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Mathématiques et S
ien
esA
tivité fondamentale de l'esprit humain, les mathématiques se sont dé-veloppées sans dis
ontinuité depuis l'Antiquité. Leur 
onstru
tion se poursuit
haque jour, donnant lieu à des milliers d'arti
les par an. Les plus grandsesprits y ont laissé leur empreinte (Eu
lide, Newton, Gauss, Poin
aré, et
).Les 
on
epts mathématiques, même les plus usités (nombres, 
er
les,droites), n'ont pas d'existen
e ailleurs que dans notre imagination. Le plussouvent, ils ont été élaborés par pure 
uriosité intelle
tuelle et pas en vued'une appli
ation. On peut ainsi s'étonner que de telles abstra
tions puissentêtre utiles, notamment pour les s
ien
es naturelles et la te
hnologie. Noussavons que 
'est pourtant le 
as : depuis Galilée et Kepler, une grande par-tie de l'a
tivité s
ienti�que 
onsiste à dé
rire, en termes mathématiques, desphénomènes naturels, 
onvenablement isolés et idéalisés. L'aspe
t opératoireet dédu
tif des mathématiques est alors mis en jeu pour dé
ouvrir et dé-montrer de nouvelles �lois de la nature�, que l'on peut ensuite soumettre àl'expérien
e. Les 
on
epts mathématiques sont ainsi des outils de pensée, dedé
ouverte et de 
ompréhension (�mathema� = �
omprendre�, en gre
) auservi
e de toutes les s
ien
es. L'usage de l'ordinateur et la numérisation del'information a

roissent sans 
esse l'usage possible et le besoin de modèlesmathématiques.Con
rètement, voi
i quelques outils mathématiques utiles dans la pra-tique s
ienti�que et dont on parlera dans 
e 
ours :� des nombres, pour exprimer les grandeurs que l'on mesure et e�e
tuerdes 
al
uls. Les prin
ipaux systèmes numériques (nombres entiers, ra-tionnels, réels, 
omplexes) seront dis
utés dans les � A.2 à A.6, notam-ment du point de vue de leur usage 
orre
t sur ordinateur.� des 
on
epts géométriques pour maîtriser intelle
tuellement l'espa
e(
al
ul ve
toriel, algèbre linéaire, voir 
h. 2).� le 
al
ul in�nitésimal, outil intelle
tuel d'une valeur inestimable sanslequel la s
ien
e et la te
hnologie moderne n'existeraient pas (
h. 3-5).Il se dé
ompose en deux aspe
ts :1



� le 
al
ul di�érentiel (
h. 3), notamment pour les problèmes d'opti-misation.� le 
al
ul intégral (
h. 4), pour le 
al
ul d'aires, volume, débits, valeursmoyennes, et
.� des modèles pour dé
rire et prédire l'évolution des phénomènes naturels(systèmes dynamiques, équations di�érentielles, 
h. 1 et 5). Grâ
e àl'essor de l'ordinateur, les systèmes dynamiques 
onstituent le 
ourantprin
ipal des mathématiques appliquées a
tuelles.� des raisonnements e�
a
es, souples et rigoureux et dont les 
on
lusionssont �ables.� les probabilités et statistiques (semestre d'été).En résumé, les mathématiques jouent un r�le fondamental dans la 
onnais-san
e s
ienti�que et son développement. Ce sont de puissants outils intelle
-tuels qui permettent de formuler les lois s
ienti�ques de manière pré
ise,maniable et subtile. Elles débou
hent sur un usage e�
ient de l'ordinateur,notamment dans l'organisation d'expérien
es �virtuelles�. En�n, les mathé-matiques sont un 
adre de raisonnement rigoureux et opératoire tel qu'il estpartout né
essaire en s
ien
e.Après 
ette introdu
tion, l'étudiant en s
ien
es devrait être 
onvain
u dubien fondé de s'intéresser au plus possible de mathématiques. Il s'agit d'uninvestissement important qui lui donnera un avantage substantiel dans lasuite de ses études et de sa 
arrière.
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Chapitre 1Simulations mathématiques :systèmes dynamiquesComment s'est formée la terre ? Comment va évoluer la population mon-diale ? Que va-t-il se passer dans telle réa
tion 
himique ? Quel temps fera-t-ildans quelques jours ?L'un des buts prin
ipaux de la s
ien
e est de dé
rire l'évolution des phéno-mènes naturels. L'essor de l'ordinateur a fait exploser 
et aspe
t de l'a
tivités
ienti�que, permettant de s'attaquer à toutes sortes de problèmes et de tenir
ompte d'une multitude de paramètres (plusieurs dizaines de millions enmétéorologie). Les simulations d'évolutions �virtuelles� ouvrent 
haque jourde nouveaux 
hamps d'investigation, remplaçant des expérien
es impossibles,dangereuses ou trop 
oûteuses (é
ologie, pro
essus industriels, et
).Mais, pour mettre en s
ène une évolution virtuelle sur un ordinateur, ilfaut d'abord en avoir un modèle mathématique. L'étude mathématique desmodèles d'évolution est la théorie des systèmes dynamiques (popularisée sousle nom de théorie du 
haos). C'est aujourd'hui la partie prin
ipale des ma-thématiques appliquées et elle in�uen
e notre vision de 
e qu'est un modèles
ienti�que. C'est pourquoi nous avons trouvé intéressant de prendre, dans
e 
ours, les systèmes dynamiques 
omme �l 
ondu
teur et 
omme prétextepour apprendre les diverses te
hniques utiles dans toutes les s
ien
es.On distingue deux types de systèmes dynamiques1 :1. les systèmes dis
rets, dans lesquels le temps varie par saut d'une unité.Ce sont 
eux qui servent aux simulations sur ordinateurs. On en verrade très simples dans 
e 
hapitre et d'autres dans les 
hapitres 2 et 3.1Il s'agit i
i de systèmes déterministiques, où une 
ause détermine un e�et ; nous n'abor-derons pas les systèmes probabilistiques, où le hasard entre en jeu (voir 
ependant p. 13).3



2. les systèmes 
ontinus, dans lesquels le temps varie 
ontinûment. Plusan
iens et importants du point de vue théorique, ils relèvent de lathéorie des équations di�érentielles. Ils seront traîtés au 
hapitre 5.1.1 Systèmes dynamiques dis
retsPar dé�nition, un système dynamique dis
ret se 
ompose de :1. un ensemble E (l'ensemble des états possibles du système)2. une appli
ation f : E → E, de E dans lui-même (la loi d'évolutiondu système).Le temps varie dis
rètement, 
'est-à-dire par saut d'une unité. Notons s(t)l'état du système au temps t. L'évolution du système, à partir d'un l'étatinitial s0 = s(0), est don
 dé
rite par une suite d'éléments de E :
s0 = s(0) , s(1) , s(2) , s(3) . . . (1.1)On appelle 
ette suite la traje
toire (ou l'orbite) de l'état s0. On supposeque 
ette traje
toire est déterminée par l'appli
ation f , grâ
e à l'équationd'évolution

s(t + 1) = f(s(t)) (1.2)Autrement dit : si le système est dans l'état s, il sera, après une unité detemps, dans l'état f(s).Au temps t + 2, l'état du système sera s(t + 2) = f(f(s(t)) = f2(s(t)).Pour 
onnaître l'état s(t + n), après n étapes, il su�t ainsi d'itérer n fois
f , 
'est-à-dire de 
omposer n fois l'appli
ation f ave
 elle même :

s(t + n) = fn(s(t)) := f ◦f ◦ · · · ◦f︸ ︷︷ ︸
n fois (s(t)) (nième itération de f) .(Le symbole f ◦n peut être utilisé s'il y a risque de 
onfusion ave
 une puis-san
e.) La traje
toire (1.1) de s0 s'é
rira ainsi

s0 , f(s0) , f2(s0) , f3(s0) . . . (1.3)Dans la pratique, l'information sur l'état du système est numérisée, 
'est-à-dire 
on
entrée sous forme de m nombres réels. Ces nombres peuvent êtredes pressions, des températures, des positions, vitesses, 
on
entrations desubstan
es 
himiques, nombre de 
ellules et
. Un état s est ainsi un m-uple
s = (x1, x2, . . . , xm) ∈ Rm de nombres réels (R := ensemble des nombres4



réels ; voir p. 94) et l'ensemble E des états du système est un sous-ensemblede Rm. Quant au 
hoix de l'unité de temps, il dépend du phénomène àmodéliser : se
onde, année, temps d'une division 
ellulaire, et
.L'itération d'une fon
tion est idéale pour le traitement informatique,grâ
e à des programmes simples et rapides du type �bou
le�. Ce
i expliquepourquoi les systèmes dynamiques dis
rets sont à la base de toutes les simu-lations sur ordinateurs. Dans MAPLE, la ne itération fn de f s'obtient parla 
ommande f��n.Itération graphique : Lorsque l'ensemble des états E est l'ensemble
R des nombres réels, la fon
tion f peut être visualisée par son graphe. Latraje
toire de s(0) peut aussi s'obtenir géométriquement à partir de 
e gra-phique. Pour 
ela, il faut pla
er 
�te à 
�te le plan (x,y) (où l'on dessine legraphe de f) et le plan (t,s) (où l'on dessine le graphe de la traje
toire de
s0 = s(0)). L'axe des x et 
elui des t doivent être pla
és à la même hauteuret les axes des x, des y et des s gradués à la même é
helle.
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Les points de la traje
toire 
her
hée sont obtenus de la façon suivante :partant du point (0, s(0)) sur l'axe des s, on se dépla
e horizontalement versla gau
he jusqu'à la droite à 45◦ {y = x}. On monte alors verti
alementjusqu'au graphe de f puis on revient horizontalement jusqu'à la droite t = 1.On a ainsi trouvé le point (1, s(1)). Cette opération peut se répéter à partirde n'importe quel point (t, s(t)) du graphe de la traje
toire et donne le point
(t + 1, s(t + 1)). On peut ainsi dessiner le graphe de la traje
toire de s0.Par exemple, dans la �gure 
i-dessus, on voit que la traje
toire tend versl'état d'équilibre s = a qui est un état stationnaire : f(a) = a (voir p. 8).5



Remarques :� On ne dessine souvent que la partie gau
hede la �gure pré
édente, 
'est-à-dire le 
he-minement en es
alier entre la droite {x =
y} et le graphe de f . Cette partie 
ontienten e�et toute l'information sur la traje
-toire. �

�
�

�
�

�
�

�
��

x0

a

a
s(0)
q

s(1)
q

s(2)
q

s(3)
q qqq

y

6

-
6

- 6
-

� L'intérêt de 
ette amusante méthode graphique est surtout théorique,pour l'aide au raisonnement. On ne peut pas l'utiliser pour des résul-tats quantitatifs 
ar l'impré
ision des traits de 
rayon s'ampli�e troprapidement lors de l'itération.1.2 La 
roissan
e exponentielleCe système dynamique est l'un des plus simples et des plus fréquents.Ilmodélise l'évolution d'une population en phase de 
roissan
e ou de dé
rois-san
e non-freinée. Un état 
onsiste en une seule valeur numérique x ∈ R etla loi d'évolution f : R → R est
f(x) := ax (a ∈ R 
onstante) (1.4)dont le graphe est une droite de pente a passant par l'origine.Exemples :1. Capital pla
é à taux d'intérêt 
onstant τ . L'état x est le montant du
apital et a = 1 + τ/100.2. Populations de 
ellules, de ba
téries, et
. L'état x est simplement lamasse ou la densité (=masse/volume). On a a > 1.3. É
hantillon d'un élément 
himique radioa
tif. Dans 
e 
as x peut être lamasse ou l'intensité du rayonnement de l'é
hantillon. On a 0 < a < 1.4. (Newton) Refroidissement d'un 
orps dans un �uide. L'état du systèmeest la di�éren
e de température entre le 
orps et le �uide.Si x(0) est l'état initial au temps t = 0, sa traje
toire x(n) sera donnéepar

x(n) = anx(0) (1.5)6



Remarques :1. si a = −1, on a une évolution périodique de période 2. L'état dusystème os
ille indé�niment entre −x(0) et x(0). Plus généralement,lorsque a < 0, l'état du système alterne à 
haque étape entre lesnombres positifs et négatifs.2. La valeur |x(t)| varie exponentiellement en fon
tion de t ave
 un 
o-e�
ient de 
roissan
e |a|.3. Si a > 0, notre système est la dis
rétisation d'un système où le tempsvarie 
ontinûment et où l'état x(t) est donné par
x(t) = x(t0) at−t0 = x(t0) e(t−t0) lna. (1.6)Si a > 1, on dé
rit souvent le système par le temps de doublement :
'est le temps T pour lequel on a x(t + T ) = 2x(t). Pour une 
ulture de
ellules, il 
oïn
ide ave
 le temps de division 
ellulaire. Analoguement, si

0 < a < 1, le système sera déterminé par sa demi-vie : le temps T né
essairepour que x(t + T ) = 1
2 x(t). Dans les deux 
as, on déduit de l'équation (1.6)que le rapport entre T et a est

T =
ln 2

| ln a| . (1.7)Toujours par (1.6), si on 
onnait x(t) et x(t0), on peut 
al
uler T :
T =

(t − t0) ln 2

| ln x(t) − ln x(t0)|
=

(t − t0) ln 2

| ln x(t)
x(t0) |

. (1.8)Appli
ations :� La 
on
entration d'une population de ba
téries s'est multipliée par 2,9en 5 heures. Utilisant l'équation (1.8), le temps de doublement de lapopulation est
T =

5 ln 2

ln 2.9
∼= 3.26 heures� Le rayonnement dû au 
arbonne 14 d'un é
hantillon de bois est 0.7 fois
elui d'un même é
hantillon de 
e bois vivant. La demi-vie T du C14étant de 5730 ans, on déduit de (1.8) qu'il s'est é
oulé

t =
5730 | ln(0.7)|

ln 2
∼= 2949 ansdepuis la mort de l'arbre. 7



Graphique logarithmique : On re
onnait graphi-quement un système à 
roissan
e exponentielle s(t +
1) = a s(t) en portant les points (m, s(t + m)) surun graphique dont l'ordonnée est en é
helle logarith-mique. Ces points seront alignés sur une droite. Pluspré
isément, sur un graphique standard, les points
(m, ln s(t + m)) seront alignés sur une droite de pente
ln a. La �gure 
i-
ontre illustre 
e fait (ave
 t0 = 0et a > 1). On retrouve géométriquement les formules(1.7) et (1.8) en utilisant le théorème de Thalès.

������������

1 T t0

lna
ln 2

ln ( s(t)
s(0)

)

ln s(t)

ln s(0)

(a > 1)

ln(2s(0))

1.3 États stationnaires - Cy
les - StabilitéDans la théorie des systèmes dynamiques, les notions suivantes sont im-portantes 
ar elle permettent un dis
ours qualitatif sur l'évolution d'un sys-tème :Etats stationnaires : Un état s est dit stationnaire si f(s) = s. Latraje
toire d'un état stationnaire est 
onstante : s(n) = s(0). Le systèmeest en état d'équilibre. Un état stationnaire s est stable si la traje
toire despoints voisins de s tend vers s. Autrement dit, s est stable s'il existe unvoisinage V de s dans E tel que s(0) ∈ V entraîne que s(n) → s lorsque
n → ∞. Le voisinage V des points qui sont ainsi attirés par s est le bassind'attra
tion de s (par analogie ave
 le �bassin� d'un �euve : l'ensemble desrivières qui s'y jettent).Par exemple, dans la 
roissan
e exponentielle (� 1.2, p. 6), l'état x = 0est le seul état stationnaire. Il est stable si et seulement si |a| < 1. Le bassind'attra
tion de 0 est alors tout R.Etats périodiques : Un état s est dit périodique s'il existe un entier
p ≥ 1 tel que fp(s) = s. Le plus petit de 
es entiers p est la période de s. Parexemple, un état stationnaire est périodique de période 1. La traje
toire d'unétat périodique (de période p) s'appelle un 
y
le (de période p). Un 
y
le Aest stable s'il existe un voisinage V de A dans E (son bassin d'attra
tion),tel que les traje
toires partant de V 
onvergent vers A. Autrement dit, si
s(0) ∈ V , la distan
e entre s(n) et l'ensemble A tend vers 0 quand n → ∞.
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Exemple 1 : E := R et f(s) = −s3. L'état s = 0 est stationnaire stable,son bassin étant ] − 1, 1[. L'ensemble {−1, 1} est un 
y
le de période 2 non-stable.Exemple 2 : E := R et f(s) = − 3
√

s. Cette fois, 
'est le 
y
le {−1, 1} quiest stable, ave
 pour bassin d'attra
tioin R − {0}. L'état stationnaire s = 0n'est pas stable.Un état stationnaire ou un 
y
le stables sont des 
as parti
uliers d'attra-
teurs - sous-systèmes admettant un bassin d'attra
tion. La notion de sta-bilité ou d'attra
teur est très importante pour la modélisation s
ienti�que,les phénomènes donnant lieu à des théories jouissant généralement d'une
ertaine stabilité. Les états que l'on ren
ontre sont alors très pro
hes d'unattra
teur (appelons-le A). De petites perturbations, ne 
hangeront pas 
ettesituation puisque les traje
toires seront rapidement ramenées vers A. Celadonne une robustesse à la théorie puisque l'évolution ne sera pas a�e
téepar de légères perturbations, par exemple dues aux fa
teurs négligés par lemodèle. Par 
ontre, de plus grandes perturbations peuvent amener dans lebassin d'un autre attra
teur.Par exemple, les météorologues voient le 
limat a
tuel de la terre, relative-ment tempéré, 
omme un attra
teur du système de l'athmosphère terrestre.Un autre attra
teur est le 
limat gla
iaire. Pendant les 100000 dernières an-nées, notresystème atmosphérique a passé plusieurs fois d'un attra
teur àl'autre.L'algèbre linéaire et le 
al
ul di�érentiel fournissent des 
onditions su�-santes pour qu'un état stationnaire soit stable (voir � 3.4, p. 64). Dans le 
asd'un système à une variable (R, f), ave
 f dérivable, on a :Condition sur la dérivée : Soit a ∈ R tel que f(a) = a(état stationnaire). Alors1. si |f ′(a)| < 1, a est stable.2. si |f ′(a)| > 1, a est non-stable. aaLe 
as |f ′(a)| = 1 ne permet au
une 
on
lusion sans informationsupplémentaire.Exemple : Prenons la fon
tion f(x) = x + sin x. Le point π est un étatstationnaire et f ′(π) = 0. Il est don
 un stable par la 
ondition sur la dérivée.En partant de x(0) = 2, on obtient 9 dé
imales de π après 4 itérations :9



n x(n)0 2.0000000001 2.9092974272 3.1395091333 3.1415926524 3.1415926545 3.141592654 Obtenu par le programme MAPLE :
> x :=2 : f := x −> x+sin(x) :for n from 0 to 5 do[n,evalf((f��n)(x))℄ ; od ;La 
ondition sur la dérivée 
i-dessus se généralise pour un 
y
le A :=

{a1, . . . ap}. On entend par là que f(a1) = a2, f(a2) = a3, et
 et f(ap) = a1.Ce
i est équivalent à 
e que fp(a1) = a1, don
 que a1 soit un état stationnairepour fp. La formule de dérivation d'une fon
tion 
omposée donne (fp)′(a1) =
f ′(a1)f

′(a2) · · · f ′(ap). On en déduit :Proposition 1.3.1 Soit A := {a1, . . . ap} un 
y
le de f . Alors :1. si |f ′(a1)f
′(a2) · · · f ′(ap)| < 1, le 
y
le A est stable.2. si |f ′(a1)f
′(a2) · · · f ′(ap)| > 1, le 
y
le A est instable.La détermination des bassins d'attra
tion est, en général, un problèmedi�
ile. Lorsque f : R → R est un polyn�me, le théorème 
i-dessous, dé-montré au début du siè
le, permet de déte
ter la présen
ede 
y
le stables endonnant un point de leur bassin d'attra
tion.Théorème 1.3.2 (Théorème de Fatou) Supposons que la loi d'évolution

f : R → R d'un système dynamique soit un polyn�me de degré d ≥ 2. Sup-posons que le système admette un 
y
le A stable. Alors le bassin d'attra
tionde A 
ontient au moins un point x tel que f ′(x) = 0.La dérivée f ′ de f étant un polyn�me de degré d− 1, il y a au plus d− 1points où f ′ s'annule (voir prop. A.7.1, p. 99). On en déduit que le système
(R, f), ave
 f un polyn�me de degré d ≥ 2, admet au plus d − 1 
y
lesstables (il peut y en avoir moins, ou même pas du tout). Nous utiliserons 
ethéorème dans l'étude de la 
roissan
e logistique, au paragraphe suivant.1.4 La 
roissan
e logistiqueLa 
roissan
e exponentielle étudiée au paragraphe 1.2 a peu de 
han
e depouvoir se poursuivre indé�niment. Le système de la 
roissan
e logistiqueest l'un des plus 
ourants pour modéliser la dynamique d'une population àplus long terme (voir [9, pp. 41�46℄, [11, p. 124�132℄, [12℄). Il suppose que lapopulation est limitée par l'environnement à une valeur maximale K. Il estalors naturel de rempla
er le nombre d'individus s par u := s/K. Ainsi, la10



quantité maximale d'individus est 1 et l'état du système est le nombre réel
u ∈ [0, 1]. La loi d'évolution fa : [0, 1] → [0, 1] pour la 
roissan
e logistiqueave
 
oe�
ient de fertilité a est la suivante :

fa(u) := au(1 − u) = au − au2 (1.9)dont le graphe est une parabole (voir 
i-
ontre).Lorsque u est petit, le terme en u2 est négligeableet on a fa(u) ≈ au. Approximativement, la po-pulation 
roît exponentiellement ave
 
oe�
ient de
roissan
e a. Lorsque u s'appro
he de 1, le terme
a(1 − u) devient plus petit que 1 et la populationdé
roît.

0

0 0.5 1

a

4

Contrairement à la 
roissan
e exponentielle, l'état u(n) n'aura pas d'ex-pression simple telle que (1.5), la fon
tion f2 étant un polyn�me 
ompliquéde degré 4, f3 de degré 8, et
 (essayez ave
 MAPLE). La formule devientrapidement impossible à é
rire. On peut, en revan
he, pratiquer une analysequalitative des traje
toires ave
 les notions du paragraphe pré
édent.Le graphe de fa indique qu'il y a deux états stationnaires. Algébrique-ment, l'équation fa(u) = u a bien 2 solutions :
u = 0 et u =

a − 1

a
= 1 − 1

a
. (1.10)La dérivée f ′

a(u) = a − 2au de fa en 
es points est :
f ′

a(0) = a et f ′
a(

a − 1

a
) = 2 − a. (1.11)On suppose a > 1. La 
onditions sur la dérivée (voir p. 9) montre quel'état stationnaire u = 0 est instable pour a > 1. Quant à u = 1− 1/a, il eststable si 1 < a < 3 et instable lorsque a > 3. La population va ainsi évoluerde la manière suivante :1) si 1 < a < 3, quelque soit la population de départ u0, la population u(t)tend vers l'état d'équilibre u = 1 − 1/a.2) Lorsque a > 3, les deux états stationnaires sont instables et les traje
toiressont en quelque sorte repoussées de l'un vers l'autre. A mesure que a 
roît,des phénomènes de plus en plus 
ompliqués se produisent. Pour 
ertaines11



valeurs de a, on va trouver des 
y
les stables et la population tendra versun 
omportement 
y
lique. Observons que le point u = 1/2 est le seul oula dérivée de fa s'annule. Par le théorème de Fatou (p. 10), si un 
y
lestable existe, le point u = 1/2 sera obligatoirement dans son bassin. On peutdémontrer qu'en augmentant a, on obtient des attra
teurs périodiques detoute période : d'abord 2, puis 4, 8, et
, et �nalement 7, 5 puis 3 (l'ordre exa
td'apparition a été dé
ouvert par le mathémati
ien ukrainien Sharkowskii en1964). Ces situations sont illustrées dans le tableau suivant.Croissan
e logistique u(n) pour n ≥ 50 ave
 u0 = 0.5n a = 3.3 a = 3.5 a = 3.55 a = 3.739 a = 3.83350 0.479427 0.382820 0.354798 0.499626 0.15341151 0.823603 0.826941 0.812653 0.934749 0.49781552 0.479427 0.500884 0.540480 0.228052 0.95823253 0.823603 0.874997 0.881683 0.658230 0.15341154 0.479427 0.382820 0.370329 0.841137 0.49781555 0.823603 0.826941 0.827809 0.499626 0.95823256 0.479427 0.500884 0.506021 0.934749 0.15341157 0.823603 0.874997 0.887371 0.228052 0.49781558 0.479427 0.382820 0.354800 0.658230 0.95823259 0.823603 0.826941 0.812655 0.841137 0.15341160 0.479427 0.500884 0.540477 0.499626 0.49781561 0.823603 0.874997 0.881684 0.934749 0.95823262 0.479427 0.382820 0.370328 0.228052 0.15341163 0.823603 0.826941 0.827807 0.658230 0.49781564 0.479427 0.500884 0.506026 0.841137 0.95823265 0.823603 0.874997 0.887371 0.499626 0.15341166 0.479427 0.382820 0.354800 0.934749 0.497815période 2 4 8 5 33) Lorsque u s'appro
he de 4, le système devient
haotique. Les traje
toires semblent évoluer aléatoi-rement dans tout l'intervalle [0,1℄ ou dans 
ertainssous-intervalles. Le système présente alors une sensi-tivité aux 
onditions initiales : deux traje
toires,mêmes issues d'états initiaux très pro
hes, divergentrapidement l'une de l'autre et ne présentent plus au-
une similitude (
omme dans un é
oulement très tur-bulent). Ci-
ontre, pour a = 3.9, les 12 premiers étatsdes traje
toires de 0.600 et 0.601.
a = 3.90 0.600 0.6011 0.936 0.9352 0.234 0.2363 0.698 0.7044 0.822 0.8135 0.571 0.5936 0.955 0.9417 0.167 0.2158 0.543 0.6589 0.968 0.87710 0.122 0.42111 0.417 0.95012 0.948 0.183
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1.5 Déterminisme, prévisibilité, hasardLes travaux sur les systèmes dynamiques de 
es 30 dernières années, parexemple les phénomènes vus au paragraphe pré
édent 
on
ernant la 
rois-san
e logistique, ont 
hangé notre façon de 
omprendre les 
on
epts de dé-terminisme et de prévisibilité. Ils montrent que, 
ontrairement à 
e que l'on
royait, 
es notions sont fondamentalement di�érentes.En e�et, dans la 
roissan
e logistique, l'évolution d'une population ini-tiale u(0) est déterminée, par la loi assez simple u(n + 1) = au(n)(1−u(n)).En revan
he, si, 
omme 
ela est le 
as en pratique, u(0) est donné par une ap-proximation numérique ou résulte de mesures expérimentales, les traje
toiressont fon
ièrement imprévisibles (lorsque a est grand). La marge d'erreur nepermet de prévoir que quelques étapes. Améliorer la prévisibilité est très
oûteux 
ar le besoin en pré
ision sur la donnée initiale augmente exponen-tiellement en fon
tion du nombre d'étapes que l'on veut 
ontr�ler.Ces 
as de sensitivité aux 
onditions initiales semblent très fréquents.Par exemple, il paraissent inhérents aux systèmes dynamiques utilisés enmétéorologie, 
e qui rend 
oûteuses et peut-être impossible les prévisionsmétéorologiques à plus de quelques jours.De même, on a vu que des systèmes dynamiques déterminés peuvent avoirdes traje
toires de nature aléatoire (on utilise d'ailleurs des systèmes de 
etype pour générer des nombres aléatoires dans les ordinateurs). Le fait quel'on observe un phénomène qui, apparemment, évolue au hasard ne prouvedon
 pas que 
e phénomène n'obéisse à au
une loi.Pour en savoir plus sur 
es questions, voir [13℄.
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Chapitre 2Algèbre LinéaireSupposons que des 
auses x, y, . . . déterminent des e�ets f(x), f(y) . . ..On dit que l'on raisonne linéairement si l'on suppose que l'addition dedeux 
auses additionne les e�ets 
orrespondants et qu'ampli�er une 
aused'un 
ertain fa
teur ampli�e l'e�et 
orrespondant dans la même proportion.En formule :
f(x + y) = f(x) + f(y) et f(λx) = λf(x) (λ ∈ R). (2.1)On dit alors que l'appli
ation f : E → F qui asso
ie à une 
ause son e�etest linéaire. Il faut évidemment que les expressions x + y, λx, et
, aient unsens et que 
es pro
édés d'addition et d'ampli�
ation jouissent de propriétésraisonnables. Ce
i est le 
as lorsque E et F sont des espa
es ve
toriels (p.101), par exemple Rn.Le raisonnement linéaire est le plus simple dont on dispose. S'il ne 
or-respond pas à la réalité, on 
her
he souvent à l'utiliser en première approxi-mation.L'algèbre linéaire est la bran
he des mathématiques qui formalise le rai-sonnenent linéaire, étudiant les espa
es ve
toriels et les appli
ations linéaires.Ses outils et ses résultats sont utilisés dans d'innombrables appli
ations desmathématiques et dans les statistiques. De plus, le 
al
ul ve
toriel est lafaçon opératoire de faire de la géométrie et don
 important pour maîtriserl'espa
e. C'est pourquoi il est important que l'étudiant en s
ien
es se fami-liarise dès que possibles ave
 les notions d'algèbre linéaire les plus 
ourantes(ve
teurs, matri
es, déterminants, valeurs et ve
teurs propres).
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2.1 Stru
ture d'espa
e ve
toriel sur Rn2.1.1 Dé�nitionsDeux points de Rn peuvent être additionnés : si x = (x1, . . . , xn) et
y = (y1, . . . , yn), leur somme est dé�nie par

x + y := (x1 + y1, . . . , xn + yn).D'autre part, on peut multiplier x = (x1, . . . , xn) par λ ∈ R selon la règle
λ · x := (λx1, . . . , λxn).Ces deux opérations munissent Rn d'une stru
ture d'espa
e ve
toriel(réel) Pour la dé�nition pré
ise d'un espa
e ve
toriel, voir p. 101.Les éléments de Rn peuvent être vus soit 
ommedes points dans un espa
e, soit 
omme des ve
teurs.Lorsqu'on imagine un point p ∈ Rn 
omme un ve
-teur, il est visualisé 
omme une �è
he partant del'origine jusqu'au point p. L'addition des ve
teursest 
omme 
elles des for
es en statique. La multi-pli
ation par un �s
alaire� λ > 0 est une homothétiede rapport λ. �

�
�

�
�

�
�

���

���������*

6

���������*

6

0

y x

x + y

r �������:
����:

0 x 2x
r2.1.2 Produit s
alaire � Norme � AnglesOn ne multiplie pas deux ve
teurs x, y ∈ Rn, mais on peut faire leurproduit s
alaire, qui est le nombre réel x · y dé�ni par

x · y :=

n∑

i=1

xiyi.Exemples : 1) dans R3, le produit s
alaire de (1, 2,−1) et (3, 0, 2) est :
(1, 2,−1) · (3, 0, 2) = 1 · 3 + 2 · 0 + (−1) · 2 = 1 .2) Si a ∈ R, on dé�nit a ∈ Rn 
omme le ve
teur dont toutes les 
ompo-santes valent a : a := (a, . . . , a). Le produit s
alaire de x = (x1, . . . , xn) ave


1 ou 1

n
donne la somme ou la moyenne des nombres xi :

1 · x =

n∑

i=1

xi et 1

n
· x =

1

n

n∑

i=1

xi.15



Observons que
x · x =

n∑

i=1

x2
i ≥ 0.Ce
i permet de dé�nir la norme ‖x‖ de x ∈ Rn par

‖x‖ :=
√

x · x =

√√√√
n∑

i=1

x2
i ≥ 0.Par le théorème de Pythagore, la norme de x représente la longueur duve
teur x, 
'est-à-dire la distan
e entre le point x et l'origine.Proposition 2.1.1 Les propriétés du produit s
alaire et de la norme sont1) (x + y) · z = x · z + y · z.2) (λx) · y = λ(x · y).3) x · y = y · x.4) ‖x‖ ≥ 0 et ( ‖x‖ = 0 ⇔ x = 0 ).5) ‖λx‖ = |λ| ‖x‖.6) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2x · y.7) |x · y| ≤ ‖x‖‖y‖ (inégalité de S
hwarz).8) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (inégalité du triangle).La démonstration de 
es propriétés est donnée dans l'annexe A.8 p. 102.Angles : Par l'inégalité de S
hwarz, le quotient |x · y|

/
‖x‖ ‖y‖ est ≤ 1.Il existe don
 un unique α ∈ [0, π] tel que

cos α =
x · y

‖x‖ ‖y‖ (α ∈ [0, π]). (2.2)On dira, par dé�nition, que α est l'angle entre les ve
teurs x et yde Rn. Lorsque n = 2, 3, 
ela 
orrespond bien à l'angle usuel. En e�et, lethéorème du 
osinus implique que
‖x+y‖2 = ‖x‖2+‖y‖2−2 ‖x‖ ‖y‖ cos(π−α) =

= ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖ cos α. t
0

-�
�

�
��

������������1

x

y

x + y

απ−α16



En 
omparant 
ette dernière équation ave
 la propriété 6) de la proposi-tion 2.1.1, on a bien la formule (2.2).En parti
ulier, deux ve
teurs x, y ∈ Rn seront dits orthogonaux si etseulement si x · y = 0. Dans 
e 
as on a le théorème de Pythagore :
x · y = 0 ⇐⇒ ‖x + y‖2 = ‖x‖2 + ‖y‖2. (2.3)2.1.3 Indépendan
e linéaire - Bases - Dimension d'un espa
eve
torielSoit V := {v1, . . . , vk} ⊂ V une famille de ve
teurs dans un espa
e ve
-toriel V . Un ve
teur x ∈ V qui peut s'é
rire sous la forme

x =
k∑

i=1

λivi (λi ∈ R ), (2.4)s'appelle une 
ombinaison linéaire des ve
teurs vi. L'ensembles de toutesles 
ombinaisons linéaires de ve
teurs de V forme un sous-espa
e ve
toriel
EV(V) de V ; 
'est le sous-espa
e ve
toriel engendré par V.On dit que la famille V est libre si le sous-espa
e ve
toriel EV(V) ne peutpas être engendré par une sous-famille V ′ ⊂ V non-égale à V. Les ve
teursd'une famille libre sont dits linéairement indépendants.Exemples :1. Une famille libre ne peut pas 
ontenir le ve
teur nul.2. Deux ve
teurs sont linéairement indépendants s'ils ne sont pas alignés.3. Trois ve
teurs sont linéairement indépendants s'ils ne sont pas 
opla-naires.On démontre fa
ilement la proposition suivante (exer
i
e) :Proposition 2.1.2 Pour une famille V := {v1, . . . , vk} ⊂ V , les 
onditionssuivantes sont équivalentes :1. V est libre.2. au
un ve
teur de V n'est 
ombinaison linéaire des autres.3. l'équation

k∑

i=1

λivi = 0 (λi ∈ R ) (2.5)n'est possible que si λi = 0 pour tout i (Cette dernière 
ondition estsouvent prise pour dé�nition d'une famille libre dans la littérature).17



Supposons que V := {v1, . . . , vk} ⊂ V soit une famille libre. Alors, toutve
teur x ∈ EV(V) s'é
rit de manière unique x =
∑

xivi. En e�et, si
x =

k∑

i=1

xivi =

k∑

i=1

x′
ivi,on aurait

k∑

i=1

(x′
i − xi)vi = 0et don
 x′

i − xi = 0 puisque les vi sont linéairement indépendants.Une famille libre B qui engendre un sous-espa
e ve
toriel W de V s'ap-pelle une base de W . Si x ∈ W , les uniques s
alaires xi ∈ R tels que
x =

∑k
i=1 xivi s'appellent les 
oordonnées de x dans la base {v1, . . . , vn}.On peut démontrer que toutes les bases d'un espa
e ve
toriel V ont lemême nombre d'éléments. Ce nombre s'appelle la dimension de V . Parexemple, les ve
teurs
e1 := (1, 0, . . . , 0) , e2 := (0, 1, . . . , 0) , . . . , en := (0, 0, . . . , 1)forment une base de Rn. En e�et l'équation

(x1, . . . , xn) =

n∑

i=1

xi ei (2.6)montre à la fois que les ei engendrent Rn et qu'ils sont linéairement indé-pendants. L'espa
e Rn est don
 de dimension n et toutes ses bases auront néléments.La base {e1, . . . , en} s'appelle la base standard de Rn. Si x = (x1, . . . , xn),l'équation (2.6) montre que les s
alaires xi sont les 
oordonnées de x dans labase standard.Il y a beau
oup d'autres bases de Rn. Par exemple, pour R3, on peutprendre
(1, 0, 0) , (1, 1, 0) , (1, 1, 1).Une façon 
ourante de voir que des ve
teurs sont linéairement indépendants,par le 
al
ul d'un déterminant, sera vue à la proposition 2.2.7, p. 24.
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2.2 Matri
es2.2.1 Dé�nitionsUne matri
e de taille (p × q), ou (p × q)-matri
e, est une appli
ation
A : {1, . . . , p} × {1, . . . , q} → Rqui à 
haque 
ouple d'entiers (i, j) fait 
orrespondre un 
oe�
ient aij ∈ R.Cette information peut se visualiser par un tableau à p lignes et q 
olonnesdans lequel le 
oe�
ient aij o

upe l'interse
tion de la ie ligne ave
 la je
olonne :

A =




a11 · · · a1q... ...
ap1 · · · apq


 .On peut additionner deux matri
es de même taille, en additionnant 
o-e�
ient par 
oe�
ient :

(
1 2 3
4 5 6

)
+

(
1 0 1
1 1 0

)
=

(
2 2 4
5 6 6

)
.On peut aussi multiplier une matri
e par un nombre réel λ ; 
ela
onsiste à multiplier tous les 
oe�
ients par λ :

2

(
1 2 3
4 5 6

)
=

(
2 4 6
8 10 12

)
.Ave
 
es deux opérations, l'ensemble Mp×q des (p×q)-matri
es est un espa
eve
toriel de dimension pq.Une matri
e peut être vue 
omme un empilement de �ve
teurs ligne� ouune juxtaposition de �ve
teurs 
olonne�. Le ième ve
teur ligne Li(A) et le

jème ve
teur 
olonne Cj(A) de A ∈ Mp×q sont
Li(A) := (ai1 · · · aiq) et Cj(A) :=




a1j...
apj


 .Le produit AB de deux matri
es A et B est dé�ni si le nombre de
olonnes de A est égal au nombre de lignes de B. Si A ∈ Mp×q et B ∈ Mq×rla matri
e produit C = AB ∈ Mp×r est dé�nie par

cij :=

q∑

k=1

aikbkj.19



Autrement dit, cij est le produit s
alaire de Li(A) ave
 Cj(B). Exemple :
(

0 1 0
1 1 −1

) 


1 0 0
0 0 0
1 1 0


 =

(
0 0 0
0 −1 0

)
. (2.7)On peut démontrer que les produits de matri
es, lorsqu'ils sont dé�nis,jouissent des propriétés suivantes :1) A(BC) = (AB)C.2) A(B + C) = AB + AC.3) (A + B)C = AC + BC.En revan
he, le produit n'est pas 
ommutatif (AB 6= BA, en général).Premièrement, AB peut être dé�ni mais pas BA, 
omme dans (2.7) 
i-dessus.Deuxièmement, AB et BA peuvent être dé�nis mais pas de même taille :

( 1 2 )

(
2
0

)
= (2) et (

2
0

)
( 1 2 ) =

(
2 4
0 0

)
.Troisièmement, même dans le 
as de matri
es 
arrées, où la taille est
onservée, on a AB 6= BA en général :

(
0 1
0 0

)(
0 0
0 1

)
=

(
0 1
0 0

)
,

(
0 0
0 1

)(
0 1
0 0

)
=

(
0 0
0 0

)
.Ce dernier exemple montre aussi que l'on peut obtenir la matri
e nulle parproduit de deux matri
es qui ne le sont pas.Soit A une matri
e p× q. La transposée AT de A est la (q × p)-matri
edont les ve
teurs 
olonnes sont les ve
teurs lignes de A. Exemple :

A :=

(
1 2 3
4 5 6

)
=⇒ AT =




1 4
2 5
3 6


 .Si le produit AB de deux matri
es existe, alors BT AT existe et on a

(AB)T = BT AT .2.2.2 DéterminantsA toute matri
e 
arrée A, on assso
ie un nombre réel, son déterminant,que l'on le note detA. Si A est présentée sous forme d'un tableau, detA peut20



aussi être noté par le même tableau entre barres verti
ales :
det




a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
an1 an2 · · · ann


 =

∣∣∣∣∣∣∣∣

a11 a12 · · · a1n

a21 a22 · · · a2n

· · ·
an1 an2 · · · ann

∣∣∣∣∣∣∣∣La dé�nition rigoureuse du déterminant né
essite un 
ertain bagage théo-rique (voir [2, 
h. IV℄). Nous nous 
ontenterons i
i d'expliquer les algorithmespour le 
al
uler qui sont les suivants :1. si (a) est une matri
e (1 × 1), alors det(a) := a.2. pour une matri
e (2 × 2), on dé�nit
∣∣∣∣
a b
c d

∣∣∣∣ := ad − bc3. si A = (aij) est une matri
e (n × n), on 
hoisit n'importe quelle lignede A (disons la ième). On peut alors 
al
uler det A par la formule :
detA =

n∑

k=1

(−1)i+kaik · Dik (2.8)où Dik (le (i, k)ème mineur de la matri
e A) est le déterminant de la
(n−1)× (n−1)-matri
e obtenue en supprimant la ième ligne et la kème
olonne de A. On dit que l'on a 
al
ulé detA par développementpar rapport à la ième ligne.On peut aussi 
hoisir une 
olonne (disons la jème) et développer parrapport à 
ette 
olonne :

detA =
n∑

k=1

(−1)j+kakj · Dkj . (2.9)Ces formules permettent le 
al
ul du déterminant de n'importe quellematri
e en se ramenant su

essivement au 
al
ul de déterminants dematri
es plus petites. On peut démontrer que le résultat obtenu nedépend pas de la ligne ou la 
olonne 
hoisie.Remarque : Le signe (−1)i+k est la mise en formule du s
héma en dam-mier :
0

B

B

B

B

B

B

B

B

@

+ − + − ···
− + − + ···
+ − + − ···
− + − + ···...

1

C

C

C

C

C

C

C

C

A

.
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Exemples : 1. Développement par rapport à la 3e ligne :
∣∣∣∣∣∣

1 3 0
2 1 4
−1 1 0

∣∣∣∣∣∣
= (−1)

∣∣∣∣
3 0
1 4

∣∣∣∣ −
∣∣∣∣
1 0
2 4

∣∣∣∣ = −12 − 4 = −16.Si l'on développe par rapport à la 3e 
olonne , on obtient :
∣∣∣∣∣∣

1 3 0
2 1 4
−1 1 0

∣∣∣∣∣∣
= −4

∣∣∣∣
1 3
−1 1

∣∣∣∣ = −16.On voit qu'il est avantageux de 
hoisir les lignes ou 
olonnes 
omportantbeau
oup de zéros.2. Le déterminant de matri
es triangulaires est le produit des élémentsde leur diagonale :
∣∣∣∣∣∣∣∣

λ10 . . . *
λn

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣

λ1* . . . 0
λn

∣∣∣∣∣∣∣
= λ1 · · ·λn.(Un gros zéro indique une région (i
i : dessus ou dessous la diagonale) donttous les 
oe�
ients sont nuls. Un astérisque indique des 
oe�
ients quel-
onques dont on ne se préo

upe pas. Une matri
e triangulaire ave
 ∗ = 0est dite diagonale.)Propriétés diverses du déterminant :2.2.1 Soit A′ la matri
e obtenue de A en ajoutant à une ligne de A (disonsla ième) une 
ombinaison linéaire des autres lignes de A :

Li(A
′) = Li(A) +

n∑

k=1
(k 6=i)

λkLk(A) , Lr(A
′) = Lr(A) si r 6= iAlors detA′ = detA. De même, on ne 
hange pas le déterminant en ajoutantà une 
olonne de A une 
ombinaison linéaire des autres 
olonnes.Cette propriété est souvent utilisée pour simpli�er le 
al
ul de detA, enaugmentant le nombre de 
oe�
ients nuls.2.2.2 Si A′ est la matri
e obtenue de A en é
hangeant deux lignes de A,alors detA′ = − detA. Il en est de même si l'on é
hange deux 
olonnes.22



2.2.3 Si A′ est la matri
e obtenue de A en multipliant tous les élémentsd'une ligne de A par λ ∈ R, alors det A′ = λ · det A. Il en est de même sil'on multiplie par λ tous les éléments d'une 
olonne.2.2.4 Le déterminant d'une matri
e est égal au déterminant de sa transpo-sée :
detA = det AT .Cette propriété explique pourquoi 
haque énon
é faisant intervenir des lignesa son analogue ave
 les 
olonnes.2.2.5 det(AB) = detA · detB.Inverse d'une matri
e 
arrée : La (n × n)-matri
e diagonale

In :=




1 0 · · · 0
0 1 · · · 0... ...
0 0 · · · 1


s'appelle la matri
e identité (d'ordre n). Elle joue le r�le d'élément neutrepour le produit des matri
es n × n :

InX = XIn = X ∀ X ∈ Mn×n. (2.10)Une matri
e A ∈ Mn×n est dite inversible s'il existe une matri
e A−1 ∈
Mn×n telle que

AA−1 = A−1A = In. (2.11)Une 
ondition né
essaire pour que A soit inversible est que detA 6= 0.En e�et, par 2.2.5, on a :
detA det(A−1) = det(AA−1) = det In = 1.(on aura don
 det(A−1) = (detA)−1). Il se trouve que la 
ondition detA 6= 0est aussi su�sante pour que A soit inversible. En e�et, on peut démontrer([2, p. 153℄) :Théorème 2.2.6 Une (n × n)-matri
e A est inversible si et seulement si

det A 6= 0. Dans 
e 
as, son inverse A−1 = (bkl) se 
al
ule ave
 les mineurs
Dij de A par la formule :

bkl =
(−1)k+l

det A
Dlk.23



Exemples :1. Pour une matri
e 2 × 2 :
(

a b
c d

)−1

=
1

ad − bc

(
d −b
−c a

)
.2. Pour inverser une matri
e diagonale, on inverse simplement les 
oe�-
ients : 


λ10 . . . 0

λn


 =




λ−1
10 . . . 0

λ−1
n


 .3. Pour la (3 × 3)-matri
e dont on a 
al
ulé le déterminant à la p. 22 :




1 3 0
2 1 4
−1 1 0




−1

=
−1

16




−4 0 12
−4 0 −4
3 −4 −5


 =




1
4 0 −3

4
1
4 0 1

4
−3
16

1
4

5
16


 .Déterminants et indépendan
e linéaire : Si l'un des ve
teurs 
olonned'une matri
e A est 
ombinaison linéaire des autres, on peut par l'opération2.2.1 modi�er A sans 
hanger son déterminant de manière que 
ette 
olonnesoit nulle. On en déduit que si les ve
teurs 
olonnes de A sont linéairementdépendants, alors det A = 0. Il en est de même pour les ve
teurs lignes. Enfait, on peut démontrer l'équivalen
e ([2, p. 156℄) :Proposition 2.2.7 Soit A une (n × n)-matri
e. Alors :les ve
teurs
olonnede A sontlinéairementindépendants ⇐⇒

les ve
teurs lignede A sontlinéairementindépendants ⇐⇒ det A 6= 0.
Plus généralement soit A une (p× q)-matri
e. Toutes les (r× r)-matri
esque l'on peut obtenir à partir de A en supprimant des lignes et/ou des
olonnes s'appellent des mineurs d'ordre r de A. On peut démontrer ([2,p. 156℄) :Proposition 2.2.8 (et dé�nition) Soit A une (p × q)-matri
e. Les troisnombres suivants sont égaux : 24



1. le nombre maximal de ve
teurs 
olonne de A qui sont linéairementindépendants2. le nombre maximal de ve
teurs ligne de A qui sont linéairement indé-pendants3. le plus grand ordre d'un mineur de A dont le déterminant est non-nul.Par dé�nition, 
e nombre s'appelle le rang de la matri
e A.Exemple : Le rang de la matri
e



1 2
0 2

3 4
3 4

1 2 3 4


est égal à 2. En e�et, il y a au plus deux ve
teurs ligne linéairement indé-pendants puisque le premier et le troisième sont égaux. Il y en a au moinsdeux puisque le déterminant du mineur en
adré est non nul.2.2.3 Interprétation géométrique du déterminantLe déterminant d'une (n×n)-matri
e A est une mesure de l'indépendan
elinéaire des ve
teurs ligne ou 
olonne (voir proposition 2.2.7). Pour n = 2, 3,on a l'interprétation géométrique suivante :1) ∣∣∣∣

a1 a2

b1 b2

∣∣∣∣ est, en valeur absolue, l'aire du paralle-logramme P engendré par les ve
teurs ligne
a = (a1, a2) et b = (b1, b2).2) ∣∣∣∣∣∣

a1 a2 a3

b1 b2 b3

c1 c2 c3

∣∣∣∣∣∣
est, en valeur absolue, le volume duparallelepipède P engendré par les ve
teurs ligne

a = (a1, a2, a3), b = (b1, b2, b3) et c = (c1, c2, c3). 


a

b




a

b

c

0

0

P

P

Le signe du déterminant est positif si les ve
teurs ligne forment une based'orientation positive de R2 (sens trigonométrique) ou de R3 (règle du tire-bou
hon). Dans la �gure 
i-dessus, le déterminant 2 × 2 est positif et ledéterminant 3 × 3 est négatif. 25



2.2.4 Systèmes d'équations linéairesI
i, �système� ne veut pas dire �système dynamique� mais ensemble d'équa-tions. Considérons le système E :
E :





a11 x1 + · · · + a1p xp = b1...
an1 x1 + · · · + anp xp = bn

(2.12)de n équations à p-in
onnues x1, . . . , xp. Les 
oe�
ients aij et bi sont desnombres réels. Une solution de E est un ve
teur (x1, . . . , xp) satisfaisant àtoutes les équations.La matri
e
A := AE =




a11 · · · a1p... ...
an1 · · · anp


 ∈ Mn×ps'appelle la matri
e du système. Si l'on dé�nit les matri
es 
olonnes

X :=




x1...
xp


 ∈ Mp×1 , B :=




b1...
bn


 ∈ Mn×1,le système E est équivalent à l'équation matri
ielle

E : AX = B. (2.13)Système de Cramer : Un système de Cramer1 est un système 
arré (p =
n) tel que detA 6= 0. La matri
e A est alors inversible et l'appli
ation X 7→
AX est une bije
tion de Mn×1 sur lui-même. Un système de Cramer a don
une unique solution. Elle est donnée par

X = A−1B. (2.14)En utilisant le 
al
ul de la matri
e inverse (2.2.6, p. 23), l'équation (2.14)est équivalente aux n équations
xk =

1

detA

n∑

i=1

(−1)i+kDikbi (k = 1, . . . n). (2.15)1Gabriel CRAMER (1704�1752) fut le premier professeur de mathématiques de l'Uni-versité de Genève, quand une 
haire de 
ette dis
ipline y fut 
réée en 1724.26



Or, si l'on rempla
e dans la matri
e A le ke ve
teur 
olonne par B et quel'on 
al
ule le déterminant en développant par rapport à 
ette 
olonne, onobtient
∣∣∣∣∣∣∣

a11 · · · a1,k−1 b1 a1,k+1 · · · a1n... ... ... ... ...
an1 · · · an,k−1 bn an,k+1 · · · ann

∣∣∣∣∣∣∣
=

n∑

i=1

(−1)i+kDikbi. (2.16)La 
omparaison de (2.15) et (2.16) donne la règle de Cramer :Théorème 2.2.9 (Règle de Cramer) Un système de Cramer AX = B aune solution unique donnée par
xk =

1

detA

∣∣∣∣∣∣∣

a11 · · · a1,k−1 b1 a1,k+1 · · · a1n... ... ... ... ...
an1 · · · an,k−1 bn an,k+1 · · · ann

∣∣∣∣∣∣∣
(k = 1, . . . n).Autres systèmes : Soit Sol E ⊂ Rp l'ensemble des solutions du système

E . Lorsque l'on n'a pas un système de Cramer, par exemple lorsque n 6= p,il n'admet peut-être pas de solution (Sol E = ∅). Par exemple :
{

x + y = 1
x + y = 2

(2.17)Pour un système E : AX = B, on introduit les deux notions suivantes :1. le rang du système est le rang de la matri
e A2. le système AX = 0 s'appelle le système homogène asso
ié à E . Onle note E0.Supposons que le système E admette une solution X0. L'ensemble Sol Esatisfait alors à la propriété suivante :Proposition 2.2.10 1. Sol E = {X0 + X | X ∈ Sol E0}.2. Sol E0 est un sous-espa
e ve
toriel de Rp de dimension p − r, où r estle rang de E.Remarque : La propriété 1) dit que pour trouver toutes les solution de E ,il su�t de prendre une solution parti
ulière X0 et de lui ajouter toutes lessolutions du système homogène asso
ié. Grâ
e à 2), il su�t d'en trouver p−rlinéairement indépendantes et d'en faire toutes les 
ombinaisons linéaires.27



Exemple 1 : Considérons le système à 1 équation et2 in
onnues
E : x − 3y = −4.

Sol E0 est la droite y = x
3 (sous-espa
e ve
toriel dedimension 1). Prenons X = (2, 2) (
'est-à-dire x = y =

2) 
omme solution parti
ulière de E . L'ensemble Sol Eest don
 une droite de pente 1/3 passant par (2, 2). r
0����������������

t
(2, 2)

SolE0

SolE

Preuve de 2.2.10 : La première a�rmation est fa
ile : si X ∈ Sol E , alors
X − X0 ∈ Sol E0. De plus il est 
lair que Sol E0 est un espa
e ve
toriel.Pour la deuxième a�rmation, on peut supposer, en renumérotant au be-soin les équations et les in
onnues, que le mineur d'ordre r du 
oin supérieurgau
he de A est de déterminant non-nul :

∣∣∣∣∣∣

a11 · · · a1r... ...
ar1 · · · arr

∣∣∣∣∣∣
6= 0. (2.18)Les r premiers ve
teurs lignes L1, . . . , Lr de A forment don
 une base de l'es-pa
e ve
toriel engendré par tous les ve
teurs ligne. Les autres lignes, 
omme

Lr+1, sont alors des 
ombinaisons linéaires de L1, . . . , Lr. Le système homo-gène E0 est ainsi équivalent au système des r premières équations, que l'onpeut é
rire :




a11x1 + · · · + a1rxr = −a1,r+1xr+1 − · · · − a1pxp...
ar1x1 + · · · + arrxr = −ar,r+1xr+1 − · · · − arpxp(2.19)A 
haque valeur de (xr+1, . . . , xp) 
orrespond une unique solution du système(2.19) 
ar 
'est un système de Cramer. On véri�e que 
ette 
orrespondan
edonne un isomorphisme entre Rp−r et Sol E0.Pour trouver une solution parti
ulière de E , on pourra poser xr+1 = · · · =

xp = 0. Pour trouver p − r solutions indépendantes de E0, il su�ra de posersu

essivement (xr+1, . . . , xp) = (1, 0, . . . , 0), (0, 1, . . . , 0), . . . (0, 0, . . . , 1).Exemple : 



x + y + z + t = 1
y − z + t = 2

x + 2y + 2t = 3
(2.20)28



Le rang du système est 2 puisque la troisième équation est la somme desdeux premières et que le mineur d'ordre 2 du 
oin supérieur gau
he est de dé-terminant 1. La solution parti
ulière de E de type (x, y, 0, 0) est (−1, 2, 0, 0).La solution parti
ulière de E0 de la forme (x, y, 1, 0) est (−2, 1, 1, 0) et 
ellede la forme (x, y, 0, 1) est (0,−1, 0, 1). L'ensemble sol E0 est ainsi l'espa
eve
toriel de dimension 2 engendré par (−2, 1, 1, 0) et (0,−1, 0, 1) et on a :
sol E = {(−1, 2, 0, 0) + λ(−2, 1, 1, 0) + µ(0,−1, 0, 1) | λ, µ ∈ R}.2.3 Appli
ations linéairesDé�nition : Une appli
ation f : V → W entre deux es-pa
es ve
toriels est dite linéaire si, pour tout x, y ∈ V et

λ ∈ R, on a1. f(x + y) = f(x) + f(y) et2. f(λx) = λf(x).Exemples :� L'appli
ation nulle f(x) = 0 est linéaire.� Toute appli
ation linéaire f : R → R est la multipli
ation par une
onstante : f(x) = αx (le graphe de f est don
 une droite passant par
0). En e�et : f(x) = f(x · 1) = xf(1) ; la 
onstante α est f(1).� Plus généralement, f : Rn → Rn donnée par f(x) = αx, où α ∈ R, estlinéaire. C'est l'homothétie de rapport α.Matri
es et appli
ations linéaires : Une (p × q)-matri
e A détermineune appli
ation linéaire de Rq dans Rp. C'est l'appli
ation X 7→ AX (onregarde les éléments de Rq et Rp 
omme des matri
es à une 
olonne). Parexemple, prenons la matri
e

A :=

(
2 1 0
1 3 −1

)
. (2.21)L'appli
ation X 7→ AX est




x
y
z


 7→

(
2 1 0
1 3 −1

)


x
y
z


 =

(
2x + y

x + 3y − z

)
.
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L'appli
ation linéaire de R3 dans R2 déterminée par la matri
e A est don

(x, y, z) 7→ (2x + y, x + 3y − z). (2.22)Comme l'énon
e le théorème 
i-dessous, 
e pro
édé donne une bije
tionentre les appli
ations linéaires de Rq dans Rp et les (p× q)-matri
es. Rappe-lons que e1, . . . , eq désigne la base standard de Rn (p. 18).Théorème 2.3.1 Soit f : Rq → Rp une appli
ation linéaire. Alors il existeune unique matri
e Mf ∈ Mp×q telle que f soit l'appli
ation linéaire déter-minée par Mf (On dira que Mf est la matri
e de f). La matri
e Mf est
onstruite de la manière suivante : son kème ve
teur 
olonne est f(ek).Exemple : Pour l'appli
ation linéaire f(x, y, z) := (2x + y, x + 3y − z) de(2.22), on a

f(e1) = (2, 1) , f(e2) = (1, 3) , f(e3) = (0,−1)On retrouve bien les 
olonnes de la matri
e (2.21).Preuve de 2.3.1 : Désignons par g : Rq → Rp l'appli
ation linéaire déterminée parla matri
e Mf 
onstruite dans le théorème 2.3.1. Nous allons montrer que g = f .Soit Ek la matri
e 
olonne q × 1 
orrespondant au ve
teur ek. En faisant le produit
MfEk, on obtient justement le kème ve
teur 
olonne de Mf , 
'est-à-dire f(ek). On a don

g(ek) = f(ek). Mais tout x ∈ Rq s'é
rit

x = x1e1 + · · ·xqeq.Puisque f et g sont linéaires, on aura
f(x) = x1f(e1) + · · ·xqf(eq) = x1g(e1) + · · ·xqg(eq) = g(x).La 
orrespondan
e f 7→ Mf entre appli
ations linéaires et matri
es se
omporte bien pour la 
omposition des appli
ations. En e�et, on peut dé-montrer :Proposition 2.3.2 Soit Rm f−→ Rn g−→ Rp deux appli
ations linéaires.Alors, la 
omposition g◦f est linéaire et sa matri
e Mg◦f est donnée par leproduit matri
iel

Mg◦f = MgMf .En parti
ulier, la matri
e de fm (f itérée m fois) est Mm
f .
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Exemple : La rotation ρα d'angle α autour de 0 dans R2 est une appli-
ation linéaire ρα : R2 → R2dont la matri
e est
(

cos α − sin α
sin α cos α

)La 
omposition de deux rotations additionne simplement les angles : ρα◦ρβ =
ρα+β . Par la Proposition 2.3.2, 
ela donne l'égalité matri
ielle :

(
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

)
=

(
cos α − sin α
sinα cos α

)(
cos β − sin β
sinβ cos β

)
=

=

(
cos α cos β − sin α sin β − sinα cos β − cos α sin β
sin α cos β + cos α sin β cos α cos β − sin α sin β

)
.Ce
i démontre les formules 
lassiques :

cos(α + β) = cos α cos β − sin α sinβ
sin(α + β) = sinα cos β + cos α sinβ.2.4 Changements de basesProblème : Soit A := {a1, . . . , an} une base de Rn. Soit x := (x1, . . . , xn)un ve
teur de Rn. Quelles sont les 
oordonnées (x̃1, . . . , x̃n) de x dans la base

A ?Notons par ai = (a1i, . . . , ani) les 
oordonnées de ai dans la base standardde Rn. Cette notation d'indi
e est 
hoisie pour que les ai deviennent lesve
teurs 
olonne d'une (n × n)-matri
e
P :=




a11 . . . a1n... ...
an1 . . . ann


 (2.23)appelée matri
e de passage pour la base A. Comme les ve
teurs ai sontlinéairement indépendants, det P 6= 0 par la proposition 2.2.8, p. 24. Onen déduit que la matri
e P est inversible (théorème 2.2.6 p. 23). On peutdémontrer ([2, p. 97℄) que les 
oordonnées (x̃1, . . . , x̃n) dans la base A de

x = (x1, . . . , xn) sont données par l'équation matri
ielle :



x̃1...̃
xn


 = P−1




x1...
xn


. (2.24)31



Changement de matri
e pour une appli
ation linéaire : Soit f :
Rn → Rn une appli
ation linéaire dont la matri
e est Mf . Si l'on travailleave
 les 
oordonnées dans la base A, l'appli
ation f sera donnée par unematri
e M̃f . On dit que M̃f est la matri
e de f relativement à la base
A. On peut démontrer ([2, p. 98-99℄) que, si P est la matri
e de passage(2.23) pour la base A, alors, la matri
e M̃f est obtenue à l'aide de Mf parla formule

M̃f = P−1 Mf P . (2.25)2.5 Valeurs propres - ve
teurs propresValeurs et ve
teurs propres sont parmi les 
on
epts les plus importantsde l'algèbre linéaire. Par exemple, ils sont essentiels pour la formulationde la mé
anique quantique. Nous en ren
ontrerons plusieures appli
ations :systèmes dynamiques (� 2.6, 3.4 et 5.3), extremas (p. 61), résolution d'équa-tions di�érentielles (p. 84), 
omposantes prin
ipales (p. 103).2.5.1 Dé�nitionsSoit f : V → V une appli
ation linéaire d'un espa
e ve
toriel V danslui-même. On dit que λ ∈ R est une valeur propre pour f s'il existe unve
teur x 6= 0 dans V tel que
f(x) = λx. (2.26)Un tel ve
teur x est appelé un ve
teur propre 2 pour la valeur propre λ.Une (n × n)-matri
e M représente une appli
ation linéaire de Rn → Rnqui aura d'éventuelles valeurs propres et ve
teurs propres. On parlera alorsdes valeurs propres et ve
teurs propres de la matri
e M .Exemples :� L'appli
ation nulle f(x) = 0 a une seule valeur propre : λ = 0. Tousles ve
teurs non-nuls sont ve
teurs propres.� λ est la seule valeur propre d'une homothétie de rapport λ. Dans 
e
as tous les ve
teurs non-nuls sont ve
teurs propres.� une rotation d'angle α dans le plan n'a pas de valeur propre, à moinsque α = 0 ou π.2En anglais : valeur propre = eigenvalue, ve
teur propre = eigenve
tor. Dans 
ertainsouvrages de statistique, on utilise les termes �latent root� et �latent ve
tor�.32



� dans R3, la proje
tion sur un plan Π parallèle-ment à une droite D. Les ve
teurs non-nuls de
Π sont des ve
teurs propres de valeur propre 1et 
eux de D de valeur propre 0. �
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p p(x)Pour trouver les valeurs propres de f : Rn 7→ Rn, on pratique de lamanière suivante. Si λ est une valeur propre pour f , on a l'équation f(x) −
λx = 0. Matri
iellement, utilisant la matri
e Mf de f , 
ela peut s'é
rire

(Mf − λI)X = 0. (2.27)où I est la matri
e identité. Par 2.2.9 Une telle équation a une solution ave

X 6= 0 si et seulement si

det(Mf − λI) = 0. (2.28)Posons Pf (λ) := det(Mf −λI). Pf est un polyn�me de degré n en λ appelé lepolyn�me 
ara
téristique de f . Le polyn�me Pf a, au plus, n ra
ines (so-lutions de l'équation Pf (λ) = 0, voir p. 99) qui sont des nombres 
omplexes.L'ensemble Spf ⊂ C des ra
ines du polyn�me 
ara
téristique Pf s'appellele spe
tre de f . On dé�nit également le spe
tre d'une (n × n)-matri
e M
omme le spe
tre de l'appli
ation linéaire de Rn → Rn que détermine M .Le spe
tre d'une appli
ation linéaire est une information très importantesur 
ette appli
ation. Pour l'instant, intéressons-nous aux ra
ines réelles qui,par l'équation 2.28, sont les valeurs propres de f :Proposition 2.5.1 Les valeurs propres de f sont les ra
ines réelles du po-lyn�me 
ara
téristique Pf de f .Exemple 1 : Prenons f : R2 → R2 dé�nie par f(x, y) = (y, x). Sa matri
e
Mf est

Mf =

(
0 1
1 0

)
.Son polyn�me 
ara
téristique Pf est

Pf :=

∣∣∣∣
−λ 1
1 −λ

∣∣∣∣ = λ2 − 1Le spe
tre de f sera don
 l'ensemble des solutions de l'équation λ2 − 1 = 0,
'est-à-dire Spf = {±1}. Comme Spf ⊂ R, on a deux valeurs propres ±1.33



Les ve
teurs propres pour λ = −1 sont les solutions non-nulles de l'équationmatri
ielle (
0 1
1 0

)(
x
y

)
=

(
−x
−y

)
,
'est-à-dire les solutions non-nulles du système d'équations

{
y = −x
x = −yOn voit que l'on peut prendre v− = (1,−1) 
omme ve
teur propre et quetous les autres ve
teurs propres pour la valeur propre −1 sont les multiplesnon-nuls de v−.De même, on trouve que les ve
teurs propres pour la valeur propre +1sont les multiples non-nuls de v+ := (1, 1).Dans la base {v−, v+}, la matri
e de f est diagonale : (

−1 0
0 1

).Exemple 2 : Soit f une rotation d'angle α dans le plan. Sa matri
e Mfest (
cos α − sinα
sin α cos α

)
.Son polyn�me 
ara
téristique est

Pf (λ) =

∣∣∣∣
cos α − λ − sin α

sinα cos α − λ

∣∣∣∣ = λ2 − 2λ cos α + 1.On a don
 Spf = {cosα± i sin α = e±iα}. Si α 6= 0, π, Spf ∩R = ∅ et il n'y apas de valeur propres. Cependant, on voit que Spf porte toute l'informationsur f , puisqu'on peut en extraire l'angle α.2.5.2 DiagonalisationUne appli
ation linéaire f : Rn → Rn est dite diagonalisable s'il existeune base de Rn formée de ve
teurs propres de f . Relativement à 
ette base
A, la matri
e Mf,A de f sera diagonale ave
 
omme 
oe�
ients diagonauxles valeurs propres de f .Soit M une (n × n)-matri
e. Elle représente une appli
ation linéaire de
Rn → Rn. Si 
ette est appli
ation est diagonalisable, on dira que la matri
e
M est diagonalisable. Par la proposition 2.25 p. 32, 
ela signi�e qu'ilexiste une matri
e inversible P (la matri
e de passage vers une base A de34



ve
teurs propres de f) telle que la matri
e P−1MP est diagonale (ave
, surla diagonale, les valeurs propres de M). Les 
olonnes de P 
ontiennent don
les 
oordonnées des ve
teurs propres de f .On voit que pour qu'une appli
ation linéaire (ou matri
e) soit diagonali-sable, il faut qu'elle ait assez de valeurs propres. En fait, on a :Proposition 2.5.2 Si une appli
ation linéaire f : Rn → Rn est diagonali-sable, alors Spf ⊂ R. (toutes les ra
ines du polyn�me 
ara
téristique Pf de
f sont réelles).Le fait que Spf ⊂ R n'implique pas for
ément que f soit diagonalisable(exemple 1.2 
i-dessous). Cependant, 
'est le 
as si l'on a n valeurs propresdistin
tes :Proposition 2.5.3 Soit f : Rn → Rn une appli
ation linéaire. Si f admet
n valeurs propres deux-à-deux distin
tes, alors f est diagonalisable.Preuve: Il su�t de démontrer que les ve
teurs propres vi pour k valeurs propres λ1, . . . λkdistin
tes sont linéairement indépendants (n ve
teurs linéairement indépendants de Rnformeront une base). Cela se démontre par ré
urren
e sur k. C'est le 
as si k = 1 puisqu'unve
teur propre, par dé�nition, est non-nul.Supposons que x :=

Pk

i=1 αivi = 0. On 
al
ule f(x) − λk x :
0 = f(x) − λkx =

k−1
X

i=1

αi(λi − λk)viPar hypothèse de ré
urren
e, on aura αi(λi − λk) = 0. Comme λi 6= λk, 
ela implique
αi = 0 pour i = 1, . . . , k − 1, et don
 aussi αk = 0.L'équation Pk

i=1 αivi = 0 n'est don
 possible que si αi = 0. Par la proposition 2.1.2p. 17, 
e
i est équivalent à 
e que les ve
teurs vi sont linéairement indépendants.Exemple 1 : Pour une appli
ation linéaire f : R2 → R2, le polyn�me
ara
téristique est du 2e degré. On sait qu'un tel polyn�me a deux ra
ines
λ1 et λ2. On a les trois possibilités suivantes :1. λ1 et λ2 réelles distin
tes. Ayant deux valeurs propres distin
tes, f estdiagonalisable par la proposition 2.5.3 
i-dessus. On a don
 une base

A de ve
teurs propres relativement à laquelle la matri
e de f est
Mf,A =

(
λ1 0
0 λ2

)
.
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2. λ1 = λ2 = λ ∈ R. On a don
 une seule valeur propre. On peutalors démontrer que f est diagonalisable si et seulement si f est unehomothétie de rapport λ. Dans le 
as 
ontraire, on peut montrer qu'ilexiste une base A de R2 telle que
Mf,A =

(
λ 1
0 λ

)
.3. Spf = {ρ e±iα}, ave
 α 6= 0, π. Dans 
e 
as, f n'a pas de valeur propreet f n'est pas diagonalisable. On peut alors démontrer qu'il existe unebase A de R2 relativement à laquelle la matri
e de f est de la forme

Mf,A =

(
ρ cos α −ρ sin α
ρ sin α ρ cos α

)
.Exemple 2 : Considérons f : R3 → R3 la proje
tion sur un plan Π pa-rallèlement à une droite D (voir p. 33). Supposons que Π est engendrépar les ve
teurs a := (1, 2,−1) et b := (0, 2, 1) et que D est engendrée par

d := (1, 1,−1). La base A := {a, b, d} est une base de ve
teurs propres danslaquelle la matri
e de f est diagonale :
Mf,A =




1 0 0
0 1 0
0 0 0


 .La matri
e P de passage pour la base A est

P :=




1 0 1
2 2 1
−1 1 −1


 .Par (2.25) la relation entre Mf et Mf,A est Mf,A = P−1MfP . La matri
e

Mf de la proje
tion f dans la base standard de R3 est don

Mf = P Mf,AP−1 =




−3 1 −2
−4 2 −2
4 −1 3


 .Exemple 3 : Un autre 
as de diagonalisabilité est donné par les matri
essymétriques (voir paragraphe suivant).36



2.5.3 Matri
es symétriques :Une matri
e 
arrée A est dite symétrique si elle est égale à sa transpo-sée : AT = A. Du point de vue des 
oe�
ients, 
ela veut dire que aij = aji.Les matri
es symétriques jouissent de nombreuses propriétés, dont nous neverrons que quelques unes i
i, et apparaissent dans beau
oup d'appli
ations :matri
e Hessienne (p. 56), 
omposantes prin
ipales (p. 103) géométrie desdistan
es (stéréo
hiomie) et
. Une matri
e symétrique est diagonalisable(Théorème 2.5.4 
i-dessous) et des algorithmes rapides permettent le 
al-
ul numérique de ses valeurs propres. De tels algorithmes sont implantés surplusieurs logi
iels (
omme MATLAB).Proposition 2.5.4 Soit A une matri
e symétrique. Alors1. SpA ⊂ R.2. A est diagonalisable. En fait, A admet une base de ve
teurs propresdeux-à-deux orthogonaux.Remarquons que 2) implique 1) par la proposition 2.5.2, p. 35. Pour unepreuve de 2.5.4, voir [2, p. 292℄.Le résultat 
i-dessous est utile pour savoir, sans avoir besoin de les 
al-
uler, si toutes les valeur propres d'une matri
e symétrique A sont positives.Notons Ak le kème mineur prin
ipal de A : 
'est le mineur obtenu enprenant les k premières lignes et les k premières 
olonnes de A :



a11 · · · a1k... ...
ak1 · · · akk

· · ·...



kème mineur prin
ipalProposition 2.5.5 Soit A une matri
e symétrique. Alors, les deux 
ondi-tions sont équivalentes :1. toutes les valeurs propres de A sont > 0.2. le déterminant de 
haque mineur prin
ipal est > 0 :
det Ak > 0 ∀ k = 1, 2, . . . , n.2.6 Systèmes dynamiques linéaires2.6.1 Stabilité de l'origineLes systèmes dynamiques les mieux 
onnus sont 
eux l'ensemble des étatsest Rn et la loi d'évolution f : Rn → Rn est linéaire. Le point 0 est don
 un37



état stationnaire. Le théorème prin
ipal de 
e paragraphe est une 
onditionné
essaire et su�sante pour que 0 soit un un état stationnaire stable.Si v est un ve
teur propre de f pour la valeur propre λ ∈ R, la droite
{αv | α ∈ R} 
onstitue un sous-système à 
roissan
e exponentielle, ave

oe�
ient de 
roissan
e λ. Dans 
e sous-système, 0 est stable si et seulementsi |λ| < 1. D'où une 
ondition né
essaire pour que 0 soit un stable pour lesystème (Rn, f) est qu'il n'y ait pas de valeur propre λ ave
 |λ| ≥ 1. Pourobtenir une 
ondition né
essaire et su�sante, il faut prendre en 
ompte non-seulement les valeurs propres mais aussi tout le spe
tre de f (voir p. 33).Dé�nissons le rayon spe
tral de f 
omme étant le maximum des modulesdes éléments de Sp(f).Théorème 2.6.1 Le point 0 ∈ Rn est un un état stationnaire stable si etseulement si le rayon spe
tral de f est < 1.La preuve de 
e théorème dépasse le 
adre de 
e 
ours. Il y a néanmoinsun 
as fa
ile : 
elui où f est diagonalisable (voir p. 34). En e�et, on a alorsune base V := {v1, . . . , vn} de ve
teurs propres et, pour les 
oordonnées dans
ette base, la matri
e Mf de f est diagonale :

Mf =




λ10 . . . 0
λn


où les λi sont les valeurs propres de f . Quand on itère f m-fois, on a :

Mfm = (Mf )m =




λm
10 . . . 0

λm
n


 .On voit que (Mf )m → 0 quand m → ∞ si et seulement si tous les λi satisfont

|λi| < 1.Supposons que λ1 > λi pour i ≥ 2. Soit x := (x1, . . . , xn) (
oordonnéesdans la base de ve
teurs propres V). Si x1 6= 0, on a :
fm(x) = (λm

1 x1, . . . , λ
m
n xn) = λm

1 x1 pmoù pm est le ve
teur
pm := (1, (

λ2

λ1
)m

x2

x1
, . . . , (

λn

λ1
)m

xn

x1
) → (1, 0, . . . , 0) = v1 (m → ∞).38



Le ve
teur normalisé fm(x)
‖fm(x)‖ tend don
 vers le ve
teur propre ± v1 :

fm(x)

‖fm(x)‖ → x1

|x1|
pm

‖pm‖ = ± v1.Plus généralement, on peut ainsi montrer le résultat suivant :Proposition 2.6.2 Soit f : V → V une appli
ation linéaire. Supposons que
f admette une valeur propre λmax ∈ R≥0 qui soit stri
tement plus grandeque le module de toute autre ra
ine du polyn�me 
ara
téristique de f (enparti
ulier, λmax est le rayon spe
tral de f). Soit vmax un ve
teur proprepour λmax ave
 ‖vmax‖ = 1. Alors, pour presque tout état z ∈ V , on a

lim
m→∞

fm(z)

‖fm(z)‖ = ± vmax et lim
m→∞

‖fm(z)‖
‖fm−1(z)‖ = λmax.Cette proposition dit qu'à long terme, le système se 
omporte 
omme unsystème à 
roissan
e exponentielle ave
 
oe�
ient de 
roissan
e λmax. Ellepeut être utilisée pour trouver λmax, l'itération de f étant fa
ile pour unordinateur. Pour une appli
ation de la proposition 2.6.2 en dynamique despopulations, voir l'exemple 
), p. 41.2.6.2 Populations ave
 pyramide d'âgesOn présente i
i un système dynamique dis
ret pour l'évolution d'unepopulation divisée en m 
lasses d'âge C1, . . . , Cm, des plus jeunes aux plusâgés. Ce modèle, qui remonte à Euler (1760), est utilisé pour toutes sortede populations : populations humaines ([10, 
h. 4℄,[8, � 1.2.2℄) ou d'animauxdont on désire 
omprendre et/ou in�uen
er le développement (repeuplement,lutte 
ontre inse
tes ou parasites).L'état de la population est un ve
teur (x1, . . . , xm) ∈ Rm, où xi est lenombre d'induvidus de la 
lasse Ci. On ne 
ompte souvent que les femellesen âge d'avoir des des
endants (
'est la donnée importante pour le renouvel-lement d'une population). Par exemple, pour une population humaine, on
omptera le nombre de femmes entre 0 et 50 ans, par tran
he de 5 ans, 
equi donne 10 
lasses (0-5 ans, 5-10 ans,. . ., 45-50 ans). L'état du système estainsi un ve
teur (x1, . . . , x10) ∈ R10 et l'unité de temps est de 5 ans.La loi d'évolution f(x1, . . . , xm) = (x′

1, . . . , x
′
m) est dé�nie de la façon sui-vante : les femelles Ci donnent naissan
e à des femelles C1 ave
 un 
oe�
ientde natalité βi, d'où

x′
1 =

m∑

i=1

βixi.39



D'autre part, les femelles Ci passent dans la 
lasse Ci+1 ave
 un 
oe�
ientde survie αi, 
e qui se traduit par
x′

i+1 = αixi si i ≥ 1.Par 
onvention, αm = 0, les individus de Cm sortant de la population 
onsi-dérée. En résumé,
f(x1, . . . , xm) = (

m∑

i=1

βixi , α1x1, α2x2, . . . , αm−1xm−1). (2.29)On voit que la loi d'évolution f : Rm → Rm est une appli
ation linéaire. Samatri
e Mf , pour m = 2, 3, 4, . . ., est
(

β1 β2

α1 0

)
,




β1 β2 β3

α1 0 0
0 α2 0


 ,




β1 β2 β3 β4

α1 0 0 0
0 α2 0 0
0 0 α3 0


 , . . .(2.30)En général, Mf 
ontient les 
oe�
ients de natalité sur sa 1ère ligne et les
oe�
ients de survie sur sa 1ère diagonale inférieure. Ces matri
es portent lenom de matri
es de Leslie.Soit pk := α1 · · ·αk ; 
'est la probabilité pour un nouveau-né de survivreà k étapes. Le nombre moyen de des
endantes qu'une femelle aura pendantsa vie entière sera don


E := β1 + p1β2 + p2β3 + · · · + pm−1βm. (2.31)On peut démontrer (voir [10, � 4.4℄ :Théorème 2.6.3 a) f a une seule de ses valeurs propres qui est réelle po-sitive. Appelons-la λpos.b) λpos est le rayon spe
tral de f .
) si E < 1, alors λpos < 1. Si E > 1, alors λpos > 1.d) E = 1 − (−1)mPf (1).En utilisant le théorème 2.6.1 de la p. 38 le théorème 2.6.3 
i-dessus donneun moyen de savoir, par la seule 
onnaissan
e du nombre E, si la populationva s'éteindre ou se développer :Théorème 2.6.4 a) si E < 1, alors le nombre d'individus de la populationdé
roît et tend vers 0.b) si E > 1, alors le nombre d'individus de la population 
roît et tendvers l'in�ni. 40



Exemples : a) Si m = 2, et β1=0, on a Mf =
(

0
α1

β2
0

) et E = α1β2. Lepolyn�me 
ara
téristique de f étant λ2 −α1β2, les valeurs propres de f sont
±√

α1β2. Cela illustre le point 
) du théorème 2.6.3.b) Le 
as E = 1 ne permet pas de 
on
lusion sans information supplé-mentaire. Il donne parfois lieu à des 
omportements 
y
liques, 
omme parexemple ave
 la matri
e Mf =
(
0
1

1
0

) (les individus ne meurent pas pendantla période 
ondisérée et donnent naissan
e à 1 des
endant après une étape).L'évolution i
i est 
y
lique de période 2, puisque M2
f = I.
) Si E > 1, 
as où la population 
roît, on peut dé
rire la pyramide d'âgesà long terme si λpos > |λi| pour toutes les autres ra
ines réelles ou 
omplexes

λi du polyn�me 
ara
téristique Pf . Il existe alors un unique ve
teur propre
vpos = (v1, . . . , vm) pour λpos tel que v1 = 1. Vu la forme simple de la matri
e
Mf , il est fa
ile de trouver vpos. On a

λposv2 = α1v1 = p1 , λposv3 = α2v2 =
α2α1v1

λpos
=

p2

λpos
, etc. (2.32)d'où vpos = (1, p1/λpos, . . . , pm−1/λ

m−1
pos ). Par la proposition 2.6.2 de la p. 39,l'état de la population x(t) := (x1(t), . . . , xm(t)), une fois divisé par x1(t),tend vers le ve
teur propre vpos :

1

x1(t)
x(t) → (1,

p1

λpos
,

p2

λ2
pos

, . . . ,
pm−1

λm−1
pos

) (t → ∞) (2.33)et le taux de 
roissan
e à long terme est λpos.2.6.3 Le système de Fibona

iC'est un 
as parti
ulier de population ave
 pyramide d'âges (voir � pré-
édent) où l'on a 2 
lasses d'âge (jeunes,vieux). Un état est don
 un 
ouple
s := (x, y) ∈ R2. La loi d'évolution est par dé�nition f(x, y) := (x + y, x)dont la matri
e est

M := Mf =

(
1 1
1 0

)
.Ce système a été imaginé vers l'an 1200 par le mathémati
ien italien Fi-bona

i (1170�1230, aussi 
onnu sous le nom de Leonardo da Pisa) pourmodéliser la 
roissan
e de populations de lapins.Pour l'état initial s(0) := (1, 1), la traje
toire est

n 0 1 2 3 4 5 6 . . .
s(n) (1, 1) (2, 1) (3, 2) (5, 3) (8, 5) (13, 8) (21, 13) . . .41



Le nombre xn de jeunes individus à l'étape n augmente don
 selon lasuite
1 2 3 5 8 13 21 34 55 89 . . . (2.34)appelée suite de Fibona

i3, 
ara
térisée par l'équation xn = xn−1 +xn−2.De toute façon, 
omme E = 2, la population tend vers l'in�ni par le théorème2.6.4 de la p. 40. Pour l'évolution qualitative (proportion jeunes/vieux), onse réfère à l'exemple 
) de la p. 41. Il faut 
her
her la valeur propre λpos etle ve
teur propre vpos. Le polyn�me 
ara
téristique de f étant

Pf =

∣∣∣∣
1 − X 1

1 −X

∣∣∣∣ = X2 − X − 1,les valeurs propres de f sont les deux solutions de l'équation X2−X−1 = 0.On trouve
λpos :=

1 +
√

5

2
≈ 1.618033989 et λneg :=

1 −
√

5

2
≈ −.618033989 .Ce
i illustre bien le théorème 2.6.3 de la p. 40. On dé
ouvre que la valeurpropre λpos est le nombre d'or, 
onnu depuis l'antiquité, et qui joue unr�le en ar
hite
ture et en botanique [13, 
h.9℄. Pour trouver vpos, on résoutl'équation matri
ielle :

(
1 1
1 0

)(
x
y

)
=

(
λpos x
λpos y

)
. (2.35)Les solutions sont les 
ouples (x, y) tels que x = λposy 
e qui forme unedroite Dpos. Pour vpos, on a x = 1 d'où vpos = (1, 1/λpos), 
omme prévu par laformule (2.33). De même, on véri�e que la droite Dneg := {(x, y) | x = λnegy}
ontient les ve
teurs propres pour la valeur propre λneg. D'après l'exemple
) de la p. 41, l'état s(t) = (x(t), y(t)) tendra, lorsque t → ∞, vers la droite

Dpos, 
'est-à-dire que
x(t)

y(t)
→ λpos (t → ∞)La proportion jeunes/vieux, de même que le taux de 
roissan
e, se stabiliseravers le nombre d'or 1+

√
5

2 ≈ 1.618033989. Voi
i un 
al
ul ave
 l'état initial
s(0) = (1, 1) :3Pourquoi de nombreuses �eurs ont-elles un nombre de pétales appartenant à la suitede Fibona

i ? voir [14℄ et [13, 
h. 9℄. 42



n x(n)/y(n)0 1.0000000005 1.62500000010 1.61797752815 1.61803444820 1.61803398525 1.61803398930 1.61803398935 1.61803398940 1.618033989
Obtenu par le programme MAPLE :s :=(1,1) :f := (x,y)−>(x+y,x) : g :=(x,y)−>x/y :for n from 0 to 40 by 5do [n,evalf((g�(f��n))(s))℄ ; od ;Remarques : 1) le bassin de la droite Dpos, qui est un attra
teur, est

{0}∪(R2−Dneg). La droite Dneg est un sous-système non-stable qui sépare lebassin de la demi-droite Dpos∩{x > 0} (traje
toires tendant vers (∞,∞)) dubassin de la demi-droite Dpos∩{x < 0} (traje
toires tendant vers (−∞,−∞) ;on ne les ren
ontrera pas pour des problèmes de populations où x et y sontdes nombres positifs).2) la fon
tion h(x, y) = x2 − xy − y2 satisfait h(s) =
−h(f(s)). L'état s(n) os
ille don
 entre deux 
ourbesde niveau de la fon
tion h, les 
ourbes h(s) = h(s(0))et h(s) = −h(s(0)). Ces 
ourbes de niveau x2 − xy −
y2 = 
onstante sont des hyperboles dont les asymp-totes sont Dpos et Dneg (�gure 
i-
ontre).

-3

-2

-1

1

2

3

-3 -2 -1 1 2 3
x

D

s(2)

s(0)

s(4) pos

negD

s(3)

s(1)3) Si l'état initial s(0) = (x(0), y(0)) appartient à la droite Dneg, la traje
toiretendra vers 0. Il est intéressant de noter que 
e 
as ne peut pas être observénumériquement ! En e�et, le nombre λneg est irrationnel 
ar √5 n'est pas unefra
tion (voir annexe A.3). Lorsque x(0) et y(0) sont des valeurs numériques,qui sont for
ément des fra
tions (voir p. 93), on aura x(0)/y(0) ∈ Q d'où
s(0) /∈ Dneg et s(0) sera dans le bassin de Dpos.Autrement dit : la traje
toire de s0 := (1−

√
5

2 , 1) tend vers 0 mais toutessai numérique, par exemple ave
 s̃0 = (−.618033989, 1), donne, quelquesoit la pré
ision de l'approximation, une traje
toire qui tend vers l'in�ni !r
43



Chapitre 3Cal
ul di�érentielElaboré à partir du XVIIe siè
le, le 
al
ul di�érentiel et intégral est l'undes outils intelle
tuels les plus puissants que l'homme possède. C'est le lan-gage in
ontournable de la physique (mé
anique, thermodynamique, éle
tro-magnétisme, relativité, mé
anique quantique, et
). C'est 
et outil qui a per-mis à Maxwell de dégager l'existen
e des ondes éle
tromagnétiques, si im-portantes dans notre vie quotidienne et qui n'auraient peut-être jamais ététrouvées autrement. On peut don
 dire sans exagérer que le 
al
ul in�nitési-mal a 
hangé la fa
e du monde et est l'un des fa
teurs fondamentaux de larévolution s
ienti�que et te
hnologique à laquelle nous 
ontinuons d'assister.Ce 
hapitre présente quelques outils du 
al
ul di�érentiel à une et plu-sieurs variables, dans le but de résoudre les problèmes suivants :� trouver les extrema d'une fon
tion d'une ou plusieurs variables (opti-misation) ;� dé
ider si un état stationnaire d'un système dynamique est stable.3.1 Appli
ations di�érentiables à une variableLes étudiants sont supposés avoir déjà ren
ontré la notion de dérivéed'une appli
ation de R dans R. Les formules usuelles de dérivation et lesdérivées des fon
tions 
ourantes se trouvent dans les tables 
omme [5℄ oudans MAPLE. Ces di�érentes te
hniques de dérivation seront revues auxexer
i
es.
44



3.1.1 Di�érentiabilitéUne fon
tion g : R → R est dite a�ne si son grapheest une droite. Si a ∈ R, on a alors
g(x) = g(a) + α(x − a). (3.1)Le nombre α est la pente de la droite y = g(x). On aaussi que α = g′(a), la dérivée de g en a. r

0

��������
r

1
α=g′(a)

a

g(a)

g(x)

xLes fon
tions a�nes sont parmi les plus simples à 
omprendre et à 
al-
uler. Si l'on a une fon
tion f quel
onque dé�nie au voisinage d'un point
a ∈ R, il est don
 naturel de 
her
her à l'appro
her par une fon
tion a�ne

f(x) ≈ f(a) + α(x − a) (au voisinage de a). (3.2)Lorsqu'une �bonne� approximation existe, on dit que f est di�érentiable (en
a). Pour rempla
er l'égalité approximative (3.2) par une vraie égalité, il fautintroduire un reste (ou erreur) R(x) :

f(x) = f(a) + α(x − a) + R(x).L'approximation a�ne sera �bonne� si le reste R(x) se développe su�sam-ment lentement. La dé�nition pré
ise estDé�nition :
f est di�érentiable en a s'il existe α ∈ R tel que

f(x) = f(a) + α(x − a) + R(x) (3.3)ave
 R(x)

x − a
→ 0 quand x → a s

0

s

�������������

1

α

a

f(a)

y
=

f
(x

)

y=f(a)+α(x−
a)

x

R(x)

Géométriquement, la di�érentiabilité de f en a 
orrespond à 
e que legraphe de f possède une tangente en a, d'équation y = f(a) + α(x − a).Le 
oe�
ient α est fa
ile à 
al
uler. Quand x 6= a, on a
α =

f(x) − f(a)

x − a
− R(x)

x − a
. (3.4)Le membre de gau
he est une fon
tion 
onstante ; sa limite lorsque x → aest α. Par (3.3), le membre de droite aura une limite lorsque x → a si et45



seulement si limx→a
f(x)−f(a)

x−a existe. On sait que 
ela veut dire que f estdérivable en a et la limite sera la dérivée
f ′(a) := lim

x→a

f(x) − f(a)

x − a
= lim

h→0

f(a + h) − f(a)

hde f en a. On a démontré :Théorème 3.1.1 La fon
tion f est di�érentiable en a si et seulement si elleest dérivable en a. Dans 
e 
as, on a
f(x) = f(a) + f ′(a)(x − a) + R(x)ave
 R(x)

x − a
→ 0 quand x → a

(3.5)Remarque : Le théorème (3.1.1) montre que les notions �di�érentiable�et �dérivable� 
oïn
ident. Ce n'est pas le 
as pour des fon
tions de plusieursvariables (voir p. 55). Dans les deux 
as, 
'est la di�érentiabilité et la formule(3.5) qui sont importantes 
ar, 
omme nous le verrons, elles déterminent le
omportement de f au voisinage de a.3.1.2 Comportement de f au voisinage d'un pointIntuitivement, la di�érentiabilité de f en a implique que, au voisinage de
a, f se 
omporte à peu près 
omme la fon
tion a�ne g(x) = f(a)+f ′(a)(x−
a). En e�et, le graphe de f vient se �
oller� sur 
elui de g. Un exemple de 
ephénomène est la proposition suivante :Proposition 3.1.2 (lemme de traversement) Soit f une fon
tion di�é-rentiable en a. Supposons que f ′(a) 6= 0. Alors le graphe de f traverse en ala droite horizontale y = f(a).Preuve: Supposons que f ′(a) > 0. Comme f est di�érentiable en a, on a f(x) =

f(a) + f ′(a)(x − a) + R(x) ave
 R(x)
x−a

→ 0 quand x → a. Il existe don
 un voisinage U de
a tel que |R(x)

x−a
| < f ′(a) 
e qui implique que

f(x) − f(a)

x − a
= f ′(a) +

R(x)

x − a
> 0. (3.6)Cette dernière inégalité entraîne que

x < a ⇒ f(x) < f(a)
x > a ⇒ f(x) > f(a),don
 le graphe de f a traversé la droite y = f(a) (i
i, de bas en haut). Le 
as f ′(a) < 0 setraite de la même manière et la droite y = f(a) sera traversée de haut en bas.46



Dé�nition : Un point a ∈ R est un minimum lo
al pour la fon
tion
f s'il existe un voisinage U de a tel que f(x) > f(a) lorsque a 6= x ∈ U .De même, on dé�nit la notion de maximum lo
al. Un point qui est unminimum ou un maximum lo
al s'appelle un extremum lo
al.La re
her
he d'extrema lo
aux fera l'objet du paragraphe 3.3. Pour l'ins-tant, le lemme de traversement 3.1.2 implique immédiatement le résultatsuivant :Corollaire 3.1.3 Soit f une fon
tion di�érentiable en a. Supposons que asoit un extremum lo
al de f . Alors f ′(a) = 0.Le 
orollaire 3.1.3 dit que la 
ondition f ′(a) = 0 est né
essaire pour que
a soit un extremum lo
al de f . Elle n'est pas su�sante, 
omme le montre lafon
tion f(x) = x3 qui, bien que f ′(0) = 0, est stri
tement 
roissante.Voi
i maintenant quelques théorèmes 
lassiques pour les fon
tions di�é-rentiables. On dit que f : [a, b] → R est di�érentiable si elle est di�éren-tiable en tout point de l'intervalle [a, b].Théorème 3.1.4 (Théorème des a

roissements �nis) Soit
f : [a, b] → R une fon
tion di�érentiable. Alors il existe x ∈]a, b[ tel que

f ′(x) =
f(b) − f(a)

b − a
.Preuve: On démontre d'abord le 
as parti
ulier où f(a) = f(b) (théorème de Rolle).On utilise que l'image d'un intervalle fermé par une appli
ation 
ontinue est un intervallefermé. L'appli
ation f est don
 
onstante ou a des extrema dans ]a, b[. On applique alorsla proposition 3.1.3.Le 
as général s'obtient en appliquant le théorème de Rolle à la fon
tion

h(x) := f(x) − (x − a)
f(b) − f(a)

b − a
.Corollaire 3.1.5 Soit f : [a, b] → R une fon
tion di�érentiable. Si f ′(x) >

0 pour tout x ∈]a, b[, alors f est stri
tement 
roissante. Si f ′(x) < 0 pourtout x ∈]a, b[, alors f est stri
tement dé
roissante.Preuve: Soient u, v ∈ [a, b] ave
 u < v. Par le théorème des a

roissements �nis appliquéà l'intervalle [u, v], il existe x ∈]u, v[ ave
 f(v)−f(u)
v−u

= f ′(x). Si f ′(x) > 0, 
ela impliqueque f(v) > f(u) (et le 
ontraire si f ′(x) < 0).Corollaire 3.1.6 Soit f : [a, b] → R une fon
tion di�érentiable. Alors,
f ′(x) = 0 pour tout x ∈]a, b[ si et seulement si f est 
onstante.47



Preuve: Si f(x) 6= f(a), on aurait, par le théorème des a

roissements �nis, un point
y ∈]a, x[ ave
 f ′(y) 6= 0.En�n, l'une des fameuses règles de L'Hospital :Proposition 3.1.7 (Règle de l'Hospital) Soient f et g dérivables sur unintervalle ouvert ]a, a + ǫ[ (ou ]a − ǫ, a[). On suppose que� limx→a f(x) = limx→a g(x) = 0.� limx→a

f ′(x)
g′(x) existe.Alors, limx→a

f(x)
g(x) existe et lim

x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)
.Preuve: La démonstration, pour un énon
é aussi général, repose sur le théorème desa

roissements �nis (voir [1, p. 242-244℄). Nous allons donner une démonstration plussimple dans le 
as parti
ulier où f et g sont di�érentiables en a et où g′(a) 6= 0. Il s'agitde montrer qu'alors

lim
x→a

f(x)

g(x)
=

f ′(a)

g′(a)
.On applique la formule (3.5) à f et g :

f(x)

g(x)
=

f ′(a)(x − a) + R(x)

g′(a)(x − a) + S(x)
(3.7)ave


lim
x→a

R(x)

x − a
= lim

x→a

S(x)

x − a
= 0.En divisant le membre de droite de (3.7) haut et bas par x − a, on obtient

f(x)

g(x)
=

f ′(a) +
R(x)

x − a

g′(a) +
S(x)

x − a

→
f ′(a)

g′(a)
.Remarques :1. La règle de l'Hospital est aussi vraie si limx→a f(x) = limx→a g(x) =

±∞.2. On peut appliquer la règle de l'Hospital dans le 
as où x → ±∞.Exemple :
lim

x→∞
eax

xn
= lim

x→∞
aeax

nxn−1
= · · · = lim

x→∞
aneax

n!
= ∞ si a > 0. (3.8)Cela prouve que la fon
tion exponentielle eax ave
 a > 0 
roît plus viteque tout polyn�me. 48



3.1.3 Formule de Taylor à une variableNous avons vu au paragraphe pré
édent qu'une fon
tion di�érentiable en
a admet une bonne approximation par un polyn�me du 1er degré

f(x) ≈ P1(x) = α0 + α1(x − a) (3.9)si α0 = f(a) et α1 = f ′(a). Observons que
P1(a) = f(a) et P ′

1(a) = f ′(a). (3.10)L'approximation est à l'ordre 1 en 
e sens que
lim
x→a

f(x) − P1(x)

x − a
= 0. (3.11)On s'intéresse à des approximations plus �nes de f , ave
 des polyn�mes

Pn de degré n > 1. En s'inspirant de (3.10), on 
her
he un polyn�me Pn telque
Pn(a) = f(a) , P ′

n(a) = f ′(a) , . . . , P (n)
n (a) = f (n)(a) (3.12)où f (n) désigne la nième dérivée de f . L'approximation sera alors à l'ordre

n. En e�et :Proposition 3.1.8 Soient f et g deux fon
tions n-fois dérivables en a. Sup-posons que f (k)(a) = g(k)(a) pour 0 ≤ k ≤ n. Alors
lim
x→a

f(x) − g(x)

(x − a)n
= 0.Preuve: On applique la règle de L'Hospital (Proposition 3.1.7) n fois à l'envers :

0 =
f (n)(a) − g(n)(a)

1
= limx→a

f (n−1)(x) − gn−1(x)

x − a
=

= 2 limx→a
f (n−2)(x) − g(n−2)(x)

(x − a)2
= · · · = n! limx→a

f (x) − g(x)

(x − a)nReste à trouver le polyn�me Pn. On utilise le lemme suivant, dont ladémonstration se fait par 
al
ul dire
t :Lemme 3.1.9 Considérons la fon
tion polynomiale
P (x) := α0 + α1(x − a) + · · · + αn(x − a)n.Alors, pour tout k ≥ 0, on a

αk =
1

k!
P (k)(a)49



En mettant tous 
es résultats ensemble, on obtient la formule de Taylor :Théorème 3.1.10 (Formule de Taylor) Soit f une fon
tion n-fois déri-vable en a. Alors
f(x) = f(a) +

f ′(a)

1!
(x − a) + · · ·

· · · + f (n)(a)

n!
(x − a)n + Rn(x)

( en résumé : f(x) =

n∑

k=0

1

k!
f (k)(a)(x − a)k + Rn(x) )ave


lim
x→a

Rn(x)

(x − a)n
= 0.Remarque :1. Quand a = 0, la formule de Taylor porte parfois le nom de formule deMa
Laurin.2. Le reste Rn(x) est, dans la littérature, parfois rempla
é par les expres-sions o((x − a)n) (petit �O� de (x − a)n) ou, 
omme dans MAPLE,

O((x − a)n+1) (grand �O� de (x − a)n+1). Ces expressions signi�entque
lim
x→a

Rn(x)

(x − a)n
= 0 et lim

x→a

Rn(x)

(x − a)n+1
= 
onstante.3. Lorsque f est dérivable (n + 1) fois, le reste Rn(x) dans la formule deTaylor est donné par di�érentes expressions ([1, pp. 251�253℄, [3, pp.541�543℄). Par exemple :

Rn(x) =
1

n!

∫ x

a
(x − t)nf (n+1)(t)dt. (3.13)On a aussi le reste de Lagrange :

Rn(x) =
(x − a)n+1

(n + 1)!
f (n+1)(ξ) (3.14)où ξ est un 
ertain point entre a et x. En 
onséquen
e, si l'on sait que

|f (n+1)(t)| ≤ M pour t entre a et x, on aura, utilisant que |ξ − a| ≤
|x − a|, l'estimation

|Rn(x)| ≤ M

(n + 1)!
|x − a|n+1. (3.15)50



Exemple : Le développement de Taylor en 0 à l'ordre 6 pour f(x) = sin xest
sin(x) = x − 1

3!
x3 +

1

5!
x5 + R6(x).On peut utiliser la borne |f (n)(x)| ≤ 1 puisque f (n)(x) = ± sin x ou ± cos x.Par (3.15), 
ela donne

|R6(x)| ≤ 1

7!
|x|7 ≤ 0.002 |x|7Lorsque |x| ≤ π/4, on obtient |R6(x)| ≤ 0.0000366. Le 
al
ul exa
t montrequ'en fait |R6(π/4)| ≤ 0.0000363.3.2 Appli
ations di�érentiables à plusieurs variables3.2.1 Dérivées partielles - GradientSoit f : Rn → R et a = (a1, . . . , an) ∈ Rn. Notons, 
omme à la p. 18

e1 = (1, 0, . . . , 0) , e2 = (0, 1, . . . , 0) , . . . , e1 = (0, 0, . . . , 1)les ve
teurs de la base standard de Rn. En �xant toutes les variables xk := aksauf la ième que l'on laisse varier, on obtient une fon
tion d'une variable
t 7→ f(a + tei). Si 
ette fon
tion est dérivable en t = ai, sa dérivée s'appellela dérivée partielle de f en a par rapport à la variable xi. Elle se note

∂f

∂xi
(a) := lim

h→0

f(a + hei) − f(a)

hSi 
es dérivées partielles existent en tout a, on obtient n nouvelles fon
tionsde Rn dans R :
∂f

∂x1
, . . . ,

∂f

∂xnExemple : f(x, y, z) = x2eyz (on a n = 3 et les variables sont notées
x, y, z). Alors :

∂f

∂x
= 2xeyz ,

∂f

∂y
= x2zeyz ,

∂f

∂z
= x2yeyz .On voit que les dérivées partielles se 
al
ulent 
omme les dérivées usuelles,les variables que l'on ne dérive pas étant traitées 
omme des 
onstantes.51



Les dérivées partielles d'ordre 2 se dé�nissent en dérivant les dérivéespartielles premières. Les notations sont :
∂2f

∂x2
i

:=
∂

∂xi
(
∂f

∂xi
)si l'on dérive deux fois par rapport à la variable xi et

∂2f

∂xi∂xj
:=

∂

∂xi
(

∂f

∂xj
)si l'on dérive d'abord par rapport à xj puis par rapport à xi.Dans l'exemple pré
édent f(x, y, z) = x2eyz, on a

∂2f

∂x2
= 2eyz ,

∂2f

∂y2
= x2z2eyz ,

∂2f

∂y∂z
= x2zyeyz , etc.A priori on aurait 9 dérivées partielles d'ordre 2. Mais on voit par exempleque

∂2f

∂x∂y
= 2xzeyz =

∂2f

∂y∂x
.Cette indépendan
e de l'ordre de dérivation n'est pas toujours vraie [1, (4.2)p. 316℄ mais elle a lieu si, 
omme dans l'exemple, les dérivées partielles sontdes fon
tions 
ontinues [1, th. 4.3℄ :Proposition 3.2.1 Supposons que les dérivées partielles ∂2f

∂x2
i

, ∂2f
∂x2

j

et ∂2f
∂xi∂xjexistent dans un voisinage de a et sont 
ontinues en a. Alors ∂2f

∂xj∂xi
existeet l'on a

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a).Les n dérivées partielles ∂f

∂xi
(a) de f : Rn → R en a peuvent être vues
omme les 
omposantes d'un ve
teur ; 
e ve
teur s'appelle le gradient de fen a :

grad f(a) :=

(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
. (3.16)L'appli
ation grad f : a 7→ grad f(a) est un 
hamp de ve
teurs, 
'est-à-direune appli
ation de Rn dans Rn. Ce 
hamp de ve
teurs est appelé le 
hampde gradient ou simplement gradient de f . La signi�
ation géométrique dugradient sera dis
utée au � 3.2.6, p. 58. En physique, il s'interprète 
omme la52



for
e que subit une parti
ule soumise à un potentiel f (exemple : parti
ule
hargée dans un potentiel éle
trique). Voir aussi p. 76Le 
as d'une fon
tion f : Rn → Rp de n variables à valeur dans Rp n'estpas vraiment plus di�
ile puisqu'une telle fon
tion 
onsiste en p fon
tions
fi : Rn → R :

f(x1, . . . , xn) = (f1(x1, . . . , xn), . . . , fp(x1, . . . , xn)). (3.17)On a don
 (p × n) dérivées partielles ∂fi

∂xj
(a) qui 
onstituent une (p × n)-matri
e, la matri
e ja
obienne Df(a) de f en a :

Df(a) :=




∂f1

∂x1
(a) · · · · · · ∂f1

∂xn
(a)... ...

∂fp

∂x1
(a) · · · · · · ∂fp

∂xn
(a)


 . (3.18)La ième ligne de Df(a) est le ve
teur grad fi(a).Exemple : Supposons que f : Rn → Rp soit une appli
ation linéaire dematri
e Mf := (bij). Ave
 les notations de (3.17), on a fi(x1, . . . , xn) =∑n

j=1 bijxj d'où
∂fi

∂xj
= bij.Ce
i montre que Df(a) = Mf quelque soit a ∈ Rn. C'est la généralisationdu fait familier à une variable que la dérivée de f(x) = bx est 
onstante égaleà b.3.2.2 Di�érentiabliltéNous allons suivre le plan du � 3.1 pour dé�nir la notion de diférentiabilitépour les fon
tions de n variables (fon
tions de Rn dans R ou Rn → Rp). Ondira qu'une fon
tion dé�nie au voisinage de a ∈ Rn est di�érentiable en asi elle admet une bonne approximation par une fon
tion a�ne, les notionsde �fon
tion a�ne� et de �bonne approximation� restant à pré
iser.Une fon
tion g : Rn → Rp est dite a�ne si elle est la somme d'une
onstante et d'une fon
tion linéaire :

g(x) = c + L(x). (3.19)Si a = (a1, , . . . , an) est un point de Rn, on peut é
rire
g(x) = c + L(a) + L(x − a) = g(a) + L(x − a). (3.20)53



Si f : Rn → Rp est une fon
tion non-a�ne, on aura
f(x) = f(a) + L(x − a) + R(x). (3.21)Pour 
haque fon
tion linéaire L : Rn → Rp, l'équation (3.21) dé�nitsimplement une nouvelle fon
tion �reste� : R : Rn → Rp. Le problème estde trouver L pour que 
ette fon
tion perturbatri
e se développe su�samentlentement au voisinage de a, 
'est-à-dire :

‖R(x)‖
‖x − a‖ → 0 quand ‖x − a‖ → 0. (3.22)Nous sommes prêts pour la dé�nition d'une appli
ation di�érentiable,analogue à 
elle des fon
tions d'une variable de la p. 45.Dé�nition :Soit f : Rn → Rp une appli
ation et a ∈ Rn. On dit que

f est di�érentiable en a s'il existe une appli
ationlinéaire L : Rn → Rp telle que
f(x) = f(a) + L(x − a) + R(x)ave
 ‖R(x)‖

‖x − a‖ → 0 quand ‖x − a‖ → 0.(3.23)La matri
e ML ∈ Mp×n(R) se 
al
ule de la même façon que pour unefon
tion d'une variable (p. 46). On regarde le 
as x = (a1, a2, . . . , ai +
h, . . . an) et on en déduit que le 
oe�
ient (ML)ki est la dérivée partielle

(ML)ki =
∂fk

∂xi
(a). (3.24)Autrement dit, ML = Df(a), la matri
e ja
obienne de f et

L(x − a) = Df(a)(x − a) =




∂f1

∂x1
(a) · · · · · · ∂f1

∂xn
(a)... ...

∂fp

∂x1
(a) · · · · · · ∂fp

∂xn
(a)







x1 − a1......
xn − an


 .(3.25)En parti
ulier, lorsque f : Rn → R (p = 1), la matri
e ligne Df(a) peut êtrevue 
omme le ve
teur gradient et on peut utiliser le produit s
alaire :

L(x − a) = grad f(a) · (x − a). (3.26)54



L'existen
e de dérivées partielles est don
 une 
ondition né
essaire pourque f soit di�érentiable. Contrairement au 
as d'une variable (théorème3.1.1, p. 46), 
e n'est pas une 
ondition su�sante [1, �IV.3℄. La 
onditionsu�sante la plus 
ourante est la 
ontinuité des dérivées partielles [1, théo-rème 3.6, 
h. IV℄. On peut don
 énon
er les analogues du théorème 3.1.1, p.46 pour les fon
tions de Rn → R et Rn → Rp :Théorème 3.2.2 Soient f : Rn → R et a ∈ Rn. Supposons que les dérivéespartielles d'ordre 1 de f existent au voisinage de a et soient 
ontinues en a.Alors f est di�érentiable en a et on a
f(x) = f(a) + grad f(a) · (x − a) + R(x)ave
 ‖R(x)‖

‖x − a‖ → 0 quand ‖x − a‖ → 0.
(3.27)Théorème 3.2.3 Soit f := (f1, . . . , fp) : Rn → Rp et a ∈ Rn. Supposonsque les dérivées partielles d'ordre 1 de fi (i = 1, . . . , p) existent au voisinagede a et soient 
ontinues en a. Alors f est di�érentiable en a et on a

f(x) = f(a) +




∂f1

∂x1
(a) · · · · · · ∂f1

∂xn
(a)... ...

∂fp

∂x1
(a) · · · · · · ∂fp

∂xn
(a)







x1−a1......
xn−an


 + R(x)ave
 ‖R(x)‖

‖x − a‖ → 0 quand ‖x − a‖ → 0.

(3.28)
3.2.3 Dérivée de fon
tions 
omposéesPour deux fon
tions f, g : R → R on 
onnait la règle de dérivation de la
omposition g◦f : si f est di�érentiable en a et g est di�érentiable en f(a),alors

(g◦f)′(a) = g′(f(a)) f ′(a). (3.29)Ce résultat se généralise aux fon
tions de plusieurs variables de la manièresuivante [1, p. 306℄Proposition 3.2.4 Soient
Rn f−→ Rp g−→ Rq55



des fon
tions di�érentiables. Alors g◦f est di�érentiable et la matri
e ja
o-bienne D(g◦f) en a ∈ Rn est le produit matri
iel
D(g◦f)(a) = Dg(f(a)) · Df(a). (3.30)Exemple : Prenons le 
as parti
ulier n = 1 = q. On regarde c : R → Rp
omme une 
ourbe di�érentiable
c : t 7→ c(t) = (c1(t), . . . , cp(t)).Le ve
teur

ċ(t) := (ċ1(t), . . . , ċp(t))s'appelle le ve
teur vitesse de la 
ourbe c. La formule (3.30) implique quela dérivée de la 
omposition g◦c est donnée par le produit s
alaire
(g◦c)′(t) = grad g(c(t)) · ċ(t) (3.31)3.2.4 Appli
ation : 
al
ul d'erreursSupposons que l'on ait n données x1, . . . , xn et que xi est 
onnue ave
une impré
ision (�erreur�) ±∆xi. Notons ∆x := (∆x1, . . . ,∆xn) ∈ Rn.Soit f : Rn → R. L'erreur ∆x produit une erreur ∆f sur f(x1, . . . , xn).Cette erreur est souvent estimée à l'aide de la formule(3.27) :

|∆f | ∼= |grad f(x1, . . . , xn) · ∆x| ≤ ‖grad f(x1, . . . , xn)‖ ‖∆x‖, (3.32)la dernière inégalité étant l'inégalité de S
hwarz (p. 16). La formule (3.32)est à appliquer ave
 pré
aution. Elle donne des résultats raisonnables lorsque
∆x est très petit et que grad f ne varie pas trop autour de x.3.2.5 Formule de Taylor à plusieurs variablesLes formules (3.27) et (3.28) du paragraphe pré
édent sont les développe-ments de Taylor de f : Rn → R ou f : Rn → Rp à l'ordre 1. Le développementde Taylor pour une fon
tion à n variables donne lieu à des expressions as-sez 
ompliquées (voir [1, p. 320℄). Nous nous bornerons à donner le termed'ordre 2 pour une fon
tion f : Rn → R qui sera utilisé pour les problèmesd'extrema. Introduisons la matri
e hessienne Hf(a) ∈ Mn×n(R) de fen a :

Hf(a) :=




∂2f
∂x2

1
· · · ∂2f

∂x1∂xn... ...
∂2f

∂xn∂x1
· · · ∂2f

∂x2
n


 Hf(a)ij =

∂2f

∂xi∂xj
. (3.33)56



Si on se pla
e dans les hypothèses de la proposition 3.2.1, p. 52, la matri
ehessienne sera une matri
e symétrique.Pour x ∈ Rn, 
onsidérons le produit matri
iel
T2(x) := (x1 − a1, . . . , xn − an)Hf(a)




x1−a1......
xn−an


 . (3.34)

T2(x) est une (1 × 1)-matri
e que l'on 
onsidérera, par abus de notation,
omme un nombre réel. C'est le terme d'ordre 2 de la formule de Taylor.Théorème 3.2.5 Soient f : Rn → R et a ∈ Rn. Supposons que les dérivéespartielles d'ordre ≤ 2 de f existent au voisinage de a et soient 
ontinues en
a. Alors, on a la formule

f(x) = f(a) + grad f(a) · (x − a) + 1
2T2(x) + R2(x)ave
 ‖R2(x)‖

‖x − a‖2
→ 0 quand ‖x − a‖ → 0.

(3.35)où T2(x) est dé�ni par l'équation (3.34).Exemple : f(x, y) := x + y sinx et a = (0, 0). On a
∂f

∂x
= 1 + y cos x ,

∂f

∂y
= sin x.D'où

grad f(0) = (1, 0) et grad f(0) · (x, y) = x.Les dérivées se
ondes sont
∂2f

∂x2
= −y sinx ,

∂2f

∂y2
= 0 ,

∂2f

∂x∂y
=

∂2f

∂y∂x
= cos x.La matri
e hessienne Hf(0) est don


Hf(0) =

(
0 1
1 0

)et
(x, y)

(
0 1
1 0

)(
x
y

)
= (x, y)

(
y
x

)
= (2xy)d'où T2(x, y) = 2xy. La formule de Taylor à l'ordre 2 donne

f(x, y) = x + xy + R2(x, y).57



3.2.6 Gradient et surfa
es de niveauLe graphe d'une fon
tion f : Rn → R est di�
ile à visualiser si n =
2, malgré les dessins en perspe
tive fournis par les ordinateurs. Cela estimpossible si n ≥ 3. On obtient quand même des informations graphiques enutilisant les 
ourbes ou surfa
es de niveau (isothermes, isobares, et
).Soit u ∈ R. La surfa
e de niveau u est

Nu := f−1({u}) = {x ∈ Rn | f(x) = u}.Le mot �surfa
e� est utilisé par analogie du 
as d'une fon
tion à 3 variables.Par exemple, si f(x, y, z) = x2 + y2 + z2, alors Nu est la sphère d'équation
x2 + y2 + z2 = u. Pour une fon
tion de R2 dans R, 
e sont des 
ourbes deniveau (des 
er
les pour l'exemple f(x, y) = x2 + y2).Ce paragraphe explique les relations entre le 
hamp de gradient et lessurfa
es niveau. Les démonstrations peuvent se trouver dans [1, p. 305℄, [7,
h. 3℄.Proposition 3.2.6 Soit f une fon
tion di�érentiable.Le 
hamp de gradient grad f est orthogonal aux sur-fa
es de niveau. Il pointe dans la dire
tion où f s'a
-
roît le plus rapidement. @

@

@@
aNu

grad af

�
�

��

r

Exemple : Dans l'exemple 
i-dessus f(x, y, z) = x2+y2+z2, on a grad f =
(2x, 2y, 2z). On a don
 grad f(a) = 2a. Le gradient est 
olinéaire ave
 lesrayons et don
 bien perpendi
ulaire aux sphères x2+y2+z2 = u. Il pointe versl'extérieur, où f s'a

roît. La proposition 3.2.6 dit que la façon d'a

roître fle plus rapidement est de s'éloigner radialement de l'origine.Remarque : Observons que, dans l'exemple 
i-dessus, l'ensemble N0 n'estpas une surfa
e mais est réduit au point 0. Cette situation dégénérée ne seproduit que si grad f(a) = 0. Lorsque grad f(a) 6= 0, on peut démontrer que
Nu est bien une surfa
e au voisinage de a (ou une 
ourbe, si n = 2).La signi�
ation de la proposition 3.2.6 peut être pré
isée de la manièresuivante. Soit v ∈ Rn ave
 |v| = 1. Considérons la 
ourbe di�érentiable
cv : R → Rn dé�nie par

cv(t) := a + tv.58



Le point cv(t) s'éloigne radialement de a dans la dire
tion v à vitesse horaire1 (son ve
teur vitesse est v, de norme 1). La dérivée de f ◦cv en 0 est ladérivée dire
tionnelle de f en a dans la dire
tion v :
Dvf(a) := (f ◦cv)

′(o) = lim
h→0

f(a + hv) − f(a)

h
. (3.36)En utilisant la formule (3.31) de la p. 56, on obtient

Dvf(a) := grad f(a) · v = |grad f(a)| cos α (3.37)où α ∈ [0, π] est l'angle entre v et grad f(a) (la dernière égalité utilise que
|v| = 1).On voit que1. Dvf(a) = 0 si α = π/2. C'est que v est tangente à la surfa
e de niveau.2. Dvf(a) est maximale si α = 0, 
'est-à-dire si v est 
olinéaire à grad f(a)et pointe dans la même dire
tion que lui. C'est la dire
tion de plus forte
roissan
e pour f et on a Dvf(a) = |grad f(a)|.3. Dvf(a) est minimale si α = π, 
'est-à-dire si v pointe dans la dire
-tion opposée à grad f(a). On a alors Dvf(a) = −|grad f(a)|. C'est ladire
tion de plus forte dé
roissan
e pour f .3.3 Problèmes d'extremaLa re
her
he d'extrema lo
aux est très importante en s
ien
es 
ar lesétats d'équilibre des phénomènes naturels sont souvent 
eux qui minimisentou maximalisent lo
alement une fon
tion (par exemple l'énergie).La dé�nition d'un extremum lo
al pour une fon
tion f : Rn → R est lamême que pour une fon
tion d'une variable (p. 47). Un point a ∈ Rn est unminimum lo
al pour la fon
tion f : Rn → R s'il existe un voisinage U de
a dans Rn tel que f(x) > f(a) lorsque a 6= x ∈ U . De même, on dé�nit lanotion de maximum lo
al. Un point qui est un minimum ou un maximumlo
al s'appelle un extremum lo
al.3.3.1 Fon
tions d'une variableLe fait que a soit ou non un extremum lo
al dépend du premier termenon-nul dans la formule de Taylor pour f en a :
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Théorème 3.3.1 Soit f : R → R et a ∈ R. Supposons que
f ′(a) = f ′′(a) = · · · = f (p−1)(a) = 0 et f (p)(a) 6= 0.Alors, a est un extremum lo
al si et seulement si p est pair. Dans 
e 
as, aest un minimum lo
al si f (p)(a) > 0 et un maximum lo
al si f (p)(a) < 0.Preuve: Si f ′(a) = f ′′(a) = · · · = f (p−1)(a) = 0, la formule de Taylor à l'ordre p(théorème 3.1.10, p. 50) prend la forme f(x) = f(a) + 1

p!
f (p)(a)(x − a) + Rp(x) ave


Rp(x)

(x−a)p → 0 quand x → a.Voyons tout d'abord le 
as p impair. Supposons que f (p)(a) > 0. Il existe don
 unvoisinage U de a tel que |
Rp(x)

(x−a)p | < f (p)(a) 
e qui implique que
f(x) − f(a)

(x − a)p
= f (p)(a) +

R(x)

(x − a)p
> 0, ∀ x ∈ U. (3.38)Puisque p est impair, on en déduit que

x < a ⇒ f(x) < f(a)
x > a ⇒ f(x) > f(a),Le graphe de f traverse don
, au dessus de a, la droite horizontale y = f(a) et a ne peutdon
 être un extremum lo
al. Le 
as f (p)(a) < 0 se traite de la même manière (
ette partiede la démonstration est identique à 
elle du lemme de traversement (p. 46).Pour avoir un extremum lo
al, il faut don
 que p soit pair. Dans 
e 
as, si f (p)(a) > 0,la formule (3.38) implique que f(x) > f(a) lorsque x ∈ U et x 6= a (puisque (x− a)p > 0).Le point a est don
 un minimum lo
al. Le 
as f (p)(a) < 0 se traite de la même manière,donnant lieu à un maximum lo
al.Remarque :1. Le lemme de traversement (p. 46) est un 
as parti
ulier du théorème3.3.1 (p = 1). En parti
ulier, on retrouve que si a est un extremumlo
al, alors f ′(a) = 0.2. On trouve fréquemment dans la littérature la 
ondition su�sante d'ex-tremum lo
al portant sur la dérivée se
onde : f ′(a) = 0 et f ′′(a) 6= 0.C'est le 
as parti
ulier du théorème 3.3.1 où p = 2.3.3.2 Fon
tions de plusieurs variablesTout au long de 
e paragraphe, les fon
tions sont supposées avoir desdérivées partielles 
ontinues jusqu'à l'ordre 2 et don
 ∂2

∂xi∂xj
= ∂2

∂xj∂xi
(pro-position 3.2.1, p. 52). En 
onséquen
e, la matri
e hessienne de f (p. 56) :

(Hf(a))ij =
∂2f

∂xi∂xj
(a).60



est une matri
e symétrique.Nous avons d'abord une 
ondition né
essaire pour qu'un point a soit unextremum lo
al.Proposition 3.3.2 Si a ∈ Rn est un extremum lo
al pour f : Rn → R, alors
grad f(a) = 0.Preuve: Si a = (a1, . . . , an) est un extremum lo
al, la fon
tion
t 7→ f(t, a2, . . . , an) aura un extremum lo
al en t = a1. Sa dérivée sera don
 nulle et 
ettedérivée est ∂f/∂x1(a). En pratiquant de même ave
 les autres variables, on voit que

grad f(a) =
“ ∂f

∂x1
(a), . . . ,

∂f

∂xn

(a)
”

= 0.La 
ondition grad f(a) = 0 n'est pas su�sante pour que a soit un extre-mum lo
al. Les 
onditions su�santes les plus simples portent sur les valeurspropres de la matri
e hessienne Hf(a). Etant donné les hypothèses indiquéesau début de 
e paragraphe, Hf(a) est une matri
e symétrique et don
 sesvaleurs propres sont réelles (Proposition 2.5.4 p. 37). On peut démontrer lerésultat suivant.Théorème 3.3.3 Soit a ∈ Rn tel que grad f(a) = 0. Alors1) si toutes les valeurs propres de Hf(a) sont > 0, le point a est unminimum lo
al pour f .2) si toutes les valeurs propres de Hf(a) sont < 0, le point a est unmaximum lo
al pour f .3) si Hf(a) a des valeurs propres positives et d'autres négatives, le point
a n'est pas un extremum lo
al pour f .4) si l'on n'est pas dans l'un des 
as 
i-dessus, on ne peut pas savoir,sans information supplémentaire, si a est un extremum lo
al ou non.En utilisant la proposition 2.5.5 p. 37 et le point 1) du théorème 
i-dessus,on obtient :Corollaire 3.3.4 Soit a ∈ Rn tel que grad f(a) = 0. Alors, si tous les mi-neurs prin
ipaux de Hf(a) sont de déterminant > 0, le point a est un unminimum lo
al pour f .Exemple 1 : Pour une fon
tion à deux variables, les 
as du théorème3.3.3 peuvent être illustrés par les exemples suivants (a = (0, 0)) :61



f(x, y) Hf(0) 
on
lusion
x2 + y2

 

2 0
0 2

! minimum
−x2 − y2

 −2 0
0 −2

! maximum
x2 − y2

 

2 0
0 −2

! non-extremum(point �selle�)Exemple 2 : f(x, y, z) = x2 + y2 + z2 + axy + byz. On a
grad f = (2x + ay, 2y + ax + bz, 2z + by)don
 grad f(0) = 0. La matri
e hessienne de f en 0 est

Hf(0) =




2 a 0
a 2 b
0 b 2


 .Les déterminants des mineurs prin
ipaux sont 2, 4− a2 et 8− 2(a2 + b2). Lepoint 0 est don
 un minimum si a2 + b2 < 4. En fait, les valeurs propres de

Hf(0) (
al
ulées par Maple) sont
2 , 2 +

√
a2 + b2 , 2 −

√
a2 + b2.Lorsque a2 + b2 > 4, le point 0 n'est pas un extremum lo
al.Pour le polyn�me du 2e degré le plus général en x, y, z, :

f(x, y, z) = x2 + y2 + z2 + axy + byz + cxzon obtient, pour que 0 soit un minimum lo
al, la 
ondition nettement plus
ompliquée
detHf(0) = 8 − 2 (a2 + b2 + c2) + 2 acb > 0. (3.39)3.3.3 Méthode des moindres 
arrés - Régression linéaireSupposons que l'on ait observé des données numériques (x1, y1), . . . , (xn, yn)et, qu'en théorie, il devrait exister une fon
tion a�ne f(x) = ax + b telleque yi = f(xi) pout tout i. En pratique, les égalités yi = axi + b n'aurontpas exa
tement lieu à 
ause des impré
isions ou des fa
teurs négligés par62



la théorie. La méthode des moindres 
arrés ou Régression linéairepermet de trouver la fon
tion a�ne la plus vraissemblable.Pour mesurer l'é
art entre les yi et f(xi), on utilise la fon
tion :
L(a, b) :=

n∑

i=1

(yi − f(xi))
2 =

n∑

i=1

(yi − axi − b)2 (3.40)On a L(a, b) = 0 si et seulement si yi = axi + b pour tout i.On 
her
he don
 a, b tels que L(a, b) soit minimale. Par 3.3.2, p. 61, il fautque grad L(a, b) = 0. Les paramètres a et b 
her
hés doivent don
 satisfaireaux deux équations :
∂L

∂a
= 0 et ∂L

∂b
= 0. (3.41)Ces équations s'é
rivent

{
a

∑n
i=1 x2

i + b
∑n

i=1 xi =
∑n

i=1 xiyi

a
∑n

i=1 xi + b n =
∑n

i=1 yi

(3.42)On regarde 
e
i 
omme un système de deux équations en les in
onnues a et
b. Le déterminant du système est

n
n∑

i=1

x2
i − (

n∑

i=1

xi)
2.L'inégalité de S
hwarz (Proposition 2.1.1, p. 16) pour les ve
teurs (x1, . . . , xn)et 1 := (1, . . . , 1) implique que 
e déterminant est non-nul (sauf si les xiétaient tous égaux...). Le système est don
 de Cramer (p. 26) et admet uneunique solution :

a =
n

∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2

b =

∑n
i=1 x2

i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n

i=1 x2
i − (

∑n
i=1 xi)

2

(3.43)Observons que L(a, b) → ∞ quand |(a, b)| → ∞. Comme il n'y a qu'unpoint tel que grad L = 0, don
 au plus un extremum, 
'est for
ément unminimum.On peut toujours modi�er l'origine sur l'axe des x et des y de manière que∑n
i=1 xi = 0 et ∑n

i=1 yi = 0 (données 
entrées). En posant x = (x1, . . . , xn)et y = (y1, . . . , yn), les formules (3.43) deviennent simplement
b = 0 et a =

x · y
‖x‖2

. (3.44)63



3.4 Stabilité des états stationnaires d'un systèmedynamiqueSoit f : Rn → Rn et a ∈ Rn tel que f(a) = a. Le point a est don
 unétat stationnaire pour le système dynamique dis
ret (Rn, f). Supposons que
f soit di�érentiable en a. La matri
e ja
obienne Df(a) de f en a détermineune appli
ation linéaire de Rn dans lui-même, d'où un système dynamiquelinéaire (Rn,Df(a)). Le prin
ipe général est le suivant : les 
onditions destabilité de l'état stationnaire a du système (Rn, f) sont presque les mêmesque pour l'état 0 dans le système linéaire (Rn,Df(a)). Les 
onditions destabilité de 0 pour un système linéaire sont données par le rayon spe
tral(� 2.6, p. 37).On peut démontrer :Théorème 3.4.1 Soit a un état stationnaire pour le système f : Rn → Rn.Supposons que f soit di�érentiable en a. Alors1. si le rayon spe
tral de Df(a) est < 1, l'état stationnaire a est stable.2. si le rayon spe
tral de Df(a) est > 1, l'état stationnaire a est instable.Remarques : 1) Quand le rayon spe
tral est 1, on ne peut tirer au
une
on
lusion sans information supplémentaire. C'est la di�éren
e ave
 un sys-tème linéaire.2) Le 
as n = 1 
orrespond à la �
ondition sur la dérivée� vue à la p. 9.
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Chapitre 4Cal
ul intégral4.1 Intégrales et primitivesSoit f : [a, b] → R une fon
tion (
ontinue). Son intégrale ∫ b
a f est dé�niede la façon suivante. On partage l'intervalle [a, b] en n sous-intervalles

a = x0 < x1 < · · · < xn = b.On 
hoisit, dans 
haque intervalle [xi, xi+1] unpoint ξi ∈ [xi, xi+1]. On 
onsidère la somme
Sn :=

n∑

i=1

f(ξi)∆xioù ∆xi := (xi − xi−1). Le nombre Sn mesure(lorsque f est positive) l'aire de la réunion desre
tangles de base [xi, xi+1] et de hauteur f(ξi). a bx x

x

1 x 2

f(




)

2

2

Par dé�nition, l'intégrale ∫ b
a f de f sur l'intervalle [a, b] est dé�niepar ∫ b

a
f := lim Sn , (4.1)la limite étant prise pour n → ∞ de sorte que le maximum des ∆xi tendevers 0. La notation historique ∫ b

a f(x)dx est souvent utilisée pour ∫ b
a f . Sonavantage est d'indiquer par rapport à quelle variable on intègre (si f est unefon
tion de plusieurs variables).Lorsque f(x) ≥ 0, l'intégrale ∫ b

a f mesure don
 l'aire 
omprise entre legraphe de f et l'axe horizontal. En général, ∫ b
a f représente aussi 
ette aire à65




ondition de 
ompter positivement les portions où f(x) ≥ 0 et négativement
elles où f(x) ≤ 0. En parti
ulier,
moyenne

[a,b]
(f) :=

1

b − a

∫ b

a
f (4.2)est la valeur moyenne de f sur l'intervalle [a, b]. Si f est 
ontinue, il existe

u ∈ [a, b] tel que f(u) = moyenne [a,b](f) (une fon
tion 
ontinue prend toutesles valeurs entre ses valeurs extrémales). Ce
i démontre leThéorème 4.1.1 (Théorème de la moyenne) Soit f : [a, b] → R unefon
tion 
ontinue. Alors, il existe u ∈ [a, b] tel que
∫ b

a
f = (b − a)f(u).Soit f : [a, b] → R une fon
tion 
ontinue. Une fon
tion F : [a, b] → Rdérivable telle que F ′(x) = f(x) s'appelle une primitive de f . Par exemple,

F (x) := 1
2 e2x + 3 est une primitive de f(x) = e2x. Par le 
orollaire 3.1.6p. 47, deux primitives F et F de f di�èrent par l'addition d'une 
onstante :

F (x) = F (x) + C.Si F : [a, b] → R est une fon
tion, on note F |ba := F (b) − F (a).Théorème 4.1.2 (Théorème fondamental du 
al
ul intégral) Soit
f : [a, b] → R une fon
tion 
ontinue. Soit F : [a, b] → R une primitive de f .Alors ∫ b

a
f = F |ba = F (b) − F (a).Preuve: On démontre tout d'abord que la fon
tion

G(x) :=

Z x

a

fest une primitive de f . En e�et :
G′(x) = lim

h→0

R x+h

a
f −

R x

a
f

h
= lim

h→0

1

h

Z x+h

x

f. (4.3)Par le théorème de la moyenne 4.1.1, on a R x+h

x
f = h f(u) pour un 
ertain u ∈ [x, x + h],don


G′(x) = lim
h→0

f(u) = f(x).Si maintenant F est une primitive de f , on a G(x) = F (x)+cte. Comme G(a) =
R a

a
f = 0,on voit que cte = −F (a). On a don
 bien

Z b

a

f = G(b) = F (b) − F (a).66



Notation : la notation ∫
f ou ∫

f(x)dx désigne une primitive quel-
onque de f . Par exemple : ∫
sin(x)dx = − cos x+C où C est une 
onstante.4.2 Cal
ul de primitives et d'intégralesLa primitive d'une fon
tion ne peut pas toujours s'exprimer à l'aide defon
tions que l'on 
onnaît déjà. Par exemple, les primitives

∫
e−x2

dx ,

∫
ex

x
dx ,

∫
sin x

x
dx ,

∫
dx

ln x
,sont de nouvelles fon
tions qui n'ont pas d'expression plus élémentaire (enutilisant des polyn�mes, des fon
tions trigonométriques, exponentielles, oudes logarithmes). Par exemple, MAPLE appelle Si(x) la fon
tion ∫ x

0
sin t

t dtqui est une primitive de sinx
x (voir preuve du théorème 4.1.2). Expérien
e :
ontempler le graphe de la fon
tion Si (plot(Si(x),x=0..20)).De nombreuses fon
tions usuelles ont 
ependant une primitive 
al
ulable.Pour la trouver, on peut :� faire usage d'une table de primitives (exemple : [5, p. 76℄).� utiliser MAPLE. La 
ommande int(f,x) donne une primitive de l'ex-pression f tandis que int(f,x=a..b) donne ∫ b

a f(x)dx.Exemple : int(sin(x),x=0..Pi/2) donne la réponse 1.L'usage de MAPLE est une aide bienvenue mais il n'est pas inutile de
on�rmer à la main et de réarranger les résultats qui sont parfois missous une forme 
ompliquée. Par exemple, si l'on demande à MAPLEde dériver une primitive qu'il a trouvé, il arrive que l'on ne re
onnaissepas l'expression de départ.� dé
omposer ou transformer la fon
tion à intégrer en fon
tions plussimples. Il y a bien entendu la linéarité de l'intégrale :
∫

(f + g) =

∫
f +

∫
g.Les deux autres méthodes prin
ipales sont l'intégration par substitutionet l'intégration par partie.Intégration par substitution : Supposons que l'on 
her
he F (x) =∫

f(x)dx. Si x = x(u) est une fon
tion de u, la règle de dérivation des67



fon
tions 
omposées donne
d

du
(F (x(u))) =

dF

dx
(x(u))

dx

du
= f(x(u))x′(u).On a don
 la formule

F (x(u)) =

∫
f(x(u))x′(u)du. (4.4)Si maintenant la fon
tion u 7→ x(u) est bije
tive, admettant don
 un inverse

x 7→ u(x), on pourra, en remplaçant u par u(x), obtenir F (x) à l'aide de
F (x(u)). Quant au 
al
ul de ∫ b

a f(x)dx, il s'obtient dans 
e 
as par
∫ b

a
f(x)dx =

∫ u(b)

u(a)
f(x(u))x′(u)du. (4.5)Exemple : On veut 
al
uler ∫ r

−r

√
r2 − x2dx, 
e qui est l'aire d'un demi-disque de rayon r.On 
her
he don
 F (x) :=

∫ √
r2 − x2dx. Le fait que r2 − r2 sin2 x =

r2 cos2 x suggère la substitution x(u) = r sin u. On aura don
 :
F (x(u)) =

∫
r cos u

√
r2 − r2 sin2 u du = r2

∫
cos2 u du. (4.6)La primitive de cos2 u se trouve dans les tables :

∫
cos2 u du =

1

2
(u + cos u sin u).(On peut 
al
uler ∫

cos2 u du et ∫
sin2 u du en utilisant que cos2 u+sin2 u = 1et cos2 u − sin2 u = cos(2u)). La fon
tion u 7→ r sin u est une bije
tion de

[−π/2, π/2] sur [−r, r], d'inverse u(x) = arcsin(x
r ). En substituant dans 4.6,on obtient ∫ √

r2 − x2 dx =
r2

2
arcsin(

x

r
) +

x

2

√
r2 − x2. (4.7)L'intégrale 
her
hée peut don
 se 
al
uler de deux façons. La première àl'aide de la primitive que l'on vient de trouver :

∫ r

−r

√
r2 − x2 dx = (

r2

2
arcsin(

x

r
) +

x

2

√
r2 − x2)

∣∣∣∣
r

−r

=
1

2
πr2,la se
onde en remplaçant les limites d'intégration 
omme dans (4.5) :

∫ r

−r

√
r2 − x2 dx = r2

∫ arcsin 1

arcsin(−1)
cos2 udu =

r2

2
(u+cos u sin u)

∣∣∣∣
π/2

−π/2

=
1

2
πr2.On a ainsi démontré que l'aire d'un disque de rayon r est πr2.68



Intégration par parties : La formule de dérivation d'un produit
(fg)′ = f ′g + fg′ donne les formules d'intégration par partie :

∫
f ′(x) g(x)dx = f(x) g(x) −

∫
f(x) g′(x)dx (4.8)et

∫ b

a
f ′(x) g(x)dx = f(x) g(x)

∣∣∣∣
b

a

−
∫ b

a
f(x) g′(x)dx. (4.9)Exemple : Pour 
al
uler ∫

xn ln x dx, on pose f ′(x) = xn et g(x) = ln x. Laformule (4.9) donne
∫

xn lnx dx =
xn+1

n + 1
ln x − 1

n + 1

∫
xndx =

xn+1

n + 1
ln x − xn+1

(n + 1)2
+ C.Cette dernière formule est vraie pour n 6= −1 (on a ∫

lnx
x dx = 1

2(ln x)2). Enparti
ulier, si n = 0 :
∫

lnx dx = x ln x − x + C.Intégrales impropres : Ce sont des intégrales du type
∫ ∞

a
f ,

∫ b

−∞
f ,

∫ ∞

−∞
f ,et
. Elles sont dé�nie 
omme des limites, par exemple

∫ ∞

a
f := lim

b→∞

∫ b

a
f ,et
, lorsque 
es limites existent. Exemple, si n > 1 :

∫ ∞

1

dx

xn
= lim

b→∞
−1

(n − 1)(xn−1)

∣∣∣∣
b

1

=
1

n − 1
, (n > 1).En revan
he ∫ b

1
dx
x = ln b → ∞ (b → ∞).
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Intégration numérique : S'il n'est pas possible de 
onnaître une primi-tive de f , on peut 
al
uler des valeurs appro
hées de ∫ b
a f . Voi
i quelquesméthodes possibles :� la méthode des 
himistes : on dessine le graphe Γf de f , on dé
oupe laportion entre Γf et l'axe horizontal (dont l'aire est ∫ b

a f) et on pèse lepapier.� en utilisant MAPLE, par la 
ommande evalf(int(f , x=a..b)) ;.� en estimant ∫ b
a g où g est une fon
tion pro
he de f dont l'intégrale estfa
ile à 
al
uler. Le plus souvent, g est obtenue par interpolation entredes points x0 = a < x1 < . . . < xn = b où l'on 
onnaît la valeur de lafon
tion. Par exemple, si xi − xi−1 = b−a

n (points également répartis),l'interpolation linéaire donne la formule des trapèzes (voir �gure(4.2)) :
∫ b

a
f(x) dx ≈ b − a

2n
[f(a) + f(b) + 2

n−1∑

i=1

f(xi)].

a bx i




Figure (4.2)Méthode des trapèzes.
Une meilleure interpolation (quadratique) donne la formule de Simp-son. Ces formules, ave
 estimation de l'erreur maximale, sont dans lestables ([5, p. 90℄). Voir aussi [1, pp. 129�130℄.L'avantage de 
es méthodes est de ne né
essiter qu'une quantité �nied'information numérique sur la fon
tion f (sa valeur en un 
ertainnombre de points). En s
ien
e expérimentale, il se peut que 
e soit laseule 
hose dont on dispose. 70



4.3 Intégrales de surfa
e et de volumeSoit Σ une surfa
e dans l'espa
e et soit f : Σ → R une fon
tion 
ontinue.Son intégrale ∫
Σ f est dé�nie de manière analogue à l'intégrale d'une fon
tionsur un intervalle. On partage Σ en une union de domaines Ai (i = 1 . . . , n),qui sont disjoints ou ne se ren
ontrent que sur leur frontière. On note ∆Ail'aire du domaine Ai et on dé�nit :

∫

Σ
f := lim

n∑

i=1

f(ξi)∆Aioù ξi ∈ Ai et la limite est prise sur des partages de plus en plus �ns demanière que max {diamètre(Ai)} → 0.Si Σ est un domaine du plan, le graphe Γf de f est une surfa
e dans R3au dessus de Σ. Le nombre ∫
Σ f est alors le volume du solide 
ompris entre

Σ et Γf (
ompté positivement pour les parties où f(x) > 0 et négativementautrement).Comme à une variable (voir (4.2), p. 66), on a que
moyenne

Σ
(f) :=

1

Aire (Σ)

∫

Σ
fest la valeur moyenne de f sur Σ.Cal
ul d'une intégrale de surfa
e :Considérons tout d'abord le 
as où Σ = Ωest un domaine du plan délimité par

a ≤ x ≤ b et g−(x) ≤ y ≤ g+(x)où g− et g+ sont deux fon
tions dérivables de
[a, b] dans R (voir �gure 
i-
ontre). a b

g

g

+

-

WD
Dx






y

Intuitivement, le 
al
ul de ∫
Ω f repose sur le raisonnement suivant : onpromène dans Ω un petit pavé d'aire ∆x∆y. On �xe d'abord x et on faittendre ∆y vers 0. On obtient une fon
tion H(x) =

∫ g+(x)
g−(x) f(x, y)dy. Enlaissant ensuite varier x de a à b et en faisant tendre ∆x vers 0, l'intégrale∫

Ω f 
her
hée sera ∫ b
a H(x) dx. Ce
i permet de montrer que ∫

Ω f s'obtientpar deux intégrales su

essives :
∫

Ω
f =

∫ b

a

(∫ g+(x)

g−(x)
f(x, y)dy

)
dx (4.10)71



Les parenthèses sont souvent omises et on é
rit simplement
∫

Ω
f =

∫ b

a

∫ g+(x)

g−(x)
f(x, y)dy dx.Exemple : Soit Ω := {(x, y) ∈ R2 | x2 +y2 ≤ r2} le disque de rayon r 
entréen 0. Cal
ulons ∫

Ω f , où f(x, y) :=
√

r2 − x2 − y2, 
e qui donnera le volumed'une demi-boule de rayon r dans R3.Le domaine Ω peut être dé
rit par
−r ≤ x ≤ r et g−(x) ≤ y ≤ g+(x)ave
 g±(x) = ±
√

r2 − x2. Comme pour (4.7) p. 68 on a la primitive
∫ √

r2 − x2 − y2 dy =
r2 − x2

2
arcsin(

y√
r2 − x2

) +
y

2

√
r2 − x2 − y2d'où

∫ g+(x)

g−(x)
f(x, y) dy =

r2 − x2

2
(arcsin(1) − arcsin(−1)) =

π

2
(r2 − x2).Le 
al
ul de ∫

Ω f donne, par (4.10)
∫

Ω
f =

∫ r

−r

∫ g+(x)

g−(x)
f(x, y)dy dx =

π

2

∫ r

−r
(r2 − x2)dx =

πr3

2
(2 − 2

3
) =

2

3
πr3.On ainsi démontré que le volume d'une boule de rayon r est 4

3πr3.Dans le 
as général, pour le 
al
ul de ∫
Σ f , on paramétrise la surfa
e Σpar un domaine du plan Ω :

Σ = {α(u, v) | (u, v) ∈ Ω}où α(u, v) = (α1(u, v), α2(u, v), α3(u, v)) est une appli
ation di�érentiableinje
tive de Ω dans R3 (dont l'image est Σ). On dé�nit� les u-
ourbes : α(u, v0) (v0 est �xe et u varie)� les v-
ourbes : α(u0, v) (u0 est �xe et v varie)qui sont des 
ourbes sur Σ. Leurs ve
teurs vitesse sont
αu := (

∂α1

∂u
,
∂α2

∂u
,
∂α3

∂u
) et αv := (

∂α1

∂v
,
∂α2

∂v
,
∂α3

∂v
).72



On dé�nit les fon
tions E,F,G : Ω → R par les produits s
alaires :
E := αu · αu , F := αu · αv , G := αv · αv . (4.11)L'idée du 
al
ul de ∫

Σ f est d'utiliser 
omme élément d'aire le parallélo-gramme engendré par les ve
teurs vitesse αu et αv. Si θ est l'angle entre 
esdeux ve
teurs, le 
arré de 
ette aire vaut
‖αu‖2‖αv‖2 sin2 θ = ‖αu‖2‖αv‖2(1 − cos2 θ) = EG − F 2.Ce
i permet de rempla
er ∫

Σ f par une intégrale sur Ω que l'on peut 
al
ulerpar (4.10) : ∫

Σ
f =

∫

Ω
(f ◦α)

√
EG − F 2 (4.12)En parti
ulier, si l'on intègre sur Σ la fon
tion 
onstante égale à 1, onobtient l'aire de Σ :

Aire (Σ) =

∫

Ω

√
EG − F 2 (4.13)Exemple : 1. On veut 
al
uler l'aire de la sphère Σr de rayon r 
entrée en

0. On peut paramétriser 
ette sphère par des 
oordonnées sphériques :
α(u, v) = (r cos v cos u, r cos v sinu, r sin v)ave
 Ω := [0, 2π] × [−π/2, π/2]. Les u-
ourbes sont les parallèles et les v-
ourbes les méridiens de la sphère. Leur ve
teurs vitesse sont
αu(u, v) = ( − r cos v sin u, r cos v cos u, 0)et

αv(u, v) = ( − r sin v cos u,−r sin v sin u, r cos v).Les fon
tions E,F,G dé�nie en (4.11) sont don

E(u, v) = r2 cos2 v , F (u, v) = 0 , G(u, v) = r2d'où EG − F 2 = r4 cos2 v. Par (4.13) et (4.10), l'aire de Σr vaudra

Aire (Σr) = r2

∫ 2π

0

∫ π/2

−π/2
cos v du = r2

∫ 2π

0
sin v

∣∣∣∣
π/2

−π/2

du = 2 r2

∫ 2π

0
du = 4πr2.73



2. Coordonnées polaires : la surfa
e Σ peut aussi être un domaine du planauquel 
as l'équation (4.12) fait o�
e de formule de 
hangement de variables.Par exemple, suppossons que Σ est le domaine du plan limité en 
oordonnéespolaires r, θ par
θ1 ≤ θ ≤ θ2 et r−(θ) ≤ r(θ) ≤ r+(θ). (4.14)Considérons le plan en 
oordonnées 
artésiennesave
 θ en abs
isse et r en ordonnées. Soit Ωle domaine donné par les 
onditions (4.14). Ledomaine Σ est alors paramétré par α : Ω → Σoù α(θ, r) = (r cos θ, r sin θ). On a

αθ = (−r sin θ, r cos θ) et αr = (cos θ, sin θ). q
q

q q q1 2
2

1

S

rr

r

+

-

 (q) 

 (q) 

a

0

�

W

On en déduit que E = r2, F = 0, G = 1 et don
 √
EG − F 2 = r. Laformule (4.12) donne don


∫

Σ
f =

∫ θ2

θ1

∫ r+(θ)

r−(θ)
r f(θ, r)dr dθ. (4.15)Intégrales de volume : Soit V un solide dans l'espa
e et soit f : V → Rune fon
tion 
ontinue. Son intégrale ∫

V f est dé�nie 
omme pour l'intégraled'une fon
tion sur une surfa
e. On partage V en une union de petits solides
Vi (i = 1 . . . , n), qui sont disjoints ou ne se ren
ontrent que sur leur frontière.On note ∆Vi le volume de Vi et on dé�nit :

∫

V
f := lim

n∑

i=1

f(ξi)∆Vioù ξi ∈ Vi et la limite est prise sur des partages de plus en plus �ns demanière que max {diamètre(Vi)} → 0.Exemples :1. Comme pour les intervalles et les surfa
es, l'expression
moyenne

V
(f) :=

1

vol V

∫

V
fest la valeur moyenne de la fon
tion f sur V . On 
al
ule ainsi despressions moyennes, des températures moyennes, et
.74



2. Si f(x) est la densité du solide en x, ∫
V f est la masse totale de V .3. Si f(x) est la densité du solide en x, les 
oordonnées (x0, y0, z0) du
entre de gravité de V sont

x0 =
1

vol V

∫

V
x f , y0 =

1

vol V

∫

V
y f , z0 =

1

vol V

∫

V
z f.(4.16)Cal
ul de ∫

V f : Si le solide V est limité par
a ≤ x ≤ b , g−(x) ≤ y ≤ g+(x) , h−(x, y) ≤ z ≤ h+(x, y)le 
al
ul de ∫

V f peut s'e�e
tuer par trois intégrales su

essives
∫

V
f =

∫ b

a
[

∫ g+(x)

g−(x)
(

∫ h+(x,y)

h−(x,y)
f(x, y, z)dz)dy]dx. (4.17)(On ommet souvent les parenthèses et les 
ro
hets). Les 
hangements de
oordonnées se font de la manière suivante. Pour les 
oordonnées sphériques

x = r cos ϕ cos θ , y = r cos ϕ sin θ , z = r sin ϕl'élément de volume dzdydx doit être rempla
é par r2 cos ϕdrdϕdθ. pour les
oordonnées 
ylindriques
x = r cos θ , y = r sin θ , z = zon rempla
e dxdydz par rdrdθdz.Exemple : Le volume de la boule BR 
entrée en 0 et de rayon R est l'inté-grale sur BR de la fon
tion 
onstante égale à 1. En 
oordonnées sphériques :

∫

BR

1 =

∫ 2π

0

∫ π/2

−π/2

∫ R

0
r2 cos ϕdr dϕdθ =

=

∫ 2π

0

∫ π/2

−π/2

R3

3
cos ϕdϕdθ =

∫ 2π

0

2R3

3
dθ =

4πR3

3
.4.4 Quelques appli
ationsLongueur de 
ourbe : Soit c : [a, b] ∈ Rn une appli
ation di�érentiableparamétrant une 
ourbe Γ dans Rn. Pendant l'intervalle de temps [t, t+∆t],le point de c(t) par
ourt un ar
 dont la longueur est approximativement75



‖ċ(t)‖∆t, où ‖ċ(t)‖ est la norme du ve
teur vitesse ċ(t). La longueur totalede Γ sera ainsi donnée par l'intégrale
longueur(Γ) =

∫ b

a
‖ċ(t)‖ dt. (4.18)Exemple :1. On paramétrise le 
er
le de rayon r 
entré à l'origine dans le plan par

c(t) := (r cos t, r sin t) (t ∈ [0, 2π]). On a don
 ċ(t) = (−r sin t, r cos t)et ‖ċ(t)‖ est 
onstante égale à r. On retrouve que la longueur du 
er
leest ∫ 2π
0 rdt = 2πr (
e qui est rassurant 
ar 
'est la dé�nition de π).2. Soit f : [a, b] → R une fon
tion dérivable. On paramétrise le graphe Γfdans R2 par c(t) = (t, f(t)) (t ∈ [a, b]). On a don
 ċ(t) = (1, f ′(t)) etla longueur de Γf sera

longueur(Γf ) =

∫ b

a

√
1 + f ′(t)2 dt. (4.19)Travail : Soit c : [a, b] ∈ Rn une appli
ation di�érentiable paramétrantune 
ourbe Γ dans Rn. On suppose que le point c(t) est soumis à un 
hampde for
es A (
hamp de ve
teurs A : Rn → Rn). Pendant l'intervalle de temps

[t, t + ∆t] s'e�e
tue un travail valant approximativement (A(c(t)) · ċ(t))∆t.Le travail total T e�e
tué par le point c(t) sur la 
ourbe Γ est ainsi donnéepar l'intégrale
T =

∫ b

a
(A(c(t)) · ċ(t))dt.Un 
as parti
ulier important est 
elui où la 
hamp A est le 
hamp degradient A = grad U d'une fon
tion U : Rn → R (potentiel). C'est, parexemple, le 
as pour un 
hamp gravitationnel ou un 
hamp élé
trique. Letravail T e�e
tué sur la 
ourbe Γ est alors, utlilsant la formule (3.24) de lap. 51 :

T =

∫ b

a
(grad U(c(t)) · ċ(t))dt =

∫ b

a
(U ◦c)′(t)dt = U(c(b)) − U(c(a)).On voit que T est la di�éren
e de potentiel entre les point extrémités

c(a) et c(b) de Γ. En parti
ulier, si la 
ourbe Γ est fermée (c(a) = c(b)), letravail T sera nul.Ré
iproquement, si un 
hamp de for
es A a la propriété que le travailsur toute 
ourbe fermée est nul alors il existe un potentiel U , unique à une
onstante près, tel que A = grad U : on 
hoisit un point B ∈ Rn et on dé�nit
U(x) 
omme le travail e�e
tué sur une 
ourbe quel
onque Γ joignant B à x.76



Débit : On 
onsidère un 
hamp de ve
teurs A au voisinage d'une surfa
e
Σ dans R3. On interprète A 
omme le 
hamp de vitesse des parti
ules d'un�uide. On veut 
al
uler le débitDA du �uide passant au travers de Σ (mesuréen unités de volume par unité de temps).Pour 
ela, on munit Σ d'un 
hamp de ve
teurs N : Σ → R3 variant
ontinûment tel que ‖N(x)‖ = 1 et N(x) est orthogonal au plan tangent à Σen x. Par exemple, si Σ est une surfa
e de niveau d'une fon
tion f : R3 → R(voir paragraphe 3.2.6 p. 55), on peut prendre pour N le gradient normé :
N(x) = grad f(x)/‖grad f(x)‖. Le débit DA au travers de Σ, dans le sens de
N , est alors donné par l'intégrale de surfa
e

DA =

∫

Σ
A · N (4.20)Le produit s
alaire, dans la formule 4.20, s'impose 
ar, en 
e qui 
on
erne ledébit, seule 
ompte la 
omposante de N orthogonale à Σ (A ·N est, au signeprès, la norme de 
ette 
omposante).Intégrale d'une gaussienne : La fon
tion gaussienne f(x) = e−x2 estutile pour le 
al
ul des probabilités. Bien que sa primitive n'ait pas d'expres-sion élémentaire, on peut 
al
uler son intégrale A :=

∫ ∞
−∞ e−x2

dx en faisantintervenir une intégrale double.
A2 =

(∫ ∞

−∞
e−x2

dx

)(∫ ∞

−∞
e−y2

dy

)
=

∫ ∞

−∞
e−x2

(∫ ∞

−∞
e−y2

dy

)
dx =

=

∫ ∞

−∞

∫ ∞

−∞
e−(x2+y2)dy dx =

∫

R2

e−(x2+y2).L'expression x2 + y2 suggère de passer en 
oordonnées polaires pour le
al
ul de l'intégrale de surfa
e ∫
R2 e−(x2+y2). Ave
 la formule (4.15) p. 74 :

∫

R2

e−(x2+y2) =

∫ 2π

0

∫ ∞

0
r e−r2

dr dθ =

∫ 2π

0

(
−e−r2

2

∣∣∣∣
∞

0︸ ︷︷ ︸
= 1/2

)
dθ = π
e qui montre la formule 
lassique

∫ ∞

−∞
e−x2

dx =
√

π. (4.21)77



Chapitre 5Systèmes dynamiques 
ontinus� Équations di�érentiellesCe 
ours a 
ommen
é par les systèmes dynamiques dis
rets, qui modé-lisent l'évolution d'un phénomène où le temps varie par saut d'une unité.Dans 
e 
hapitre, on introduit les systèmes dynamiques 
ontinus où le tempsvarie 
ontinûment (t ∈ R).Les systèmes dynamiques dis
rets se sont développés depuis une ving-taine d'années. On peut parier sur leur avenir 
ar ils 
onstituent la basedes simulations sur ordinateur. Leur développement in�uen
e aujourd'hui lapensée s
ienti�que.Beau
oup plus an
iens, les systèmes 
ontinus sont ratta
hés à la notiond'équation di�érentielle et leur origine remonte aux débuts du 
al
ul in�-nitésimal et de la s
ien
e moderne. Ils ont profondément in�uen
é le déve-loppement des mathématiques et de la physique et gardent une importan
eprimordiale pour la formalisation théorique. En revan
he, ils ne sont pas bienadaptés au 
al
ul numérique : les méthodes numériques pour résoudre deséquations di�érentielles (voir [1, �II.9℄) sont en fait des approximations desystèmes dynamiques 
ontinus par des systèmes dis
rets.5.1 Champs de ve
teurs - traje
toires.Soit E un domaine de Rn. Un 
hamp de ve
teurs dans E est uneappli
ation di�érentiable A : E → Rn. On le visualise en dessinant le ve
teur
A(x) partant du point x. Nous avons déjà ren
ontré des 
hamps de ve
teurs :le gradient grad f d'une fon
tion f : Rn → R (voir p. 52 et p. 58).Une traje
toire d'un 
hamp de ve
teur A est une 
ourbe di�érentiable78



s : J → E dé�nie sur un intervalle J ⊂ R telle que son ve
teur vitesse ṡ(t)soit en tout temps donné par le 
hamp de ve
teurs A :
ṡ(t) = A(s(t)) ∀ t ∈ J. (5.1)

s(0)

Figure (5.2)le 
hamp A(x, y) = (2x, 2y)et l'une de ses traje
toires.
s(0)

Figure (5.3)le 
hamp A(x, y) = (−2y, 2x)et l'une de ses traje
toires.Exemples :1. Le 
hamp A := grad f sur R2 où f(x, y) := x2 + y2. On a don

A(x, y) = (2x, 2y). La traje
toire de A telle que s(0) = (x0, y0) est
s(t) = (x0e

2t, y0e
2t). Voir �gure (5. 2).2. Le 
hamp A(x, y) := (−2y, 2x) sur R2 de la �gure (5. 3). La traje
toirede A telle que s(0) = (x0, y0) est

s(t) = (x0 cos 2t − y0 sin 2t , x0 sin 2t + y0 cos 2t).3. Le 
hamp A(x) := 1 + x2 sur R. La traje
toire x(t) de A telle que
x(0) = x0 est x(t) = tg (t + arctg (x0)).Dans les exemples 
i-dessus, nous parlons de �la� traje
toire de A telleque s(0) = s0. On peut en e�et démontrer que si A est di�érentiable et si

s0 ∈ E et t0 ∈ R, il existe une unique traje
toire, dé�nie sur un intervallemaximal J autour de t0, telle que s(t0) = s0. L'intervalle J est maximal en
e sens que la traje
toire ne peut pas, en général, être prolongée au delà de Jpar
e qu'elle sortirait de E. Ce
i peut se produire même si E = Rn. On voiten e�et que, pour le 
hamp A(x) := 1+ x2 sur R de l'exemple 3 
i-dessus, latraje
toire x(t) = tg (t) telle que x(0) = 0 s'en va à l'in�ni lorsque t → ±π/2.79



Systèmes dynamiques 
ontinus : La modélisation de l'évolution d'unphénomène en temps 
ontinu se fait de la manière suivante. Un systèmedynamique 
ontinu est une paire (E,A) où1. E est un domaine de Rn (l'ensemble des états du système).2. A : E → Rn est un 
hamp de ve
teurs (dynamique ou loi d'évolu-tion du système).L'évolution du système s'exprime de la manière suivante : si le systèmeest dans un état s(t0) = s0 au temps t0, son état au temps t sera s(t), où sest la traje
toire du 
hamps de ve
teurs A telle que s(t0) = s0. Comme dansle 
as des systèmes dynamiques dis
rets, on parlera de la traje
toire del'état s0. On peut y penser 
omme la traje
toire d'une molé
ule d'un �uidedont le 
hamp de vitesses est A.5.2 Traje
toires et équations di�érentiellesUne équation di�érentielle est une équation faisant intervenir unefon
tion x(t), 
ertaines de ses dérivées ẋ, ẍ, et
 et éventuellement la variable
t. Exemple : ẋ = 2x+t, ẍ = −x, et
. L'ordre de l'équation di�érentielle estl'ordre de la plus grande dérivée de x qui y �gure. Par exemple, ẋ = 2x + test d'ordre 1, ẍ = −x d'ordre 2, et
.Soit A : E → Rn un 
hamp de ve
teur sur un domaine E de Rn. Si
s(t) := (s1(t), . . . , sn(t)) et A(x) = (A1(x), . . . , An(x)), l'équation ve
torielle(5.1) est équivalente à





ṡ1(t) = A1(s(t))...
ṡn(t) = An(s(t)).

(5.2)Ce
i est un système de n équations di�érentielles du premier ordre.En parti
ulier, si n = 1, le 
hamp de ve
teur est simplement une fon
tiondérivable A : E → R et sa traje
toire x(t) est la solution de l'équationdi�érentielle du premier ordre ẋ = A(x).5.3 États stationnaires - StabilitéCes notions sont dé�nies de manière analogue au 
as dis
ret (� 1.3, p. 8).Soit (E,A) un système dynamique 
ontinu.Un état x est dit stationnaire si A(x) = 0. La traje
toire d'un étatstationnaire est 
onstante : s(t) = s(0) = x. Le système est en état d'équilibre.80



Une traje
toire est dite périodique s'il existe un nombre réel T > 0 telque s(t+T ) = s(t). Un état est périodique si sa traje
toire est périodique. Leplus petit de 
es nombre T est la période de la traje
toire (ou de l'état). Par
onvention, un état stationnaire est périodique de période 0. Une traje
toirepériodique (de période T ) s'appelle aussi un 
y
le (de période T ).Un sous-ensemble E′ de E est invariant si, pour tout x ∈ E′ la traje
-toire de x reste dans E′. Un point stationnaire, un 
y
le ou une traje
toiresont des sous-ensembles invariants.Un sous-ensemble invariant E′ de E est stable, ou est un attra
teur, s'ilexiste un voisinage V de E′ dans E (son bassin d'attra
tion) tel que toutesles traje
toires partant d'états dans V 
onvergent vers E′. Par exemple : unpoint stationnaire stable, un 
y
le stable, et
.Comme au � 3.4.1, p. 64, on peut obtenir des 
onditions su�santes pourqu'un état stationnaire b soit stable. Ce
i est parti
ulièrement important 
aril est en général impossible de trouver des formules expli
ites pour les tra-je
toires. Ces 
onditions portent sur la matri
e ja
obienne DA(b) du 
hamp
A en b :

DA(b) :=




∂A1
∂x1

(b) · · · ∂A1
∂xn

(b)... ...
∂An

∂x1
(b) · · · ∂An

∂xn
(b)


 ∈ Mn×n (5.3)Cette n × n-matri
e a des valeurs propres. On peut démontrer :Théorème 5.3.1 Soit b un état stationnaire pour le système (Rn, A). Onsuppose que le 
hamp de ve
teurs A est di�érentiable en b. Alors, si la partieréelle de 
haque valeur propre de DA(b) est < 0, le point b est stable.Exemple : Supposons que A = grad f pour f : E → R. La matri
e

DA est la matri
e hessienne ( ∂2f
∂xi∂xj

) qui est symétrique (voir � 3.2.1). Sesvaleurs propres sont don
 réelles. La 
ondition du théorème 5.3.1 dit quel'état stationnaire b est stable si b est un maximum lo
al de f (voir théorème3.3.3 p. 61). Observons du reste que si s(t) est une traje
toire de grad f alors,par la formule 3.31, p. 56, on a
d(f ◦s)

dt
= ṡ(t) · grad f(s(t)) = ‖grad f(s(t))‖2.On voit que f ◦s est stri
tement 
roissante en dehors des états stationnaires(la valeur de f 
roît le long des traje
toires de grad f).Le 
as parti
ulier n = 1 dans le théorème 5.3.1 mérite un énon
é pour lui-même. On a une seule équation di�érentielle ẋ = A(x) qui détermine l'évo-lution d'une grandeur x(t) en fon
tion de t. La matri
e ja
obienne DA(x)81



est une matri
e (1 × 1) dont l'unique 
oe�
ient est A′(x), la dérivée de lafon
tion A. Pour un état stationnaire b (A(b) = 0), le théorème 5.3.1 prenddon
 la formeThéorème 5.3.2 Soit b un état stationnaire pour l'équation di�érentielle
ẋ = A(x), où A : R → R est dérivable en b. Alors, si A′(b) < 0, le point best stable. Si A′(b) > 0, le point b est instable.5.4 Quelques te
hniques de résolution d'équationsdi�érentiellesTrouver une formule expli
ite pour les solutions d'une équation di�éren-tielle (et don
 pour les traje
toires d'un 
hamp de ve
teurs) est, en général,impossible. Par exemple, l'équation di�érentielle ẋ = f(t) a pour solutiontoute primitive x(t) =

∫
f(t)dt qui, en général, est une nouvelle fon
tion quel'on ne sait pas exprimer. Il y a 
ependant quelques 
as ex
eptionnels où desexpressions expli
ites des solutions existent et nous allons en voir 
i-dessousles plus simples.Equations �à variables séparables� : Il s'agit des équations du type

dx

dt
= f(x)g(t). (5.4)On utilise le �tru
�

dx

f(x)
= g(t) dt. (5.5)d'où, en intégrant, une relation

∫
dx

f(x)
=

∫
g(t) dt + C , C = 
onstante, (5.6)entre x et t qui, dans les bons 
as, permet d'extraire x(t). La 
onstante Cse détermine par la 
ondition initiale x(t0) = x0.Exemple : Cher
hons la solution x(t) de l'équation di�érentielle

dx

dt
= t(1 + x) (5.7)telle que x(0) = 3. En séparant les variables, on obtient

∫
dx

1 + x
=

∫
t dt + C (5.8)82



don

ln |1 + x| =

t2

2
+ C (5.9)qui est équivalent à

|1 + x| = Ke
t2

2 (5.10)où K = eC > 0. On peut alors enlever la valeur absolue en permettant
K ∈ R. L'équation (5.10) pour t = 0 donne K = 4, puisque x(0) = 3. Lasolution 
her
hée est don


x(t) = 4e
t2

2 − 1.Equations �linéaires inhomogènes� : Il s'agit des équations du type
dx

dt
= g(t)x + h(t). (5.11)On introduit le �fa
teur intégrant�

R(t) := e−P (t) (5.12)où P est une primitive de g. On véri�e que la solution générale de (5.11) estalors
x(t) =

1

R(t)
[

∫
R(t)h(t)dt + C]. (5.13)Comme pour les variables séparables, la 
onstante C se détermine par la
ondition initiale x(t0) = x0.Preuve: On dérive x = 1

R

h

C +
R

Rh
i :

ẋ =
1

R2

h

R2h − Ṙ(C +
R

Rh)
i

= h −
Ṙ

R
x.Or

−
Ṙ

R
= −(lnR)′ = P ′ = g.Exemple : Cher
hons la solution x(t) de l'équation di�érentielle

ẋ = −x

t
+ t2 (5.14)
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telle que x(1) = 2. On a don
 g(t) = −1/t et h(t) = t2. On peut prendrepour primitive de g la fon
tion P (t) = − ln t, d'où R(t) = e−P (t) = t. Lasolution générale donnée par (5.13) est
x(t) =

1

t

[ ∫
t3dt + C

]
=

t3

4
+

C

t
(5.15)et la 
ondition initiale x(1) = 2 implique C = 7/4.Systèmes d'équations linéaires : On 
her
he les traje
toitres ẋ = A(x)dans Rn pour un 
hamp A : Rn → Rn qui est linéaire. L'appli
ation A estdon
 donné par une matri
e A := (aij) ∈ Mn×n et l'on doit résoudre unsystème d'équations di�érentielles




ẋ1...̇
xn


 =




a11 · · · a1n... ...
an1 · · · ann







x1...
xn


 . (5.16)On observe que si x et x sont deux solutions du système (5.16), alors x+x et

ax (a ∈ R 
onstante) sont aussi des solutions. L'ensemble des solutions formedon
 don
 un espa
e ve
toriel. On peut démontrer que 
et espa
e ve
toriel estde dimension n. Pour trouver toutes les solutions, il su�t don
 d'en trouver nqui soient linéarement indépendantes et d'en faire des 
ombinaisons linéaires.Une façon de trouver des solutions linéairement indépendantes est d'utiliserles valeurs propres de A :Théorème 5.4.1 Supposons que la matri
e A ait n valeurs propres réellesdistin
tes α1, . . . , αn. Alors, la solution générale du système (5.16) est
x(t) = C1e

α1tξ1 + · · · + Cneαntξnoù ξi est un ve
teur propre pour la valeur propre αi. Les 
onstantes Ci sedéterminent par la 
ondition initiale x(0) = x0.Preuve: Si x(t) = Cie
αitξi, alors

ẋ = Cie
αitαiξi = A(Cie

αitξi) = A(x).Don
 les Cie
αitαiξi sont des solutions de (5.16). Comme les valeurs propres αi sont dis-tin
tes les ve
teurs propres ξi sont linéairement indépendants (voir la preuve de la propo-sition 2.5.3, p. 35.).Lorsque les valeurs propres ne sont pas deux-à-deux distin
tes ou qu'ellessont 
omplexes, la situation est plus 
ompliquée.84



Exemple : Considérons le système
{

ẋ = y
ẏ = x.

(5.17)Matri
iellement, il est équivalent à :
(

ẋ
ẏ

)
=

(
0 1
1 0

)(
x
y

)Les valeurs propres de (01
1
0) sont 1 (ve
teur propre (1, 1)) et −1 (ve
teurpropre (1,−1)). La solution générale du système (5.17) est, d'après le théo-rème 5.4.1 (

x(t)
y(t)

)
= C1e

t

(
1
1

)
+ C2e

−t

(
1
−1

)
'est-à-dire : {
x(t) = C1e

t + C2e
−t

y(t) = C1e
t − C2e

−t.
(5.18)Les 
onstantes C1 et C2 sont déterminées par les 
onditions initiales x(0) =

x0 et y(0) = y0. En e�et, en posant t = 0 dans (5.18), on obtient x0 = C1+C2et y0 = C1 − C2. La solution du système (5.17) ave
 
onditions initiales
x(0) = x0 et y(0) = y0 sera don






x(t) =
x0 + y0

2
et +

x0 − y0

2
e−t

y(t) =
x0 + y0

2
et − x0 − y0

2
e−t.Equations d'ordre supérieur : Une équation di�érentielle d'ordre n ≥ 2est souvent équivalente à un système de n équations du premier ordre. Parexemple, si l'on a une équation du 2e ordre

ẍ = F (x, ẋ), (5.19)on rajoute la fon
tion y = ẋ et l'équation (5.19) est équivalente au système
{

ẋ = y
ẏ = F (x, y).

(5.20)Un exemple important est 
elui des équations à 
oe�
ients 
onstants
ẍ + aẋ + bx = 0 (a, b,∈ R). (5.21)85



En posant y := ẋ 
omme 
i-dessus, l'équation (5.21) devient équivalente ausystème linéaire (
ẋ
ẏ

)
=

(
0 1
−b −a

)(
x
y

)
. (5.22)Par le paragraphe pré
édent, les solutions de (5.22) forment un espa
e ve
-toriel de dimension 2 qui dépend des valeurs propres de la (2 × 2)-matri
edans (5.22). Ces valeurs propres sont les solutions λ1, λ2 de l'équation du 2edegré

λ2 + aλ + b = 0 (5.23)qui s'appelle l'équation 
ara
téristique de l'équation di�érentielle (5.21)(observer l'analogie entre les équations (5.21) et (5.23)). On peut démontrerle théorème suivant :Théorème 5.4.2 La solution générale de l'équation di�érentielle ẍ + aẋ +
bx = 0 s'exprime, en fon
tion des solutions λ1, λ2 de son équation 
ara
té-ristique λ2 + aλ + b = 0, de la façon suivante :1. si λ1 6= λ2 et λi ∈ R, les solutions de (5.21) sont de la forme

C1e
λ1t + C2e

λ2t2. si λ1 = λ2 = λ ∈ R, les solutions de (5.21) sont de la forme
C1e

λt + C2te
λt3. si λ1,2 = α ± βi /∈ R les solutions de (5.21) sont de la forme

eαt(C1 cos(βt) + C2 sin(βt)).Exemple 1 : l'os
illateur harmonique. C'est l'équation di�érentiellede base des mouvements os
illatoires qui est
ẍ = −ω2x (ω ∈ R). (5.24)Le nombre x(t) s'interprète physiquement 
omme la position d'un mobilese déplaçant sur une droite et subissant une for
e, tendant à le ramener àl'origine, for
e qui est proportionnelle à x(t) (par la loi de Newton, la dérivéese
onde (a

élération) est proportionnelle à la for
e subie). On peut imaginerune masse entre deux ressorts tendus.86



L'équation 
ara
téristique de (5.24) est λ2 = −ω2 dont les ra
ines sont
λ1,2 = ±i ω. Les solutions de l'équation di�érentielle (5.24) sont don
, par lethéorème 5.4.2, toutes de la forme

C1 cos(ωt) + C2 sin(ωt). (5.25)Observons que la fon
tion A sin(ωt + ϕ) (A,ϕ 
onstantes) est aussi solutionde ẍ = −ω2x. On doit don
 pouvoir la mettre sous la forme de (5.25). Ene�et :
A sin(ωt + ϕ) = A cos ϕ sin(ωt) + A sin ϕ cos(ωt).On aura don
 C1 = A sin ϕ et C2 = A cos ϕ. De même, toute somme

C1 cos(ωt) + C2 sin(ωt) peut se mettre sous forme A sin(ωt + ϕ) ave
 A =√
C2

1 + C2
2 et ϕ = arctg (C1/C2). On a ainsi montré que toute solution de

ẍ = −ω2x est un mouvement os
illatoire A sin(ωt+ϕ) d'amplitude A, de pé-riode 2π/ω ave
 une phase (dé
alage) ϕ. Observons que ω est déterminé parl'équation di�érentielle tandis que que les 
onstantes A et ϕ sont déterminéespar la façon dont le mouvement démarre : la position initiale x(0) = x0 etla vitesse initiale ẋ(0) = v0.Exemple 2 : l'os
illateur harmonique amorti. Si, dans l'exemple del'os
illateur harmonique, le mobile subit une for
e de fri
tion proportionnelleà sa vitesse ẋ, qui le ralentit, l'équation di�érentielle du mouvement sera
ẍ = −2aẋ − ω2x (ω ∈ R , a > 0) (5.26)(le fa
teur 2 simpli�era l'expression des solutions). Son équation 
ara
téris-tique est λ2 = −2aλ − ω2 dont les ra
ines sont λ1,2 = −a ±

√
a2 − ω2.Lorsque a < ω, 
es ra
ines sont 
omplexes 
onjuguées : λ1,2 = −a ± iω̃ où

ω̃ :=
√

ω2 − a2. Par le théorème 5.4.2, les solutions de l'équation di�érentielle(5.26) sont de la forme
e−at(C1 cos(ω̃t) + C2 sin(ω̃t)) = Ae−at sin(ω̃t + ϕ). (5.27)On a don
 un mouvement os
illant 
omme dans l'exemple 1) mais de période

2π
ω̃ > 2π

ω qui est de plus amorti par la fon
tion e−at.5.5 Quelques systèmes dynamiques 
ontinus5.5.1 Croissan
e exponentielleC'est le système (R, A) où A(x) := αx (α ∈ R 
onstante). Il 
orresponddon
 à l'équation di�érentielle
ẋ = α x. (5.28)87



On véri�e immédiatement que
x(t) = x0e

αt (5.29)satisfait à l'équation 5.28 ave
 x(0) = x0. C'est don
 la traje
toire de l'état
x0. En posant a := eα, 
ette traje
toire s'é
rit

x(t) = x0a
t. (5.30)On voit que 
'est la solution du système dynamique dis
ret x(t + 1) = ax(t)(
roissan
e exponentielle ave
 
oe�
ient de 
roissan
e a ; voir � 1.2).Le seul état stationnaire est x0 = 0. C'est un attra
teur si et seulementsi α < 0. Cela illustre le théorème 5.3.1 p. 81. En efet, si A(x) = αx alors

DA = (α) a pour seule valeur propre α.Remarques : 1) l'équation (5.28) est à variables séparables. Exer
i
e :trouver la solution (5.29) par la méthode de la p. 82.2) Le 
hamp A(x) = αx est linéaire. La solution (5.29) est un 
as parti-
ulier du théorème 5.4.1 p. 84.5.5.2 Croissan
e logistiqueComme dans le 
as des systèmes dynamiques dis
rets, la 
roissan
e logis-tique, proposée par Verhulst en 1836, modélise l'évolution d'une populationanimée par une 
roissan
e exponentielle mais limitée à K individus par l'en-vironnement. L'équation di�érentielle de l'évolution du système est
ẋ = αx(1 − x

K
) (5.31)(
orrespondant au système (R, A) ave
 A(x) = αx(1− x

K )). Il y a deux étatsstationnaires : x = 0 et x = K. On a A′(x) = α(1 − 2x/K), don
 A′(0) = αet A′(K) = −α. Si α > 0, on a don
 que 0 est instable et K est un attra
teur.Le système dynamique 
ontinu de la 
roissan
e logistique est ainsi net-tement plus simple que son analogue dis
ret vu au � 1.4.L'équation di�érentielle (5.31) de la 
roissan
e logistique est à variableséparables 
e qui permet de trouver, par la méthode de la p. 82 une formuleexpli
ite de la traje
toire x(t) telle que x(0) = x0

x(t) =
x0Keαt

K + x0(eαt − 1)
. (5.32)Par la règle de l'Hospital, on voit que x(t) → K quand t → ∞ (si α > 0).88



5.5.3 Proies�PrédateursCe système a été proposé par Voltera en 1926 pour modéliser l'intera
tiond'une population de proies ave
 leurs prédateurs (voir [9, p. 63℄). C'est lesystème (E,A) où1. E := {(x, y) ∈ R2 | x ≥ 0, y ≥ 0}. Le nombre x est la quantité deproies et y 
elle de prédateurs.2. le 
hamp A = (A1, A2) est A(x, y) := (x(α − βy), y(γx − δ)).Les traje
toires sont don
 les solutions du système d'équations di�érentielles :
{

ẋ = x(α − βy)
ẏ = y(γx − δ).

(5.33)Ce
i rend 
ompte des hypothèses suivantes :1. en l'absen
e de prédateurs, les proies grandissent exponentiellement,ave
 taux de 
roissan
e α.2. l'e�et de la prédation est de réduire la quantité de proies d'un fa
teurproportionnel à x et à y. C'est le terme −βxy.3. en l'absen
e de proies, les prédateurs, qui n'ont pas de nourriture, dé-
roissent exponentiellement ave
 un taux δ.4. l'a

roissement des prédateurs est proportionnel à leur quantité et à
elle des proies. C'est le terme γxy.Si x > 0 et y > 0, on a un unique état stationnaire ( δ
γ , α

β ).On peut faire le 
hangement de variables
u :=

γ

δ
x , v :=

β

α
y. (5.34)Ave
 
es nouvelles 
oordonnées (u, v), le système (5.33) devient :

{
u̇ = αu(1 − v)
v̇ = δv(u − 1).

(5.35)et l'état stationnaire est (1, 1). Le système d'équations di�érentielles (5.35)
orrespond au 
hamp de ve
teurs A(u, v) := (αu(1 − v), δv(u − 1)).La matri
e ja
obienne de DA(1, 1) est
DA(1, 1) =

(
0 −α
δ 0

)
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Son polyn�me 
ara
téristique est X2 + αδ. Le spe
tre de DA(1, 1) est ainsi
±i

√
αδ. La partie réelle de 
es nombre 
omplexes étant nulle, le théorème5.3.1 ne donne au
une information sur la stabilité de l'état stationnaire (1, 1).En fait, les traje
toires sont périodiques. En e�et, 
onsidérons la fon
tion

H(u, v) :=
δ

α
(u − ln u) + v − ln vOn a

grad H =
( δ

α

u − 1

u
,

v − 1

v

)
.d'où

grad H · A = 0. (5.36)Le gradient de H est don
 orthogonal au 
hamp A. Comme grad H estorthogonal aux 
ourbes de niveau de H, on en déduit que les traje
toires
s(t) de A sont des paramétrisations des 
ourbes de niveau de H (et que
H(s(t)) = cte).Or, grad H(1, 1) = 0 et la matri
e hessienne de H en (1, 1) est

(
δ
α 0
0 1

)
.Ses valeurs propres sont positives. Par le théorème 3.3.4, p. 59 le point (1, 1)est un minimum lo
al pour H. Les 
ourbes de niveau autour d'un minimumlo
al sont des 
ourbes fermées.
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Annexe ANotes te
hniques et
omplémentsA.1 NotationsLogique � Ensembles :
∀ pour tout, quel que soit
∃ il existe, on peut trouver
⇒ implique, entraîne
⇔ est équivalent à , si et seulement si
:= égal par dé�nition à

x ∈ E x appartient à l'ensemble E ; x est élément de E.
E ⊂ F E est in
lus dans F ; E est un sous-ensemble de F

{x | p(x)} ensemble des x tels que la propriété p(x) est vraie
∅ ensemble vide
∪ union
∩ interse
tion

E × F Ensemble produit ; E × F := {(x, y)|x ∈ E et y ∈ F}
En E×· · ·×E (n fois). Les éléments de En sont les n-uples

(x1, . . . , xn) ave
 xi ∈ E.Appli
ation � Fon
tions Une appli
ation f dé�nie sur l'ensemble E àvaleurs dans l'ensemble F est une 
orrespondan
e qui asso
ie à tout élément
x ∈ E un élément y = f(x) ∈ F . On peut l'imaginer 
omme une 
ause
x qui détermine un e�et f(x). On note f : E → F et/ou f : x 7→ y.91



L'appli
ation f est déterminée par son graphe Γf :
Γf := {(x, y) ∈ E × F | y = f(x)} ⊂ E × F.Lorsque E = F = R, le graphe de f est un sous-ensemble du plan que l'on utilise pour visualiser f .Si E = R2 et F = R, 
ette visualisation peut sefaire en perspe
tive (graphe 3D). x

f(x)
Γf

Les mots appli
ation et fon
tion sont synonymes. Le terme �fon
tion� estplut�t reservé aux appli
ations à valeurs numériques (f : E → R) mais nousl'avons aussi employé pour des appli
ations à valeur dans Rn.Une appli
ation f : E → F est :� inje
tive si f(x) = f(x′) ⇒ x = x′ (au plus une préimage).� surje
tive si ∀ y ∈ F, ∃ x ∈ E tel que f(x) = y (au moins unepréimage).� bije
tive si elle est inje
tive et surje
tive (exa
tement une préimage).A.2 EntiersLes entiers sont :
• les entiers naturels : N := {0, 1, 2, 3, . . .}
• les entiers relatifs : Z := {. . . ,−2,−1, 0, 1, 2, . . .}.Le 
al
ul ave
 les nombres entiers est, par nature, un 
al
ul ma
hinal.Depuis l'Antiquité, on se sert d'abaques ou de bouliers. Notre é
riture deposition (unités, dizaines, et
), introduite par les Hindous et di�usée par lesArabes dans le Haut-Moyen-Age, est un 
odage graphique de 
es pro
édés. Lelogi
iel d'une 
al
ulette ou d'un ordinateur est élaboré sur le même prin
ipeque l'abaque ou le boulier.Les logi
iels de 
al
ul s
ienti�que 
omme MAPLE sont 
ensés 
al
ulerexa
tement en nombre entier sans limite a priori. Les restri
tions ne pro-viennent que des 
apa
ités de mémoire et de rapidité de la ma
hine surlaquelle ils sont implantés. En revan
he, de nombreux autres programmesimposent des limites sur la grandeur des nombres entiers.Des 
al
uls ave
 des entiers de plus de 100 
hi�res sont quotidiennemente�e
tués en 
ryptographie pour la sé
urité des données informatiques et leurtransmission sur l'internet.
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A.3 Nombres rationnelsL'ensemble de nombres rationnels Q est l'ensemble des fra
tions
Q := {p

q
| p, q ∈ Z et q 6= 0}muni de l'addition et de la multipli
ation usuelles

p

q
+

p′

q′
=

pq′ + qp′

qq′
,

p

q
· p′

q′
=

pp′

qq′
.Ave
 
es opérations, Q est un 
orps, 
'est-à-dire que pour tout x, y, z ∈ Q,on a :1) (x + y) + z = x + (y + z).2) 0 + x = x + 0 = x.3) ∃ −x ∈ Q tel que x+(−x) = 0.4) x + y = y + x. 5) (xy)z = x(yz)6) 1 · x = x · 1 = x.7) x(y + z) = xy + xz.8) xy = yx.9) les éléments non-nuls sont inversibles : si x 6= 0, ilexiste (un unique) x−1 ave
 xx−1 = 1La propriété 9) est la seule qui ne soit pas vraie pour Z. Toutes lespropriétés algébriques de Q dé
oulent de 
elles 
i-dessus. Par exemple, 0x = 0provient de 0x = (0 + 0)x = 0x + 0x.Un nombre rationnel p/q est un 
ouple d'entier (p, q) ave
 la relationd'équivalen
e

(p, q) ∼ (p′, q′) ⇐⇒ pq′ = p′q.Les nombres rationnels se prêtent don
 au 
al
ul exa
t à la ma
hine, 
ommeles nombres entiers.Dans la vie quotidienne, les fra
tions sont utilisées pour la mesure ap-proximative des grandeurs 
ontinues (longueurs, temps, et
). Par exemple
x = 0.354 veut dire x = 354/1000. Cependant, 
omme l'ont dé
ouvert lesPythagori
iens (Ve siè
le avant JC), les nombres rationnels sont impropresà l'expression exa
te des grandeurs 
ontinues et on ne peut pas les mettreen bije
tion ave
 tous les points d'une droite. Par exemple, la longueur d dela diagonale d'un 
arré de 
�té 1 satisfait l'équation d2 = 2 par le théorèmede Pythagore. Or, il n'existe au
une fra
tion dont le 
arré vaut 2. En e�et :Proposition A.3.1 Soient k et m des entiers positifs. Supposons que l'équa-tion xk = m n'ait pas de solution dans Z. Alors, elle n'en a pas non plusdans Q. 93



Preuve: La fra
tion p/q qui satisferait (p/q)k = m n'est pas un entier par l'hypothèse.Don
 q 6= 1. On suppose que p/q est une fra
tion réduite, 
'est-à-dire qu'il n'y a pas depossibilité de simpli�
ation entre p et q (exemple 3/4). Dans 
e 
as, la fra
tion
“p

q

”k

=
p · · · p

q · · · qest aussi réduite, 
ar on ne peut toujours rien simpli�er, et qk 6= 1. Don
 la puissan
e ked'une fra
tion qui n'est pas un entier n'est pas non plus un entier.A.4 Nombres réelsConsidérons les deux a�rmations suivantes :1. Si la température d'une piè
e passe de 18◦ à 21◦ en une heure, il y aeu au moins un instant pendant 
ette heure où 
ette température a étéégale à 20◦ .2. Quand une balle de tennis passe d'un 
�té à l'autre du 
ourt, il y a uninstant où son 
entre de gravité est exa
tement au dessus du �let.Ces a�rmations relèvent du prin
ipe de 
ontinuité qui re�ète notreimpression sur la nature �
ontinue� de grandeurs 
omme le temps, la tempé-rature ou la position d'un objet dans l'espa
e. Elles ne sont guère véri�ablesexpérimentalement. On a

umulerait plut�t des preuves du 
ontraire ! Envisionnant le �lm d'une partie de tennis image par image, la probabilité estnulle d'en trouver une où le 
entre de la balle soit exa
tement au dessus du�let (à 
omparer ave
 la remarque 2.6.3, p. 43). Le prin
ipe de 
ontinuitén'est qu'une vue de l'esprit, une sorte d'exigen
e du raisonnement.Reste à trouver un système de nombres maniable et logiquement 
ohérentdans lequel le prin
ipe de 
ontinuité soit vrai. Historiquement, 
e fut unetâ
he di�
ile qui a duré plus de 2000 ans et ne fut a
hevée qu'à la �n duXIXe siè
le [6, 
h. 2℄.Le 
orps des nombres réels R est l'aboutissement de 
es longs e�orts.Il est exa
tement 
onstruit pour que le prin
ipe de 
ontinuité fon
tionne1.Les mathémati
iens en ont plusieurs 
onstru
tions équivalentes ([1, p. 177℄,[6, 
h. 2℄). Intuitivement, un nombre réel est une limite de fra
tions.Nous nous bornerons i
i à expliquer par un exemple le maniement pra-tique des nombres réels. Considérons la grandeur x2. Comme 12 = 1 < 2 et
22 = 4 > 2, le prin
ipe de 
ontinuité dit qu'il existe au moins un nombre réel1L'adje
tif �réel� est usurpé puisque le prin
ipe de 
ontinuité n'existe que dans notreimagination. Cette 
onfusion est sour
e de blo
ages psy
hologiques envers les nombres
omplexes, arbitrairement 
onsidérés eux 
omme �imaginaires�.94



1 < r < 2 tel que r2 = 2. Comme x 7→ x2 est stri
tement 
roissante, il n'yen aura qu'un. Cher
hons-le :x 1.1 1.2 1.3 1.4 1.5
x2 ≤ 2 oui oui oui oui nonDon
 1.4 < r < 1.5. On re
ommen
e ave
 un pas plus �n :x 1.40 1.41 1.42

x2 ≤ 2 oui oui nondon
 1.41 < r < 1.42, et
. On obtiendra ainsi, su

essivement, de plus enplus de dé
imales de √
2.Cette pro
édure illustre deux des façons de s'imaginer un nombre réel :1. 
omme une suite d'intervalles emboîtés d'extrémités rationnelles dontla longueur tend vers 0.2. 
omme un développement dé
imal illimité. Si le nombre est rationnel,son développement est �ni ou devient périodique. Mais un nombreirrationnel, 
omme √2, a un 
�té inatteignable : la 
onnaissan
e de sesdé
imales ne pourra pas s'obtenir en un nombre �ni d'opérations.La suite d'intervalles 
ir
ons
rivant un nombre réel n'est évidemmentpas unique. En général, son é
riture dé
imale ne l'est pas non plus. Parexemple : 0.999.. = 1.000... En e�et, si n := 0.999.., on a 10n = 9.999.., d'où

10n − n = 9 et don
 n = 1.En pratique, et ave
 les ma
hines, on travaille ave
 des nombres réels�arrondis� qui 
orrespondent à de petits intervalles de nombres rationnelsfermés à gau
he :
x ≈ 0.453 ⇐⇒ 0.4525 ≤ x < 0.4535Dans MAPLE, la 
ommande evalf(X,n) renvoie l'évaluation de l'expression

X arrondie à n 
hi�res, en prin
ipe sans limite sur n due au logi
iel. Maisattention aux multiples pièges ! Par exemple :
> v := evalf(sqrt(2),40) ;
v := 1.414213562373095048801688724209698078570
> v�2 - 2 ;
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Cette réponse v2−2 = 0 est manifestement fausse. On a v =
√

2+ε ave

ε ≈ 10−39 (on a demandé 40 
hi�re, il reste 39 dé
imales). D'où

v2 − 2 = 2 + 2ε + ε2 − 2 ≈ 2ε.On s'attend ainsi à 
e que v2−2 ≈ 10−39 ou 10−38. Il se passe qu'en e�e
tuantl'élévation au 
arré de v, MAPLE a repris sa pré
ision par défaut, qui estde 10 
hi�res. Cette pré
ision est 
ontr�lée par la 
ommande Digits et, sil'on veut garder nos 40 
hi�res, il faut le demander avant de 
ommen
er le
al
ul :
> Digits :=45 : v�2 - 2 ;

.92808 10−39Cette fois, la réponse est plausible. De tels avatars ne sont pas dus à desimperfe
tions du logi
iel ; ils sont inhérents au maniement des nombres réelssur une ma
hine et imposent de sévères limites aux simulations numériques.A.5 Entre les rationnels et les réelsSi la 
onstru
tion des nombres réels ne s'est a
hevée qu'à la �n du XIXesiè
le, on n'a pas attendu jusque-là pour faire des 
al
uls ! Les Arabes, puis lesItaliens, ont développé au Moyen-Age le 
al
ul algébrique que l'on 
onnaitave
 des nombres rationnels et des expressions 
omme √
u, et
. Il s'agitde 
al
ul formel. On ne s'o

upe pas de savoir 
e que désigne le symbole√

u. Il est traité 
omme une variable de polyn�me, sauf qu'il satisfait à larelation (
√

u)2 = u. Cela permet, 
haque fois que l'on ren
ontre (
√

u)2,de le rempla
er par u. De même, on peut 
al
uler ave
 3
√

u, qui satistfait à
( 3
√

u)3 = u, ou ave
 d'autres symboles satisfaisant à des relations algébriquesplus 
ompliquées.Certains nombres, 
omme π ou e sont en revan
he trans
endants : il nesatisfont à au
une équation polyn�miale à 
oe�
ients rationnels. Dans les
al
uls, ils se 
omportent 
omme des variables, sans autres simpli�
ationspossibles que 
elles usuelles dans les polyn�mes.Contrairement à l'appro
he numérique des nombres réels, les algorithmesde 
e 
al
ul symbolique se prêtent au 
al
ul exa
t à la ma
hine. Cela permetde 
aluler exa
tement ave
 de petites parties de R. Voi
i deux exemplesave
 MAPLE :
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> v := (1+sqrt(2))4 ; w := (1+Pi)4 ;
v :=

(
1 +

√
2
)4

w := (1 + π)4

> expand(v) ; expand(w) ;
17 + 12

√
2

1 + 4π + 6π2 + 4π3 + π4A.6 Nombres 
omplexesLe passage des nombres réels R aux nombres 
omplexes C relève du pro-
édé expliqué dans le � A.5 : on 
al
ule algébriquement ave
 les nombres réelset une expression √
−1 que l'on note généralement i. Un nombre 
omplexeest don
 un polyn�me en une variable i mais, 
omme i2 se rempla
e par −1,on n'aura que des polyn�mes de degré 1. Un nombre 
omplexe est don
 unexpression a+bi. La somme et le produit se font 
omme pour des polyn�mes,en remplaçant 
haque i2 par −1. Exemple :

(3 + 4i)(1 − 2i) = 3 + 4i − 6i − 8i2 = 11 − 2i

i3 = i2i = −i.Ave
 
es opérations, l'ensemble C des nombres 
omplexes est un 
orps (p.93) : la seule 
hose non-banale à véri�er est que si a + bi 6= 0, il admet uninverse. Celui-
i est donné par
(a + bi)−1 =

a − bi

a2 + b2
. (A.1)Se donner un nombre 
omplexe z = a + bi ∈ C revient à se donner unun 
ouple (a, b) ∈ R2 de nombres réels. On met ainsi en bije
tion C ave


R2, donnant l'interprétation géométrique des nombres 
omplexes 
omme lespoints du plan (les nombres réels devenant les points de l'axe horizontal). Si
z = a + bi ∈ C, alors1. a s'appelle la partie réelle et b la partie imaginaire de z.2. Le nombre 
omplexe z := a − ib s'appelle le 
onjugué de z. Dans leplan, z et z s'obtiennent l'un de l'autre par ré�exion par rapport àl'axe horizontal. On a z + z′ = z + z′ et zz′ = z z′97



3. Observons que z z = a2 + b2 ∈ R≥0. Le nombre réel
|z| =

√
z z =

√
a2 + b2 ≥ 0s'appelle le module de z. Par le théorème de Pythagore, |z| est ladistan
e entre z et l'origine 0. La formule A.1 peut se réé
rire :

z−1 =
z

|z|2 .4. les 
oordonnées polaires permettent d'é
rire z = a + ib sous formetrigonométrique :
z = ρ(cos θ + i sin θ) (A.2)On a don
 a = ρ cos θ, b = ρ sin θ et ρ = |z|. L'angle θ, l'argumentde z, est dé�ni à un multiple entier de 2π près (et non-dé�ni si z = 0).La relation tg θ = b

a a lieu. La formule pour θ en utilisant la fon
tion
arctg dont les valeurs sont dans [−π

2 , π
2 ] est

θ =

{
arctg ( b

a) si a ≥ 0

arctg ( b
a) + π si a < 0

(A.3)Par exemple : l'argument de 1 + i est π/4 et 
elui de −1 + i est 3π/4.
θ

z = a+ibib  

0 a
axe réel

ax
e

im
ag

in
ai

re

z = a-ib
_

|z|

Notation exponentielle des nombres 
omplexes : En 
omparant lesdéveloppements de Taylor (voir p. 50) de cos u, sin u et eu :
cos u = 1 − 1

2u2 + 1
4!u

4 + · · ·

sinu = u − 1
3!u

3 + · · ·

eu = 1 + u + 1
2u2 + 1

3!u
3 + 1

4!u
4 + · · ·98



et en remplaçant u par iθ dans la dernière équation, Euler a trouvé que :
eiθ = cosθ + i sin θ (A.4)En 
ombinant ave
 (A.2), on obtient la notation exponentielle des nombres
omplexes :

z = ρeiθ (A.5)où ρ = |z| est le module et θ l'argument de z. La notation exponentielle rendle produit des nombres 
omplexes parti
ulièrement simple :
zz′ = ρeiθρ′eiθ′ = ρρ′ei(θ+θ′) (A.6)On voit que lors d'un produit, les modules se multiplient et les argumentss'additionnent. En parti
ulier, la multipli
ation par i est une rotation de

π/2. En restreignant aux nombres réels (θ = 0 ou π) 
ette interprétationgéométrique du produit des nombres 
omplexes jette un nouvel é
lairagesur la règle des signes des nombres réels (moins par moins = plus). Quantà l'addition des nombres 
omplexes, 
'est, géométriquement, l'addition desve
teurs dans le plan.A.7 Polyn�mesUn polyn�me de degré n est une expression
P (x) := anxn + · · · + a1x + a0 (A.7)ave
 an 6= 0. Les 
oe�
ients ak sont dans un 
orps K, pour nous R ou C. Unpolyn�me dé�nit don
 une fon
tion de K dans K. Un nombre u ∈ K est unera
ine du polyn�me P si P (u) = 0.Il est avantageux de pouvoir dé
omposer un polyn�me P en produit depolyn�mes de degré plus petit. Une bonne situation est d'avoir des fa
teursdu 1er degré x−u. Cela implique que u est une ra
ine de P ; on a équivalen
e :Proposition A.7.1 u ∈ K est une ra
ine du polyn�me P si et seulement si

P est divisible par x − u, 
'est-à-dire qu'il existe un polyn�me Q tel que
P (x) = (x − u)Q(x).En parti
ulier, un polyn�me de degré n a au plus n ra
ines.99



Preuve: Comme pour les nombres entiers, le 
al
ul des polyn�mes 
omprend la divisionave
 reste : on peut diviser P par un polyn�me S 6= 0, obtenant un quotient Q et unreste R :
P (x) = S(X)Q(x) + R(x)ave
 degré(R) < degré(S). Si S = x − u , le degré de S vaut 1 et don
 R = r0 est unpolyn�me 
onstant. Mais 
omme P (u) = 0, on aura r0 = 0.Le 
orps des nombres 
omplexes jouit de la propriété remarquable quetout polyn�me se fa
torise de façon maximale. En e�et, on peut démontrer :Théorème A.7.2 (Théorème fondamental de l'algèbre) Soit P (x) :=

anxn+· · ·+a1x+a0 un polyn�me à 
oe�
ients dans C. Alors, P se dé
omposeen produit de polyn�mes du 1er degré :
P (x) = an

n∏

k=1

(x − uk)(Remarque : les ra
ines uk ∈ C de P ne sont pas for
ément toutes distin
tes.)Exemple : l'équation zn = 1 admet n solutions dis-tin
tes : {e2iπk/n | k = 0, . . . , n − 1}. Le module de 
esnombres 
omplexes est 1 et leur argument est 2πk/n. Onles appelle les ra
ines nème de l'unité. Géométrique-ment, elles 
onstituent les sommets d'un polygone régu-lier à n 
otés sur le 
er
le de rayon 1. Ce sont don
 lesra
ines du polyn�me zn − 1 qui se fa
torise en
q

&%
'$rr rr

rr 0
1−1

eiπ/3

e5iπ/3
e4iπ/3

e2iπ/3

Ra
ines 6 ede l'unité
zn − 1 = (z − 1)(z − e2iπ/n)(z − e4iπ/n) · · · (z − e2iπ(n−1)/n).Dans le 
orps des nombres réels 
ertains polyn�mes ne se fa
torisent pas.Par exemple, un polyn�mes du 2e degré P (x) = ax2 + bx + c ne se fa
toriseque si son dis
riminant b2 − 4ac ≥ 0. Sinon, il n'a pas de ra
ines réelles et Pest irrédu
tible. Il se trouve que 
'est le seul 
as :Proposition A.7.3 Tout polyn�me à 
oe�
ients réels se fa
torise en pro-duit de polyn�mes de degré 1 et de polyn�mes de degré 2 dont le dis
riminantest stri
tement négatif.Preuve: Soit P un polyn�me à 
oe�
ients réels. Considéré 
omme un polyn�me à
oe�
ients 
omplexes il se fa
torise 
omplètement, par le théorème A.7.2 :

P (x) = an

n
Y

k=1

(x − uk)100



ave
 uk ∈ C. On peut 
onjuguer dans C 
ette dernière équation :
P (x) = an

n
Y

k=1

(x − uk).Si x ∈ R, on a P (x) = P (x) puisque les 
oe�
ients de P sont réels. Cela entraîne que si
uk := ρ(cos θ + i sin θ) est une ra
ine de P non réelle, alors uk est aussi ra
ine de P . Dans
e 
as, on peut regrouper 
es deux ra
ines 
onjuguées

(x − uk)(x − uk) = x2 + 2ρ cos θ + ρ2
e qui donne un polyn�me du 2e degré à 
oe�
ients réels et à dis
riminant négatif.A.8 Espa
es ve
toriels � Produits s
alairesDé�nition : Un espa
e ve
toriel (réel) est un ensemble V muni de deuxlois
V × V

+−→ V
(x, y) 7→ x + y

et R × V
·−→ V

(λ, y) 7→ λ · y .satisfaisant aux axi�mes suivants : il existe un élément 0 ∈ V (le ve
teurnul) et, pour tout x, y, z ∈ V et λ, µ ∈ R, on a1) (x + y) + z = x + (y + z).2) 0 + x = x + 0 = x.3) ∃ (−x) ∈ V tel que x+(−x) = 0.4) x + y = y + x. 5) λ · (x + y) = λ · x + λ · y.6) (λ + µ) · x = λ · x + µ · x.7) (λµ) · x = λ · (µ · x).8) 1 · x = x.Les éléments de V s'appellent des ve
teurs et 
eux de R des s
alaires.Si l'on rempla
e R par C, on aura la dé�nition d'un espa
e ve
toriel 
om-plexe. Pour alléger l'é
riture, on notera αx pour α · x.Les axiomes 1) à 8) 
i-dessus impliquent d'autres propriétés, par exemple :
0 · x = 0. En e�et, par 6), on a

0 · x = (0 + 0) · x = 0 · x + 0 · xEn soustrayant 0 · x (possible par 3)), il reste 0 · x = 0. De même, on a
α · 0 = 0 et (−1) · x = −x.Soit V un espa
e ve
toriel et W ⊂ V . On dit que W est un sous-espa
eve
toriel de V si 0 ∈ W et si

x, y ∈ W ⇒ x + y ∈ W et λx ∈ W ∀ λ ∈ R.Par exemple, dans l'espa
e R3, une droite ou un plan passant par 0 sont dessous-espa
es ve
toriels. 101



Produit s
alaire : Voi
i la démonstration de la proposition 2.1.1 p. 16dont nous re
opions l'énon
é :Proposition 2.1.1 Les propriétés du produit s
alaire et de la norme sont1) (x + y) · z = x · z + y · z.2) (λx) · y = λ(x · y).3) x · y = y · x.4) ‖x‖ ≥ 0 et ( ‖x‖ = 0 ⇔ x = 0 ).5) ‖λx‖ = |λ| ‖x‖.6) ‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2x · y.7) |x · y| ≤ ‖x‖ ‖y‖ (inégalité de S
hwarz).8) ‖x + y‖ ≤ ‖x‖ + ‖y‖ (inégalité du triangle).Preuve: Les propriétés 1) à 5) dé
oulent dire
tement des dé�nitions du produit s
alaireet de la norme. L'énon
é 6) vient de 1) et 3) :
‖x + y‖2 = (x + y) · (x + y) = x · x + y · y + x · y + y · x = ‖x‖2 + ‖y‖2 + 2x · y.L'inégalité du triangle provient de 6) et de l'inégalité de S
hwarz :

‖x + y‖2 = ‖x‖2 + ‖y‖2 + 2 x · y ≤ ‖x‖2 + ‖y‖2 + 2 |x · y| ≤

≤ ‖x‖2 + ‖y‖2 + 2 ‖x‖ ‖y‖ = (‖x‖ + ‖y‖)2.Il reste à démontrer l'inégalité de S
hwarz. La démonstration est assez intéressante. Si
x · y = 0, il n'y a rien à démontrer. Supposons que x · y 6= 0, 
e qui implique x 6= 0 et, parla propriété 4), ‖x‖ 6= 0.On 
al
ule ‖αx + y‖2 pour α ∈ R :

0 ≤ ‖αx + y‖2 = (αx + y) · (αx + y) = α2‖x‖2 + 2 α (x · y) + ‖y‖2.Le membre de droite est un polyn�me du deuxième degré en α :
0 ≤ Aα2 + Bα + C.Cela montre que l'équation 0 = Aα2 +Bα +C a au plus une solution, d'où B2−4AC ≤ 0.En remplaçant A, B et C par leurs valeurs, 
ette dernière inégalité devient :

4 (x · y)2 ≤ 4‖x‖2‖y‖2.En prenant les ra
ines 
arrées, on obtient l'inégalité de S
hwarz.A.9 Composantes prin
ipalesImaginons que l'on fasse n mesures de p grandeurs. Les données re
ueillies
onstituent une matri
e (p × n) :
R :=




r11 · · · · · · r1n... ...
rp1 · · · · · · rpn


 (A.8)102



la ième mesure donnant le ième ve
teur 
olonne Ri de la matri
e R. Onregarde R 
omme un nuage de n points dans Rp. L'analyse en 
omposanteprin
ipales [15℄ résout la question suivante : 
omment projeter R dans unsous-espa
e Π de dimension k < p dans Rp en produisant le minimum dedistorsion ? La distorsion entre deux nuages R et R′ se mesure par le nombre∑n
i=1 ‖R′

i − Ri‖2. Les motivations sont les suivantes :1. 
ompression de l'information pour sto
kage ou transmission.2. représentation graphique des données (k = 2).3. élimination de petites perturbations dues aux impré
isions ou à unbruit de fond.4. mise en éviden
e de 
ertaines 
ombinaisons linéaires des données quisont (presque) 
onstantes, en vue de dégager des �lois de 
onservation�(analogues à la loi de 
onservation de l'énergie en physique).L'idée pour trouver Π est la suivante. On suppose que ∑n
i=1 Ri = 0, 
equi s'obtient en translatant l'origine au 
entre de gravité 1

n

∑n
i=1 Ri = 0 dunuage R. On forme alors la matri
e de Gram des ve
teurs ligne :

S := RRT ∈ Mp×p.Les 
oe�
ients sij de S sont les produits s
alaires des ve
teurs ligne de R ;
S est don
 une matri
e symétrique. Supposons, pour simpli�er, que S ait pvaleurs propres distin
tes λ1 > · · · > λp (on peut montrer que les valeurspropres d'une matri
e de Gram sont ≥ 0). On peut montrer :Proposition A.9.1 1. Le k-sous-espa
e ve
toriel Π 
her
hé est engendrépar les ve
teurs propres 
orrespondant aux valeurs propres λ1, . . . , λkde la matri
e S.2. la distorsion introduite en projetant orthogonalement R sur Π est

λk+1 + · · · + λp. Par exemple, λk+1 = λk+2 = · · · = λp = 0 si et seule-ment si R est déjà 
ontenu dans un sous-espa
e ve
toriel de dimension
k (
'est-à-dire rang R = k).
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