
CORRECTIONS AND UPDATES III

(AUGUST 2004 – MAY 2005)

Pierre de la Harpe

A first set of “Corrections and updates” has appeared in the 2003 printing of
my book [Harpe–00], as well as in the 2003 list of Geneva’s preprints [Harpe–03].
A second set has appeared in the 2004 list of Geneva’s preprints [Harpe–04].

Here is a third set. We wish to single out a first item in Section 1 below
on growth (related to VI.19 in [Harpe–00]) and a second item in Section 2 on
fundamental groups of non-positively curved manifolds (see VII.6 and VII.31).
Other items, in Section 3, are ordered according to numbers to which they
correspond in [Harpe–00].

1. Testing polynomial growth of a finitely generated
group on a subsequence of a sphere sequence

Consider a finitely-generated group Γ, a finite set S of generators of Γ, and
the resulting word length ℓS. For each integer k ≥ 0, denote by B(Γ, S; k) the
ball of those γ ∈ Γ such that ℓS(γ) ≤ k. Recall that the growth function of the
pair (Γ, S) assigns to an integer k ≥ 0 the size β(Γ, S; k) of B(Γ, S; k), and that
the spherical growth function is defined by σ(Γ, S; k) = β(Γ, S; k)−β(Γ, S; k−1),
with σ(Γ, S; 0) = 1.

Question VI.19 in [Harpe–00] asks wether it is true that an infinite group Γ
contains a cyclic group of finite index as soon as there exists an infinite subse-
quence (ki)

∞
i=0 such that supi≥0 σ(Γ, S; ki) < ∞. A positive answer was given

by A. Erschler1 and recorded in [Harpe–03]. Following again her indications,
we show below that, more generally, if σ(Γ, S; k) is polynomial on an infinite
subsequence, then the group Γ itself has polynomial growth. More precisely:

Proposition (A. Erschler). The notation being as above, assume that there

exist an infinite increasing sequence (ki)
∞
i=0 and constants C, d ≥ 0 such that

σ(Γ, S; ki) ≤ C(ki)
d for all i ≥ 0.

Then the group Γ has polynomial growth.

Observe that the conclusion could be stated in a stronger form since, for an
infinite group Γ of polynomial growth, there is d ≥ 1, necessarily an integer,
such that the limit limk→∞ β(k)/kd exists ([Pansu–83], and Item VII.33).

1The problem has been solved again by Ádám Timár [Timar], together with problems on
cutsets in infinite Cayley graphs from a paper by Babson and Benjamini [BabBe–99].
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Proof. The two main ingredients of the proof are

(i) the version of Van den Dries and Wilkie of Gromov’s theorem on groups
of polynomial growth [VdDW–84a],

(ii) an inequality of Coulhon and Saloff-Coste (see [CouSC–93], as well as
Section E+ of Chapter 6 in [GroLP–99]).

We write B(k), β(k), S(k), and σ(k) for B(Γ, S; k), ..., and σ(Γ, S; k). We
proceed by contradiction, assuming that Γ is infinite and not of polynomial
growth.

It follows from [VdDW–84a] that, for any pair of constants C′, d′ > 0, we

have β(ki) ≥ C′(ki)
d′

for infinitely many values of i. In particular, we have
β(ki) ≥ C(ki)

d+2, so that

(1)
|S(ki)|

|B(ki)|
≤

C(ki)
d

C(ki)d+2
=

1

k2
i

for infinitely many values of i.

In particular, (B(ki))
∞
i=0

is a Følner sequence, so that Γ is amenable.
Recall that the Følner functions FΓ,S and FølΓ,S are defined for ǫ > 0 and

n ≥ 1 by

FΓ,S(ǫ) = min

{

N

∣

∣

∣

∣

A ⊂ Γ, |A| = N, and |∂A| / |A| < ǫ

}

FølΓ,S(n) = FΓ,S

(

1

n

)

.

From the inequalities (1) and the definition of the function FølΓ,S , we have

(2) FølΓ,S(k2
i ) ≤ |B(ki)| = β(ki)

for infinitely many values of i.
By [CouSC–93] and the “translation” below, there exist constants K, K ′ > 0

such that

(3) FølΓ,S(n) ≥ Kβ(K ′n) for all n ≥ 1.

From (2) and (3), it follows that

(4) β(ki) ≥ Kβ(K ′k2
i )

for infinitely many values of i.
In any infinite group, there exists for i large enough an arbitrarily large

number of disjoint translates of B(ki) inside the ball B(K ′k2
i ). Hence

(5) Kβ(K ′k2
i ) ≥ 2β(ki)

for i large enough. The two previous inequalities lead to a contradiction, and
this ends the proof. �
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A convenient form of the Coulhon–Saloff-Coste inequality. Let us explain how
an inequality established in [CouSC–93] can be translated as (3).

Choose an integer n ≥ 1. By definition of the function FølΓ,S , there exists a
finite subset A of Γ such that

(6) FølΓ,S(n) = |A| and
|∂A|

|A|
<

1

n
.

The growth function β gives rise to the function Φ defined by

Φ(λ) = inf{k ≥ 1 | β(k) > λ}.

Observe that, if Φ(λ) > k′, then β(k′) ≤ λ. Now, by Theorem 1 of [CouSC–93]:

|∂A|

|A|
≥

1

4 |S|Φ(2 |A|)
.

Together with (6), this implies

1

n
>

1

4 |S|Φ(2 |A|)
.

Hence n
4|S| < Φ(2 |A|) and, by the observation above,

β

(

n

4 |S|

)

< 2 |A| = 2FølΓ,S(n),

as used in the previous proof. �

2. Growth of the fundamental group
of negatively curved (VII.6)

and non-negatively curved (VII.31) manifolds

I am grateful to Patrick Ghaanat for indications which made possible the
present update. Let M be a connected compact Riemannian manifold and let
Γ denote its fundamental group.

Theorem VII.6 is Theorem 2 in [Milno–68]: if M has negative sectional cur-
vature, then Γ has exponential growth. Just after the proof of this theorem,
Milnor asks “Perhaps the hypothesis of negative definite mean curvature would
already suffice ?” (“mean curvature” is nowadays more often called “Ricci cur-
vature”). The answer is no: any manifold of dimension ≥ 3 (compact or not)
admits a complete metric of negative Ricci curvature [Lohka–94]. In particu-
lar, spheres of dimensions n ≥ 3 underly examples of Riemannian manifolds of
negative Ricci curvature with Γ = {1}; for n = 3, this was known earlier from
[GaoYa–86] and [Brook–89].

I wish I had stated more precisely some consequences of Milnor’s theo-
rem VII.31: “If M has nonnegative Ricci curvature, then Γ has polynomial
growth of degree bounded by the dimension of M”.
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For example: consider the manifold M = G/Γ where G =





1 0 0
R 1 0
R R 1





is the real Heisenberg group and where G =





1 0 0
Z 1 0
Z Z 1



 is the Heisenberg

group of Items VII.21 and VII.22; since the degree of polynomial growth of
Γ = π1(M), which is 4, is strictly larger than the dimension of M , which is
3, there does not exist any Riemannian metric on M with non-negative Ricci
curvature.

Observation. Let M be a compact manifold; assume that the degree of
polynomial growth of Γ = π1(M) is d; then the degree of polynomial growth
of the abelianization H1(M, Z) of Γ is bounded by d, so that the first Betti
number2 of M is at most d. Thus, if the first Betti number of M is strictly
larger than the dimension of M , there cannot exist on M a Riemannian manifold
of non-negative Ricci curvature.

Let M be a compact manifold of dimension n which admits a Riemannian
metric of nonnegative Ricci curvature. Cheeger and Gromoll [CheGr–71] have
shown that the fundamental group Γ = π1(M) contains a finite normal subgroup
N such that Γ/N is a crystallographic group, namely a cocompact discrete
subgroup of the isometry group R

d
⋊ O(d) of an Euclidean space R

d with 0 ≤
d ≤ n, and thus a group which fits in a short exact sequence

0 −→ Z
d −→ Γ −→ F −→ 1

with finite quotient F ; in particular, Γ has polynomial growth of degree exac-
tly d. Moreover, if d = n, then M is flat.

The following characterization is due to Wilking. For an abstract group Γ,
the following conditions are equivalent:

(i) Γ is isomorphic to the fundamental group of a compact manifold of
nonnegative Ricci curvature;

(ii) Γ is isomorphic to the fundamental group of a compact manifold of
nonnegative sectional curvature;

(iii) there is a normal subgroup of finite index in Γ which is finitely generated
free abelian;

(iv) Γ is isomorphic to a discrete cocompact subgroup of a semi-direct pro-
duct R

d
⋊β F where F is a finite group and β : F −→ GL(d, R) a

homomorphism.

In [Wilki–00], there are also theorems giving equivalent geometrical and al-
gebraic conditions for finitely generated fundamental groups of complete Rie-
mannian manifolds of nonnegative Ricci curvature, and for virtually polycyclic
groups. Several of the other results quoted above carry over in some form to
complete Riemannian manifolds with non-negative Ricci curvature.

2Recall one definition of the first Betti number: it is the dimension of the rational vector
space H1(M, Z)⊗Z Q.
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The following is a standard open problem (stated explicitely in [Milno–68]).
Let M be a complete Riemannian manifold with non-negative Ricci curvature.
Is the fundamental group π1(M) necessarily finitely generated ? Wilking has
reduced the problem to manifolds with abelian fundamental groups [Wilki–00].

There is an exposition of some of the relations between the properties of the
fundamental group of a Riemannian manifold and appropriate conditions on
the curvature, in Chapter 10 of [Eberl–96].

3. Various Items

II.B, and free subgroups of groups of units in tensor algebras.

Let X be a set and K a commutative ring with unit, and with 1 6= 0. De-
note by A(X) = ⊕∞

n=0A
n(X) the tensor algebra of the free K-module K[X ],

with its standard graduation. The Magnus algebra of the set X is the di-
rect product module Â(X) =

∏∞
n=0

An(X), with the product topology of the
discrete topologies on the An(X)’s; this has a filtration with order function

ω : Â(X) −→ N ∪ {∞} defined by ω((an)n≥0) = m if an = 0 for n < m and
an 6= 0, and ω(0) = ∞. The Magnus group of the set X is the group Γ(X) of

those invertible elements in Â(X) which are of the form 1 + x, with ω(x) ≥ 1.

The subgroup of Γ(X) generated by (1 + x)x∈X is isomorphic to the free
group F (X) on X (this can also be seen as a subgroup of the group of units in
A(X)).

Let us assume that K is a field of characteristic zero; then, similarly, the
subgroup of Γ(X) generated by (exp(x) = 1 +

∑∞
n=1

xn/n!)x∈X is isomorphic
to F (X).

These are particular cases of Theorem 1 in [Bourb–72, Chap. II, § 5, No 3].

III.5, and infinite finitely generated simple groups with exactly two conjugacy
classes.

A very extreme way for a group to be simple is to have exactly two conjugacy
classes, namely {e} and another one. For a long time, it has been an open
problem to know whether there exists such a group which would be finitely
generated and not of order 2; this is recorded as Problem 9.10, due to V. Guba,
in the 1984 Kourovka Notebook. A positve answer has been announced by
[IvaOl–91], but these authors did not provide a full proof, and the problem was
later again considered as open.

Denis Osin has shown that such groups do exist; indeed, any countable
torsion-free group can be embedded into a 2-generated group with exactly two
conjugacy classes (such a group is by necessity torsion-free), and it follows that
there exist uncountably many pairsise non-isomorphic torsion-free 2-generated
groups with exactly two conjugacy classes [Osin–S].

In the same paper, Osin shows that there exist uncountably many pairwise
non-isomorphic 2-generated divisible groups (indeed verbally complete groups).

III.14, and free products with amalgamation.
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The construction is interesting outside the world of finitely generated groups.
For a field K, the group of automorphisms of the affine plane K

2 viewed as an
affine algebraic variety, the so-called affine Cremona group, has a decomposition

Aut(K2) = Aff(K2) ∗T J (K2)

where Aff(K2) is the affine groupe, containing elements x 7−→ ax + b with
a ∈ GL2(K) and b ∈ K

2, where J (K2) is the de Jonquières group, consisting

of the automorphisms of the form

(

x1

x2

)

7−→

(

x1

x2 + P (x1)

)

, with P ∈ K[X ],

and where T = Aff(K2) ∩ J (K2) is the lower triangular group of matrices of

the form

(

1 0
c 1

)

. See [Kulk–53] as well as references in [Lamy–02].

Appendix I, Item concerning III.B (Ulam’s problem).

Ulam’s problem has been solved positively by S. Thomas [Thoma–99]: there
exists indeed a non-trivial action of SO(3) on a countable set. More generally,
let G be a nontrivial subgroup of GLn(K) for some field K of cardinality 2ω and
for some integer n ≥ 1, where ω denotes the first infinite cardinal. Then there
exists a subgroup H 6= {1} of G such that the cardinality of G/H is at most ω;
in case G is moreover simple, there exists a subgroup H of G such that G/H is
precisely of cardinality ω.

Later but independently, similar results have been published in [ErsCh–04].
See also Problem 15.8 in the Kourovka Notebook.

IV.23, on the fundamental observation of Efremovic-Schwarzc-Milnor.

Theorem IV.23 extends readily to proper isometric actions of compactly gen-
erated locally compact groups. This has been observed by several people, in-
cluding the authors of [FarWe].

IV.25.vii, finitely-generated nilpotent groups, and quasi-isometry.

Let Γ, Γ′ be two finitely-generated torsion-free nilpotent groups, let N, N ′

denote their Mal’cev completions, and let gr(N), gr(N ′) denote the correspon-
ding graded nilpotent groups. Pansu has shown that, if the finitely generated
groups Γ and Γ′ are quasi-isometric, then the graded Lie groups gr(N), gr(N ′)
are isomorphic [Pansu–89]. Shalom has shown that the converse does not hold
[Shalo].

V.10, on the topology on a space of marked groups named “Cayley topology”
in [Harpe–00], and various other names including Chabauty.

Let X be a topological space. The Vietoris topology on the space K(X) of
compact subspaces of X has a basis consisting of the sets

{K ∈ K(X) | K ⊂ U0, K ∩ U1 6= ∅, . . . , K ∩ Un 6= ∅}

for U0, U1, . . . , Un open in X . This topology had been considered by Vie-
toris (1922), Michael (1951), and others. Some properties: if X is metrisable
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[respectively separable, completely metrisable, compact metrizable], so is K(X).
See [Engel–89], as well as Section 4.F in [Kechr–95].

In case X is a compact metric space, this topology on K(X) is that associated
to the Hausdorff metric.

Assume now that X is Polish locally compact. The Fell topology on the space
F (X) of closed subspaces of X has a basis consisting of the sets

{F ∈ F (X) | F ∩ K = ∅, F ∩ U1 6= ∅, . . . , F ∩ Un 6= ∅}

for K compact and U1, . . . , Un open in X . (For X compact, this is again the
Vietoris topology.) For some properties, see Section 12.C in [Kechr–95].

In case X is a locally compact space, I would like to understand better
how this topology fits with the notions of convergence defined by Gromov in
Chapter 3 of [GroLP–81].

For a locally compact group G, the Vietoris-Fell topology induces a topology
on the space of closed subgroups of G that we like to call the Chabauty topology

[Chaba–50] ; see the exposition in § 5 of Chapter 8 in [Bourb–63]. In case G
is countable and discrete, this topology coincides with the topology induced on
subgroups of G by the compact product topology on 2G.

In particular, for an integer m ≥ 1, the space Gm of normal subgroups of
the non-abelian free group Fm on a set Sm of m generators, with the Chabauty
topology, is a totally disconnected compact metric space. There is a natural
bijection between the set of normal subgroups of Fm and the set of marked

groups with m generators, namely the set of groups given together with an
ordered set of m generators (up to isomorphisms of marked groups). Thus Gm

is also known as the space of marked groups with m generators.

The space of closed subgroups of the locally compact group R
2 has been

identifed as a 4-sphere in [HubPo–79].

VI.62, large growth does not imply non-amenability.

Given an integer n ≥ 2 and ǫ > 0, there exists a group Γ generated by a set
S of n generators such that the corresponding exponential growth rate satisfies
ω(Γ, S) > 2n − 1 − ǫ and such that the group Γ is amenable [ArGuG]. This
answers Problem VI.62. There are examples with Γ an extension of an abelian
group by a nilpotent group, and with Γ an extension of a solvable group of
solvable length 2 by a finite group.

VII.B, on uniform exponential growth of Burnside groups.

Let B(m, n) be a free Burnside group on m ≥ 2 generators and of exponent
n which is odd and sufficiently large. It is a corollary of a result of D. Osin
on “uniform non-amenability” that B(m, n) if of uniformly exponential growth
[Osin-U].

VII.29, on Gromov’s theorem characterizing groups of polynomial growth.
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Let Π be a group (not necessarily finitely-generated). The following proper-
ties are equivalent [Wilki–00]:

(i) There is an integer n such that any finitely generated subroup of Π has
polynomial growth of order ≤ n.

(ii) There is a normal subgroup N of Π satisfying
(a) for any finitely generated subgroup Γ of Π, the group Γ∩N is finite;
(b) the factor group Π/N contains a torsion free, nilpotent subgroup of
finite index which is an inductive limit of finitely generated, nilpotent
groups of fixed rank.

The group N can be chosen as the maximal locally finite normal subgroup of Π.

VII.33, on growth of nilpotent groups.

Let Γ be a finitely generated nilpotent group with polynomial growth of
degree d; choose a finite generating set of Γ and let β(·) denote the corresponding
growth function. It is an unpubished result of F. Grunewald that there exists
a constant C > 0 such that

β(k) = CKd + O(kd− 1

2 )

(cited by Grigorchuk in [Grigo–91]).

VII.34 1

2
, and what is polynomial growth good for. (There is so far one item of

what should become a list....)

(i) Let X be a standard Borel space, Γ a countable group acting on X by
Borel automorphisms, and EX

Γ the corresponding equivalence relation.
Let µ be a probability measure on X which is quasi-invariant by Γ. If Γ is

amenable, then EX
Γ is µ-amenable [KecMi–04, Proposition 9.2], and it follows

that EX
Γ is hyperfinite µ-almost everywhere (a result of Connes-Feldman-Weiss

[KecMi–04, Theorem 10.1]).
If Γ is finitely generated and has polynomial growth, then EX

Γ is hyperfinite
(a result of Weiss and Jackson-Kechris-Louveau [KecMi–04, Theorem 11.1]).
We do not know whether this carries over to amenable groups.
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291–315.

Lohka–94. J. Lohkamp, Metrics of negative Ricci curvature, Ann. of Math. 140 (1994),
655–683.

Milno–68. J. Milnor, A note on curvature and fundamental group, J.Diff. Geometry 2

(1968), 1–7.

Osin-U. D. Osin, Uniform non-amenability of free Burnside groups, Preprint (2004).

Osin-S. S. Osin, Small cancellations over relatively hyperbolic groups and embedding
theorems, Preprint (2004).

Pansu–83. P. Pansu, Croissance des boules et des géodésiques fermées dans les nilvariétés,
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