ) = −1
2
[ω(X), ω(Y )].

Proposition 31 (Bianchi’s identity) Let ξ = {π : P → M} be a principal G-bundle endowed
with a connection form ω, and corresponding curvature Ω. Then

DΩ = 0.

The proof of Bianchi’s identity can be found in [KoNo63], Theorem 5.4 of Chapter II.

Lemma 32 Let V be a (real) vector space and ξ = P →M be a principal G-bundle endowed with
a connection Γ, so that covariant differentiation is defined. If α ∈ Aq(P, V ) is in the image of

π∗ : A∗(M,V ) −→ A∗(P, V )

then
dα = Dα.
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Proof. Let α ∈ Aq(M,V ) be such that π∗(α) = α. Let u be a point in P and X1, . . . , Xq+1 ∈ TuP
be tangent vectors at u. The main point is that dα is horizontal, that is, (dα)u(X1, . . . , Xq+1)
vanishes whenever one of the Xi’s is vertical. Indeed, suppose that Xi is vertical, then using that
π∗(Xi) = 0 we compute

(dα)u(X1, .., Xi, .., Xq+1) = (dπ∗(α))u(X1, .., Xi, .., Xq+1)
= (π∗d(α))u(X1, .., Xi, .., Xq+1)
= (d(α))π(u)(π∗(X1), .., 0, .., π∗(Xq+1))
= 0.

It now follows by multilinearity of dα, that for arbitrary X1, . . . , X2q+1 ∈ TuP we have

(dα)u(X1, ..., Xq+1) = (dα)u(hX1, . . . , hXq+1),

which proves the lemma, since the latter expression is the very definition of (Dα)u(X1, . . . , Xq+1).

Lemma 33 Let ω0, ω1 be two connection forms on some principal G-bundle ξ. For any t ∈ R
denote by ωt the following connection form:

ωt = (1− t)ω0 + tω1.

Then the curvature Ωt of ωt is given as

Ωt = (1− t)Ω0 + tΩ1 +
1
2
(t2 − t)[ω1 − ω0, ω1 − ω0].

Proof. First note that we know from Proposition 26 that ωt is indeed a connection form. Its
corresponding projector is given as

ht = (1− t)h0 + th1,

where of course h0 and h1 are the projectors obtained from ω0 and ω1 respectively. Now let u be
a point in P and X,Y vectors in TuP . Let us compute the value of the curvature Ωt on (X,Y ):

Ωt(X,Y ) = (dωt)(htX,htY )
= (1− t)dω0(htX,htY ) + tdω1(htX,htY )
= (1− t)Ω0(htX,htY ) + tΩ1(htX,htY )

− 1
2
((1− t)[ω0(htX), ω0(htY )] + t[ω1(htX), ω1(htX)]),

where the last equality follows from the structure equation (Proposition 29). From Lemma 24 we
have h0ht = h0 and h1ht = h1 so that

Ω0(htX,htY ) = Ω0(X,Y ) and Ω1(htX,htY ) = Ω1(X,Y ).

Also, since ω0 vanishes on horizontal vectors, one computes

ω0(htX) = ω0(htX − h0htX)
= ω0((1− t)h0X + th1X − h0X)
= tω0(h1X − h0X)
= t(ω0 − ω1)X,
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where the last equality holds by virtue of Lemma 23. Similarly, one obtains

ω1(htX) = (1− t)(ω1 − ω0)X.

We thus have

−1
2
((1− t)[ω0(htX), ω0(htY )] + t[ω1(htX), ω1(htX)])

= −1
2
(
(1− t)t2[(ω0 − ω1)X, (ω0 − ω1)X]

+t(1− t)2[(ω1 − ω0)X, (ω1 − ω0)X]
)

=
1
2
(t− 1)t[(ω0 − ω1)X, (ω0 − ω1)X],

so that

Ωt(X,Y ) = (1− t)Ω0(X,Y ) + tΩ1(X,Y )

+
1
2
(t2 − t)[(ω0 − ω1)(X), (ω0 − ω1)(Y )],

which finishes the proof of the lemma.

Lemma 34 Let Ωt be as in the previous lemma, then

d

dt
Ωt = Dt(ω1 − ω0).

Proof. From Lemma 33 above it follows that

d

dt
Ωt = Ω1 − Ω0 + (t− 1

2
)[ω1 − ω0, ω1 − ω0].

Also, we have

Dt(ω1 − ω0) = d(ω1 − ω0)ht
= d(ω1 − ω0)((1− t)h0 + th1)
= (1− t)dω1h0 − (1− t)Ω0 + tΩ1 − tdω0h1.

From the trivial relation h0 = h1 + (h0 − h1) we obtain

dω1h0 = dω1(h1 + (h0 − h1))

= Ω1 −
1
2
[ω1(h0 − h1), ω1(h0 − h1)],

where the last equality follows from the second assertion of Corollary 30. As from Lemma 23 we
know that ω1(h0 − h1) = ω1 − ω0, we have

dω1h0 = Ω1 −
1
2
[ω1 − ω0, ω1 − ω0],
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and by symmetry also

dω0h1 = Ω0 −
1
2
[ω0 − ω1, ω0 − ω1]

= Ω0 −
1
2
[ω1 − ω0, ω1 − ω0].

Putting all this together, we can finally conclude that

Dt(ω1 − ω0) = (1− t)
(

Ω1 −
1
2
[ω1 − ω0, ω1 − ω0]

)
− (1− t)Ω0

+ tΩ1 − t
(

Ω0 −
1
2
[ω1 − ω0, ω1 − ω0]

)
= Ω1 − Ω0 + (t− 1

2
)[ω1 − ω0, ω1 − ω0],

which was to be proven.

1.3 Flat bundles

1.3.1 Definition

Let us start straightaway with the definition of flat bundle:

Definition 35 Let ξ be a smooth principal G-bundle. A connection on ξ is said to be flat if its
curvature form vanishes identically. A smooth G-principal bundle is called flat if it can be endowed
with a flat connection.

Since any convex linear combination of (non necessarily flat) connections is again a connection
(see Proposition 26) it follows that the space of all connections is an affine subspace of A1(P, g).
The geometry of its subspace of flat connections is however a much more complicated. (As a simple
example, the convex linear combination of two flat connections is in general not flat, as can easily
be concluded from Lemma 33.) In order to understand the space of flat connections, we are going
to give various equivalent definitions of flat bundles and translate the notion of being in the same
path connected component in those new settings. Observe that those equivalent definitions will all
make sense in the topological case, so that it will be possible to extend the definition of flat bundles
to topological bundles. Before proceeding, let us give some trivial examples of flat bundles.

1. The Maurer-Cartan connection ωG on the trivial G-bundle over a point,

G
↓
{∗},

is flat since there are no non trivial horizontal vectors.
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2. The Maurer-Cartan connection on the trivial product bundle

M ×G
↓
M

is flat since it is the pull back of the Maurer-Cartan connection ωG ∈ A1(G, g) through the
projection map

M ×G −→ G,

and obviously, being flat is invariant under taking pull backs.

1.3.2 Transition functions

In this section we explain the interpretation of flat connection in terms of transition functions. The
following theorem together with its corollary can be found in [Du78] (Theorem 3.21 and Corollary
3.22).

Theorem 36 A connection ω in a principal G-bundle

P
ξ = ↓ π

M

is flat if and only if for every x in M there exists a neighborhood U of x and a trivialization of P|U
such that the restriction of ω to P|U is induced by the Maurer-Cartan connection in U ×G.

Corollary 37 Let ξ be a principal G-bundle over some manifold M . Are equivalent:

1. the bundle ξ can be endowed with a flat connection,

2. there exists a covering of M and a set of transition functions for ξ which are locally constant,

3. the bundle ξ has a reduction to Gδ.

We will restrict to the proof of the equivalence (1) ⇐⇒ (2) and refer the reader to [Du78] for
a complete proof.
Proof. (1) =⇒ (2): Let ξ be a G-bundle endowed with a flat connection ω. By Theorem 36, the
manifold M has an open covering {Ui}i∈I for which there exists trivializations

φi : P |Ui
−→ Ui ×G

such that the flat connection ω on P |Ui
is induced from the Maurer-Cartan connection on the

product bundle Ui ×G. The relation

φ−1
j (x, gij(x)g) = φ−1

i (x, g),

for every x in Ui ∩ Uj and g in G, defining the transition functions

gij : Ui ∩ Uj −→ G,
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is summarized in the diagram

P |Ui∪Uj

φi−−−−→ (Ui ∩ Uj)×GyId

yF
P |Ui∩Uj

φj−−−−→ (Ui ∩ Uj)×G,

where the map F is defined, for every x in Ui ∩ Uj and every g in G as

F (x, g) = F (x, gij(x)g).

Since the flat connection ω on P |Ui∩Uj
is induced from the flat Maurer-Cartan connection on

Ui ∩ Uj × G via φi, but also via φj , it follows that the map F must send the Maurer-Cartan
connection to itself. Equivalently, this means that the induced map between the corresponding
tangent bundles

TF : T (Ui ∩ Uj)× TG −→ T (Ui ∩ Uj)× TG,
as it need to preserve the horizontal spaces, sends T (Ui ∩ Uj)× {0} to itself. Viewing the tangent
space as equivalence classes of curves, we obtain that, for any curve v : [−ε, ε]→ Ui ∩ Uj , passing
through the point v0 at time 0, and for any g in G, the image via TF of the curve (v(t), g) ⊂
Ui ∩ Uj ×G is equal to

(v(t), gij(v(t))g),

and thus the second coordinate must be constant. As this is valid for any curve v(t) it follows that
the gij ’s must be locally constant.

(2) =⇒ (1): Let {Ui}i∈I be an open covering of M , and

φi : P |Ui −→ Ui ×G

local trivializations of the bundle ξ for which the corresponding transition functions

gij : Ui ∩ Uj −→ G

are locally constant. Let ωi be the flat connection on P |Ui which is the pull back by φi of the
Maurer-Cartan connection on Ui×G. We claim that the connections ωi and ωj agree on P |Ui∩Uj

.
This is equivalent to saying that the Maurer-Cartan flat connection on the product bundle over
Ui ∩ Uj is equal to the pull back of the Maurer-Cartan connection via the map

(Ui ∩ Uj)×G −→ (Ui ∩ Uj)×G
(x, g) 7−→ (x, gij(x)g).

Assume without loss of generality, that Ui ∩Uj is connected, and since the transition functions
are locally constant, we can define gij := gij(x), for some x in Ui ∩ Uj . Now, the Maurer-Cartan
connection is induced by the projection on G from the Maurer-Cartan flat connection ωG on the
trivial bundle G→ {∗}. By definition we have

ωG = L∗gij
ωG,

where Lgij : G → G stands for the left multiplication by gij . The claim now follows and we can
thus define a global flat connection ω on ξ as ω = ωi on ξ|Ui.

Note that conditions (2) and (3) of the above corollary also make sense for topological principal
G-bundles. We can thus, as promised, extend the definition of flat bundles to them:
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Definition 38 Let G be a topological group. A topological principal G-bundle is said to be flat if
it has a reduction to Gδ.

Another useful consequence of Corollary 37 is the following:

Corollary 39 Let ξ be a principal G-bundle over some manifold M endowed with a flat connection.
Then any covering {Ui}i∈I of M satisfying π1(Ui) = 1 for every i in I admits a set of transition
functions for ξ which are locally constant.

It follows from Corollary 37 that to any flat connection on a flat bundle, we can associate a set
of locally constant transition functions, and conversely, given such a family of transition functions,
it uniquely determines a flat connection. It is now easy to see that two families of locally constant
transition functions {gij} and {hij} relative to the same open covering {Ui} of the base space will
determine the same flat connection if and only if there exists locally constant maps λi : Ui → G
such that

gij = λ−1
i hijλj .

Actually, this is Lemma 10 in the case where the topological group is Gδ: Indeed, a locally constant
map λi : Ui → G is nothing else than a continuous map λi : Ui → Gδ.

Assuming for simplicity that the group G is connected, we can also conclude that the two flat
connections obtained from the two families of locally constant transition functions {gij} and {hij}
lie in the same path connected component of flat connections if and only if there exists a family of
homotopies

Hij : Ui ∩ Uj × [0, 1] −→ G

between gij and hij such that for each fixed t ∈ [0, 1], the family {Hij(., t)} is a system of locally
constant transition functions.

1.3.3 The space of representations

Let X be a connected topological space for which the covering theory applies. The canonical
example of flat bundle is the following (for the justification of the term ”canonical” see Proposition
40 below): Let h : π1(X)→ G be a group homomorphism. There is a natural left diagonal action
of the fundamental group of X on the product X̃ ×G given by

π1(X)× (X̃ ×G) −→ X̃ ×G
(γ, (x, g)) 7−→ (γ · x, h(γ)g).

The group G still acts (from the right) on the quotient π1(X)\(X̃ × G), and it is easy to check
that the G-bundle

ξh =
π1(X)\(X̃ ×G)

↓
X

is flat.

Proposition 40 Every flat principal G-bundle over X is isomorphic to a bundle of the form ξh,
for some homomorphism

h : π1(X) −→ G.
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This is standard. We refer the reader to [Mi58] (Lemma 1) for a proof. Observe that the
statement of the proposition can even be strenghtened to: Every principal Gδ-bundle over X is
isomorphic, as a Gδ-bundle, to a bundle of the form ξh.

Note that it follows that if the fundamental group of X is trivial, then there can exist no non
trivial flat bundles over X. This is the case for all spheres of dimension greater or equal to 2.
For example the frame bundles associated to their tangent bundles (and thus the tangent bundles
themselves) can not be flat.

Denote by Rep(π1(X), G) the space of all homomorphisms from π1(X) to G and endow it with
the compact-open topology. The following proposition is easy:

Proposition 41 If h0 and h1 are in the same path connected component in Rep(π1(X), G), then
the corresponding flat bundles ξh0 and ξh1 are isomorphic.

The idea of the proof is that any representation h : π1(X) → G gives rise to a canonical map
X → BG classifying the bundle ξh. Now, a path between two representations in Rep(π1(X), G)
will automatically produce a homotopy between the corresponding classifying maps, so that the
induced bundles will be isomorphic. Note that this isomorphism is really an isomorphism of G-
bundles, and certainly not of Gδ-bundles in general.

If the fundamental group of X is finitely generated, then it admits a presentation of the form

π1(X) = 〈s1, ...sk | ri(s1, ..., sk) = 1, i ∈ I〉.

It is thus only natural to view the space of representations as

Rep(π1(X), G) = {(g1, ..., gk) ∈ Gk | ri(g1, ..., gk) = 1G, i ∈ I}.

Assuming further that G is an algebraic group, the space Rep(π1(X), G) can naturally be endowed
with the structure of an algebraic variety. It consequently only has finitely many path connected
component and, as pointed out by Lusztig, we immediately obtain:

Corollary 42 If π1(X) is finitely generated and G is algebraic, then there exists only finitely many
isomorphism classes of flat bundles over X.

Consider on the space of representations Rep(π1(X), G) the natural equivalence relation given
by conjugation. More precisely, two homomorphisms h0 and h1 are equivalent (denoted h0 ∼ h1)
if and only if there exists g in G such that

h0(γ) = gh1(γ)g−1

for every γ in π1(X).
Now if the base space is a smooth connected manifold, say M , there is a one to one correspon-

dence between flat connections ω and equivalence classes of homomorphisms [h] in Rep(π1(X), G)/ ∼.
Assuming again for simplicity that G is connected, it is clear that two equivalent homomorphisms
h0 ∼ h1 are in the same path connected component of Rep(π1(X), G). Observe further that two
arbitrary homomorphisms h0 and h1 are in the same path connected component of Rep(π1(X), G)
if and only if the corresponding flat connections lie in the same path connected component in the
space of flat connections.



Chapter 2

Simplicial complexes

2.1 Definitions

Let V be a set. A simplicial complex K consists of a family of non empty subsets of V , called the
simplices of K, satisfying the two following properties:

• For every v in V , the set {v} belongs to K.

• If k belongs to K, then so does any subset of k.

A face of a simplex k is a simplex k′ which is contained in k, in which case we write k′ ≤ k. If
k′ is strictly contained in k, then it is said to be a proper face of k and we write k′ < k.

The set V is denoted by Vert(K). Its elements are identified with the corresponding singletons
of K and are called the vertices of K. A simplex of K containing precisely q + 1 distinct vertices
is a q-simplex and is said to have dimension q.

A subcomplex of a simplicial complex K is a subset of K which is itself a simplicial complex.
The union of all simplices of a simplicial complex K of dimension smaller or equal to q forms a
subcomplex of K, called the q-skeleton of K and denoted by Kq.

We say that a simplicial complex K is finite if its vertex set is finite. The dimension of K
is equal to the maximal dimension of its simplices. The simplicial complex K is said to be finite
dimensional if its dimension is finite. In this case, Kq = K for some q <∞. A simplicial complex
is further of finite type if all its q-skeletons are finite.

A simplicial map between two simplicial complexes K and L is a map

ϕ : Vert(K) −→ Vert(L)

such that if the subset k = {v0, ..., vq} of Vert(K) is a simplex of K, then the subset ϕ(k) =
{ϕ(v0), ..., ϕ(vq)} of Vert(L) is a simplex of L. Observe that if k is a q-simplex of K then ϕ(k) is
a simplex of L of possibly smaller dimension, for the set ϕ(k) does not necessarily consists of q+ 1
distinct points.

25
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Geometric realizations

Define Kor to be the set of all ordered simplices of K. For every simplex k = {v0, ..., vq} of K
denote by [v0, ..., vq] the ordered simplex in Kor obtained from k and the ordering of the vi’s by
their numbering.

To every simplicial complex K one can associate its geometric realization |K| which is a topo-
logical space constructed as follows: For every ordered q-dimensional simplex k = [v0, ..., vq], let
∆q
k be a copy of the standard q-dimensional simplex

∆q =

{
(t0, ..., tq) ∈ Rq+1

∣∣∣∣∣
q∑
i=0

ti = 1, ti ≥ 0

}
.

The space |K| is defined as the quotient

|K| =


∐
k∈Kor

k=[v0,...,vq ]
Dimk=q

∆q
k

 / ∼,

where the equivalence relation ∼ is defined as follows: Let k = [v0, ..., vq] and k′ = [w0, ..., wp] be
ordered simplices of dimension q, respectively p, of K. Two points (t0, ..., tq) ∈ ∆q

k and (r0, ..., rp) ∈
∆p
k′ are equivalent if and only if the (unordered) simplex underlying k′ is a face of the simplex

underlying k, or in other words {w0, ..., wp} is contained in {v0, ..., vq}, and moreover, letting
i0, ..., ip be the integers between 0 and n satisfying vi` = w`, the requirements

ti = 0 if i /∈ {i0, ..., ip},
tij = rj if i = ij for j ∈ {0, ..., p},

are fulfilled. Note that because the vertices of k and k′ are all distinct, the assignment ` 7→ i` is a
bijection between the sets {0, ..., p} and {i0, ..., ip} ⊂ {0, ..., q}. Each copy of a standard q-simplex
comes with the induced topology of Rq+1, and the space |K| is naturally endowed with the quotient
topology. It is compact if the simplicial complex K is finite.

If k = {v0, ..., vq} is a q-dimensional simplex of K, we write

q∑
i=0

tivi

for the image of the point (t0, ..., tq) ∈ ∆q
k in |K|. For every q-dimensional simplex k of K, denote

by |k| the image of ∆q
k in |K|. Recall that the interior int(∆q) of the standard q-simplex is given

as

int (∆q) = {(t0, ..., tq) ∈ Rq+1 |
q∑
i=0

ti = 1, ti > 0}.

Define the interior int(k) of k as the image of int(∆q
k) in |K|. Note that int(k) is in general not

open in |K|: It is only open as a subset of |k|. The space |K| is easily shown to be equal to the
disjoint union of the interior of all its simplices.
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Suppose now that K is a simplicial complex with countable vertex set Vert(K) = {v1, v2, ...}.
It is then possible to visualize |K| as a subspace of limq→∞Rq, where the limit is obtained from the
canonical inclusion Rq ↪→ Rq ⊕ {0} ↪→ Rq+1. Let {e1, e2, ...} be the canonical basis of limq→∞Rq.
The geometric realization |K| can naturally be identified with the union of the convex hull of all
points {ei0 , ..., eiq} whenever {si0 , ..., siq} is a simplex of K. The topology on |K| agrees with the
induced topology of limq→∞Rq.

A simplicial map ϕ : K → L induces a continuous map

|ϕ| : |K| −→ |L|,

which is defined as follows: For every point
∑q
i=0 tivi of |K|, where {v0, ..., vq} is a q-simplex of K

, the sum
∑q
i=0 ti is equal to 1 and the ti’s are all greater or equal to zero, define

|ϕ|

(
q∑
i=0

tivi

)
=

q∑
i=0

tiϕ(vi).

Note that this is well defined since ϕ being a simplicial map, the vertices ϕ(v0), . . . , ϕ(vq) of L
span a simplex in L so that the right hand side of the previous equality makes sense.

The geometric realization of a simplicial complex is of course quite rigid since it consists of
piecewise linear pieces. The following definition allows us to consider homeomorphy classes of
geometric realization of simplicial complexes, so that for example smooth manifolds can then be
considered.

Triangulations and refinements

A topological space X is said to be a polyhedron if there exists a simplicial complex K and a
homeomorphism

h : X −→ |K|.

The pair (K,h) is called a triangulation of X.
Observe that it is obviously possible to glue triangulations in the following sense: Let X be

a topological space which is the union of two subsets X1 ∪ X2. Let (K1, h1) and (K2, h2) be
triangulations of X1 and X2. Suppose that there exists subcomplexes L1 of K1 and L2 of K2 and
an isomorphism ϕ : L1 → L2 such that the diagram

X1 ∩X2 −→ L1

↘ ↓
L2

commutes. A simplicial complex K is then obtained as follows: Define K as the quotient of the
disjoint union K1

∐
K2 by the equivalence relation k1 ∼ k2 if k1, respectively k2, belongs to K1,

respectively K2, and k2 = ϕ(k1). The map (h1, h2) : |K1|
∐
|K2| → X factors through |K|, so that

we obtain the desired triangulation of X.
It is often very useful to triangulate simplicial complexes themselves, or more precisely their

geometric realizations. Of course, we do not want to triangulate them arbitrarily, for we would
like the triangulation to restrict to a triangulation of each simplex of the simplicial complex. This
is the purpose of the next definition.
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A refinement of a simplicial complex K is a pair (L, r) consisting of a simplicial complex L and
a homeomorphism

r : |K| −→ |L|

satisfying
r(Kq) ⊂ Kq

for every q ≥ 0. The index of a refinement (L, r) of a simplicial complex K, which we denote by
[L : K], is the maximal number of simplices in the triangulation of L restricted to any simplex of
K. More precisely, we have

[L : K] = maxk∈K]
{
`

∣∣∣∣ r−1(|`|) ⊂ |k|,
the vertices of ` are distinct

}
.

Similarly, we define the index of degree d of a refinement, to be

[L : K]d = maxk∈K]
{
`

∣∣∣∣ r−1(|`|) ⊂ |k|,
` contains d+ 1 distinct vertices

}
.

The most important example of refinement is the barycentric subdivision Kbar of a simplicial
complex: Let K be a simplicial complex. Define the simplicial complex Kbar to have vertices
Vert(Kbar) = {k ∈ K | the vertices of k are all distinct}, and {k0, ..., kq} is a simplex of Kbar if
and only if k0 ≤ ... ≤ kq. It is clear that we have thus defined a simplicial complex. The inverse of
the homeomorphism r : |K| → |Kbar| is most easily defined as

|Kbar| −→ |K|
Σqi=0tiki 7−→ Σqi=0tib

ki ,

where if k = {v0, ..., vq} is a q-dimensional simplex of K, its barycenter bk ∈ |k| ⊂ |K|, is given as

bk =
1

q + 1
v0 + · · ·+ 1

q + 1
vq.

It was believed for quite some time that two triangulations of the same space always admitted
a common refinement. This problem, named Hauptvermutung or Principle Conjecture can more
precisely be formulated as follows: If (K,h) and (K ′, h′) are two triangulations of some topological
space X, then there exists a simplicial complex L and refinements (L, r) of K and (L, r′) of K ′.
It was proven to be true for n = 3 by Moise ([Mo52]), but counterexamples were constructed by
Milnor for every n ≥ 6 ([Mi61]). Observe that in the semi-algebraic setting the Hauptvermutung
holds (see the remark after Theorem 88).

Stars

Let K be a simplicial complex and k be a simplex of K. Define the star of k by

star(k) =
⋃
{Int(t) | k ≤ t} ⊂ |K|.

The following lemmas on stars are obvious.
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Lemma 43 Let K be a simplicial complex, and k, ` two simplices of K. Then k is a face of k′ if
and only if star(k) ⊃star(k′).

Proof. The simplex k is a face of k′ if and only if

{` | k ≤ `} ⊂ {` | k′ ≤ `},

which is equivalent to

star(k) =
⋃

{` | k≤`}

Int(`) ⊃
⋃

{` | k′≤`}

Int(`) = star(k′).

Lemma 44 Let K be a simplicial complex. The family

{star(v)}v∈Vert(K)

furnishes a covering of |K| by open and contractible sets.

Lemma 45 Let K be a simplicial complex and v0, ..., vq in Vert(K). The set {v0, ..., vq} is a
simplex of K if and only if

q⋂
i=0

star(vi) 6= ∅.

2.2 Examples

We give here three examples of triangulations in increasing difficulty. The last example will be
important for the proof of our main theorem, or more precisely for the proof of the Technical
Lemma 91.

1. Let k = {v0, ..., vq} be a q-dimensional simplex and let us exhibit a simple triangulation of
|k| × [0, 1]. Define, for every i between 0 and q,

ai = (ei, 0) and bi := (ei, 1) ∈ ∆q × [0, 1].

Define a simplicial complex with vertex set {ai, bi}i=0,...,q and simplices

{a0, . . . , ai, bi, . . . , bq}, ∀i = 0, . . . , q,

and all their subsets. The homeomorphism between the geometric realization of the just de-
scribed simplicial complex and |k|×[0, 1] is given by sending the simplex {a0, . . . , ai, bi, . . . , bq}
to the convex hull of the corresponding points in |k| × [0, 1]. This triangulation contains pre-
cisely q + 1 simplices of dimension q + 1.

2. Let now K be a q-dimensional simplicial complex with countable vertex set, and let us
generalize the example above to a triangulation of |K|× [0, 1]. Put an order < on the vertices
of K. Define a simplicial complex with vertex set

{(v, 0), (v, 1)}v∈VertK
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and simplices
{(v0, 0), .., (vi, 0), (vi, 1), .., (vq+1, 1)},

where {v0, .., vi, .., vq+1} is a simplex ofK with v0 < .. < vi < ..vq+1, for some i ∈ {0, ..., q+1},
and all their subsets. This gives a triangulations of |K| × [0, 1] whose number of (q + 1)-
dimensional simplices is precisely

(q + 1) · ]{q-dimensional simplices of K}.

3. Let finally (L, r) be a refinement of the q-dimensional simplicial K with countable vertex set
and let us exhibit a triangulation (T, h) of |K| × [0, 1],

h : |K| × [0, 1] −→ |T |,

having the properties that

• (T, h) restrict to a triangulation T0, respectively T1, of |K| × {0}, resp. |K| × {1},
• there exists an isomorphism

ϕ0 : T0 −→ K

such that the composition of the maps

|K| ↪→ |K| × {0}
h|T0−−−−→ |T0|

|ϕ0|−−−−→ |K|

is the identity on |K|,
• there exists an isomorphism

ϕ1 : T1 −→ L

such that the composition of the maps

|L| r−1

−−−−→ |K| ↪→ |K| × {1}
h|T1−−−−→ |T1|

|ϕ1|−−−−→ |L|

is the identity on |L|,
• the number of (q + 1)-dimensional simplices in T is bounded by

(q + 1) · [L : K]q · ]{q-dimensional simplices of K}.

Let T be the simplicial complex with vertex set

VertT = {(v, 0)}v∈VertK ∪ {(w, 1)}w∈VertL

and simplices
{(v0, 0), .., (vi, 0), (w0, 1), ..(wq−i+1, 1)}

whenever there exists a simplex {v0, ..., vi, vi+1, ..., vq} of K with vi < vj whenever i < j and
such that

r−1(|{w0, ..., wq−i+1}|) ⊂ |{vi, ..., vq}|.
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The inverse of the homeomorphism h : |K| × [0, 1] → |T | is obtained as follows: Let x be a
point in the geometric realization of some simplex {(v0, 0), .., (vi, 0), (w0, 1), ..(wq−i+1, 1)} of
T . The point x can be written uniquely as

x = (1− t)(x0, 0) + t(x1, 1),

where x0 belongs to |{v0, ..., vi}| and x1 belongs to |{w0, ..., wq−i+1}|. Define a map h′ :
|T | → |K| × [0, 1] by sending the point x to

((1− t)x0 + tr−1(x1), t) ∈ |K| × [0, 1].

This is well defined since there exists a simplex of K containing both (1− t)x0 and tr−1(x1).

2.3 Simplicial approximation

Let K and L be simplicial complexes, ϕ : K → L a simplicial map, and f : |K| → |L| a continuous
map. The map ϕ is said to be a simplicial approximation to f if

f(star(v)) ⊂ star(ϕ(v))

for every v in Vert(K).
Somehow, if a simplicial map ϕ is a simplicial approximation to some continuous map f , it

means that the geometric realization |ϕ| and the map f are not so far away from each other. We
see for example from the next lemma that the image of any point by the map f always lies in the
same simplex than its image by |ϕ|.

Lemma 46 Let K and L be simplicial complexes, ϕ : K → L a simplicial map, and f : |K| → |L|
a continuous map. Then ϕ is a simplicial approximation to f if and only if for every x in |K|, if
x belongs to Int(`), for some simplex ` of L, then |ϕ|(x) lies in `.

Proof. Suppose that ϕ is a simplicial approximation to f . Let x be a point in |K|, belonging to
Intk, for some uniquely determined simplex k = {v0, ..., vq} of K. The image f(x) of x belongs to
Int`, for some uniquely determined simplex ` of L. Since ϕ is a simplicial approximation to f we
have

f(x) ∈ f(∩qi=0starvi) ⊂ ∩qi=0f(starvi) ⊂ ∩qi=0star(ϕ(vi)),

and as the latter intersection is a disjoint union of interior of simplices containing f(x) which
belongs to the interior of ` it follows that, for every i between 0 and q,

int` ⊂ star(ϕ(vi)),

which is equivalent to ϕ(vi) ∈ `. Now, since ϕ(x) is a convex linear combination of the ϕ(vi)’s,
which all belong to `, it follows that x also belongs to `.

Conversely, suppose that for every x in |K|, if x belongs to Int(`), for some simplex ` of L, then
|ϕ|(x) lies in `. Let v be a vertex of K. For every x in starv, the image f(x) of x belongs to the
interior of a simplex ϕ(x) belongs to, and thus ϕ(v) belongs to. It follows that

f(starv) = f(∪v∈kintk) = ∪v∈kf(intk) ⊂ ∪ϕ(v)∈`int` = star(ϕ(v)),

so that ϕ is a simplicial approximation to f.
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Lemma 47 Let K and L be simplicial complexes, ϕ : K → L a simplicial map, and f : |K| → |L|
a continuous map. If ϕ is a simplicial approximation to f , then the (positive) linear convex
combination of f and |ϕ| is well defined and provides a homotopy between the maps f and |ϕ|.

Proof. By Lemma 46 the image |ϕ|(x) of any point x of |K| lies in the smallest simplex f(x)
belongs to, say `. It follows that for every t ∈ [0, 1], the point

(1− t)f(x) + t|ϕ|(x)

is well defined and belongs to `. The map

|K| × [0, 1] −→ |L|
(x, t) 7−→ (1− t)f(x) + t|ϕ|(x)

is the desired homotopy between f and |ϕ|.
It follows from Lemma 47 that not every continuous map between the geometric realization of

two simplicial complexes admits a simplicial approximation: there are in general infinitely many
homotopy types of continuous maps f : |K| → |L| whereas the simplicial maps ϕ : K → L are in
finite number as soon as K and L are finite. One useful criterion for a simplicial approximation to
exist is the following easy consequence of Lemma 46:

Proposition 48 Let K and L be two simplicial complexes and f : |K| → |L| a continuous map
such that for every simplex k of K, there exists a simplex ` of L with f(Int(k)) ⊂Int(t). Then
there exists a simplicial approximation to f .

Proof. Define a map ϕ :Vert(K) →Vert(L) as follows: Let v be a vertex of K, then by the
assumption of the proposition there exists a simplex `v of L which contains f(v). Let ϕ(v) to be
any of the vertex of `v.

Let us check that ϕ actually is a simplicial map. Let k = {v0, ..., vq} be a simplex of K
and let `i, for every i between 0 and q, be the simplex of L for which f(vi) ∈int`i, which is the
smallest simplex of L containing f(vi). Now, let ` be the simplex of L satisfying f(intk) ⊂int`.
By continuity of f it follows that f(|k|) ⊂ |`|. As f(vi) belongs to |`| for every i between 0 and q,
it follows that `i ≤ `. For every i in {0, ..., 1} the vertex ϕ(vi) belongs to `i and thus to `, so that
{ϕ(v0), ..., ϕ(vq)} is a subset, and hence a face of `.

By construction, the simplicial map ϕ satisfies the hypothesis of Lemma 46, so that it is a
simplicial approximation to f .

As pointed out earlier, simplicial approximation of continuous maps f : |K| → |L| do not
always exist. However, it is in any case possible to find a refinement of K for which the map f
admits a simplicial approximation (see Theorem 49 below). In certain cases, for example in the
semi-algebraic setting, one can refine the simplicial complex K sufficiently for the hypothesis of
Proposition 48 to be satisfied by pulling back, by the continuous map f , all the simplices of L, and
finding a refinement of K, which restricts to a triangulation of all the f−1(`) ∩ k, for every ` in L
and k in K. We will use this argument in the proof of our main theorem. In general this method
does not work, but we nevertheless have:

Theorem 49 (Simplicial Approximation) Let K and L be simplicial complexes and f : |K| →
|L| a continuous map. Then there exists a refinement (K ′, r) of K and a simplicial approximation
ϕ : K ′ → L to f ◦ r−1 : |K ′| → |L|.

As we do not need the Simplicial Approximation Theorem 49 in any of our proofs, we refer the
interested reader to [Ro88, Theorem 7.3].
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2.4 Simplicial cohomology

Definitions

Let K be a simplicial complex. Recall that Kor is defined as the set of all ordered simplices of
K. We denote by [v0, ..., vq] the ordered simplex in Kor given by the simplex {v0, ..., vq} and the
ordering obtained from the numbering of the vi’s. It is also convenient to define Kq

or, where q
is any non negative integer, as the subset of Kor consisting of ordered simplices containing q + 1
vertices (not necessarily distinct).

Define the space Cq(K) of simplicial q-chains of K to be the (real) vector space generated by
the family of oriented q-simplices Kq

or and satisfying the relations

[v0, ..., vq] = sign(σ)[vσ(0), ..., vσ(q)]

for every [v0, ..., vq] ∈ Kq
or and every permutation σ in Sq+1. Observe that if the vertices v0, ..., vq

are not all distinct, then [v0, ..., vq] = 0. In particular, we see that Cq(K) = 0 whenever q is strictly
bigger than the dimension of K. The boundary operator

∂ : Cq(K) −→ Cq−1(K)

is defined on the generators of Cq(K) as

∂ ([v0, ..., vq]) =
q∑
i=0

(−1)i[v0, ..., v̂i, ..., vq],

for every [v0, ..., vq] in Kq
or, and extended linearly to the whole of Cq(X). It is easy to check that

∂2 = 0.
The space Cqsimpl(K) of simplicial q-cochains of K is defined to be the algebraic dual of the

space Cq(K) of simplicial q-chains, so that

Cqsimpl(K) = {c : Cq(K)→ R | c is linear}.

The boundary operator ∂ has for dual the coboundary operator

δ : Cqsimpl(K) −→ Cq+1
simpl(K)

given, for every c in Cqsimpl(K) and z in Cq+1(K) as

δc(z) = ∂∗c(z) = c(∂z).

Since ∂2 = 0 it clearly follows that δ2 = 0.
We can now of course consider the homology and cohomology of the chain and cochain com-

plexes (Cq(K), ∂) and (Cqsimpl(K), δ). As usual, we define Zq(K) =Ker∂ ⊂ Cq(K) and Zqsimpl(K) =Kerδ ⊂
Cqsimpl(K) to be the vector spaces of simplicial q-cycles, respectively q-cocycles, and their subspaces
Bq(K) =Im∂ and Bqsimpl(K) =Imδ to be the spaces of simplicial q-boundaries, respectively q-
coboundaries. The q-th simplicial homology and cohomology of K are then defined as the quotients

Hq(K) = Zq(K)/Bq(K)
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and
Hq

simpl(K) = Zqsimpl(K)/Bqsimpl(K).

Let K and L be two simplicial complexes, and let ϕ : K → L be a simplicial map between
them. The map ϕ naturally induces a map ϕ∗ : Cq(K)→ Cq(L) between the corresponding spaces
of q-chains: If [v0, ..., vq] is an oriented simplex, then

ϕ([v0, ..., vq]) = [ϕ(v0), ..., ϕ(vq)].

The map ϕ∗ is easily checked to be a chain map (i.e. ∂ϕ∗ = ϕ∗∂). Its dual we denote by
ϕ∗ : Cqsimpl(L) → Cqsimpl(K). It is then of course a cochain map, so that it induces a well defined
map, which we still denote by ϕ∗, in the corresponding cohomologies:

ϕ∗ : Hq
simpl(L) −→ Hq

simpl(K).

On the space of simplicial cochains K we can define a simplicial norm as follows:

‖c‖Ksimpl = sup{c(k̃) | k̃ an ordered q-simplex of K},

for every simplicial cochain c ∈ Cqsimpl(K). If K is finite, then the simplicial norm also is. In
cohomology we then have

‖[c]‖Ksimpl = inf{‖c′‖Ksimpl | [c
′] = [c]}.

Simplicial versus singular cohomology

Let K be a simplicial complex. Every oriented q-dimensional simplex k = [v0, ..., vq] in Kq
or clearly

determines a singular simplex on |K| as follows: Define σk ∈ Cq(|K|) as

σk : ∆q −→ |K|
(t0, ..., tq) 7−→ (t0, ..., tq) ∈ ∆q

k.

As the equality k = [v0, ..., vq] =sign(τ)[vτ(0), ..., vτ(q)] =sign(τ) (τ · k) holds in the space simplicial
chains Cq(K) on K, but the corresponding equality σk =sign(τ)στk is in general false in the space
of singular chains Cq(|K|) on the geometric realization of K, we need to alternate over the possible
σk to obtain a well defined linear map

IdK[ : Cq(K) −→ Cq(|K|),

which sends the oriented q-dimensional simplex k = [v0, ..., vq] in Kq
or to the alternating sum∑

τ∈Sq+1

sign(τ)στk.

The map IdK[ is easily checked to be a chain map. It induces a cochain map

Id[K : Cqsing(|K|) −→ Cqsimpl(K),

which in turns determines a map

Id[K : Hq
sing(|K|)→ Hq

simpl(K),

which we still denote by Id[K between the singular cohomology of the topological space |K| and
the simplicial cohomology of K.
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Theorem 50 The map Id[K : Hq
sing(|K|)→ Hq

simpl(K) is an isomorphism for all q ≥ 0.

The homological case of this theorem is theorem 7.22 of [Ro88].
More generally, a continuous map h : |K| → X between the realization of a simplicial complex

K and a topological X induces a map between the alternating singular cochains of X and the
simplicial cochains of K. Indeed, define

h[ : Cqsing(X) −→ Cqsimpl(K)

as the composition of the map

h∗ : Cqsing(X) −→ Cqsing(|K|)

and the map
Id[K : Cqsing(|K|) −→ Cqsimpl(K).

The induced map h[ is a chain map, since both h∗ and Id[K are, and hence induces a map, which
we denote again by h[, between the singular cohomology of X and the simplicial cohomology of
K:

h[ : Hq
sing(X) −→ Hq

simpl(K).

The invariance by homotopy now is a straightforward consequence of the analogous result in the
topological setting. More precisely:

Theorem 51 Let h ' f : |K| → X be continuous homotopic maps, then the induced maps

h[ = f [ : Hq
sing(X) −→ Hq

simpl(K)

are equal.

Proof. By definition we have h[ = Id[K ◦ h∗ and f [ = Id[K ◦ f∗, but as h and f are homotopic, it
follows that the induced maps

h∗ = f∗ : Hq
sing(X) −→ Hq

sing(|K|)

are equal, so that h[ = f [ as claimed.
From the very definition of the induced map h[ we now obtain the following easy relation at

the cochain level:

Lemma 52 Let K be a simplicial complex, X,Y topological spaces, and h : |K| → X and f : X →
Y continuous maps. Then

h[ ◦ f∗ = (f ◦ h)[ : Cqsing(Y ) −→ Cqsimpl(K).

Proof. We have

h[ ◦ f∗ =
(
Id[K ◦ h∗

)
◦ f∗ = Id[K ◦ (h∗ ◦ f∗) = Id[K ◦ (f ◦ h)∗ = (f ◦ h)[,

which finishes the proof of the lemma.
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Lemma 53 Let K and L be simplicial complexes, and ϕ : K → L a simplicial map. Then the
diagram

Cqsing(|L|)
Id[

L−−−−→ Cqsimpl(L)y|ϕ|∗ yϕ∗
Cqsing(|K|)

Id[
K−−−−→ Cqsimpl(K)

commutes.

Proof. Let c be a singular cochain in Cqsing(|L|) and [v0, ..., vq] an oriented simplex in Kq
or. We

have

(ϕ∗ ◦ Id[L)(c)([v0, ..., vq]) = (Id[L)(c)([ϕ(v0), ..., ϕ(vq)])
=

∑
τ∈Sq+1

sign(τ)c([ϕ(vτ(0)), ..., ϕ(vτ(q))])

=
∑

τ∈Sq+1

sign(τ)ϕ∗(c)([vτ(0), ..., vτ(q)])

=
(
Id[K ◦ ϕ∗

)
(c)([v0, ..., vq]),

which proves the lemma.

Lemma 54 Let K and L be simplicial complexes, X a topological space, h : |L| → X a continuous
map, and ϕ : K → L a simplicial map. Then

ϕ∗ ◦ h[ = |ϕ|[ ◦ h∗ : Cqsing(X) −→ Cqsimpl(K).

Proof. By the very definition of h[ we have

ϕ∗ ◦ h[ = ϕ∗ ◦ Id[L ◦ h∗,

which by Lemma 53 is equal to

Id[K ◦ |ϕ|∗ ◦ h∗ = |ϕ|[ ◦ h∗,

as desired.

Refinements

It is in general not possible to induce a canonical simplicial chain map starting from a continuous
map h : |K| → |L| between the realizations of two simplicial complexes. However, if (L, h) happens
to be a refinement of K, so that the map h maps the q-skeleton of K into the q-skeleton of L for
every q ≥ 0, we can define a map h] : Cq(K)→ Cq(L) inductively as follows: For q = 0, define

h]([v]) = [h(v)]

for every vertex v of K. This is well defined since h(Vert(K)) ⊂Vert(L). Suppose now that the
map h] is defined on the (q − 1)-chains. Let k be a q-simplex of K, and k̃ ∈ Cq(K) the simplex
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k together with the choice of an ordering of its vertices. Let `1, ..., `r be distinct q-simplices of L
such that

h(|k|) = ∪ri=1|`i|.

For every i between 1 and r let ˜̀i ∈ Cq(L) be the simplex `i together with a choice of ordering of
the vertices of `i such that

r∑
i=1

∂ ˜̀i = h](∂k).

Finally, define

h](k) =
r∑
i=1

˜̀
i.

By definition, h] is a chain map, so that its dual h] is a cochain map and hence defines a map

h] : Hq
simpl(L) −→ Hq

simpl(K)

in cohomology which we still denote by h].
Observe that arbitrary maps h : |K| → |L| can now be handled by passing to a refinement of

K on which a simplicial approximation to h can be found.

Proposition 55 Let K be a simplicial complex, and (L, r) a refinement of K. Then for any
c ∈ Cqsimpl(L)

‖r](c)‖Ksimpl≤ [L : K]q ‖c‖Lsimpl .

Moreover, the same inequality holds in cohomology:

‖ [r](c)]‖Ksimpl≤ [L : K]q ‖ [c]‖Lsimpl .

Proof. For the first inequality, we have

‖r](c)‖Ksimpl = maxs∈Kq
or
|r]c(s)| by definition,

= |r]c(s0)| for some s0 ∈ Kq
or,

= |
∑r
i=1 c(ti)|

where h(s) = ∪ri=0ti
and r ≤ [L : K]q,

≤ rmaxi∈{1,...,q} |c(ti)|
≤ [L : K]q ‖c‖Lsimpl .

The second inequality then follows by a standard argument:

‖ [r](c)]‖Ksimpl = inf{‖b‖Ksimpl| b ∈ Z
q
simpl(K), [b] = h](c)}

≤ inf{‖r](c′)‖Ksimpl| c′ ∈ Z
q
simpl(L), [c] = [c′]}

≤ inf{[L : K]q ‖c′ ‖L| c′ ∈ Zqsimpl(L), [c] = [c′]}
by the first inequality,

= [L : K]q ‖c‖Lsimpl .

More generally, one can similarly show:



38 CHAPTER 2. SIMPLICIAL COMPLEXES

Proposition 56 Let K be a simplicial complex, and (L, r) a refinement of K. Let c be a simplicial
cochain in Cqsimpl(L) and denote by I the subset of R consisting of the image by c on all oriented
q-simplices of L,

I = {c(`) | ` ∈ Lqor},

Then the cochain r](c) takes values in{
r∑
i=1

ni

∣∣∣∣ ni ∈ I, r ≤ [L : K]
}

on oriented q-simplices of K.

Let now (L, r) be a refinement of the simplicial complex K. It is in general not true that
h]◦Id[L =Id[K ◦ h∗ : Cqsing(|L|)→ Cqsimpl(K). However the equality holds at the cohomology level:

Proposition 57 Let (L, r) be a refinement of the simplicial complex K. Then

r] ◦ Id[L = Id[K ◦ r∗ : Hq
sing(|L|)→ Hq

simpl(K).

Proof. Recall that two cochains are cohomologous if and only if they agree on all cycles. Let
c ∈ Zqsing(|L|) be a singular cocycle and z ∈ Zq(K) a simplicial cycle. Let us compute, on one hand

r] ◦ Id[L(c)(z) = Id[L(c)(r](z)),

and on the other hand
Id[K ◦ r∗(c)(z) = r∗(c)(σz) = c(r∗(σz)).

The desired equality now follows from the fact that r](z) − r∗(σz) is a boundary in the singular
chain complex Cq(|L|) so that, as c is a cocycle, c(r](z)− r∗(σz)) = 0.

Proposition 58 Let X be a topological space, (L, r) a refinement of the simplicial complex K,
and f : |L| → X a continuous map. Then

(f ◦ r)[ = r] ◦ f [ : Hq
sing(X)→ Hq

simpl(K).

Proof. This is an immediate consequence of Proposition 57:

(f ◦ r)[ = Id[K ◦ (f ◦ r)∗

= Id[K ◦ r∗ ◦ f∗

= r] ◦ Id[L ◦ f∗

= r] ◦ f [.
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Characteristic classes

3.1 Primary Characteristic classes

Let G be a topological group. A characteristic class c assigns to any principal G-bundle ξ over a
topological space B a cohomology class c(ξ) ∈ Hq(B) such that if f : B′ → B is a continuous map
then c(f∗(ξ)) = f∗(c(ξ)) ∈ Hq(B′).

Characteristic classes are easily seen to be in one to one correspondence with the cohomology of
some (and hence any) classifying space BG. Indeed, a characteristic class c in particular assigns to
the universal principal G-bundle ξG over the classifying BG the cohomology class c(ξG) ∈ Hq(BG).
Conversely, if cG is a cohomology element in Hq(BG) define a characteristic class as follows: For
every principal G-bundle ξ over B, let f : B → BG be a classifying map for ξ, and define the value
c(ξ) of the characteristic class on ξ as

c(ξ) = f∗(cG) ∈ Hq(B).

This is well defined since the classifying map f is uniquely defined up to homotopy, and two
homotopic maps induce the same map in cohomology. Also, if furthermore g : B′ → B is a
continuous map, then f ◦ g : B′ → BG is a classifying map for the bundle g∗(ξ), so that c(g∗(ξ)) =
g∗(c(ξ)) as desired.

If G is a Lie group, a standard way to compute characteristic classes is via the Chern-Weil
homomorphism whose description is the object of the next section.

3.1.1 The Chern-Weil homomorphism

Let G be a Lie group with Lie algebra g. Define

Iq(G) = {f : g⊗ · · · ⊗ g→ C | f linear and G-invariant},

where the action of G is induced by the adjoint representation Ad: G→GL(g). More precisely for
every g in G, define

g · f(v1 ⊗ · · · ⊗ vq) = f(Ad(g−1)v1 ⊗ · · · ⊗Ad(g−1)vq)

39
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for every v1, . . . , vq in g and f : g⊗ · · · ⊗ g→ C linear. One can naturally define a multiplication

Iq(G)⊗ Ip(G) −→ Iq+p(G)

turning
I∗(G) = ∪q≥0I

q(G)

into a graded algebra, the algebra of invariant polynomials on g.
The idea of the Chern-Weil theory is to assign to any differentiable principal G-bundle over

some smooth manifold M a homomorphism from the algebra of invariant polynomials on g to the
cohomology of the base space M ,

wξ : I∗(G) −→ H∗(M),

with all the desirable naturality properties.
Let f ∈ Iq(G) be an invariant polynomial, P a smooth manifold, and α1, ..., αq differentiable

forms with coefficient in g on P of degree i1, ..., iq respectively (so that αj ∈ Aij (P, g) for every j
in {1, ..., q}). A complex valued differential form f(α1 ∧ ... ∧ αq) of degree d = i1 + ...+ iq on P is
naturally defined as follows: For every u in P and X1, ..., Xd define

f(α1 ∧ ... ∧ αq)u(X1, ..., Xd) = f((α1 ∧ ... ∧ αq)u(X1, ..., Xd)) ∈ Ad(P,C).

Let now ξ = {π : P → M} be a differentiable principal G-bundle endowed with a connection
form ω. (Such a connection exists by virtue of corollary 27.) Denote by Ω ∈ A2(P, g) the corre-
sponding curvature. By the above described procedure, we obtain from any invariant polynomial
f ∈ Iq(G) a complex valued differential form of degree 2q on P which we denote by f(Ω) as

f(Ω) = f(Ωq) = f(Ω ∧ ... ∧ Ω) ∈ A2q(P,C).

We now want to show that

1. f(Ω) descends to a 2q-form f(Ω) ∈ A2q(M,C) on M ,

2. the form f(Ω) is closed,

3. the cohomology class [f(Ω)] is independent of the choice of the connection form.

From this we will obtain at once the desired conclusions. Let us thus prove those three asser-
tions.

1. This is obvious. Indeed, since Ω is horizontal, f(Ω) surely also is, and Ω being equivariant
and f invariant, f(Ω) is an invariant horizontal 2q-form so that it is the lift of a 2q-form
on M , which is unique since π being surjective, the induced map π∗ : A∗(M) → A∗(P ) is
injective. We denote it by f(Ω) ∈ A2q(M).

2. Since the map π∗ : A∗(M,C) → A∗(P,C) is injective, it is enough to show that f(Ω) ∈
A∗(P,C) is closed. Indeed, if df(Ω) = 0, then

π∗(df(Ω)) = d(π∗(f(Ω))) = df(Ω) = 0,
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and thus df(Ω) = 0. By Lemma 32 we know that df(Ω) = Df(Ω) so that

df(Ω) = Df(Ω)

= qf(DΩ ∧ Ωq−1)
= 0,

where the last equality follows from Bianchi’s identity DΩ = 0 (Proposition 31).

3. Let ω0 and ω1 be two connection forms on ξ. Define ωt to be the connection form consisting
of the convex linear combination of ω0 and ω1. More precisely,

ωt = (1− t)ω0 + tω1,

for every t ∈ R. Denote by Ωt the corresponding curvature. Define a (2q−1)-form Tf(ω0, ω1)
on P as

Tf(ω0, ω1) = q

∫ 1

0

f((ω1 − ω0) ∧ Ωq−1
t )dt ∈ A2q−1(P,C).

Being G-equivariant and horizontal, the form Tf(ω0, ω1) descends to a unique form on M
which we denote by Tf(ω0, ω1) ∈ A2q−1(M,C). The assertion follows at once from the
following proposition.

Proposition 59 Let f ∈ Ik(G) be an invariant polynomial and ω0, ω1 two connection forms
on ξ with corresponding curvature Ω0,Ω1. Then f(Ωk0) and f(Ωk1) differ by a coboundary.
More precisely,

dTf(ω0, ω1) = f(Ωk1)− f(Ωk0).

Proof. By the injectivity of π∗ : A∗(M,C)→ A∗(P,C) it is enough to show that

dTf(ω0, ω1) = f(Ωk1)− f(Ωk0).

Consider the (2q − 1)-form f((ω1 − ω0) ∧ Ωq−1
t ) on P . It is G-equivariant and horizontal.

Hence it descends to a (2q − 1)-form on M so that by Lemma 32,

df((ω1 − ω0) ∧ Ωq−1
t ) = Dtf((ω1 − ω0) ∧ Ωq−1

t ).

Recalling Bianchi’s identity DtΩt = 0 (proposition 31) and the equality d
dtΩt = Dt(ω1 − ω0)

(Lemma 34) we compute

qdf((ω1 − ω0) ∧ Ωq−1
t ) = qDtf((ω1 − ω0) ∧ Ωq−1

t )

= qf(Dt(ω1 − ω0) ∧ Ωq−1
t )

= qf(
d

dt
Ωt ∧ Ωq−1

t )

=
d

dt
f(Ωqt ),
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and finally conclude

dTf(ω0, ω1) = q

∫ 1

0

(df((ω1 − ω0) ∧ Ωq−1
t ))dt

=
∫ 1

0

d

dt
f(Ωqt )dt

= f(Ω1)− f(Ω0).

We have thus constructed a map

wξ : I∗(G) −→ H∗(M)
f 7−→ [f(Ω)]

which is easily checked to be a homomorphism (even an algebra homomorphism). This is called
the Chern-Weil homomorphism.

Universal Chern-Weil homomorphism

The Chern-Weil homomorphism can be extended to the universal case, so as to obtain a map

Iq(G) −→ H2q(BG).

Observe that some care is needed since the classifying space BG is not a manifold. This can be
handled in various ways: One can consider BG as a limit of manifolds, in which case the existence
of the Chern-Weil homomorphism in the universal case follows from the stability properties of the
cohomology of the limit. Alternatively, the classifying space BG can be viewed as a simplicial
manifold and as the Chern-Weil theory has been extended to simplicial manifolds by Dupont in
[Du76], the existence of the universal Chern-Weil homomorphism follows.

Note that the problem of understanding characteristic classes does not reduce to a mere de-
scription of the algebra of invariant polynomials I∗(G) since the Chern-Weil homomorphism is in
general not an isomorphism: For example, it is not surjective for SLnR whenever n is even, for, as
we shall see later, the Euler class ε ∈ H2n(BSLnR) is not in its image, and it is not injective for
GLnC. However, for compact groups it was proven by Cartan that:

Theorem 60 If K is a compact Lie group, then the Chern-Weil homomorphism I∗(K)→ H2∗(BK)
is an isomorphism.

Observe that since every principal G-bundle, where G is a Lie group with finitely many con-
nected components, admits a reduction to any of its maximal compact subgroup (see Theorem
15), the classifying spaces BG and BK are homotopically equivalent, so that their corresponding
cohomologies are isomorphic. The cohomology of BG is thus isomorphic to I∗(K):

Iq(G) −−−−→ H2q(BG)y y∼=
Iq(K)

∼=−−−−→ H2q(BK).
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3.1.2 Characteristic classes of flat bundles

If a principal G-bundle ξ happens to be flat, it can, by definition, be endowed with a connection
with vanishing curvature, so that the image of the Chern-Weil homomorphism is trivial. This in
turn implies that the composition

Iq(G) −→ H2q(BG) −→ H2q(BGδ)

is the zero map.
In particular, the well known Chern and Pontrjagin classes are trivial for flat bundles. Also,

if the Chern-Weil homomorphism is surjective, there can be no nontrivial characteristic classes of
flat bundles. This is the case for compact groups (Theorem 60), for GLn(R) when n odd (which is
generated by the Pontrjagin classes), GLn(C) (generated by the Chern classes), etc.

Observe that even though the triviality of the Chern and Pontrjagin classes is almost a tautology
in the differential setting, it is nevertheless a difficult result when using the topological definition
of the Chern and Pontrjagin classes (see [KaTo68] and [KaTo75]).

Fortunately, there are nontrivial characteristic classes of flat bundles. The first examples of
both nontrivial flat bundles and non trivial characteristic classes were given by Milnor in [Mi58],
where flat bundles over surfaces are characterized in terms of their Euler class. We will examine
the example of the Euler class carefully below.

More characteristic classes of flat bundles were exhibited by Dupont in [Du78, Chapter 9]. The
author considers the commutative diagram

Iq(G) −→ H2q(BG) −→ H2q(BGδ)
↓ ↓

Iq(K) −→ H2q(BK),

where K is a maximal compact subgroup of G. As mentioned earlier the lower horizontal arrow is
an isomorphism (because K is compact), and also the cohomologies of BG and BK are isomorphic.
The map H2q(BG) → H2q(BGδ) is thus completely equivalent to the homomorphism Iq(K) →
H2q(BGδ), which is explicitly described by Dupont, and provides us with concrete non trivial
characteristic classes of flat bundles. For example if G is the real symplectic group

G =
{
g ∈ GL2nR

∣∣∣∣gt( 0 1
−1 0

)
g =

(
0 1
−1 0

)}
,

then any maximal compact subgroup K is isomorphic to the unitary group U(n), and the Chern
polynomials in I∗(K) lead to non trivial characteristic classes inH2q(BGδ). In particular for n = 1,
the symplectic group is isomorphic to SL2R, the first Chern polynomial in I1(U(1)) is sent to the
Euler class in H2(BSL2Rδ) and the very description of the homomorphism Iq(K) → H2q(BGδ)
allows Dupont to give a new proof of Milnor’s inequality.

3.1.3 The Euler class

The Euler class is a cohomology class ε in Hn(BSLnR). Of course it is only non trivial when n is
even, since characteristic classes always live in even degree. Let thus n = 2m. The Euler class is
most easily described as the image, via the isomorphism Im(SO(2m))→ H2m(BSL2mR) described
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above, of the ad(SO(2m))-invariant Pfaffian polynomial Pf ∈ Im(SO(2m)) defined as

Pf(A) =
1

22mπmm!

∑
σ∈S2m

sign(σ)aσ(1)σ(2) · ... · aσ(2m−1)σ(2m),

were A = (aij) belongs to s0(2m) = {A ∈M2mR | TrA = 0, A = At}.
In the topological setting, the Euler class can be defined as follows: Let ξ be a SLnR-bundle over

the geometric realization |K| of a simplicial complex K. Then the Euler class is the obstruction
to the existence of a nowhere vanishing section on the n-skeleton of K in the associated vector
bundle ξR.

To see still another definition of the Euler class, and proofs that those definitions are all equiv-
alent, the reader is invited to consult the excellent [MiSt79, §9 and Appendix C].

Using the definition of the Euler class as an obstruction class, Sullivan could easily show in
[Su76] our simplicial version (Theorem 5) for the Euler class:

Theorem 61 Let ξ be a flat SLnR-bundle over a finite simplicial complex K. Then the (simplicial)
Euler class ε(ξ) ∈ Hn

simpl(K) can be represented by a cocycle whose evaluation on the n-simplices
of K takes value in {−1, 0, 1}.

Proof. First observe that we can without loss of generality assume that the dimension of the
simplicial complex K is equal to n. Consider the covering of |K| given by the sets Uk defined
for every n-dimensional simplex k of K to be a small neighborhood of |k|. Since the Uk’s are
contractible there exists local trivializations ϕk : ξR|Uk

→ Uk ×Rn of the associated vector bundle
ξR such that the corresponding transition functions gkk′ , relative to this open covering, are locally
constant and thus constant.

Choose for every vertex v of K a point s(v) ∈ ξR in the fiber over v in such a way that if
v0, ..., vn−1 generate an (n− 1)-dimensional simplex of K then the convex hull of the projection to
Rn of the points ϕk(s(v0)), ..., ϕk(s(vn−1)), where k is any n-dimensional simplex of K containing
v0, ..., vn−1, does not contain 0. This is, from dimension considerations, always possible. Define
now local sections s` : ` → ξR|` for each (n − 1)-dimensional simplex ` of K as the composition
of ϕ−1

k , where k is an n-dimensional simplex containing `, and the obvious convex linear combi-
nation of the points ϕk(s(v0)), ..., ϕk(s(vn−1)). Since the transition functions correspond to linear
transformations this defines a global section s : Kn−1 → ξR|Kn−1 .

By definition of the Euler class as an obstruction class, we now obtain a (simplicial) cocycle e
representing the class ε(ξ) ∈ Hn

simpl(K) as follows: the evaluation of e on an n-dimensional simplex
k of K is the homotopy class in πn−1(Rn\{0}) ∼= Z of the map ϕk ◦ s|∂k → ∂k × Rn composed
with the second projection. Since it is linear on each face of ∂k, it is either trivial, or one of the
generators of πn−1(Rn\{0}) ∼= Z , thus proving the Theorem.

By the following slight modification of Sullivan’s argument, Smillie was capable to improve
the bound to 1/2n for n even, and 0 for n odd (see [Sm81]): Consider the 2n+1 sections on an
n-dimensional simplex of K constructed as above from their vertices value

±ϕk(s(v0)), ...,±ϕk(s(vn)).

Exactly two of those sections will give a non trivial value for the above given corresponding repre-
sentative for the Euler class. In odd dimension, respectively even dimension, they will have opposite
sign, resp. identical sign. Averaging over all such possible sections, Smillie’s result follows.
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The singular version of the Theorem for the Euler class was then obtained in [IvTu82] by Ivanov
and Turaev.

Theorem 62 Let ξ be a flat SLnR-bundle over a topological space. Then

‖ε(ξ)‖∞ ≤
1
2n
.

The idea of the proof is to average, not only on a finite number of possible sections as was done
by Smillie, but on all admissible sections. This leads to the cocycle E ∈ Zn(SLnRδ) representing
the Euler class in Hn(BSLnRδ) ∼= Hn(SLnRδ) defined as

E : (SLnR)n −→ [−1/2n, 1/2n] ⊂ R
(g1, ..., gn) 7−→

∫
(Dn)n+1 t(v0, g1v1, ..., gnvn)dv0...dvn,

where t(v0, ..., vn) is equal to 1 if the convex hull of the vectors v0, ..., vn contain 0 and {v1, ..., vn}
are positively oriented, −1 if the convex hull of the vectors v0, ..., vn contain 0 and {v1, ..., vn} are
negatively oriented, and 0 otherwise. The cocycle E is easily checked to be bounded, but note that
it is by no means finite, for it takes, when n is even, all possible values in the interval [−1/2n, 1/2n].

As observed by Ghys in [Ghys87] (see also [Ghys99]), it is now easy to show one part of Milnor-
Wood inequality, namely

Corollary 63 Let ξ be a flat SLnR-bundle over a surface Σg of genus g ≥ 1. Then

|ε(ξ)[Σg]| ≤ g − 1.

Proof. Let X be a topological space, z ∈ Zq(X) a q-cycle and c ∈ Zq(X) a q-cocycle. By the very
definition of the 1-norm and ∞-norm on the space of chains and cochains one has the inequality

|c(z)| ≤ ‖c‖∞ ‖z‖1 ,

which induces the corresponding inequality

|c(z)| ≤ ‖[c]‖∞ ‖[z]‖1

in cohomology whenever ‖[z]‖1 is not zero.
The simplicial volume of surfaces is easily computed (see for example [Gr82]), and is equal to

‖[Σg]‖1 = 4g − 4.

Together with Ivanov and Turaev’s Theorem 62 we can now conclude that

|ε(ξ)[Σg]| ≤ ‖[ε(ξ)]‖∞ ‖[Σg]‖1 ≤
1
4
(4g − 4) = g − 1.

The other implication of Milnor-Wood’s inequality is proven by exhibiting, for every claimed
possible value of the Euler number, a flat bundle with this Euler class. This proves the assertion
since isomorphy classes of bundles over surfaces are completely determined by their Euler class.
Also, this gives the first examples of non trivial flat bundles and non trivial characteristic classes
of flat bundles. We refer the reader to the original paper [Mi58] for more details.



46 CHAPTER 3. CHARACTERISTIC CLASSES

3.1.4 Characteristic classes in degree 2 when π1(G) ∼= Z

Let G be a topological group whose fundamental group π1(G) is isomorphic to Z. Denoting by G̃
the universal cover of G, we obtain a short exact sequence

0 −−−−→ Z i−−−−→ G̃
p−−−−→ G −−−−→ 1

which is such that the image of Z by i is contained in the center of G̃. It is a standard fact,
that there is a one to one correspondence between isomorphy classes of central extensions of G
by Z and cohomology classes in H2(G,Z). Recall that any cocycle representing the cohomology
class corresponding to the above central extension can be obtained in the following way: Pick
a fundamental domain D ⊂ G̃ for G and let s : G → G̃ be the unique set theoretic section of
p : G̃→ G satisfying Ims = D. Define

c : G×G −→ Z

by
i(c(g, h)) = s(g)s(h)s(gh)−1,

for every g, h in G.
The cohomology class [c] ∈ H2(G,Z) ∼=H2(BGδ,Z) is in fact a primary characteristic class, by

which we mean that it is in the image of the natural map

H2(BG,Z) −→H2(BGδ,Z) ∼=H2(G,Z).

In the simplicial case, this characteristic class is most easily described as the obstruction to the
existence of a section of the G-bundle restricted on the 2-skeleton.

It is clear that if we can choose the fundamental domain D such that D ·D is contained in a
finite union of translates of D, then the cocycle c(D) is a bounded cocycle. Let us examine a few
examples:

• If G is compact, then this is always the case. However nothing new is gained since we already
know that there exists no non trivial characteristic class for flat G-bundles whenever G is
compact.

• Let G =SL2R (or more generally Homeo+(S1), the group of orientation preserving homeo-
morphism of the circle) the characteristic class corresponding to the central extension

0 −→ Z −→ S̃L2(R) −→ SL2(R) −→1

is precisely the Euler class ε ∈ H2(SL2(R)) ∼=H2(B(SL2R)δ). In this case, Ghys exhibited
in [Ghys87] and [Ghys99] a canonical fundamental domain D with the property that D ·D
is the union of D and the translate of D by the positive generator of Z. It follows that the
Euler class can be represented by a cocycle taking values in {0, 1}.

• This example is due to Golman [Go81]. Let G be the quotient of the Heisenberg group

H =


 1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y, z ∈ R


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of upper triangular unipotent 3 by 3 matrices by the normal subgroup generated by the
central element

T =

 1 0 1
0 1 0
0 0 1

 .

Of course, H can be taken as the universal cover of G. Consider the fundamental domain

D =


 1 x z

0 1 y
0 0 1

∣∣∣∣∣∣x, y ∈ R, 0 ≤ z < 1

 .

It is easy to show that D ·D is not contained in a finite union of translates of D: For example,
let n be an arbitrary integer. Then 1 n 0

0 1 0
0 0 1

 1 0 0
0 1 1
0 0 1

 =

 1 n n
0 1 1
0 0 1


belongs to TnD, even though the two matrices on the left hand side of the equality belong
to D. The corresponding cocycle

c : G×G −→ Z

is thus unbounded.

Let n be an arbitrary integer. Define a representation

hn : Z⊕ Z −→G

by sending the two canonical generators a and b of Z⊕ Z to the respective projections onto
G of the matrices

A =

 1 0 0
0 1 −1
0 0 1

 and B =

 1 n 0
0 1 0
0 0 1


of H. This is well defined since ABA−1B−1 is equal to Tn. Now, because the evaluation
of the 2-cycle [a, b] − [b, a] on c is equal to n, it follows that the representations hn induce
infinitely many non isomorphic flat G-bundles over the 2-torus. It thus follows from Lusztig’s
Corollary 42 that G can not be algebraic.

Furthermore, because the class h∗n([c]) ∈ H2(Z⊕ Z,R) is non trivial for n different from 0,
it can not belong to the image of

{0} = H2
b (Z⊕ Z,R) −→ H2(Z⊕ Z,R),

so that the primary characteristic class [c] itself can impossibly belong to the image of

H2
b (G,R) −→ H2(G,R).
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3.1.5 Finiteness properties

Let us recall our main result:

Theorem 64 Let G be an algebraic subgroup of GLn(R). Then every characteristic class of flat
G-bundle can be represented by a cocycle whose set of value on singular simplices is finite.

This generalizes Gromov’s Theorem 3, which admits the following reformulation:

Theorem 65 Let G be an algebraic subgroup of GLn(R). Then the image of the map H∗(BG)→
H∗(BGδ) is contained in the image of the comparison map H∗b (BG

δ)→ H∗(BGδ).

As mentioned in the introduction, an immediate corollary is now:

Corollary 66 Let G be an algebraic subgroup of GLn(R) and X a topological space with amenable
fundamental group. Then X does not possess any non trivial characteristic class of flat G-bundle.

Proof. It is well known that the bounded cohomology of topological spaces with amenable fun-
damental group is trivial. The corollary thus follows from Theorem 65 and the commutativity of
the following diagram:

H∗(BG) −→ H∗(BGδ) ←− H∗b (BG
δ)

↘ ↓ ↓
H∗(X) ←− H∗b (X) = {0}.

Observe that it is necessary to assume, in Gromov’s Theorem 65 (and also in our Theorem 64),
that the group G is algebraic. For example, if G is the quotient of the Heisenberg group by any
central element, it was pointed out by Goldman in [Go81] that the primary characteristic class in
H2(G,R) obtained from the central extension given from the universal covering of G is not in the
image of

H2
b (G,R) −→ H2(G,R).

The details of this counter-example are given above.
Let us point out that our Theorem 64 is really a strengthening of Gromov’s Theorem 65. More

information is gained from knowing that a cohomology class can be represented by a finite cocycle.
Indeed, if we define finite group cohomology H∗f (G,R) analogously to bounded group cohomology
from the subcomplex consisting of cochains taking only finitely many values, then it is so that

H∗f (G,R) 6=H∗b (G,R)

in general. For example H2
f (Z,R) is not zero, whereas H2

b (Z,R) is trivial since Z is amenable. To
see that, consider the following diagram where the horizontal lines are short exact sequences

Q/Z ∼= H1
f (Z,R/Z) −−−−→ H2

f (Z,Z) −−−−→ H2
f (Z,R) 6= 0y y=

y
R/Z ∼= H1

b (Z,R/Z)
∼=−−−−→ H2

b (Z,Z) −−−−→ H2
b (Z,R) = 0.
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3.2 Secondary characteristic classes

In this chapter we define the secondary invariants of Cheeger-Simons following the original paper
of Cheeger and Simons ([ChSi85]). Those depend on an invariant polynomial f ∈ Iq(G,F), where
F is either R or C, and a cohomology class [u] ∈ H2q(BG,Λ) for some discrete subring Λ < F,
satisfying wG(f) = r([u]), where r : H2q(BG,Λ) → H2q(BG,F) is induced from the inclusion
of coefficients. In the introduction we asserted there existence in the case of bundles endowed
with a flat connection. However, it is both natural and convenient to define them more generally
for any connection. We define below the ring of differential characters, which contains the usual
cohomology ring, where the secondary invariants S(f,u) find there natural receptacle.

3.2.1 Differential characters

Let M be a smooth connected manifold. Recall that by smooth we really mean infinitely differen-
tiable. Denote by C∗(M,Z) the complex of smooth singular chains on M (with integer coefficients),
and let Z∗(M,Z) be its subcomplex of smooth singular cycles. Let F denote either R or C, and
write C∗(M,F) for the complex of smooth singular cochains on M with coefficients in F, that is,

C∗(M,F) = HomZ(C∗(M,Z),F).

Let A∗(M,F) denote the complex of smooth differential forms on M with coefficients in F. There
is a natural inclusion of A∗(M,F) in C∗(M,F) given by integrating differential forms over smooth
chains. Observe that Stoke’s theorem is equivalent to saying that this inclusion is a chain map. The
induced map in cohomology is the de Rham isomorphism between the de Rham cohomology and
the singular cohomology of the manifold M . Let Λ be a discrete subring of F (typically, Λ = {0}
or Z). Composing the integration with the reduction modulo Λ we obtain a map

ιΛ : Aq(M,F) −→ Cq(M,F/Λ)

defined by

ιΛ(α)(σ) =
∫
σ

αmodΛ,

where α is a differential q-form, and σ : ∆q →M is a smooth simplex.

Lemma 67 The map ιΛ is injective.

Proof. Put on the set of smooth singular q-chains Sq(M) = {σ : ∆q → M | σ is smooth}
the compact-open topology. Since M is connected, it is also path connected (recall that M is a
manifold). We claim that Sq(M) is also path connected. To see that, we show that any σ : ∆q →M
can be connected to some constant map σ0(t) = x0, for some fixed x0 ∈M . Since ∆q is contractible,
there exists a homotopy between the identity of ∆q and some constant map, say

H : ∆q × [0, 1] −→ ∆q,

with H(t, 0) =Id∆q and H(t, 1) = t0 for some t0 in ∆q. Now, as M is path connected, there exists
a path γ : [0, 1]→M with γ(0) = σ(t0) and γ(1) = x0. Finally define

F : ∆q × [0, 1] −→ M

(t, s) 7−→
{
σ(H(t, 2s)) if s ≤ 1

2 ,
γ(2s− 1) if s ≥ 1

2 .
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Now any differential form α in Aq(M,F) defines, by integration, a continuous map α : Sq(M)→ F.
But if ιΛ(α) = 0, we have that the image of α is equal to Λ. Since Sq(M) is connected per arc, its
image by α is also, and as it contains zero and Λ is discrete, it must be equal to zero.

Definition 68 Let M be a smooth manifold. The group of differential characters of degree q on
M is defined by

Ĥq(M,F/Λ) = {f ∈ Hom(Zq(M,Z),F/Λ) | δf ∈ ιΛ(Aq+1(M,F))}.

The first examples of elements of Ĥq(M,F/Λ) are cohomology classes in Hq(M,F/Λ). Indeed,
let [c] belong to Hq(M,F/Λ), and let c be a cocycle representing it. Then of course δc lies in the
image of ιΛ since it is zero, so that we obtain a differential character by restricting c to the cycles
of M . Observe that c being a cocycle, its value on any cycle of M only depends on the cohomology
class [c], so that we have defined a homomorphism

Hq(M,F/Λ) −→ Ĥq(M,F/Λ)
[c] 7−→ c|Zq(M),

which will easily be checked, in Lemma 69, to be an injection.
Define now Aq+1

0 (M) to be the set of closed differential (q + 1)-forms on M with periods in Λ,
that is,

Aq+1
0 = {α ∈ Aq+1(M,F) | dα = 0 and

∫
z

α ∈ Λ ∀z ∈ Zq+1(M)}.

We can define a map, which we denote by δ thereby slightly abusing notation, by

δ : Ĥq(M,F/Λ) −→ Aq+1
0 (M)

f 7−→ α,

where α is the (unique) differential form such that δf = ιΛα. Let us check that this is well defined.
That such a differential form exists follows from the definition of differential characters. It is unique
by injectivity of ιΛ. Using Stoke’s theorem and the injectivity of ιΛ it is easy to see that it is closed:

ιΛ(dα)(σ) =
∫
σ

dαmodΛ =
∫
∂σ

αmodΛ = ιΛα(∂σ) = δ2f(σ) = 0,

for every smooth singular simplex σ : ∆q+2 →M . It remains to check that it has its periods in Λ.
Let z be a smooth singular q + 1-cycle on M , then∫

z

αmodΛ = ιΛ(α)(z) = δf(z) = f(∂z) = 0.

Putting those two maps together, we obtain the nice following lemma (Theorem 1.1 of [ChSi85]):

Lemma 69 There is a short exact sequence

0 −→ Hq(M,F/Λ) −→ Ĥq(M,F/Λ) −→ Aq+1
0 (M) −→ 0.

Proof. We have:
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• Injectivity of Hq(M,F/Λ) → Ĥq(M,F/Λ): a cocycle vanishing on all cycles represents the
zero class.

• Im(Hq(M,F/Λ)→ Ĥq(M,F/Λ)) ⊂Ker(Ĥq(M,F/Λ)→ Aq+1
0 (M): for a differential character

f defined as the restriction of a cocycle, we surely have δf = 0 = ιΛ(0).

• Im(Hq(M,F/Λ) → Ĥq(M,F/Λ)) ⊃Ker(Ĥq(M,F/Λ) → Aq+1
0 (M): if a differential character

f is such that δf = ιΛ(0) = 0, we claim that we can extend it to a cocycle on M . To see that
observe that the quotient Cq(M,Z)/Zq(M,Z) is a free Z-module since it is isomorphic to its
image in Cq−1(M,Z) by the boundary operator ∂, and thus a submodule of a free Z-module.
It follows that

Cq(M,Z) = Zq(M,Z)⊕ F,

for some free Z-module F . We can hence define a cochain f on M as f(c) = f(c) if c is a
cycle, f(c) = 0 for c in F , and extend it Λ-linearly to Cq(M,Z). Of course, the cochain f is
actually a cocycle.

• Surjectivity of Ĥq(M,F/Λ)→ Aq+1
0 (M): Let α be a closed differential form with periods in

Λ. The form α in particular defines, by integration, a map a from the smooth cycles on M
to Λ. By the same argument as above, we can extend a to a cocycle in Cq+1(M,Λ), which
we still denote by a. Let r(a) be the image of a by the injection Cq+1(M,Λ)→ Cq+1(M,F)
induced by the inclusion of coefficients Λ ↪→ F. Observe that α− r(a) is zero when evaluated
on cycles, and thus is a coboundary, so that

α− r(a) = δf,

for some f in Cq(M,F). Finally define f to be the restriction of f modulo Λ to the cycles of
M , and conclude that

δf = ιΛ(α),

since r(a) modulo Λ vanishes.

We see in particular, that cohomology with coefficients in F/Λ can indeed be considered as a
subgroup (actually even a subring) of the differential characters.

Let us now investigate the relation of the ring of differential characters with the Bockstein map
b : Hq(M,F/Λ) → Hq+1(M,Λ) associated to the short exact sequence of coefficients Λ ↪→ F �
F/Λ. Let f ∈ Ĥq(M,F/Λ) be a differential character with δf = ιΛ(α). As in the proof of the
above lemma, we can extend f to a F/Λ-valued singular cochain f . There clearly exists a cochain
c ∈ Cq(M,F) with f = cmodΛ. Since the reduction modulo Λ of the cocycle α− δc ∈ Cq+1(M,F)
is zero, it follows from the exactness of the sequence

0 −→ Cq+1(M,Λ) −→ Cq+1(M,F) −→ Cq+1(M,F/Λ) −→ 0

that there exists a Λ-valued cochain u ∈ Cq+1(M,Λ) such that r(u) = α − δc, where r stands
for the inclusion r : Cq+1(M,Λ) → Cq+1(M,F). The cochain u necessarily is a cocycle, again by
exactness. The only choice involved in this construction is the choice of cochain c ∈ Cq(M,F) with
f = cmodΛ. Suppose thus that c′ ∈ Cq(M,F) is another cochain satisfying f = c′modΛ and let



52 CHAPTER 3. CHARACTERISTIC CLASSES

u′ ∈ Cq+1(M,Λ) be obtained as above. Since the reduction modulo Λ of c − c′ is zero it follows
that there exists v ∈ Cq(M,Λ) with r(v) = c− c′. But then surely

r(δv) = δc− δc′ = α− r(u)− (α− r(u′)) = r(u′)− r(u),

so that by injectivity of r the cocycles u and u′ differ by a coboundary. It follows that we have
defined a map

Ĥq(M,F/Λ) −→ Hq+1(M,Λ),

and as by construction it agrees with −b on Hq(M,F/Λ), we abuse notation and denote it by −b.

Lemma 70 There is a short exact sequence

0 −→ Aq(M,F)/Aq0(M) −→ Ĥq(M,F/Λ) −→ Hq+1(M,Λ) −→ 0.

3.2.2 The definition of the secondary invariants

From now on, and until the end of the chapter, let f ∈ Iq(G,F) be an invariant polynomial,
where we recall that F is either R or C, and [u] ∈ H2q(BG,Λ) a cohomology class satisfying
wG(f) = r([u]), with r : H2q(BG,Λ)→ H2q(BG,F) induced from the inclusion of coefficients.

Theorem 71 For every smooth principal G-bundle ξ over a smooth manifold M endowed with a
connection form ω, there exists a unique differential character

S(f,u)(ξ, ω) ∈ Ĥ2q−1(M,F/Λ)

satisfying

• δS(f,u)(ξ, ω) = ιΛ(Cq(Ω)),

• −bS(f,u)(ξ, ω) = [u(ξ)],

• the assignment (ξ, ω) 7→ S(f,u)(ξ, ω) is natural in the sense that if φ : N → M is a smooth
map, then S(f,u)(φ∗(ξ), φ∗(ω)) = φ∗(S(f,u)(ξ, ω)).

The original proof of Cheeger and Simons (Theorem 2.2 in [ChSi85]), as most of their proofs,
goes via the universal bundle classifying both bundle and connections, which was shown to exist by
Narasimhan and Ramanan in [NaRa61] and [NaRa63]. We present in the next section an alternative
constructive proof in the case of the Chern class which was already sketched in [ChSi85] and is
very well explained in [DuHaZu00].

3.2.3 A direct proof of the existence and uniqueness of the Cheeger-
Chern-Simons classes

Recall that the Chern polynomials Cq ∈ I∗(GLn(C)) are defined by the relation

det(λIdn −
1

2iπ
A) =

n∑
q=0

Cq(Aq)λn−q.
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Also, there exists for every q, a unique class [cq] ∈ H2q(BGLn(C),Z) satisfying

r([cq]) = wGLn(C)(Cq) ∈ H2q(BGLn(C),R).

Define for any principal GLn(C)-bundle ξ endowed with a connection ω the Cheeger-Chern-Simons
class ĉq ∈ Ĥ2q−1(M,C/Z) to be the secondary invariant associated to the couple (Cq, [cq]), that
is, ĉq(ξ, ω) = S(Cq,[cq ]). Observe that from the unicity of [cq] it follows that the condition that
−b(ĉq(ξ, ω)) = [cq(ξ)] is superfluous in Theorem 71.

There exists an explicit construction for the Cheeger-Chern-Simons classes, which we will de-
scribe in this section, thereby giving a direct proof of Theorem 71 in this particular case. (See the
original version in [ChSi85, § 4] or a more detailed one in [DuHaZu00, § 3.5].)

Consider the Stiefel manifold Vn−q+1(Cn) consisting of (n−q+1)-tuples of linearly independent
vectors in Cn. It is elementary to observe that Vn−q+1(Cn) is homotopically equivalent to its sub-
manifold U(n)/U(q− 1). One now obtains the homology of the Stiefel manifold by classical means
of computation. (See for example [St51], § 25.7, for the analogous statement for the homotopy
groups of the Stiefel manifold.)

Proposition 72 One has

Hi(Vn−q+1(Cn)) ∼=
{

0 if i < 2q − 1,
Z if i = 2q − 1.

Moreover, the (2q − 1)-th homology group H2q−1(Vn−q+1(Cn)) is generated by the cycle S2q−1 ∼=
U(q)/U(q − 1).

Let ξ = P → M be a principal G-bundle over a smooth manifold M . Suppose the bundle ξ is
endowed with a connection form ω and denote by Ω the corresponding curvature form. Let

Vn−q+1(P )
↓ π
M

be the corresponding Stiefel bundle with fiber Vn−q+1(Cn). (The total space is Vn−q+1(P ) =
Vn−q+1(Cn)×GP .) We can now compute the Serre exact sequence of this fibration and in particular
obtain that the following sequence is exact (see [McCl01], example 5.D):

H2q−1(Vn−q+1(Cn)) −→ H2q−1(Vn−q+1(P )π∗−→H2q−1(M) −→ 0. (*)

Consider now the pull back of ξ by the bundle map π of the Stiefel bundle:

π∗(P ) P
↓ ↓

Vn−q+1(P ) −→ M.

Lemma 73 The bundle π∗(ξ) admits a reduction to GLq−1(C).

We hence have that

[π∗(Cq(Ω))] = [Cq(π∗(Ω))] = 0 ∈ H2q(Vn−q+1(P )),
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and it thus follows that the form Cq(π∗(Ω)) ∈ A2q(Vn−q+1(P )) is exact. Of course, we would now
like to choose a form whose differential is Cq(π∗(Ω)) in a natural and canonical way. As we will
soon prove this choice is possible, however only up to exact reminder.

We obtain a connection ω0 on π∗(ξ) by extending to it the connection π∗(ω) restricted to
the GLq−1(C) reduction. Note that ω0 depends on the decomposition π∗(P ) ∼= η ⊕ εn−q+1. By
Proposition 59 we have

dTCq(π∗(ω), ω0) = Cq(π∗(Ω))− Cq(Ω0).

But by construction of ω0, the form Cq(Ω0) ∈ A2q(Vn−q+1(P )) vanishes identically.
The following proposition (which is Proposition 3.8 in [DuHaZu00]) shows that, up to exact

reminder, we had no choice for the form TCq(π∗(ω), ω0).

Proposition 74 The form TCq(π∗(ω), ω0) ∈ A2q−1(Vn−q+1(P )) is uniquely determined, up to
exact reminder, by naturality and the relation

dTCq(π∗(ω), ω0) = Cq(π∗(Ω)).

It follows that the only way to define the Cheeger-Chern-Simons class on the bundle π∗(ξ)
endowed with the connection π∗(ω) is:

ĉq(π∗(ξ), π∗(ω)) = TCq(π∗(ω), ω0)modZ|Z2q−1(Vn−q+1(P )) .

This is clear from the requirement that δĉq(π∗(ξ), π∗(ω)) = ιZ(Cq(Ωq)) and Proposition 74.

Theorem 75 With the notation as above, the Cheeger-Chern-Simons class ĉq(ξ, ω) is defined, on
every cycle z ∈ Z2q−1(M,Z), as

ĉq(ξ, ω)(z) = ĉq(π∗(ξ), π∗(ω))(z̃) + Cq(Ωq)(y)modZ,

where z = π∗(z̃) + ∂y, for some cycle z̃ ∈ Z2q−1(Vn−q+1(P )) and chain y ∈ C2q(M).

Proof. We need to prove that this expression is well defined and that it satisfies the desired
properties of Theorem 71 for the Cheeger-Chern-Simons class.

To see that it is well defined, first observe that since the map

H2q−1(Vn−q+1(P )) π∗−−−−→ H2q−1(M)

is surjective, it follows that for any cycle z ∈ Z2q−1(M) there exists a cycle z̃ in Z2q−1(Vn−q+1(P ))
such that [z] = [π∗(z̃)] ∈ H2q−1(M). There thus exists a chain y ∈ C2q(M) with z = π∗(z̃) + ∂y.
Secondly, if z = π∗(z̃) + ∂y = π∗(z̃′) + ∂y′ for some cycles z̃, z̃′ ∈ Z2q−1(Vn−q+1(P )) and chains
y, y′ ∈ C2q(M) we need to show that

ĉq(π∗(ξ), π∗(ω))(z̃) + Cq(Ωq)(y)modZ=ĉq(π∗(ξ), π∗(ω))(z̃′) (**)
+ Cq(Ωq)(y′)modZ.

It follows from the exact sequence (*) above, that the class [z̃− z̃′] belonging to H2q−1(Vn−q+1(P ))
is in the image of the map H2q−1(Vn−q+1(Cn)) i∗−→ H2q−1(Vn−q+1(P )). There thus exists a cycle
v ∈ Z2q−1(Vn−q+1(Cn)) and a chain w ∈ C2q(Vn−q+1(P )) such that

z̃ − z̃′ = i∗v + ∂w.
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We claim that ĉq(π∗(ξ), π∗(ω))(i∗v) is equal to zero. Assuming this for a moment, we see that the
desired equation (**) reduces to

Cq(Ωq)(y′)modZ−Cq(Ωq)(y)modZ=ĉq(π∗(ξ), π∗(ω))(∂w)
= δĉq(π∗(ξ), π∗(ω))(w)
= Cq(π∗(Ω)q)(w)modZ
= Cq(Ωq)(π∗w)modZ,

where the last equality follows from the naturality of the Chern form Cq. Observe that ∂(y′−y) =
π∗(z̃− z̃′) = π∗(i∗v+∂w) = ∂(π∗w), so that π∗w+y−y′ is a 2q-cycle on M and therefore Cq(Ωq)(
π∗w + y − y′) belongs to Z thus proving the equality (**).

As for the claim that
ĉq(π∗(ξ), π∗(ω))(i∗v) = 0,

we do not know how to prove this without using the universal bundle. Let [v] = S2q−1 be a
generator of H2q−1(Vn−q+1(Cn)). Its image i∗v is then a cycle which necessarily is a boundary
since H2q−1(Vn−q+1(U)) ∼= H2q−1(B) = 0. Let b ∈ C2q(Vn−q+1(U)) be such that ∂b = i∗v. Then
π∗(b) is a cycle on the base space of the universal bundle since π∗i∗v = 0. But now we have∫

v

TCq(π∗(ω), ω0) =
∫
b

Cq(π∗(Ω)q) =
∫
π∗(b)

Cq(Ω) ∈ Z,

which finishes the proof of the claim.
Finally, let us check that the so defined ĉq satisfies the properties of Theorem 71:

• Let c ∈ C2q(M,Z) be a chain on M . Then

δĉq(ξ, ω)(c) = ĉq(ξ, ω)(∂c) = Cq(Ωq)(c),

since the cycle ∂c has the form ∂c = π∗(0) + ∂c.

• Let f : N →M be a smooth map. We need to show that

ĉq(f∗(ξ), f∗(ω))(z) = f∗ĉq(ξ, ω)(z)

for every cycle z ∈ Z2q−1(N,Z). We have the commutative diagram

Vn−q+1(f∗(ξ))
πN−−−−→ Nyf yf

Vn−q+1(ξ)
πM−−−−→ M

Let z be a (2q − 1)-cycle on N . There exists a cycle z̃ ∈ Z2q−1(Vn−q+1(f∗(ξ))) and a chain
y ∈ C2q(N) such that

z = (πN )∗z̃ + ∂y.

By definition of ĉq we have on one hand

ĉq(f∗(ξ), f∗(ω))(z) = ĉq(π∗N (f∗(ξ)), π∗N (f∗(ω)))(z̃) + Cq(f∗(Ω)q)(y)modZ

= ĉq(f
∗
(π∗N (ξ)), f

∗
(π∗N (ω)))(z̃) + Cq(f∗(Ω)q)(y)modZ,
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and on the other hand,

f∗(ĉq(ξ, ω))(z) = ĉq(ξ, ω)(f∗(z))

= ĉq(π∗M (ξ), π∗M (ω))(f∗z̃) + Cq(Ωq)(f∗y)modZ,

since f∗z = f∗((πN )∗z̃ + ∂y) = (πM )∗(f∗z̃) + ∂(f∗y). The naturality of the Chern form Cq
implies that

Cq(f∗(Ω)q)(y) = Cq(Ωq)(f∗y).

It remains to show that

ĉq(f
∗
(π∗N (ξ)), f

∗
(π∗N (ω)))(z̃) = ĉq(π∗M (ξ), π∗M (ω))(f∗z̃).

This is clear from the naturality of the form TCq and the fact that if ωM0 is some connection
chosen as above, then we can take ωN0 = f

∗
ωM0 .

It is now easy to give a direct and constructive proof of Theorem 71 for the Cheeger-Chern-
Simons class.
Proof of Theorem 71 for the Cheeger-Chern-Simons class. The existence of the Cheeger-
Chern-Simons class follows from Theorem 75. We thus just need to prove the uniqueness. It follows
from Lemma 69, that the horizontal sequences of the following diagram are exact:

H2q−1(M,C/Z) ↪→ Ĥ2q−1(M,C/Z) � A2q
0 (M)

↓ ↓ ↓
H2q−1(V (P ),C/Z) ↪→ Ĥ2q−1(V (P ),C/Z) � A2q

0 (V (P )),

where we have written V (P ) for the frame bundle Vn−q+1(P ). The right and left vertical arrows
are injective, so that, by the five lemma, the middle one is also injective. Now, we have seen from
the above discussion, that the requirement that δĉq(π∗(ξ), π∗(ω)) = −ιZCq(π∗(Ω)q) gave no choice
for the Cheeger-Chern-Simons class ĉq(π∗(ξ), π∗(ω)) ∈ Ĥ2q−1(V (P ),C/Z), which in turn proves
the uniqueness of the Cheeger-Chern-Simons class since by naturality we have

ĉq(π∗(ξ), π∗(ω)) = π∗(ĉq(ξ, ω)).

3.2.4 Dependency on the connection

Let us now return to the general setting. It is essential to understand how the secondary invariants
of Cheeger-Simons vary when we change the connection. Let ξ be a principal G-bundle endowed
with two connections ω0 and ω1. We then clearly have

−b(S(f,u)(ξ, ω1)) + b(S(f,u)(ξ, ω0)) = u(ξ)− u(ξ) = 0,

and it thus follows from the short exact sequence of Lemma 70 that the difference of the two
secondary invariants can be given by a differential form modulo Λ, that is

S(f,u)(ξ, ω1)− S(f,u)(ξ, ω0) = ιΛ(α)
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for some form α ∈ A∗(M,F), uniquely determined up to an element of A∗0(M). Keeping in mind
that any two connections can be joined by a smooth path of connections, we can even exhibit such
a differential form.

Proposition 76 Let ξ = P −→M be a principal G-bundle and ωt be a smooth 1-parameter family
of connection on ξ, with t ∈ [0, 1], then

S(f,u)(ξ, ω1)− S(f,u)(ξ, ω0) = ιΛ

q 1∫
0

f(
d

dt
ωt ∧ Ωq−1

t )dt

 |Z2q−1(M).

Recall our notational convention that if α ∈ A∗(P,F) is in the image of π∗ : A∗(M,F) →
A∗(P,F), where π : P →M is the bundle map, we write α ∈ A∗(M,F) for the unique form on M
satisfying π∗(α) = α.
Proof. Let thus z ∈ Z2q−1(M,Z) be a smooth cycle on M . It should be clear that there exists a
(2q)-chain z̃ on M × [0, 1] such that

∂z̃ = (i1)∗(z)− (i0)∗(z),

where ik, for k = 0, 1, stands for the canonical inclusion

ik : M ↪→M × {k} ⊂M × [0, 1].

Consider now the principal G-bundle

P × [0, 1]
ξ̃ = ↓ π̃

M × [0, 1],

where of course, π̃(u, t) = (π(u), t). Notice that, for k = 0, 1,

ξ ∼= i∗k(ξ̃).

At any point (u, t) ∈ P × [0, 1] in the total space of ξ̃, the tangent space at (u, t) naturally
decomposes in the direct sum of the tangent space of u in P and the one of t in [0, 1] ⊂ R, that is,

T(u,t)(P × [0, 1]) = TuP ⊕ R.

For any X in T(u,t)(P × [0, 1]), let us write XP for the orthogonal projection of X onto TuP . Let
ωt be a smooth path of flat connections. Define on ξ̃ a form ω̃ ∈ A1(P × R, g) by

ω̃(u,t)(X) = ω(t)u(XP ),

for every (u, t) ∈ P × [0, 1] and X ∈ T(u,t)R. It is straightforward to check that the form ω̃ actually
defines a connection on ξ̃. Notice that, for k = 0, 1, we have

i∗k(ω̃) = ωk ∈ A1(P, g).
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Using the naturality of the secondary invariants, we can now compute the difference of the two
differential characters in consideration evaluated on the cycle z:

S(f,u)(ξ, ω1)(z)− S(f,u)(ξ, ω0)(z) = S(f,u)(ξ, i∗1(ω̃))(z)− S(f,u)(ξ, i∗0(ω̃))(z)

= i∗1(S(f,u)(ξ̃, ω̃))(z)− i∗0(S(f,u)(ξ̃, ω̃))(z)

= S(f,u)(ξ̃, ω̃)((i1)∗(z)− (i0)∗(z))

= S(f,u)(ξ̃, ω̃)(∂z̃)

= δS(f,u)(ξ̃, ω̃)(z̃)

=
∫
z̃

f(Ω̃q)modΛ,

where Ω̃ is the curvature form associated to ω̃. Since π∗ : A∗(M) → A∗(P ) is injective, the
proposition will now follow from∫

z̃

f(Ω̃q) =
∫
z

q

1∫
0

f(
d

dt
ω(t) ∧ Ω(t)q−1)dt.

To show this, we start by computing the curvature Ω̃ and its powers: Let (u, t) be in P × [0, 1]
and X,Y in T(u,t)(P × [0, 1]). We have

Ω̃ = dt ∧ ∂ω̃
∂t

+ Ωt.

We now claim that
Ω̃q = q(dt ∧ ∂ω̃

∂t
∧ Ωq−1

t ) + Ωqt .

To see that, assume by induction that it is true for q − 1, and compute

Ω̃q = Ω̃q−1 ∧ Ω̃

=
(

(q − 1)(dt ∧ ∂ω̃
∂t
∧ Ωq−2

t ) + Ωq−1
t

)
∧ (dt ∧ ∂ω̃

∂t
+ Ωt)

= (q − 1)(dt ∧ dt ∧ ∂ω̃
∂t
∧ ∂ω̃
∂t
∧ Ωq−2

t ) + q(dt ∧ ∂ω̃
∂t
∧ Ωq−1

t ) + Ωqt ,

which proves the claim since the first summand vanishes as dt ∧ dt does. We now have∫
z̃

f(Ω̃q) =
∫
z̃

f(q(dt ∧ ∂ω̃
∂t
∧ Ωq−1

t ) +
∫
z̃

f(Ωqt ).

Observe that since there is no dt in f(Ωqt ) the last summand must necessarily vanish. As for the
first, we have ∫

z̃

f(q(dt ∧ ∂ω̃
∂t
∧ Ωq−1

t ) =
∫
z

q

∫ 1

0

f(
∂ωt
∂t
∧ Ωq−1

t )dt,

which finishes the proof of the proposition.
Taking the path joining the two connections ω0 and ω1 to be the convex linear combination

ωt = (1− t)ω0 + tω1 and recalling how the curvature of ωt is computed (Lemma 33) we obtain the
following proposition as an immediate corollary of Proposition 76.
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Proposition 77 Let ξ = P →M be a principal G-bundle and ω0, ω1 two connections on ξ. Then

ĉq(ξ, ω1)− ĉq(ξ, ω0) = ιΛ

q 1∫
0

f(ω1 − ω0∧

((1− t)Ω0 + tΩ1 +
1
2
(t2 − t)[ω1 − ω0, ω1 − ω0])q−1)dt

)
|Z2q−1(M).

Proposition 76 is useful whenever the two connections considered are flat and can be joined by
a path consisting of flat connections (whereas the convex linear combination of two flat connections
is in general not flat as can be seen from Lemma 33), since in this case the right hand side of the
conclusion of the proposition is zero as soon as q is strictly greater than one, as the curvature
Ω(t) vanishes identically for every t. Sometimes however, it is more convenient to have a concrete
description of the difference, as in Proposition 77, which only depends on the connections ω0 and
ω1, but not on any choice of path.

3.2.5 Flat bundles

Let ω be a flat connection form on some principal G-bundle ξ = P → M . Then the associated
curvature form Ω of course vanishes identically, so that in particular f(Ω) = 0 in A2q(M,F). It
follows thus from the short exact sequence of Lemma 69 that any secondary invariant S(f,u) is in
the image of the injective map

H2q−1(M,F/Λ) ↪→ Ĥ2q−1(M,F/Λ).

Let us abuse notation, and write S(f,u) for the corresponding cohomology class in H2q−1(M,F/Λ).

Theorem 78 (Rigidity) Let ξ be a principal G-bundle over M , a smooth manifold, ω0, ω1 two
flat connections on ξ in the same path connected component of flat connection and q > 1 a positive
number. Then

S(f,u)(ξ, ω0) = S(f,u)(ξ, ω1).

Proof. From Proposition 76 we obtain that the difference of the two differential characters is
equal to

ιΛ

q 1∫
0

f(
d

dt
ω(t) ∧ Ω(t)q−1)dt

 |Z2q−1(M),

where ω(t) is any path of connections joining ω0 to ω1. But since the two flat connections are in
the same path connected component (in the space of flat connections) we can take ω(t) to be flat
for every t, so that Ω(t) vanishes for every t, and thus Ω(t)q−1 = 0 whenever q is strictly greater
than 1.

3.2.6 Boundedness properties

Conjecture 79 If q > 1, then every secondary characteristic class S(f,u) in H2q−1(BGδ) can be
represented by a bounded cocycle.
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Note that the assumption q > 1 is necessary, since for q = 1 the secondary characteristic
class ĉ1 ∈ H1(BGδ,C/Z) ∼= H1(Gδ,C/Z) can be represented in the Eilenberg-MacLane group
cohomology as

g 7−→ 1
2πi

log(tr(g)) ∈ C/Z.

Dupont showed in [Du76] that primary and secondary classes admit explicit representatives by
continuous cocycles in the Eilenberg-MacLane group cohomology H∗(Gδ) ∼= H∗(BGδ) and asked
in [Du78] whether those cocycles are moreover bounded. On the other hand, from Theorem 3 and
the hypothetical Conjecture 79 it would follow that primary and secondary can be represented
by bounded cocycles. It is only natural to ask if those classes can further be represented by
cocycles which are both continuous and bounded. This is surely the case if Conjecture 79 holds
and G admits a cocompact lattice, as we see from the argument in the proof that Conjecture 79
implies Conjecture 80. More generally, in view of Dupont and Kamber’s result that the continuous
cohomology of a connected semisimple Lie group with finite center is generated by primary and
secondary characteristic classes (see [DuKa90, Theorem 5.2]), Conjecture 79 immediately implies
Conjecture 80 below. This question was raised by Monod in [Mo01, p.126].

Conjecture 80 If G is a connected semisimple real algebraic Lie group, then the comparison map

Hn
c,b(G,R) −→ Hn

c (G,R)

is surjective.

In degree 2, it was proven by Guichardet and Wigner that H2
c (G,R) is either trivial or one

dimensional, according to the associated symmetric space being of Hermitian type or not. In the
case where H2

c (G,R) ∼= R, an explicit bounded generator can be exhibited, so that the comparison
map

H2
c,b(G,R) −→ H2

c (G,R)

is surjective in degree 2.
In the case where G has real rank one, the surjectivity of the comparison map follows from the

existence of a uniform bound on the volume of geodesic simplices in the corresponding symmetric
spaces (see [Th78] or [Gr82]).
Proof that Conjecture 79 implies Conjecture 80. As mentioned in the introduction, Dupont
and Kamber showed that the continuous cohomology of a connected semisimple Lie group is gen-
erated by primary and secondary characteristic classes. Together with Conjecture 79, this means
that any cohomology element in the continuous cohomology of G can be represented by a (not nec-
essarily continuous) bounded cocycle in the Eilenberg-MacLane cohomology of the group. It thus
only remains to show that this cohomology element moreover admits a continuous and bounded
representative.

It is well known, that G contains a cocompact lattice, say Γ. It is standard that there exists a
map H∗(Γ)→ H∗c (G) such that the composition

H∗c (G) −→ H∗(Γ) −→ H∗c (G)

is the identity, and that the same holds in bounded cohomology. Chasing in the diagram

H∗c (G) � H∗(Γ) ←− H∗(Gδ)
↑ ↑ ↑

H∗c,b(G) � H∗b (Γ) ←− H∗b (G
δ)
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leads to the desired conclusion.
A straightforward consequence of Conjecture 80 is the following conjecture of Gromov:

Conjecture 81 The simplicial volume of any compact locally symmetric space of non compact
type is strictly positive.

The real rank one case is again due to Thurston, and simply follows from Conjecture 80 being
valid for real rank one semi-simple Lie groups.

Savage proved in [Sa82] the existence of a uniform bound on the volume of certain top di-
mensional geometric simplices in SLnR/SO(n), which in turn proves Conjecture 81 for locally
symmetric spaces covered by SLnR/SO(n).
Proof that Conjecture 80 implies Conjecture 81. Let M = Γ\G/K be a compact locally
symmetric space of dimension n. Upon replacing Γ by a finite index subgroup, we can suppose
that G is equal to the connected component of the identity Isom(M̃)0 of the isometries group of
the universal cover of M . Note that by doing so, we replace M by a finite covering of itself, which
has no effect on the non vanishing of the simplicial volume, since the two seminorms differ by the
index of the covering. We claim that the simplicial volume of M is strictly positive if and only if
the comparison map

Hn
b (Γ) −→ Hn(Γ)

is surjective. To see that, firstly observe that since M is a K(Γ, 1), both the usual and the
bounded cohomologies of M are canonically isomorphic to the corresponding group cohomologies
of the fundamental group Γ of M , so that by the commutativity of the following diagram

Hn
b (Γ) −→ Hn(Γ)
∼=↓ ↓∼=

Hn
b (M) −→ Hn(M)

the surjectivity of the above given comparison map amounts to the surjectivity of the comparison
map

Hn
b (M) −→ Hn(M).

Secondly, let β ∈ Hn(M) be the dual of the fundamental class [M ] ∈ Hn(M) of the compact
manifold M . The following easy relation was first proven by Gromov ([Gr82, page 17])

‖M‖ =
1
‖β‖∞

.

Thus, the simplicial volume of M is strictly positive if and only if the cohomology class β admits
a bounded representative, which is equivalent to saying that β is in the image of the comparison
map Hn

b (M) −→ Hn(M). The claim is hence proven since Hn(M) is generated by β.
Consider now the commutative diagram

Hn
b (Γ) −→ Hn(Γ)
↑ ↑

Hn
c,b(G) −→ Hn

c (G),

and note that the theorem follows from the surjectivity of the lower horizontal and of the right
vertical maps. Let us thus finish by proving this.
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• Surjectivity of Hn
c,b(G) → Hn

c (G): The group G = Isom(M̃)0 is connected, and M being of
non-compact type, it is moreover semisimple and has finite center, so that it is real algebraic
and hence satisfies the assumptions of Conjecture 80. Note that if M were of Euclidean type
this would not be so since the group G would then not be semisimple.

• Surjectivity of Hn
c (G)→ Hn(Γ): As Γ is a cocompact lattice in G, by integrating over G/Γ,

one obtains a map H∗(Γ)→ H∗c (G), and it is well known that the composition

H∗c (G) −→ H∗(Γ) −→ H∗c (G)

is equal to the identity. Now, since Hn(Γ) is one dimensional, the surjectivity of the map
Hn
c (G)→ Hn(Γ) reduces to the non triviality of Hn(G). Since G is semi-simple it admits a

compact form U , and the continuous cohomology is computed as

H∗c (G) ∼= H∗(U/K),

where the latter cohomology is the de Rham cohomology of the manifold U/K. Note that
the compact group K can in our case be chosen to be the same as the original group K
(from Γ\G/K), since it needs to be a maximal (non necessarily proper) compact subgroup
of G, and as the latter is non compact K is equal to the maximal proper compact subgroup
of G. This is not the case when M is of compact type. The dimension of M is equal to the
dimension of its universal cover G/K so that

n = Dimg−Dimk.

Since the dimension of the Lie algebra g of G and the Lie algebra u of U agree, it is also true
that

Dim(U/K) = Dimu−Dimk = Dimg−Dimk = n,

so that Hn(U/K) is one dimensional and thus

Hn
c (G) 6= {0},

which was to be proven.



Chapter 4

The proof of the main Theorem

4.1 Semi-algebraic sets

The aim of this section is to introduce all standard results on semi-algebraic sets which we will
need for our proof of Theorem 5. For the sake of conciseness, we omit most proofs, and invite the
interested reader to consult Chapter 2 of the book [BeRi90] by Benedetti and Risler.

Definitions and first properties

A subset X of Rn is said to be semi-algebraic if it admits a representation of the form

X = ∩si=1 ∪
ri
j=1 {x = (x1, ..., xn) ∈ Rn | Pi,j(x) ≥ 0},

where Pi,j(T1, ..., Tn) is a polynomial in n variables belonging to R[T1, ..., Tn] for every i and j.
Such a representation is by no means unique as will soon be clear.

Note that semi-algebraic sets are closed under finite unions, finite intersections and comple-
mentation.

We can surely measure the complexity of a semi-algebraic set X in terms of the dimension of
the affine space X belongs to, and the minimal number and degree of the polynomials involved in
a representation of X. More precisely, let R be a representation as above of some semi-algebraic
set. Define

C(R) =
s∑
i=1

ri and D(R) = max
i,j
{deg(Pi,j)}.

Let n, c, d ∈ N and set

S(n, c, d) :=

X ⊂ Rn
∣∣∣∣∣∣
X is semi-algebraic and admits
a representation R with
C(R) ≤ c and D(R) ≤ d

 .

We say that a semi-algebraic set X is of complexity S(n, c, d) if X belongs to S(n, c, d). Some
examples are in order:

63
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1. Algebraic sets are surely semi-algebraic. In particular, the affine space Rn is semi-algebraic,
and belongs to S(n, 0, 0).

2. The standard q-simplex

∆q = {(t1, ..., tq) ∈ Rq | ti ≥ 0, 1− Σqi=1ti ≥ 0}

belongs to S(q, q + 1, 1),

3. More generally, any finite simplicial complex K is semi-algebraic of complexity S(n, c, 1),
where n and c depend on the number of simplices of K.

4. Observe that the minimal complexity of a semi-algebraic set is not well defined: the semi-
algebraic set

{x ∈ R | x2 ≥ 1} = {x ∈ R | x ≤ −1} ∪ {x ∈ R | x ≥ 1}
is both of complexity S(1, 1, 2) and S(1, 2, 1).

Lemma 82 If X1, ..., X` are semi-algebraic sets of complexity S(n, c, d), then the intersection
∩di=1Xi is semi-algebraic of complexity S(n, `c, d).

Lemma 83 Let X and Y be two algebraic subsets of Rn. If X and Y are of complexity S(n, c, d)
then their join

X ? Y = {t(x, 0) + (1− t)(y, 1) | 0 ≤ t ≤ 1, x ∈ X, y ∈ Y } ⊂ Rn × R

is semi-algebraic of complexity S(n+ 1, C,D), where C and D depend only on n, c and d.

Let X ⊂ Rn, Y ⊂ Rm be semi-algebraic. A map f : X → Y is called semi-algebraic if it is
continuous and its graph is a semi-algebraic subset of Rn×Rm. It is moreover called semi-algebraic
of complexity S(n, c, d) if its graph is semi-algebraic of complexity S(n, c, d).

Before enumerating some further useful properties of semi-algebraic sets and maps which we will
need in the proof of our Theorem 5, let us introduce some convenient notation. Let n1, ..., nq and
n be natural numbers (or more generally functions or various objects). We write n C (n1, ..., nq)
if the number n is bounded by a number depending only on n1, ..., nq. As an example, given a
polynomial f ∈ R[T ], denote by r(f) the number of roots of f , and by deg(f) the degree of f , then
r(f) Cdeg(f).

Theorem 84 (Tarski-Seidenberg) Let n,m, c, d be natural numbers. Then there exists C,D C
n+m, c, d such that for every semi-algebraic sets X ⊂ Rn, Y ⊂ Rm and for every semi-algebraic
map f : X → Y , if A ⊂ X is a semi-algebraic set of complexity S(n, c, d) and f is of complexity
S(n+m, c, d), then f(X) ⊂ Y is a semi-algebraic subset of Rm of complexity S(m,C,D).

Corollary 85 Let X ⊂ Rn and Y ⊂ Rm be semi-algebraic sets, f : X → Y a semi-algebraic
map of complexity S(n + m, c, d). Suppose that A ⊂ Y is a semi-algebraic subset of complexity
S(m, c, d), then f−1(A) ⊂ X is semi-algebraic of complexity S(n,C,D), where C,D C n,m, c, d.

Corollary 86 Let X ⊂ Rn, Y ⊂ Rm and Z ⊂ Rp be semi-algebraic sets, f : X → Y and
g : Y → Z semi-algebraic maps. Suppose that f is of complexity S(n+m, c, d) and g of complexity
S(m+ p, c, d). Then the map g ◦ f : X → Z is semi-algebraic of complexity S(n+ p, C,D), where
c, d C n,m, p, c, d.



4.1. SEMI-ALGEBRAIC SETS 65

Another maybe less obvious consequence of Tarski-Seidenberg’s Theorem 84 is that closures,
interiors and boundaries of semi-algebraic sets are semi-algebraic:

Proposition 87 Let X be a semi-algebraic set. Then its closure X, its interior Int(X) and its
boundary ∂X = X\Int(X) are semi-algebraic.

Proof. Let X be a semi-algebraic subset of Rn. Since ∂X = X\Int(X) and semi-algebraic sets
are closed under taking complements, it is enough to show that X and Int(X) are semi-algebraic.

Consider the two following semi-algebraic subsets of Rn × Rn × R:

X ′ = {(x, y, t) ∈ Rn × Rn × R | r ≤ 0, y ∈ X}
∪{(x, y, t) ∈ Rn × Rn × R | |x− y|2 − r < 0, y ∈ X}.

and
X ′′ = {(x, y, t) ∈ Rn × Rn × R | r > 0}

∪{(x, y, t) ∈ Rn × Rn × R | |x− y|2 − r ≥ 0}
∪{(x, y, t) ∈ Rn × Rn × R | y ∈ X}.

Let p′ and p′′ be the two following canonical projections

p′ : Rn × Rn × R −→ Rn × Rn
(x, y, t) 7−→ (x, y)

and
p′′ : Rn × Rn −→ Rn

(x, y) 7−→ x.

Note that
X = p′′(Rn × Rn\p′(Rn × Rn × R\X ′))

and
Int(X) = p′′(Rn × Rn\p′(Rn × Rn × R\X ′′))

so that it follows from 84 that X and Int(X) are semi-algebraic.

Triangulations of semi-algebraic sets

Theorem 88 below is the most technical tool which we need for our proof of Theorem 5. It is
a bounded version of the existence of semi-algebraic triangulations of semi-algebraic sets. The
unbounded version (that is, the existence of a semi-algebraic triangulation with no bound on the
number or on the complexity of the simplices) was proven by Hironaka in [Hi74] following the
analogous result by Lojasiewicz for semi-analytic sets. It was then observed by Benedetti and
Risler, that one straightforwardly obtains the corresponding bounded version, by bounding every
step of the constructive proof of Hironaka, as detailed in [BeRi90, Theorem 2.9.4].

Let X be a semi-algebraic set. A triangulation h : X → |K| of X is said to be a semi-algebraic
triangulation if the homeomorphism h between X and the geometric realization of the simplicial
complex K is semi-algebraic.
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Theorem 88 For every compact semi-algebraic set X and every semi-algebraic subsets X1, . . . , X` ⊂
X, if X1, ..., X` and X are of complexity S(n, c, d) then there exists a semi-algebraic triangulation

h : X −→ |K|

such that

1. Xi is a finite union of h−1(s) for some simplices s of K, for every i between 1 and `;

2. the number of simplices of K is bounded by k, where k C (n, c, d, `);

3. for every simplex s of K the set h−1(s) is semi-algebraic of complexity S(n,C,D), for some
C,D C (n, c, d, `).

Observe that it follows from Theorem 88 that the Hauptvermutung holds in the semi-algebraic
setting. Indeed, given two finite triangulations of some semi-algebraic set, apply Theorem 88 to
all the simplices appearing in both triangulations in order to obtain a common refinement.

Corollary 89 Let X be a semi-algebraic set. Then every connected component of X is semi-
algebraic.

Proof. Upon successively embedding X in a projective space and affine space of appropriate
dimensions we can without loss of generality assume that X is compact. By Theorem 88, X
admits a triangulation by semi-algebraic simplices, in such a way that X is a finite union of
semi-algebraic simplices. In particular, every connected component of X is a finite union of semi-
algebraic simplices, and thus is semi-algebraic.

Semi-algebraicity of the classifying space and classifying map

In the sequel we examine the question of semi-algebraicity for the classifying space BGq and the
classifying map f , which we defined in Section 1.1.2, in the case where the bundle in consideration
is flat.

The classifying space Let us first examine the case of the space of n-frames Frn(RN ). Recall
that it is naturally identified with the set of all N times n matrices with linearly independent
columns. The latter condition being equivalent to the non vanishing of at least one of the maximal
minor, it is immediate that the space Frn(RN ) can be viewed as a semi-algebraic subset of RNn.

Let G be an algebraic subgroup of GLnR and let us show that BGq is semi-algebraic. The
main point is that BGq can in a natural way be viewed as a homogeneous space. Indeed, consider
the action of GLNR on BGq (where, as in Section 1.1.2, N = (q + 1)n) given by left matrix
multiplication

GLNR×BGq −→ BGq

(A, [X]G) 7−→ [AX]G.

The stabilizer of the point
[

1n
0

]
G

∈ BGq is easily checked to be

H(R) =
{(

g ∗
0 ∗

)
∈ GLN (R)

∣∣∣∣ g ∈ G} .
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Our space BGq is thus diffeomorphic to the homogeneous space

GLN (R)/H(R).

Since G is algebraic, it is clear that H(R) is a real algebraic subgroup of GLNR. It is a consequence
of a well known theorem of Chevalley that the homogeneous space

Y (C) = GLN (C)/H(C)

of the corresponding complex algebraic groups is a complex quasi-projective variety (see [Bo91], §6
or more precisely Theorem 6.8). However, it is in general false that the real points Y (R) of Y (C)
form the homogeneous space GLN (R)/H(R). To see that let us consider the following examples:

• The quotient of GL1(C) by its finite subgroup {+1,−1} can naturally be identified with
GL1(C) in such a way that the quotient mapping is given by

GL1(C) −→ GL1(C)
z 7−→ z2.

But in the real case, the quotient GL1(R)/{+1,−1} is of course not diffeomorphic to GL1(R).
Actually, it is diffeomorphic to one connected component of GL1(R).

• More generally, the quotient of GLn(C) by its orthogonal subgroup O(n,C) is naturally iden-
tified with the space of non degenerated quadratic forms over C, or equivalently, the space
of symmetric non degenerated complex valued (n× n)-matrices. But the non degenerated
quadratic forms over R, contrarily to the complex case, are not all equivalent, so that the
action of GLn(R) is not transitive: it has precisely n + 1 orbits corresponding to the signa-
ture of the non degenerated symmetric matrices. The homogeneous space GLn(R)/O(n,R)
actually is diffeomorphic to the orbit of the identity, that is the set of symmetric real valued
(n × n)-matrices for which all eigenvalues are strictly positive. It can thus be viewed as a
semi-algebraic set.

The problem in the two above examples is that the projection map

GLN (C) −→ GLN (C)/H(C) = Y (C),

which is defined over R, is not surjective anymore when restricted to the underlying real varieties:

GLN (R) −→ Y (R).

Equivalently, the action of GLNR on Y (R) is not transitive.
Let 1 denote the image of the identity via the projection map GLN (C) −→ Y (C) and let X(R)

be its orbit in Y (R) under the action of GLN (R). The stabilizer of 1 is then clearly

H(C) ∩GLN (R) = H(R),

so that
BGq ∼= GLN (R)/H(R) ∼= X(R).
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Because X(R) is a finite union of connected components of Y (R), it is semi-algebraic by Corollary
89.

Observe that we recover that the space of n-frames is semi-algebraic since FrnRN is nothing
else than B{1n}N , where {1n} of course stands for the trivial group (in GLnR). In this case the
homogeneous space Y (C) is equal to the space Frn(CN ) of complex n-frames, so that its space of
real points Y (R) is precisely FrnRN . The space X(R) is here thus the whole Y (R).

For further use, define n(BGq) to be equal to the dimension of the affine space that BGq
belongs to. (In particular, BGq then belongs to S(n(BGq), c, d) for some c, d.)

The projection map Let us now show that the natural projection πG : PGq → BGq is a
semi-algebraic map. Because of the universal property of the quotient (see [Bo91], §6), there exists
a unique algebraic map π :Frn(CN ) → Y (C) defined over R, such that the following diagram
commutes:

GLN (C) −→ Y (C)
↓ ↗ π

Frn(CN )

Restricting the map π to the real point of the corresponding varieties, we obtain an algebraic map
π :Frn(RN )→ Y (R). But the commutativity of the diagram implies that the image of π is equal to
X(R). The map π, viewed as a map from Frn(RN ) = PGq to X(R) = BGq is thus semi-algebraic,
and by unicity it is the natural projection.

The classifying map Let K be a q-dimensional simplicial complex. Recall (see Section 1.1.2)
that any flat principal G-bundle over |K| can be obtained as the pull back of the classifying map

f : |K| −→ BGq

x = Σqj=0tib
si 7−→



t0g0i(t)
...

tiIdn
...

tqgqi(t)


G

,

where i is chosen so that ti 6= 0, and the gij ’s are constant on star(bsi)∩star(bsj ). As in Section
1.1.2, si always denotes an i-dimensional simplex of K, and bsi is its barycenter in Kbar. Let
k = {bs0 , ..., bsq} be a q-dimensional simplex of Kbar and, slightly abusing notation, let us denote
by gi0 ∈ G the value of the transition function gi0 on star(bsi)∩star(bs0). The classifying map
restricted to |k| can then be given as

f ||k| : |k| −→ BGq

x = Σqj=0tib
si 7−→


t0

t1g10(x)
...

tqgq0(x)


G

.



4.2. THE SIMPLICIAL VERSION 69

Note that f ||k| is really well defined on the whole of |k| and not only those points for which t0 6= 0.
The map f ||k| is now clearly equal to the composition of the map

f : |k| −→ PGq = Frn(RN )

x = Σqj=0tib
si 7−→


t0

t1g10(x)
...

tqgq0(x)


and the natural projection

πG : PGq −→ BGq.

We have already seen that the latter map is semi-algebraic. Its complexity depends of G and q.
We claim that the map f is also semi-algebraic, of complexity depending only on n and q.

Indeed, its graph admits the representation

Graph(f) =
{

((t0, ..., tq), ((x0
ij), ..., (x

q
ij))) ∈ Rq+1 ×

(
Rn2

)q+1

Σqk=0tk = 1, tk ≥ 0 ∀k, xkij − tk(gk0)ij = 0 ∀ i, j, k
}
,

so that it belongs to
S
(
(q + 1)

(
1 + n2

)
, 1 + (q + 1) + (q + 1)n2, 1

)
.

It follows by Corollary 86 that the classifying map is, when restricted to any simplex of K, of
complexity depending only on G and q.

4.2 The simplicial version

In this section, we will start by proving the simplicial version of our main theorem. However, to
easily deduce the main theorem from its simplicial version we will need a slightly stronger form of
the latter, which we will state and prove below.

Theorem 90 Let G be an algebraic subgroup of GLn(R) and β ∈ Hq(BG) be a characteristic
class. There exists a finite subset I ⊂ R such that for every flat principal G-bundle ξ over a finite
simplicial complex K the cohomology class β(ξ) ∈ Hq

simpl(K) can be represented by a cocycle whose
set of value on the q-simplices of K is contained in I.

Note that this is exactly Sullivan’s Theorem (the Theorem 61 here) for the Euler class. The
finite subset obtained by Sullivan in this case is I = {−1, 0, 1} and is improved by Smillie to
I = {−1/2n, 0, 1/2n}. Our method will not produce such accurate bounds.
Proof. First observe that it is enough to prove the theorem for simplicial complexes of dimension
smaller or equal to q. Indeed, a simplicial q-cocycle is defined on the q-dimensional simplices and
two q-cocycles represent the same cohomology class if they differ by a coboundary, which also only
depends on the q-skeleton.

Now, any principal G-bundle over a q-dimensional simplicial complex, can be obtained as the
pull back of the approximation to the universal bundle BGq, where BGq is as in Section 1.1.2.
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The space BGq was shown to be semi-algebraic in Section 4.1, so that in particular its closure
BGq admits, by Theorem 88, a finite semi-algebraic triangulation

h : BGq −→ |T |.

Observe that whenever the space BGq is non compact (which is the general case), its triangulation
T will have simplices in the boundary of BGq. Upon replacing T by its first barycentric subdivision
we can however require that any open simplex contained in BGq has at least one of its vertex in
BGq. Also the classifying map f : |K| → BGq exhibited in Section 1.1.2 was proven in Section
4.1 to be semi-algebraic, and furthermore of complexity bounded independently of the bundle ξ or
even the multi-simplicial complex K, when restricted to any simplex of K. Indeed the complexity
of the classifying map was then shown to only depend on the dimension q and the group G.

Our next aim is to find a simplicial approximation of the classifying map h ◦ f : |K| → BGq →
|T | (or to be very accurate, actually an approximation to the map h◦f : |K| → BGq → |T |, where
f : |K| → BGq is a map homotopic to f). Of course it is a well known fact (see Theorem 49) that
upon passing to an arbitrarily fine subdivision of K this is always possible. Our main point is now
precisely that we only need to refine K in a uniformly bounded way. This will follow at once from
the following Technical Lemma.

Lemma 91 (Technical Lemma) There exists a refinement (L, r) of K and a continuous map
f : |K| → BGq homotopic (in BGq) to f such that

• the index of the refinement satisfies the inequality

[L : K]q ≤ m,

where m depends only on q and G.

• the interior of every simplex ` of L is mapped by f inside the interior of some simplex t of T
whose interior is contained in BGq, or more precisely, for every simplex ` of L there exists
a simplex t of T such that h−1(Int(t)) ⊂ BGq and

f(r−1(Int(`))) ⊂ h−1
T (Int(t)) .

We postpone for the time being the proof of the Technical Lemma and show how the theorem
is now easily proved. We exhibit a simplicial approximation ϕ to the continuous map h ◦ f ◦ r−1 :
|L| → |T | by an argument almost identical to that of Proposition 48. The difference lies in the fact
that some care is needed in order for our simplicial approximation not to land in the boundary
of BGq. Let T0 be the biggest subcomplex of T such that h−1(|T0|) ⊂ BGq. For every vertex v
of L, define ϕ(v) ∈ T 0 to be any vertex of the only open simplex of T containing f(v). By the
assumption made on T that any open simplex contained in BGq has at least one vertex inside
BGq, we can moreover assume that ϕ(v) is contained in T0. That this indeed defines a simplicial
map

ϕ : L −→ T

which is a simplicial approximation to h ◦ f ◦ r−1 now follows exactly as in Proposition 48.
Let b ∈ Zq(BGq) be an alternating cocycle representing the cohomology class corresponding to

the characteristic class β. We have

β(ξ) =
[
f [(b)

]
=
[
f
[
(b)
]
∈ Hq

simpl(K),



4.2. THE SIMPLICIAL VERSION 71

since the maps f and f are homotopic. Let

h0 : |T0| −→ BGq

denote the restriction of h−1 to |T0|. Observe that the diagram

|K| f∼f−−−−→ BGqyr xh0

|L| |ϕ|−−−−→ |T |

commutes up to homotopy. We thus have

β(ξ) = [(h0 ◦ |ϕ| ◦ r)[(b)].

But by Proposition 58 the simplicial cocycle (h0 ◦ |ϕ| ◦ r)[(b) is cohomologous to r] ◦ (h0 ◦ |ϕ|)[(b).
Applying successively Lemma 52 and Lemma 54 we obtain

r] ◦ (h0 ◦ |ϕ|)[(b) = r] ◦ |ϕ|[ ◦ h∗0(b) = r] ◦ ϕ∗ ◦ h[0(b).

Define bT = h[0(b) ∈ Z
q
simpl(T0). Since the simplicial cocycle T0 is finite, the simplicial cocycle bT

takes, when evaluated on q-dimensional simplices of T0, a finite number of values. Let J be the
finite subset of R consisting of all those possible values. The cocycle ϕ∗(bT ) now surely also takes
its values in J when evaluated on q-dimensional simplices. Finally, it follows from Proposition 56
that the cocycle r] ◦ ϕ∗ ◦ h[0(b) takes its values in the following finite subset of R:{

r∑
i=1

ni

∣∣∣∣ ni ∈ J , r ≤ [L : K]q

}
,

which finishes the proof of the theorem.
Of course, the so obtained bound is absolutely out of proportions. Observe that it is composed

of two parts: the possible values of a cocycle on BGq = |T | representing the characteristic class
β evaluated on the fixed triangulation T , and the amount of simplices (the m from the Technical
Lemma 91) needed to refine the simplicial complex K so as to have a simplicial approximation of
the classifying map. The latter bound is effective and could actually be computed, even though
not accurately.
Proof of the Technical Lemma 91. To simplify the notation we will identify the classifying
space BGq with the geometric realization of T . Also, we will systematically identify the geometric
realization of any simplicial complex with that of its refinements.

We will prove the Lemma inductively by showing that for every 0 ≤ i ≤ q there exists constants
ci, di and mi depending only on i, the group G and the dimension q of the simplicial complex, a
refinement Li of the i-skeleton Ki of K and a continuous map fi : |K| → |T | = BGq homotopic
(in BGq) to f such that

1. [Li : Ki]i ≤ mi,

2. the image by fi of the interior of every simplex of Li is contained in the interior of some
simplex t of T ,
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3. every simplex ` of Li is semi-algebraic of complexity S(i, ci, di),

4. the map fi restricted to any simplex ofKi is semi-algebraic of complexity S(i+n(BGq), ci, di).

The two first properties are exactly the conclusion of the Technical Lemma for i = q, and the
two last ones are added for inductive purposes. For i = 0, there is nothing to prove: Take f0 = f
and L0 = K0 (so that c0 = n(BGq), d0 = 1 and m0 = 1). Let us thus assume that a refinement
Li−1 of the (i − 1)-skeleton of K and a continuous map fi−1 : |K| → |T | satisfying the above
properties are given.

The strategy of the proof is the following: We are going to triangulate each i-dimensional
simplex k of K in such a way that the triangulation on the boundary ∂k of k is precisely the first
barycentric subdivision of Li−1, so that we obtain a triangulation of the i-skeleton of K. To do so,
we subdivide every i-dimensional simplex k in two subsets kint and kext. After defining the map
fi and checking that it satisfies the above property 4 we prove that there exists triangulations of
kint and kext which agree on kint ∩ kext and correspond to the first barycentric subdivision of Li−1

on ∂k. We show that both the triangulation of kint and kext satisfy the above properties 1, 2 and
3, thus proving the Technical Lemma.

The subsets kint and kext. Let k be an i-th dimensional simplex of K and consider the two
following subsets of its geometric realization: Choose ε with 0 < ε < 1 and define

kint =


i∑

j=0

tjvj

∣∣∣∣∣∣ ti ≥ ε

1 + i
∀ j = 0, . . . , i,


and

kext =


i∑

j=0

tjvj

∣∣∣∣∣∣ ∃ j ∈ {0, ..., i} with ti ≤
ε

1 + i

 ,

where of course v0, ..., vi are the vertices of k. The subset kext is the closure of some sufficiently
small neighborhood of the boundary of k so that kext is homotopically equivalent to ∂k. The subset
kint is the closure of k\kext, that is, a homothetic copy of k centered at the barycenter of k and
contraction factor strictly smaller than 1.

The map fi. Define a continuous map αk : |k| → |k| to be, on kint the natural affine homothety
between kint and k, and on kext the projection from the barycenter of k onto the boundary ∂k.
More precisely, we have

αk

 i∑
j=0

tjvj

 =


∑i
j=0

1
1−ε

(
tj − ε

i+1

)
vj if

∑i
j=0 tjvj ∈ kint,

∑i
j=0

tj−min0≤j≤m tj
1−(i+1) min0≤j≤m tj

vj if
∑i
j=0 tjvj ∈ kext.

Clearly αk is well-defined, continuous and semi-algebraic. Also, since for every i-dimensional
simplex k, the map αk is the identity on ∂k, it defines a continuous map α : |Ki| → |Ki|.
Furthermore, it is obvious that it extends to a continuous map |K| → |K|, still denoted by α,
which we can moreover assume to map every simplex of K to itself and to be semi-algebraic of
complexity S(2q, cα, dα), when restricted to any simplex of K, where the constants cα and dα do
not depend on anything else than i and q. Such a map α is clearly homotopic to the identity.
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Define
fi = fi−1 ◦ α : |K| −→ |T | = BGq.

Since fi−1 is homotopic (in BGq) to f , the same is true for fi and by Corollary 86, the map fi
is, when restricted to any simplex of K, semi-algebraic of complexity S(q + n(BGq), ci, di), where
ci, di C q, n(BGq), cα, dα, ci−1, di−1, and thus ci, di C q,G, i.

The triangulation of kint. The map α is, when restricted to kint a homothety from kint

to k. Thus the first barycentric subdivision (Li−1)bar of the triangulation Li−1 restricted to the
boundary of k naturally induces, via α, a triangulation by semi-algebraic simplices of complexity
S(ni−1, ci−1, di−1) of the boundary of kint. We would now like to have a semi-algebraic triangulation
of kint agreeing with the following two families of semi-algebraic subsets:

• The simplices of the triangulation of ∂kint induced by (Li−1)bar.

• The pull back by fi of the simplices of T .

We are of course going to apply Theorem 88 to kint and those two families of semi-algebraic
subsets, so let us first check that the above sets all are of uniformly bounded complexity, and in
uniformly bounded quantity. Note that kint is of complexity S(i, i+ 1, 1).

• Since each simplex of Li−1 is, by induction, of complexity S(i− 1, ci−1, di−1), it follows that
each simplex of (Li−1)bar is of complexity S(i − 1, ci−1, di−1), and the same is true for the
corresponding simplices in ∂kint.

There are at most (i+ 1) ·mi−1 · i! such simplices.

• Since the semi-algebraic triangulation T of BGq is finite, any simplex t of T is of complexity
S(n(BGq), cT , dT ), for some cT , dT depending only on G and q. By Corollary 85 it follows
that f−1

i (t) is semi-algebraic of complexity S(q, C,D), where C,D C q, n(BGq), ci, di, cT , dT ,
thus C,D C q,G, i. By Lemma 82 we now obtain that f−1

i (t) ∩ kint is semi-algebraic of
complexity S(i, 2max{i+ 1, C},max{1, D}) for every simplex t of T .

Of course, the number of such sets is majorized by the number of simplices of T , which only
depends on q and G.

Let us now apply Theorem 88 to kint and its two above given families of semi-algebraic subsets.
We thus obtain a semi-algebraic triangulation Lint of kint fulfilling the following properties:

1. • The triangulation Lint restricted to the boundary of kint is a refinement of the trian-
gulation corresponding to the first barycentric subdivision of the triangulation Li−1

restricted to ∂k.

• For every simplex t of T , the semi-algebraic set f−1
i (t)∩kint is a finite union of simplices

of Lint, so that the image by fi of the interior of any simplex of Lint is contained in the
interior of some simplex of T .

2. The number of simplices of Lint is bounded by mint, where mint is a constant depending only
on q,G and i.

3. each simplex of Lint is semi-algebraic of complexity S(n, cint, dint), where cint, dint are con-
stants depending only on q,G and i.



74 CHAPTER 4. THE PROOF OF THE MAIN THEOREM

The triangulation of kext. It now remains to triangulate kext in such a way that the
triangulation agrees with the first barycentric subdivision of Li−1 on ∂k and with the triangulation
Lint on kext ∩ kint = ∂kint. This triangulation should of course also enjoy the desired properties.
To do so, we consider the homeomorphism between kext and ∂k × [0, 1] given by

β : kext −→ ∂k × [0, 1]
x =

∑i
j=0 tjvj 7−→ (α(x), i+1

ε min{t0, ..., ti}).

The boundary ∂k ⊂ kext is thus mapped by β to ∂k × {0}, and kext ∩ kint = ∂kint to ∂k × {1}.
We are now exactly in the situation of the last example in 2.2: We have a refinement Lint|∂kint∼=∂k

of the triangulation Li−1|∂k of the (i− 1)-dimensional simplicial complex ∂k, and we can, by the
example, find a triangulation Lext of |∂k| × [0, 1] having the property that it agrees on |∂k| × {0},
respectively |∂k| × {1}, with the triangulation Li−1|∂k of |∂k|, resp. Lint|∂kint∼=∂k of |∂kint| ∼= |∂k|.
Moreover we have:

1. A bound for the number of i-dimensional simplices of Lext is

i · [Lint : Li−1]i−1 · ]{(i− 1)-dimensional simplices of Li−1}.

Note that as Li−1 is a triangulation of ∂k we have

[Lint : Li−1]i−1 ≤ [Lint : ∂k]i−1

≤ [Lint : k]i
≤ mint.

As for the number of (i− 1)-dimensional simplices in the triangulation Li−1 restricted to ∂k,
it is clearly bounded by the number of faces of ∂k times the index [Li−1 : Ki−1]i−1, the latter
number being, by induction hypothesis bounded by mi−1. We thus obtain that the amount
of simplices of Lext is bounded by

mext = i2 ·mint ·mi−1.

2. Observe that the diagram
kext

β−−−−→ ∂k × [0, 1]yfi

yproj1

|T | fi−1←−−−− ∂k,

where of course proj1 stands for the projection on the first factor, is commutative. The
interior of any simplex of Lext is by construction mapped inside the interior of some simplex
of Li−1 and as by induction the image by fi−1 of the interior of any simplex of Li−1 and hence
also of (Li−1)bar is contained in the interior of some simplex of T the conclusion follows.

3. By induction hypothesis, the simplices of Li−1 are all semi-algebraic of complexity S(i −
1, ci−1, di−1). Also, the simplices of the triangulation Lint on ∂kint

∼= ∂k are semi-algebraic
of complexity S(i − 1, cint, dint). By Lemma 83, the join of any simplex of Lint|∂kint∼=∂k and
Li−1, and thus any simplex of Lext is semi-algebraic of complexity S(i, cext, dext), where
cext,dext C ci−1, di−1, cint, dint and thus cext,dext C i, G, q.
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Before stating the slight generalization of Theorem 5 from which it will be easy to obtain at
once our main Theorem, let us recall that a cohomology class in H∗(BGδ) is said to be a primary
characteristic class if it is contained in the image of the natural map H∗(BG)→ H∗(BGδ).

Theorem 92 Let G be an algebraic subgroup of GLnR and β ∈ Hq(BGδ) a primary characteristic
class. Then there exists a finite subset I ⊂ R such that for every finite simplicial complex K and
every continuous map σ : |K| → BGδ, there exists a cochain b ∈ Cqsing(BG

δ) such that the
simplicial cochain σ[(b) ∈ Cqsimpl(K) is a cocycle representing σ[(β) and taking values in I when
evaluated on q-simplices.

The only difference with Theorem 5 is that given any classifying map σ : |K| → BGδ we
require the cocycle representing the desired characteristic class to be in the image of the induced
map σ[ : Cqsing(BG

δ)→ Cqsimpl(K). This will greatly simplify our life when taking inverse limit, in
the next section, over all couples of the form (K,σ) as above.
Proof. The proof really relies on the proof of Theorem 5. The idea is quite simple: If σ is injective
on q-simplices in the sense that for any two simplicial isomorphisms τi : ∆q → ki, for i = 1, 2,
where the ki’s are oriented q-dimensional simplices of K, if σ◦τ1 = σ◦τ2 then k1 = k2 and τ1 = τ2,
then there is not much to do. Indeed, letting b ∈ Zqsimpl(K) be the simplicial cocycle obtained in
Theorem 5, define a singular cochain b′ ∈ Cqsingl(BG

δ) as

b′(σ′) =
{
b(τ(∆q)) if σ′ = σ ◦ τ for some map τ : ∆q −→ K,
arbitrarily otherwise,

for every singular simplex σ′ : ∆q → BGδ. Observe that thanks to our injectivity condition, b′ is
well defined. Also, it is alternating and surely σ[(b′) = b as desired.

In the case where our injectivity condition is not fulfilled, we will show that the cocycle b ∈
Zqsimpl(K) constructed in the proof of Theorem 5 can actually be chosen such that b(k1) =sign(τ)b(k2),
whenever there exists a simplicial isomorphism τ : k1 → k2 between the two oriented q-simplices
k1 and k2 such that σ ◦ τ = σ|k1 . From such a cocycle, one can then define a well defined singular
cochain b′ ∈ Cqsingl(BG

δ) as above and obtain, once again, the desired conclusion.
Consider the covering of |K| by the sets {S0, ..., Sq} exhibited in Section 1.1.2. We claim

that locally constant transition functions relative to the covering {S0, ..., Sq} can be found such
that for every x ∈ Si ∩ Sj belonging to the connected component star(bsi)∩star(bsj ) for some
i-simplex si and j-simplex sj of K, the value of the transition function gij on x (and hence on
star(bsi)∩star(bsj )) only depends on the image by σ of the one dimensional simplex (bsi , bsj ) of
Kbar. To see that, choose, for every vertex bs of Kbar, a point u(bs) in the fiber over bs or
equivalently, in the fiber over σ(bs), and define gij(x), for x in star(bsi)∩star(bsj ), as the difference
between the parallel transport of the point u(bsi) along the simplex (bsi , bsj ) and the point u(bsj ).
It is readily seen that this defines transition functions with the desired property.

It now follows that if there exists a simplicial isomorphism τ : k1 → k2 such that σ ◦ τ = σ|k1
then the classifying map obtained in the proof of Theorem 5 also satisfies

f ◦ τ = f |k1 .

But the refinement L ofK of Theorem 5 being defined inductively on the skeleton ofK in such a way
that it depends only on the classifying map f , we can choose L and the simplicial approximation
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ϕ : L→ T of Theorem 5 so that the class ϕ∗(bT ) is such that if there exists a simplicial isomorphism
τ : k1 → k2 such that σ ◦ τ = σ|k1 then

ϕ∗(bT )(k1) = sign(τ)ϕ∗(bT )(k2).

4.3 Proof of the singular version

We are now almost ready to give a proof of Theorem 4 stating that primary characteristic classes of
flat bundles can be represented by cocycles taking only finitely many values on singular simplices.
The theorem will be a simple consequence of its simplicial version (Theorem 92) by an argument
of inverse limit. Before attacking the proof, we recall the elementary definitions of inverse systems
and limits.

4.3.1 Inverse limits

• A directed set is a non-empty, partially ordered set (Λ,≥) such that

∀ λ, µ ∈ Λ, ∃ ν ∈ Λ with ν ≥ λ, ν ≥ µ.

• An inverse system (Xλ, πµλ) of sets over a directed set Λ is a family of sets (Xλ)λ∈Λ together
with maps πµλ : Xλ → Xµ whenever λ ≥ µ satisfying the two following conditions:

– πλλ = IdXλ
,

– πνµπµλ = πνλ, for λ ≥ µ ≥ ν.

• The inverse limit of the inverse system (Xλ, πµλ) is defined as

lim
←
Xλ = {(gλ) ∈

∏
λ∈Λ

Xλ | πµλ(gλ) = gµ ∀ λ ≥ µ}.

Proposition 93 If (Xλ, πµλ) is an inverse system of non empty compact spaces over a directed
set Λ, then

lim
←
Xλ 6= ∅.

Proof. For every finite subset S ⊂ Λ, define

L(S) := {(xλ) ∈
∏
λ∈Λ

Xλ | πµλxλ = xµ ∀λ, µ ∈ S, λ ≥ µ},

and write P :=
∏
λ∈ΛXλ.

The set L(S) is closed in P and non empty. It is non empty since as S is a finite subset of a
directed set ∃ ν ∈ Λ such that ν ≥ λ for every λ ∈ S. Now choose some xν ∈ Xν 6= ∅, and define
(xλ) ∈ L(S) by

xλ :=

 xν ∈ Xν if λ = ν
πλνxν ∈ Xλ ∀λ ∈ S
xλ ∈ Xλ arbitrary ∀λ /∈ S ∪ {ν}
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By Tychonov’s theorem P is compact since it is a product of compact spaces. Set L = ∩{L(S) |
S ⊂ Λ, S finite}. If L were empty, it would mean that the intersection over only a finite set of
finite subsets of Λ is already empty. But clearly,

∩ri=1L(Si) = L(∪ri=1Si),

for Si finite subsets of Λ. But as L(∪ri=1Si) is non empty, as we have just seen, it follows that L
is non empty. But now, L is exactly lim←Xλ.

Our main example of directed set. Let X be a non empty topological space and let L be
the full simplicial complex over the canonical basis of R∞, that is L0 = {e1, e2, . . . } and every set
of vertices in L0 generates a simplex of L. Set

Λ =
{

(K,σ)
∣∣∣∣ K ⊂ L finite simplicial complex,
σ : |K| → X continuous

}
.

It is non empty since X is non empty. Put the following partial order on Λ: Let (K1, σ1), (K2, σ2) ∈
Λ, then

(K2, σ2) ≥ (K1, σ1) if ∃ a simplicial injection i : K1 → K2

such that σ2 ◦ |i| = σ1.

It is readily seen that Λ is a directed set. Indeed, let (K1, σ1), (K2, σ2) be in Λ. As K1 is a finite
simplicial complex, K1 ⊂ Rn for some n ∈ N. Define a simplicial map tn : L→ L by tn(ei) = ei+n.
It is clear that tn is an injection. Observe that K1 and tn(K2) are disjoint subcomplexes of L.
Define K = K1 q tn(K2) and σ : |K| → X by

σ∣∣|K1|
= σ1 and σ∣∣|tn(K2)|

= σ2 ◦ |tn|−1.

Notice that the last expression makes sense, since as |tn| is injective, it is bijective on its image.
Obviously, taking i to be the canonical inclusion of K1 in K we get (K,σ) ≥ (K1, σ1), and
(K,σ) ≥ (K2, σ2) since tn : K2 → K is a simplicial inclusion and σ ◦ |tn| = σ2 by definition of σ.

Our main example of inverse system. Let X be a topological space, β ∈ Hq
sing(X) a

singular cohomology class on X and I a compact subset of R. For every (K,σ) in Λ, define

Y(K,σ) =
{
b ∈ Zqsimpl(K)

∣∣∣∣ [b] = σ[(β), b ∈ σ[(Cqsing(X)),
b(k) ∈ I ∀ q-simplex k ∈ K

}
.

If (K1, σ1) ≤ (K2, σ2), the simplicial inclusion i : K1 → K2 induces a map

i∗ : Y(K2,σ2) −→ Y(K1,σ1).

Note that from the requirement that any cocycle of Y(K,σ) belongs to the image of σ∗ it follows that
the map i∗ does not depend on the choice of simplicial injection i. Indeed, suppose j : K1 → K2

is another simplicial injection with σ2 ◦ |j| = σ1 = σ2 ◦ |i|, then

i∗ ◦ σ∗2 = (σ2 ◦ |i|)∗ = σ∗1 = (σ2 ◦ |j|)∗ = j∗ ◦ σ∗2 ,

so that i∗ and j∗ agree on the image of σ∗2 in which Y(K2,σ2) is contained. Observe moreover that

• for every (K,σ) in Λ, the map Y(K,σ) → Y(K,σ) is the identity since it is induced by the
identity on K,
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• if (K1, σ1) ≤ (K2, σ2) ≤ (K3, σ3) with simplicial injections i : K1 → K2, j : K2 → K3, then
(j ◦ i)∗|Y(K3,σ3)

= (i∗j∗)|Y(K3,σ3)
= i∗|Y(K2,σ2)

◦ j∗|Y(K3,σ3)
.

We have thus proven that {Y(K,σ)} forms an inverse system over Λ.

4.3.2 Proof of Theorem 4

Let G be an algebraic subgroup of GLnR and β ∈ Hq(BGδ) a primary characteristic class. Let
Λ be the directed set constructed above for X = BGδ, and {Y(K,σ)} the inverse system obtained
from X = BGδ, β ∈ Hq(BGδ) and the compact subset I of R from Theorem 92. The conclusion of
Theorem 92 is exactly equivalent to that Y(K,σ) is non empty for every (K,σ) in Λ. Moreover, the
Y(K,σ)’s are compact: Indeed, for every (K,σ) in Λ, the space Y(K,σ) is the subspace of the finite
dimensional vector space Zqsimpl(K) formed of the intersection of an affine subspace (the image of
the coboundary δ), a linear subspace (the image of σ∗), and a compact subset (from that b takes
its values in the compact set I). It now follows from Proposition 93, that the inverse limit of the
inverse system {Y(K,σ)} is non empty:

∅ 6= lim←−Y(K,σ).

Let thus (b(K,σ)) be an element in the inverse limit, and define a singular cochain b ∈ Cqsing(X) by
b(σ) = b(∆q,σ)(∆q), for every singular simplex σ : ∆q → X. It is clear from the definition of b, that
the cochain b takes its values in I on singular simplices.

It remains to show that the cochain b is a cocycle representing β. Let thus c be an arbitrary
cocycle representing β. It is now enough to show that b and c agree on singular cycles. Let thus
z = Σaiσi ∈ Zq(X) be a singular cycle on X. Up to rescaling z we can suppose that the coefficients
ai lie in Z. It is clear that to this cycle corresponds a continuous map

σ : |K| −→ X,

whose restriction to any q-dimensional simplex of the simplicial complex K is either degenerated
or corresponds to one of the singular simplices σi appearing in the decomposition of z. Of course,
the simplicial complex K can be chosen to be closed. Let us abuse notation and write K for the
corresponding simplicial cycle. Then

c(z) = σ∗(c)(K)

and
b(z) = σ∗(b)(K) = b(K,σ)(K).

Comparing those two equalities, we conclude from the fact that K is a cycle, and that by definition
of Y(K,σ) the simplicial cocycles σ∗(c) and b(K,σ) are cohomologous, the equality

c(z) = b(z)

holds as desired.



Appendix A

Bounded cohomology

Let X be a topological space. The space Cq(X) of singular q-chains on X is defined to be the (real)
vector space over the basis of singular simplices Sq(X) = {σ : ∆q → X | σ is continuous}, where
the standard simplex ∆q is the convex hull of the canonical basis of Rq+1 . The space of chains is
endowed with a natural boundary operator ∂ : Cq(X) → Cq−1(X) defined as ∂σ = Σqi=0(−1)iσi,
where σi : ∆q−1 → X is the composition of the inclusion of ∆q−1 in the i-th face of ∆q and σ.
As ∂2 = 0 we can consider the homology of the complex (C∗(X), ∂), which is called the singular
homology of X. The space Cq(X) of singular q-cochains is defined to be the algebraic dual of
Cq(X). It is endowed with the adjoint operator δ = ∂∗ : Cq(X)→ Cq+1(X). The homology of the
complex (C∗(X), δ) now gives the singular cohomology of X.

The 1-norm with respect to the canonical basis Sq(X) of Cq(X) can be considered:

‖z‖1 =
∑
σ

|zσ|, for z =
∑
σ

zσσ ∈ Cq(X).

This norm induces a semi-norm on the homology of X. If X is a compact manifold, the 1-norm of
its fundamental class [X] ∈ HDimX(X) is called the simplicial volume of X. We can now of course
consider the topological dual of the normed space Cq(X) which we denote by Cqb (X) and name
the space of (singular) bounded cochains on X, so that

Cqb (X) = {c ∈ Cq(X) | ‖c‖∞ <∞},

where

‖c‖∞ = sup{|c(z)| | z ∈ Cq(X), ‖z‖1 = 1}
= sup{|c(σ)| | σ ∈ Sq(X)}.

The boundary operator δ restricts to bounded cochains, so that we can define the (singular)
bounded cohomology H∗b (X) of the space X to be the homology of the complex (C∗b (X), δ). Note
however, that this is not a cohomology theory: the excision axiom does not hold.

We will say that a cohomology class [c] ∈ Hq(X) is bounded if it can be represented by a
bounded cocycle, or equivalently, if it is contained in the image of the comparison map

Hq
b (X) −→ Hq(X),
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where the latter map is of course induced by the inclusion Cqb (X) ↪→ Cq(X). Note that the
comparison map is in general neither injective nor surjective.
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