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Abstract

This paper completes the comprehensive study of the dimer model on infinite
minimal graphs with Fock’s weights [Foc15] initiated in [BCdT20]: the latter article
dealt with the elliptic case, i.e., models whose associated spectral curve is of genus 1,
while the present work applies to models of arbitrary genus. This provides a far-
reaching extension of the genus 0 results of [Ken02, KO06], from isoradial graphs
with critical weights to minimal graphs with weights defining an arbitrary spectral
data. For any minimal graph with Fock’s weights, we give an explicit local expression
for a two-parameter family of inverses of the associated Kasteleyn operator. In the
periodic case, this allows us to prove local formulas for all ergodic Gibbs measures,
thus providing an alternative description of the measures constructed in [KOS06].
We also compute the corresponding slopes, exhibit an explicit parametrization of
the spectral curve, identify the divisor of a vertex, and build on [KO06, GK13] to
establish a correspondence between Fock’s models on periodic minimal graphs and
Harnack curves endowed with a standard divisor.

1 Introduction

This paper is a follow up to [BCdT20]. The latter aimed at giving a comprehensive
study of the dimer model on infinite minimal graphs with Fock’s elliptic weights, i.e.,
with underlying Riemann surface of genus 1. This extended the rational (genus 0) results
of [Ken02, KO06], since the rational case can be interpreted as a degeneration of the
elliptic one [BCdT20, Section 8.1]. We now turn to the general case, and consider Fock’s
weights in any genus g > 0 [Foc15].
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As in many questions involving compact Riemann surfaces, moving from g = 1 to g ≥ 1
is by no means a trivial extension. Moreover, for the dimer model to have a probabilistic
meaning, it needs to be parametrized by a specific type of abstract, compact Riemann
surface know as an M-curve [Har76, Mik00], which we need to thoroughly understand.
Therefore, a significant part of this paper, namely the whole of Section 2, is devoted to
establishing the results on M-curves necessary for the study of the corresponding dimer
models: we describe their period matrix, Abel-Jacobi map, Riemann theta functions and
prime form.

Before turning to the statistical mechanics implications, let us recall the context of
Fock’s work [Foc15] and ours, that is, the rich interplay between dimer models on the
one hand, real algebraic geometry and complex analysis on the other. In their seminal
paper [KOS06], Kenyon, Okounkov and Sheffield show that the spectral curve of a dimer
model on a Z2-periodic, bipartite graph is of a very special type, namely a Harnack curve.
In the subsequent articles [KO06, GK13], the authors define the spectral data of such
a dimer model as the spectral curve C together with a divisor consisting of one point
on each of the ovals of C. Furthermore, they show that given any Harnack curve and
any such standard divisor, there exists a dimer model realizing this spectral data, and
that the dimer model can be chosen on a minimal graph [Thu17, GK13]. We refer the
reader to Section 3.1 for the definition of minimal graphs and of the related notion of
train-tracks. Let us point out that throughout this article and unless otherwise stated,
the graphs are locally finite, embedded in the plane, with faces consisting of bounded
topological discs; in particular, they are infinite.

The articles [KO06, GK13] contain an explicit construction of a periodic minimal graph
from the spectral curve, a characterisation of genus 0 spectral curves as coming from
isoradial graphs with critical weights [Ken02], but no determination of the actual dimer
model in general. In other words, these powerful results do not answer the following
question: given a Harnack curve C, can we explicitly construct a dimer model on a
periodic bipartite graph whose spectral curve is C?

The remarkable contribution of Fock [Foc15] consists in filling this gap. More precisely,
Fock starts with an arbitrary complex curve C (not necessarily Harnack) and an arbitrary
divisor of the appropriate degree (not necessarily a standard divisor), and constructs an
explicit “dimer model” on a periodic minimal graph whose spectral data is the curve C

together with this divisor. The quotation marks are due to the fact that in Fock’s
construction, dimer weights are complex. From our statistical mechanics perspective,
an important question is to understand in which setting the “dimer model” is indeed a
probabilistic model, i.e., has positive edge-weights. This is the first main contribution
of the present paper and the content of Proposition 31, whose proof heavily relies on the
study of M-curves of Section 2. Let us briefly introduce the tools required to explain
this statement, referring the reader to the relevant parts of Sections 2 and 3 for more
complete definitions.

Fix a compact Riemann surface Σ of positive genus together with an element t of its
Jacobian variety Jac(Σ) and a theta characteristic

(
δ′

δ′′

)
∈ (1

2Z/Z)2g. Let G be a bipartite
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Figure 1: An arbitrary edge wb of G with the two adjacent faces f, f ′ depicted as dual
vertices. The four corresponding edges of the quad-graph G� are also drawn, together
with the two incident train-tracks with angles α, β ∈ Σ. The discrete Abel map d
satisfies the local rule d(f ′)− d(f) = α− β ∈ Pic0(Σ) ' Jac(Σ).

graph (not necessarily periodic), and let α : T → Σ be a map assigning to each train-
track of G an element of Σ called its angle. Let d : {faces of G} → Jac(Σ) be the discrete
Abel map, uniquely defined up to an additive constant by the local rule described in
Figure 1. Fock’s adjacency operator is represented by an infinite matrix K whose rows
are indexed by white vertices of G, columns by black ones, and whose non-zero entries
correspond to edges of G and are given by: for every edge wb of G as in Figure 1,

Kw,b =
E(α, β)

θ[ δ
′
δ′′](t+ d(f)) θ[ δ

′
δ′′](t+ d(f ′))

, (1)

where E is the prime form of Σ and θ[ δ
′
δ′′] the theta function with theta characteristic

(
δ′

δ′′

)
.

Remark 1. In the genus 0 case [Ken02], the weight of the edge wb only depends on the
angles α, β of the train-tracks crossing wb, and is therefore referred to as a local weight.
In the general case defined above, the situation is just about as favorable, but not quite.
Indeed, the weight Kw,b depends on α, β, but also on the value of d at neighbouring
faces. The map d is non-local, but is defined via a local rule: it should be thought of as
a discrete primitive of the angle map α with initial condition given by t. Despite this
subtle difference, we make a slight abuse of terminology and still refer to the weights
defined in Equation (1) as local weights.

An M-curve is a compact Riemann surface of genus g endowed with an anti-holomorphic
involution σ whose set of fixed points is given by g + 1 circles, called real components
(see Figure 2). Proposition 31 can now be stated as follows.

Proposition 2. Let us assume that

(i) the surface Σ is an M-curve (of genus g > 0 and period matrix Ω);

(ii) the element t of Jac(Σ) is real, i.e., belongs to (R/Z)g + Ωδ for some δ ∈ (1
2Z/Z)g;

(iii) the theta characteristic
(
δ′

δ′′

)
satisfies δ′ = δ;
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(iv) the graph G is minimal;

(v) the image of α is contained in a real (oriented) component A0 of Σ, and α : T → A0

is monotone with respect to the natural cyclic orders on T and on A0.

Then, Fock’s adjacency operator(1) is a Kasteleyn operator, i.e., defines a dimer model
on the graph G.

In the periodic setting, these constraints can be heuristically explained as follows. As we
will see in more detail below, the abstract Riemann surface Σ serves as a parametrization
domain for the spectral curve C; this latter curve being Harnack, it has the maximal
number of real components. As for the element t ∈ Jac(Σ), it corresponds via the Abel-
Jacobi map and the identification Σ ' C to the divisor of the model, which consists of
one point on each of the ovals of C; such divisors are mapped to real elements of the
Jacobian variety. Finally, the train-tracks of G correspond to the “points at infinity”
of C, which according to the definition of a Harnack curve, must be arranged in a natural
cyclic order; this forces the angle map α to be monotone. As proved in [BCdT21], the
minimality of G then ensures that this (global) monotonicity implies the corresponding
(local) monotonicity around each face of G. This can finally be translated into the
Kasteleyn condition using properties of the prime form restricted to the real component
of an M-curve.

To a certain extent, the arguments given above show that conditions (i), (ii) and (v)
are actually necessary for K to be a Kasteleyn operator, at least in the periodic setting.
The fact that the graph G needs to be minimal for the theory to apply is discussed at
the end of Section 5.2, see also [BCdT21, Theorem 31]. Finally, there is little hope for
Proposition 2 to hold without condition (iii) because of the last point of Lemma 18.

On the other hand, one shows that all theta characteristics
(
δ′

δ′′

)
∈ (1

2Z/Z)2g yield gauge
equivalent models, so we set δ′ = δ′′ = 0 for definiteness in our final definition, see the
third and fourth points of Remark 30, and Definition 29.

Note that Fock originally defined his operator for periodic graphs, and some of the
heuristic arguments above only hold in this restricted situation. However, Proposition 2
is valid for any minimal graph, allowing us to harness the power of Kasteleyn theory in
this very general setting. Before doing so, let us mention that even with the constraints
listed in Proposition 2, the dimer models given by Fock’s weights span all periodic dimer
models, when considered from the point of view of their spectral data. Indeed, we prove
the following result, see Theorem 49 for a full statement.

Theorem 3. For any Harnack curve C and standard divisor D, there exists an M-
curve Σ, a periodic minimal graph G, a monotone angle map α and a real element t
of Jac(Σ), such that the associated Fock operator K is periodic, and the spectral data of
the corresponding dimer model coincides with (C, D).

Together with [GK13, Theorem 7.3], this implies that two periodic dimer models on the
same minimal graph G arising from the same M-curve Σ, the same angle map α, and
elements t, t′ ∈ (R/Z)g are gauge equivalent if and only if t = t′, see Remark 50.
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We have another result worth mentioning on the topic of spectral curves. Consider
the dimer model on a periodic, minimal graph G with Fock’s weights given by parame-
ters Σ, t and α as in Proposition 2. In Proposition 45, we provide an explicit birational
parametrization Σ→ C of the spectral curve. This allows us to transport several notions,
such as the standard divisor of the model, from the spectral curve to the underlying ab-
stract M-curve, thus extending these notions beyond the periodic setting. Most notably,
the phase diagram of the dimer model can be tranported from C to Σ. This is related
to probabilistic questions which we now address.

Before turning to our results, let us describe the setting and motivations. Consider a
dimer model on a periodic bipartite graph G. Kenyon, Okounkov and Sheffield [She05,
KOS06] prove that there is a two-parameter family of ergodic Gibbs measures, indexed
by the slope, and that the set of allowed slopes coincides with the Newton polygon N(G).
Moreover, they provide an explicit expression for this family of measures by taking the
weak limit of the Boltzmann measures on a toroidal exhaustion, with weights modified
by magnetic field coordinates. They also prove that the dimer model has three phases,
liquid, solid and gaseous, and that the phase diagram is given by the amoeba A of
the spectral curve. Using different techniques, Kenyon [Ken02] establishes an explicit
expression for the maximal entropy Gibbs measure in the case of isoradial graphs with
critical weights, which has the remarkable property of being local : this means that edge
probabilities can be computed using geometric information of paths joining these edges.
Note that by uniqueness, we know that the expressions of [KOS06] and [Ken02] are
equal, but this is only explicitly understood since [BdTR17]. Local expressions have
now been obtained for dimer models related to the Ising model [BdT11, BdTR19], to
rooted spanning forests [BdTR17], and for the two parameter family of Gibbs measures
of the dimer model with Fock’s elliptic weights [BCdT20]. Note that these are non
trivial extensions of the result of [Ken02], two of the main difficulties being to find
the appropriate extension of the discrete exponential functions of Mercat [Mer04] and
to define suitable paths of integration. Having local expressions for Gibbs measures
opens the way to computing precise asymptotics, and to constructing Gibbs measures
for general, possibly non-periodic graphs. This latter application requires an additional
argument, however, and such extensions to non-periodic graphs have only been obtained
in some specific rational and elliptic cases [dT07, BdT11, BdTR17, BdTR19].

These results yield the following question: can we obtain an explicit local expression
for the two-parameter family of ergodic Gibbs measures of the dimer model on periodic,
bipartite graphs? We give a positive answer for all dimer models with Fock’s weights on
minimal periodic graphs.

Recall that, by Theorem 3 and the general theory of [KO06, GK13], any dimer model
on a periodic minimal graph is gauge-equivalent to a model with Fock’s weights (see
Remark 50). In that sense, our result extends the theory initiated by Kenyon twenty
years ago [Ken02], originally valid for one measure on isoradial graphs, to the full set of
ergodic Gibbs measures of any dimer model on a periodic minimal graph.

We now state this result in two steps. Let us fix a minimal graph G together with pa-
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rameters Σ, t,α as in Proposition 2, and consider the associated Kasteleyn operator K
defined in Equation (1). Let Σ+ denote the upper half of the M-curve Σ, see Figure 2,
and set D = Σ+ \ α(T). The first step is an explicit, local expression for a two param-
eter family of inverses (Au0)u0∈D of Fock’s Kasteleyn operator K, see Definition 37 and
Theorem 40 for details.

Theorem 4. For every u0 ∈ D, consider the operator Au0 defined as follows: for every
black vertex b and white vertex w of G, set

Au0
b,w =

1

2iπ

∫ u0

σ(u0)
gb,w ,

where gb,w is the meromorphic 1-form on Σ with explicit local expression given in Sec-
tion 3.4, and the integration path in Σ from σ(u0) to u0 is defined in Section 3.5. Then,
the operator Au0 is an inverse of the Kasteleyn operator K.

Remark 5.

1. The terminology local is used in the same sense as in Remark 1: when g ≥ 1, there
is some non-local information, all encoded in the discrete Abel map d.

2. The cornerstone of the proof is Fay’s celebrated identity [Fay73], see Section 2.5.3.
This identity is also the reason why (and in some precise sense, equivalent to the
fact that) the dimer model with Fock’s weights is invariant under natural local
transformations, see Section 5.2.

We are now ready to state our result for Gibbs measures on periodic minimal graphs.
This is a combination of Theorem 51 and Corollary 52.

Theorem 6. For every u0 ∈ D, consider the measure Pu0 whose expression on cylinder
sets is given as follows: for every set {e1 = w1b1, . . . , ek = wkbk} of distinct edges of G,

Pu0(e1, . . . , ek) =
( k∏
j=1

Kwj ,bj

)
× det

1≤i,j≤k

(
Au0
bi,wj

)
.

This defines an ergodic Gibbs measure on dimer configurations of G.

Moreover, the measures (Pu0)u0∈D form the two-parameter family of ergodic Gibbs mea-
sures of [KOS06], where u0 ∈ D ⊂ Σ is related to the magnetic field coordinates in A

via the composition of the explicit parametrization Σ→ C from Proposition 45 with the
amoeba map C→ A.

Finally, if u0 belongs to the real component A0 of Σ (resp. to the complement of A0 in
the real locus of Σ, to the interior of D), then the corresponding dimer model is in a
solid (resp. gaseous, liquid) phase.
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Note that if u0 and u1 belong to the same connected component of the real locus of D,
then the operators Au0 and Au1 coincide, yielding identical measures Pu0 = Pu1 .

As mentioned above, this set of ergodic Gibbs measures is also naturally parametrized
by slopes, and it is natural to wonder whether a simple expression can be given for
the slope of the ergodic Gibbs measure Pu0 . This is done in Section 4.5, but we shall
not attempt to summarize these results here. Let us only mention that, in our setting,
the identification of the g distinct slopes corresponding to the gaseous phases uses as
its main ingredient the Riemann bilinear relation, see Corollary 57. Once again, this
illustrates the very rich interplay between statistical physics and complex analysis on
compact Riemann surfaces at work in this theory.

Outline of the paper

• Section 2 gathers all the results of complex analysis needed for our study of minimal
bipartite dimers. After introducing abstract M-curves in Section 2.1, we recall the
definition of several classical objects for an arbitrary compact Riemann surface Σ
and study their special properties when Σ is an M-curve: first the period matrix in
Section 2.2, then the Abel-Jacobi map in Section 2.3, the Riemann theta functions
in Section 2.4, and finally the prime form in Section 2.5.

• In Section 3, after briefly recalling some background material on minimal bipar-
tite dimers (Section 3.1), the discrete Abel map and monotone angle maps (Sec-
tion 3.2), we prove Proposition 2 in Section 3.3. In Section 3.4, we construct explicit
forms in the kernel of K, which we use in Section 3.5 to construct a two-parameter
family of inverses of K, proving Theorem 4.

• Section 4 deals with the case of Z2-periodic models. After the preliminary Sec-
tion 4.1, we study the periodicity of K in Section 4.2. In Section 4.3, we give
an explicit parametrization of the spectral curve by the abstract M-curve Σ, and
prove Theorem 3. In Section 4.4, we study the full set of ergodic Gibbs mea-
sures, proving Theorem 6. Finally, we derive explicit formulas for the slopes of the
Gibbs measures in Section 4.5, and study the surface tension and free energy in
Section 4.6.

• The more informal Section 5 deals with miscellaneous additional features of our
theory: the construction of Gibbs measures beyond the periodic case in Section 5.1,
the invariance of the model under local transformations in Section 5.2, and its
relation to known models in Section 5.3. This concluding section also contains
various future perspectives.
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well as Erwan Brugallé, Elisha Falbel, Ilia Itenberg, Nicolas Lerner, Florent Schaffauser,

7



and Evgeny Verbitskiy. They also thank the two anonymous referees for their very
careful reading of the paper and their valuable suggestions. The authors acknowledge
that Alexander Bobenko, Nikolai Bobenko and Yuri Suris informed them that they are
working on a related project. The first- and third-named authors are partially supported
by the DIMERS project ANR-18-CE40-0033 funded by the French National Research
Agency. The second-named author is partially supported by the Swiss NSF grant 200020-
200400.

2 Compact Riemann surfaces and M-curves

This section contains all the results in complex analysis that are needed for our study
of dimers on minimal graphs. More precisely, we recall classical statements about Rie-
mann surfaces, referring to [Jos06, FK92, Mum07a, Mum07b] for proofs and details, and
explain what more can be said in the case of M-curves.

We start in Section 2.1 by recalling the definition of this special class of compact Riemann
surfaces, and provide several examples. In Section 2.2, we briefly summarise the theory of
period matrices, whose entries are showed to be purely imaginary in the case of M-curves
(Lemma 11). Section 2.3 deals with the Abel-Jacobi map, whose behaviour for M-curves
is described in Lemma 15. In Section 2.4, we recall the definition of the Riemann theta
functions along with their well-known general properties (Lemma 17), and lesser-known
behaviour for purely imaginary period matrices (Lemma 18). Finally, Section 2.5 deals
with the general theory of prime forms, with Lemmas 25 and 26 containing the results
needed in the case of M-curves.

2.1 Abstract M-curves

Recall that an anti-holomorphic involution on a Riemann surface Σ is a smooth involu-
tion σ : Σ → Σ whose induced map σ∗ : TΣ → TΣ satisfies σ∗ ◦ J = −J ◦ σ∗, where J
denotes the almost-complex structure on Σ. The points of Σ that are fixed by σ are said
to be real.

One easily shows that if σ is an anti-holomorphic involution on a compact orientable
surface of genus g, then its set of fixed points consists of at most g+1 topological circles.
(This is Harnack’s theorem, whose proof follows from an Euler characteristic argument.)

Definition 7. An (abstract) M-curve is a compact Riemann surface Σ endowed with
an anti-holomorphic involution σ whose set of fixed points is given by g + 1 topological
circles, where g is the genus of Σ.

The M in M-curve stands for ‘maximal’. We now give some examples.

Example 8. Any genus 0 Riemann surface is isomorphic to the Riemann sphere, which
is trivially an M-curve with respect to complex conjugation. This case being well-known,
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Figure 2: The surface Σ together with the cycles A0, A1, . . . , Ag (in red) and B1, . . . , Bg
(in blue). In this picture, the anti-holomorphic involution σ should be understood as
the reflection across the horizontal plane containing A0, A1, . . . , Ag.

we assume from now on that g is positive. Note however that this rational case can be
recovered as a degeneration of the elliptic case, i.e. g = 1, as explained in [BCdT20,
Section 8.1].

Example 9. A Riemann surface of genus 1 is isomorphic to a torus T(τ) = C/(Z+ τZ)
of modular parameter τ with =(τ) > 0. The complex conjugation admits as real locus
the curve R/Z, together with the curve R/Z + τ

2 if and only if τ is purely imaginary.
Therefore, T(τ) is an M-curve if and only if τ is purely imaginary. This case is treated
extensively in [BCdT20].

Example 10. By definition, (the toric closure of) a Harnack curve in (C∗)2 is an M-curve
with respect to the anti-holomorphic involution given by σ(z, w) = (z, w).

2.2 The period matrix

This section is devoted to the study of the period matrix of an abstract M-curve.

We fix a real point x0 in an M-curve Σ, denote by A0 the corresponding real circle,
and number the remaining ones as A1, . . . , Ag. Note that the real locus necessarily
separates Σ into two connected surfaces with boundary; we fix an orientation of the real
locus so that the oriented boundary of one of these surfaces, denoted by Σ+, is equal
to A0 − (A1 + · · ·+Ag). Finally, we use the same symbol Aj for the oriented cycle in Σ
and its homology class in H1(Σ;Z).

Note that there are homology classes B1, . . . , Bg ∈ H1(Σ;Z) with σ∗(Bi) = −Bi and
such that {A1, . . . , Ag, B1, . . . , Bg} forms a basis of H1(Σ;Z) satisfying the equalities

Ai ∧Aj = 0, Bi ∧Bj = 0, Ai ∧Bj = δi,j ,

for all 1 ≤ i, j ≤ g, where ∧ denotes the intersection form. This is illustrated in Figure 2.

The complex vector space of holomorphic differential forms has dimension g. Let us
denote by ~ω = (ω1, . . . , ωg) the basis of this space determined by

∀ 1 ≤ i, j ≤ g,
∫
Ai

ωj = δi,j .
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We let Ω be the matrix with entries Ωij :=
∫
Bj
ωi. This is the “interesting part” of the

period matrix
(
Ig Ω

)
of Σ in the basis ~ω. By the general theory, Ω is a symmetric

matrix whose imaginary part is positive definite, and the columns of the period matrix
are linearly independent over R. They generate a full rank lattice Λ = Zg⊕ΩZg in Cg.
In the setting of M-curves, the entries of Ω are purely imaginary. This is the subject of
the following lemma.

Lemma 11. If Σ is an abstract M-curve with anti-holomorphic involution σ, then the
following holds.

1. For all 1 ≤ j ≤ g, we have the equality σ∗ωj = ωj.

2. For all 0 ≤ j ≤ g, the subspace TAj ⊂ TΣ is fixed pointwise by σ∗.

3. The entries of Ω are purely imaginary.

Proof. To show the first point, consider the 1-forms defined by ω′j := σ∗ωj for 1 ≤
j ≤ g. We now check that these are holomorphic forms. By definition, if a form ω
is holomorphic, it is a (1, 0)-form with ∂ω = 0. It follows that σ∗ω is a (0, 1)-form
with ∂(σ∗ω) = 0. Indeed, the involution σ being anti-holomorphic, we have

σ∗ω(J(v)) = ω(σ∗(J(v)) = ω(−J(σ∗(v))) = −iω(σ∗(v)) = −iσ∗ω(v)

for all v ∈ TΣ, checking the first claim. The second follows from the naturality of σ∗ via

∂(σ∗ω) = d(σ∗ω) = σ∗(dω) = σ∗(∂ω) = σ∗(0) = 0 .

The fact that ω′ = σ∗ω is a (1, 0)-form with ∂ω′ = 0 now follows easily, proving that ω′j =

σ∗ωj is a holomorphic form. Next, observe that these holomorphic forms satisfy∫
Ai

ω′j =

∫
Ai

σ∗ωj =

∫
σ∗Ai

ωj =

∫
Ai

ωj = δi,j = δi,j ,

for all 1 ≤ i, j ≤ g. Since these properties characterize the basis of holomorphic forms,
this shows the equality ω′j = ωj , and the first point.

To prove the second one, simply observe that an element of TAj is the form γ′(0) with γ
a parametrization of Aj . Since this curve is fixed pointwise by σ, we have σ ◦ γ = γ
and σ∗(γ

′(0)) = d
dt(σ ◦ γ)(0) = γ′(0).

The third point follows from the first one via∫
Bi

ωj =

∫
Bi

ωj =

∫
Bi

σ∗ωj =

∫
σ∗Bi

ωj =

∫
−Bi

ωj = −
∫
Bi

ωj .

This concludes the proof.
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Example 12. As mentioned above, a Riemann surface of genus 1 is isomorphic to a
torus T(τ) = C/(Z⊕τZ) of modular parameter τ with =(τ) > 0. It is an M-curve if and
only if τ is purely imaginary. In such a case, the imaginary axis τR/τZ can be chosen
as the cycle representing the class B1. The basis of holomorphic forms is then given
by ω1 = dz, since its integral along A1 = R/Z+ τ

2 is equal to 1. Along B1 = τR/τZ, the
integral is τ , so the period matrix is simply given by

(
1 τ

)
.

Example 13. In the case of a Harnack curve, there is a very concrete way to describe ~ω
and compute Ω, explained in the proof of Proposition 6 of [KO06], see also the proof of
Theorem 3 of [CL18] for the general setting.

We need an additional lemma, part of which is known to hold for Harnack curves, see
the end of Section 2 of [KO06]. We now show that it is valid in the more general setting
of M-curves (with a simpler proof).

Lemma 14. Let Σ be an M-curve, with real circles A0, A1, . . . , Ag and associated basis of
holomorphic forms ~ω = (ω1, . . . , ωg) as above. Then, for any 1 ≤ i ≤ g and α 6= β ∈ A0,

resp. Ai, we have
∫ β
α ωi > 0, where the integration path follows the orientation of A0,

resp. Ai.

Proof. Fix 1 ≤ i ≤ g. For any 1 ≤ j ≤ g with j 6= i, we have
∫
Aj
ωi = 0, and the form ωi

is real on Aj . Therefore, it can be written ωi = df in a neighborhood of Aj , with f a
complex-valued function taking real values on Aj . This form not being identically zero,
the function f is non-constant, and ωi admits at least two zeros on Aj . Furthermore,
being a holomorphic differential form, it admits exactly 2g − 2 zeros (counted with
multiplicity). In conclusion, for all 1 ≤ j ≤ g with j 6= i, the form ωi admits exactly 2
simple zeros on Aj , and no zero elsewhere. In particular, it has no zero on Ai and on A0,
so the integration along these real components is monotone. Finally, by definition of the
orientation of A0, the integration along these full loops is given by∫

A0

ωi =

g∑
j=1

∫
Aj

ωi =

∫
Ai

ωi = 1 > 0 .

This implies both claims.

2.3 The Abel-Jacobi map

In this section, we briefly recall the definition of the Abel-Jacobi map associated with
an arbitrary compact Riemann surface, before explaining its special features in the case
of an M-curve in Lemma 15.

Recall that a divisor on Σ is a formal linear combination of points of Σ with integer
coefficients. The set of divisors on Σ is endowed with a natural grading Div(Σ) =⊕

n∈Z Divn(Σ), where the degree of a divisor is the sum of its integer coefficients. A

11



divisor D is said to be principal if it represents the zeros and poles of a non-zero mero-
morphic function f on Σ, i.e., if it is of the form

D =
∑
z

ordf (z)z.

Two divisors are said to be linearly equivalent if their difference is a principal divisor.
Since the number of zeros and poles of a non-zero meromorphic function coincide, i.e.,
the degree of a principal divisor vanishes, the set of linear equivalence classes of divisors
forms a Z-graded Abelian group, denoted by Pic(Σ) =

⊕
n∈Z Picn(Σ).

Abel’s theorem [Jos06, Theorem 5.9.1] implies that there is an injection from Pic0(Σ) to
the Jacobian variety Jac(Σ) = Cg/Λ of Σ through the so-called Abel-Jacobi map

D =
∑
i

(yi − xi) 7−→
∑
i

∫ yi

xi

~ω ∈ Cg.

The decomposition of D ∈ Pic0(Σ) is not unique, and the right-hand side depends on the
choice of paths between xi and yi on Σ. However, two possible results differ by an element
of Λ, so the formula displayed above gives a well-defined map Φ: Pic0(Σ)→ Jac(Σ).

Jacobi’s inversion theorem [Jos06, Theorem 5.9.2] states that this map induces an iso-
morphism of Abelian groups Pic0(Σ) ' Jac(Σ). More concretely, the Abel-Jacobi map
can be inverted as follows: given λ ∈ Jac(Σ) and a fixed point x0 ∈ Σ, one can find
a divisor D =

∑g
i=1 xi of degree g with only positive coefficients (the xi’s may not be

distinct) such that Φ(
∑g

i=1(xi − x0)) = λ. Following standard practice, we use the
same notation for (the equivalence class of) a degree 0 divisor and for its corresponding
element in Jac(Σ).

Note that one can define a map Φ: Pic(Σ)→ Jac(Σ) by first sending Picn(Σ) to Pic0(Σ)
via D 7→ D − nx0 and then applying the Abel-Jacobi map. In particular, this gives a
well-defined map

⊔
n>0 Σn → Jac(Σ). By abuse of notation, we simply denote it by Φ,

even though it does depend on the choice of x0.

In the case of Harnack curves, the real torus A1×· · ·×Ag is known to inject into Jac(Σ)
and form one of its real components, see [KO06], end of Section 2. We now show that
this still holds in the more general setting of M-curves.

Lemma 15. Let Φ:
⊔
n>0 Σn → Jac(Σ) be the Abel-Jacobi map associated to an M-

curve Σ, defined with respect to a fixed real point x0 ∈ A0. Let (e1, . . . , eg) denote the
canonical basis of Cg (and of Zg), and set 1 = e1 + · · ·+ eg.

1. The real locus of Jac(Σ) is equal to (R/Z)g⊕Ω(1
2Z/Z)g, i.e., it consists of 2g real

tori of dimension g indexed by (1
2Z/Z)g.

2. For every 1 ≤ i ≤ g, the map Φ: Σ → Jac(Σ) sends the real component Ai to
a cycle of homology class ei ∈ Zg inside the real torus indexed by ei

2 ∈ (1
2Z/Z)g,

strictly increasing in the ei-direction.

12



3. The map Φ: Σ→ Jac(Σ) sends the component A0 to a cycle of homology class 1 ∈
Zg inside the real torus indexed by 0 ∈ (1

2Z/Z)g, strictly increasing in the ei-
direction for all 1 ≤ i ≤ g.

4. The restriction of Φ: Σg → Jac(Σ) to A1×· · ·×Ag defines a homeomorphism onto
the real torus indexed by 1

21 ∈ (1
2Z/Z)g.

Proof. To check the first point, consider an element t ∈ Jac(Σ) = Cg/Λ, represented
by x + y ∈ Cg with x ∈ Rg and y ∈ iRg. This element t of Jac(Σ) is real if and only
if the difference (x + y) − (x+ y) = 2y belongs to Λ = Zg ⊕ ΩZg, which is equivalent
to y ∈ Ω1

2Z
g. In conclusion, the real locus of Jac(Σ) is indeed given by

(Rg ⊕ 1
2ΩZg)/Λ = (R/Z)g ⊕ Ω(1

2Z/Z)g .

We now check that the real components A1, . . . , Ag are mapped to this real locus
of Jac(Σ). Indeed, fix any Pi ∈ Ai. A path from x0 to Pi can be chosen as a first
path γ0 ⊂ A0 from x0 to the intersection of A0 with Bi, then a path βi ⊂ Bi (following
the orientation of Bi) to the intersection of Bi with Ai, and a path γi ⊂ Ai to Pi. As in
the proof of Lemma 11, we can compute

(Φ(Pi)− Φ(Pi))j =

∫
γ0−σ∗γ0

ωj +

∫
βi−σ∗βi

ωj +

∫
γi−σ∗γi

ωj =

∫
Bi

ωj = Ωji .

Hence, we see that Φ(Pi)− Φ(Pi) belongs to ΩZg, and so Φ(Pi) and Φ(Pi) define the
same element of Jac(Σ). More precisely, since Φ(Pi)− Φ(Pi) = Ωei, we see that Ai is
mapped inside the real torus indexed by ei

2 ∈ (1
2Z/Z)g. Moreover, going once around Ai

replaces Φ(P ) with Φ(P ) +
∫
Ai
~ω = Φ(P ) + ei. Hence, the component Ai is mapped to

a cycle in this real torus with homology class ei ∈ Zg = H1((R/Z)g;Z). The fact that it
is strictly increasing in the ei-direction is a reformulation of Lemma 14, and the second
point is proved.

With our choice of base point x0 in A0, the real component A0 also clearly embeds into
the real locus of the Jacobian via Φ, and its image Φ(A0) contains the origin. Hence, the
component A0 embeds in the real torus indexed by 0 ∈ (1

2Z/Z)g. Note also that since
the homology class of A0 is given by A1 + · · ·+Ag, going once around the component A0

replaces Φ(P ) by Φ(P ) + 1. Therefore, Φ(A0) is a cycle in this real torus with homology
class 1 ∈ Zg = H1((R/Z)g;Z). The monotonicity follows from Lemma 14, showing the
third point.

Understanding an element of A1 × · · · ×Ag as a divisor P1 + · · ·+ Pg with Pi ∈ Ai, the
last point now follows from the third one: indeed, the restriction of Φ to such divisors
defines a map from the real torus A1 × · · · ×Ag to the real torus (R/Z)g + Ω1

21, a map
of degree 1, hence surjective. The injectivity follows from the monotonicity, and the
homeomorphism from compactness.

We conclude this section by recalling the classical Riemann bilinear relation, in the form
stated in [Fay73, Eq. (7)], but accounting for the different normalisation of ωk. (This
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result is also known as a reciprocity law, see e.g. [Jos06, Theorem 5.3.1 ii].) Let ωD be
a differential 1-form of the third kind (that is, a meromorphic differential 1-form having
only simple poles [Jos06, Section 5.3]) with zero period along the A-cycles and simple
poles at βj with integer residue rj ∈ Z∗, for 1 ≤ j ≤ n.

Note that the corresponding degree 0 divisor D =
∑n

j=1 rjβj splits as D = D+ − D−,
where

D+ =
∑
j: rj>0

rjβj and D− =
∑
j: rj<0

(−rj)βj

are effective divisors (that is, with positive coefficients). Then, for any 1 ≤ k ≤ g, we
have the equality ∫

Bk

ωD = 2iπ

∫ D+

D−
ωk , (2)

where the paths of integration for the right-hand side between pairs of points of D− and
D+ are paths in the surface Σ cut along {Ai, Bi : 1 ≤ i ≤ g}, see Figure 7.

2.4 Theta functions

In this section, we recall the definition of the Riemann theta functions, following the
conventions of [Mum07a, Chapter II] (see also [FK92, Chapter VI]), and state their
basic properties in Lemma 17. In the case of a purely imaginary period matrix, more
subtle properties are proved in Lemma 18.

The Riemann theta function θ(z|Ω) associated with a Riemann surface Σ is a higher-
dimensional analog of the classical Jacobi theta functions [Law89]. For z ∈ Cg, set

θ(z|Ω) =
∑
n∈Zg

eiπ(n·Ωn+2n·z),

where · represent the canonical scalar product in Cg. For
(
δ′

δ′′

)
∈ (1

2Z)2g, the theta

function with characteristic
(
δ′

δ′′

)
, denoted by θ[ δ

′
δ′′], is defined by

θ[ δ
′
δ′′](z|Ω) =

∑
n∈Zg

eiπ[(n+δ′)·Ω(n+δ′)+2(n+δ′)·(z+δ′′)].

Example 16.

1. The theta function with characteristic
(

0
0

)
is the Riemann theta function θ defined

above.

2. When g = 1 and Ω = τ , θ(z|Ω) coincides with the Jacobi function θ3(zπ|τ), see
[Law89, Equation (1.2.13)]. The theta functions corresponding to the four charac-

teristics
(

0
0

)
,
(

0
1
2

)
,
( 1

2
0

)
,
( 1

2
1
2

)
are the rescaled versions of θ3, θ4, θ2,−θ1 respectively.
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The following elementary identities between theta functions are well-known, see e.g. [FK92].

Lemma 17.

1. For all
(
δ′

δ′′

)
∈ (1

2Z)2g, we have the equality

θ[ δ
′
δ′′](z|Ω) = eiπ(δ′·Ωδ′+2δ′·(z+δ′′))θ(z + Ωδ′ + δ′′|Ω).

2. For all m,n ∈ Zg, we have

θ[ δ
′
δ′′](z +m+ Ωn|Ω) = e−iπn·(2z+2δ′′+Ωn)e2iπδ′·mθ[ δ

′
δ′′](z|Ω) .

In particular, the function θ is periodic in the Zg directions, and quasi-periodic in
the ΩZg directions:

θ(z +m+ Ωn|Ω) = e−iπn·(2z+Ωn)θ(z|Ω).

3. For all γ′, γ′′ ∈ 1
2Z

g, we have

θ[ δ
′
δ′′](z + γ′′ + Ωγ′|Ω) = e−iπγ

′·(2z+2δ′′+2γ′′+Ωγ′)θ[ δ
′+γ′

δ′′+γ′′](z|Ω).

4. For all m,n ∈ Zg, we have

θ[ δ
′+n

δ′′+m](z|Ω) = e2iπδ′·mθ[ δ
′
δ′′](z|Ω) = ±θ[ δ′δ′′](z|Ω) .

This justifies the notation
(
δ′

δ′′

)
∈ (1

2Z/Z)2g, that we will now use even though in
practice, we always work with fixed representatives in 1

2Z
2g.

5. For every z ∈ Cg, we have

θ[ δ
′
δ′′](−z|Ω) = (−1)2δ′·2δ′′θ[ δ

′
δ′′](z|Ω),

implying that θ[ δ
′
δ′′] is even, resp. odd, if and only if 2δ′ · 2δ′′ is even, resp. odd.

As showed in Lemma 11, the matrix Ω associated with an M-curve is purely imaginary.
We will need the following properties of the corresponding theta functions. The second
one is of great importance to our work.

Lemma 18. Let us assume that Ω is purely imaginary.

1. For all z ∈ Cg, we have

θ[ δ
′
δ′′](z̄|Ω) = θ[ δ

′
δ′′](z|Ω) .

In particular, θ[ δ
′
δ′′](z|Ω) is real for z ∈ Rg.

2. If z belongs to Rg, then θ[ 0
δ′′](z|Ω) is strictly positive.

3. When δ′ 6= 0, θ[ δ
′
δ′′](z|Ω) takes strictly positive and negative values on Rg.
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Proof.

1. Let us check the equality

θ[ δ
′
δ′′](z|Ω) = (−1)2δ′·2δ′′θ[ δ

′
δ′′](−z|Ω)

which, together with the last point of Lemma 17, implies the first point of the
statement. Using that Ω is purely imaginary, we have

θ[ δ
′
δ′′](z|Ω) =

∑
n∈Zg

eiπ[(n+δ′)·Ω(n+δ′)+2(n+δ′)·(−z−δ′′)]

=
∑
n∈Zg

eiπ[(n+δ′)·Ω(n+δ′)+2(n+δ′)·(−z+δ′′)]e−4iπ(n+δ′)·δ′′ ,

and the proof is concluded using that δ′′ belongs to (1
2Z/Z)g.

2. By Point 1 of Lemma 17, it is enough to prove the statement for δ′′ = 0, i.e.,
for the Riemann theta function θ. By Point 2 of Lemma 17 and the first point
above, for any t > 0 and Ω purely imaginary, the real function z 7→ θ(z|tΩ) is well
defined on the torus (R/Z)g. Furthermore, it converges as t → 0, in the sense of
distributions, to the Dirac distribution on the torus whose Fourier coefficients are
all equal to 1. Moreover, it satisfies the heat equation

∂

∂t
f = −1

2
∆f ,

where ∆ = − 1
2iπ

∑
j,k Ωj,k

∂2

∂zj∂zk
is a positive definite Laplace operator (in a non-

orthonormal system of coordinates) on the torus. This means that θ is the fun-
damental solution of this heat equation. By the maximum principle, we conclude
that θ(z|tΩ) is strictly positive for any z and any t > 0, therefore in particu-
lar for t = 1. (From a more probabilistic point of view, the function (z, z′, t) 7→
θ(z′−z|tΩ) is the transition kernel of a non isotropic Brownian motion on the torus
with no drift and a diffusivity matrix given by 1

2iπΩ, in other words, of the linear
image of a standard Brownian motion by a matrix A such that AAT = 1

2iπΩ.)

3. To show the last point, let us fix δ′ 6= 0. By Point 2 of Lemma 17, we have

θ[ δ
′
δ′′](z +m|Ω) = e2iπδ′·mθ[ δ

′
δ′′](z|Ω).

Now since δ′ 6= 0, it has at least one coefficient equal to 1
2 , say the ith; take mi to

be equal to zero except at position i where it is equal to 1. Then,

θ[ δ
′
δ′′](z +mi|Ω) = −θ[ δ′δ′′](z|Ω).

Since θ[ δ
′
δ′′] is real-valued on Rg by the first point above, and not identically zero,

this concludes the proof.
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From now on, the matrix Ω being fixed once and for all, we simply write θ(z|Ω) as θ(z).

We conclude this section by recalling a fundamental result, known as Riemann’s theorem,
following [Mum07a, Theorem 3.1, p. 149]. Consider a fixed point x0 ∈ Σ, and a lift x̃0

in the universal cover Σ̃ of Σ. For any e ∈ Cg, the function fe : Σ̃→ C given by fe(x̃) =

θ(e +
∫ x̃
x̃0
~ω) does not induce a well-defined function on Σ, because of θ being only

quasi-periodic. However, its zeros form a periodic subset of Σ̃ which has a well-defined
projection on Σ. A precise description of this set, called the theta divisor of Σ, is given
as follows. There exists an element ∆ ∈ Cg (depending on the choice of x0), such that
for any e, if fe is not identically equal to 0, then it admits g zeros x1, . . . , xg ∈ Σ which
satisfy the following equality in Jac(Σ):

g∑
j=1

∫ xj

x0

~ω = −e+ ∆ . (3)

Moreover, the theta divisor x1 + · · · + xg is uniquely determined by this condition,
see [Mum07a, Corollary 3.2, p. 153]. Note that the points xj may be not distinct; in
that case, they correspond to zeros with higher multiplicity, so that the total degree of
the theta divisor is g.

More can be said in the case of an M-curve Σ with fixed point x0 ∈ A0 and e ∈ Rg.

Lemma 19. Let Σ be an M-curve, and let x0 be an element of A0. Then, for every e ∈
Rg, each of the zeros xj of the function fe belongs to a different Ai with 1 ≤ i ≤ g.
Thus, these zeros are distinct and satisfy xj ∈ Aj for all 1 ≤ j ≤ g up to relabeling.
Consequently, the constant ∆ belongs to Rg + Ω1

21.

Proof. Let us fix an element x0 ∈ A0 and a real vector e ∈ Rg. For 1 ≤ j ≤ g,
let δj ∈ Rg denote the vector whose coordinates are all zero, except the jth one, which

is equal to 1
2 . Finally, let x̃0 ∈ Σ̃ be an arbitrary lift of x0 ∈ A0 ⊂ Σ. We now show

that the function fe : Σ̃ → C given by fe(x̃) = θ
(
e+

∫ x̃
x̃0
~ω
)

vanishes at least once on

any given lift Ãj ⊂ Σ̃ of the real component Aj ⊂ Σ.

Let γj : R → Ãj be a lift of a parametrization of Aj by R/Z. By Lemma 15, Point 2,
the integral ∫ γj(t)

x̃0

~ω

belongs to Rg + Ω(δj + Zg) for every t ∈ R. By continuity, it belongs to Rg + Ω(δj + v)
for some fixed v ∈ Zg. Moreover, this same Point 2 of Lemma 15 implies the equality∫ γj(t+1)

x̃0

~ω =

∫ γj(t)

x̃0

~ω + 2δj

for all t ∈ R. Hence, by Lemma 17, Point 2, the function

hj : t 7→ θ[δj
0
]
(
e− Ω(δj + v) +

∫ γj(t)

x̃0

~ω
)
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satisfies hj(t + 1) = −hj(t) for all t ∈ R. Finally, this function is real by Lemma 18,

Point 1. Therefore, there is a point x̃j = γj(tj) in Ãj such that hj(x̃j) = 0. We then
conclude by Lemma 17, Points 1 and 2, that

|fe(x̃j)| =
∣∣∣θ(e+

∫ x̃j

x̃0

~ω
)∣∣∣ =

∣∣∣θ[δj
0
]
(
e− Ω(δj + v) +

∫ x̃j

x̃0

~ω
)∣∣∣ = |hj(x̃j)| = 0.

This point x̃j is thus a zero of fe, which projects on Σ to a point xj ∈ Aj contributing
to the theta divisor of Σ. The claim follows from the fact that this divisor is of degree g.

The constant ∆ belonging to Rg + Ω1
21 is now a direct consequence of Point 4 of

Lemma 15, together with Equation (3) applied to e = 0.

2.5 Prime form

This section deals with the so-called prime form associated with an arbitrary compact
Riemann surface Σ. In Section 2.5.1, we start by studying the general theory of sections
of line bundles, a necessary formalism for the precise definition of the prime form given
in Section 2.5.2. When Σ is an M-curve, this form exhibits special properties that are
stated and proved in Lemmas 25 and 26. Finally, Section 2.5.3 recalls Fay’s trisecant
identity, which plays a crucial role in the rest of our work.

2.5.1 Sections of line bundles and automorphic forms

The aim of this preliminary paragraph is to prove a statement that is most probably stan-
dard: holomorphic sections of a fixed holomorphic line bundle on a Riemann surface Σ
of genus g > 0 can be understood as automorphic forms on the universal cover Σ̃ of Σ,
i.e., holomorphic functions with quasi-periodicity under the action of π1(Σ) prescribed
by the line bundle.

To check this fact, fix a holomorphic line bundle p : L→ Σ and denote by π : Σ̃→ Σ the
universal cover of Σ. This gives rise to the holomorphic line bundle π∗p : E → Σ̃ induced
by π. Since we assume g > 0, the Riemann surface Σ̃ is isomorphic to the open disc or the
complex plane. Since it is non-compact, the Weierstrass theorem implies that H1(Σ̃,O∗)
vanishes, so all holomorphic line bundles on Σ̃ are trivial. In particular, there is an
isomorphism ϕ : Σ̃×C→ E such that π∗p ◦ϕ is equal to the projection pr : Σ̃×C→ Σ̃.
In a nutshell, we have the commutative diagram

Σ̃× C E L

Σ̃ Σ,

//Π

��
π∗p

��
p

//π

//ϕ

##
pr

where Π: E → L is the π1(Σ)-covering induced by p.
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Now, consider a holomorphic section ψ : Σ→ L, which by definition satisfies p ◦ ψ = id .
By the lifting property of the π1(Σ)-covering Π: E → L, there is a map ψ̃ : Σ̃→ E such
that Π ◦ ψ̃ = ψ ◦ π, which is uniquely determined by its value on a lift x̃0 ∈ Σ̃ of a base
point x0 ∈ Σ. Hence, we have

π ◦ π∗p ◦ ψ̃ = p ◦Π ◦ ψ̃ = p ◦ ψ ◦ π = π ,

and we see that ψ̃ is a holomorphic section of π∗p up to action of the group π1(Σ) of the
covering π. Moreover, one can choose the value ψ̃(x̃0) ∈ E so that (π∗p ◦ ψ̃)(x̃0) = x̃0.
By continuity, we have π∗p ◦ ψ̃ = id , and ψ̃ is a holomorphic section of π∗p. The
composition ϕ−1◦ ψ̃ now defines a holomorphic section of the trivial bundle pr : Σ̃×C→
Σ̃, i.e., it is of the form (ϕ−1 ◦ ψ̃)(x̃) = (x̃, fψ(x̃)) for some holomorphic function

fψ : Σ̃ −→ C

uniquely determined by ψ.

Moreover, its quasi-periodicity properties under the action of π1(Σ) are uniquely de-
termined by the holomorphic line bundle p : L → Σ. They are of the following form:
for x̃ ∈ Σ̃ and γ ∈ π1(Σ), we have

fψ(γ · x̃) = pγ(x̃)fψ(x̃)

for some holomorphic map pγ : Σ̃ → C∗ which only depends on γ and on the line bun-
dle L→ Σ. This is the factor of automorphy of the automorphic form fψ.

Example 20. Consider the case of a spin structure L → Σ with Σ = T(τ). It is
a square root of the canonical line bundle, which is nothing but the trivial bundle.
Since π1(Σ) = Z + Zτ acts by translations on Σ̃ = C, the discussion above shows that
holomorphic sections of L→ Σ (i.e., spinors) can be understood as holomorphic maps f
on Σ̃ = C with quasi-periodicity

f(x+ 1) = p1(x)f(x) and f(x+ τ) = pτ (x)f(x)

for some p1, pτ : C → C∗ with p2
1 = p2

τ = 1. This gives 4 different spin structures corre-
sponding to the 4 possible signs p1, pτ ∈ {±1}. Note that the choice p1 = pτ = 1 leads
to constant spinors, while the other choices only allow for identically zero holomorphic
sections. This is coherent with the fact that the dimension of the space of spinors has
the same parity as the spin structure [Ati71]. In the present case, the only odd spin
structure corresponds to the trivial line bundle.

2.5.2 The prime form

We now give a definition with all necessary details for our purposes, but very little more,
referring the reader to [Mum07b] for additional information.
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Given an arbitrary compact Riemann surface Σ, let us fix a non-degenerate theta char-
acteristic, i.e., a theta characteristic such that the corresponding theta function satisfies

dzθ[ δ
′
δ′′](0) 6= 0 .

Such a theta characteristic is known to hold by the Lefschetz embedding theorem. Note
that

(
δ′

δ′′

)
must be odd, and thus also satisfy θ[ δ

′
δ′′](0) = 0.

By the general theory of spin structures on Riemann surfaces [Ati71], this theta char-
acteristic corresponds to a spin structure, understood as a line bundle L whose square
is isomorphic to the canonical line bundle K. An explicit holomorphic section of this
bundle L can be constructed as follows. Consider the holomorphic form

ζ =

g∑
i=1

∂θ[ δ
′
δ′′]

∂zi
(0)ωi = dzθ[ δ

′
δ′′](0) · ~ω ,

which is nothing but the differential of the function y 7→ θ[ δ
′
δ′′](y − x):=θ[ δ

′
δ′′](
∫ y
x ~ω), in

the variable y ∈ Σ, evaluated at y = x. All the zeros of ζ are double zeros [Fay73,
Corollary 1.3]. Therefore, interpreting ζ as a holomorphic section of K, it admits a
square root ξ[ δ

′
δ′′] which is a section of the line bundle L. Note that ξ[ δ

′
δ′′] depends on the

theta characteristic in two ways: in the construction of ζ, and in the choice of the square
root.

Definition 21. The prime form is the form E defined by

E(x, y) =
θ[ δ
′
δ′′](y − x)

ξ[ δ
′
δ′′](x)ξ[ δ

′
δ′′](y)

.

for x, y in the universal cover Σ̃ of Σ.

Let us give an explicit example.

Example 22. If Σ has genus 1, it is isomorphic to a torus T(τ) with =(τ) > 0. There is a

unique odd theta characteristic, namely
( 1

2
1
2

)
, which is always non-degenerate. Hence, the

numerator of the prime form is given by θ[
1
2
1
2
](y − x) = −θ1(π(y − x)), see Example 16.

As for the denominator, recall that the canonical line bundle of the torus is trivial.
Furthermore, the square root L of K = 1 corresponding to the odd theta characteristic

is the trivial bundle L = 1 (recall Example 20). The constant value of ξ[
1
2
1
2
] is given by a

square root of −πθ′1(0), leading to the explicit formula E(x, y) = θ1(π(y−x))
πθ′1(0)

.

The prime form is the key ingredient for constructing meromorphic functions on Σ.
Indeed, if x1, . . . , xk, y1, . . . , yk are points on Σ with xi 6= yj for all i, j and such

that
∑k

i=1(xi−yi) is a principal divisor, then all meromorphic functions with this divisor
are of the form

g(x) = c×
k∏
i=1

E(xi, x)

E(yi, x)
,
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with c a complex number.

We will make use of the following standard properties of the prime form, valid for
any x, y ∈ Σ̃ (see e.g. [Mum07b, p. 3.210]):

• E(x, y) = 0 if and only if x and y project to the same point on Σ;

• these are first order zeros;

• When x and y are close to each other,

E(x, y) =
z(y)− z(x)√
dz(x)

√
dz(y)

(
1 +O(z(x)− z(y))2

)
,

where z is a local coordinate such that ζ = dz in a connected open set containing
x and y.

• E(x, y) = −E(y, x).

The following result is also well-known, but most references only consider equalities up
to signs. Since signs do play an important role in our setting, we include the proof for
completeness.

Proposition 23. The prime form does not depend on the choice of the non-degenerate
theta characteristic.

Proof. Let us start by studying the quasi-periodicity of E(x, y). If y′ ∈ Σ̃ is obtained
from y by adding the corresponding lift of the cycle Aj , we have

θ[ δ
′
δ′′](y

′ − x) = θ[ δ
′
δ′′]((y − x) +

∫
Aj

~ω) = θ[ δ
′
δ′′]((y − x) + ej) = e2iπδ′jθ[ δ

′
δ′′](y − x)

by Lemma 17. On the other hand and by definition, we have ξ[ δ
′
δ′′](y

′) = pj [ δ
′
δ′′](y)ξ[ δ

′
δ′′](y),

with pj [ δ
′
δ′′](y)2 =: p2

j (y) encoding the Aj-quasi-periodicity of any holomorphic form.
Recall however that the sign of this square root does depend on the theta characteristic,
hence the heavy notation. Fixing an arbitrary square root pj(y), we see that

E(x, y′) = ±(−1)2δ′jp−1
j (y)E(x, y) , (4)

with pj independent of the theta characteristic, while the sign might a priori depend on
it. (Note that even in the genus 1 case, we have E(x, y′) = −E(x, y), recall Example 22;
therefore, and unlike claimed in many references, the prime form is in general not in-
variant along A-cycles.) Similarly, if y′′ ∈ Σ̃ is obtained from y by adding the lift of the
cycle Bj , then we have

E(x, y′′) = ±(−1)2δ′′j q−1
j (y)e2iπ(−

Ωjj
2
−
∫ y
x ωj)E(x, y) , (5)
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with q2
j (y) encodes the Bj-quasi-periodicity of any holomorphic form. The crucial point

here is that, once again, the factor appearing does not depend on the theta characteristic,
at least up to sign.

Let us now consider prime forms E and E′ obtained from two non-singular theta char-
acteristics. For any fixed x ∈ Σ̃, set fx(y) := E(x,y)

E′(x,y) . By the fundamental properties
of E listed above, both the numerator and denominator have the same zeros, namely
a simple zero at each element of Σ̃ with same image in Σ as x. Therefore, this quo-
tient defines a (non-vanishing) holomorphic function on Σ̃. Moreover, by the equalities
displayed above, the A and B periods of fx are trivial up to a sign. Therefore, the func-
tion fx induces a well-defined holomorphic function on the cover Σ′ of Σ given by the
homomorphism π1(Σ) → (Z/2Z)2g mapping the cycles Aj and Bj to distinct elements
of the canonical basis of (Z/2Z)2g. This cover being finite, the Riemann surface Σ′ is
compact, and fx constant. The normalization of E and E′ ensures that they have the
same asymptotic behavior near the diagonal, and hence that this constant is equal to 1.
This completes the proof.

Remark 24. The statement above implies that the factor of automorphy for the prime
form does not depend on

(
δ′

δ′′

)
. It means that there is a bijection between the collection

of signs {(−1)2δ′j , (−1)2δ′′j }1≤j≤g and the collection of ± coming from the square roots of
p2
j (y) and q2

j (y) we need to consider for the line bundle L, and if we choose correctly the
sign of “reference” square roots pj(y) and qj(y), these collections of signs can be taken
to be equal.

We now come back to the setting of M-curves. Note that the anti-holomorphic involu-
tion σ : Σ→ Σ lifts to an anti-holomorphic involution on the universal cover Σ̃, that we
also denote by σ.

Lemma 25. If Σ is an M-curve, then the associated prime form satisfies

∀x, y ∈ Σ̃, E(σ(x), σ(y)) = E(x, y) .

Proof. First note that by Points 1 and 3 of Lemma 11 together with Point 1 of Lemma 18,
we have

θ[ δ
′
δ′′]
(∫ σ(y)

σ(x)
~ω
)

= θ[ δ
′
δ′′]
(∫ y

x
σ∗~ω

)
= θ[ δ

′
δ′′]
(∫ y

x
~ω
)

= θ[ δ
′
δ′′]
(∫ y

x
~ω
)
.

Furthermore, the theta characteristic being odd and the period matrix purely imaginary,
the number ∂

∂zj
θ[ δ
′
δ′′](0) is easily seen to be real. An additional use of the first point of

Lemma 11 then leads to the identity σ∗ζ = ζ, which implies that ξ[ δ
′
δ′′](σ(x)) = ±ξ[ δ′δ′′](x),

with the global sign independent of x. Together with the equality displayed above, this
implies the statement.

We now study the restriction of the prime form to Ã0 × Ã0, where Ã0 denotes the
universal covering of A0 given by an arbitrary connected component of the preimage
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of A0 in Σ̃. More precisely, we compute the phase of the (−1/2,−1/2)-form E(x, y)
for x, y ∈ Ã0, evaluated at the tangent vectors (vx, vy), where v denotes the velocity

vector field of (any regular parametrization of) the oriented curve Ã0.

For lifts x, y ∈ Ã0 of different elements of A0, we write by−xc ∈ Z for the unique integer
such that the inequalities

x+ by − xc1 < y < x+ (by − xc+ 1)1

hold in Ã0, where x + 1 denotes the image of x in Ã0 via the generator of the infinite
cyclic covering group. (This slight abuse of notation is motivated by the third point of
Lemma 15.)

Lemma 26. There exists ϕ ∈ {±1,±i} such that for any lifts x, y ∈ Ã0 of different
elements of A0, the phase of E(x, y) evaluated at the velocity vectors (vx, vy) is equal
to (−1)by−xc ϕ.

Proof. Recall that in our setting, the period matrix Ω is purely imaginary. Given an
odd theta characteristic

(
δ′

δ′′

)
, this easily implies that the number ∂

∂zj
θ[ δ
′
δ′′](0) is real.

Furthermore, given any real element P ∈ Σ, the first two points of Lemma 11 imply

ωj(v) = σ∗ωj(v) = ωj(σ∗(v)) = ωj(v)

for all 1 ≤ j ≤ g, where v denotes the velocity vector field of the real component

containing P . As a consequence, the holomorphic form ξ[ δ
′
δ′′]

2
=
∑

j
∂
∂zj
θ[ δ
′
δ′′](0)ωj takes

real values on A0, when evaluated along the corresponding velocity vector field. By the
first point of Lemma 18, θ[ δ

′
δ′′](y−x) is also real, so E(x, y) evaluated at (vx, vy) is either

real or purely imaginary. In other words, the corresponding phase f(x, y) is ±1 or ±i.
We now use the crucial fact that the prime form vanishes only if both variables are
lifts of the same element of A0. This implies in particular that f(x, y) is constant for
all x < y < x+ 1, say equal to ϕ(x) for some map ϕ : Ã0 → {±1,±i}. This map being
continuous, it is constant. Hence, for x, y ∈ Ã0 with x < y < x + 1, the fact that the
prime form is skew-symmetric now implies

f(x, y) = ϕ(x) = ϕ(y) = f(y, x+ 1) = −f(x+ 1, y) .

The equality f(x, y) = (−1)by−xc ϕ easily follows.

2.5.3 Fay’s identity

We will make use of the following three versions of Fay’s identity [Fay73]. They are easy
consequences of the standard version formulated by Mumford [Mum07b, p. 3.214], that
we now recall without proof.
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Theorem 27 (Fay’s identity). For any z ∈ Cg and a, b, c, d ∈ Σ̃, we have

θ(z + c− a)θ(z + d− b)E(c, b)E(a, d) + θ(z + c− b)θ(z + d− a)E(c, a)E(d, b)

= θ(z + c+ d− a− b)θ(z)E(c, d)E(a, b) . (6)

The first variation is the n = 3 case of [Foc15, Lemma 1], and can be obtained as
follows. Divide Equation (6) by θ(z)θ(z + d − a)θ(z + d − b)E(c, a)E(c, b)E(c, d) and

set a = α, b = β, c = u, d = γ in Σ̃ and z = s − γ ∈ P̃ic0(Σ) = Cg. This yields the
equality

θ(s+ u− α− β)E(α, β)

E(α, u)E(β, u)θ(s− α)θ(s− β)
+

θ(s+ u− β − γ)E(β, γ)

E(β, u)E(γ, u)θ(s− β)θ(s− γ)

+
θ(s+ u− γ − α)E(γ, α)

E(α, u)E(γ, u)θ(s− α)θ(s− γ)
= 0, (7)

for all u, α, β, γ in Σ̃, and all s in the universal cover P̃ic1(Σ) of Pic1(Σ).

To obtain the second version, simply pass the second and third terms in Equation (7)
on the right-hand side. This yields the equation

θ(s+ u− α− β)E(α, β)

E(α, u)E(β, u)θ(s− α)θ(s− β)
= F s,γ(u;β)− F s,γ(u;α) , (8)

where

F s,γ(u;α) =
θ(s+ u− α− γ)E(γ, α)

E(α, u)E(γ, u)θ(s− α)θ(s− γ)
.

Note that γ does not appear in the left-hand side of Equation (8) and can be chosen
arbitrarily to define F . By carefully letting γ tend to u in the definition of F s,γ(u;α),
one obtains the following version of Equation (8):

θ(u− s) θ(s+ u− α− β)E(α, β)

E(α, u)E(β, u)θ(s− α)θ(s− β)

= ωβ−α(u) +

g∑
j=1

(
∂ log θ

∂zj
(s− α)− ∂ log θ

∂zj
(s− β)

)
ωj(u) , (9)

where ωβ−α(u) = du log E(u,β)
E(u,α) is the unique meromorphic 1-form with 0 integral along A-

cycles, and two simple poles: at β with residue 1, and at α with residue −1. See [Fay73,
Proposition 2.10] for a derivation of this variant.

The third version, which can be found at the very end of [Foc15], is simply obtained by
setting Ft(a, b) := θ(a+ b− t)E(a, b) in Equation (6) with z = a+ b− t, yielding

Ft(a, b)Ft(c, d) + Ft(a, d)Ft(b, c) + Ft(a, c)Ft(d, b) = 0 (10)

for all a, b, c, d ∈ Σ̃ and t ∈ P̃ic2(Σ).
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Figure 3: Left: piece of a minimal graph with its associated oriented train-tracks (in
grey), and the corresponding portion of a dimer configuration (in blue). Right: the same
train-tracks together with the associated graph G� (in dashed lines).

Remark 28. It should be noted that in Equation (6), the theta function θ can be replaced
with any theta function θ[ δ

′
δ′′] with theta characteristic. This is a consequence of the first

point of Lemma 17. The same holds true for all the versions of Fay’s identity displayed
above.

3 Fock’s Kasteleyn operators and their inverses

In this section, we define our dimer models on an arbitrary minimal graph G, and
initiate their study. More precisely, we start in Section 3.1 by briefly recalling the
necessary combinatorial concepts, namely those of train-tracks and minimal graphs,
together with the definition of the dimer model. Section 3.2 also deals with background
material, i.e., the definition of the discrete Abel map of [Foc15], and of the parameter
spaces XG of [BCdT21]. In Section 3.3, we finally give the definition of the models via the
corresponding adjacency operators of [Foc15], but restricting the parameters to ensure
that the resulting edge-weights are positive. Section 3.4 deals with explicit functions in
the kernel of these operators inspired by [Foc15], functions that are used in Section 3.5
to define a two-parameter family of inverses of each of these operators.

3.1 Dimer models on minimal graphs

In an attempt to be reasonably self-contained, we now recall the fundamental concepts
of train-tracks and minimal graphs, as well as the definition of the dimer model and of
the associated Kasteleyn matrices. However, this article being a sequel to [BCdT20], we
favor brevity over rigor and completeness, referring the reader to Sections 2.1 and 2.2
of [BCdT20] for details.
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Let G = (V,E) be a locally finite graph embedded in the plane with faces being bounded
topological discs; in particular, the graph G is infinite. If G∗ = (V∗,E∗) stands for the
dual embedded graph, then the associated quad-graph G� is defined from the vertex
set V t V∗ by joining a primal vertex v ∈ V and a dual vertex f ∈ V∗ with an edge
each time v lies on the boundary of the face corresponding to f. Note that G� embeds
in the plane with (possibly degenerate) quadrilaterals faces (see Figure 1). Following
[Ken02, KS05], we define a train-track of G as a maximal chain of adjacent quadrilaterals
of G� such that when one enters a quadrilateral, one exits through the opposite edge,
see Figure 3.

Let us now assume that G is bipartite, i.e., that V admits a partition B tW into black
and white vertices such that no edge of E connects two vertices of the same color. In
this case, train-tracks can be consistently oriented, say, with black vertices on the right
and white vertices on the left of the path, see again Figure 1. We let T denote the set of
consistently oriented train-tracks of the bipartite graph G. A bipartite, planar graph G
is said to be minimal [Thu17, GK13] if its train-tracks do not self-intersect, and no pair
of oriented train-tracks intersect twice in the same direction. This implies that train-
tracks do not form loops, and that G has neither multiple edges, nor degree 1 vertices.
In particular, a minimal graph is a simple graph.

We now quickly recall basic facts on dimer models, referring to [Ken04] for details.

A dimer configuration of a graph G is a collection M ⊂ E such that every vertex is
incident to exactly one edge of M, see Figure 3. If G is finite and endowed with a
positive edge-weight function ν = (νe)e∈E, then the dimer Boltzmann measure P on the
set of dimer configurations of G is defined by

P(M) =

∏
e∈M νe

Z(G, ν)
,

where Z(G, ν) =
∑

M

∏
e∈M νe is the dimer partition function. When the graph G is

infinite and planar, this notion is replaced by that of Gibbs measure, see e.g. [KOS06].

Two dimer models on G defined via edge-weights ν and ν ′ are called gauge equivalent if
there is a positive vertex-function σ such that ν ′xy = σx νxy σy holds for each e = xy ∈ E.
If G is finite, then ν and ν ′ yield the same Boltzmann measure. When G is planar and
bipartite, two dimer models on G are gauge equivalent if and only if the corresponding
edge-weights define equal face weights, where faces weights are the alternating product
of edge-weights around each given bounded face.

One of the most fundamental tools for studying the dimer model is the Kasteleyn matrix,
named after [Kas61], see also [TF61], and extended by Kuperberg [Kup98] as follows.
Let us fix a finite, planar and bipartite graph G. Consider a weighted adjacency matrix K
of G twisted by a phase, i.e., a matrix K with Kw,b = ωwbνwb and ωwb any modulus 1
complex number. Let us assume that for any bounded face f of degree 2m of G, the
phase ω satisfies the following Kasteleyn condition:

m∏
j=1

ωwjbj

ωwjbj+1

= (−1)m+1 ,
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assuming the notation of Figure 4. Then, the dimer partition function and Boltzmann
measure can be computed from K and its inverse K−1, see [Ken97].

3.2 The discrete Abel map and the parameter space XG

Let Σ be an M-curve. Recall that it admits an oriented real component denoted by A0,
which contains the base point x0. We assign to each oriented train-track T ∈ T of G an
element αT of A0, referred to as its angle. (This terminology originates from the elliptic
case, where A0 is naturally identified with R/Z.)

Following Fock [Foc15], we define a function d from the set of vertices of G� into Pic(Σ),
as follows. Choose a face f0 and set d(f0) = 0. Then, along an edge of G� crossing a
train-track T with angle αT , we formally add αT to the value of d if we arrive at a black
vertex or leave a white vertex (see Figure 1). In this way, the degree of d(x) ∈ Div(Σ)
is equal to

degd(x) =


1 if x is a black vertex of G,

0 if x is a face of G,

−1 if x is a white vertex of G.

In particular, for any face f of G, the element d(f) belongs to Pic0(Σ). By Lemma 15,
its image by the Abel-Jacobi map belongs to (R/Z)g ⊂ Jac(Σ).

As it turns out, only a special class of angle assignments T 7→ αT gives rise to proba-
bilistic models. It can be described as follows, see [BCdT21] for more detail.

Let us call two non-closed oriented planar curves parallel (resp. antiparallel) if they
intersect infinitely many times in the same direction (resp. in opposite directions), or
if they are disjoint and cross a topological disc in the same direction (resp. in opposite
directions). Consider a triple of oriented train-tracks of G, pairwise non-parallel. Let B
be a compact disk outside of which these train-tracks do not meet, apart from possible
anti-parallel ones, and order this triple of elements of T cyclically according to the
outgoing points of the corresponding oriented curves in the circle ∂B. This gives a well-
defined partial cyclic order on T, see [BCdT21, Section 2.3]. Note that A0 is an oriented
topological circle, and therefore endowed with a total cyclic order as well, which allows
for the following definition.

We define XG as the set of maps α : T → A0 that are monotone, in the sense that they
preserve the cyclic order, and such that non-parallel train-tracks have distinct images.
One of the main results of [BCdT21] is that if G is minimal, then XG is included in the
space of minimal immersions of G, and coincides with it if G is minimal and periodic,
see in particular [BCdT21, Theorem 23, and Corollary 29].

3.3 Fock’s Kasteleyn operators

To define a version of Fock’s adjacency operator satisfying Kasteleyn’s condition, let us
fix a minimal graph G, an M-curve Σ and an angle map α ∈ XG.
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We now fix an arbitrary lift α̃ : T → Ã0 of α, i.e., lifts α̃T ∈ Ã0 of the angles αT ∈ A0,
where Ã0 ⊂ Σ̃ denotes the universal cover of A0. Recall from Lemma 15 that the Abel-
Jacobi map defines an embedding of A0 in (R/Z)g, and therefore an embedding of Ã0

in Rg ⊂ J̃ac(Σ) = Cg. We define a lift d̃ : V(G�) → Div(Σ̃) of the discrete Abel map d
by setting d̃(f0) = 0, and computing the values at every vertex iteratively by adding
and subtracting the lifts α̃T of the crossed train-tracks, with the same local rule as d.
In particular, if b (resp. w) and f are separated by a train-track with angle α (resp. β),
one has d̃(b) = d̃(f) + α̃ (resp. d̃(w) = d̃(f) − β̃). Note that for any face f of G, the
divisor d̃(f) has degree 0, and its image by the Abel-Jacobi map Div0(Σ̃)→ Cg belongs
to Rg.

Definition 29. Fock’s adjacency operator K is the complex weighted adjacency operator
of the graph G, indexed by elements t ∈ (R/Z)g ⊂ Jac(Σ), with non-zero coefficients
given as follows: for every edge wb crossed by train-tracks with angles α, β in A0 as in
Figure 1, we have

Kw,b =
E(α̃, β̃)

θ(t̃+ d̃(f)) θ(t̃+ d̃(f ′))
, (11)

where t̃ ∈ Rg is a lift of t ∈ (R/Z)g.

Here are several remarks on this definition.

Remark 30.

1. Since we are working in the universal cover, the coefficient Kw,b can be under-

stood as an honest complex-valued function of the lifted angles α̃, β̃ ∈ Ã0 (recall
Section 2.5.1). On the other hand, it does not project to a well-defined function
of α, β ∈ A0. Indeed, while the denominator gives a function on A0 × A0, the
numerator is only well-defined on the universal cover Ã0 × Ã0: replacing α̃ ∈ Ã0

by α̃+ 1, i.e., going once around A0, leads to

E(α̃+ 1, β̃) =
ξ[γ
′

γ′′](α̃)

ξ[γ
′

γ′′](α̃+ 1)
e2iπγ′·1E(α̃, β̃) = −λE(α̃, β̃)

for some λ > 0, by Lemma 26, and similarly for β. (Here, we use the notation
(
γ′

γ′′

)
for the odd theta characteristic appearing in the prime form, to distinguish it from
the theta characteristic

(
δ′

δ′′

)
possibly appearing in the denominator, see points 3–

5 below.) However, the corresponding face weights are well-defined, i.e., these
factors cancel up to gauge equivalence.

2. By the second point of Lemma 17, the entry Kw,b does not depend on the choice
of the lift t̃ ∈ Rg of t ∈ (R/Z)g.

3. By the third point of Lemma 17, we have the identity θ[δ
′

0 ](z) = θ[ δ
′
δ′′](z − δ′′).

Hence, up to a translation of t̃ by an element of 1
2Z

g, we can choose δ′′ arbitrarily
in the theta characteristic of the denominator of (1). We set δ′′ = 0 in (11) for
definiteness.
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4. As stated in Proposition 2, it is possible to define Kasteleyn operators indexed
by an arbitrary real element of Jac(Σ), i.e., by any element of the form t + Ωδ
with t ∈ (R/Z)g and δ ∈ (1

2Z)g, as long as the theta characteristic [ δ
′
δ′′] of the

denominator satisfies δ′ = δ. Indeed, the gauge equivalence class of the resulting
operator only depends on t ∈ (R/Z)g, and we set δ = δ′ = 0 for definiteness.

To check this claim, let us fix δ ∈ (1
2Z)g and write K′ for the Kasteleyn operator

defined as in (11), but with t̃ replaced by t̃ + Ωδ and θ replaced by θ[δ0]. By the
third point of Lemma 17, we get

K′w,b = e2iπδ·Ωδ e2iπ(2δ)·t̃ e2iπδ·(d̃(b)+d̃(w)) Kw,b ,

yielding the statement.

This is no surprise, as we know from [KO06] that for periodic graphs, the gauge-
equivalence classes are parametrized by one point on each of the ovals, i.e., by
a g-dimensional torus, see also the third point of Remark 50.

5. Note that another natural choice of theta characteristic is given by δ′ = δ′′ = 1
21,

leading to

Kw,b =
E(α̃, β̃)

θ[
1
21

1
21

](t̃′ + d̃(f)) θ[
1
21

1
21

](t̃′ + d̃(f ′))

indexed by t′ ∈ (R/Z)g + Ω1
21. This generalizes the genus 1 case of [BCdT20].

α2

α′1

αm
α′m

f

α1

α′2

w1

w2

wm

b1

b2

bm

Figure 4: Train-tracks around a typical face f of degree 2m, with white ver-
tices w1, . . . ,wm and black vertices b1, . . . , bm on its boundary.

The following result establishes the fact that we can harness Kasteleyn’s theory. Note
that even though it extends the elliptic case treated in [BCdT20, Proposition 12],the
proof given below is significantly simpler then the one appearing in [BCdT20].
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Proposition 31. For any lift α̃ of the map α ∈ XG and any t ∈ (R/Z)g ⊂ Jac(Σ),
Fock’s adjacency operator K is a Kasteleyn operator.

Proof. Let us study the validity of the Kasteleyn condition around an arbitrary face f
as in Figure 4. By definition, we have

Kw,b =
E(α̃, β̃)

θ(t̃+ d̃(f)) θ(t̃+ d̃(f ′))
,

with t̃, d̃(f) and d̃(f ′) elements of Rg. Hence, by the third point of Lemma 11 and the
second point of Lemma 18, the denominator is strictly positive. Since the prime form is
skew-symmetric, the phase of the face weight around f is therefore equal to the phase of

(−1)m
E(α̃1, α̃

′
2)E(α̃2, α̃

′
3) · · ·E(α̃m, α̃

′
1)

E(α̃1, α̃′1)E(α̃2, α̃′2) · · ·E(α̃m, α̃′m)
.

Note that this phase is well-defined for αj , α
′
j ∈ A0, as replacing α̃j by α̃j + 1 makes a

sign appear at the numerator and denominator, and similarly for α′j .

By Lemma 26, we know that the phase of E(x, y) is equal to (−1)by−xc ϕ for some
fixed ϕ ∈ {±1,±i}. Therefore, we are left with the proof that the integer

m∑
j=1

bα̃′j+1 − α̃jc+

m∑
j=1

bα̃′j − α̃jc

is odd, where α′m+1 stands for α′1. Since α belongs to XG and G is minimal, Lemma 8
of [BCdT21] states that α is monotone and injective on the cyclically ordered set of
oriented train-track strands adjacent to the vertex wj . This implies the modulo 2
equality bα̃′j+1 − α̃jc + bα̃′j − α̃jc = bα̃′j+1 − α̃′jc for all j = 1, . . . ,m; indeed, ob-
serve that this equality does not depend on the lifts, and holds for any choice of the
form α̃j < α̃′j < α̃′j+1 < α̃j + 1. Furthermore, since α belongs to XG and G is minimal,
Lemma 9 of [BCdT21] states that α is also monotone and non-constant on the cyclically
ordered set of oriented train-track strands turning counterclockwise around f (appearing
in blue in Figure 4). This implies that the integer

∑m
j=1bα̃′j+1 − α̃′jc is odd; indeed,

observe that its parity does not depend on the lifts, and that it is equal to 1 for any
choice of the form α̃′1 < α̃′2 < · · · < α̃′m < α̃′1 + 1. This concludes the proof.

3.4 Kernel of the Kasteleyn operators

As before, we consider an M-curve Σ with fixed parameter t ∈ (R/Z)g ⊂ Jac(Σ), a
minimal graph G, and an angle map α ∈ XG. The aim of this section is to define a
meromorphic form gx,y on Σ, with x, y arbitrary vertices of the quad-graph G�, providing
elements in the kernel of the operator K, see also [Foc15]. These forms play a crucial
role in the definition and study of the divisor of a vertex, see Proposition 36, and of the
inverses of the Kasteleyn operators, see Section 3.5.
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To do so, and as in Section 3.3, we also fix a lift t̃ ∈ Rg of t and a lift α̃ : T → Ã0 of α,
which induces a lift d̃ of the discrete Abel map. We first define a function gx,y on Σ̃,
starting with x, y being adjacent vertices in G�. One of these vertices is a vertex f of G∗,
while the other one is a (white w or black b) vertex of G. Depending on these two cases,
and following the notation of Figure 1, we set:

gf,w(ũ) = gw,f(ũ)−1 =
θ(t̃+ (ũ+ d̃(w)))

E(β̃, ũ)
,

gb,f(ũ) = gf,b(ũ)−1 =
θ(−t̃+ (ũ− d̃(b)))

E(α̃, ũ)

for ũ ∈ Σ̃, noting that the divisors ũ + d̃(w) and ũ − d̃(b) both have degree zero and
hence can be considered naturally inside Cg via the Abel-Jacobi map Div0(Σ̃) → Cg.
By the second point of Lemma 17, the function gx,y does not depend on the choice of
the lift t̃ ∈ Rg of t ∈ (R/Z)g.

When x and y are not necessarily neighbors, consider a path x = x1, . . . , xn = y in G�

and set:

gx,y(ũ) =
n−1∏
j=1

gxj ,xj+1(ũ).

The result is well defined, i.e., does not depend on the choice of the path, because the
product along any closed path is easily seen to be equal to 1. For example, if b and w
are neighbors in G as in Figure 1, we get

gb,w(ũ) = gb,f(ũ)gf,w(ũ) =
θ(t̃+ (ũ+ d̃(w)))θ(−t̃+ (ũ− d̃(b)))

E(α̃, ũ)E(β̃, ũ)
.

Due to its quasi-periodicity properties, the divisor of gx,y is well-defined on Σ for any
vertices x, y of G�. Furthermore, when x and y are vertices of G, the function gx,y defined

on Σ̃ projects to a well-defined form on Σ, as follows.

Lemma 32. Let b, b′ (resp. w,w′) be two black (resp. white) vertices. Then:

• the meromorphic function gb,w on Σ̃ projects to a meromorphic 1-form on Σ ( i.e.,
a section of the canonical bundle);

• the meromorphic functions gb,b′ and gw,w′ on Σ̃ project to meromorphic functions
on Σ.

Moreover, these 1-forms and functions are real, in the sense that they satisfy:

σ∗gb,w = gb,w, σ∗gb,b′ = gb,b′ , σ∗gw,w′ = gw,w′ .
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Proof. To show the first point, fix two vertices b,w and consider a path x0, x1, . . . , x2n

in G� from b to w. The vertices x1 and x2n−1 represent faces f and f ′ of G, which may
coincide if b and w are neighbors. Denote by α (resp. β) the angle associated to the train-
track separating b from f (resp. w from f ′). For 1 ≤ k ≤ n− 1, denote by αk and βk the
angles of the two train-tracks associated to the two edges of this path incident with x2k,
so that gb,w can be written as

gb,w(ũ) =
θ(t̃+ d̃(f ′) + (ũ− β̃)) θ(−t̃− d̃(f) + (ũ− α̃))

E(α̃, ũ)E(β̃, ũ)

n−1∏
k=1

E(α̃k, ũ)

E(β̃k, ũ)
. (12)

The divisor of g on Σ̃ is π1(Σ)-periodic, and projects to a divisor on Σ. We now com-
pute this divisor from the product form above, making use of Riemann’s theorem, see
Section 2.4, to understand the zeros of the first two factors.

By Riemann’s theorem applied to fe(u) = θ(e+
∫ u
x0
~ω) with e equal to t+d(f ′)+(x0−β)

and −t−d(f) + (x0−α) respectively, there exist elements x1, . . . , xg and y1, . . . , yg of Σ
such that for all 1 ≤ j ≤ g,

θ(t+ d(f ′) + (xj − β)) = θ(−t− d(f) + (yj − β)) = 0 .

Therefore, the divisor of gb,w, representing its zeros and poles, is well defined as an

algebraic sum of points in Σ (and not only in Σ̃), and is given by

D =

g∑
j=1

(xj + yj)− α− β +
n−1∑
k=1

(αk − βk) .

Now we use Relation (3) to get the following equalitites in Jac(Σ):

g∑
j=1

(xj − x0) = ∆− t− d(f ′) + (β − x0),

g∑
j=1

(yj − x0) = ∆ + t+ d(f) + (α− x0) .

Moreover, the definition of d yields the equality d(f) − d(f ′) =
∑n−1

k=1(βk − αk). Thus,
the divisor D of gb,w satisfies the equality

D − 2(g − 1)x0 = 2∆

in Jac(Σ), which by [Mum07a, Corollary 3.11, p. 166] implies that D is linearly equivalent
to the canonical divisor. By standard arguments, gb,w is a meromorphic 1-form, and the
first point is proved.

We now briefly sketch an alternative proof of this first statement, using the viewpoint of
Section 2.5.1 and the notation of the proof of Proposition 23. When u is moving along
the cycle Aj , we get a factor of automorphy p2

j (u), and when u is moving along Bj ,
the “extra” factors coming from the theta functions and the prime forms cancel exactly,
and only remains the factor of automorphy q2

j (u). Hence, the map gb,w on Σ̃ transforms
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exactly like meromorphic 1-forms lifted to the universal cover, and therefore projects
onto Σ as a meromorphic 1-form.

The second point can be proved in the same way: use the product form for gb,b′ and gw,w′

together with Riemann’s theorem to check that the corresponding divisors are principal.

Finally, the last point is a direct consequence of the fact that the Riemann matrix Ω is
purely imaginary (Lemma 11), together with Point 1 of Lemma 18 and Lemma 25.

These forms provide non-zero vectors in the kernel of K, as follows.

Lemma 33 ([Foc15]). Fix ũ ∈ Σ̃.

• For any vertex x of G�, (gb,x(ũ))b∈B is in the right kernel of K. Equivalently, for
any white vertex w ∈W, we have

∑
b∼w Kw,b gb,x(ũ) = 0.

• For any vertex x of G�, (gx,w(ũ))w∈W is in the left kernel of K. Equivalently, for
any black vertex b ∈ B, we have

∑
w∼b gx,w(ũ)Kw,b = 0.

Proof. This is a consequence of Fay’s trisecant identity in its telescopic form (8), as
noted in the periodic context by Fock [Foc15], see also [BCdT20, Proposition 16] for
details in the elliptic case.

We now come to the study of poles and zeros of gx,y. Recall that for any vertices x, y of G�,
these poles and zeros give a well-defined divisor of gx,y on Σ. In [BCdT20, Section 3.4],
this divisor was studied in the elliptic case. We now adapt and generalize this discussion
to the present case.

Lemma 34. Suppose that the graph G is minimal and that the angle map α belongs
to XG. Then, for any vertices x, y of G�, there exists a partition of A0 into two intervals,
such that one contains no poles of gx,y and the other no zeros.

Proof. Recall that t̃ belongs to Rg. Moreover, for u ∈ A0, the divisors ũ− d̃(b) and ũ+
d̃(w) are mapped by the Abel-Jacobi to Rg⊕ΩZg (recall Lemma 15). As a consequence,
the arguments of the θ functions appearing in the factors of gx,y belong to Rg⊕ΩZg.
By Point 2 of Lemma 17 and of Lemma 18, this function does not vanish on Rg⊕ΩZg.
Therefore, the two “theta” factors appearing in the expression of gb,w do not contribute
to the zeros or poles of that 1-form on A0: those come from the remaining factors
expressed with the prime form in the numerator and denominator, respectively. The
statement now follows from Section 3.4 of [BCdT20]: indeed, the proof of Lemma 19
of [BCdT20] can now be applied verbatim, as it only relies on the partial cyclic order of
train-tracks of the minimal graph G and the properties of the angle map α ∈ XG.

As a consequence, we can extend the terminology of [BCdT20, Definition 10]: we define
the sector associated to gb,w, denoted by sb,w, to be the part of the partition of A0

containing the poles of gb,w. If it has no zeros on A0 (which happens when b and w are
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neighbors), then sb,w is defined to be the arc from α to β in the positive direction of A0,
with the convention of Figure 1.

The 1-forms gb,w also allow us to define the divisor of a vertex, thus extending this notion
due to Kenyon-Okounkov [KO06] from the periodic to the general case, see Section 4.3.

To do so, we fix a white vertex w and assume that the parameter t ∈ (R/Z)g is generic,
in the sense that the function ũ 7→ θ(t̃+ (ũ+ d̃(w))) is not identically zero on Σ̃.

Definition 35. Let w be a white vertex of G, and let t be generic. Then, the divisor of w,
denoted by div(w), is the element of Div(Σ) given by the divisor of the function ũ 7→
θ(t̃+ (ũ+ d̃(w))) on Σ̃.

This divisor can be given a more concrete description, as follows. Let us fix a point x0 ∈
A0 ⊂ Σ, and denote by ∆ ∈ Cg the associated constant given by Riemann’s theorem (3).

Proposition 36. For any white vertex w of G, div(w) is a divisor of degree g whose
class in Pic(Σ) is determined by the following equality in Pic0(Σ) = Jac(Σ):

(div(w)− gx0) + (d(w) + x0) = ∆− t . (13)

Moreover, div(w) is given by the common zeros of the 1-forms {gb,w}b∈B, which consist
of one point on each of the real components A1, . . . , Ag of Σ. Finally, the assignment t 7→
div(w) defines a bijection from (R/Z)g ⊂ Jac(Σ) to the product A1 × · · · ×Ag.

Proof. Let us fix a white vertex w of G. The zeros of θ(t̃+ (ũ+ d̃(w))) can be computed
using Riemann’s theorem (3) as in the proof of Lemma 32, easily leading to Equa-
tion (13). Now, recall that t belongs to (R/Z)g by definition, and so does d(w) + x0

by the third point of Lemma 15. On the other hand, we know by Lemma 19 that the
constant ∆, which only depends on x0, belongs to (R/Z)g + Ω1

21. Finally, the fourth
point of Lemma 15 ensures that the Abel-Jacobi map defines a homeomorphism from the
product A1×· · ·×Ag onto that particular real torus, thus showing that div(w) consists of
one simple zero on each of the real components A1, . . . , Ag of Σ. Moreover, Equation (13)
defines a bijection between A1 × · · · ×Ag and the elements t of (R/Z)g ⊂ Jac(Σ).

By definition, the form gb,w contains the factor θ(t̃+ (ũ+ d̃(w))) for any b ∈ B. Hence,
we are left with the proof that the family {gb,w}b∈B does not contain any additional
common zero or pole. Focusing on the black vertices adjacent to w, and following the
notation of Figure 1, we have

gb,w(ũ) =
θ(t̃+ (ũ+ d̃(w)))θ(−t̃+ (ũ− d̃(w)− α̃− β̃))

E(α̃, ũ)E(β̃, ũ)
.

Since G is minimal and α belongs to XG, the train-track angles are cyclically ordered
around w, see [BCdT21, Lemma 8]. In particular, the functions {gb,w}b∼w do not have
common poles unless w is of degree 2. In this latter case, a similar argument shows
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that {gb,w}b∈B1 do not have common poles. Furthermore, a common zero of the second
“theta factor” above would contradict Riemann’s theorem. Indeed, imagine that u is
a common zero to the second theta factor in gb,w and gb′,w for two consecutive black
vertices b and b′ around w, which we first assume to have degree at least 3. In other
words, u is a common zero of fe and fe′ , with e, e′ ∈ Rg given by

e = e0 −
∫ α̃

x̃0

~ω −
∫ β̃

x̃0

~ω, e′ = e0 −
∫ β̃

x̃0

~ω −
∫ γ̃

x̃0

~ω, where e0 = −t̃− d̃(w)− x̃0 .

If e and e′ are not degenerate, then fe and fe′ are not identically zero and, by Lemma 19,
they both have one zero on Aj for each 1 ≤ j ≤ g. If we denote these zeros by xj and x′j ,
respectively, then they satisfy the relation (3) in Jac(Σ), which takes the form

∆ = e+

g∑
j=1

∫ xj

x0

~ω = e′ +

g∑
j=1

∫ x′j

x0

~ω .

Let us assume without loss of generality that the common zero of fe and fe′ is u = x1 =
x′1. Then, if we add to the previous equality the vector

−e1 := −e0 +

∫ α

x0

~ω +

∫ β

x0

~ω +

∫ γ

x0

~ω −
∫ u

x0

~ω ,

we get

−e1 + ∆ =

∫ γ

x0

~ω +

g∑
j=2

∫ xj

x0

~ω =

∫ α

x0

~ω +

g∑
j=2

∫ x′j

x0

~ω .

Since Equation (3) uniquely determines the theta divisor (if e1 is not degenerate), this
means that the divisor of fe1 is described by the two g-tuples of points: γ, x2, . . . , xg on
one hand, and α, x′2, . . . , x

′
g on the other hand. But this is impossible: indeed, α is not

equal to γ since w has degree at least 3, and α ∈ A0 cannot be equal to xj ∈ Aj since
they belong to different real components of Σ. If w has degree 2, then a similar argument
shows that the second “theta” factors in {gb,w}b∈B1 do not have a common zero. This
concludes the proof.

3.5 Inverses of the Kasteleyn operators

Once again, we fix an M-curve Σ with an element t ∈ (R/Z)g ⊂ Jac(Σ), a minimal
graph G, and an angle map α : T → A0 in the parameter space XG. The aim of this
section is to define a two-parameter family of inverses for the associated operator K.

To do so, we need some preliminary definitions. Recall from Section 2.2 that Σ cut
along the cycles A0, . . . , Ag consists in two compact oriented surfaces with boundary;
we denote by Σ+ the one whose oriented boundary contains A0 endowed with the fixed
orientation, see Figure 2. Define D as the subset of Σ given by

D = Σ+ \α(T) .
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Given b,w and u0 in the interior of Σ+, we define a path Cu0
b,w in Σ as an oriented simple

path from σ(u0) to u0, intersecting A0 once in the complement of the sector sb,w (recall
Section 3.4), disjoint from A1 ∪ · · · ∪Ag and such that σ(Cu0

b,w) = −Cu0
b,w.

When u0 lies on the boundary of Σ+ (i.e., when σ(u0) = u0), we define Cu0
b,w as the

natural limit of Cub,w when u approaches u0 in Σ+, namely as a closed loop based at u0

with the following properties:

• if u0 belongs to A0, then Cu0
b,w is a homotopically trivial closed contour on Σ, maybe

enclosing some poles of gb,w;

• if u0 belongs to Aj for some 1 ≤ j ≤ g, then Cu0
b,w is homologous to Bj .

Note that these properties do not determine the path Cu0
b,w uniquely, even up to contin-

uous deformation in Σ \α(T). However, the resulting operator turns out not to depend
on this choice.

We now define a family of operators (Au0)u0∈D, and prove in Theorem 40 that they are
indeed inverses of the Kasteleyn operator K.

Definition 37. For every u0 ∈ D, we define the linear operator Au0 mapping functions
on white vertices (with finite support for definiteness) to functions on black vertices by
its entries: for every pair (b,w) of black and white vertices of G, we set

Au0
b,w =

1

2iπ

∫
C
u0
b,w

gb,w , (14)

where the path of integration Cu0
b,w is as given above, and the meromorphic 1-form gb,w

as defined in Section 3.4.

We recall from Lemma 32 that gb,w is a meromorphic 1-form, with poles in sb,w by
construction, so the integral is invariant if we deform the path Cu0

b,w in Σ\sb,w. Note also
that if u0 and u1 belong to the same connected component of A0\α(T), the operators Au0

and Au1 coincide.

Using the same argument of contour deformation as in [BCdT20, Lemma 24], we obtain
the following alternative expression for the coefficents of Au0 .

Lemma 38. Let Hu0 be a meromorphic function on Σ \ Cu0
b,w with a discontinuity jump

of +1 when crossing Cu0
b,w from right to left, and let γu0

b,w be a collection of contours, homo-
logically trivial in Σ, surrounding all the poles of gb,wH

u0 exactly once counterclockwise.
Then, we have the equality

Au0
b,w =

1

2iπ

∮
γ
u0
b,w

Hu0 gb,w . (15)

Remark 39.
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1. The function Hu0 is well defined up to addition of a meromorphic function on Σ.
By a careful choice of that meromorphic function, it might be assumed that Hu0

has no pole on A0. It is also possible if needed to ensure that all poles of Hu0 are
simple.

2. If u0 belongs to A0, then Cu0
b,w bounds a disk, and Hu0 can simply be chosen to be

the indicator function of this disk. If u0 belongs to Aj for 1 ≤ j ≤ g, then Hu0 can
be understood as a determination, which depends on b and w, of the multivalued
function on Σ given by the projection of a meromorphic function on the infinite
cyclic cover of Σ determined by the loop Aj . Finally, if u0 6= σ(u0), then Hu0 can be
understood as a determination of the multivalued function on Σ\{u0, σ(u0)} given
by the projection of a meromorphic function on the infinite cyclic cover determined
by the loops around u0 and σ(u0). In any case, even though the function Hu0

depends on b and w, it can be chosen so that its poles (and residues against a
1-form) do not depend on these vertices, hence their absence in the notation.

3. An explicit form for Hu0 is given in Remark 42 below.

We are finally ready to state and prove the main result of this section.

Theorem 40. For any u0 ∈ D, the operator Au0 is an inverse of the operator K.

Proof. The proof follows the same lines as the one of [BCdT20, Theorem 26], which in
turn is inspired from [Ken02]. We need to check that we have (KAu0)w,w′ = δw,w′ for
every pair of white vertices w,w′ and (Au0K)b,b′ = δb,b′ for any pair of black vertices b, b′.
We write the proof of the first equality in detail; the second can be checked in a similar
way.

Let us first assume that w and w′ are distinct, and use Definition 37 together with
Lemma 34. By [BCdT20, Lemma 23], the intersection of the complements in A0 of
the sectors {sb,w′}b∼w is non-empty. Therefore, the paths {Cu0

b,w′}b∼w can be chosen to
coincide with a single path Cu0

w,w′ . This leads to the equality

(KAu0)w,w′ =
∑
b∼w

Kw,b
1

2iπ

∫
C
u0
w,w′

gb,w′ =
1

2iπ

∫
C
u0
w,w′

(∑
b∼w

Kw,b gb,w′

)
,

which vanishes by Lemma 33.

We now turn to the case where w and w′ coincide and use Lemma 38, which yields

(KAu0)w,w =
1

2iπ

∑
b∼w

∮
γ
u0
b,w

Hu0 Kw,b gb,w .

Let us fix a black vertex b adjacent to w, and denote by α and β the angles of the incident
train-tracks and by f, f ′ the adjacent faces, as in Figure 1. We compute explicitly the
corresponding integral by residues. The residues contributing to the integral come in
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two classes: on the one hand, those coming from poles of Hu0 , and on the other hand,
those from singularities of Kw,bgb,w.

Recall from Remark 39 that, even though Hu0 depends on b,w, its poles do not. The
residue computation for the contribution of the poles of Hu0∑

v pole of Hu0

Resv (Hu0 Kw,bgb,w)

can be carried to the universal cover Σ̃. In particular, if all the poles of Hu0 are simple,
it will result in a linear combination of evaluations of gb,w at lifts ṽ of the poles of Hu0 .
When summing over all black vertices adjacent to the white vertex w, this linear com-
bination of functions g vanishes as b 7→ gb,w(ṽ) is in the kernel of K by Lemma 33.

Let us now turn to the remaining residues at poles of Kw,bgb,w. From Fay’s identity in
the form of Equation (9), we see that the meromorphic 1-form Kw,bgb,w has the following
decomposition

Kw,b gb,w = ωβ−α +

g∑
j=1

c jw,bωj ,

with

c jw,b =
∂ log θ

∂zj
(t̃+ d̃(f))− ∂ log θ

∂zj
(t̃+ d̃(f ′)) ,

on which we read that it has two simple poles: at β with residue +1, and at α with
residue −1. Therefore, since we assumed that Hu0 has no pole on A0, we have:

Resu=αH
u0ωβ−α = −Hu0(α), Resu=β H

u0ωβ−α = Hu0(β).

Since the angle map α belongs to the space XG and G is minimal, Lemma 8 of [BCdT21]
states that its restriction is monotone and injective on the (cyclically ordered) set of
oriented train-track strands adjacent to the vertex w. In other words, the angles α, β, . . .
of the train-track strands w wind once around A0. By construction, the corresponding
increments Hu0(β)−Hu0(α), . . . sum to +1, yielding

(KAu0)w,w =
∑
b∼w

Kw,bA
u0
b,w = 1 .

This concludes the proof.

From the mere existence of at least an inverse of K, we get the following simple but
useful lemma.

Lemma 41. Let f a function on black vertices of G with finite support, such that Kf is
identically zero on white vertices. Then f is identically zero.

Proof. Let Au0 be one of the inverses of K given above. Since all the occurring sums have
a finite number of nonzero terms, we can write f = (Au0K) f = Au0 (Kf) = Au00 = 0.

38



Remark 42. A first step towards the construction of Hu0 is to define a function with a
jump along a path joining u0 to σ(u0). Instead of working directly on the surface Σ, we
pass to its universal cover Σ̃. Let ũ0 ∈ Σ̃ be an arbitrary lift of u0 ∈ Σ, and let σ(ũ0) ∈ Σ̃
denote a lift of σ(u0) ∈ Σ such that u0 and σ(ũ0) belong to one fundamental domain.

The expected discontinuity can be obtained by taking the logarithm of an expression
having a zero at ũ0 and a pole at σ(ũ0). Hence, a natural first candidate is given by

Hu0
pre(x) =

1

2iπ
log

E(ũ0, x)

E(σ(ũ0), x)

for every x ∈ Σ̃ whose orbit under the action of the fundamental group does not meet
a path C connecting σ(ũ0) to ũ0. (We can take C to be a lift to Σ̃ of Cu0

b,w for a given
pair (b,w) but any continuous deformation will do.) This ensures that we work with a
consistent determination of the logarithm. This function has the desired behaviour of
jumping by +1 when crossing the path C. Moreover, Hu0

pre is quasi-periodic: if x′ ∈ Σ̃
(resp. x′′) is obtained from x by the action of a loop in π1(Σ) corresponding to Aj
(resp. Bj), then we have by Equations (4) and (5)

Hu0
pre(x

′) = Hu0
pre(x), Hu0

pre(x
′′) = Hu0

pre(x) +

∫
C
ωj .

We can compensate this defect of periodicity along the B-cycles by noting that for y ∈ Σ̃,
we have

∂ log θ

∂zk
(x′ − y) =

∂ log θ

∂zk
(x− y),

∂ log θ

∂zk
(x′′ − y) =

∂ log θ

∂zk
(x− y)− 2iπδj,k .

Hence, we fix y ∈ Σ̃ and set

Hu0(x) =
1

2iπ
log

E(ũ0, x)

E(σ(ũ0), x)
+

1

2iπ

g∑
j=1

∂ log θ

∂zj
(x− y)×

∫
C
ωj , (16)

which projects to a well-defined function on Σ deprived from the projection of C, and
satisfies the desired conditions.

In the genus 1 case (recall Examples 12 and 22), the choice y = 1
2 ∈ C = T̃ gives the

function Hu0 of [BCdT20, Section 4.3].

4 The periodic case

This section deals with the special case where the bipartite planar graph G is Z2-periodic.
We start in Section 4.1 by recalling the properties of train-tracks in this case; we also
introduce the space Xper

G ⊂ XG of periodic angle maps, and the Newton polygon N(G).
In Section 4.2, we show that α ∈ Xper

G induces a periodic operator K if and only if its
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image by some natural map ϕ : Xper
G → N(G) lies in Z2. In Section 4.3, we assume that K

is periodic and use the functions gx,y of Section 3.4 to give an explicit parametrization
of the spectral curve for the corresponding periodic dimer model; we also identify the
divisor of a vertex, and show that dimer models with Fock’s weights can realize any
such “spectral data”. We then describe the set of ergodic Gibbs measures of this model
in Section 4.4, and use the map ϕ to express the corresponding slopes in Section 4.5.
Finally, in Section 4.6, we give an explicit local formula for the free energy and the
surface tension of this model.

4.1 Preliminaries

The aim of this preliminary section is to quickly recall the specificities of oriented train-
tracks and angle maps in the periodic case, referring to [BCdT20, Section 4.1] for details.

In the whole of this section, we assume that the bipartite planar graph G is Z2-periodic,
i.e., that the group Z2 acts freely by translation on colored vertices, edges and faces.
We fix a basis of Z2, allowing to identify a horizontal direction (along the vector (1, 0))
and a vertical one (along the vector (0, 1)). The graph G has a natural toroidal exhaus-
tion (Gn)n≥1, where Gn := G/nZ2. We use similar notation for the toroidal exhaustions
of the dual graph G∗, of the quad-graph G�, and of the train-tracks T.

Fix a face f of G and draw two simple dual paths in the plane, denoted by γx and γy,
joining f to f + (1, 0) and f + (0, 1) respectively, and intersecting only at f. They project
onto the torus to two simple closed loops in G∗1, also denoted by γx and γy, winding
around the torus and intersecting only at f. Their homology classes [γx] and [γy] form a
basis of the first homology group of the torus H1(T,Z), and allow for its identification
with Z2. Every oriented train-track T ∈ T projects to an oriented closed curve on the
torus, so the corresponding homology class [T ] ∈ H1(T,Z) can be written as [T ] =
hT [γx] + vT [γy] with hT and vT coprime integers. This allows to define a partial cyclic
order on T by using the natural cyclic order of coprime elements of Z2 around the origin,
an order which coincides with the partial cyclic order on T defined in Section 3.2. By
construction, this cyclic order induces a cyclic order on T1 = T/Z2. Note also that two
oriented train-tracks T, T ′ ∈ T are parallel (resp. anti-parallel) as defined in Section 3.2
if and only if [T ] = [T ′] (resp. [T ] = −[T ′]) in H1(T,Z).

Recall that XG denotes the set of monotone maps α : T → A0 assigning different images
to non-parallel train-tracks. Following [BCdT20], we denote by Xper

G the set of Z2-
periodic elements of XG:

Xper
G = {α ∈ XG |αT+(m,n) = αT for all T ∈ T and (m,n) ∈ Z2} .

Since disjoint curves on the torus have either identical or opposite homology classes, this
space can be described as

Xper
G = {α : T1 → A0 |α is monotone and αT 6= αT ′ for [T ] 6= [T ′]} .
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By construction, the sum of all oriented closed curves T ∈ T1 bounds a 2-chain in the
torus, so its homology class vanishes and we have

∑
T∈T1

[T ] = 0. As a consequence,
the collection of vectors ([T ])T∈T1 in Z2, ordered cyclically, and drawn so that the initial
point of a vector [T ] is the end point of the previous vector, gives a convex polygon well-
defined up to translations. This polygon is referred to as the geometric Newton polygon
of G [GK13] and denoted by N(G). The space Xper

G can now be described combinatorially
as the set of order-preserving maps from oriented boundary edges of N(G) to A0 mapping
distinct vectors to distinct images.

4.2 Periodicity of the Kasteleyn operator

From now on, we assume that the graph G is minimal and Z2-periodic. We further
suppose that G is non-degenerate, in the sense that its geometric Newton polygon N(G)
has positive area. The aim of this section is to understand for which maps α ∈ Xper

G the
corresponding Kasteleyn operator K defined in Equation (11) is periodic. This criterion
in expressed in terms of a natural map ϕ : Xper

G → N(G) that also proves useful in
Section 4.5.

Note that the periodicity of G and of α is not sufficient to ensure the periodicity of the
operator K. Indeed, this operator makes use of the Pic(Σ)-valued discrete Abel map d
defined in Section 3.2, which might have horizontal and vertical periods. More precisely,
we have that for every vertex x of G� and (m,n) ∈ Z2, the equality

d(x + (m,n)) = d(x) +
∑
T∈T1

(mvT − nhT )αT (17)

holds in Pic(Σ), where recall that [T ] = (hT , vT ) ∈ Z2 denotes the homology class of T .

Consider the map
ϕ : Xper

G −→ Cg

defined as follows. Let us enumerate by T1, . . . , Tr the elements of T1 respecting the
cyclic order, and let P1, . . . , Pr ∈ C denote the integer points on the boundary of N(G)
numbered so that Pj+1 − Pj = [Tj ] (where Pr+1 stands for P1). Given a map α ∈ Xper

G ,
set

ϕ(α) =

r∑
j=1

Pj

∫ αj

αj−1

~ω ∈ Cg , (18)

where αj stands for αTj , and the integration path follows the orientation of A0.

Proposition 43. For any 1 ≤ i ≤ g, the image of the coordinate ϕi : X
per
G → C of ϕ

is equal to the interior of N(G). Moreover, a periodic map α ∈ Xper
G induces a periodic

Kasteleyn operator K if and only if ϕ(α) lies in (Z2)g. In such a case, the g integer
points in the interior of N(G) given by ϕ(α) are distinct.

Proof. Knowing Lemma 14, the beginning of the proof follows quite closely the analogous
result in the genus 1 case, see [BCdT20, Proposition 39]. Proving that, when ϕ(α) lies in
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(Z2)g, its g coordinates correspond to distinct integer points of the interior of the Newton
polygon N(G) is new (this is not relevant when g = 1) and non-trivial. In particular
this shows that, when ϕ(α) lies in (Z2)g, the interior of N(G) contains at least g integer
points.

Let us fix α ∈ Xper
G and consider its image by ϕi for an arbitrary 1 ≤ i ≤ g. First

observe that since α belongs to XG, we have

r∑
j=1

∫ αj

αj−1

ωi =

∫
A0

ωi =

g∑
k=1

∫
Ak

ωi =

g∑
k=1

δk,i = 1 .

By Lemma 14, we also have that
∫ αj
αj−1

ωi ≥ 0. Therefore, ϕi(α) is a convex combination

of the vertices P1, . . . , Pr, and hence an element of the convex hull N(G) of these vertices,
so we have the inclusion of the image of ϕi into N(G).

Now, let us write X
per
G for the set of non-constant monotone maps α : T1 → A0 (X

per
G is

the set Xper
G without the condition that train-tracks with different homology classes need

to have distinct images), and denote by ∆ = {β = (βj)j ∈ [0, 1]r |
∑r

j=1 βj = 1} the
standard simplex of dimension r−1. Observe that ϕi can be described as the restriction
to Xper

G of the composition

X
per
G

δi−→ ∆
p−→ N(G) ,

with δi(α) = (
∫ αj
αj−1

ωi)j and p(β) =
∑

j βjPj . Since p is an affine surjective map, any

point in the interior of N(G) is the image under p of an element of the interior of ∆, i.e.,
an element β ∈ ∆ with no vanishing coordinate. Therefore, we have

δ−1
i (p−1(intN(G))) ⊂ δ−1

i (int ∆) ⊂ {α ∈ Xper
G |α injective} ⊂ Xper

G ,

thus checking the inclusion of the interior of N(G) into ϕi(X
per
G ).

To prove the opposite inclusion, consider an arbitrary element x of N(G)\ intN(G), and
let us write F for the biggest face of N(G) containing x in its interior: concretely, F = x
if x is a vertex of N(G), and F is the boundary edge of N(G) containing x otherwise.
By definition, we have p−1(x) = {β ∈ ∆ |

∑
j βjPj = x}. Fix a reference frame for R2

with origin at x and first coordinate axis orthogonal to F . Then, the first coordinate of
the equation

∑
j βjPj = x leads to βj = 0 for all j such that Pj does not belong to F .

Since N(G) has positive area, we have βj = 0 for some vertex Pj of N(G). By Lemma 14,
such an element of ∆ can only be realized as δi(α) with αj = αj−1. Since Pj is a vertex
of N(G), we have [Tj ] 6= [Tj−1], so α does not belong to Xper

G . This shows the inclusion
of ϕi(X

per
G ) into the interior of N(G), and thus the equality of these two sets.

Since α is assumed to be periodic, the operator K itself is periodic if and only if
the Pic0(Σ)-valued discrete Abel map d on faces is periodic by Lemma 15. By Equa-
tion (17), this holds if and only if∑

T∈T1

[T ]αT =
∑
T∈T1

(
hT
vT

)
αT = ( 0

0 ) ∈ (R/Z)2g .
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This is equivalent to requiring that the following element of R2g belongs to Z2g:

r∑
j=1

[Tj ]

∫ αj

x0

~ω =
r∑
j=1

(Pj+1 − Pj)
∫ αj

x0

~ω =
r∑
j=1

njPj − ϕ(α) , (19)

with nj =
∫ αj
αj−1

~ω − (
∫ αj
x0
~ω −

∫ αj−1

x0
~ω), and x0 the reference point of A0 chosen in

Section 2.3. Since nj belongs to Zg and Pj to Z2 for all j, this is equivalent to requiring
that ϕ(α) belongs to Z2g. This concludes the proof of the second statement.

To show the last statement, let us fix k 6= l and consider the holomorphic 1-form ω =
ωl − ωk. Since for all i 6= k, l, the integral along Ai of ωk and ωl is zero, then so is the
integral of ω. By the same argument as in the proof of Lemma 14, the form ω has at
least 2 zeros on each such Ai, that is at least 2(g− 2) zeros (counted with multiplicity).

We now turn to the behavior of ω on A0. As this form is real and has vanishing integral
along A0, it can be written in a tubular neighborhood of A0 as ω = df with f a non-
constant real-valued function. Therefore, ω has at least two (distinct) zeros on A0. On
the other hand, as the divisor of ω has degree 2g − 2, it cannot have more. Let us call
these two zeros β and γ, corresponding respectively to the minimum and maximum of f
along A0. Let 1 ≤ j0 ≤ j1 ≤ r be the indices such that

αj0−1 < β ≤ αj0 , αj1−1 < γ ≤ αj1 .

We suppose for the moment that we are in the generic situation where β and γ are
distinct from the αj ’s.

By means of contradiction, let us now assume that the kth and lth coordinates of ϕ(α)
coincide, i.e., that we have

r∑
j=1

Pj

∫ αj

αj−1

ωk =
r∑
j=1

Pj

∫ αj

αj−1

ωl . (20)

This can be written as
r∑′

j=0

Pj

∫ αj

αj−1

ω = 0 , (21)

where the prime in the sum means that we drop indices j for which αj−1 = αj . Since the
Newton polygon has positive area, it has at least three corners (or extremal points), and
since α belongs to Xper

G , the angles associated to the two train-tracks with homology
given by the two edges attached to such a corner are different. Therefore, the sum with
a prime has at least a number of terms equal to the number of corners, which is at least
three.

When αj−1 6= αj , then∫ αj

αj−1

ω is

{
strictly positive if j0 < j < j1 in cyclic order,

strictly negative if j1 < j < j0.
(22)
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P1

Pj0

Pj1

Pr

α1

αj0−1αj0 β

αj1−1

αj1γ

α0 = αr

Figure 5: Left: the Newton polygon N(G) and its subdivision induced by the convex
hulls of {Pj0 , Pj0+1, . . . , Pj1} (in blue) and of {Pj1 , Pj1+1, . . . , Pj0} (in red). Right: a
schematic representation of A0 and the angles associated to train-tracks with homology
classes given by the boundary of N(G). Along the blue (resp. red) arc from β to γ (resp.
from γ to β), ω is positive (resp. negative).

We also split the integral from αj0−1 to αj0 (resp. from αj1−1 to αj1) into a negative
part from αj0−1 to β (resp. from γ to αj1), and a positive part from β to αj0 (resp. from
αj1−1 to γ).

Passing terms with negative coefficients on the right-hand side of the equal sign in (21),
one gets:

Pj0

∫ αj0

β
ω +

∑′

j0<j<j1

Pj

∫ αj

αj−1

ω + Pj1

∫ γ

αj1−1

ω

= Pj1

(
−
∫ αj1

γ
ω

)
+

∑′

j1<j<j0

Pj

(∫ αj

αj−1

ω

)
+ Pj0

(∫ β

αj0−1

ω

)
. (23)

Note that at least one of the two sums is not empty, because of the number of corners
being at least 3. The sums of the scalar coefficients on both sides are non-zero and
equal, as the total integral of ω along A0 is zero. If we divide both sides by this sum,
this equation can be interpreted as defining a point Q of the Newton polygon, written
once as a convex combination of Pj0 , Pj0+1, . . . , Pj1 , and once as a convex combination
of Pj1 , Pj1+1, . . . , Pj0 . As these two collections of vertices of N(G) are vertices of two
subpolygons forming a subdivision of N(G), it means that this point Q is along the
segment [Pj0 , Pj1 ] shared by the two subpolygons, see Figure 5.

This segment being part of the boundary of both subpolygons, all coefficients in front
of corners different from Pj0 and Pj1 are equal to 0. Since there is at least one such
corner, there exists a j 6= j0, j1 such that

∫ αj
αj−1

ω = 0, contradicting (22). Therefore

Equation (20) cannot hold, and the conclusion of the lemma follows.
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The non-generic case where either β or γ is equal to one of the αj ’s can be treated
similarly: the point Pj0 or Pj1 appears only on one side of Equation (23). (The discussion
changes a little bit depending on whether these points are corners or not.)

4.3 The spectral data

The aim of this section is to understand the spectral data associated to periodic dimer
models with Fock’s weights. After recalling the necessary prerequisites, we give an
explicit parametrization of the spectral curve, following and extending the discussion
of [BCdT20, Section 5.4], see Proposition 45. Then, we identify the divisor of a vertex
as defined by Kenyon-Okounkov [KO06] with its counterpart from Definition 35, see
Proposition 47. Finally, in Theorem 49, we show that any Harnack curve endowed with
a standard divisor can be explicitly realized as the spectral data of a dimer model of this
class.

We start by recalling what is meant by the spectral data of a dimer model [KO06]. For this
part of the discussion, let us suppose that G is any planar, periodic, bipartite weighted
graph (not necessarily minimal) and that K is the corresponding Kasteleyn operator.
Following [KOS06], we define the finite matrix K(z, w) for any (z, w) ∈ (C∗)2 as the
action in a natural basis of K on (z, w)-quasiperiodic functions on G, i.e., functions f
satisfying

f(x + (m,n)) = zmwnf(x)

for any (black or white) vertex x and any (m,n) ∈ Z2. The characteristic polyno-
mial P (z, w) is the determinant of K(z, w). The Newton polygon of P , denoted by N(P ),
is the convex hull of lattice points (i, j) ∈ Z2 such that ziwj appears as a monomial in P .
It actually coincides (up to translations) with its geometric counterpart N(G) defined in
Section 4.1, see [GK13, Theorem 3.12].

The spectral curve C is the zero locus of the characteristic polynomial:

C = {(z, w) ∈ (C∗)2 : P (z, w) = 0}.

Following the convention of [BCdT20], we define the amoeba A of the curve C as the
image of C through the map (z, w) 7→ (− log |w|, log |z|). By [KO06, KOS06], C is a
Harnack curve [Mik00] (also known as a simple Harnack curve, see e.g. [Bru15]), which
is equivalent to saying that the amoeba map C→ A is at most 2-to-1 [MR01]. The real
locus of the curve C is the set of points that are invariant under complex conjugation
deprived from its isolated nodes Csing, which are the only singularities a Harnack curve
admits [Mik00, Bru15].

Being Harnack is a very strong condition on C, and on the associated amoeba A. For
example, if C is a genus g Harnack curve with Newton polygon N(P ), then the boundary
of A (which is the image of the real locus of C under the amoeba map) consists of g ovals
together with one unbounded component producing a tentacle for each boundary edge
of N(P ). Moreover, each interior point of N(P ) with integer coordinates corresponds to
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an oval or to an isolated node, and each tentacle’s asymptotic direction coincides with
the vector in Z2 given by the corresponding boundary edge of N(P ).

Remark 44. As stated above, for a Harnack curve C with given Newton polygon N(P ),
each interior point of N(P ) with integer coordinates corresponds either to an oval of C
or to an element of Csing. In our setting, the situation is very explicit: as explained in
Proposition 43, any α ∈ Xper

G inducing a periodic Kasteleyn operator defines g distinct
integer points in the interior of N(G) via ϕ(α) ∈ (Z2)g. These are precisely the points
that give rise to the ovals, see Corollary 57 and the proof of Proposition 45 below.

The spectral curve is only the first part of the spectral data introduced by Kenyon and
Okounkov in [KO06], see also [GK13]: the second consists of a divisor on C, whose
definition we now recall. To do so, let us fix an element w in the set W1 of white vertices
of G1 = G/Z2. The kernel and cokernel of

K(z, w) : CB1 −→ CW1

are 1-dimensional for every smooth (z, w) ∈ C, see e.g. the proof of [CT79, Theorem 2.2],
thus defining line bundles over C \ Csing. The class in CokerK(z, w) of the indicator
function 1w ∈ CW1 defines a section of the cokernel line bundle, whose divisor (w) ∈
Div(C) is called the divisor of the vertex w. In concrete terms, the equations of (w) are
the (w, b)-cofactors of K(z, w) for b ∈ B1. In the case of periodic graphs, this yields a
second definition of the divisor of a vertex, see Definition 35. We prove that the two
coincide in Proposition 47. Remarkably, this divisor is a so-called standard divisor, i.e.,
it consists of the sum of one point on each of the g ovals of C, see [KO06, Theorem 1].

We now come back to our setting: the graph G is minimal and periodic, Σ is an M-curve, t
is a real element of Jac(Σ), and the angle map α ∈ Xper

G is such that the corresponding
Kasteleyn operator K is periodic. Recall that by Proposition 43, this implies in particular
that the Newton polygon N(G) has at least g interior integer points.

We progress towards an explicit parametrization of the associated spectral curve C.
Let us fix an arbitrary vertex x0 of G. For any ũ ∈ Σ̃, the function x 7→ gx,x0(ũ) is
(z(ũ), w(ũ))-quasiperiodic with

z(ũ) = gx0+(1,0),x0
(ũ), w(ũ) = gx0+(0,1),x0

(ũ) .

These quantities are easily seen not to depend on x0. By Lemma 33, and as already
observed in [Foc15], the pair (z(ũ), w(ũ)) belongs to the spectral curve C for all ũ ∈ Σ̃
not corresponding to a u ∈ α(T). Using the definition of gx,y together with Equation (17)
and the second point of Lemma 17, we get the following explicit expressions in terms of
train-track angles and homology classes:

z(ũ) =
∏
T∈T1

E(α̃T , ũ)−vT , w(ũ) =
∏
T∈T1

E(α̃T , ũ)hT . (24)

By Lemma 32, the maps z and w project to meromorphic functions on Σ, thus defining
a holomorphic map ψ : Σ \ α(T) → C. This map is not injective in general, as it may
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send two conjugated elements of Σ to an isolated node in Csing. However, we have the
following result.

Proposition 45. The map ψ : Σ → C given by ψ(u) = (z(u), w(u)) is an explicit
birational parametrization of the spectral curve C, mapping A1, . . . , Ag to the ovals of C
and A0 to the unbounded real component of C, implying in particular that C has geometric
genus g. More precisely, its restriction

ψ : Σ \ {α(T) ∪ ψ−1(Csing)} → C \ Csing

is a biholomorphic parametrization of the spectral curve deprived from its singularities.

Proof. The map ψ being meromorphic, it parametrizes an open set of an irreducible
component of the spectral curve C. Since this curve is Harnack [KO06], it is irreducible.
Therefore, the map ψ is a parametrization of the whole spectral curve.

By Equation (24) and Lemma 25, we have ψ(σ(u)) = ψ(u) for all u ∈ Σ. This implies
that ψ maps the real locus A0∪A1∪· · ·∪Ag of Σ to the real locus of C. Since z(u) and w(u)
have zeros and poles on A0, this real component of Σ is mapped to the unbounded real
component of C, so the remaining real components A1, . . . , Ag are mapped to the ovals
of C or to its isolated real nodes (recall Remark 44). This latter case is excluded, as it
would imply that the holomorphic map z is constant along some Aj , and hence constant.
By Corollary 57, each of these ovals Aj gives rise to a different slope, and is therefore
mapped to a distinct oval of C. Finally, note that since α belongs to Xper

G , the cyclic
ordering of α(T) ⊂ A0 coincides with the cyclic ordering of the tentacles of C. We are
now in the setting of [Bru15, Theorem 10], and can therefore conclude: if ψ was not
birational, then the curve ψ(Σ) = C would not be reduced, which is impossible as the
isolated nodes are its only possible singularities.

Before turning to the divisor, we need a preliminary lemma whose proof is postponed to
Section 4.4.

Lemma 46. Let Q(z, w) be the adjugate matrix of K(z, w). For every b and w on G1

and every u ∈ Σ \α(T), we have

Q(z(u), w(u))b,wλ(u) = gb,w(u) ,

where λ is the meromorphic 1-form on Σ given by λ = dz
zw∂wP (z,w) = − dw

zw∂zP (z,w) .

We now turn to the identification of the divisor of a vertex of Definition 35 with the
homonymous notion of Kenyon-Okounkov.

Proposition 47. For any white vertex w, the divisors ψ−1((w)) and div(w) coincide.

Proof. Let w be an arbitrary white vertex, let (w) be the associated divisor on C, and
let ψ−1((w)) be the corresponding divisor on Σ. By definition, it is given by the common
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zeros in Σ \ α(T) of Q(z(u), w(u))b,w for all black vertices b ∈ B1. By Lemma 46, this
adjugate matrix satisfies

Q(z(u), w(u))b,wλ(u) = gb,w(u)

for all b and u ∈ Σ \ α(T), with λ = dz
zw∂wP (z,w) = − dw

zw∂zP (z,w) . Note that the poles

of λ coming from dz
z or dw

w lie in α(T), and therefore do not contribute to the divisor.
Therefore, the possible poles of λ outsideα(T) come from the remaining factors 1

w∂wP (z,w)

and 1
z∂zP (z,w) , and hence correspond to singular points of C where the divisor is not

defined. As a consequence, the divisor ψ−1((w)) is determined by the common zeros
in Σ \α(T) of gb,w for all b ∈ B1. The conclusion now follows from Proposition 36.

Remark 48. It should be noted that the arguments of Propositions 36 and 47 provide an
independent proof of the following fact: given a dimer model on a minimal periodic graph
with Fock’s weights, the divisor of a vertex is standard. We hope that this discussion,
in particular Equation (13), helps clarifying the discrepancy between the viewpoints
of Kenyon-Okounkov [KO06] and Goncharov-Kenyon [GK13], who consider standard
divisors of degree g, and of Fock [Foc15], who deals with holomorphic line bundles of
degree g − 1.

In their seminal work [KO06], Kenyon and Okounkov not only prove that the spectral
curve of a dimer model is Harnack and comes equipped with a standard divisor; they
also show that every Harnack curve with triangular Newton polygon endowed with such
a divisor can be realized by a dimer model. This result is extended to arbitrary Newton
polygons by Goncharov and Kenyon in [GK13]. The main aim of Fock in [Foc15] is to give
an explicit form to this inverse map: given a smooth curve C (non-necessarily Harnack),
he constructs an explicit “dimer model” (not-necessarily with real edge-weights) whose
spectral curve is C.

We are in the position to give a modified version of his result, now restricted to Harnack
curves, following and completing the discussion of [BCdT20, Section 5.4].

Theorem 49. Fix a Harnack curve C endowed with a standard divisor D. Then, there
exists an abstract M-curve Σ, a periodic minimal graph G, a map α ∈ Xper

G and an
element t of (R/Z)g ⊂ Jac(Σ) such that the associated Fock operator K is periodic, and
such that the spectral data of the corresponding dimer model coincides with (C, D) (up to
a scale change (z, w) 7→ (λz, µw) with λ, µ ∈ R∗, and fixing a vertex w). Moreover, the
assignment t 7→ D defines a bijection from (R/Z)g to the set of standard divisors on C.

Proof. The curve C being Harnack, it has the maximal number of real components, i.e., it
is an M-curve. Hence, there exists an abstract M-curve Σ and a birational map ψ : Σ→ C

such that ψ(σ(u)) = ψ(u) for u ∈ Σ. By definition of a Harnack curve, it has a single
unbounded real component, and we denote by A0 the corresponding real component
of Σ. Let us write ψ(u) = (z(u), w(u)) for the coordinates of the parametrization ψ
of Σ. The maps z, w being meromorphic functions on Σ, their respective divisors are
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of the form −
∑

j vjαj and
∑

j hjαj for some finite set of elements {αj}j of Σ and
integers {vj}j , {hj}j so that

∑
j vj =

∑
j hj = 0. Since an element αj ∈ Σ with vj 6= 0

or hj 6= 0 corresponds via ψ to an element of the complement of C in its (toric) closure,
and since such elements lie in the closure of the unbounded real component of C, we
have αj ∈ A0 for all j. By the discussion in Section 2.5.2, there exist constants λ, µ ∈ C∗
such that

z(u) = λ
∏
j

E(u, αj)
−vj , w(u) = µ

∏
j

E(u, αj)
hj

for all u ∈ Σ. The equality ψ(σ(u)) = ψ(u) together with Lemma 25 imply that λ and µ
belong to R∗, and can therefore be assumed to be ±1 via a global scaling.

Allowing for the same element αj to appear multiple times, it can be assumed that vj
and hj are coprime for all j. Then, the equalities

∑
j vj =

∑
j hj = 0 ensure that there

exists a minimal graph G1 ⊂ T with oriented train-tracks T = {Tj}j satisfying [Tj ] =
(hj , vj) ∈ H1(T;Z) for all j, see e.g. [GK13, Theorem 2.5] for the proof.

Let α : T → A0 be defined by α(Tj) = αj . By construction, the cyclic order on the
boundary edges of N(G) agrees with the partial cyclic order on T given by homology
classes, which in turn coincides with the cyclic order of the tentacles of the amoeba
of C. By definition of a Harnack curve (recall the discussion before Remark 44), this
cyclic order coincides with the cyclic order on {αj}j ⊂ A0. Moreover, two train-tracks
with different homology classes correspond to distinct elements in A0. In conclusion, the
map α belongs to the space Xper

G , as reinterpreted in Section 4.1.

Let K be Fock’s adjacency operator corresponding to the M-curve Σ, to the universal
cover G ⊂ R2 of G1 ⊂ T, to α, and to any t ∈ (R/Z)g ⊂ Jac(Σ). This operator
is Kasteleyn by Proposition 31, so it defines a dimer model on G with positive edge-
weights. By construction, the curve C is given by the elements (z, w) of (C∗)2 such that
the kernel of K(z, w) is non-trivial, so it is the spectral curve of this dimer model. Also,
the divisors

∑
j vjαj and

∑
j hjαj are principal by construction. By Equation (17), this

ensures that the discrete Abel map d : {faces of G} → Pic0(Σ) ' Jac(Σ) is Z2-periodic,
and so is the operator K.

The last statement is now a direct consequence of Propositions 36 and 47.

We close this section with several remarks.

Remark 50.

1. It is natural to wonder to which extent the minimal graph G is completely deter-
mined by the curve C. This question is answered by [GK13, Theorem 2.5]: two
minimal graphs defining the same spectral curve C are not necessarily the same,
but they define the same associated Newton polygon and therefore, they are re-
lated by a sequence of explicit local transformations. In [BCdT20, Section 7], see
also Section 5.2 below, we check that the models defined by Fock’s operators are
invariant under these local transformations.
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2. Another natural question is whether every periodic Kasteleyn operator on a min-
imal graph G with spectral curve C is gauge-equivalent to Fock’s Kasteleyn oper-
ators for some α ∈ Xper

G and some t ∈ (R/Z)g. The answer is positive, and is a
consequence of Theorem 49 together with [GK13, Theorem 7.3].

3. Two dimer models on the same graph but coming from different M-curves, or
different angle maps, define different spectral curves, and are therefore not gauge-
equivalent. Moreover, by Theorem 49 and [GK13, Theorem 7.3], we have the
following result: two periodic dimer models on the same minimal graph G arising
from the same M-curve, the same angle map, and elements t, t′ ∈ (R/Z)g are gauge
equivalent if and only if t = t′.

4. Theorem 49 shows that any spectral data can be realized by a periodic minimal
graph. Does this statement hold for a smaller class of (periodic, bipartite) graphs?
A natural candidate is given by the set of bipartite isoradial graphs [Ken02], which
can be described as the bipartite graphs whose train-tracks do not self-intersect
and meet at most once [KS05]. However, it is unknown whether every convex
polygon can be realized as the Newton polygon of such an isoradial graph.

5. As defined by Goncharov-Kenyon [GK13], the spectral data of a dimer model
consists not only of the couple (C, D), but also of a parametrization ν of the
divisor at infinity of the spectral curve. More concretely, ν should be thought of
as a total cyclic ordering of the boundary points of C, see [KO06]. Via the spectral
transform, such a parametrization is realized by the set T1 of train-tracks of G1.

In our context, recall that Xper
G consists of maps α : T1 → A0 which preserve

the partial cyclic ordering on T1. Therefore, one can very well fix a full spectral
data (C, D, ν) in the statement of Theorem 49: indeed, the specification of ν simply
fixes a total cyclic ordering on T1 compatible with its intrinsic partial ordering, and
hence restricts the possible angle maps α ∈ Xper

G to those which preserve this total
ordering.

4.4 Ergodic Gibbs measures

For any planar, bipartite, periodic weighted graph G (not necessarily minimal), the
set of ergodic Gibbs measures on dimer configurations was completely characterized
in the work of Kenyon, Okounkov and Sheffield [KOS06]: they form a two-parameter
family (PB) indexed by B = (Bx, By) ∈ R2. All these measures are determinantal
and have an explicit expression in terms of the periodic Kasteleyn operator K and its
companion K(z, w): for any B, the probability of occurrence of k distinct edges e1 =
w1b1, . . . , ek = wkbk is given by

PB(e1, . . . , ek) =

 k∏
j=1

Kwj ,bj

 det
1≤i,j≤k

ABbi,wj . (25)
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Here, the operator AB has entries given by the following formula: if w and b are in the
same fundamental domain and (m,n) belongs to Z2, then

ABb+(m,n),w =

∫∫
TB

K(z, w)−1
b,w z

mwn
dz

2iπz

dw

2iπw
=

∫∫
TB

Q(z, w)b,w
P (z, w)

zmwn
dz

2iπz

dw

2iπw
,

with Q(z, w) the adjugate matrix of K(z, w) and TB = {(z, w) ∈ (C∗)2 ; |z| = eBy , |w| =
e−Bx}.
The phase diagram of this family is described by the amoeba of the characteristic poly-
nomial P (z, w), see [KOS06, Theorem 4.1]:

• If U is a connected component of the complement of the interior of the amoeba,
then all the values of B inside U give the same measure:

– if U is unbounded, the measure is called solid or frozen: every edge has a
deterministic state;

– if U is bounded, the measure is called gaseous (or smooth in the more general
terminology of random surfaces): correlation between edges decay exponen-
tially fast.

• Any B in the interior of the amoeba gives a different measure PB. These measures
are called liquid (or rough in the terminology of random surfaces): the covariance
of two edges at distance n decays like n−2.

We now directly relate these operators AB with our operators Au0 , indexed by the
subset D = Σ+ \α(T) of Σ.

Theorem 51. For any B = (Bx, By) in the amoeba of C, let u0 be the unique element
of D such that log |z(u0)| = By and log |w(u0)| = −Bx. Then, the operators AB and Au0

coincide.

This result together with Proposition 45 and [KOS06, Theorem 4.1] immediately yield
the following alternative presentation of the Gibbs measures and of the associated phase
diagram.

Corollary 52. Fix a periodic minimal graph G, an M-curve Σ, an element α ∈ Xper
G

and a real element t ∈ Jac(Σ), and consider the dimer model on G with corresponding
Kasteleyn operator K which we assume to be periodic. Then, the set of ergodic Gibbs
measures is given by the measures (Pu0)u0∈D whose expression on cylinder sets is given
as follows: for any set {e1 = w1b1, . . . , ek = wkbk} of distinct edges of G,

Pu0(e1, . . . , ek) =
( k∏
j=1

Kwj ,bj

)
× det

1≤i,j≤k

(
Au0
bi,wj

)
. (26)

Furthermore, the model is solid (resp. gaseous, liquid) if u0 belongs to A0 (resp. to A1∪
. . . ∪Ag, to the interior of D).
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Before turning to the proof of Theorem 51, let us emphasize the key property of Corol-
lary 52.

Remark 53. Although it is far from obvious from their expression (25), the local statis-
tics (26) for the Gibbs measures (Pu0)u0∈D are local, in the sense that Pu0(e1, . . . , ek)
only depends on the graph G in a neighborhood of e1 ∪ · · · ∪ ek, see however Remark 1.
As an example of application, let us compute the probability of occurrence of a single
edge e = wb using the notation of Figure 1.

Using Corollary 52 and the definition of Au0 , see Equation (14), we have:

Pu0(e) =
1

2iπ

∫
C
u0
b,w

Kw,bgb,w.

Now, using Fay’s identity in the form of (9) to compute the product Kw,bgb,w, we obtain

Pu0(e) =
1

2iπ

∫
C
u0
b,w

ωβ−α +
1

2iπ

g∑
j=1

(∂ log θ

∂zj
(t̃+ d̃(f))− ∂ log θ

∂zj
(t̃+ d̃(f ′))

)∫
C
u0
b,w

ωj ,

where recall that ωβ−α = du log E(u,β)
E(u,α) is the unique meromorphic 1-form with 0 integral

along A-cycles, and two simple poles: at β with residue 1, and α with residue −1. Using
the definition of the contours in the different phases, see Section 3.5, we can push the
computation further.

• Gaseous phases. Then Cu0
b,w is homologous to Bk for some 1 ≤ k ≤ g. Using Riemann’s

bilinear relation (2) with the differential of the third kind ωβ−α, and the fact that∫
Bk
ωj = Ωj,k, we obtain

Pu0(e) =

∫ β

α
ωk +

1

2iπ

g∑
j=1

Ωj,k

(∂ log θ

∂zj
(t̃+ d̃(f))− ∂ log θ

∂zj
(t̃+ d̃(f ′))

)
,

where the path of integration from α to β lies in the surface Σ cut along {Aj , Bj : 1 ≤
j ≤ g}, see Figure 7.

Because in the surgery to cut open Σ, we take Cu0
b,w as a realization of Bk, and since by

definition, the contour Cu0
b,w does not intersect A0 in the oriented arc from α to β, the

integration from α to β of ωk is really an integral along A0 in the positive direction.

• Solid phases. Then, since we are integrating holomorphic 1-forms on closed contours
bounding disks in Σ, the integrals

∫
C
u0
b,w
ωj are all equal to 0. The first integral is non

zero if and only if u0 is such that the cyclic order [α, u0, β] on A0 is preserved. In this
case, it is equal to the residue at β which is 1 by definition of ωβ−α, so we find

Pu0(wb) = 1{the cyclic relation [α, u0, β] holds in A0}.
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• Liquid phase. We use the explicit form of ωβ−α, and obtain

Pu0(wb) =
1

2iπ
log

E(σ(u0), α)

E(u0, α)

E(u0, β)

E(σ(u0), β)

+
1

2iπ

g∑
j=1

(∂ log θ

∂zj
(t̃+ d̃(f))− ∂ log θ

∂zj
(t̃+ d̃(f ′))

)∫
C
u0
w,b

ωj .

Note that specializing to the case g = 1, we recover the computation of Proposition 43
of [BCdT20].

Theorem 51 is a generalization of [BCdT20, Theorem 34] which deals with the elliptic
case. We follow the same strategy for the proof: we do not use a uniqueness argument for
inverses of K with some growth property, but perform a direct computation to partially
evaluate the double integral defining ABb+(m,n),w by taking a residue, then make a change
of variable to transform the remaining integral as an integral on the surface Σ.

Before doing that, let us associate to any closed, oriented, dual path γ on G1 the following
function : for ũ ∈ Σ̃, set

Jγ(ũ) =
∑
e=wb

(e ∧ γ)Kw,bgb,w(ũ), (27)

where e ∧ γ ∈ Z denotes the algebraic intersection number of the oriented edge e = wb
with the oriented curve γ. By Lemma 32, the function Jγ on Σ̃ projects to a meromorphic
1-form on Σ. We now relate Jγ with z and w given by Equation (24).

Proposition 54. For any closed oriented dual path γ on G1, we have the equality

Jγ = −d log zγ ,

where zγ stands for zhγwvγ if [γ] = (hγ , vγ) ∈ Z2 = H1(T;Z).

Proof. These two quantities define meromorphic 1-forms on Σ. To prove they are equal,
it is enough to show that they have the same singular parts, and the same periods along
the cycles Aj , 1 ≤ j ≤ g. More precisely, we prove that these two differential forms

• have 0 integral along A-cycles;

• have no pole outside of {αT ; T ∈ T1, T ∧ γ 6= 0};

• admit αT as a simple pole with residue −T ∧ γ if T ∧ γ does not vanish.

Let us start with Jγ . First, we rewrite Fay’s identity in the form of Equation (9) in
terms of K and g for two neighboring vertices b and w with the convention of Figure 1.
It yields the following unique decomposition of the meromorphic 1-form Kw,bgb,w as a
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sum of a holomorphic part (i.e., a linear combination of the ωj ’s) and a meromorphic
part with zero integral along the A-cycles:

Kw,bgb,w = ωβ−α +

g∑
j=1

(
∂ log θ

∂zj
(t̃+ d̃(f))− ∂ log θ

∂zj
(t̃+ d̃(f ′))

)
ωj . (28)

Note that the coefficient of ωj is the difference of the same function evaluated at f and f ′.
By definition, the 1-form Jγ is the weighted sum of these contributions, with weights
given by the algebraic intersections of γ with edges e = wb.

The first point now follows from the fact that for any face f, the term ∂ log θ
∂zj

(t̃ + d̃(f))

appears in the sum defining Jγ with coefficient
∑

e⊂∂f(e ∧ γ) = ∂f ∧ γ = 0 since γ
is a closed oriented path and ∂f a closed oriented path that bounds; hence, the total
coefficient of ωj in that sum is 0. To check the second and third points, note that
the only poles come from train-tracks intersecting γ. Fix a train-track Tα of T1 with
angle α. Every intersection of Tα with γ corresponds to an edge. The contribution of
this intersection to Tα ∧ γ can be positive (as on Figure 6), and the residue of ωβ−α
is −1, or it can be negative, and the residue is +1. Summing all these contributions, we
see that the total residue of Jγ at α is −Tα ∧ γ.

γx

w

b

Tα

Tβ

Figure 6: Intersection of the two train-tracks corresponding to an edge and γx when the
white vertex is on the left of γx.

We now turn to d log zγ . To check the first point, note that zγ is real along the A-cycles,
and does not vanish as all its zeros and poles lie on A0. Therefore, the argument of zγ is
constant along any Aj , so the integral of d log zγ is equal to 0. To prove the second and
third points, we use Equation (24) to express zγ in terms of angles associated to train-
tracks. It follows that the 1-form d log zγ has a simple pole at αT if the train-track T
intersects γ, and that the associated residue is the degree of that point in the divisor
of zγ , which is given by hT vγ − vThγ = T ∧ γ. This concludes the proof.

Remark 55. For γ = γy, we can automatically keep track of the edges of G1 intersecting γy
with the correct signs and multiplicities, by using K(z, w) as a kind of generating function
for those. Because of the definition of the variable w, selecting these intersections with
the correct signs boils down to applying the w∂w differential operator to K(z, w). Thus
we have, see also Equation (27) of [BCdT20],

Jγy(u) = −
∑
b,w

w(u)∂wK(z(u), w(u))w,bgb,w(u).
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Likewise, for γ = γx, we have

Jγx(u) = +
∑
b,w

z(u)∂zK(z(u), w(u))w,bgb,w(u).

We are finally ready to give the proofs of Lemma 46 relating Q(z, w)b,w and gb,w, and of
Theorem 51 on the equality of the operators AB and Au0 .

Proof of Lemma 46. Let Q(z, w) be the adjugate matrix of K(z, w). We need to show
the equality

Q(z(u), w(u))b,wλ(u) = gb,w(u) (29)

for every b and w on G1 and every u ∈ Σ \ α(T), with λ the meromorphic 1-form on Σ
given by λ = dz

zw∂wP (z,w) = − dw
zw∂zP (z,w) . From the fact that the adjugate matrix Q(z, w)

satisfies
Q(z, w)K(z, w) = P (z, w) Id, (30)

we know that it has rank at most 1 on the spectral curve. It is a product of a vector
in the right kernel of K(z, w) times one in the left kernel of K(z, w). Hence, there exists
a non-zero meromorphic 1-form λ on Σ such that Equation (29) is satisfied for every b
and w on G1. Moreover, differentiating (30) with respect to w, evaluating on the spectral
curve and taking the trace yields, see also [BCdT20, Lemma 37]:

λ(u)∂wP (z(u), w(u)) =
∑
b,w

∂wK(z(u), w(u))w,bgb,w(u)

= − 1

w(u)
Jγx(u) =

dz

zw
(u),

where in the last line we use Remark 55 and Proposition 54. This implies the first
formula for λ, while the second can be obtained in the same way by exchanging the roles
of z and w and dealing carefully with signs, or noticing that on the spectral curve, the
following equality holds:

∂zP (z(u), w(u))dz(u) + ∂wP (z(u), w(u))dw(u) = d(P (z(u), w(u)) = 0.

Proof of Theorem 51. We just sketch the proof, as it is analogous to that of [BCdT20,
Theorem 34]. Consider a white vertex w of G1. By Lemma 41 applied to f = AB·,w−Au0

·,w ∈
CB, it is enough to show that for any black vertex b of G1, the equality

ABb+(m,n),w = Au0

b+(m,n),w

holds for all (m,n) ∈ Z2, except possibly for a finite number of values. Therefore, we now
assume that n is large enough. The other situations are treated similarly by exchanging
the roles of z and w, and/or replacing z and w by their inverses.
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We now evaluate by the residue theorem one of the two integrals defining ABb+(m,n): for

every z on the circle of radius eBy , the only poles of

w 7→
Q(z, w)b,w
P (z, w)

wn−1

inside the disk {|w| < e−Bx} come from zeros of P (z, ·), and we write

∫
|w|=e−Bx

Q(z, w)b,w
P (z, w)

wn−1 dw

2iπ
=

dz,Bx∑
j=1

Q(z, wj(z))b,w
∂wP (z, wj(z))

wj(z)
n−1,

where w1(z), . . . , wdz,Bx (z) represent the poles of w 7→ P (z, w) inside the circle of radius

e−Bx . When z varies along the circle of radius eBy , the points (z, wj(z)) describe paths
which can be pulled back by ψ as paths on the surface Σ. This collection of paths
consists of

• a certain number of closed loops with trivial homology along the A-cycles

• a path connecting σ(u0) to u0 if B is in the interior of the amoeba. If B is on the
boundary, then this path is also a closed loop.

This family of paths and loops on Σ can be deformed without crossing any {αT }T∈T1 ,
to become the path Cu0

b+(m,n),w.

Performing the change of variable from z to u in the remaining integral definingABb+(m,n),w
and using Lemma 46, we have

ABb+(m,n),w =

∫
|z|=eBy

dz,Bx∑
j=1

Q(z, wj(z))b,w
∂wP (z, wj(z))

wj(z)
n−1zm−1 dz

2iπ

=
1

2iπ

∫
C
u0
b+(m,n),w

Q(z(u), w(u))b,w
z(u)w(u)∂wP (z(u), w(u))

zm(u)wn(u)dz(u)

=
1

2iπ

∫
C
u0
b+(m,n),w

gb,w(u)z(u)mw(u)n

=
1

2iπ

∫
C
u0
b+(m,n),w

gb+(m,n),w(u) = Au0

b+(m,n),w .

This concludes the proof.

4.5 Slope of the Gibbs measures Pu0

The discussion of this section follows [BCdT20, Section 5.6]. Therefore, we only develop
the new aspects coming from higher genus and often refer the reader to this article for
details.
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Let us fix u1 ∈ A0 \α(T1) and denote by M1 the dimer configuration on which the solid
Gibbs measure Pu1 is concentrated. Also, let P1 be the integer point on the boundary
of N(G) corresponding to the interval of A0 \α(T1) containing u1.

For any dimer configuration M, the corresponding height difference (relative to M1)
between two faces f and f ′ of G is defined as

h(f ′)− h(f) =
∑
e=wb

(e ∧ γ)
(
1{e∈M} − 1{e∈M1}

)
, (31)

where γ is an oriented dual path connecting f to f ′, and e ∧ γ its algebraic intersection
number with the oriented edge e = wb. This quantity is well defined and does not
depend on the choice of γ because M and M1, viewed as 1-forms on G, have the same
divergence at any vertex.

The slope (su0 , tu0) of the Gibbs measure Pu0 is the expected horizontal and vertical
height change [KOS06], i.e., the expectation of Expression (31) for f ′ equal to f + (1, 0)
and f + (0, 1), or in other words, for γ = γx and γ = γy, respectively.

Applying Corollary 52 in the case k = 1 to Expression (31) as in [BCdT20, Theorem 38],
we get the equalities

su0 =
1

2iπ

∫
C
u0
u1

Jγx , tu0 =
1

2iπ

∫
C
u0
u1

Jγy ,

where Cu0
u1

is an oriented path in Σ connecting σ(u0) to u0, crossing A0 once at u1,
disjoint from A1 ∪ · · · ∪ Ag, such that σ(Cu0

u1
) = −Cu0

u1
. By Proposition 54, this can be

rewritten as

su0 = − 1

2iπ

∫
C
u0
u1

d log z, tu0 = − 1

2iπ

∫
C
u0
u1

d logw . (32)

In other words, su0 and tu0 are (up to a multiplication by −π) continuous determinations
of the arguments of z(u0) and w(u0) respectively. Up to a proper normalization, they
correspond to a unique point in the coamoeba of C. Note that these formulas can be
seen as a refinement of [KOS06, Theorem 5.6], where the equalities are only valid up to
a sign and modulo π. They are also related to [KOS06, Proposition 3.2], since the part
of the coamoeba of C parametrized by Σ+ is in 1-to-1 correspondence with the Newton
polygon of P [Pas16].

Since the magnetic field is given by the log of the modulus of z(u0) and w(u0), the
pair slope/magnetic field is realizing (half of) the amoeba-to-coamoeba mapping for the
Harnack curve C, which has been described and computed explicitly by Passare [Pas16].
In terms of dimer models, this translates to the fact that the slope and the magnetic
field are dual variables when performing Legendre transform between the free energy,
represented by the Ronkin function of the characteristic polynomial, and the surface
tension [KOS06].

We now give explicit formulas for the slopes of the solid and gaseous phases. For solid
phases, Corollary 39 from [BCdT20] is valid in the current more general context without
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modification, as it only relies on the connection between the divisor for z(u) and the
homology class of T ∈ T1.

Corollary 56 (slopes of solid phases, [BCdT20], Corollary 39). Suppose that u0 belongs
to one of the connected components of A0 \α(T1). Then, we have

(su0 , tu0) =
∑

T∈T1:[u0,αT ,u1]

(vT ,−hT ) ,

where the sum is over all T ∈ T1 such that the cyclic order relation [u0, αT , u1] holds
in A0. In particular, the points P1 + (tu0 ,−su0) indexed by the connected components
of A0 \α(T1) are the integer boundary vertices of N(G).

For gaseous phases of the model, we have the following correspondence with the g marked
interior lattice points of N(G), recall Proposition 43. Note that the main ingredient in
the proof is the Riemann bilinear relation (2).

Corollary 57 (slopes of gaseous phases). Suppose that u0 belongs to Ak for some 1 ≤
k ≤ g. Then, the slope (su0 , tu0) of the corresponding Gibbs measure is related to
the kth component of ϕ(α) by

P1 + (tu0 ,−su0) = ϕk(α) .

Proof. We give the details for the imaginary part of the identity, which corresponds to
the horizontal slope su0 . The computation of the real part, corresponding to the vertical
slope tu0 , is similar, and therefore left to the reader.

Since u0 belongs to Ak, the contour of integration Cu0
u1

is a loop homologous to Bk in Σ.
However, because of the possible presence of singularities of z, it can a priori not be
moved outside the interval of A0 \ α(T1) containing u1. For this reason, we consider
realizations of the cycles B1, . . . , Bg crossing A0 in that same fixed interval.

According to Proposition 54 and its proof, the differential form Jγx = −d log z is the
unique differential of the third kind with a simple pole at every αT for T ∈ T1 such
that vT 6= 0, and residue vT . Therefore, we can take this form for ωD in the Riemann
bilinear relation (2), with corresponding divisor D =

∑
T∈T1

vTαT . This yields

su0 =
1

2iπ

∫
C
u0
u1

Jγx =
1

2iπ

∫
Bk

ωD =

∫ D+

D−
ωk , (33)

where the integration paths from D− =
∑

T :vT<0(−vT )αT to D+ =
∑

T :vT>0 vTαT lie
in the surface Σ cut along the cycles A`, B`. Note that in this surface with boundary,
the cycle A0 is represented by g oriented segments. Because of the assumption that
all the B`’s intersect A0 in the same interval of A0 \ α(T1), all the αT ’s are in the
same segment. We label them α1, . . . , αr in the increasing order along this oriented
segment of A0 (see Figure 7), and write T1, . . . , Tr for the corresponding train-tracks. In
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A1

A−1
1

A2

A−1
2

A3 A−1
3

B1

B−1
1

B2

B−1
2

B3

B−1
3

α1 α2

αr

Figure 7: The surface Σ cut along cycles representing a basis of its homology, chosen in
such a way that all cycles B` cut A0 in the same interval of A0 \α(T). The arcs in blue
are the segments of A0 after the cuts, one of which contains all of α(T).

conclusion, the integral of ωk from D− to D+ is given by integrals along a single segment
of A0, with orientation from αj with vTj < 0 to α` with vT` > 0.

Let us now study Equation (19), where we take x0 ∈ A0 just before α1. The kth compo-
nent of nj ∈ Zg is easily seen to be equal to δj1, so the vertical coordinate of the kth com-
ponent of Equation (19) yields

r∑
j=1

vTj

∫ αj

x0

ωk = = (P1 − ϕk(α)) ,

where the integrals are along the positive orientation of A0. Comparing this equation
with the right-hand side of (33), and carefully taking into account the different orienta-
tion constraints for these integrals, we obtain the equality su0 = = (P1 − ϕk(α)).

4.6 Surface tension and free energy

For (s, t) ∈ N(G), the surface tension τ(s, t) of the dimer model is defined as the

exponential growth rate of the partition function Z
(s,t)
n of dimer configurations on Gn =

G \nZ2 whose horizontal and vertical height change around the torus are conditioned to
be bnsc and bntc:

τ(s, t) = − lim
n→∞

1

n2
logZ(s,t)

n ,

see [KOS06, Section 3.2.4]. Sheffield [She05] proved that τ is a strictly convex function
over N(G). Using the correspondence between (s, t) and u0 given by Equation (32), one
can now see τ as a function τ(u0) = τ(su0 , tu0) on D = Σ+ \α(T).

59



The free energy F (Bx, By) of the dimer model is the Legendre dual of τ

F (Bx, By) = max
(s,t)

(
sBx + tBy − τ(s, t)

)
.

It is well defined up to an anchoring in Z2 of the Newton polygon N(G) to fix the additive
constant in the definition of the height, which corresponds to a change in the linear part
in (Bx, By). This is done for example by choosing a “frozen” point u1 in D ∩A0 as the
reference configuration to measure the height function.

As the surface tension, the free energy can be seen as a function on D:

F (u) = F (− log |w(u)|, log |z(u)|) .

Because of the duality relation between the height and the magnetic field, the differential
of τ is given by

dτ(u) =
∂τ

∂s
dsu +

∂τ

∂t
dtu = Bx(u)dsu +By(u)dtu

=
1

π

(
log |w(u)|d arg z(u)− log |z(u)|d argw(u)

)
.

Here and later in this section, the arguments are measured along continuous paths in D

starting from the fixed point u1.

When u0 = u1, the measure concentrates on a single periodic configuration M1, and
therefore, the surface tension is explicitly obtained as

τ(u1) = −
∑

wb∈M1

log
∣∣Kw,b

∣∣ .
Then one can obtain the expression for τ(u0) for any other u0 ∈ D by integration:

τ(u0) = τ(u1) +
1

π

∫ u0

u1

log |w(u)|d arg z(u)− log |z(u)|d argw(u) .

Taking advantage of the fact that z(u) and w(u) are expressed as products over train-
tracks of G1, recall Equation (24), one can rewrite the 1-form

log |w(u)|d arg z(u)− log |z(u)|d argw(u) = −
∑
S

∑
T

(hSvT − vShT )kαS (u)d`αT (u) ,

where kα(u) = log |E(α̃, ũ)| and `α(u) = argE(α̃, ũ). The integer hSvT − vShT is
nothing but the algebraic intersection number of the train-tracks S and T . Therefore,
each edge e ∈ E1 contributes exactly twice to this double sum: if e is at the intersection
of the train-tracks Tα and Tβ, then it contributes once when (S, T ) = (Tα, Tβ), and once
when (S, T ) = (Tβ, Tα). Following the convention of Figure 1, this leads to

log |w(u)|d arg z(u)− log |z(u)|d argw(u) =
∑
e∈E1

(
kβ(u)d`α(u)− kα(u)d`β(u)

)
.

This yields the following local formula for the surface tension, in the sense that it consists
of a sum of terms associated to edges of the fundamental domain.
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Proposition 58. Let u1 be a point on D ∩ A0 describing a frozen phase, and let M1

be the corresponding dimer configuration on G1, repeated in a periodic way on G. For
any u0 ∈ D, the surface tension τ(u0) is given by

τ(u0) = −
∑

wb∈M1

log
∣∣Kw,b

∣∣+
1

π

∑
e∈E1

∫ u0

u1

kβ(u)d`α(u)− kα(u)d`β(u) .

Remark 59.

1. Note that the term associated to a given edge e in the sum over E1 is genuinely
local, as it only depends on the two parameters α and β of the train-tracks crossing
that edge. All the dependency on t and the non-locality associated to d is contained
in the constant τ(u1).

2. Per se, the functions kα and `β are not well-defined on Σ, so one needs to be
slightly cautious when manipulating them. However, changing the lift ũ in their
definition would add to the integrand kβ(u)d`α(u) − kα(u)d`β(u) a term which is
of the form F (ũ;α)−F (ũ;β), and hence contributes 0 when summing over e ∈ E1.

3. One can take advantage of telescopic contributions to add (or subtract) kα(u)d`α(u)−
kβ(u)d`β(u) to the integrand, and so replace it by (kα(u)∓kβ(u))(d`α(u)±d`β(u)).

We now derive a formula in the same spirit for F .

Corollary 60. For any u0 in D, the free energy F (u0) is given by

F (u0) =
∑

wb∈M1

log
∣∣Kw,b

∣∣+
∑
e∈E1

1

π

∫ u0

u1

`β(u)dkα(u)− `α(u)dkβ(u) .

Proof. For any u0 in D, Legendre duality yields the following relation between F (u0)
and τ(u0):

F (u0) = su0Bx(u0) + tu0By(u0)− τ(u0) .

As above, we now rewrite the quantity su0Bx(u0) + tu0By(u0) as a sum over edges of E1:

su0Bx(u0) + tu0By(u0) =
1

π

(
arg z(u0) log |w(u0)| − argw(u0) log |z(u0)|

)
=

1

π

∑
S

∑
T

(hSvT − vShT )kαS (u0)lαT (u0)

=
1

π

∑
e∈E1

kα(u0)`β(u0)− kβ(u0)`α(u0) .

Finally, for any α and β, integration by parts yields

kα(u0)`β(u0)−
∫ u0

u1

kα(u)d`β(u) =

∫ u0

u1

`β(u)dkα(u).
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Remark 61.

1. The choice of the reference frozen phase appears in `α, which is defined as a
continuous argument computed along a path from that reference point u1.

2. Using the fact that kα, d`α (resp. dkα, `α) are symmetric (resp. antisymmetric)
with respect to σ, the integration from u1 to u0 can also be expressed as 1

2 times
an integral from σ(u0) to u0 along the path Cu0

u1
, symmetric with respect to σ and

passing through the sector of A0\α(T) containing u1. One can then replace `α(u) =
argE(α̃, ũ) by 1

i logE(α̃, ũ).

The free energy is also given [KOS06] by the Ronkin function R(Bx, By) of the char-
acteristic polynomial P (up to a linear factor in (Bx, By) depending on the anchoring
of N(P ) and its relation to u1), i.e., by

R(Bx, By) =

∫∫
|z|=eBy
|w|=e−Bx

log
∣∣P (z, w)

∣∣ dz
2iπz

dw

2iπw
.

Note that the coordinates are ‘rotated’ by 90 degrees when compared with the original
definition because of our choice of conventions, as for the amoeba. One can indeed
check that the two expressions match by comparing the formula from Corollary 60 with
computations of R when an explicit parametrization for the spectral curve C is known,
see for example Theorem 7.5 from [BZ20] and references therein.

5 Additional features, and perspectives

This final and slightly informal section deals with miscellaneous additional results, to-
gether with upcoming work. We start in Section 5.1 by explaining that under some nat-
ural hypothesis, the construction of Gibbs measures extends beyond the periodic case,
following and generalising [BCdT20, Section 6.1]. In Section 5.2, we check that [BCdT20,
Section 7] extends without modification: the model is invariant under local transforma-
tions, and this invariance is a consequence of (and in some precise sense, equivalent to)
Fay’s identity; a possible extension of our results beyond minimal graphs is also dis-
cussed. Finally, in Section 5.3, we relate these models on specific classes of minimal
graphs to known models, delaying their detailed study to future publications.

5.1 Beyond the periodic case

It is natural to wonder whether some results of Section 4, in particular the classification
of Gibbs measures of Corollary 52, extend to arbitrary minimal graphs. We are not
able to fully answer this question, but the discussion of [BCdT20, Section 6.1] applies,
leading to the following result.
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Let us assume that the minimal graph G and angle map α ∈ XG satisfy the following
condition: any finite simply connected subgraph G0 ⊂ G extends to a periodic minimal
graph G′, with the restriction of α to the train-tracks of G0 extending to an element α′

of XG′ .

Theorem 62. Consider a minimal graph G and an element α ∈ Xper
G satisfying the

assumption above. Fix an M-curve Σ, a real element t ∈ Jac(Σ), and consider the dimer
model on G with corresponding Kasteleyn operator K. Then, for every u0 ∈ D, the
operator Au0 defines a Gibbs measure Pu0 whose expression on cylinder sets is given as
follows: for any set {e1 = w1b1, . . . , ek = wkbk} of distinct edges of G,

Pu0(e1, . . . , ek) =
( k∏
j=1

Kwj ,bj

)
× det

1≤i,j≤k

(
Au0
bi,wj

)
.

Once again, the remarkable property of these Gibbs measures is that they are local, in
the sense that the probability of occurrence of any set of edges only depends on the
weighted graph near these edges. The computation of the probability of occurrence of a
single edge done in Remark 53 also holds in the more general setting of Theorem 62. This
is an illustration of the strength of local formulas, which allow for explicit computations
also in the case of non-periodic graphs.

Remark 63. We believe that the condition stated above holds for any minimal graph G
and map α ∈ XG. Proving that this is indeed the case would not only imply that Theo-
rem 62 holds for any minimal graph G. As another consequence, the t-embedding [KLRR18,
CLR20] determined by Fock’s Kasteleyn operator would define an embedding of the dual
graph G∗ (for u0 in the interior of Σ+), a fact that is currently known to hold only for
infinite periodic graphs, and for finite graphs with outer face of degree 4.

5.2 Invariance under moves, and going beyond minimal graphs

Dimer configurations behave in a controlled way under several local transformations of
bipartite graphs. A natural family of such moves was introduced by Kuperberg and
studied by Propp [Pro03] under the name of urban renewal. An equivalent set of moves
was considered by Goncharov and Kenyon [GK13] and called shrinking/expanding of a
2-valent vertex and spider move, see Figure 8.

These moves play a crucial role in the theory. As was shown in [GK13, Theorem 2.5], the
work of Thurston [Thu17] implies that any two periodic minimal graphs with the same
Newton polygon are related by a finite sequence of these local transformations (recall
Remark 50 above). It is therefore natural to wonder how the dimer models studied in
the present article behave under these moves.

The answer is the content of [BCdT20, Section 7], which extends verbatim from the
elliptic setting to the general case of arbitrary genus. We now give a brief summary of
these results.
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Figure 8: Shrinking/expanding of a 2-valent (black) vertex, and spider move (with black
boundary vertices).

First of all, one easily checks that given a finite, bipartite, planar graph G (not necessarily
minimal) with Kasteleyn operator K (not necessarily Fock’s), the associated partition
function is invariant under shrinking/expanding of a 2-valent black vertex b with adjacent
vertices w1,w2 if and only K satisfies the equality Kw1,b + Kw2,b = 0 (and similarly
for 2-valent white vertices, see [BCdT20, Proposition 50]). The prime form being anti-
symmetric, this holds in particular for Fock’s Kasteleyn operator.

With this condition satisfied, it can be assumed via reduction of 2-valent white vertices
and expansion of 2-valent black vertices that all the white vertices of G are trivalent.
For such graphs, Fock’s weights take a particularly simple form: it is precisely given by
the function Fs(α, β) = θ(α+ β − s)E(α, β) of Section 2.5.3, with s = s(w) constant on
the four white vertices appearing in any spider move with black boundary vertices.

Finally, let us consider a dimer model on a bipartite, planar graph G, with Kasteleyn
coefficients defined by some function Fs of train-track parameters, as above. Then, the
corresponding partition function is invariant under spider moves with black boundary
vertices if and only if these coefficients satisfy Equation (10). In particular, Fay’s identity
directly implies that the dimer models given by Fock’s weights are invariant under spider
moves, a fact first proved (for urban renewal) by Fock [Foc15, Proposition 1].

As a concluding remark, let us mention that any (finite) bipartite graph whose train-
tracks do not self-intersect can be reduced to a minimal one via shrinking/expanding of
a 2-valent vertices, spider moves, and merging parallel edges as in [KLRR18, Figure 1]:
this can be checked using the theory developed by Postnikov [Pos06] as in the proof
of [KLRR18, Lemma 3], or the work of Thurston [Thu17] as in [BCdT21, Lemma 33].
Since our models are invariant under the first two transformations, one could hope that
the whole theory applies to any (possibly non-minimal) bipartite graphs whose train-
tracks do not self-intersect. This is not the case, for the simple reason that dimer models
with Fock’s weights are clearly not invariant by the third move. Another (similar) way
to show that minimal graphs form the biggest class on which our work directly applies
can be found in [BCdT21, Theorem 31].

Note however that it is in theory possible to study the dimer model on a periodic bipartite
weighted graph (G′, ν ′) with no self-intersecting train-track, as follows: first use the three
local moves to reduce (G′, ν ′) to a periodic minimal weighted graph (G, ν), then harness
Theorem 49 to compute the parameters Σ, t,α so that the corresponding Fock weights
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on G are gauge-equivalent to ν, and finally apply our results.

5.3 Relation to known models, and perspectives

The dimer models studied in the present work are very general, as they are defined
on arbitrary minimal graphs and cover all dimer models in the periodic case (recall
Theorem 49). As it turns out, particular types of minimal graphs yield interesting classes
of dimer models, recovering and extending known models. This study was performed in
Section 8.2 of [BCdT20] in the genus 1 case, showing that the elliptic models of [BdTR17,
BdTR19, dT21] could be recovered by Fock’s elliptic dimer model.

The extension of these results to higher genus is beyond the scope of this article and
will be the subject of subsequent work [BCdT]. Let us sketch these constructions very
briefly.

Consider a planar graphG, not necessarily bipartite. To this graph, one can associate two
natural bipartite graphs: the double graph G = GD, see e.g. [Ken02], and the graph G =
GQ, see e.g. [WL75], both illustrated in Figure 9. One easily checks that if G is an
isoradial graph, then the associated planar, bipartite graphs GD and GQ are minimal, so
Fock’s dimer models can be defined and studied on these graphs.

G
GD GQ

Figure 9: An edge of G with its two adjacent train-tracks (left), and the corresponding
parts of G = GD (center) and GQ (right) in black lines and white/black vertices, with
the four adjacent train-tracks in red and blue lines.

If the M-curve Σ is endowed with a holomorphic involution, any isoradial embedding of G
naturally defines a minimal immersion of G = GD, i.e., an element of XG. The study
of the corresponding model can be undertaken using the theory of double (possibly
ramified) coverings of Riemann surfaces, as developed for example in [Fay73]. In the
ramified case (i.e., when the genus of Σ is even), it can be shown that Fock’s Kasteleyn
operator on GD is gauge-equivalent to the direct sum of the discrete Laplacian of [Geo19]
on G and G∗. In the unramified case, it is a higher odd-genus generalisation of the
massive Laplacian of [BdTR17] that appears. These results, together with the study of
the resulting Laplace operators and associated Green functions, will be the subject of
the upcoming article [BCdT].

As for the dimer models with Fock’s weights on minimal graphs of the form G = GQ,
they yield higher genus extensions of the Z-invariant elliptic Ising model of [BdTR19],
whose precise nature are yet to be understood and studied.
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Norm. Sup. (4), 4:47–62, 1971.

[BCdT] Cédric Boutillier, David Cimasoni, and Béatrice de Tilière. Integrable Lapla-
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on minimal graphs and genus 1 Harnack curves. arXiv e-prints, July 2020.

[BCdT21] Cédric Boutillier, David Cimasoni, and Béatrice de Tilière. Isoradial immer-
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Birkhäuser Boston, Inc., Boston, MA, 2007. With the collaboration of C.
Musili, M. Nori, E. Previato and M. Stillman, Reprint of the 1983 edition.

[Mum07b] David Mumford. Tata lectures on theta. II. Modern Birkhäuser Classics.
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