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Abstract. We give new lower bounds for the minimal number of simplices
needed in a triangulation of the product of two convex polygons, improving

the lower bounds in [Bo&al05].

1. Introduction

The use of volume of simplices in hyperbolic geometry for combinatorial prob-
lems, initiated by Thurston, has proven successful for minimal triangulations of
polytopes. For example, embedding an n-gon ideally in the hyperbolic plane, it is
elementary to see, since the area of a geodesic triangle is majorized by the (con-
stant) area of an ideal geodesic triangle, that the minimal number of 2-dimensional
simplices needed for a triangulation of a convex n-gon is equal to n− 2. Similarly,
the 3-cube can be embedded ideally in the 3-dimensional hyperbolic space in such
a way that its triangulation in 5 simplices consists of regular ideal simplices. As
regular simplices have maximum volume, this shows that the triangulation is min-
imal. More generally, Smith gives in [Sm00] the best lower bound so far for the
minimum number of n-dimensional simplices in a triangulation of the n-cube as
the ratio of the hyperbolic volume of the ideal cube to the ideal regular simplex in
hyperbolic n-space. Also, in [SlTaTh88], Sleator, Tarjan and Thurston relate the
hyperbolic volume of simplices to the size of minimal triangulations of polytopes
and balls, and use this relation to compute the asymptotic combinatorial diameter
of the Stasheff polytope (or associahedron).

Here, we will use a cocycle Vol4 which is cohomologous to the volume form
on the product of two copies of the hyperbolic plane to give new lower bounds
on the minimal number T (m,n) of top dimensional simplices in a triangulation
of the product P (m) × P (n), where P (m) denotes the convex polygon with m
vertices. Note that all our triangulations of polytopes are supposed not to have any
more vertices than the original polytope. Previously known are the lower bounds
T (m,n) ≥ 2mn− (8/3)(m+n) and T (m, 4) ≥ 7, 5m−3 obtained in [Bo&al05]. We
prove:

Theorem 1. T (m,n) ≥ 3, 125 ·mn− 5(m + n) + 6.

Theorem 2. T (m, 4) ≥ 23
3 m− 44

3 .

Thus, we are coming closer to the upper bounds T (m,n) ≤ 3, 5mn−6(m+n)+8
and T (m, 4) ≤ 8m− 16 established in [Bo&al05] for even m,n. The upper bounds
for odd m and n are slightly higher.

Since the arguments used in our proofs are of homological type, our method
should give the same lower bounds for the polytopial Gromov norm ‖P (m)× P (n)‖
of P (m) × P (n) (for a definition see [Bo&al05]), for which the upper bounds
‖P (m)× P (m)‖ ≤ 3, 25m2 − 8, 5m is known from [Bo&al05] for even m. Such
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lower bounds would contradict the conjecture in [Bo&al05], that the polytopial
Gromov norm of P (m)× P (n) behaves as 3mn + O(m + n).

Our lower bounds are only sharp for incidental low values of m and n. If m or
n is odd, then our proof could, with some care, be improved to give slightly better
lower bounds. Observe also that for n = 3, the value of T (m, 3) is known and
computed in [Bo&al05].

The combinatorial volume cocycle Vol4 used for the proofs of Theorems 1 and 2
already appears in [Bu07]: Its sup norm ‖Vol4‖∞ = 2/3 as a cohomology class in
H4

c (PSL(2, R)×PSL(2, R)) relates the simplicial volume of products of surfaces to
the simplicial volume of their factors:

‖Σg × Σh‖ =
3
2
‖Σg‖ ‖Σh‖ = 24(g − 1)(h− 1),

where Σg and Σh are surfaces of genus g and h respectively. This is the first product
formula for the simplicial volume, and the first example of an exact value of a
nonvanishing simplicial volume for a manifold not admitting a constant curvature
metric. We refer to [Bu07] for more details.

This paper is structured as follows: In Section 2, we define several combinatorial
volume cocycles for certain low dimensional polytopes P and see that they define
cohomology classes in the relative cohomology H∗(P, ∂P ). In Section 3, we compute
the minimal number of 3-simplices in prisms P (m) × [0, 1], a result which already
is known from [DeSaTa01]. In Section 4, we give a (probably sharp) bound on
the number of 4-simplices in a triangulation of P (m) × P (n) having at least one
3-face in the boundary ∂ (P (m)× P (n)). And finally, in Section 5, we use the
combinatorial volume cocycle Vol4 in order to estimate the number of remaining
(interior) 4-simplices in such a triangulation.

Acknowledgements. I am grateful to Fransico Santos for his useful comments on
preliminary versions of this paper.

2. Combinatorial volume cocycles

2.1. Cocycles on products of low dimensional spheres. Identify the 0-dimen-
sional sphere S0 with the two endpoints 0 and 1 of the unit interval [0, 1] and define
a cochain

ν :
(
S0

)2 −→ {−1, 0,+1}
as

ν(0, 0) = ν(1, 1) = 0,

ν(0, 1) = +1,

ν(1, 0) = −1.

Observe that ν is alternating by definition. Furthermore, ν is a cocycle, i.e. it
satisfies the cocycle relation δν(x, y, z) = ν(y, z) − ν(x, z) + ν(x, y) = 0, for every
x, y, z in S0.

Fix now an orientation on the circle S1 and recall that the orientation cocycle
Or is defined as

Or :
(
S1

)3 −→ R

(x0, x1, x2) 7−→

 +1 if x0, x1, x2 are positively oriented,
−1 if x0, x1, x2 are negatively oriented,

0 if xi = xj for i 6= j.

Note that the cochain Or is alternating by definition. To check that it is a cocycle,
we verify that δOr(x0, ..., x3) = 0 for any 4-tuple of points x0, ..., x3 in S1. Let
us first assume that the points are all distinct. Since δOr is alternating, we can
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without loss of generality assume that the points x0, ..., x3 are positively cyclically
ordered. In particular Or(x0, ..., x̂i, ..., x3) = +1 for every i, and

δOr(x0, ..., x3) =
3∑

i=0

(−1)iOr(x0, ..., x̂i, ..., x3) = 1− 1 + 1− 1 = 0.

If the four points x0, ..., x3 are not all distinct, then we can assume that x0 = x1

and we have

δOr(x0, ..., x3) = Or(x1, x2, x3)−Or(x0, x2, x3) + 0− 0 = 0.

The cup product of the orientation cocycle with ν, is given by

Or ∪ ν :
(
S1 × S0

)4 −→ R
((x0, y0), ..., (x3, y3)) 7−→ Or(x0, x1, x2) · ν(y2, y3).

Observe that, in view of the well-known and straightforward formula

δ (Or ∪ ν) = δOr ∪ ν −Or ∪ δν = 0,

the cochain Or ∪ ν is also a cocycle. However, it is clearly not alternating, so that
we define a cochain

Vol3 :
(
S1 × S0

)4 −→ R
as the alternation of Or ∪ ν:

Vol3(z0, ..., z3) =
1
4!

∑
σ∈Sym(4)

sign(σ) (Or ∪ ν) (zσ(0), ..., zσ(3)),

for every 4-tuple (z0, ..., z3) in
(
S1 × S0

)4. Observe that

Or ∪ ν −Vol3 = δb3,

where b3 :
(
S1 × S0

)3 −→ R is the cochain defined as

b3((x0, y0), (x1, y1), (x2, y2)) =
1
3
Or(x0, x1, x2) · (ν(y1, y2) + ν(y0, y2)) .

In particular, the cochain Vol3 is also a cocycle.
The cup product of the orientation cocycle with itself, is given by

Or ∪Or :
(
S1 × S1

)5 −→ R
((x0, y0), ..., (x4, y4)) 7−→ Or(x0, x1, x2) ·Or(y2, y3, y4),

and it is a cocycle in view of the formula

δ (Or ∪Or) = δOr ∪Or + Or ∪ δOr = 0.

We define a cochain
Vol4 :

(
S1 × S1

)5 −→ R
as the alternation of Or ∪Or:

Vol4(z0, ..., z4) =
1
5!

∑
σ∈Sym(5)

sign(σ) (Or ∪Or) (zσ(0), ..., zσ(4)),

for every 5-tuple (z0, ..., z4) in
(
S1 × S1

)5. Here also, Or ∪Or and Vol4 differ by a
coboundary. Indeed, letting b4 :

(
S1 × S1

)4 → R be the cochain

b4((x0, y0), ..., (x3, y3)) =
1
3
Or(x1, x2, x3) (Or(x1, x3, x4) + Or(x2, x3, x4))

+
1
12

(Or(x1, x2, x4) (Or(x1, x3, x4) + Or(x2, x3, x4))

+ Or(x1, x3, x4) (−Or(x1, x2, x4) + Or(x2, x3, x4))

+Or(x2, x3, x4) (−Or(x1, x2, x4)−Or(x1, x3, x4))) ,
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one can check that Or∪Or−Vol4 = δb4. Note that in particular, Vol4 is a cocycle.

2.2. Some homological algebra. Let P be any convex polytope and let

Cq(P ) =

{ ∑
finite

aσσ

∣∣∣∣∣ aσ ∈ R, σ : ∆q → P affine,
vertices of σ ⊂ P 0

}
be the real vector space over the basis of affine simplices σ : ∆q → P , where ∆q

denotes the standard q-simplex, mapping the vertices of ∆q to the vertices P 0 of
P . The relative chain complex of (P, ∂P ) is given, in degree q, by

Cq(P, ∂P ) = Cq(P )/Cq(∂P ).

The boundary operator ∂ : Cq(P ) → Cq−1(P ) induces a boundary operator on
the quotient C∗(P, ∂P ) and the resulting homology group H∗(P, ∂P ) is the relative
homology of (P, ∂P ).

Any triangulation T of the n-dimensional polytope P determines in a unique
(after the choice of an orientation on P ) and natural way an affine cycle zT in
Cn(P, ∂P ), which in turn gives a relative homology class

[zT ] ∈ Hn(P, ∂P ).

(All our triangulations are assumed not to have more vertices than P .) If z1, z2 are
two affine cycles arising from two triangulations of P , then [z1] = [z2] in Hn(P, ∂P ).
Indeed, it is easy to see that there exists chains c in Cn+1(P ) and b in Cn(∂P ) such
that

z2 − z1 = ∂c + b.

Let Cq(P ) denote the algebraic dual of the space of chains Cq(P ). The relative
cochain complex of (P, ∂P ) is given, in degree q, by

Cq(P, ∂P ) = {f ∈ Cq(P ) | f(c) = 0 for every c ∈ Cq(∂P )} .

The coboundary operator δ : Cq(P ) → Cq+1(P ) clearly restricts to the relative
cochain complex C∗(P, ∂P ) and the resulting cohomology group H∗(P, ∂P ) is the
relative cohomology of (P, ∂P ).

Observe that the evaluation of chains on cochains induces a well-defined pairing

〈., .〉 : Hq(P, ∂P )⊗Hq(P, ∂P ) −→ R.

2.3. Combinatorial volume. We start with a trivial case: The cocycle ν : (S0)2 →
R determines a cocycle

ν ∈ C1([0, 1], {0, 1}),
which we still denote by ν, defined as

ν(σ) = ν(σ0, σ1),

where σ0, σ1 are the (ordered) vertices of the affine simplex σ. Note that it is obvious
that ν is well defined, since it vanishes on 1-chains contained in the boundary. If
T is the only triangulation of the interval with all its vertices in the boundary,
then the relative cycle zT , which consists of one affine chain, satisfies ν(zT ) = 1.
Obviously, ν is nothing else than the Euclidean volume.

Choose an embedding of the convex polygon P (m) with m vertices in the closed
unit disk D2 in such a way that all the vertices P (m)0 of P (m) lie on the boundary
S1 of D2. The orientation cocycle determines a cocycle

Or ∈ C2(P (m), ∂P (m)),

which we still denote by Or, defined as

Or(σ) = Or(σ0, σ1, σ2),
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where σ0, σ1, σ2 ∈ P (m)0 ⊂ S1 are the (ordered) vertices of the affine simplex σ.
Note that Or is well defined since if σ is an affine simplex in ∂P (m), then two of
its vertices must be equal, so that Or(σ) = 0. If T is a triangulation of P (m) in
m−2 simplices of dimension 2 with all its vertices in P (m)0, then the relative cycle
zT satisfies Or(zT ) = m − 2. Moreover, since the evaluation of Or on two cycles
arising from two triangulations of P (m) is constant and Or(σ) = 0 if and only if
σ ⊂ ∂P (m), it is immediate, that any triangulation of P (m) with all its vertices
in the boundary has to have precisely m − 2 simplices of dimension 2. Of course,
taking D2 to be Klein’s projective model for the hyperbolic 2-space, π · Or(σ) is
nothing else than the hyperbolic volume (or area) of σ.

The cocycles Vol3 and Or ∪ ν : (S1 × S0)3 → R determine cocycles

Vol3 and Or ∪ ν ∈ C3(P (m)× [0, 1], ∂ (P (m)× [0, 1])),

by
Vol3(σ) = Vol3(σ0, σ1, σ2, σ3) and Or ∪ ν(σ) = Or ∪ ν(σ0, σ1, σ2, σ3),

where σ0, σ1, σ2, σ3 are the (ordered) vertices of the affine simplex σ. To check that
those two cocycles are well defined we need to verify that they vanish on affine
chains contained in ∂ (P (m)× [0, 1]). Such chains are linear combinations of two
types of affine simplices: those contained in P (m) × {∗} and those contained in
τ × [0, 1], where τ is an exterior edge of P (m). In the former case, all the ν-factors
appearing in the definitions of Vol3 and Or∪ ν vanish and in the latter case, all the
Or-factors do, so in either cases, the two cocycles vanish. For the same reason, the
cochain b3 (whose coboundary is the difference between Or∪ ν and Vol3) also is a
cochain in C2(P (m)× [0, 1], ∂ (P (m)× [0, 1])), so that

[Vol3] = [Or ∪ ν] ∈ H3(P (m)× [0, 1], ∂ (P (m)× [0, 1])).

Proposition 3. Let T be any triangulation of the prism P (m)× [0, 1] with all its
vertices in (P (m)× [0, 1])0. Then

Vol3(zT ) = m− 2.

Proof. If z and z′ are two affine chains on P (m)× [0, 1] coming from two triangu-
lations T and T ′ of the prism, then they determine the same homology class [z] in
H3(P (m)× [0, 1], ∂ (P (m)× [0, 1])) and

Vol3(z) = 〈[Vol3], [z]〉 = Vol3(z′).

Let now T0 be a triangulation of P (m) in m− 2 simplices of dimension 2. After
choosing a numbering of the vertices of P (m) and those of [0, 1], we get a canonical
triangulation T of P (m)× [0, 1] (in 3(m−2) simplices of dimension 3). Denoting by
z0 and zT the affine cycles arising from the triangulations of T0 and T respectively,
we have

Vol3(zT ) = 〈[Vol3] , [zT ]〉 = (Or ∪ ν) (zT ) = Or(z0) · ν([0, 1]) = m− 2,

which finishes the proof of the proposition. �

The cocycles Vol4 and Or ∪Or : (S1 × S1)5 → R determine cocycles

Vol4 and Or ∪Or ∈ C5(P (m)× P (n), ∂ (P (m)× P (n))),

by
Vol4(σ) = Vol4(σ0, ..., σ4) and Or ∪Or(σ) = Or ∪Or(σ0, ..., σ4),

where σ0, ..., σ4 are the (ordered) vertices of the affine simplex σ. To check that
those two cocycles are well defined we need to verify that they vanish on affine
chains contained in ∂ (P (m)× P (n)). Such chains are linear combinations of two
types of affine simplices: those contained in P (m) × τ and those contained in
τ × P (n), where τ is an exterior edge of P (n) or P (m) respectively. In the former
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case, all the Or-factors in the second factor appearing in the definitions of Vol4
and Or ∪Or vanish and in the latter case, all the Or-factors in the first factor do,
so in either cases, the two cocycles vanish. For the same reason, the cochain b4

(whose coboundary is the difference between Or ∪ Or and Vol4) also is a cochain
in C3(P (m)× P (n), ∂ (P (m)× P (n))), so that

[Vol4] = [Or ∪Or] ∈ H4(P (m)× P (n), ∂ (P (m)× P (n))).

Proposition 4. Let T be any triangulation of the product P (m)× P (n). Then

Vol4(zT ) = (m− 2) (n− 2) .

Proof. The proof that Vol4(zT ) is independent of the triangulation T is identical
to the proof of the analogous statement in Proposition 3.

Let now Tm and Tn be triangulations of P (m), respectively P (n), in m−2, resp.
n−2, simplices of dimension 2. After choosing a numbering of the vertices of P (m)
and P (n), we get a canonical triangulation T of P (m)× P (n) (in 6(m− 2) (n− 2)
simplices of dimension 4). Denoting by zm, zn and zT the affine cycles arising from
the triangulations of Tm, Tn and T respectively, we have

Vol4(zT ) = 〈[Vol4] , [zT ]〉 = (Or ∪Or) (zT ) = Or(zm) ·Or(zn) = (m− 2) (n− 2) ,

which finishes the proof of the proposition. �

We will call the cocycles ν, Or,Vol3 and Vol4 combinatorial volume cocycles.
In fact, for products of intervals, triangles and squares, we obtain the Euclidean
volume cocycle (up to a constant coming from that our triangles have area equal
to 1 instead of 1/2). In particular, our proof of the minimality of triangulations of
the 3-cube and 4-cube with 5, respectively 16, top dimensional simplices is nothing
else than a classical (Euclidean) volume argument.

2.4. Values of Vol3. In order to examine the various possible triangulations of
the prism P (m)× [0, 1], we need to study the possible values of the combinatorial
volume cocycle Vol3. Expanding the sum in the defining expression for Vol3, we
get

Vol3((x0, y0), ..., (x3, y3)) =
1
12

[Or(x0, x1, x2) (ν(y2, y3) + ν(y1, y3) + ν(y0, y3))

+ Or(x0, x1, x3) (ν(y2, y3)− ν(y1, y2)− ν(y0, y2))

+ Or(x0, x2, x3) (−ν(y1, y3)− ν(y1, y2) + ν(y0, y1))

+Or(x1, x2, x3) (ν(y0, y3) + ν(y0, y2) + ν(y0, y1))] ,

for every 4-tuple ((x0, y0), ..., (x3, y3)) in
(
S1 × S0

)4. If y0 = y1 = y2 = y3, then
ν(yi, yj) = 0 for every i, j, so that the volume cocycle Vol3 clearly vanishes. If the
yi’s are not all equal, then the cardinality of the set {y0, ..., y3} has to be equal to
2, in which case, upon permuting the variables, and the points 0 and 1 of S0, we
distinguish two cases:

• y0 = y1 = y2 = 0 and y3 = 1: Using the cocycle relation δOr(x0, x1, x2, x3) =
0, we compute that Vol3((x0, y0), ..., (x3, y3)) is equal to

1
12

[3Or(x0, x1, x2) + Or(x0, x1, x3)−Or(x0, x2, x3) + Or(x1, x2, x3)]

=
1
3
Or(x0, x1, x2) ∈

{
−1

3
, 0,

1
3

}
.
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• y0 = y1 = 0 and y2 = y3 = +1: Let first the points x0, ..., x3 ∈ S1 be
arbitrary. We have

Vol3((x0, y0), ..., (x3, y3)) =
1
6

[Or(x0, x1, x2)−Or(x0, x1, x3)−Or(x0, x2, x3) + Or(x1, x2, x3)] .

Let D01 and D23 denote the straight lines between x0, x1 and x2, x3 re-
spectively. There are now four possibilities for the intersection of those
lines:

– D01 = D23: Up to permuting (x2, y2) and (x3, y3), this means that
x0 = x2 and x1 = x3, and hence Vol3 vanishes.

– D01 ∩ D23 = ∅: Either x0, x1, x2, x3 or x0, x1, x3, x2 are cyclically
ordered (either positively or negatively). In either cases, Vol3 vanishes.

– D01∩D23 intersect in one boundary point in S1: In view of the obvious
symmetries, we can suppose that x1 = x3, and then

Vol3((x0, y0), ..., (x3, y3)) =
1
3
Or(x0, x1, x2).

– D01 ∩ D23 intersect in one interior point: x0, x3, x1, x2 are cyclically
ordered, either positively or negatively, and

Vol3((x0, y0), ..., (x3, y3)) =
2
3
Or(x0, x1, x2).

2.5. Values of Vol4. As we want to estimate the value of Vol4 on different con-
figurations of points, it would be convenient to have a simpler expression for it.
We will now show that in the defining expression for Vol4, it is enough to average
over those permutations mapping 2 to 0, so that we will obtain the expression (♦)
below. Fix (z0, ..., z4) in (S1 × S1)5. We start by showing that

Φ(i) :=
1
4

∑
σ∈Sym(5)

σ(2)=i

sign(σ) (Or ∪Or) (zσ(0), zσ(1), zi, zσ(3), zσ(4))

is independent of i. By definition, Φ(0) is equal to

Or(x0, x1, x2)Or(y0, y3, y4) + Or(x0, x3, x4)Or(y0, y1, y2)

−Or(x0, x1, x3)Or(y0, y2, y4)−Or(x0, x2, x4)Or(y0, y1, y3)

+ Or(x0, x1, x4)Or(y0, y2, y3) + Or(x0, x2, x3)Or(y0, y1, y4),

where we have used, on the first factors, the fact that Or is alternating. From the
cocycle relation for Or, we have, for i, j in {2, 3, 4},

Or(x0, xi, xj) = Or(x1, xi, xj) + Or(x0, x1, xj)−Or(x0, x1, xi)

and the analogous formula for the yi’s. The previous expression thus becomes

Or(x0, x1, x2) (Or(y1, y3, y4) + Or(y0, y1, y4)−Or(y0, y1, y3))

+ (Or(x1, x3, x4) + Or(x0, x1, x4)−Or(x0, x1, x3))Or(y0, y1, y2)

−Or(x0, x1, x3) (Or(y0, y2, y4) + Or(y0, y1, y4)−Or(y0, y1, y2))

− (Or(x1, x2, x4) + Or(x0, x1, x4)−Or(x0, x1, x2))Or(y0, y1, y3)

+ Or(x0, x1, x4) (Or(y0, y2, y3) + Or(y0, y1, y4)−Or(y0, y1, y2))

+ (Or(x1, x2, x3) + Or(x0, x1, x3)−Or(x0, x1, x2))Or(y0, y1, y4).

Now note that all the terms of the form Or(x0, x1, xi)Or(y0, y1, yj), for i, j in
{2, 3, 4} cancel out two by two, and what we are left with is precisely Φ(1). We
have thus proven that Φ(0) = Φ(1). Applying the cyclic permutation (0, 1, ..., 4)
and its powers to the indices in the proof of the latter equality, it is immediate
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that Φ(1) = Φ(2) = Φ(3) = Φ(4). We thus have Vol4((x0, y0), ..., (x4, y4)) =
(1/30)(Φ(0) + Φ(1) + Φ(2) + Φ(3) + Φ(4)) = (1/6)Φ(0), and we have hence proven
the following equation:

Vol4((x0, y0), ..., (x4, y4)) (♦)

=
1
6

(Or(x0, x1, x2)Or(y0, y3, y4) + Or(x0, x3, x4)Or(y0, y1, y2)

−Or(x0, x1, x3)Or(y0, y2, y4)−Or(x0, x2, x4)Or(y0, y1, y3)

+ Or(x0, x1, x4)Or(y0, y2, y3) + Or(x0, x2, x3)Or(y0, y1, y4))

Lemma 5. If three among the xi’s are equal or if three among the yi’s are equal
then

|Vol4((x0, y0), ..., (x4, y4))| ≤
1
6
.

Proof. As Vol4 is alternating and symmetric in the first and second factor, we can
without loss of generality assume that x0 = x1 = x2. But then, the expression (♦)
for Vol4 reduces to

1
6
Or(x0, x3, x4)Or(y0, y1, y2) ∈

{
−1

6
, 0,

1
6

}
.

�

Lemma 6. If there exists i1, i2 and j1, j2 all distinct such that either xi1 = xi2 and
xj1 = xj2 , or yi1 = yi2 and yj1 = yj2 , then

|Vol4((x0, y0), ..., (x4, y4))| ≤
1
3
.

Proof. As Vol4 is alternating and symmetric in the first and second factor, we can
without loss of generality assume that x0 = x1 and x2 = x3. The expression (♦)
for Vol4 now reduces to

1
6

(Or(x0, x3, x4)Or(y0, y1, y2)−Or(x0, x2, x4)Or(y0, y1, y3)) .

�

Lemma 7. If there exists i 6= j such that xi = xj or yi = yj, then

|Vol4((x0, y0), ..., (x4, y4))| ≤
1
2
.

Proof. As Vol4 is alternating, we can without loss of generality assume that x0 = x1,
so that the expression (♦) for Vol4 reduces to

1
6 [Or(x0, x3, x4)Or(y0, y1, y2)−Or(x0, x2, x4)Or(y0, y1, y3)

+Or(x0, x2, x3)Or(y0, y1, y4)] .

�

Lemma 8. Let ((x0, y0), ..., (x4, y4)) be an arbitrary 5-tuple in (S1 × S1)5, then

|Vol4((x0, y0), ..., (x4, y4))| ≤
2
3
.

Proof. First note that if either all the xi’s are not distinct or all the yi’s are not
distinct, then by Lemma 7, the evaluation of Vol4 is at most 1/2. Thus we can
assume that this is not the case. Since Vol4 is alternating, we can furthermore
assume that the xi’s are positively cyclically ordered. In particular, Or(xi, xj , xk) =
+1, whenever 0 ≤ i < j < k ≤ 4. The expression (♦) for Vol4 now becomes

1
6

[Or(y0, y1, y2)−Or(y0, y1, y3) + Or(y0, y1, y4)

+Or(y0, y3, y4)−Or(y0, y2, y4) + Or(y0, y2, y3)] .
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Using the cocycle relation

δOr(y0, y2, y3, y4) = 0,

we see that the above expression can be rewritten as
1
6

(Or(y0, y1, y2)−Or(y0, y1, y3) + Or(y0, y1, y4) + Or(y2, y3, y4)) ≤ 2/3,

which proves the lemma. �

3. Minimal triangulations of the prism P (m)× [0, 1]

The following result was first proven in [DeSaTa01].

Theorem 9. The minimal number of 3-simplices in a triangulation of the prism
P (m)× [0, 1] is equal to 

5
2m− 5 if m is even,

5
2m− 9

2 if m is odd.

Proof. Let T be a fixed triangulation of P (m)× [0, 1]. By restriction, the triangu-
lation T gives triangulations of each of the m-gons P (m)× {0} and P (m)× {1} in
m − 2 simplices of dimension 2. Each of those 2-simplices is a 2-face of one and
only one 3-simplex of T . We call such a 3-simplex a simplex of type Tr (for triangle
in an m-gon). There are precisely

2(m− 2)

simplices of type Tr. In view of the computations of Section 2.4, a simplex σ of
type Tr has combinatorial volume

|Vol3(σ)| = 1
3
.

All the remaining simplices of T have two vertices in P (m) × {0} and two in
P (m)× {1}. We will say that such an ordered simplex σ is of type A if Vol3(σ) =
+2/3 and of type B if Vol3(σ) = +1/3. Denote by a, respectively b, the number of
simplices of type A, resp. B, in T .

Let zT be the affine cycle arising from the triangulation T . It follows from
Proposition 3, that Vol3(zT ) = m− 2 and hence

m− 2 ≤ 1
3
· 2(m− 2) +

2
3
a +

1
3
b,

where the last inequality comes from that we have only counted the contribution to
the combinatorial volume coming from simplices of type Tr, A and B. There may
be more simplices, but as computed in Section 2.4, they have Vol3(σ) ≤ 0.

Since b is positive, we get from the previous inequality that

a + b ≥ a +
1
2
b ≥ 1

2
(m− 2).

The number of 3-dimensional simplices of T is hence greater or equal to

2(m− 2) + a + b ≥ 5
2
(m− 2).

Rounding up when m is an odd integer gives the claimed lower bound.
For the equality, note that there exists a triangulation of P (3)× [0, 1] in 3 sim-

plices (2 of type Tr and 1 of type B). There exists a triangulation of P (4)× [0, 1]
in 5 simplices (4 of type Tr and 1 of type A). Decompose P (2n)× [0, 1] in (2n− 2)
cubes P (4)× [0, 1], and triangulate each of those minimally in 5 simplices. Decom-
pose P (2n + 1)× [0, 1] in (2n− 2) cubes P (4)× [0, 1] and one prism P (3)× [0, 1],
and triangulate each of those minimally in 5, respectively 3, simplices. �
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4. The boundary simplices of a triangulation of P (m)× P (n)

Theorem 10. Let T be any triangulation of P (m) × P (n), The number of 4-
simplices of T with a 3-face in ∂ (P (m)× P (n)) is greater or equal to

5
2
mn− 3(m + n).

Observe that this already gives a lower bound for the minimal number T (m,n)
of 4-simplices in a triangulation of P (m) × P (n) which improves the lower bound
of 2mn − (8/3)(m + n) computed in [Bo&al05]. Using our combinatorial volume
cocycle Vol4, we will further improve this lower bound in the next section.

Proof. Let T be a fixed triangulation of P (m)×P (n). Its restriction to every prism
P (m)×τ or τ×P (n), where τ is a boundary edge of P (n) or P (m), has 3-simplices
of (at least) three types, according to the terminology introduced in the proof of
Theorem 9, type Tr, type A and type B. We will say that a 4-simplex of the
triangulation T is of type Am or Bm (respectively An or Bn) if one of its 3-face is
contained in some prism P (m)× τ (resp. τ ×P (n)) and of type A, respectively B.
As for the 4-simplices with a 3-face of type Tr, we distinguish two cases, according
to the number of 3-faces of type Tr in P (m)× τ (resp. τ ×P (n)): A 4-simplex is of
type Trm,1 (respectively Trn,1) if it has precisely one 3-faces of type Tr in a prism of
the form P (m)× τ (resp. τ ×P (n)) and of type Trm,2 (respectively Trn,2) if it has
precisely two 3-faces of type Tr in prisms of the form P (m) × τ (resp. τ × P (n)).
Note that a 4-simplex can not have three faces of type Tr in prisms of the form
P (m)× τ (resp. τ × P (n)). Set

T YPE = {Trm,1,Trm,2, Am, Bm,Trn,1,Trn,2, An, Bn},
T YPEm = {Trm,1,Trm,2, Am, Bm} and

T YPEn = {Trn,1,Trn,2, An, Bn}.

For two types of 4-simplices X, Y in T YPE , we will say that a simplex is of
type X ∩ Y , obviously, if it is both of type X and of type Y . For k = m or
n, define tk,1, tk,2, ak, bk to be the number of 4-simplices in the triangulation T
of type Trk,1,Trk,2, Ak or Bk respectively. Also, for x = tm,1, tm,2, am, bm and
y = tn,1, tn,2, an, bn, we let x ∩ y be the number of simplices of the corresponding
types.

Claim 11. If X, Y belong to T YPEm, then X ∩ Y = ∅.

Proof. Let σ be a 4-simplex of T with a 3-face in a given prism P (m)×τ . Thus, four
of the vertices, say σ1, σ2, σ3, σ4 of σ are vertices of P (m)× τ . The fifth vertex σ0

of σ can not also belong to P (m)× τ (otherwise the 4-dimensional simplex σ would
be contained in the 3-dimensional prism P (m) × τ). Suppose that another 3-face
of σ, say the one generated by σ0, σ1, σ2, σ3, belongs to another prism P (m) × τ ′.
Necessarily, τ and τ ′ have a vertex y in common, and

σ1, σ2, σ3 ∈ P (m)× {y}.

Thus, if two 3-faces of σ belong to prisms of the form P (m)× τ , then σ is of type
Trm,2. Observe furthermore that no other 3-face of σ can belong to a prism of the
form P (m)× τ . �

Clearly, the same conclusion holds for X, Y in T YPEn. As a consequence, we
see that the intersection of any three different types has to be empty. Furthermore,
it immediately follows from Claim 11 that for every X in T YPEm and Y 6= Z in
T YPEn, the set of simplices of type X ∩ Y is disjoint from those of type X ∩ Z.
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Thus, as Trm,1 ∩ Trn,1, Trm,1 ∩ Trn,2 and Trm,1∩ Bn are disjoint subsets of Trm,1,
we immediately obtain the inequality

tm,1 ≥ tm,1 ∩ tn,1 + tm,1 ∩ tn,2 + tm,1 ∩ bn.

The inequalities

tn,1 ≥ tm,1 ∩ tn,1 + tm,2 ∩ tn,1 + bm ∩ tn,1,

bm ≥ bm ∩ tn,1 + bm ∩ tn,2 + bm ∩ bn,

bn ≥ tm,1 ∩ bn + tm,2 ∩ bn + bm ∩ bn

are obtained analogously.

Claim 12. For any X in T YPEm, one has X ∩An = ∅.

Proof. Let σ be a 4-simplex in the triangulation T . Let p1 and p2 denote the
projections on the first, respectively second, factor of P (m) × P (n). Denote by
n1(σ), respectively n2(σ), the cardinality of the image under p1, resp. p2, of the
vertices of σ. If σ is a simplex of type An, then n1(σ) ≤ 3 and n2(σ) ≥ 4. But if σ
is of type X, for some X in T YPEm, then n2(σ) ≤ 3, which is not possible. �

Claim 13. 2am + bm ≥ n(m− 2) and 2an + bn ≥ m(n− 2).

Proof. By symmetry, it is enough to prove the first inequality of the claim. As in
the proof of Theorem 9, in each prism P (m)× τ , the number a of simplices of type
A, and the number b of simplices of type B satisfy the inequality

2a + b ≥ m− 2.

As there are n such prisms, and each 3-simplex of type A or B in P (m)× τ belongs
to one and only one 4-simplex of type Am or Bm, the claim follows. �

Claim 14. tm,1 + 2tm,2 = 2n(m− 2) and tn,1 + 2tn,2 = 2m(n− 2).

Proof. By symmetry, it is enough to prove the first equality of the claim. Recall
from the proof of Theorem 9, that in the restriction of the triangulation T to any
prism P (m) × τ , there are exactly 2(m − 2) simplices of type Tr. As there are n
prisms of the form P (m)× τ in P (m)× P (n), we have a total of

2n(m− 2)

3-simplices of type Tr in such prisms. (We do not count the simplices in prisms of
the form τ × P (n).)

By definition, a simplex of type Trm,1, respectively Trm,2, has precisely one,
resp. two, 3-simplices as above. Since a 3-simplex in the boundary ∂(P (m)×P (n))
belongs to one and only one 4-simplex of the triangulation T it follows that

tm,1 + 2tm,2 = 2n(m− 2),

as claimed. �

Claim 15. 4tm,2 ∩ tn,2 + 2tm,1 ∩ tn,2 + 2tm,2 ∩ tn,1 + 2tm,2 ∩ bn + 2bm ∩ tn,2 ≤ 2mn

Proof. We count the number of triangles (i.e. 2-simplices) in the restriction of the
triangulation T to the union of the squares of the form τm×τn, where τm and τn are
boundary edges of P (m) and P (n) respectively. Clearly, each square is triangulated
in two triangles and there are mn squares and hence a total of 2mn triangles of the
above form.

In a simplex of type Trm,2 ∩ Trn,2, there exists precisely 4 triangles of the
above form: A simplex of type Trm,2 necessarily has three vertices in P (m) ×
{y}, for some vertex y in P (n), and one in each of P (m) × {y1} and P (m) ×
{y2}, where y1 and y2 are the opposite vertices of the two boundary edges with
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vertex y. Symmetrically for a simplex of type Trn,2. Thus, a simplex of type
Trm,2 ∩ Trn,2 has vertices (x, y), (x, y1), (x, y2), (x1, y), (x2, y), where 〈x1, x〉 and
〈x, x2〉 are two boundary edges in P (m) and 〈y1, y〉 and 〈y, y2〉 are two boundary
edges in P (n). The 4-simplex hence contains the 4 triangles 〈(x, y), (x, y1), (x1, y)〉,
〈(x, y), (x, y1), (x2, y)〉, 〈(x, y), (x, y2), (x1, y)〉 and 〈(x, y), (x, y2), (x2, y)〉. There are
no other triangle.

In a simplex of type Trm,2∩Trn,1 or Trm,1∩Trn,2, there exists precisely 2 triangles
of the above form: A simplex of type Trm,2∩Trn,1 has vertices (x, y), (x, y1), (x, y′),
(x1, y), (x2, y), where 〈x1, x〉 and 〈x, x2〉 are the two vertices of two boundary edges
in P (m), 〈y1, y〉 is a boundary edges in P (n) and y′ is arbitrary. There are the 2
triangles 〈(x, y), (x, y1), (x1, y)〉 and 〈(x, y), (x, y1), (x2, y)〉. If there were any more
triangle, than the simplex would not be of type Trn,1, but of type Trn,2. Symmet-
rically for a simplex of type Trm,1 ∩ Trn,2.

In a simplex of type Trm,2∩Bn or Bm∩Trn,2, there exists at least 2 triangles of the
above form: A simplex of type Trm,2∩Bn has vertices (x, y), (x1, y1), (x2, y2), (x1, y),
(x2, y), where {x1, x2} is a boundary edge in P (m) and {y1, y} and {y, y2} are the
two vertices of two boundary edges in P (n). There are now at least 2 triangles,
namely 〈(x1, y1), (x1, y), (x2, y)〉 and 〈(x1, y), (x2, y), (x2, y2)〉. There may be more
triangles. (If 〈x, x1〉 or 〈x, x2〉 forms a boundary edge in P (m).) Symmetrically for
a simplex of type Bm ∩ Trn,2.

To prove the claim, it now remains to show that none of the above considered
triangles has been counted twice. To see that, observe that a triangle in τm × τn is
the 2-face of a unique 3-simplex in P (m)× τn and a unique 3-simplex in τm×P (n).
Now, for every 4-simplex σ and each of its triangles t considered above, we have
that if the triangle t belongs to τm × τn, then the 3-simplices in P (m) × τn and
τm × P (n) which t is a 2-face of, are 3-faces of σ. As a 4-simplex is completely
determined by two of its 3-faces, the claim follows. �

In view of Claims 11 and 12, the number of 4-simplices with a 3-face of type Tr,
type A or type B in ∂ (P (m)× P (n)) is equal to

tm,1 + tm,2 + am + bm + tn,1 + tn,2 + an + bn − tm,1 ∩ tn,1 − tm,1 ∩ tn,2 − tm,1 ∩ bn

− tm,2 ∩ tn,1 − tm,2 ∩ tn,2 − tm,2 ∩ bn − bm ∩ bn.

This expression can be rewritten as

1
2
tm,1 + tm,2︸ ︷︷ ︸
=n(m−2)

+
1
2
tn,1 + tn,2︸ ︷︷ ︸
=m(n−2)

+
1
2

[tm,1 − tm,1 ∩ tn,1 − tm,1 ∩ tn,2 − tm,1 ∩ bn]︸ ︷︷ ︸
≥0

+
1
2

[tn,1 − tm,1 ∩ tn,1 − tm,2 ∩ tn,1 − bm ∩ tn,1]︸ ︷︷ ︸
≥0

+ am +
1
2
bm︸ ︷︷ ︸

≥ 1
2 n(m−2)

+ an +
1
2
bn︸ ︷︷ ︸

≥ 1
2 m(n−2)

+
1
2

[bm − bm ∩ tn,1 − bm ∩ tn,2 − bm ∩ bn]︸ ︷︷ ︸
≥0

+
1
2

[bn − tm,1 ∩ bn − tm,2 ∩ bn − bm ∩ bn]︸ ︷︷ ︸
≥0

+
1
2

[−tm,1 ∩ tn,2 − tm,2 ∩ tn,1 − tm,2 ∩ bn − bm ∩ tn,2 − 2tm,2 ∩ tn,2]︸ ︷︷ ︸
≥−mn

≥ 5
2
mn− 3(m + n),
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where we have used the preliminary computations of Claims 13, 14 and 15 as well
as the inequalities preceding Claim 12. �

In fact, the statement of Theorem 10 can be improved as follows, since in its
proof, we have really only counted simplices with a face of type Tr, type A or type
B. Furthermore, the same partial estimates can be used to give a lower bound on
the number of simplices with a face of type Tr.

Theorem 16. Let T be any triangulation of P (m) × P (n), The number of 4-
simplices of T with a 3-face of type Tr, type A or type B in ∂ (P (m)× P (n)) is
greater or equal to

5
2
mn− 3(m + n).

Theorem 17. Let T be a triangulation of P (m)×P (n). The number of 4-simplices
of T with a 3-face of type Tr in ∂(P (m)× P (n)) is greater or equal to

3
2
mn− 2(m + n).

Proof. The number of 4-simplices considered in the statement of the theorem is
equal to

tm,1 + tm,2 + tn,1 + tn,2 − tm,1 ∩ tn,1 − tm,1 ∩ tn,2 − tm,2 ∩ tn,1 − tm,2 ∩ tn,2.

This expression can be rewritten as

1
2
tm,1 + tm,2︸ ︷︷ ︸
=n(m−2)

+
1
2
tn,1 + tn,2︸ ︷︷ ︸
=m(n−2)

+
1
2

[tm,1 − tm,1 ∩ tn,1 − tm,1 ∩ tn,2]︸ ︷︷ ︸
≥0

+
1
2

[tn,1 − tm,1 ∩ tn,1 − tm,2 ∩ tn,1]︸ ︷︷ ︸
≥0

+
1
2

[−tm,1 ∩ tn,2 − tm,2 ∩ tn,1 − 2tm,2 ∩ tn,2]︸ ︷︷ ︸
≥−mn

≥ 3
2
mn− 3(m + n).

�

5. Lower bounds

Proposition 18. If σ is a 4-simplex which contains a 3-face of type Tr, then

|Vol4(σ)| ≤ 1
6
.

Proof. If σ contains a 3-face of type Tr, then by definition, it contains a 2-simplex
of P (m) × {∗} or {∗} × P (n), so that three of its vertices (the vertices of this 2-
simplex) have the same second (respectively first) coordinate, an the proposition
then follows from Lemma 5. �

Proposition 19. If σ is a 4-simplex which contains a 3-face of type A or B, then

|Vol4(σ)| ≤ 1
3
.

In fact, if σ is a 4-simplex which contains a 3-face of type B, then |Vol4(σ)| ≤ 1/6.

Proof. By symmetry, suppose without loss of generality that σ has a 3-face of type
Am or Bm. Thus, σ has a 3-face α in some prism P (m)× τ . Denoting by y, y′ the
vertices of the edge τ , observe furthermore that α has two vertices in P (m)× {y}
and two in P (m)× {y′}. The proposition now follows from Lemma 6. �
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Proof of Theorem 1. Let T be a triangulation of P (m)× P (n) and let [zT ] denote
the corresponding affine cycle. By Proposition 4, we have

Vol4([zT ]) = (m− 2)(n− 2).

By Theorem 17, there are at least
3
2
mn− 2(m + n)

4-simplex in T which contain a 3-face of type Tr. Pick (3/2)mn−2(m+n) of them
(rounded down, for simplicity, if m and n are both odd). In view of Proposition
18, they contribute by a combinatorial volume of at most

1
6

(
3
2
mn− 2(m + n)

)
.

By Theorem 16, there are at least

mn− (m + n)

further 4-simplex in T which contain a 3-face of type Tr, type A or type B. Pick
mn − (m + n) of them. In view of Propositions 18 and 19, they contribute by a
combinatorial volume of at most

1
3

(mn− (m + n)) .

Thus, the remaining volume is at least

(m− 2)(n− 2)− 1
6

(
3
2
mn− 2(m + n)

)
− 1

3
(mn− (m + n))

=
5
12

mn− 4
3
(m + n) + 4.

Since the evaluation of the combinatorial volume cocycle on one 4-simplex is at
most 2/3 (Lemma 8), we need at least

3
2

(
5
12

mn− 4
3
(m + n) + 4

)
=

5
8
mn− 2(n + m) + 6

more 4-simplices, so that

T (m,n) ≥ 5
2
mn− 3(n + m) +

5
8
mn− 2(n + m) + 6 =

25
8

mn− 5(m + n) + 6.

�

Proof of Theorem 2. If n = 4, then exactly as in the proof of Theorem 1, the
combinatorial volume of a triangulation of P (m)× P (4) is equal to 2(m− 2). We
can pick 4m − 8 simplices which contain a 3-face of type Tr, which contribute
by a combinatorial volume of at most 1/6(4m − 8). We can further pick 3m − 4
simplices which contain a 3-face of type Tr, type A or type B, which contribute
by a combinatorial volume of at most 1/3(3m− 4). Thus the remaining volume is
1/3(m− 4).

The difference now is that in view of Lemma 7, the combinatorial volume of a
4-simplex with vertices in the vertices of P (m) × P (4) is at most 1/2. Thus, we
need at least

2 · 1
3
(m− 4)

more 4-simplices, so that

T (m, 4) ≥ 4m− 8 + 3m− 4 +
2
3
m− 8

3
=

23
3

m− 44
3

.

�
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