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Mathématiques et Sciences

Activité fondamentale de I’esprit humain, les mathématiques se sont dé-
veloppées sans discontinuité depuis I’Antiquité. Leur construction se poursuit
chaque jour, donnant lieu & des milliers d’articles par an. Les plus grands
esprits y ont laissé leur empreinte (Euclide, Newton, Gauss, Poincaré, etc).

Les concepts mathématiques, méme les plus usités (nombres, cercles,
droites), n’ont pas d’existence ailleurs que dans notre imagination. Le plus
souvent, ils ont été élaborés par pure curiosité intellectuelle et pas en vue
d’une application. On peut ainsi s’étonner que de telles abstractions puissent
étre utiles, notamment pour les sciences naturelles et la technologie. Nous
savons que c’est pourtant le cas : depuis Galilée et Kepler, une grande par-
tie de activité scientifique consiste & décrire, en termes mathématiques, des
phénomeénes naturels, convenablement isolés et idéalisés. L’aspect opératoire
et déductif des mathématiques est alors mis en jeu pour découvrir et dé-
montrer de nouvelles “lois de la nature”, que ’on peut ensuite soumettre a
I’expérience. Les concepts mathématiques sont ainsi des outils de pensée, de
découverte et de compréhension (“mathema” = “comprendre”, en grec) au
service de toutes les sciences. L’usage de 'ordinateur et la numérisation de
I'information accroissent sans cesse 1'usage possible et le besoin de modéles
mathématiques.

Concrétement, voici quelques outils mathématiques utiles dans la pra-
tique scientifique et dont on parlera dans ce cours :

— des nombres, pour exprimer les grandeurs que ’on mesure et effectuer
des calculs. Les principaux systémes numériques (nombres entiers, ra-
tionnels, réels, complexes) seront discutés dans les § A.2 & A.6, notam-
ment du point de vue de leur usage correct sur ordinateur.

— des concepts géométriques pour maitriser intellectuellement ’espace
(calcul vectoriel, algebre linéaire, voir ch. 2).

— le calcul infinitésimal, outil intellectuel d’une valeur inestimable sans
lequel la science et la technologie moderne n’existeraient pas (ch. 3-5).
Il se décompose en deux aspects :



— le calcul différentiel (ch. 3), notamment pour les problémes d’opti-
misation.

— le calcul intégral (ch. 4), pour le calcul d’aires, volume, débits, valeurs
moyennes, etc.

— des modeéles pour décrire et prédire I’évolution des phénomeénes naturels
(systemes dynamiques, équations différentielles, ch. 1 et 5). Grace a
I’essor de 'ordinateur, les systémes dynamiques constituent le courant
principal des mathématiques appliquées actuelles.

— des raisonnements efficaces, souples et rigoureux et dont les conclusions
sont fiables.

— les probabilités et statistiques (semestre d’été).

En résumé, les mathématiques jouent un role fondamental dans la connais-
sance scientifique et son développement. Ce sont de puissants outils intellec-
tuels qui permettent de formuler les lois scientifiques de maniére précise,
maniable et subtile. Elles débouchent sur un usage efficient de I'ordinateur,
notamment dans 'organisation d’expériences “virtuelles”. Enfin, les mathé-
matiques sont un cadre de raisonnement rigoureux et opératoire tel qu’il est
partout nécessaire en science.

Apres cette introduction, I’étudiant en sciences devrait étre convaincu du
bien fondé de s’intéresser au plus possible de mathématiques. Il s’agit d’'un
investissement important qui lui donnera un avantage substantiel dans la
suite de ses études et de sa carriére.



Chapitre 1

Simulations mathématiques
systémes dynamiques

Comment s’est formée la terre 7 Comment va évoluer la population mon-
diale ? Que va-t-il se passer dans telle réaction chimique 7 Quel temps fera-t-il
dans quelques jours?

L’un des buts principaux de la science est de décrire I’évolution des phéno-
meénes naturels. L’essor de ’ordinateur a fait exploser cet aspect de ’activité
scientifique, permettant de s’attaquer & toutes sortes de problémes et de tenir
compte d’une multitude de paramétres (plusieurs dizaines de millions en
meétéorologie). Les simulations d’évolutions “virtuelles” ouvrent chaque jour
de nouveaux champs d’investigation, remplacant des expériences impossibles,
dangereuses ou trop couteuses (écologie, processus industriels, etc).

Mais, pour mettre en scéne une évolution virtuelle sur un ordinateur, il
faut d’abord en avoir un modéle mathématique. L’étude mathématique des
modeles d’évolution est la théorie des systémes dynamiques (popularisée sous
le nom de théorie du chaos). C’est aujourd’hui la partie principale des ma-
thématiques appliquées et elle influence notre vision de ce qu’est un modéle
scientifique. C’est pourquoi nous avons trouvé intéressant de prendre, dans
ce cours, les systémes dynamiques comme fil conducteur et comme prétexte
pour apprendre les diverses techniques utiles dans toutes les sciences.

On distingue deux types de systémes dynamiques® :

1. les systémes discrets, dans lesquels le temps varie par saut d’une unité.
Ce sont ceux qui servent aux simulations sur ordinateurs. On en verra
de trés simples dans ce chapitre et d’autres dans les chapitres 2 et 3.

111 ’agit ici de systémes déterministiques, oit une cause détermine un effet ; nous n’abor-
derons pas les systémes probabilistiques, ol le hasard entre en jeu (voir cependant p. 13).



2. les systemes continus, dans lesquels le temps varie continiiment. Plus
anciens et importants du point de vue théorique, ils relévent de la
théorie des équations différentielles. Ils seront traités au chapitre 5.

1.1 Systémes dynamiques discrets

Par définition, un systéme dynamique discret se compose de :
1. un ensemble E (I’ensemble des états possibles du systéme)

2. une application f : F — E, de F dans lui-méme (la loi d’évolution
du systéme).
Le temps varie discrétement, c’est-a-dire par saut d’une unité. Notons s(t)
I’état du systéme au temps t. L’évolution du systéme, a partir d’un ’état
initial s9 = s(0), est donc décrite par une suite d’éléments de E :

so=s(0), s(1), s(2), s(3) ... (1.1)

On appelle cette suite la trajectoire (ou ’orbite) de 'état sg. On suppose
que cette trajectoire est déterminée par l'application f, grace & I’équation
d’évolution

s(t+1) = f(s(1)| (1.2)

Autrement dit : si le systéme est dans ’état s, il sera, aprés une unité de
temps, dans ’état f(s).

Au temps t + 2, Pétat du systéme sera s(t +2) = f(f(s(t)) = f2(s(t)).
Pour connaitre 1'état s(t + n), aprés n étapes, il suffit ainsi d’itérer n fois
f, c’est-a-dire de composer n fois I’application f avec elle méme :

s(t+n)=f"(s(t)) = fofo---of (s(t)) (ntéme jtération de f) .
n fois

(Le symbole f°™ peut étre utilisé s’il y a risque de confusion avec une puis-
sance.) La trajectoire (1.1) de sq s’écrira ainsi

s0.5.f(s0) , f*(s0) , f*(s0) ... (1.3)

Dans la pratique, 'information sur I’état du systéme est numérisée, c’est-
a-dire concentrée sous forme de m nombres réels. Ces nombres peuvent étre
des pressions, des températures, des positions, vitesses, concentrations de
substances chimiques, nombre de cellules etc. Un état s est ainsi un m-uple
s = (x1,22,...,Tm) € R™ de nombres réels (R := ensemble des nombres



réels ; voir p. 94) et 'ensemble F des états du systéme est un sous-ensemble
de R™. Quant au choix de l'unité de temps, il dépend du phénomeéne &
modéliser : seconde, année, temps d’une division cellulaire, etc.

L’itération d’une fonction est idéale pour le traitement informatique,
grace & des programmes simples et rapides du type “boucle”. Ceci explique
pourquoi les systémes dynamiques discrets sont a la base de toutes les simu-
lations sur ordinateurs. Dans MAPLE, la n€ itération f™ de f s’obtient par
la commande f@On.

Itération graphique : Lorsque ’ensemble des états F est I’ensemble
R des nombres réels, la fonction f peut étre visualisée par son graphe. La
trajectoire de s(0) peut aussi s’obtenir géométriquement & partir de ce gra-
phique. Pour cela, il faut placer cote a cote le plan (x,y) (ou 'on dessine le
graphe de f) et le plan (t,s) (ou 'on dessine le graphe de la trajectoire de
so = s(0)). L’axe des x et celui des ¢ doivent étre placés a la méme hauteur
et les axes des x, des y et des s gradués & la méme échelle.

Y graphe de f s
aF - - -—--— - —-— — — — A———/ﬁ-\g ————————— — — o— —

trajectoire

s(1)

|
|
|
|
T
|
|
|
5(0) |- | 5(0)
|
a

5(0)

Les points de la trajectoire cherchée sont obtenus de la facon suivante :
partant du point (0, s(0)) sur 'axe des s, on se déplace horizontalement vers
la gauche jusqu’a la droite a 45° {y = z}. On monte alors verticalement
jusqu’au graphe de f puis on revient horizontalement jusqu’a la droite ¢ = 1.
On a ainsi trouvé le point (1,s(1)). Cette opération peut se répéter a partir
de n’importe quel point (¢, s(¢)) du graphe de la trajectoire et donne le point
(t+1,s(t 4+ 1)). On peut ainsi dessiner le graphe de la trajectoire de sq.

Par exemple, dans la figure ci-dessus, on voit que la trajectoire tend vers
l’état d’équilibre s = a qui est un état stationnaire : f(a) = a (voir p. 8).



Remarques :
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— L’intérét de cette amusante méthode graphique est surtout théorique,
pour l'aide au raisonnement. On ne peut pas 'utiliser pour des résul-
tats quantitatifs car I'imprécision des traits de crayon s’amplifie trop
rapidement lors de l'itération.

1.2 La croissance exponentielle

Ce systéme dynamique est 'un des plus simples et des plus fréquents.Il
modélise ’évolution d’une population en phase de croissance ou de décrois-
sance non-freinée. Un état consiste en une seule valeur numérique = € R et
la loi d’évolution f : R — R est

‘ f(z):=ax (a € R constante) ‘ (1.4)

dont le graphe est une droite de pente a passant par l'origine.

Exemples :

1. Capital placé a taux d’intérét constant 7. L’état = est le montant du
capital et a = 1 + 7/100.

2. Populations de cellules, de bactéries, etc. L’état = est simplement la
masse ou la densité (=masse/volume). On a a > 1.

3. Echantillon d’un élément chimique radioactif. Dans ce cas  peut étre la
masse ou l'intensité du rayonnement de ’échantillon. On a 0 < a < 1.

4. (Newton) Refroidissement d’un corps dans un fluide. L’état du systéme
est la différence de température entre le corps et le fluide.

Si z(0) est ’état initial au temps ¢ = 0, sa trajectoire x(n) sera donnée
par

|2(n) = a"x(0) ] (1.5)




Remarques :

1. si @ = —1, on a une évolution périodique de période 2. L’état du
systéme oscille indéfiniment entre —z(0) et x(0). Plus généralement,
lorsque a < 0, 'état du systéme alterne & chaque étape entre les
nombres positifs et négatifs.

2. La valeur |z(t)| varie exponentiellement en fonction de ¢ avec un co-
efficient de croissance |a|.

3. Si a > 0, notre systéme est la discrétisation d’un systéme ou le temps
varie contintiment et ou 1’état z(t) est donné par

z(t) = z(tg) a1 = z(t) ett0) e, (1.6)

Sia > 1, on décrit souvent le systéme par le temps de doublement :
c’est le temps T pour lequel on a z(t + 1) = 2x(t). Pour une culture de
cellules, il coincide avec le temps de division cellulaire. Analoguement, si
0 < a < 1, le systéme sera déterminé par sa demi-vie : le temps 7' nécessaire
pour que z(t +T') = 3 x(t). Dans les deux cas, on déduit de 'équation (1.6)
que le rapport entre T et a est

In2
T=—:. 1.7
|Inal (17)
Toujours par (1.6), si on connait x () et z(¢p), on peut calculer T :
o (t—to) In2 _(t—to) In2 (]_8)
~ |Inxz(t) —Inxz(ty)| | In (t) | ’ '
x(to)

Applications :
— La concentration d’une population de bactéries s’est multipliée par 2,9
en 5 heures. Utilisant I’équation (1.8), le temps de doublement de la

population est
5In2

" 29

— Le rayonnement da au carbonne 14 d’un échantillon de bois est 0.7 fois

celui d’'un méme échantillon de ce bois vivant. La demi-vie 7' du C4
étant de 5730 ans, on déduit de (1.8) qu’il s’est écoulé

=~ 3.26 heures

5730 |1n(0.7)]

o =~ 2949 ans

t

depuis la mort de 'arbre.



Graphique logarithmique :  On reconnait graphi-
quement un systéme & croissance exponentielle s(¢ +
1) = as(t) en portant les points (m,s(t + m)) sur n(2s(0)
un graphique dont l'ordonnée est en échelle logarith-

mique. Ces points seront alignés sur une droite. Plus 1n 5(0)

précisément, sur un graphique standard, les points
(m,In s(t 4+ m)) seront alignés sur une droite de pente

Ina. La figure ci-contre illustre ce fait (avec tg = 0 0
et @ > 1). On retrouve géométriquement les formules
(1.7) et (1.8) en utilisant le théoréme de Thalés.

1.3 Etats stationnaires - Cycles - Stabilité

Dans la théorie des systémes dynamiques, les notions suivantes sont im-
portantes car elle permettent un discours qualitatif sur I’évolution d’un sys-
téme :

Etats stationnaires : Un état s est dit stationnaire si f(s) = s. La
trajectoire d’un état stationnaire est constante : s(n) = s(0). Le systéme
est en état d’équilibre. Un état stationnaire s est stable si la trajectoire des
points voisins de s tend vers s. Autrement dit, s est stable s’il existe un
voisinage V' de s dans E tel que s(0) € V entraine que s(n) — s lorsque
n — oo. Le voisinage V des points qui sont ainsi attirés par s est le bassin
d’attraction de s (par analogie avec le “bassin” d’un fleuve : ’ensemble des
rivieres qui s’y jettent).

Par exemple, dans la croissance exponentielle (§ 1.2, p. 6), 'état x = 0
est le seul état stationnaire. Il est stable si et seulement si |a| < 1. Le bassin
d’attraction de 0 est alors tout R.

Etats périodiques : Un état s est dit périodique s’il existe un entier
p > 1 tel que fP(s) = s. Le plus petit de ces entiers p est la période de s. Par
exemple, un état stationnaire est périodique de période 1. La trajectoire d’un
état périodique (de période p) s’appelle un cycle (de période p). Un cycle A
est stable s’il existe un voisinage V' de A dans E (son bassin d’attraction),
tel que les trajectoires partant de V convergent vers A. Autrement dit, si
s(0) € V, la distance entre s(n) et 'ensemble A tend vers 0 quand n — oc.



Exemple 1 : E :=Ret f(s) = —s. L’état s = 0 est stationnaire stable,
son bassin étant | — 1,1[. L’ensemble {—1,1} est un cycle de période 2 non-
stable.

Exemple 2 : FE:=Ret f(s) = —/s. Cette fois, c’est le cycle {—1,1} qui
est stable, avec pour bassin d’attractioin R — {0}. L’état stationnaire s = 0
n’est pas stable.

Un état stationnaire ou un cycle stables sont des cas particuliers d’attra-
cteurs - sous-systémes admettant un bassin d’attraction. La notion de sta-
bilité ou d’attracteur est trés importante pour la modélisation scientifique,
les phénomeénes donnant lieu & des théories jouissant généralement d’une
certaine stabilité. Les états que l'on rencontre sont alors trés proches d’un
attracteur (appelons-le A). De petites perturbations, ne changeront pas cette
situation puisque les trajectoires seront rapidement ramenées vers A. Cela
donne une robustesse & la théorie puisque I’évolution ne sera pas affectée
par de légéres perturbations, par exemple dues aux facteurs négligés par le
modeéle. Par contre, de plus grandes perturbations peuvent amener dans le
bassin d’un autre attracteur.

Par exemple, les météorologues voient le climat actuel de la terre, relative-
ment tempéré, comme un attracteur du systéme de I’athmosphére terrestre.
Un autre attracteur est le climat glaciaire. Pendant les 100000 derniéres an-
nées, notresystéme atmosphérique a passé plusieurs fois d’un attracteur a
l'autre.

L’algebre linéaire et le calcul différentiel fournissent des conditions suffi-
santes pour qu'un état stationnaire soit stable (voir §3.4, p. 64). Dans le cas
d’un systéme & une variable (R, f), avec f dérivable, on a :

Condition sur la dérivée : Soit a € R tel que f(a) =a
(état stationnaire). Alors

1. si|f'(a)] <1, a est stable.
2. si |f'(a)] > 1, a est non-stable. *

“Le cas |f'(a)| = 1 ne permet aucune conclusion sans information
supplémentaire.

Exemple : Prenons la fonction f(z) = x + sinz. Le point 7 est un état
stationnaire et f’(7) = 0. Il est donc un stable par la condition sur la dérivée.
En partant de x(0) = 2, on obtient 9 décimales de 7 aprés 4 itérations :



0 | 2.000000000 Obtenu par le programme MAPLE :
1| 2.909297427 > x:=2:f:=x —> x+sin(x) :

2 | 3.139509133

3 | 3.141592652 fOF n from Otob dO

4 | 3.141592654 [n,evalf((f@@n)(x))]; od;

5 | 3.141592654

La condition sur la dérivée ci-dessus se généralise pour un cycle A :=
{a1,...ap}. On entend par 1a que f(a1) = ag, f(az2) = a3, etc et f(a,) = a1.
Ceci est équivalent a ce que fP(aq1) = a1, donc que a; soit un état stationnaire
pour fP. La formule de dérivation d’une fonction composée donne (fP)'(a1) =
f'(a1)f'(a2) - f'(ap). On en déduit :

Proposition 1.3.1 Soit A := {a1,...ap} un cycle de f. Alors :
1. si|f'(ar1)f'(a2) -+ f'(ap)] < 1, le cycle A est stable.
2. si|f'(a1)f'(a2)--- f'(ap)| > 1, le cycle A est instable.

La détermination des bassins d’attraction est, en général, un probléme
difficile. Lorsque f : R — R est un polynome, le théoréme ci-dessous, dé-
montré au début du siécle, permet de détecter la présencede cycle stables en
donnant un point de leur bassin d’attraction.

Théoréme 1.3.2 (Théoréme de Fatou) Supposons que la loi d’évolution
f R — R d’un systéeme dynamique soit un polynéme de degré d > 2. Sup-
posons que le systéme admette un cycle A stable. Alors le bassin d’attraction
de A contient au moins un point x tel que f'(x) = 0.

La dérivée f’ de f étant un polynome de degré d —1, il y a au plus d — 1
points ou f’ s’annule (voir prop. A.7.1, p. 99). On en déduit que le systéme
(R, f), avec f un polynome de degré d > 2, admet au plus d — 1 cycles
stables (il peut y en avoir moins, ou méme pas du tout). Nous utiliserons ce
théoréme dans I’étude de la croissance logistique, au paragraphe suivant.

1.4 La croissance logistique

La croissance exponentielle étudiée au paragraphe 1.2 a peu de chance de
pouvoir se poursuivre indéfiniment. Le systéme de la croissance logistique
est I'un des plus courants pour modéliser la dynamique d’une population &
plus long terme (voir [9, pp. 41-46], [11, p. 124-132], [12]). Il suppose que la
population est limitée par ’environnement & une valeur maximale K. Il est
alors naturel de remplacer le nombre d’individus s par u := s/K. Ainsi, la
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quantité maximale d’individus est 1 et ’état du systéme est le nombre réel
u € [0,1]. La loi d’évolution f, : [0,1] — [0,1] pour la croissance logistique
avec coefficient de fertilité a est la suivante :

fa(w) == au(l — u) = au — au? (1.9)

dont le graphe est une parabole (voir ci-contre).
Lorsque u est petit, le terme en u? est négligeable
et on a f,(u) =~ au. Approximativement, la po-
pulation croit exponentiellement avec coefficient de
croissance a. Lorsque u s’approche de 1, le terme
a(l — u) devient plus petit que 1 et la population
décroit.

0 0.5

Contrairement & la croissance exponentielle, I’état u(n) n’aura pas d’ex-
pression simple telle que (1.5), la fonction f? étant un polynome compliqué
de degré 4, f3 de degré 8, etc (essayez avec MAPLE). La formule devient
rapidement impossible & écrire. On peut, en revanche, pratiquer une analyse
qualitative des trajectoires avec les notions du paragraphe précédent.

Le graphe de f, indique qu’il y a deux états stationnaires. Algébrique-
ment, ’équation f,(u) = u a bien 2 solutions :

ol _,_ 1 (1.10)
a

u=0 et u=
a

La dérivée f!(u) = a — 2au de f, en ces points est :

a—1

f1(0)=a et fi( )=2—a. (1.11)

a

On suppose a > 1. La conditions sur la dérivée (voir p. 9) montre que
létat stationnaire u = 0 est instable pour @ > 1. Quant & u =1 —1/a, il est
stable si 1 < a < 3 et instable lorsque a > 3. La population va ainsi évoluer
de la maniére suivante :

1) si 1 < a < 3, quelque soit la population de départ ug, la population u(t)
tend vers l'état d’équilibre u =1 —1/a.

2) Lorsque a > 3, les deux états stationnaires sont instables et les trajectoires
sont en quelque sorte repoussées de I'un vers 'autre. A mesure que a croit,
des phénomeénes de plus en plus compliqués se produisent. Pour certaines

11



valeurs de a, on va trouver des cycles stables et la population tendra vers
un comportement cyclique. Observons que le point u = 1/2 est le seul ou
la dérivée de f, s’annule. Par le théoréme de Fatou (p. 10), si un cycle
stable existe, le point u = 1/2 sera obligatoirement dans son bassin. On peut
démontrer qu’en augmentant a, on obtient des attracteurs périodiques de
toute période : d’abord 2, puis 4, 8, etc, et finalement 7, 5 puis 3 (I'ordre exact
d’apparition a été découvert par le mathématicien ukrainien Sharkowskii en
1964). Ces situations sont illustrées dans le tableau suivant.

Croissance logistique u(n) pour n > 50 avec ug = 0.5
n a=3.3 a=35 a = 3.55 a=3.739 | a=3.833
50 0.479427 | 0.382820 0.354798 0.499626 0.153411
51 0.823603 | 0.826941 0.812653 0.934749 0.497815
52 0.479427 | 0.500884 0.540480 0.228052 0.958232
53 0.823603 | 0.874997 0.881683 0.658230 0.153411
54 0.479427 | 0.382820 0.370329 0.841137 0.497815
55 0.823603 | 0.826941 0.827809 0.499626 0.958232
56 0.479427 | 0.500884 0.506021 0.934749 0.153411
57 0.823603 | 0.874997 0.887371 0.228052 0.497815
58 0.479427 | 0.382820 0.354800 0.658230 0.958232
59 0.823603 | 0.826941 0.812655 0.841137 0.153411
60 0.479427 | 0.500884 0.540477 0.499626 0.497815
61 0.823603 | 0.874997 0.881684 0.934749 0.958232
62 0.479427 | 0.382820 0.370328 0.228052 0.153411
63 0.823603 | 0.826941 0.827807 0.658230 0.497815
64 0.479427 | 0.500884 0.506026 0.841137 0.958232
65 0.823603 | 0.874997 0.887371 0.499626 0.153411
66 0.479427 | 0.382820 0.354800 0.934749 0.497815
période 2 4 8 5 3

3) Lorsque u s’approche de 4, le systéme devient

chaotique. Les trajectoires semblent évoluer aléatoi-

0 | 0.600 | 0.601

rement dans tout l'intervalle [0,1] ou dans certains 1| 0.936 | 0.935
sous-intervalles. Le systéme présente alors une sensi- 3 g'zgg g?gi
tivité aux conditions initiales : deux trajectoires, 4| 0.822 | 0.813
meémes issues d’états initiaux trés proches, divergent g g-ggé g-g?ﬁ
rapidement 'une de I'autre et ne présentent plus au- 7 | 0167 | 0.215
cune similitude (comme dans un écoulement trés tur- 8 | 0.543 | 0.658
. L, 9 | 0.968 | 0.877

bulent). Ci-contre, pour a = 3.9, les 12 premiers états 10 | 0122 | 0421
des trajectoires de 0.600 et 0.601. 11 | 0.417 | 0.950
12 | 0.948 | 0.183
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1.5 Déterminisme, prévisibilité, hasard

Les travaux sur les systémes dynamiques de ces 30 derniéres années, par
exemple les phénomenes vus au paragraphe précédent concernant la crois-
sance logistique, ont changé notre fagcon de comprendre les concepts de dé-
terminisme et de prévisibilité. Ils montrent que, contrairement & ce que l’on
croyait, ces notions sont fondamentalement différentes.

En effet, dans la croissance logistique, I’évolution d’une population ini-
tiale u(0) est déterminée, par la loi assez simple u(n+ 1) = au(n)(1 —u(n)).
En revanche, si, comme cela est le cas en pratique, u(0) est donné par une ap-
proximation numérique ou résulte de mesures expérimentales, les trajectoires
sont fonciérement imprévisibles (lorsque a est grand). La marge d’erreur ne
permet de prévoir que quelques étapes. Améliorer la prévisibilité est trés
cotiteux car le besoin en précision sur la donnée initiale augmente exponen-
tiellement en fonction du nombre d’étapes que ’on veut controler.

Ces cas de sensitivité auz conditions initiales semblent trés fréquents.
Par exemple, il paraissent inhérents aux systémes dynamiques utilisés en
météorologie, ce qui rend coliteuses et peut-étre impossible les prévisions
météorologiques a plus de quelques jours.

De méme, on a vu que des systémes dynamiques déterminés peuvent avoir
des trajectoires de nature aléatoire (on utilise d’ailleurs des systémes de ce
type pour générer des nombres aléatoires dans les ordinateurs). Le fait que
I’on observe un phénoméne qui, apparemment, évolue au hasard ne prouve
donc pas que ce phénoméne n’obéisse a aucune loi.

Pour en savoir plus sur ces questions, voir [13].
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Chapitre 2
Algébre Linéaire

Supposons que des causes z,v, ... déterminent des effets f(z), f(y)....
On dit que l'on raisonne linéairement si ’on suppose que ’addition de
deux causes additionne les effets correspondants et qu’amplifier une cause
d’un certain facteur amplifie I’effet correspondant dans la méme proportion.
En formule :

fle+y)=Ff@)+fy) et fQr)=Af(z) (AeR).  (21)

On dit alors que ’application f : E — F' qui associe & une cause son effet
est linéaire. Il faut évidemment que les expressions x + ¥y, Az, etc, aient un
sens et que ces procédés d’addition et d’amplification jouissent de propriétés
raisonnables. Ceci est le cas lorsque E et F' sont des espaces vectoriels (p.
101), par exemple R™.

Le raisonnement linéaire est le plus simple dont on dispose. S’il ne cor-
respond pas & la réalité, on cherche souvent & l'utiliser en premiére approxi-
mation.

L’algébre linéaire est la branche des mathématiques qui formalise le rai-
sonnenent linéaire, étudiant les espaces vectoriels et les applications linéaires.
Ses outils et ses résultats sont utilisés dans d’innombrables applications des
mathématiques et dans les statistiques. De plus, le calcul vectoriel est la
fagon opératoire de faire de la géométrie et donc important pour maitriser
I’espace. C’est pourquoi il est important que I’étudiant en sciences se fami-
liarise dés que possibles avec les notions d’algebre linéaire les plus courantes
(vecteurs, matrices, déterminants, valeurs et vecteurs propres).
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2.1 Structure d’espace vectoriel sur R"

2.1.1 Définitions

Deux points de R™ peuvent étre additionnés : si x = (x1,...,2,) et
y=(y1,-.-,Yn), leur somme est définie par

x4y =(T14+ Y1, Tn+ Yn).
D’autre part, on peut multiplier x = (z1,...,x,) par A € R selon la regle
Az = (A, ..., Ay).

Ces deux opérations munissent R” d’une structure d’espace vectoriel
(réel) Pour la définition précise d'un espace vectoriel, voir p. 101.

. T4y
Les éléments de R™ peuvent étre vus soit comme

des points dans un espace, soit comme des vecteurs.
Lorsqu’on imagine un point p € R™ comme un vec-
teur, il est visualisé comme une fléche partant de y
I’origine jusqu’au point p. L’addition des vecteurs

est comme celles des forces en statique. La multi- /2':1:
plication par un “scalaire” A > 0 est une homothétie 0 £
de rapport A.

2.1.2 Produit scalaire — Norme — Angles

On ne multiplie pas deux vecteurs x,y € R", mais on peut faire leur
produit scalaire, qui est le nombre réel x - y défini par

n
.
=1

Exemples : 1) dans R3, le produit scalaire de (1,2, —1) et (3,0,2) est :
(1,2,-1)-(3,0,2) =1-3+2-0+(—1)-2=1.

2) Si a € R, on définit a € R™ comme le vecteur dont toutes les compo-
santes valent a : a := (a,...,a). Le produit scalaire de x = (z1,...,x,) avec
1 ou % donne la somme ou la moyenne des nombres x; :

1~x:2xi et Hx:Ez;xl
1= 1=
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Observons que
n
T-T= Z x> 0.
i=1

Ceci permet de définir la norme ||z|| de x € R™ par

Par le théoréme de Pythagore, la norme de x représente la longueur du
vecteur z, c’est-a-dire la distance entre le point x et l'origine.

Proposition 2.1.1 Les propriétés du produit scalaire et de la norme sont
1) (x4y)-z=x-2+4y- 2.
2) (Az) -y = Az -y).
3) x-y=y-x.
4) llzl =z 0 et (flzl =0 & 2=0 ).
5) Azl = [A[ ||
6) llz +yl* = 2] + llyll* + 22 - y.
7) |z -y| < |z|/|ly|| (inégalité de Schwarz).
8) llz +yl|l <zl + |ly|| (inégalité du triangle).

La démonstration de ces propriétés est donnée dans I’annexe A.8 p. 102.

Angles :  Par 'inégalité de Schwarz, le quotient |z - y|/H;1:|| ly|| est < 1.

Il existe donc un unique « € [0, 7] tel que

2l

CoOS &x —

(o € ]0,7)). (2.2)
On dira, par définition, que « est 'angle entre les vecteurs x et y
de R™. Lorsque n = 2,3, cela correspond bien & ’angle usuel. En effet, le
théoréme du cosinus implique que
2 2 2
lz+yll” = =" +lylI"=2 |l [ly]| cos(r—a) =

= lll* + lyl* + 2|zl lly]| cos o
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En comparant cette derniére équation avec la propriété 6) de la proposi-
tion 2.1.1, on a bien la formule (2.2).

En particulier, deux vecteurs x,y € R™ seront dits orthogonaux si et
seulement si z - y = 0. Dans ce cas on a le théoréme de Pythagore :

zoy=0 <= |lz+yl* =z +[ly]* (2.3)

2.1.3 Indépendance linéaire - Bases - Dimension d’un espace
vectoriel

Soit V := {wy,...,vx} C V une famille de vecteurs dans un espace vec-
toriel V. Un vecteur x € V qui peut s’écrire sous la forme

k
T = Z)\Z‘Ui ()\Z S R), (2.4)
=1

s’appelle une combinaison linéaire des vecteurs v;. L’ensembles de toutes
les combinaisons linéaires de vecteurs de V forme un sous-espace vectoriel
EV(V) de V'; c’est le sous-espace vectoriel engendré par V.

On dit que la famille V est libre si le sous-espace vectoriel EV (V) ne peut
pas étre engendré par une sous-famille V' C V non-égale & V. Les vecteurs
d’une famille libre sont dits linéairement indépendants.

Exemples :
1. Une famille libre ne peut pas contenir le vecteur nul.
2. Deux vecteurs sont linéairement indépendants s’ils ne sont pas alignés.

3. Trois vecteurs sont linéairement indépendants s’ils ne sont pas copla-
naires.

On démontre facilement la proposition suivante (exercice) :

Proposition 2.1.2 Pour une famille V := {vy,..., v} CV , les conditions
sutvantes sont équivalentes :

1. V est libre.
2. aucun vecteur de V n’est combinaison linéaire des autres.

3. Uéquation
D Avi=0 (N ER) (2.5)

n’est possible que si \; = 0 pour tout i (Cette derniére condition est
sowvent prise pour définition d’une famille libre dans la littérature).
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Supposons que V := {vy,...,v;} C V soit une famille libre. Alors, tout
vecteur x € EV(V) s’écrit de maniére unique x = ) z;v;. En effet, si

k k
Tr = E T;0; = E .T;UZ‘,
i=1 i=1

on aurait
k

Z(d —x;)v; =0
i=1
et donc z; — x; = 0 puisque les v; sont linéairement indépendants.

Une famille libre B qui engendre un sous-espace vectoriel W de V' s’ap-
pelle une base de W. Si « € W, les uniques scalaires z; € R tels que
T = Zle x;v; s’appellent les coordonnées de x dans la base {v1,...,v,}.

On peut démontrer que toutes les bases d’un espace vectoriel V ont le
méme nombre d’éléments. Ce nombre s’appelle la dimension de V. Par
exemple, les vecteurs

er:=(1,0,...,0), ez :=(0,1,...,0), ... , e, :=(0,0,...,1)

forment une base de R™. En effet ’équation

(T1,...,2p) :Z@ei (2.6)
i=1

montre & la fois que les e; engendrent R™ et qu’ils sont linéairement indé-
pendants. L’espace R" est donc de dimension n et toutes ses bases auront n
éléments.

Labase {ey1,...,e,} s’appelle la base standard de R". Siz = (z1,...,2,),
I’équation (2.6) montre que les scalaires x; sont les coordonnées de = dans la
base standard.

Il y a beaucoup d’autres bases de R™. Par exemple, pour R?, on peut

prendre
(17070) Y (17 170) Y (17 17 1)'

Une facon courante de voir que des vecteurs sont linéairement indépendants,
par le calcul d’un déterminant, sera vue & la proposition 2.2.7, p. 24.
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2.2 Matrices

2.2.1 Définitions

Une matrice de taille (p x ¢), ou (p X ¢)-matrice, est une application

A {Ll,...,ppx{1,...,q} =R

qui & chaque couple d’entiers (4, j) fait correspondre un coefficient a;; € R.
Cette information peut se visualiser par un tableau & p lignes et g colonnes
dans lequel le coefficient a;; occupe 'intersection de la i® ligne avec la j©

colonne :
all .« .. alq

A =
a/pl PEEEY apq
On peut additionner deux matrices de méme taille, en additionnant co-
efficient par coefficient :

123+101_224
4 5 6 110/ \5 6 6)°

On peut aussi multiplier une matrice par un nombre réel \; cela
consiste & multiplier tous les coefficients par A :

o (1 23\_(2 4 6
45 6) \8 10 12)°

Avec ces deux opérations, I’ensemble M, des (p X g)-matrices est un espace
vectoriel de dimension pq.

Une matrice peut étre vue comme un empilement de “vecteurs ligne” ou
une juxtaposition de “vecteurs colonne”. Le i¢me vecteur ligne L;(A) et le
jéme vecteur colonne Cj(A) de A € My, sont

aij
Li(A) := (aj1---aiq) et Cj(A):=
pj
Le produit AB de deux matrices A et B est défini si le nombre de

colonnes de A est égal au nombre de lignes de B. Si A € My, et B € Mgy,
la matrice produit C'= AB € M, est définie par

q
Cij = Z aikbkj.
k=1
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Autrement dit, ¢;; est le produit scalaire de L;(A) avec C;(B). Exemple :

1 00
010> (000)

00 0]= ) (2.7)
<11—1 L1 0 0 —1 0

On peut démontrer que les produits de matrices, lorsqu’ils sont définis,
jouissent des propriétés suivantes :

1) A(BC) = (AB)C.
2) A(B + C) = AB + AC.
3) (A+ B)C = AC + BC.

En revanche, le produit n’est pas commutatif (AB # BA, en général).
Premiérement, AB peut étre défini mais pas BA, comme dans (2.7) ci-dessus.
Deuxiémement, AB et BA peuvent étre définis mais pas de méme taille :

(1 2)(3):(2) ot (g)u 2):(3 3)

Troisiémement, méme dans le cas de matrices carrées, ou la taille est
conservée, on a AB # BA en général :

0 1 0 0y (0 1 0 0 0 1\ (0 0
0 0 0 1) \0 0 ’ 0 1 0o 0o/ \o 0)°
Ce dernier exemple montre aussi que ’on peut obtenir la matrice nulle par

produit de deux matrices qui ne le sont pas.

Soit A une matrice p x ¢q. La transposée AT de A est la (g x p)-matrice
dont les vecteurs colonnes sont les vecteurs lignes de A. Exemple :

Si le produit AB de deux matrices existe, alors BT AT existe et on a
(AB)T = BT AT,

2.2.2 Déterminants

A toute matrice carrée A, on asssocie un nombre réel, son déterminant,
que 'on le note det A. Si A est présentée sous forme d’un tableau, det A peut
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aussi étre noté par le méme tableau entre barres verticales :

ail ai2 Aln ail ai2 A1n

aai a2 a2n o aai a2 A2n
det =

Gn1 Ap2 - QOnpn anl Qap2 - dpn

La définition rigoureuse du déterminant nécessite un certain bagage théo-
rique (voir [2, ch. IV]). Nous nous contenterons ici d’expliquer les algorithmes
pour le calculer qui sont les suivants :

1.
2.

3.

si (a) est une matrice (1 x 1), alors det(a) := a.
pour une matrice (2 x 2), on définit

a b
c d

‘::ad—bc

si A = (a;j) est une matrice (n x n), on choisit n’importe quelle ligne
de A (disons la i®me). On peut alors calculer det A par la formule :

n
det A = Z(—l)”kaik . Dzk (28)
k=1

ot Dy (le (i, k)éme mineur de la matrice A) est le déterminant de la
(n—1) x (n—1)-matrice obtenue en supprimant la iéme ligne et la kéme
colonne de A. On dit que l'on a calculé det A par développement
par rapport a la i®me ligne.

On peut aussi choisir une colonne (disons la jéme) et développer par
rapport a cette colonne :

det A = Z(—l)jJrkakj . ij. (29)
k=1

Ces formules permettent le calcul du déterminant de n’importe quelle
matrice en se ramenant successivement au calcul de déterminants de
matrices plus petites. On peut démontrer que le résultat obtenu ne
dépend pas de la ligne ou la colonne choisie.

Remarque : Le signe (—1)"** est la mise en formule du schéma en dam-

mier :

+ - + -
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Exemples : 1. Développement par rapport & la 3¢ ligne :

o

= —-12-4 = —16.

1 3
214:(—1)‘
Lo 1 4| |2 4

3 O‘_‘l o‘
-1

Si ’on développe par rapport a la 3¢ colonne , on obtient :

1 30
2 1 4 :—4‘_11 i" = —16.
-1 1 0

On voit qu’il est avantageux de choisir les lignes ou colonnes comportant
beaucoup de zéros.

2. Le déterminant de matrices triangulaires est le produit des éléments
de leur diagonale :

)\1 )\1

(Un gros zéro indique une région (ici : dessus ou dessous la diagonale) dont
tous les coefficients sont nuls. Un astérisque indique des coefficients quel-
conques dont on ne se préoccupe pas. Une matrice triangulaire avec * = 0
est dite diagonale.)

Propriétés diverses du déterminant :

2.2.1 Soit A’ la matrice obtenue de A en ajoutant & une ligne de A (disons
la it™m€) une combinaison linéaire des autres lignes de A :

Li(A') = Li(A) + Z MLi(A) , Ly(A) = Li(A) sir #i
(E%

Alors det A’ = det A. De méme, on ne change pas le déterminant en ajoutant
a une colonne de A une combinaison linéaire des autres colonnes.

Cette propriété est souvent utilisée pour simplifier le calcul de det A, en
augmentant le nombre de coefficients nuls.

2.2.2 Si A’ est la matrice obtenue de A en échangeant deuz lignes de A,
alors det A’ = —det A. Il en est de méme si l’on échange deuz colonnes.
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2.2.3 Si A’ est la matrice obtenue de A en multipliant tous les éléments
d’une ligne de A par A\ € R, alors det A’ = X\ - det A. Il en est de méme si
l’on multiplie par X tous les éléments d’une colonne.

2.2.4 Le déterminant d’une matrice est égal au déterminant de sa transpo-
sée :

det A = det AT

Cette propriété explique pourquoi chaque énoncé faisant intervenir des lignes
a son analogue avec les colonnes.

2.2.5 det(AB) = det A - det B.

Inverse d’une matrice carrée : La (n X n)-matrice diagonale

10 0
0 1 0
I, =1. .
00 1

s’appelle la matrice identité (d’ordre n). Elle joue le role d’élément neutre
pour le produit des matrices n x n :

LX=XI,=X YXE€EMuxn. (2.10)

Une matrice A € M,,,, est dite inversible s’il existe une matrice A= €
M «r telle que
AAL =ATtA=1,. (2.11)

Une condition nécessaire pour que A soit inversible est que det A # 0.
En effet, par 2.2.5, on a :
detA det(A™1) = det(AA™Y) =det I, = 1.

(on aura donc det(A~!) = (det A)~1). Il se trouve que la condition det A # 0
est aussi suffisante pour que A soit inversible. En effet, on peut démontrer

(|2, p. 153]) :

Théoréme 2.2.6 Une (n x n)-matrice A est inversible si et seulement si
det A # 0. Dans ce cas, son inverse A=t = (by;) se calcule avec les mineurs
D;; de A par la formule :

(_1 k+l1
by = ———— Dy.
kl det A Lk
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Exemples :

1. Pour une matrice 2 x 2 :

a b\ 1 d —b
c d ad—be\—-c a )’

2. Pour inverser une matrice diagonale, on inverse simplement les coeffi-
cients :

A1 A
0 0
0 0
An )\;1
3. Pour la (3 x 3)-matrice dont on a calculé le déterminant a la p. 22 :

_ 1 -3
130\ _ /-4 0 12 i 0 7
- _ _ 1 1
2 1 4] === 0 —4)=[1 0 }
-1 1 0 3 —4 =5 -3 1 5
6 4 16

Déterminants et indépendance linéaire : Si 'un des vecteurs colonne
d’une matrice A est combinaison linéaire des autres, on peut par 'opération
2.2.1 modifier A sans changer son déterminant de maniére que cette colonne
soit nulle. On en déduit que si les vecteurs colonnes de A sont linéairement
dépendants, alors det A = 0. Il en est de méme pour les vecteurs lignes. En
fait, on peut démontrer I’équivalence (|2, p. 156]) :

Proposition 2.2.7 Soit A une (n x n)-matrice. Alors :

les vecteurs .
les vecteurs ligne

colonne de A p
e A son
de A sont <— . < det A #0.
o linéairement
linéairement o
S indépendants
indépendants

Plus généralement soit A une (p X ¢)-matrice. Toutes les (r x r)-matrices
que l'on peut obtenir & partir de A en supprimant des lignes et/ou des
colonnes s’appellent des mineurs d’ordre r de A. On peut démontrer (|2,
p. 156]) :

Proposition 2.2.8 (et définition) Soit A une (p x q)-matrice. Les trois
nombres suivants sont égaux :
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1. le nombre maximal de vecteurs colonne de A qui sont linéairement
indépendants

2. le nombre maximal de vecteurs ligne de A qui sont linéairement indé-
pendants

3. le plus grand ordre d’un mineur de A dont le déterminant est non-nul.

Par définition, ce nombre s’appelle le rang de la matrice A.

Exemple : Le rang de la matrice

1 2
0 2
1 2

w W w

4
4
4

est égal & 2. En effet, il y a au plus deux vecteurs ligne linéairement indé-
pendants puisque le premier et le troisiéme sont égaux. Il y en a au moins
deux puisque le déterminant du mineur encadré est non nul.

2.2.3 Interprétation géométrique du déterminant

Le déterminant d’une (nxn)-matrice A est une mesure de I'indépendance
linéaire des vecteurs ligne ou colonne (voir proposition 2.2.7). Pour n = 2,3,
on a l'interprétation géométrique suivante :

b
aq a9 5y -
1) b b est, en valeur absolue, 'aire du paralle-
1 b2
logramme P engendré par les vecteurs ligne 0
a
a:(al,ag) et b:(bl,bg). b

2) | by be b3 | est, en valeur absolue, le volume du

C1 (6] C3
parallelepipéde P engendré par les vecteurs ligne

a = (a1,a2,a3), b= (by,ba,b3) et ¢ = (c1,ca,3). ‘
C

Le signe du déterminant est positif si les vecteurs ligne forment une base
d’orientation positive de R? (sens trigonométrique) ou de R? (régle du tire-
bouchon). Dans la figure ci-dessus, le déterminant 2 x 2 est positif et le
déterminant 3 x 3 est négatif.

25



2.2.4 Systémes d’équations linéaires

Ici, “systéme” ne veut pas dire “systéme dynamique” mais ensemble d’équa-
tions. Considérons le systéme & :

a11r1 + 0+ ATy = by
E : (2.12)
ap1T1 + 0+ appry = by
de n équations a p-inconnues z1,...,z,. Les coefficients a;; et b; sont des
nombres réels. Une solution de £ est un vecteur (zi,...,z,) satisfaisant a
toutes les équations.
La matrice
a/ll PEEEY alp
anl “ e anp

s’appelle la matrice du systéme. Si 'on définit les matrices colonnes

1 bl
X = S ./le><1 , B:= € Mpxi,

Tp by,
le systéme & est équivalent & I’équation matricielle

£&: AX=B. (2.13)

Systéme de Cramer : Un systéme de Cramer! est un systéme carré (p =
n) tel que det A # 0. La matrice A est alors inversible et 'application X —
AX est une bijection de M, «1 sur lui-méme. Un systéme de Cramer a donc
une unique solution. Elle est donnée par

X=A"'B. (2.14)

En utilisant le calcul de la matrice inverse (2.2.6, p. 23), ’équation (2.14)
est équivalente aux n équations

1 < ;
=1

T =

!Gabriel CRAMER. (1704-1752) fut le premier professeur de mathématiques de 1’Uni-
versité de Genéve, quand une chaire de cette discipline y fut créée en 1724.
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Or, si 'on remplace dans la matrice A le k€ vecteur colonne par B et que
I'on calcule le déterminant en développant par rapport a cette colonne, on
obtient

ann v arkg—1 bioargpr cor aim n
: = ) (1) Dixbi.  (2.16)

—
apl - Qpk—1 by, apk+1 - Gnn !

La comparaison de (2.15) et (2.16) donne la régle de Cramer :

Théoréme 2.2.9 (Régle de Cramer) Un systéme de Cramer AX = B a
une solution unique donnée par
) ayr o Aig—1 b1 aig41 o aip

~ detA
apl  +°° Opk—1 by, Ank+1  **° Odnn

Tk

Autres systémes : Soit Sol€ C RP l’ensemble des solutions du systéme
E. Lorsque 'on n’a pas un systéme de Cramer, par exemple lorsque n # p,
il n’admet peut-étre pas de solution (Sol & = (). Par exemple :

r + y =1
{w—i-y:Q (2.17)

Pour un systéme £ : AX = B, on introduit les deux notions suivantes :
1. le rang du systéme est le rang de la matrice A

2. le systeme AX = 0 s’appelle le systéme homogéne associé a £. On
le note &.

Supposons que le systéme £ admette une solution Xy. L’ensemble Sol £
satisfait alors & la propriété suivante :

Proposition 2.2.10 1. Sol€ = {Xp + X | X € Sol&y}.

2. Sol&y est un sous-espace vectoriel de RP de dimension p —r, ot r est
le rang de €.

Remarque : La propriété 1) dit que pour trouver toutes les solution de &,
il suffit de prendre une solution particuliére Xy et de lui ajouter toutes les
solutions du systéme homogene associé. Grace a 2), il suffit d’en trouver p—r
linéairement indépendantes et d’en faire toutes les combinaisons linéaires.
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Exemple 1 : Considérons le systéme & 1 équation et
2 inconnues
£ x—3y=—4

Sol &y est la droite y = § (sous-espace vectoriel de Sol&,

dimension 1). Prenons X = (2,2) (c’est-a-dire z = y = =1
2) comme solution particuliére de £. L’ensemble Sol £
est donc une droite de pente 1/3 passant par (2,2).

PREUVE DE 2.2.10 : La premiére affirmation est facile : si X € Sol &, alors
X — Xp € Sol&y. De plus il est clair que Sol &y est un espace vectoriel.

Pour la deuxiéme affirmation, on peut supposer, en renumérotant au be-
soin les équations et les inconnues, que le mineur d’ordre r du coin supérieur
gauche de A est de déterminant non-nul :

aix - aip
: # 0. (2.18)
ar1 -+ Qpy
Les r premiers vecteurs lignes Ly, ..., L, de A forment donc une base de l'es-
pace vectoriel engendré par tous les vecteurs ligne. Les autres lignes, comme
Ly, sont alors des combinaisons linéaires de Ly, ..., L,. Le systéme homo-
géne & est ainsi équivalent au systéme des r premiéres équations, que I'on
peut écrire :

a111 + o+ Ay = —01p41Tr41 — 0 — G1pTp
a1 + 0+ ATy = —Qppt1Tryl — 0 — Appp
(2.19)
A chaque valeur de (2,41, ..., 2;) correspond une unique solution du systéme

(2.19) car c’est un systéme de Cramer. On vérifie que cette correspondance
donne un isomorphisme entre RP~" et Sol &.

Pour trouver une solution particuliére de £, on pourra poser z,41 = --- =
xp = 0. Pour trouver p — r solutions indépendantes de &y, il suffira de poser
successivement (2,41,...,2p) = (1,0,...,0),(0,1,...,0),...(0,0,...,1). ]

Exemple :
t + y 4+ z + t =1
y — 2z + t = 2 (2.20)
x + 2y + 2t = 3
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Le rang du systéme est 2 puisque la troisiéme équation est la somme des
deux premiéres et que le mineur d’ordre 2 du coin supérieur gauche est de dé-
terminant 1. La solution particuliére de £ de type (x,4,0,0) est (—1,2,0,0).
La solution particuliere de & de la forme (z,y,1,0) est (—2,1,1,0) et celle
de la forme (x,y,0,1) est (0,—1,0,1). L’ensemble sol &, est ainsi 'espace
vectoriel de dimension 2 engendré par (—2,1,1,0) et (0,—1,0,1) et on a :

sol € = {(—1,2,0,0) + A(—=2,1,1,0) + (0, —1,0,1) | A, u € R}.

2.3 Applications linéaires

Définition : Une application f : V — W entre deux es-
paces vectoriels est dite linéaire si, pour tout x,y € V et
AER, on a

L flz+y) = flz)+ fy) et
2. f(\x) = Af(x).

Exemples :
— L’application nulle f(z) = 0 est linéaire.
— Toute application linéaire f : R — R est la multiplication par une
constante : f(z) = ax (le graphe de f est donc une droite passant par
0). En effet : f(z) = f(x-1) =xf(1); la constante « est f(1).
— Plus généralement, f : R" — R"™ donnée par f(z) = ax, on a € R, est
linéaire. C’est I’homothétie de rapport «.

Matrices et applications linéaires : Une (p X g)-matrice A détermine
une application linéaire de R? dans RP. C’est l'application X — AX (on
regarde les éléments de R? et RP comme des matrices & une colonne). Par
exemple, prenons la matrice

fy:<f ;_ﬂ). (2.21)

L’application X — AX est

v 2 1 0\ (" 2 +y
y | — y | = :
1 3 -1 z 43y —z

z
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L’application linéaire de R? dans R? déterminée par la matrice A est donc
(r,y,2) — 2z +y,z+ 3y — 2). (2.22)

Comme I’énonce le théoréme ci-dessous, ce procédé donne une bijection
entre les applications linéaires de R? dans RP et les (p x ¢)-matrices. Rappe-
lons que ey, ..., e, désigne la base standard de R™ (p. 18).

Théoréme 2.3.1 Soit f : R? — RP une application linéaire. Alors il existe
une unique matrice My € My, telle que f soit Uapplication linéaire déter-
minée par My (On dira que My est la matrice de f). La matrice My est
construite de la maniére suivante : son k€M vecteur colonne est f(ex).

Exemple : Pour l'application linéaire f(z,y,2) := 2z +y,x + 3y — z) de
(2.22), on a

f(el) = (27 1) ) f(€2) = (173) ’ f(€3) = (Ou _1)
On retrouve bien les colonnes de la matrice (2.21).

PREUVE DE 2.3.1 : Désignons par g : R? — R? D'application linéaire déterminée par
la matrice My construite dans le théoréme 2.3.1. Nous allons montrer que g = f.

Soit Ej la matrice colonne ¢ X 1 correspondant au vecteur ex. En faisant le produit
M Ey,, on obtient justement le kM€ vecteur colonne de My, c’est-a-dire f(ex). On a donc
g(ex) = f(ex). Mais tout x € R? s’écrit

T = x1€1 + - Xg€q.
Puisque f et g sont linéaires, on aura

f(x) = w1f(er) + - 2qf(eq) = 21g(er) + - xqg(eq) = g(2). []

La correspondance f +— My entre applications linéaires et matrices se
comporte bien pour la composition des applications. En effet, on peut dé-
montrer :

Proposition 2.3.2 Soit R™ A, R* %5 RP deus applications linéaires.

Alors, la composition go f est linéaire et sa matrice My, ; est donnée par le
produit matriciel
Moy = MgMy.

En particulier, la matrice de f™ (f itérée m fois) est M.
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Exemple : La rotation p, d’angle o autour de 0 dans R? est une appli-
cation linéaire p, : R? — R2dont la matrice est

cosa —sina
sina  cosa

La composition de deux rotations additionne simplement les angles : p,0pg =
pa+s- Par la Proposition 2.3.2, cela donne I’égalité matricielle :

(cos(a+ﬁ) —sin(a—i—ﬁ)) _ (cosa —sina> <cosﬁ —sinﬁ) _

sin(fa+ )  cos(a+ f3) sina cosa sin8  cosf3

_ [ cosacosf3—sinasin3 —sinacos 3 — cosasin 3
- \sinacosB+cosasinf3 cosacosfB —sinasinB )’

Ceci démontre les formules classiques :

cos(aw + ) = cosacosf —sinasin 3
sin(fa+3) = sinacos 3+ cos asin 3.

2.4 Changements de bases

Probléme : Soit A := {ai,...,a,} une base de R". Soit = := (x1,...,zy)
un vecteur de R™. Quelles sont les coordonnées (Z1,. .., Z,) de z dans la base
A?

Notons par a; = (a4, - - - , Gni) les coordonnées de a; dans la base standard

de R™. Cette notation d’indice est choisie pour que les a; deviennent les
vecteurs colonne d’une (n X n)-matrice

ail AT
P=| : : (2.23)

anl ... Qpn

appelée matrice de passage pour la base A. Comme les vecteurs a; sont
linéairement indépendants, det P % 0 par la proposition 2.2.8, p. 24. On
en déduit que la matrice P est inversible (théoréme 2.2.6 p. 23). On peut

démontrer ([2, p. 97]) que les coordonnées (Z1,...,%,) dans la base A de
x = (x1,...,x,) sont données par I’équation matricielle :
T x1
=Pt ] (2.24)
Tn Tn
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Changement de matrice pour une application linéaire : Soit f :
R™ — R"™ une application linéaire dont la matrice est My. Si 'on travaille
avec les coordonnées dans la base A, I'application f sera donnée par une
matrice M. On dit que My est la matrice de f relativement a la base
A. On peut démontrer (|2, p. 98-99]) que, si P est la matrice de passage
(2.23) pour la base A, alors, la matrice Mf est obtenue a I'aide de My par
la formule

My =P~' M; P. (2.25)

2.5 Valeurs propres - vecteurs propres

Valeurs et vecteurs propres sont parmi les concepts les plus importants
de l'algébre linéaire. Par exemple, ils sont essentiels pour la formulation
de la mécanique quantique. Nous en rencontrerons plusieures applications :
systémes dynamiques (§ 2.6, 3.4 et 5.3), extremas (p. 61), résolution d’équa-
tions différentielles (p. 84), composantes principales (p. 103).

2.5.1 Définitions

Soit f : V' — V une application linéaire d’'un espace vectoriel V dans
lui-méme. On dit que A € R est une valeur propre pour f s’il existe un
vecteur x # 0 dans V tel que

flz) = Az (2.26)

Un tel vecteur z est appelé un vecteur propre 2 pour la valeur propre .

Une (n x n)-matrice M représente une application linéaire de R” — R”
qui aura d’éventuelles valeurs propres et vecteurs propres. On parlera alors
des valeurs propres et vecteurs propres de la matrice M.

Exemples :
— L’application nulle f(z) = 0 a une seule valeur propre : A = 0. Tous
les vecteurs non-nuls sont vecteurs propres.
— X est la seule valeur propre d’une homothétie de rapport A. Dans ce
cas tous les vecteurs non-nuls sont vecteurs propres.
— une rotation d’angle o dans le plan n’a pas de valeur propre, & moins
que a = 0 ou .

2En anglais : valeur propre = eigenvalue, vecteur propre = eigenvector. Dans certains
ouvrages de statistique, on utilise les termes “latent root” et “latent vector”.

32



— dans R3, la projection sur un plan IT paralléle- w
ment & une droite D. Les vecteurs non-nuls de
II sont des vecteurs propres de valeur propre 1
et ceux de D de valeur propre 0.

Pour trouver les valeurs propres de f : R” — R", on pratique de la
maniére suivante. Si A est une valeur propre pour f, on a l’équation f(z) —
Az = 0. Matriciellement, utilisant la matrice My de f, cela peut s’écrire

(My — )X = 0. (2.27)

ou I est la matrice identité. Par 2.2.9 Une telle équation a une solution avec
X # 0 si et seulement si

det(My — AI) = 0. (2.28)

Posons Py() := det(M;—AI). Py est un polynome de degré n en A appelé le
polynoéme caractéristique de f. Le polynéme Py a, au plus, n racines (so-
lutions de I’équation Pf(X\) = 0, voir p. 99) qui sont des nombres complexes.
L’ensemble Sp; C C des racines du polynome caractéristique Py s’appelle
le spectre de f. On définit également le spectre d’une (n x n)-matrice M
comme le spectre de ’application linéaire de R” — R™ que détermine M.

Le spectre d’une application linéaire est une information trés importante
sur cette application. Pour I'instant, intéressons-nous aux racines réelles qui,
par I'équation 2.28, sont les valeurs propres de f :

Proposition 2.5.1 Les valeurs propres de f sont les racines réelles du po-
lyndme caractéristique Py de f.

Exemple 1 : Prenons f : R? — R? définie par f(z,y) = (y, ). Sa matrice

My est
0 1
Mf_<1 0).

Son polynome caractéristique Py est

'—A 1

_\2
AEE

Le spectre de f sera donc I’ensemble des solutions de 1’équation A2 — 1 =0,
c’est-a-dire Spy = {#+1}. Comme Sp; C R, on a deux valeurs propres +1.
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Les vecteurs propres pour A = —1 sont les solutions non-nulles de 1’équation

matricielle
0 1 r\ [z
1 0o)\y) \-y/)’

c’est-a-dire les solutions non-nulles du systeme d’équations

y = -z

r = —y
On voit que l'on peut prendre v— = (1,—1) comme vecteur propre et que
tous les autres vecteurs propres pour la valeur propre —1 sont les multiples
non-nuls de v_.

De méme, on trouve que les vecteurs propres pour la valeur propre +1
sont les multiples non-nuls de v := (1, 1).

Dans la base {v_, v}, la matrice de f est diagonale : <_01 (1)>

Exemple 2 : Soit f une rotation d’angle o dans le plan. Sa matrice My

est
cosa —sina
sinae  cosa )’
Son polynéme caractéristique est

cosa— A —sina

. =X\ —2\cosa+ 1.
sin «v cosa — A

Pr(\) =

On a donc Spy = {cosatisina = et} Sia #0,m, SprNR=0etiln’ya
pas de valeur propres. Cependant, on voit que Spy porte toute I'information
sur f, puisqu’on peut en extraire ’angle «.

2.5.2 Diagonalisation

Une application linéaire f : R™ — R" est dite diagonalisable s’il existe
une base de R” formée de vecteurs propres de f. Relativement & cette base
A, la matrice My 4 de f sera diagonale avec comme coefficients diagonaux
les valeurs propres de f.

Soit M une (n x n)-matrice. Elle représente une application linéaire de
R™ — R™. Si cette est application est diagonalisable, on dira que la matrice
M est diagonalisable. Par la proposition 2.25 p. 32, cela signifie qu’il
existe une matrice inversible P (la matrice de passage vers une base A de
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vecteurs propres de f) telle que la matrice P~!M P est diagonale (avec, sur
la diagonale, les valeurs propres de M). Les colonnes de P contiennent donc
les coordonnées des vecteurs propres de f.

On voit que pour qu’'une application linéaire (ou matrice) soit diagonali-
sable, il faut qu’elle ait assez de valeurs propres. En fait, on a :

Proposition 2.5.2 Si une application linéaire f : R™ — R™ est diagonali-
sable, alors Spy C R. (toutes les racines du polynome caractéristique Py de
f sont réelles).

Le fait que Sp; C R n’implique pas forcément que f soit diagonalisable
exemple 1.2 ci-dessous). Cependant, c’est le cas si 1’on a n valeurs propres
p p ) prop
distinctes :

Proposition 2.5.3 Soit f : R” — R" une application linéaire. Si f admet
n valeurs propres deuz-a-deux distinctes, alors f est diagonalisable.

PRrREUVE: Il suffit de démontrer que les vecteurs propres v; pour k valeurs propres A1, ... Ax
distinctes sont linéairement indépendants (n vecteurs linéairement indépendants de R™
formeront une base). Cela se démontre par récurrence sur k. C’est le cas si k = 1 puisqu’un
vecteur propre, par définition, est non-nul.

Supposons que T := Zle a;v; = 0. On calcule f(z) — A\pz :

k—1
0= f(z) — Mz = ZO@(M — Ak)vi
i=1

Par hypothése de récurrence, on aura a;(A; — Ag) = 0. Comme A; # Mg, cela implique
a;=0pouri=1,...,k —1, et donc aussi ar = 0.
L’équation Zle a;v; = 0 n’est donc possible que si a; = 0. Par la proposition 2.1.2

p- 17, ceci est équivalent & ce que les vecteurs v; sont linéairement indépendants. |:|

Exemple 1 : Pour une application linéaire f : R? — R2, le polynome
caractéristique est du 2¢ degré. On sait qu'un tel polynéme a deux racines
A1 et Ao. On a les trois possibilités suivantes :

1. A1 et Ag réelles distinctes. Ayant deux valeurs propres distinctes, f est
diagonalisable par la proposition 2.5.3 ci-dessus. On a donc une base
A de vecteurs propres relativement a laquelle la matrice de f est

A0
Mya = ( 0 )\2>'
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2. A = A3 = X € R. On a donc une seule valeur propre. On peut
alors démontrer que f est diagonalisable si et seulement si f est une
homothétie de rapport A. Dans le cas contraire, on peut montrer qu’il
existe une base A de R? telle que

Al
wan (3 1),

3. Spy={p et} avec a # 0, 7. Dans ce cas, f n’a pas de valeur propre
et f n’est pas diagonalisable. On peut alors démontrer qu’il existe une
base A de R? relativement a laquelle la matrice de f est de la forme

pcosa —psina
Mg a = . .
psina  pcosa

Exemple 2 : Considérons f : R? — R? la projection sur un plan II pa-
rallelement & une droite D (voir p. 33). Supposons que II est engendré
par les vecteurs a := (1,2,—1) et b := (0,2,1) et que D est engendrée par
d:=(1,1,—1). La base A := {a,b,d} est une base de vecteurs propres dans
laquelle la matrice de f est diagonale :

1 0 0
Mipa=10 1 0
0 0 0
La matrice P de passage pour la base A est
1 0 1
P=12 2 1
-1 1 -1

Par (2.25) la relation entre My et My 4 est My 4 = P~'M;P. La matrice
My de la projection f dans la base standard de R3 est donc

-3 1 -2
My=PMs P =4 2 -2
4 -1 3

Exemple 3 : Un autre cas de diagonalisabilité est donné par les matrices
symétriques (voir paragraphe suivant).
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2.5.3 Matrices symétriques :

Une matrice carrée A est dite symétrique si elle est égale a sa transpo-
sée : AT = A. Du point de vue des coefficients, cela veut dire que a;j = Qjj.
Les matrices symétriques jouissent de nombreuses propriétés, dont nous ne
verrons que quelques unes ici, et apparaissent dans beaucoup d’applications :
matrice Hessienne (p. 56), composantes principales (p. 103) géométrie des
distances (stéréochiomie) etc. Une matrice symétrique est diagonalisable
(Théoreme 2.5.4 ci-dessous) et des algorithmes rapides permettent le cal-
cul numérique de ses valeurs propres. De tels algorithmes sont implantés sur
plusieurs logiciels (comme MATLAB).

Proposition 2.5.4 Soit A une matrice symétrique. Alors

2. A est diagonalisable. En fait, A admet une base de vecteurs propres
deuz-a-deur orthogonaux.

Remarquons que 2) implique 1) par la proposition 2.5.2, p. 35. Pour une
preuve de 2.5.4, voir [2, p. 292].

Le résultat ci-dessous est utile pour savoir, sans avoir besoin de les cal-
culer, si toutes les valeur propres d’une matrice symétrique A sont positives.
Notons Aj, le k8me mineur principal de A : c¢’est le mineur obtenu en
prenant les k premiéres lignes et les k premiéres colonnes de A :

ail - Qg

kéme mineur principal

agr - Qkk

Proposition 2.5.5 Soit A une matrice symétrique. Alors, les deux condi-
tions sont équivalentes :

1. toutes les valeurs propres de A sont > 0.

2. le déterminant de chaque mineur principal est > 0 :

det Ay >0 Yk=12...n

2.6 Systémes dynamiques linéaires

2.6.1 Stabilité de l’origine

Les systémes dynamiques les mieux connus sont ceux ’ensemble des états
est R™ et la loi d’évolution f :R™ — R"™ est linéaire. Le point 0 est donc un
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état stationnaire. Le théoréme principal de ce paragraphe est une condition
nécessaire et suffisante pour que 0 soit un un état stationnaire stable.

Si v est un vecteur propre de f pour la valeur propre A € R, la droite
{av | @ € R} constitue un sous-systéme a croissance exponentielle, avec
coefficient de croissance A. Dans ce sous-systéme, 0 est stable si et seulement
si [A] < 1. D’ou une condition nécessaire pour que 0 soit un stable pour le
systéeme (R™, f) est qu’il n’y ait pas de valeur propre A avec |A] > 1. Pour
obtenir une condition nécessaire et suffisante, il faut prendre en compte non-
seulement les valeurs propres mais aussi tout le spectre de f (voir p. 33).
Définissons le rayon spectral de f comme étant le maximum des modules
des éléments de Sp(f).

Théoréme 2.6.1 Le point 0 € R™ est un un état stationnaire stable si et
seulement si le rayon spectral de f est < 1.

La preuve de ce théoréme dépasse le cadre de ce cours. Il y a néanmoins
un cas facile : celui ou f est diagonalisable (voir p. 34). En effet, on a alors
une base V := {vy,...,v,} de vecteurs propres et, pour les coordonnées dans
cette base, la matrice My de f est diagonale :

A1
My =
An
ou les \; sont les valeurs propres de f. Quand on itére f m-fois, on a :
AT
Mjpm = (My)™ =
An

On voit que (My)™ — 0 quand m — oo si et seulement si tous les \; satisfont
Supposons que Ay > \; pour i > 2. Soit x := (1,...,%,) (coordonnées
dans la base de vecteurs propres V). Si 1 # 0, on a :

() = Az, .., A0 ) = A"z pmy
ol p,, est le vecteur

& mﬁ ()\_n)mx_n)_) (1,0,...,0):U1 (m—>OO)

= (1
pm ( b Al xl’ b Al $1
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Le vecteur normalisé T fmg ;H tend donc vers le vecteur propre + vy :

M@)o g
177@0 " Tl Tpwl

Plus généralement, on peut ainsi montrer le résultat suivant :

= :i:?)l.

Proposition 2.6.2 Soit f: V — V une application linéaire. Supposons que
f admette une valeur propre Amax € R>o qui soit strictement plus grande
que le module de toute autre racine du polyndme caractéristique de f (en
particulier, Amax est le rayon spectral de f). Soit vmax un vecteur propre
PoUr Amax avec ||vmax|| = 1. Alors, pour presque tout état z € V, on a

f™(2) /™)
e T e o e i
Cette proposition dit qu’a long terme, le systéme se comporte comme un
systéme & croissance exponentielle avec coefficient de croissance Apax. Elle
peut étre utilisée pour trouver Apa.x, litération de f étant facile pour un
ordinateur. Pour une application de la proposition 2.6.2 en dynamique des
populations, voir ’exemple c), p. 41.

2.6.2 Populations avec pyramide d’ages

On présente ici un systéme dynamique discret pour I’évolution d’une
population divisée en m classes d’age C1,...,Cy,, des plus jeunes aux plus
agés. Ce modele, qui remonte a Euler (1760), est utilisé pour toutes sorte
de populations : populations humaines (|10, ch. 4],[8, §1.2.2]) ou d’animaux
dont on désire comprendre et/ou influencer le développement (repeuplement,
lutte contre insectes ou parasites).

L’état de la population est un vecteur (z1,...,z,) € R™, ou x; est le
nombre d’'induvidus de la classe C;. On ne compte souvent que les femelles
en age d’avoir des descendants (c’est la donnée importante pour le renouvel-
lement d’une population). Par exemple, pour une population humaine, on
comptera le nombre de femmes entre 0 et 50 ans, par tranche de 5 ans, ce
qui donne 10 classes (0-5 ans, 5-10 ans,. .., 45-50 ans). L’état du systéme est
ainsi un vecteur (z1,...,710) € R1? et 'unité de temps est de 5 ans.

Laloi d’évolution f(x1,...,xmy) = (2],...,2,,) est définie de la fagon sui-
vante : les femelles C; donnent naissance a des femelles C'; avec un coefficient

de natalité G;, d’ou
m
) = Z Bii.
i=1
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D’autre part, les femelles C; passent dans la classe C;y1 avec un coefficient
de survie «;, ce qui se traduit par
$£+1 = ;T S > 1.

Par convention, a,, = 0, les individus de C,, sortant de la population consi-
dérée. En résumé,

m
f(.l‘l, e ,xm) = (Z ﬁzxz , X1 T1,0279, ... ,am_lajm_l). (2.29)
=1

On voit que la loi d’évolution f : R™ — R™ est une application linéaire. Sa
matrice My, pour m = 2,3,4,..., est

Br P2 B3 Ba

B B B B2 B3 @ 0 0 0
5 aq 0 0 s yoos

a1 0 0 a 0 0 a9 0 0

2 0 0 ag O

(2.30)
En général, My contient les coefficients de natalité sur sa 1€ ligne et les
coefficients de survie sur sa 1¢r¢ diagonale inférieure. Ces matrices portent le
nom de matrices de Leslie.
Soit pi := aq - - - ap ; c’est la probabilité pour un nouveau-né de survivre
a k étapes. Le nombre moyen de descendantes qu’une femelle aura pendant
sa vie entiére sera donc

E =i+ p1B2+p2f3+ -+ Pm-10m- (2.31)
On peut démontrer (voir [10, § 4.4] :

Théoréme 2.6.3 a) f a une seule de ses valeurs propres qui est réelle po-
sitive. Appelons-la Apos.

b) Apos est le rayon spectral de f.
c) si E <1, alors A\pos < 1. Si E > 1, alors A\pos > 1.
d) E=1—(=1)"P(1).

En utilisant le théoréme 2.6.1 de la p. 38 le théoréme 2.6.3 ci-dessus donne
un moyen de savoir, par la seule connaissance du nombre F, si la population
va s’éteindre ou se développer :

Théoréme 2.6.4 a) si E < 1, alors le nombre d’individus de la population
décroit et tend vers 0.

b) si E > 1, alors le nombre d’individus de la population croit et tend
vers linfini.
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Exemples : a) Si m = 2, et ;=0, on a My = (gl g2) et £ = a10:. Le

polynoéme caractéristique de f étant A% — oy 32, les valeurs propres de f sont
+/a1 5. Cela illustre le point c) du théoréme 2.6.3.

b) Le cas E = 1 ne permet pas de conclusion sans information supplé-
mentaire. Il donne parfois lieu & des comportements cycliques, comme par
exemple avec la matrice My = ((1) (1)) (les individus ne meurent pas pendant
la période condisérée et donnent naissance a 1 descendant aprés une étape).
L’évolution ici est cyclique de période 2, puisque MJ% =1.

¢) Si E > 1, cas ou la population croit, on peut décrire la pyramide d’ages
a long terme si Apos > |Aj| pour toutes les autres racines réelles ou complexes
A; du polynome caractéristique Py. Il existe alors un unique vecteur propre
Upos = (U1, ..., Um) POUr Apos tel que v1 = 1. Vu la forme simple de la matrice
My, il est facile de trouver vpes. On a
Q20 U1 P2

AposU2 = QU1 = D1 , Apos¥U3 = QU = = ,ete. (2.32)
)\pos )\pos

d’ol Vpos = (1,01/Aposs - - - ,pm_l/)\ggl). Par la proposition 2.6.2 de la p. 39,
Iétat de la population z(t) := (z1(t),...,zmn(t)), une fois divisé par z;(t),
tend vers le vecteur propre vpes :

1 p1 p2 Pm—1
z(t) — (1, e )\Zfl) (t — o0) (2.33)
pos pos pos

et le taux de croissance a long terme est Apos.

2.6.3 Le systéme de Fibonacci

C’est un cas particulier de population avec pyramide d’ages (voir § pré-
cédent) ou 'on a 2 classes d’age (jeunes,vieux). Un état est donc un couple
s := (z,y) € R2. La loi d’évolution est par définition f(z,y) := (z +y,z)

dont la matrice est
1 1
= (1 1)

Ce systéme a été imaginé vers 'an 1200 par le mathématicien italien Fi-
bonacci (1170-1230, aussi connu sous le nom de Leonardo da Pisa) pour
modéliser la croissance de populations de lapins.

Pour I’état initial s(0) := (1,1), la trajectoire est

n | 0 1 2 3 4 5 6
sy | (L) 21 (3.2) (5.3) (8,5 (13.8) (21,13)
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Le nombre z,, de jeunes individus a ’étape n augmente donc selon la
suite
1 2 3 5 8 13 21 34 55 89 ... (2.34)

appelée suite de Fibonacci?, caractérisée par I'équation x,, = ,_1 + Zp_s.

De toute fagon, comme E = 2, la population tend vers l'infini par le théoréme
2.6.4 de la p. 40. Pour I’évolution qualitative (proportion jeunes/vieux), on
se référe a exemple c) de la p. 41. Il faut chercher la valeur propre Ao et
le vecteur propre vpes. Le polynome caractéristique de f étant

1-X

=

L e
_X‘_X X -1,

les valeurs propres de f sont les deux solutions de I’équation X? — X —1 = 0.
On trouve

Apos 7=~ ~ 1618033980 et Aueg =

~ —.618033989 .

1++v5 1-5
2

Ceci illustre bien le théoréme 2.6.3 de la p. 40. On découvre que la valeur
propre Apos est le nombre d’or, connu depuis 'antiquité, et qui joue un
role en architecture et en botanique [13, ch.9]. Pour trouver vy, on résout
I’équation matricielle :

11 T Apos T >
= ) 2.35
(o) (5)- (0 e
Les solutions sont les couples (z,y) tels que £ = Aposy ce qui forme une
droite Dpos. Pour vpes, onax = 1 d’ott vpes = (1, 1/Apos), comme prévu par la
formule (2.33). De méme, on vérifie que la droite Dyeg := {(2,¥) | = Anegy}
contient les vecteurs propres pour la valeur propre A,es. D’apres 'exemple

c) de la p. 41, l'état s(t) = (x(t),y(t)) tendra, lorsque t — oo, vers la droite
Dpos, C'est-a-dire que

—= — Apos (t — 0)

La proportion jeunes/vieux, de méme que le taux de croissance, se stabilisera
vers le nombre d’or 1+—2‘/5 ~ 1.618033989. Voici un calcul avec 1’état initial
s(0) =(1,1) :

3Pourquoi de nombreuses fleurs ont-elles un nombre de pétales appartenant & la suite
de Fibonacci ? voir [14] et [13, ch. 9].
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n_| z(n)/y(n)
0 | 1.000000000

5 | 1.625000000
10 1.617977528 Obtenu par le programme MAPLE :

15 | 1.618034448 s:=(11) :

fi= (xy)=>(x+yx) : g :=(x,y)—>x/y :
20 | 1.618033985 for n from 0 to 40 by 5
25 1.618033989 do [n,evalf((g@(f@®@n))(s))]; od;

30 | 1.618033989
35 | 1.618033989
40 | 1.618033989

Remarques : 1) le bassin de la droite Dy, qui est un attracteur, est
{0}U(R? —Dyeg). La droite Dpeg est un sous-systéme non-stable qui sépare le
bassin de la demi-droite DposMN{z > 0} (trajectoires tendant vers (oo, 00)) du
bassin de la demi-droite DposN{z < 0} (trajectoires tendant vers (—oo, —00) ;
on ne les rencontrera pas pour des problémes de populations ou x et y sont
des nombres positifs).

s(0)
Q\/
2) la fonction h(x,y) = 2? — xy — y? satisfait h(s) = \\zyD
—h(f(s)). L’état s(n) oscille donc entre deux courbes S

de niveau de la fonction h, les courbes h(s) = h(s(0)) 1@ 7

et h(s) = —h(s(0)). Ces courbes de niveau z* — zy — L, |, LB

y? = constante sont des hyperboles dont les asymp- [

totes sont Dpos et Dpeg (figure ci-contre). : bs)
ﬁ Dneg

I\

3) Sil’état initial s(0) = («(0), y(0)) appartient a la droite Dyeg, la trajectoire
tendra vers 0. Il est intéressant de noter que ce cas ne peut pas étre observé
numériquement ! En effet, le nombre A,¢ est irrationnel car V/5 n’est pas une
fraction (voir annexe A.3). Lorsque x(0) et y(0) sont des valeurs numériques,
qui sont forcément des fractions (voir p. 93), on aura z(0)/y(0) € Q d’ou
5(0) & Dyeg et 5(0) sera dans le bassin de Dps.

Autrement dit : la trajectoire de sg := (1*2‘/5, 1) tend vers 0 mais tout
essai numeérique, par exemple avec 59 = (—.618033989,1), donne, quelque
soit la précision de I'approximation, une trajectoire qui tend vers 'infini!

r
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Chapitre 3

Calcul différentiel

Elaboré & partir du XVII® siécle, le calcul différentiel et intégral est I'un
des outils intellectuels les plus puissants que I’homme posseéde. C’est le lan-
gage incontournable de la physique (mécanique, thermodynamique, électro-
magnétisme, relativité, mécanique quantique, etc). C’est cet outil qui a per-
mis & Maxwell de dégager 'existence des ondes électromagnétiques, si im-
portantes dans notre vie quotidienne et qui n’auraient peut-étre jamais été
trouvées autrement. On peut donc dire sans exagérer que le calcul infinitési-
mal a changé la face du monde et est I'un des facteurs fondamentaux de la
révolution scientifique et technologique & laquelle nous continuons d’assister.

Ce chapitre présente quelques outils du calcul différentiel & une et plu-
sieurs variables, dans le but de résoudre les problémes suivants :
— trouver les extrema d’une fonction d’une ou plusieurs variables (opti-
misation) ;
— décider si un état stationnaire d’un systéme dynamique est stable.

3.1 Applications différentiables & une variable

Les étudiants sont supposés avoir déja rencontré la notion de dérivée
d’une application de R dans R. Les formules usuelles de dérivation et les
dérivées des fonctions courantes se trouvent dans les tables comme [5] ou
dans MAPLE. Ces différentes techniques de dérivation seront revues aux
exercices.
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3.1.1 Différentiabilité

Une fonction g : R — R est dite affine si son graphe

est une droite. Si @ € R, on a alors 9(x)
g9(a) -
g(z) = g(a) + a(z — a). (3.1) —
Le nombre « est la pente de la droite y = g(z). On a 0 a

aussi que a = ¢(a), la dérivée de g en a.

Les fonctions affines sont parmi les plus simples & comprendre et & cal-
culer. Si 'on a une fonction f quelconque définie au voisinage d’un point
a € R, il est donc naturel de chercher a ’approcher par une fonction affine

f(z) = f(a) + a(z —a) (au voisinage de a). (3.2)

Lorsqu’une “bonne” approximation existe, on dit que f est différentiable (en
a). Pour remplacer I’égalité approximative (3.2) par une vraie égalité, il faut
introduire un reste (ou erreur) R(z) :

f(x) = f(a) + a(x — a) + R(x).

L’approximation affine sera “bonne” si le reste R(x) se développe suffisam-
ment lentement. La définition précise est

Définition :

est différentiable en a s’il existe a € R tel que
q f(a)

f(z) = f(a) + a(x — a) + R(z) (3.3) /%

éfkﬁ)*a
R(z) ’

avec

[<)

— O quand z — a
T —a 0

Géométriquement, la différentiabilité de f en a correspond a ce que le
graphe de f posséde une tangente en a, d’équation y = f(a) + a(z — a).
Le coefficient « est facile a calculer. Quand x # a, on a

_J@-f@) R )

T —a z—a

Le membre de gauche est une fonction constante; sa limite lorsque z — a
est a. Par (3.3), le membre de droite aura une limite lorsque = — a si et
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seulement si limg_q W existe. On sait que cela veut dire que f est

dérivable en a et la limite sera la dérivée

@) g LB S@ o St~ (@)

T—a T —a h—0 h

de f en a. On a démontré :

Théoréme 3.1.1 La fonction f est différentiable en a si et seulement si elle
est dériwable en a. Dans ce cas, on a

f@) = fla)+ f'(a)(z —a) + R(x)

R(x)

(3.5)

avec — 0 quand x — a

Remarque : Le théoréme (3.1.1) montre que les notions “différentiable”
et “dérivable” coincident. Ce n’est pas le cas pour des fonctions de plusieurs
variables (voir p. 55). Dans les deux cas, ¢’est la différentiabilité et la formule
(3.5) qui sont importantes car, comme nous le verrons, elles déterminent le
comportement de f au voisinage de a.

3.1.2 Comportement de f au voisinage d’un point

Intuitivement, la différentiabilité de f en a implique que, au voisinage de
a, f se comporte a peu prés comme la fonction affine g(x) = f(a)+ f'(a)(x—
a). En effet, le graphe de f vient se “coller” sur celui de g. Un exemple de ce
phénomeéne est la proposition suivante :

Proposition 3.1.2 (lemme de traversement) Soit f une fonction diffé-
rentiable en a. Supposons que f'(a) # 0. Alors le graphe de f traverse en a
la droite horizontale y = f(a).

PREUVE: Supposons que f'(a) > 0. Comme f est différentiable en a, on a f(z) =
f(a) + f'(a)(z — a) + R(z) avec 22 —, 0 quand = — a. Il existe donc un voisinage U de

r—a

a tel que |%| < f'(a) ce qui implique que

f(2) = fla) _

r—a r—a

> 0. (3.6)

Cette derniére inégalité entraine que

x<a = f(z)<f(a)
r>a = f(z)> f(a),

donc le graphe de f a traversé la droite y = f(a) (ici, de bas en haut). Le cas f'(a) < 0 se

traite de la méme maniére et la droite y = f(a) sera traversée de haut en bas. []
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Définition : Un point ¢ € R est un minimum local pour la fonction
f ¢'il existe un voisinage U de a tel que f(z) > f(a) lorsque a # x € U.
De méme, on définit la notion de maximum local. Un point qui est un
minimum ou un maximum local s’appelle un extremum local.

La recherche d’extrema locaux fera ’objet du paragraphe 3.3. Pour I'ins-
tant, le lemme de traversement 3.1.2 implique immédiatement le résultat
suivant :

Corollaire 3.1.3 Soit f une fonction différentiable en a. Supposons que a
soit un extremum local de f. Alors f'(a) = 0. []

Le corollaire 3.1.3 dit que la condition f’(a) = 0 est nécessaire pour que
a soit un extremum local de f. Elle n’est pas suffisante, comme le montre la
fonction f(x) = 2 qui, bien que f(0) = 0, est strictement croissante.

Voici maintenant quelques théorémes classiques pour les fonctions diffé-
rentiables. On dit que f : [a,b] — R est différentiable si elle est différen-
tiable en tout point de l'intervalle [a, b].

Théoréme 3.1.4 (Théoréme des accroissements finis) Soit
f :[a,b] — R une fonction différentiable. Alors il existe x €]a,b| tel que

—a

PREUVE: On démontre d’abord le cas particulier ot f(a) = f(b) (théoréme de Rolle).
On utilise que "image d’un intervalle fermé par une application continue est un intervalle
fermé. L’application f est donc constante ou a des extrema dans |a, b[. On applique alors
la proposition 3.1.3.

Le cas général s’obtient en appliquant le théoréme de Rolle a la fonction

VGV DN

h(z) = f(2) - (@ =

Corollaire 3.1.5 Soit f : [a,b] — R une fonction différentiable. Si f'(x) >
0 pour tout x €|a, b, alors [ est strictement croissante. Si f'(x) < 0 pour
tout x €la, b, alors f est strictement décroissante.

PREUVE: Soient u,v € [a,b] avec u < v. Par le théoréme des accroissements finis appliqué
a lintervalle [u,v], il existe x €]u, v] avec W = f'(z). Si f'(z) > 0, cela implique
que f(v) > f(u) (et le contraire si f'(z) < 0).

Corollaire 3.1.6 Soit f : [a,b] — R wune fonction différentiable. Alors,
f'(x) =0 pour tout x €la,b[ si et seulement si f est constante.
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PrREUVE: Si f(z) # f(a), on aurait, par le théoréme des accroissements finis, un point
y €la,z] avec f'(y) #0. []
Enfin, 'une des fameuses régles de L’Hospital :

Proposition 3.1.7 (Reégle de I’Hospital) Soient f et g dérivables sur un
intervalle ouvert Ja,a + €[ (ou Ja — €,a[). On suppose que
- limxﬂaf(x)) = lim,_,, g(x) = 0.
xr

- limg,_,, % existe.

/
Alors, lim,_., 2% existe et lim —= = lim f'(z) .
2 M g) A g(a)

@) f(z)
g g

PreEUVE: La démonstration, pour un énoncé aussi général, repose sur le théoréme des
accroissements finis (voir [1, p. 242-244]). Nous allons donner une démonstration plus
simple dans le cas particulier ol f et g sont différentiables en a et o ¢'(a) # 0. Il s’agit
de montrer qu’alors

On applique la formule (3.5) & f et g :

L= — (3.7)

avec s
lim E(z) = lim S@)

r—a l — Q rz—a T — Q

=0.

En divisant le membre de droite de (3.7) haut et bas par z — a, on obtient

, R(z)
@ IO rw@ g
g(x) g'(a) + ‘xs(_xi g'(a)

Remarques :

1. La regle de I'Hospital est aussi vraie si limy_,, f(z) = lim,—q g(z) =

+o0.
2. On peut appliquer la régle de I’Hospital dans le cas ot ¢ — Zo0.
Ezemple :
ax aeax aneax
lim — = lim =---= lim =oosia>0. (3.8)
z—oo "  z=oo nxtl z—oo 1l

Cela prouve que la fonction exponentielle e** avec a > 0 croit plus vite
que tout polyndome.
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3.1.3 Formule de Taylor a une variable

Nous avons vu au paragraphe précédent quune fonction différentiable en
a admet une bonne approximation par un polyndéme du 1 degré

f(z) = Pi(z) = ag + ai(z — a) (3.9)
si ag = f(a) et a1 = f'(a). Observons que
Pi(a) = f(a) et Pi(a) = f'(a). (3.10)
L’approximation est & 1’ordre 1 en ce sens que
lim Jw) = Pi(@) =0. (3.11)
z—a x—a

On s’intéresse & des approximations plus fines de f, avec des polynoémes
P, de degré n > 1. En s’inspirant de (3.10), on cherche un polynéme P, tel
que

Py(a)=f(a) , Pia)=f"(a) , ... , PM(a)=[f"(a) (3.12)
ou f (n) désigne la ni¢me dérivée de f. L’approximation sera alors a ’ordre

n. En effet :

Proposition 3.1.8 Soient f et g deux fonctions n-fois dérivables en a. Sup-
posons que f®)(a) = g®)(a) pour 0 <k < n. Alors

i 1@ = 9(@)

z—a  (r —a)"

= 0.

PREUVE: On applique la régle de L’Hospital (Proposition 3.1.7) n fois a l'envers :

F" (@) — g"(a) . (@) — g )

0 = limg,_.
1 2 9 r —a |:|
= otm, A0 0@ =" @) iy f@ —g(@)
o (z —a)? I R

Reste & trouver le polynéme F,. On utilise le lemme suivant, dont la
démonstration se fait par calcul direct :

Lemme 3.1.9 Considérons la fonction polynomiale
P(z):=ap+a1(z—a)+ -+ ay(z —a)™.

Alors, pour tout k >0, on a

a = HP(k)(a)
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En mettant tous ces résultats ensemble, on obtient la formule de Taylor :

Théoréme 3.1.10 (Formule de Taylor) Soit f une fonction n-fois déri-
vable en a. Alors

Fa) = fla) + L2 ) ¢

(n)

R n!(a) (x —a)" + Ry(x)
( en résumé : f(z) = i'f(k)(a)(ac —a)’ + Ry(x) )

avec =

lim 22 _ g,

z—a (r — a)"
Remarque :

1. Quand a = 0, la formule de Taylor porte parfois le nom de formule de
MacLaurin.

2. Le reste R, (x) est, dans la littérature, parfois remplacé par les expres-
sions o((x — a)") (petit “O” de (z — a)") ou, comme dans MAPLE,
O((z — a)"") (grand “O” de (z — a)"*!). Ces expressions signifient
que

lim 7Rn(£) =0 et lim ()

r—a (1‘ — a)n I—a (.Z‘ — a)n_,’_l = constante.

3. Lorsque f est dérivable (n+ 1) fois, le reste R, (z) dans la formule de
Taylor est donné par différentes expressions ([1, pp. 251-253], [3, pp.
541-543]). Par exemple :

T
Ru(z) = % / (& — )" F D (). (3.13)
On a aussi le reste de Lagrange :
(x - a)nJrl (n+1)
=7 14
Ro(a) = S 1400 (3.14)

ou £ est un certain point entre a et . En conséquence, si I’on sait que
|+ (t)] < M pour t entre a et x, on aura, utilisant que [ — a| <
|x — a|, estimation

M

(@)l <

|z — a|". (3.15)
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Exemple : Le développement de Taylor en 0 & ordre 6 pour f(z) =sinz
est
: L s, 15
sin(x) = x — 3¢ + Tk + Rg(x).

On peut utiliser la borne | £ (z)| < 1 puisque f(x) = £sinz ou + cos z.
Par (3.15), cela donne

1
|Re(z)| < ﬁ\xﬁ < 0.002 |z|”
Lorsque |z| < 7/4, on obtient |Rg(x)| < 0.0000366. Le calcul exact montre
qu’en fait |Rg(7/4)| < 0.0000363.
3.2 Applications différentiables & plusieurs variables

3.2.1 Dérivées partielles - Gradient

Soit f:R™ — R et a = (ay,...,a,) € R™ Notons, comme a la p. 18
e1=(1,0,...,0), ea=(0,1,...,0), ..., e1=(0,0,...,1)

les vecteurs de la base standard de R™. En fixant toutes les variables xj, := ay,
sauf la M€ que l'on laisse varier, on obtient une fonction d’une variable
t — f(a+te;). Si cette fonction est dérivable en t = a;, sa dérivée s’appelle
la dérivée partielle de f en a par rapport a la variable z;. Elle se note

Si ces dérivées partielles existent en tout a, on obtient n nouvelles fonctions

de R™ dans R :
ar of
oxy 7 Oz,
Exemple :  f(x,y,2) = 2%e¥* (on a n = 3 et les variables sont notées
x,y,z). Alors :
g—i = 2ze¥* g—i = z2ze¥" % = z2ye??.

On voit que les dérivées partielles se calculent comme les dérivées usuelles,
les variables que 1’on ne dérive pas étant traitées comme des constantes.
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Les dérivées partielles d’ordre 2 se définissent en dérivant les dérivées
partielles premiéres. Les notations sont :

o*f 9 of

922 O o,
si I'on dérive deux fois par rapport a la variable x; et

rr _ 0 0f
6;1%8@3 T 6;1:Z 6;1:j

)

si ’on dérive d’abord par rapport a x; puis par rapport a ;.
Dans 'exemple précédent f(x,y,2) = x2e¢¥?, on a

82—f = 9297 82_f — xQZQeyz an
Ox? T Oy T Oyoz

= 22zye¥* | etc.

A priori on aurait 9 dérivées partielles d’ordre 2. Mais on voit par exemple
que
0? 0*
/ = 2xzeY = / .
d0xdy yox
Cette indépendance de 'ordre de dérivation n’est pas toujours vraie [1, (4.2)

p. 316] mais elle a lieu si, comme dans 'exemple, les dérivées partielles sont
des fonctions continues [1, th. 4.3] :

0%f O0%f 0% f
ox?’ 690? Oz;0x;
. . . . 2 .
existent dans un voisinage de a et sont continues en a. Alors Bcfgx- eriste

J k3

Proposition 3.2.1 Supposons que les dérivées partielles

et l'on a
0% f 0% f

8332'&1‘]' @ = 63:]8332 @-

Les n dérivées partielles g—{i(a) de f : R" — R en a peuvent étre vues

comme les composantes d’un vecteur; ce vecteur s’appelle le gradient de f

ﬁ(a) ﬁ(a)) (3.16)

oxy 7 Oxy,

L’application grad f : a — grad f(a) est un champ de vecteurs, c¢’est-a-dire
une application de R™ dans R™. Ce champ de vecteurs est appelé le champ
de gradient ou simplement gradient de f. La signification géométrique du
gradient sera discutée au §3.2.6, p. 58. En physique, il s’interpréte comme la

grad f(a) := <
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force que subit une particule soumise & un potentiel f (exemple : particule
chargée dans un potentiel électrique). Voir aussi p. 76

Le cas d’une fonction f: R™ — RP de n variables a valeur dans R? n’est
pas vraiment plus difficile puisqu’une telle fonction consiste en p fonctions
fi:R" =R

[, zn) = (Ailzr, o zn), .o fplzn, oo 2n)). (3.17)

On a donc (p x n) dérivées partielles gxf; (a) qui constituent une (p X n)-
matrice, la matrice jacobienne Df(a) de f ena :
of1 of
ail(a) 8xn(a)
Df(a) := . (3.18)
oty Oy

oz, oz, Y

La ¢me ligne de D f(a) est le vecteur grad f;(a).

Exemple : Supposons que f : R®™ — RP soit une application linéaire de
matrice My := (b;;). Avec les notations de (3.17), on a fi(x1,...,2,) =
Z?:l bijl‘j d’ou

Afi

or,
Ceci montre que Df(a) = My quelque soit a € R™. C’est la généralisation
du fait familier & une variable que la dérivée de f(x) = bx est constante égale
ab.

= b”

3.2.2 Différentiablilté

Nous allons suivre le plan du § 3.1 pour définir la notion de diférentiabilité
pour les fonctions de n variables (fonctions de R dans R ou R™ — RP). On
dira qu’'une fonction définie au voisinage de a € R" est différentiable en a
si elle admet une bonne approximation par une fonction affine, les notions
de “fonction affine” et de “bonne approximation” restant & préciser.

Une fonction g : R" — RP? est dite affine si elle est la somme d’une
constante et d’une fonction linéaire :

g(x) = c+ L(x). (3.19)
Sia=(ay,,...,a,) est un point de R™, on peut écrire
g(x) =c+ L(a) + L(z — a) = g(a) + L(z — a). (3.20)
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Si f: R™ — RP est une fonction non-affine, on aura
f(z) = f(a) + L(x — a) + R(z). (3.21)

Pour chaque fonction linéaire L : R" — RP, 'équation (3.21) définit
simplement une nouvelle fonction “reste” : R : R™ — RP. Le probléme est
de trouver L pour que cette fonction perturbatrice se développe suffisament
lentement au voisinage de a, c’est-a-dire :

IR@I

[z —af

quand ||z —a|| — 0. (3.22)

Nous sommes préts pour la définition d’une application différentiable,
analogue a celle des fonctions d’une variable de la p. 45.

Définition :
Soit f : R™ — RP une application et a € R™. On dit que
f est différentiable en « s’il existe une application
linéaire L : R™ — RP telle que

f(x) = fla)+ L(z —a) + R(x)

avec | R(=)l — 0 quand ||z —a| — 0.
|z —all
(3.23)

La matrice My, € Mpxn(R) se calcule de la méme facon que pour une
fonction d’une variable (p. 46). On regarde le cas x = (ay,a2,...,a; +
h,...ay) et on en déduit que le coefficient (M )x; est la dérivée partielle

0
()i = FE @, (3.24)
Autrement dit, My = Df(a), la matrice jacobienne de f et
of1 oh I —
htal oL 1—al
. (a) i (a) _
L(x—a)=Df(a)(x —a) = : :
0t 0ty
81:1(a) ...axn(a) P
(3.25)

En particulier, lorsque f : R” — R (p = 1), la matrice ligne D f(a) peut étre
vue comme le vecteur gradient et on peut utiliser le produit scalaire :

L(z —a) = grad f(a) - (x — a). (3.26)
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L’existence de dérivées partielles est donc une condition nécessaire pour
que f soit différentiable. Contrairement au cas d’une variable (théoréme
3.1.1, p. 46), ce n’est pas une condition suffisante [1, §IV.3]. La condition
suffisante la plus courante est la continuité des dérivées partielles |1, théo-
réme 3.6, ch. IV]. On peut donc énoncer les analogues du théoréme 3.1.1, p.
46 pour les fonctions de R™ — R et R™ — RP :

Théoréme 3.2.2 Soient f : R" — R et a € R™. Supposons que les dérivées
partielles d’ordre 1 de f existent au voisinage de a et soitent continues en a.
Alors f est différentiable en a et on a

f(x) = [fla)+grad f(a) - (r —a) + R(z)
[R(z)]]
[l — all

Théoréme 3.2.3 Soit f := (f1,...,fp) : R" — RP et a € R™. Supposons
que les dérivées partielles d’ordre 1 de f; (i =1,...,p) existent au voisinage
de a et soient continues en a. Alors f est différentiable en a et on a

(3.27)

— 0 quand ||z — a|| — 0.

3—£(a) ...%(a) Iljal
f@) = f@+| ; |+ Rw)
0 0 .
8_?;(@) ...%(a) oan (3.28)
IR@)I — 0 quand |z — al| — 0.
[ — all

3.2.3 Dérivée de fonctions composées

Pour deux fonctions f,g: R — R on connait la régle de dérivation de la
composition go f : si f est différentiable en a et g est différentiable en f(a),
alors

(g0 f) (a) = ¢'(f(a)) f'(a). (3.29)

Ce résultat se généralise aux fonctions de plusieurs variables de la maniére
suivante |1, p. 306]

Proposition 3.2.4 Soient

R L, RP 9, RY
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des fonctions différentiables. Alors go f est différentiable et la matrice jaco-
bienne D(gof) en a € R™ est le produit matriciel

D(go f)(a) = Dg(f(a)) - Df(a). (3-30)

Exemple : Prenons le cas particulier n = 1 = q. On regarde ¢ : R — RP
comme une courbe différentiable

cit—c(t) = (ci(t), ..., ().
Le vecteur
t) = (e1(t), - -, Ep(t))
s’appelle le vecteur vitesse de la courbe c. La formule (3.30) implique que
la dérivée de la composition goc est donnée par le produit scalaire

(goc)'(t) = grad g(c(t)) - ¢(t) (3.31)

3.2.4 Application : calcul d’erreurs

Supposons que ’on ait n données x1,...,x, et que x; est connue avec
une imprécision (“erreur”) £Az;. Notons Az := (Axy,...,Azx,) € R™,

Soit f : R™ — R. L’erreur Az produit une erreur Af sur f(x1,...,Z,).
Cette erreur est souvent estimée a 1’aide de la formule(3.27) :

|IAf] = |grad f(z1,...,2,) - Azx| < |lgrad f(z1,...,2.)| || Az, (3.32)

la derniére inégalité étant 'inégalité de Schwarz (p. 16). La formule (3.32)
est & appliquer avec précaution. Elle donne des résultats raisonnables lorsque
Ax est trés petit et que grad f ne varie pas trop autour de x.

3.2.5 Formule de Taylor a plusieurs variables

Les formules (3.27) et (3.28) du paragraphe précédent sont les développe-
ments de Taylor de f : R® — Rou f : R® — RP al’ordre 1. Le développement
de Taylor pour une fonction a n variables donne lieu & des expressions as-
sez compliquées (voir [1, p. 320]). Nous nous bornerons a donner le terme
d’ordre 2 pour une fonction f : R™ — R qui sera utilisé pour les problémes
d’extrema. Introduisons la matrice hessienne Hf(a) € M, x,(R) de f
en qa :

2r ... 9
81% 0x10xn agf
Hf(a) == : : Hf(a)ij = 55— (3.33)
oy ... 2f e
Oxn0x1 02
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Si on se place dans les hypothéses de la proposition 3.2.1, p. 52, la matrice
hessienne sera une matrice symeétrique.
Pour x € R", considérons le produit matriciel

To(x) = (x1 —ay,...,xy —an) Hf(a) . (3.34)

In—0an

T5(z) est une (1 x 1)-matrice que l'on considérera, par abus de notation,
comme un nombre réel. C’est le terme d’ordre 2 de la formule de Taylor.

Théoréme 3.2.5 Soient f : R™ — R et a € R™. Supposons que les dérivées
partielles d’ordre < 2 de f existent au voisinage de a et soient continues en
a. Alors, on a la formule

fl@) = fla)+grad f(a)- (z —a) + 3Ta(2) + Ra(2)

(3.35)
avec M — 0 quand |z — al|| — 0.
[ = a

ot To(x) est défini par l'équation (3.34).

Exemple :  f(z,y) :=x +ysinz et a = (0,0). On a
of

el 1+ycosz O_y =sinzx.

D’ou
grad f(0) = (1,0) et grad f(0): (z,y) = =.

Les dérivées secondes sont
*f . 0 f Ff _ Pf
a2~ YN o =0 Oxdy B OyOx

— = = COS T.
Oy?

La matrice hessienne H f(0) est donc

HF(0) = <(1) é)

@ (3 0) () =@ (¥) =

d’ot To(x,y) = 2xy. La formule de Taylor a l'ordre 2 donne

f(z,y) = x4+ zy + Ra(z,y).

et
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3.2.6 Gradient et surfaces de niveau

Le graphe d’une fonction f : R" — R est difficile a visualiser si n =
2, malgré les dessins en perspective fournis par les ordinateurs. Cela est
impossible si n > 3. On obtient quand méme des informations graphiques en
utilisant les courbes ou surfaces de niveau (isothermes, isobares, etc).

Soit u € R. La surface de niveau u est

Nu=f({u}) = {z e R" | f(z) = u}.

Le mot “surface” est utilisé par analogie du cas d’une fonction & 3 variables.
Par exemple, si f(z,y,2) = 22 + y? + 22, alors N, est la sphére d’équation
22 + 1y + 22 = u. Pour une fonction de R? dans R, ce sont des courbes de
niveau (des cercles pour 'exemple f(z,y) = 2% + y?).

Ce paragraphe explique les relations entre le champ de gradient et les
surfaces niveau. Les démonstrations peuvent se trouver dans [1, p. 305], [7,
ch. 3].

Proposition 3.2.6 Soit f une fonction différentiable. grad , f
Le champ de gradient grad f est orthogonal aux sur-

faces de niveau. Il pointe dans la direction ou f s’ac- No @

croit le plus rapidement.

Exemple : Dans 'exemple ci-dessus f(z,y, z) = 22+y?+2%, onagrad f =
(22,2y,2z). On a donc grad f(a) = 2a. Le gradient est colinéaire avec les
rayons et donc bien perpendiculaire aux sphéres 224y?+2% = u. Il pointe vers
I’extérieur, ou f s’accroit. La proposition 3.2.6 dit que la facon d’accroitre f
le plus rapidement est de s’éloigner radialement de l'origine.

Remarque : Observons que, dans I’exemple ci-dessus, I’ensemble Ay n’est
pas une surface mais est réduit au point 0. Cette situation dégénérée ne se
produit que si grad f(a) = 0. Lorsque grad f(a) # 0, on peut démontrer que
N, est bien une surface au voisinage de a (ou une courbe, si n = 2).

La signification de la proposition 3.2.6 peut étre précisée de la maniére
suivante. Soit v € R™ avec |v| = 1. Considérons la courbe différentiable
¢y : R — R"™ définie par

cy(t) == a + t.
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Le point ¢,(t) s’¢loigne radialement de a dans la direction v & vitesse horaire
1 (son vecteur vitesse est v, de norme 1). La dérivée de foc, en 0 est la
dérivée directionnelle de f en a dans la direction v :

fla+ho) - fla)

DU = oCy ! =1 .
fla) = (foes)' () = tim T (3.36)
En utilisant la formule (3.31) de la p. 56, on obtient

D, f(a) = grad f(a) - v = |grad f(a)|cos a (3.37)

ou o € [0, 7] est 'angle entre v et grad f(a) (la derniére égalité utilise que
lv| =1).
On voit que
1. Dyf(a) =0si a=m/2. C’est que v est tangente & la surface de niveau.
2. D, f(a) est maximale si a = 0, c’est-a-dire si v est colinéaire & grad f(a)
et pointe dans la méme direction que lui. C’est la direction de plus forte
croissance pour f et on a D, f(a) = |grad f(a)|.

3. D,f(a) est minimale si a« = m, c’est-a-dire si v pointe dans la direc-
tion opposée a grad f(a). On a alors D, f(a) = —|grad f(a)|. C'est la
direction de plus forte décroissance pour f.

3.3 Problémes d’extrema

La recherche d’extrema locaux est trés importante en sciences car les
états d’équilibre des phénomeénes naturels sont souvent ceux qui minimisent
ou maximalisent localement une fonction (par exemple I’énergie).

La définition d’un extremum local pour une fonction f : R” — R est la
méme que pour une fonction d’une variable (p. 47). Un point a € R™ est un
minimum local pour la fonction f : R™ — R s’il existe un voisinage U de
a dans R™ tel que f(x) > f(a) lorsque a # = € U. De méme, on définit la
notion de maximum local. Un point qui est un minimum ou un maximum
local s’appelle un extremum local.

3.3.1 Fonctions d’une variable

Le fait que a soit ou non un extremum local dépend du premier terme
non-nul dans la formule de Taylor pour f en « :

99



Théoréme 3.3.1 Soit f : R — R et a € R. Supposons que
flla)=f"a)=-=f"Da)=0 et fPla)#0.

Alors, a est un extremum local si et seulement si p est pair. Dans ce cas, a
est un minimum local si f®)(a) > 0 et un mazimum local si f®)(a) < 0.

0, la formule de Taylor a ’ordre p

PREUVE: Si f'(a) = f"(a) = - = f®V(a) =
= f(a) + %f(p)(a)(x —a) + Ry(x) avec

(théoréme 3.1.10, p. 50) prend la forme f(x)

(Sf(f))p — 0 quand = — a.
Voyons tout d’abord le cas p impair. Supposons que f® (a) > 0. Il existe donc un
voisinage U de a tel que |£f(;))p| < f®P(a) ce qui implique que
f@)—fla) _ Rx)
—— = — >0, V U. 3.38
DI - @+ s 0, Vae (339)

Puisque p est impair, on en déduit que

z<a = f(z)<f(a)
z>a = f(z)> fla),

Le graphe de f traverse donc, au dessus de a, la droite horizontale y = f(a) et a ne peut
donc étre un extremum local. Le cas fP)(a) < 0 se traite de la méme maniére (cette partie
de la démonstration est identique & celle du lemme de traversement (p. 46).

Pour avoir un extremum local, il faut donc que p soit pair. Dans ce cas, si f® (a) > 0,
la formule (3.38) implique que f(z) > f(a) lorsque z € U et x # a (puisque (z —a)? > 0).
Le point a est donc un minimum local. Le cas £ (a) < 0 se traite de la méme maniére,

donnant lieu 3 un maximum local. []

Remarque :

1. Le lemme de traversement (p. 46) est un cas particulier du théoréme
3.3.1 (p = 1). En particulier, on retrouve que si a est un extremum
local, alors f/(a) = 0.

2. On trouve fréquemment dans la littérature la condition suffisante d’ex-
tremum local portant sur la dérivée seconde : f'(a) = 0 et f”(a) # 0.
C’est le cas particulier du théoréme 3.3.1 ou p = 2.

3.3.2 Fonctions de plusieurs variables

Tout au long de ce paragraphe, les fonctions sont supposées avoir des
. . . . 2 2
dérivées partielles continues jusqu’a ’ordre 2 et donc %&Cj = ﬁ (pro-
position 3.2.1, p. 52). En conséquence, la matrice hessienne de f (p. 56) :
0 f
=——(a).
8.1‘Z‘(933j

(Hf(a))ij
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est une matrice symétrique.
Nous avons d’abord une condition nécessaire pour qu’'un point a soit un
extremum local.

Proposition 3.3.2 Sia € R" est un extremum local pour f : R™ — R, alors
grad f(a) = 0.

PREUVE: Sia = (ai,...,an) est un extremum local, la fonction
t— f(t,az,...,an) aura un extremum local en ¢ = a1. Sa dérivée sera donc nulle et cette
dérivée est Jf/0z1(a). En pratiquant de méme avec les autres variables, on voit que

grad f(a) = (g—ai(a),...,;—i(a)) =0. []

La condition grad f(a) = 0 n’est pas suffisante pour que a soit un extre-
mum local. Les conditions suffisantes les plus simples portent sur les valeurs
propres de la matrice hessienne H f(a). Etant donné les hypotheéses indiquées
au début de ce paragraphe, H f(a) est une matrice symétrique et donc ses
valeurs propres sont réelles (Proposition 2.5.4 p. 37). On peut démontrer le
résultat suivant.

Théoréme 3.3.3 Soit a € R" tel que grad f(a) = 0. Alors

1) si toutes les valeurs propres de Hf(a) sont > 0, le point a est un
manimum local pour f.

2) si toutes les valeurs propres de Hf(a) sont < 0, le point a est un
mazimum local pour f.

3) si Hf(a) a des valeurs propres positives et d’autres négatives, le point
a n’est pas un extremum local pour f.

4) si lon n'est pas dans 'un des cas ci-dessus, on ne peut pas savoir,
sans information supplémentaire, si a est un extremum local ou non.

En utilisant la proposition 2.5.5 p. 37 et le point 1) du théoréme ci-dessus,
on obtient :

Corollaire 3.3.4 Soit a € R"™ tel que grad f(a) = 0. Alors, si tous les mi-

neurs principauz de Hf(a) sont de déterminant > 0, le point a est un un
manimum local pour f.

Exemple 1 : Pour une fonction & deux variables, les cas du théoréme
3.3.3 peuvent étre illustrés par les exemples suivants (a = (0,0)) :

61



f(z,y) Hf(0) conclusion

22 4 y? <§ g) minimum

—x? — y? <_O2 _02> maximum
9 9 2 0 non-extremum

r~ =y : « ’
<0 _2> (point “selle”)

Exemple 2 :  f(z,y,2) =22 + 3?4+ 22 + azy + byz. On a
grad f = (2z + ay, 2y + ax + bz, 2z + by)

donc grad f(0) = 0. La matrice hessienne de f en 0 est

SN

2 0
HfO0)= | a b
0 2

Les déterminants des mineurs principaux sont 2, 4 —a? et 8 — 2(a® + b?). Le
point 0 est donc un minimum si a® + b? < 4. En fait, les valeurs propres de
Hf(0) (calculées par Maple) sont

2,2+ Va2+b2, 2—a?+ b2

Lorsque a? + b% > 4, le point 0 n’est pas un extremum local.
Pour le polyndéme du 2¢ degré le plus général en z,y, z, :

f(fﬁ‘,y,z):$2+y2+22+axy—|—byz—|—cxz

on obtient, pour que 0 soit un minimum local, la condition nettement plus
compliquée

det Hf(0) = 8 — 2 (a* + b* + ¢*) + 2 ach > 0. (3.39)

3.3.3 Meéthode des moindres carrés - Régression linéaire

Supposons que ’on ait observé des données numériques (1, y1), .- -, (ZTn, Yn)
et, qu’en théorie, il devrait exister une fonction affine f(z) = ax + b telle
que y; = f(x;) pout tout i. En pratique, les égalités y; = ax; + b n’auront
pas exactement lieu & cause des imprécisions ou des facteurs négligés par
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la théorie. La méthode des moindres carrés ou Régression linéaire
permet de trouver la fonction affine la plus vraissemblable.

Pour mesurer I’écart entre les y; et f(z;), on utilise la fonction :

n n
L(a,b) = 3 (0~ f)? = 3 —azi ~0)®  (3.40)
i=1 i=1
On a L(a,b) = 0 si et seulement si y; = ax; + b pour tout i.

On cherche donc a, b tels que L(a, b) soit minimale. Par 3.3.2, p. 61, il faut
que grad L(a,b) = 0. Les paramétres a et b cherchés doivent donc satisfaire
aux deux équations :

oL
e

OL

0 et =0 (3.41)

Ces équations s’écrivent
n 2 n _ n
aiqr; + by = DTy
n n
a1z + bn = Di1Yi

On regarde ceci comme un systéme de deux équations en les inconnues «a et
b. Le déterminant du systéeme est

n n
Y= (3
1=1 =1

L’inégalité de Schwarz (Proposition 2.1.1, p. 16) pour les vecteurs (x1, ..., zy)
et 1 := (1,...,1) implique que ce déterminant est non-nul (sauf si les x;
étaient tous égaux...). Le systéme est donc de Cramer (p. 26) et admet une
unique solution :

(3.42)

n Z?:l TiY; — Z?:l Ly Z?:1 Yi
2
n Z?:1 3”? - (Z?:I ;)

D i @y D i1 Yi — Die1 Ti D Tili
n i = (X wz‘)Q
Observons que L(a,b) — oo quand |(a,b)] — oco. Comme il n’y a qu'un
point tel que grad L = 0, donc au plus un extremum, c’est forcément un
minimum.
On peut toujours modifier I'origine sur ’axe des « et des y de maniére que

(3.43)

S qxi=0et > y; =0 (données centrées). En posant x = (x1,...,z,)
et vy = (y1,...,Yn), les formules (3.43) deviennent simplement
b=0 et a=-——2. (3.44)
]
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3.4 Stabilité des états stationnaires d’un systéme
dynamique

Soit f : R™ — R™ et a € R™ tel que f(a) = a. Le point a est donc un
état stationnaire pour le systéme dynamique discret (R™, f). Supposons que
f soit différentiable en a. La matrice jacobienne D f(a) de f en a détermine
une application linéaire de R™ dans lui-méme, d’ou un systéme dynamique
linéaire (R™, Df(a)). Le principe général est le suivant : les conditions de
stabilité de I’état stationnaire a du systéme (R", f) sont presque les mémes
que pour I'état 0 dans le systéme linéaire (R™, Df(a)). Les conditions de
stabilité de 0 pour un systéme linéaire sont données par le rayon spectral
(§2.6, p. 37).0n peut démontrer :

Théoréme 3.4.1 Soit a un état stationnaire pour le systeme f : R™ — R".
Supposons que f soit différentiable en a. Alors

1. sile rayon spectral de Df(a) est < 1, l’état stationnaire a est stable.

2. si le rayon spectral de D f(a) est > 1, l’état stationnaire a est instable.

Remarques : 1) Quand le rayon spectral est 1, on ne peut tirer aucune
conclusion sans information supplémentaire. C’est la différence avec un sys-
téme linéaire.

2) Le cas n = 1 correspond a la “condition sur la dérivée” vue a la p. 9.
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Chapitre 4

Calcul intégral

4.1 Intégrales et primitives

Soit f : [a,b] — R une fonction (continue). Son intégrale f;f est définie
de la fagon suivante. On partage l'intervalle [a, b] en n sous-intervalles

a=zg<x1 <<z =0

On choisit, dans chaque intervalle [z;,z;11] un

point &; € [x;, z;+1]. On considére la somme fe) = S ~
2 -
n A |
i=1 |
ou Az; := (x; — x;—1). Le nombre S, mesure |
(lorsque f est positive) laire de la réunion des a X g Xp b

rectangles de base [x;, z;1+1] et de hauteur f(§;).

Par définition, 'intégrale fff de f sur l’intervalle [a,b] est définie
par

b
/ f:=1msS, , (4.1)

la limite étant prise pour n — oo de sorte que le maximum des Az; tende
vers 0. La notation historique f;f(x)dx est souvent utilisée pour f;f. Son
avantage est d’indiquer par rapport a quelle variable on intégre (si f est une
fonction de plusieurs variables).

Lorsque f(z) > 0, lintégrale ff f mesure donc l'aire comprise entre le

graphe de f et I’axe horizontal. En général, f; f représente aussi cette aire a
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condition de compter positivement les portions ot f(z) > 0 et négativement
celles ou f(x) < 0. En particulier,

1 b
moyenne (f) := / f (4.2)
[a,b] b—aJ,
est la valeur moyenne de f sur l'intervalle [a,b]. Si f est continue, il existe
u € [a,b] tel que f(u) = moyenne , 5 (f) (une fonction continue prend toutes

les valeurs entre ses valeurs extrémales). Ceci démontre le

Théoréme 4.1.1 (Théoréme de la moyenne) Soit f : [a,b] — R une
fonction continue. Alors, il existe u € [a,b] tel que

[ r=0-asw,

Soit f : [a,b] — R une fonction continue. Une fonction F' : [a,b] — R
dérivable telle que F'(z) = f(x) s’appelle une primitive de f. Par exemple,
F(z) := 1€? + 3 est une primitive de f(z) = €?*. Par le corollaire 3.1.6
p- 47, deux primitives F' et F' de f différent par 'addition d’une constante :
F(x) = F(z)+ C.

Si F': [a,b] — R est une fonction, on note F\Z = F(b) — Fl(a).

Théoréme 4.1.2 (Théoréme fondamental du calcul intégral) Soit
f :]a,b] — R une fonction continue. Soit F : [a,b] — R une primitive de f.

Alors )
| 1=rli=Fw) - Fla)

PREUVE: On démontre tout d’abord que la fonction

mm:é?

x+h x
! . a f —Ja f . 1 oth

est une primitive de f. En effet :

Par le théoréme de la moyenne 4.1.1, on a f;+h f = h f(u) pour un certain u € [z,z + h],
donc

G'(w) = Jim f(u) = f(x).

Si maintenant F' est une primitive de f, on a G(z) = F(z)+cte. Comme G(a) = [ f =0,
on voit que cte = —F(a). On a donc bien

b
/f:G@:F@—F@~D
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NOTATION : la notation [ f ou [ f(z)dz désigne une primitive quel-
conque de f.Par exemple : [ sin(x)dz = —cosx+ C ot C est une constante.

4.2 Calcul de primitives et d’intégrales

La primitive d’une fonction ne peut pas toujours s’exprimer & ’aide de
fonctions que 'on connait déja. Par exemple, les primitives

/e_’Ede , /ida: , /Sinxdas , A ,
x T Inz

sont de nouvelles fonctions qui n’ont pas d’expression plus élémentaire (en
utilisant des polynomes, des fonctions trigonométriques, exponentielles, ou
des logarithmes). Par exemple, MAPLE appelle Si(z) la fonction Iy %dt
qui est une primitive de £ (voir preuve du théoréme 4.1.2). Expérience :
contempler le graphe de la fonction Si (plot(Si(x),x=0..20)).
De nombreuses fonctions usuelles ont cependant une primitive calculable.
Pour la trouver, on peut :
— faire usage d’une table de primitives (exemple : [5, p. 76]).
— utiliser MAPLE. La commande int(f,x) donne une primitive de l'ex-
pression f tandis que int(f,x=a..b) donne f; f(z)d.
Exemple : int(sin(x),x=0..Pi/2) donne la réponse 1.
L’usage de MAPLE est une aide bienvenue mais il n’est pas inutile de
confirmer & la main et de réarranger les résultats qui sont parfois mis
sous une forme compliquée. Par exemple, si 'on demande 3 MAPLE
de dériver une primitive qu’il a trouvé, il arrive que I’on ne reconnaisse
pas expression de départ.
— décomposer ou transformer la fonction & intégrer en fonctions plus
simples. Il y a bien entendu la linéarité de l'intégrale :

/(f+g)=/f+/g-

Les deux autres méthodes principales sont 1’intégration par substitution
et ’intégration par partie.

Intégration par substitution : Supposons que l'on cherche F(x) =
[ f(z)dz. Si © = z(u) est une fonction de u, la régle de dérivation des
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fonctions composées donne

d dF dz )
S (Fla(u) = (@) T = £ () 2 ()

On a donc la formule
Fa(w) = [ f(aw)s'(u)du. (4.4)

Si maintenant la fonction u +— x(u) est bijective, admettant donc un inverse
x +— u(zx), on pourra, en remplacant u par u(z), obtenir F(z) a l'aide de
F(z(u)). Quant au calcul de f; f(x)dx, il s’obtient dans ce cas par

b u(b)

/ f(@)de = / Fa(w) 2/ (u)du. (4.5)
a u(a)

EXEMPLE : On veut calculer [" v/r? — z2dx, ce qui est l'aire d'un demi-

disque de rayon 7.

On cherche donc F(z) := [+/r?2 —a22dz. Le fait que r> — r?sinz =

r? cos? x suggére la substitution x(u) = r sinu. On aura donc :

F(z(u)) = /r cosuVr2 — r2sin? udu = 7“2/cos2 u du. (4.6)

2

La primitive de cos”u se trouve dans les tables :

1
/COSQUdu =3 (u+ cosusinu).

(On peut calculer [ cos? udu et i sin? u du en utilisant que cos® u+sinu = 1
et cos?u — sin?u = cos(2u)). La fonction u + r sinu est une bijection de
[—7/2,7/2] sur [—r, 7], d'inverse u(x) = arcsin(%). En substituant dans 4.6,
on obtient

r 2
L’intégrale cherchée peut donc se calculer de deux fagons. La premiére a
I’aide de la primitive que 'on vient de trouver :

T 2
/ V2 —a2de = (T— arcsin(f) + IV - x2)
_r 2 r

2

2
/ Vr2—ax?de = % arcsin(f) + IV g2, (4.7)

2
— 7TT7

-

la seconde en remplagant les limites d’intégration comme dans (4.5) :

w/2

1

= 712,
—7/2

arcsin 1 2

T
/ Vr? —a?dr = 7“2/ cos® udu = % (u+ cosusinu)
T a

resin(—1)

On a ainsi démontré que Paire d'un disque de rayon r est 7r2.
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Intégration par parties : La formule de dérivation d’un produit
(fg) = f'g+ fg' donne les formules d’intégration par partie :

/ £(@) gle)de = f(z) gla) — / f@) @ (48)
b b
/ f'(x) g(a)d = - / f@)d (@)dz.  (49)

EXEMPLE : Pour calculer [ 2" Inzdz, on pose f'(z) = 2™ et g(x) = Inx. La
formule (4.9) donne

et

l,n—f—l 1 l,n—f—l xn—l—l
/x"lnxdaz: Inzx ——— [ 2"dx = Iny — —= +C.
n+1 n+1 n+1 (n+1)?
Cette derniére formule est vraie pour n # —1 (on a [ 22 dz = L(Inz)?). En
particulier, sin =0 :
/ln$da: =zlnz—ax+C.
Intégrales impropres : Ce sont des intégrales du type
o0 b [e'¢)
[N A
a —0o0 —0o0
etc. Elles sont définie comme des limites, par exemple
/ f= hm f ,
etc, lorsque ces limites existent. Exemple, sin > 1 :
da -1 b
/1 2 o (n—=1("1)], n-1 (n>1)

En revanche flb d% =Inb— o0 (b — ).
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Intégration numérique : S’il n’est pas possible de connaitre une primi-
tive de f, on peut calculer des valeurs approchées de f; f- Voici quelques
méthodes possibles :

— la méthode des chimistes : on dessine le graphe I'y de f, on découpe la

portion entre I'¢ et I’axe horizontal (dont ’aire est ff f) et on pese le
papier.

— en utilisant MAPLE, par la commande evalf(int(f , x=a..b));.

— en estimant fab g oll g est une fonction proche de f dont 'intégrale est
facile & calculer. Le plus souvent, g est obtenue par interpolation entre
des points xg = a < 1 < ... < x, = b ot 'on connait la valeur de la

b—a

fonction. Par exemple, si z; — x;_1 = % (points également répartis),

I'interpolation linéaire donne la formule des trapézes (voir figure

(4.2)) :

b b—a

2n

n—1
[fla)+F0) +2 3 fla).
i=1

FIGURE (4.2)
Méthode des trapézes.

Une meilleure interpolation (quadratique) donne la formule de Simp-
son. Ces formules, avec estimation de ’erreur maximale, sont dans les
tables ([5, p. 90]). Voir aussi [1, pp. 129-130].

L’avantage de ces méthodes est de ne nécessiter qu'une quantité finie
d’information numérique sur la fonction f (sa valeur en un certain
nombre de points). En science expérimentale, il se peut que ce soit la
seule chose dont on dispose.
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4.3 Intégrales de surface et de volume

Soit 3 une surface dans 1’espace et soit f : ¥ — R une fonction continue.
Son intégrale fz f est définie de maniére analogue a 'intégrale d’une fonction
sur un intervalle. On partage ¥ en une union de domaines 4; (i =1...,n),
qui sont disjoints ou ne se rencontrent que sur leur frontiére. On note AA;
I'aire du domaine A; et on définit :

[ i=1md re)an,
x i=1

ou & € A; et la limite est prise sur des partages de plus en plus fins de
maniére que max {diameétre(4;)} — 0.

Si ¥ est un domaine du plan, le graphe I'y de f est une surface dans R3
au dessus de Y. Le nombre fz f est alors le volume du solide compris entre
¥ et I'y (compté positivement pour les parties o f(x) > 0 et négativement
autrement).

Comme & une variable (voir (4.2), p. 66), on a que

1
moygnne (f) = m Lf
est la valeur moyenne de f sur X.

Calcul d’une intégrale de surface

Considérons tout d’abord le cas ou X = I
est un domaine du plan délimité par

a<z<b et g (v)<y<gi(r) i 5
ou g_ et g4 sont deux fonctions dérivables de a b

[a,b] dans R (voir figure ci-contre).

Intuitivement, le calcul de fQ f repose sur le raisonnement suivant : on
proméne dans  un petit pavé d’aire AzAy. On fixe d’abord x et on fait
tendre Ay vers 0. On obtient une fonction H(x) = fggj(%)f(x,y)dy. En
laissant ensuite varier  de a a b et en faisant tendre Az vers 0, 'intégrale
Jo f cherchée sera fabH (z)dz. Ceci permet de montrer que [, f s’obtient
par deux intégrales successives :

/Qf = /ab </99;:3) f(x,y)dy)da: (4.10)
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Les parenthéses sont souvent omises et on écrit simplement

/f //g+(w flx,y)dydx.

EXEMPLE : Soit Q := {(z,y) € R? | 22+ y? < r?} le disque de rayon r centré

en 0. Calculons [, f, ou f(z,y) :=/r? — 22 — 32, ce qui donnera le volume

d’une demi-boule de rayon r dans R3.
Le domaine 2 peut étre décrit par

—r<z<r et 9-(z) <y < g1 ()
avec g+(x) = +vr? — 22. Comme pour (4.7) p. 68 on a la primitive

2 _
/ /r2—x2—y2dy:r

d’ou

2 Yy

)+ 22 —a?—y?

arcsin

r2

— 2

g+(z) 2 _ 2
/ Flz,y)dy = ——2 (arcsin(1) — arcsin(—1)) = = (2 — 22).
9- () 2 2

Le calcul de [, f donne, par (4.10)

r 3 2 2
/Q /r/ f(z,y)dy dz = g/r(TQ—xQ)dx:%(Q—g): §7rr3.

On ainsi démontré que le volume d’une boule de rayon r est %777" .

Dans le cas général, pour le calcul de fz f, on paramétrise la surface X
par un domaine du plan €2 :

Y ={a(u,v) | (u,v) € Q}

ou a(u,v) = (aq(u,v),as(u,v),asz(u,v)) est une application différentiable
injective de © dans R? (dont I'image est ¥). On définit

— les u-courbes : a(u,vg) (vg est fixe et u varie)

— les v-courbes : a(ug,v) (ug est fixe et v varie)
qui sont des courbes sur 3. Leurs vecteurs vitesse sont

80&1 6042 80&3

6a1 80&2 6043 oay oag _)
ov’ v’ ov’”

o0 o on) =

ay, = (
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On définit les fonctions E, F, G : 0 — R par les produits scalaires :
E =, q , F =, ap , G = oy - ay. (4.11)

L’idée du calcul de fz f est d’utiliser comme élément d’aire le parallélo-
gramme engendré par les vecteurs vitesse a,, et a,,. Si 8 est I’angle entre ces
deux vecteurs, le carré de cette aire vaut

llevul*[levo | 50 6 = flevy >l ||* (1 — cos® ) = EG — F2.

Ceci permet de remplacer fz f par une intégrale sur €2 que ’on peut calculer
par (4.10) :

/Zf:/ foa) VEG — F2 (4.12)

(
Q

En particulier, si 'on intégre sur 3 la fonction constante égale a 1, on
obtient I'aire de X :

Aire (2) = /Q VEG — F? (4.13)

EXEMPLE : 1. On veut calculer ’aire de la sphére ¥, de rayon r centrée en
0. On peut paramétriser cette sphére par des coordonnées sphériques :

a(u,v) = (rcos v cosu, rcosvsinu, rsinv)

avec Q = [0,27] x [—7/2,7/2]. Les u-courbes sont les paralléles et les v-
courbes les méridiens de la sphére. Leur vecteurs vitesse sont

oy (u,v) = (= rcosvsinu, rcosvcosu, 0)

et
ay(u,v) = (= rsinvcosu, —rsinvsinu, rcosv).

Les fonctions E, F, G définie en (4.11) sont donc
E(u,v) = r?cos®v , F(u,v) =0 , G(u,v) =12

d’ou EG — F? = rtcos?v. Par (4.13) et (4.10), l'aire de %, vaudra

2r  pw/2 2w
Aire (%,) = r2/ / cosvdu = 7“2/ sin v
0 Jom/2 0
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2. Coordonnées polaires : la surface X peut aussi étre un domaine du plan
auquel cas I’équation (4.12) fait office de formule de changement de variables.
Par exemple, suppossons que X est le domaine du plan limité en coordonnées
polaires r, 6 par

01 <0 <6y et 7”,(9) < T‘(Q) < r+(9). (414)

1. . P r
Considérons le plan en coordonnées cartésiennes

avec 0 en abscisse et r en ordonnées. Soit 2

.(6)

a
le domaine donné par les conditions (4.14). Le 0 /\

domaine ¥ est alors paramétré par o : 2 — X
ou a(f,r) = (rcosf,rsinf). On a r(0)

ag = (—rsinf,rcosf) et «p = (cosb,sinb). 0, 0, 0 0

On en déduit que £ = 2, F = 0, G = 1 et donc VEG — F2 = r. La
formule (4.12) donne donc

/E o /6 6 / T;:)r (0, ¥)dr db. (4.15)

Intégrales de volume : Soit V un solide dans l'espace et soit f:V — R
une fonction continue. Son intégrale fv f est définie comme pour l'intégrale
d’une fonction sur une surface. On partage V' en une union de petits solides
Vi (i=1...,n), quisont disjoints ou ne se rencontrent que sur leur frontiére.
On note AV} le volume de V; et on définit :

[ £i=timd fe)av
4 i=1

ou & € V; et la limite est prise sur des partages de plus en plus fins de
maniére que max {diameétre(V;)} — 0.

Exemples :

1. Comme pour les intervalles et les surfaces, I’expression

moyenne (f) := ! /vf

1% vol V'

est la valeur moyenne de la fonction f sur V. On calcule ainsi des
pressions moyennes, des températures moyennes, etc.
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2. Si f(x) est la densité du solide en z, [i, f est la masse totale de V.

3. Si f(x) est la densité du solide en x, les coordonnées (zg,yo, z0) du
centre de gravité de V sont

1 1
xO_volV/fo ’ yo_volV/Vyf ! ZO_VOIV/ I
(4.16)

Calcul de [, f : Silesolide V est limité par

a<z<b , g-(v)<y<gi(®) , h-(v,y) <z<hi(z,y)

le calcul de fv f peut s’effectuer par trois intégrales successives

/f / /g+(w /h(x’y f(z,y,2)dz)dy]dz. (4.17)

(On ommet souvent les parenthéses et les crochets). Les changements de
coordonnées se font de la maniére suivante. Pour les coordonnées sphériques

x=rcospcosf , y=rcospsind , z=rsinp

2

I’élément de volume dzdydx doit étre remplacé par r* cos pdrdedf. pour les

coordonnées cylindriques
r=rcosf , y=rsinf , z=z
on remplace dxdydz par rdrdfdz.

EXEMPLE : Le volume de la boule Br centrée en 0 et de rayon R est l'inté-
grale sur Bp de la fonction constante égale & 1. En coordonnées sphériques :

2r  rm/2 rR
/ 1 = / / / r2 cos @ dr dy df =
BR 7T/2

2 7r/2 21 9 R3 AT R3
- / / —cosgodgodé’—/ 1 gp = 21
w/2 0 3 3

4.4 Quelques applications

Longueur de courbe : Soit ¢ : [a,b] € R™ une application différentiable
paramétrant une courbe I" dans R™. Pendant 'intervalle de temps [t,t 4+ At],
le point de ¢(t) parcourt un arc dont la longueur est approximativement
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le(t)]| At, ou ||¢é(t)]| est la norme du vecteur vitesse ¢(t). La longueur totale
de T sera ainsi donnée par l'intégrale

b
longueur(T') = / 1) dt. (4.18)

EXEMPLE :

1. On paramétrise le cercle de rayon r centré a l'origine dans le plan par
c(t) := (r cost,r sint) (¢t € [0,27]). On a donc ¢é(t) = (—r sint, r cost)
et ||¢(t)|| est constante égale a r. On retrouve que la longueur du cercle
est [, rdt = 27r (ce qui est rassurant car c’est la définition de ).

2. Soit f : [a,b] — R une fonction dérivable. On parameétrise le graphe I';
dans R? par c(t) = (¢, f(t)) (t € [a,b]). On a donc é(t) = (1, f'(t)) et
la longueur de I'; sera

longueur(I'y) = /b V14 f(t)?dt. (4.19)

Travail : Soit ¢ : [a,b] € R™ une application différentiable paramétrant
une courbe I' dans R™. On suppose que le point ¢(t) est soumis & un champ
de forces A (champ de vecteurs A : R” — R"). Pendant l'intervalle de temps
[t,t + At] s’effectue un travail valant approximativement (A(c(t)) - é(t))At.
Le travail total 7" effectué par le point ¢(t) sur la courbe I' est ainsi donnée
par l'intégrale

b
T = / (A(c(t)) - &(t))dt.

Un cas particulier important est celui ou la champ A est le champ de
gradient A = gradU d’une fonction U : R — R (potentiel). C’est, par
exemple, le cas pour un champ gravitationnel ou un champ éléctrique. Le
travail T effectué sur la courbe I' est alors, utlilsant la formule (3.24) de la
p- bl :

b b
T = / (grad U(c(t)) - é(t))dt = / (Uoc) (t)dt = U(c(b)) — Ul(c(a)).

On voit que T est la différence de potentiel entre les point extrémités
c(a) et ¢(b) de I'. En particulier, si la courbe I' est fermée (c(a) = ¢(b)), le
travail T" sera nul.

Réciproquement, si un champ de forces A a la propriété que le travail
sur toute courbe fermée est nul alors il existe un potentiel U, unique & une
constante preés, tel que A = grad U : on choisit un point B € R" et on définit
U(zx) comme le travail effectué sur une courbe quelconque I' joignant B a x.
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Débit : On considére un champ de vecteurs A au voisinage d’une surface
¥ dans R3. On interpréte A comme le champ de vitesse des particules d’un
fluide. On veut calculer le débit D 4 du fluide passant au travers de ¥ (mesuré
en unités de volume par unité de temps).

Pour cela, on munit ¥ d’un champ de vecteurs N : ¥ — R? variant
continiment tel que |[N(z)|| = 1 et N(x) est orthogonal au plan tangent a ¥
en z. Par exemple, si ¥ est une surface de niveau d’une fonction f: R? — R
(voir paragraphe 3.2.6 p. 55), on peut prendre pour N le gradient normé :
N(z) = grad f(z)/||grad f(x)||. Le débit D4 au travers de X, dans le sens de
N, est alors donné par l'intégrale de surface

DA:/EA-N (4.20)

Le produit scalaire, dans la formule 4.20, s’impose car, en ce qui concerne le

débit, seule compte la composante de N orthogonale & ¥ (A N est, au signe

prés, la norme de cette composante).

Intégrale d’une gaussienne : La fonction gaussienne f(z) = e est

utile pour le calcul des probabilités. Bien que sa primitive n’ait pas d’expres-
: 212 . A e’} — 2 .

sion élémentaire, on peut calculer son intégrale A := [7°_e™*"dx en faisant

intervenir une intégrale double.

9 o0 g2 oo g o0 g2 oo g
A = e ¥dx e Vdy)| = e e ¥Vdy|dx =
- /OO /OO 6*(12+y2)dy dr — / o (@ +y?)
—o00 J —00 R2

L’expression x? + y? suggére de passer en coordonnées polaires pour le
calcul de l'intégrale de surface [p» e~ @) Avec la formule (4.15) p. 74 :

2 100
>d9:7r
0

7(12+ 2) 2T [e'e) 2 2 e~ "
e v = re " drdf = —
R2 0 0 0 2
——

=1/2

o0

ce qui montre la formule classique

/oo e dz = /. (4.21)

—00
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Chapitre 5

Systémes dynamiques continus
— Equations différentielles

Ce cours a commencé par les systémes dynamiques discrets, qui modé-
lisent I’évolution d’un phénomeéne ou le temps varie par saut d’une unité.
Dans ce chapitre, on introduit les systémes dynamiques continus ot le temps
varie contintiment (¢ € R).

Les systémes dynamiques discrets se sont développés depuis une ving-
taine d’années. On peut parier sur leur avenir car ils constituent la base
des simulations sur ordinateur. Leur développement influence aujourd’hui la
pensée scientifique.

Beaucoup plus anciens, les systémes continus sont rattachés & la notion
d’équation différentielle et leur origine remonte aux débuts du calcul infi-
nitésimal et de la science moderne. Ils ont profondément influencé le déve-
loppement des mathématiques et de la physique et gardent une importance
primordiale pour la formalisation théorique. En revanche, ils ne sont pas bien
adaptés au calcul numérique : les méthodes numériques pour résoudre des
équations différentielles (voir [1, §I1.9]) sont en fait des approximations de
systémes dynamiques continus par des systémes discrets.

5.1 Champs de vecteurs - trajectoires.

Soit E un domaine de R™. Un champ de vecteurs dans E est une
application différentiable A : E — R™. On le visualise en dessinant le vecteur
A(z) partant du point 2. Nous avons déja rencontré des champs de vecteurs :
le gradient grad f d’une fonction f:R™ — R (voir p. 52 et p. 58).

Une trajectoire d’'un champ de vecteur A est une courbe différentiable
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s : J — E définie sur un intervalle J C R telle que son vecteur vitesse $(t)
soit en tout temps donné par le champ de vecteurs A :

5(t) = A(s(t)) Vted (5.1)
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FIGURE (5.2) FIGURE (5.3)
le champ A(z,y) = (2, 2y) le champ A(z,y) = (—2y, 22)
et I'une de ses trajectoires. et l'une de ses trajectoires.

Exemples :
1. Le champ A := grad f sur R? ou f(z,y) := 22 + %% On a donc
A(z,y) = (2z,2y). La trajectoire de A telle que s(0) = (x,yo) est
s(t) = (zoe?, yoe?!). Voir figure (5. 2).
2. Le champ A(x,y) := (—2y, 2x) sur R? de la figure (5. 3). La trajectoire
de A telle que s(0) = (0, yo) est

s(t) = (xg cos 2t — yp sin 2t , xq sin 2t 4 yq cos 2t).

3. Le champ A(z) := 1+ 22 sur R. La trajectoire x(t) de A telle que
x(0) = xg est z(t) = tg (t + arctg (xp)).

Dans les exemples ci-dessus, nous parlons de “la” trajectoire de A telle
que s(0) = sg. On peut en effet démontrer que si A est différentiable et si
so € E et tg € R, il existe une unique trajectoire, définie sur un intervalle
mazimal J autour de tgy, telle que s(ty) = so. L’intervalle J est maximal en
ce sens que la trajectoire ne peut pas, en général, étre prolongée au dela de J
parce qu’elle sortirait de . Ceci peut se produire méme si £ = R”. On voit
en effet que, pour le champ A(z) := 1+ 22 sur R de I’exemple 3 ci-dessus, la
trajectoire x(t) = tg (t) telle que (0) = 0 s’en va a l'infini lorsque ¢t — +7/2.
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Systémes dynamiques continus : La modélisation de 1’évolution d’un
phénomeéne en temps continu se fait de la maniére suivante. Un systéme
dynamique continu est une paire (E, A) ou

1. FE est un domaine de R™ (I’ensemble des états du systéme).

2. A: E — R" est un champ de vecteurs (dynamique ou loi d’évolu-
tion du systéme).

L’évolution du systéme s’exprime de la maniére suivante : si le systéme
est dans un état s(tg) = sg au temps tg, son état au temps t sera s(t), ou s
est la trajectoire du champs de vecteurs A telle que s(tg) = sp. Comme dans
le cas des systémes dynamiques discrets, on parlera de la trajectoire de
I’état sg. On peut y penser comme la trajectoire d’une molécule d’un fluide
dont le champ de vitesses est A.

5.2 Trajectoires et équations différentielles

Une équation différentielle est une équation faisant intervenir une
fonction z(t), certaines de ses dérivées &, Z, etc et éventuellement la variable
t. Exemple : & = 2x+t, & = —x, etc. L’ordre de I’équation différentielle est
I’ordre de la plus grande dérivée de x qui y figure. Par exemple, © = 2z + ¢
est d’ordre 1, & = —x d’ordre 2, etc.

Soit A : E — R™ un champ de vecteur sur un domaine E de R". Si
s(t) = (s1(t),...,sn(t)) et A(z) = (A1(x),...,Ap(x)), I'équation vectorielle
(5.1) est équivalente a

$1(0) = Au(s(t))
' (5.2)

inlt) = Au(s(t)).

Ceci est un systéme de n équations différentielles du premier ordre.
En particulier, si n = 1, le champ de vecteur est simplement une fonction
dérivable A : E — R et sa trajectoire x(t) est la solution de ’équation
différentielle du premier ordre & = A(x).

5.3 FEtats stationnaires - Stabilité

Ces notions sont définies de maniére analogue au cas discret (§ 1.3, p. 8).
Soit (F, A) un systéme dynamique continu.

Un état x est dit stationnaire si A(x) = 0. La trajectoire d’un état
stationnaire est constante : s(t) = s(0) = z. Le systéme est en état d’équilibre.
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Une trajectoire est dite périodique s’il existe un nombre réel T > 0 tel
que s(t+7T) = s(t). Un état est périodique si sa trajectoire est périodique. Le
plus petit de ces nombre T est la période de la trajectoire (ou de ’état). Par
convention, un état stationnaire est périodique de période 0. Une trajectoire
périodique (de période T') s’appelle aussi un cycle (de période T').

Un sous-ensemble E’ de E est invariant si, pour tout x € E’ la trajec-
toire de x reste dans E’. Un point stationnaire, un cycle ou une trajectoire
sont des sous-ensembles invariants.

Un sous-ensemble invariant E’ de E est stable, ou est un attracteur, s’il
existe un voisinage V' de E’ dans E (son bassin d’attraction) tel que toutes
les trajectoires partant d’états dans V' convergent vers E’. Par exemple : un
point stationnaire stable, un cycle stable, etc.

Comme au § 3.4.1, p. 64, on peut obtenir des conditions suffisantes pour
qu’un état stationnaire b soit stable. Ceci est particulierement important car
il est en général impossible de trouver des formules explicites pour les tra-
jectoires. Ces conditions portent sur la matrice jacobienne DA(b) du champ
Aenb:

i) ... Ay
DA(b) = : : € Mpxn (5.3)
Qn(b) - Glu(p)

Cette n x n-matrice a des valeurs propres. On peut démontrer :

Théoréme 5.3.1 Soit b un état stationnaire pour le systéme (R™ A). On
suppose que le champ de vecteurs A est différentiable en b. Alors, si la partie
réelle de chaque valeur propre de DA(b) est < 0, le point b est stable.

Exemple : Supposons que A = grad f pour f : E — R. La matrice

DA est la matrice hessienne (a;?;ng) qui est symeétrique (voir § 3.2.1). Ses
valeurs propres sont donc réelles. La condition du théoreme 5.3.1 dit que
I’état stationnaire b est stable si b est un maximum local de f (voir théoréme
3.3.3 p. 61). Observons du reste que si s(t) est une trajectoire de grad f alors,
par la formule 3.31, p. 56, on a
d(fos) _ .
22— 5(t) - grad f(s() = lgrad f(s(t))]>

On voit que fos est strictement croissante en dehors des états stationnaires
(la valeur de f croit le long des trajectoires de grad f).

Le cas particulier n = 1 dans le théoréme 5.3.1 mérite un énoncé pour lui-
méme. On a une seule équation différentielle # = A(z) qui détermine 1’évo-
lution d’'une grandeur z(t) en fonction de ¢. La matrice jacobienne DA(x)
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est une matrice (1 x 1) dont I'unique coefficient est A’(x), la dérivée de la
fonction A. Pour un état stationnaire b (A(b) = 0), le théoréeme 5.3.1 prend
donc la forme

Théoréme 5.3.2 Soit b un état stationnaire pour l’équation différentielle
& = A(z), ou A: R — R est dérivable en b. Alors, si A'(b) < 0, le point b
est stable. Si A'(b) > 0, le point b est instable.

5.4 Quelques techniques de résolution d’équations
différentielles

Trouver une formule explicite pour les solutions d’une équation différen-
tielle (et donc pour les trajectoires d’un champ de vecteurs) est, en général,
impossible. Par exemple, ’équation différentielle # = f(¢) a pour solution
toute primitive z(t) = [ f(t)dt qui, en général, est une nouvelle fonction que
I’on ne sait pas exprimer. Il y a cependant quelques cas exceptionnels ou des
expressions explicites des solutions existent et nous allons en voir ci-dessous
les plus simples.

Equations “a variables séparables” : 1l s’agit des équations du type

dx
- = t). 54
= T@)() (54)
On utilise le “truc”
= (t)dt (5.5)
) 7 |
d’oll, en intégrant, une relation
dx
— = /g(t) dt+C , C = constante, (5.6)
f(z)

entre x et t qui, dans les bons cas, permet d’extraire x(¢). La constante C
se détermine par la condition initiale x(ty) = xo.

EXEMPLE : Cherchons la solution z(t) de 'équation différentielle

dx
pri t(1+ z) (5.7)

telle que z(0) = 3. En séparant les variables, on obtient

dx
/1+$_/tdt+0 (5.8)
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donc
2

t
ln|1+x\:§+0 (5.9)
qui est équivalent &
2
142 =Kez (5.10)
ot K = ¢ > 0. On peut alors enlever la valeur absolue en permettant

K € R. L’équation (5.10) pour ¢ = 0 donne K = 4, puisque z(0) = 3. La
solution cherchée est donc

+2
z(t) =4ez — 1.
Equations “linéaires inhomogeénes” : 1l s’agit des équations du type

‘fi—f — g(t)z + h(t). (5.11)

On introduit le “facteur intégrant”
R(t) := e P (5.12)

ou P est une primitive de g. On vérifie que la solution générale de (5.11) est
alors

1

o(t) = g | / R(t) h(t)dt + C]. (5.13)

Comme pour les variables séparables, la constante C' se détermine par la
condition initiale z(ty) = xo.

PREUVE: On dérive v = & [C + th} :

R U _, R
xfﬁ[Rh—R(C—s—th)]fh -
—%:—(lnR)':P/:g. |:|

EXEMPLE : Cherchons la solution z(t) de I’équation différentielle

i = —% + (5.14)
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telle que x(1) = 2. On a donc g(t) = —1/t et h(t) = t*. On peut prendre
pour primitive de g la fonction P(t) = —Int, don R(t) = e P® =¢. La
solution générale donnée par (5.13) est

z(t) = %[/ﬁdt +C] = ? + % (5.15)

et la condition initiale z(1) = 2 implique C' = 7/4.

Systémes d’équations linéaires : On cherche les trajectoitres & = A(x)
dans R™ pour un champ A : R®™ — R” qui est linéaire. L’application A est
donc donné par une matrice A := (a;;) € Myxy, et 'on doit résoudre un
systéme d’équations différentielles

.1"1 all cer Aln T1
= : : F]. (5.16)

Tn Gpl  *°* Adnp T,

On observe que si x et T sont deux solutions du systéme (5.16), alors =+ et
ax (a € R constante) sont aussi des solutions. L’ensemble des solutions forme
donc donc un espace vectoriel. On peut démontrer que cet espace vectoriel est
de dimension n. Pour trouver toutes les solutions, il suffit donc d’en trouver n
qui soient linéarement indépendantes et d’en faire des combinaisons linéaires.
Une fagon de trouver des solutions linéairement indépendantes est d’utiliser
les valeurs propres de A :

Théoréme 5.4.1 Supposons que la matrice A ait n valeurs propres réelles
distinctes aq, . .., ap. Alors, la solution générale du systéme (5.16) est

$(t) = Clealté‘l 4+ Cneantgn

ot & est un vecteur propre pour la valeur propre «y. Les constantes C; se
déterminent par la condition initiale £(0) = .
PRrREUVE: Si z(t) = Cie®i'¢;, alors
&= Cie® & = A(Cie™'E;) = A(x).
Donc les C;e®*a;&; sont des solutions de (5.16). Comme les valeurs propres a; sont dis-

tinctes les vecteurs propres &; sont linéairement indépendants (voir la preuve de la propo-
sition 2.5.3, p. 35.). []

Lorsque les valeurs propres ne sont pas deux-a-deux distinctes ou qu’elles
sont complexes, la situation est plus compliquée.

84



ExeEMPLE : Considérons le systéme

{3:3 - Y (5.17)

y = .
Matriciellement, il est équivalent & :

i\ (0 1\ [z

y) \1 0)\y
Les valeurs propres de ({§) sont 1 (vecteur propre (1,1)) et —1 (vecteur
propre (1,—1)). La solution générale du systéme (5.17) est, d’apres le théo-

réeme 5.4.1 (s . .
)~ \1 24
() = (1) = (1)

{i(t) = Clet + Cge_t

c’est-a-dire :

1
y(t) = Ciet — Cye™t. (5.18)
Les constantes C et Co sont déterminées par les conditions initiales z(0) =
xo et y(0) = yo. En effet, en posant ¢t = 0 dans (5.18), on obtient g = C1+C5
et yo = C1 — Cs. La solution du systéme (5.17) avec conditions initiales
x(0) =z et y(0) = yp sera donc

z(t) = el ;yo e+ To— % ; Yo et
o + Yo To—Yo _
y(t) = Tet - =5 ¢ ¢

Equations d’ordre supérieur : Une équation différentielle d’ordre n > 2
est souvent équivalente & un systéme de n équations du premier ordre. Par
exemple, si 'on a une équation du 2¢ ordre

i = F(x,i), (5.19)

on rajoute la fonction y = & et ’équation (5.19) est équivalente au systéme

Un exemple important est celui des équations a coefficients constants

Z+at+br=0 (a,b, € R). (5.21)
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En posant y := & comme ci-dessus, ’équation (5.21) devient équivalente au

systéme linéaire
x\ (0 1 x (5.22)
y) \—-b —a y )" '

Par le paragraphe précédent, les solutions de (5.22) forment un espace vec-
toriel de dimension 2 qui dépend des valeurs propres de la (2 x 2)-matrice
dans (5.22). Ces valeurs propres sont les solutions A1, Ay de I’équation du 2¢
degré

M 4ad+b=0 (5.23)

qui s’appelle '’équation caractéristique de I’équation différentielle (5.21)
(observer I’analogie entre les équations (5.21) et (5.23)). On peut démontrer
le théoréme suivant :

Théoréme 5.4.2 La solution générale de l’équation différentielle & + at +
bx = 0 s’exprime, en fonction des solutions A1, Ao de son équation caracté-
ristiqgue A2 4+ aX +b =0, de la fagon suivante :

1. s1 A1 # Aa et N\; € R, les solutions de (5.21) sont de la forme
CreMt 4 Cye??t
2. st A1 = Ay = X € R, les solutions de (5.21) sont de la forme
Cre + Cote™
3. si A2 =a=xpi¢R les solutions de (5.21) sont de la forme
e (Cy cos(Bt) + Cosin(Bt)).
EXEMPLE 1 : L’OSCILLATEUR HARMONIQUE. C’est ’équation différentielle
de base des mouvements oscillatoires qui est
i=—w’r (weR). (5.24)

Le nombre x(t) s’interpréte physiquement comme la position d’un mobile
se déplacant sur une droite et subissant une force, tendant & le ramener &
Porigine, force qui est proportionnelle & z(t) (par la loi de Newton, la dérivée
seconde (accélération) est proportionnelle & la force subie). On peut imaginer
une masse entre deux ressorts tendus.
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L’équation caractéristique de (5.24) est A\ = —w? dont les racines sont
A1,2 = Fiw. Les solutions de I'équation différentielle (5.24) sont donc, par le
théoréme 5.4.2, toutes de la forme

C cos(wt) + Cy sin(wt). (5.25)
Observons que la fonction Asin(wt + ¢) (A, ¢ constantes) est aussi solution
de # = —w?z. On doit donc pouvoir la mettre sous la forme de (5.25). En
effet :

Asin(wt + ) = Acos psin(wt) + Asin ¢ cos(wt).

On aura donc Cy = Asingp et Co = Acosp. De méme, toute somme
(4 cos(wt) + Cy sin(wt) peut se mettre sous forme Asin(wt + ¢) avec A =
VC? + C3 et p = arctg (C1/C5). On a ainsi montré que toute solution de
# = —w?z est un mouvement oscillatoire A sin(wt+ ) d’amplitude A, de pé-
riode 27 /w avec une phase (décalage) . Observons que w est déterminé par
I’équation différentielle tandis que que les constantes A et ¢ sont déterminées
par la facon dont le mouvement démarre : la position initiale 2(0) = z¢ et
la vitesse initiale 4(0) = vg.

EXEMPLE 2 : L’OSCILLATEUR HARMONIQUE AMORTI. Si, dans ’exemple de
loscillateur harmonique, le mobile subit une force de friction proportionnelle
A sa vitesse &, qui le ralentit, I’équation différentielle du mouvement sera

i = —2ai —w'r (wER,a>0) (5.26)

(le facteur 2 simplifiera ’expression des solutions). Son équation caractéris-
tique est A2 = —2aX\ — w? dont les racines sont A2 = —a + Va2 — w2
Lorsque a < w, ces racines sont complexes conjuguées : A\; o = —a £ iw ou
@ := Vw? — a?. Par le théoréme 5.4.2, les solutions de I’équation différentielle
(5.26) sont de la forme

e~ (Cy cos(@t) + Cysin(@t)) = Ae sin(@t + ). (5.27)

On a donc un mouvement oscillant comme dans I’exemple 1) mais de période
%’r > %’r qui est de plus amorti par la fonction e~%.

5.5 Quelques systémes dynamiques continus

5.5.1 Croissance exponentielle

C’est le systeme (R, A) ou A(z) := ax (o € R constante). Il correspond
donc & I’équation différentielle

T =au. (5.28)



On vérifie immédiatement que
z(t) = zoe™ (5.29)

satisfait & I’équation 5.28 avec x(0) = xg. C’est donc la trajectoire de ’état
xg. En posant a := e®, cette trajectoire s’écrit

x(t) = zoa’. (5.30)

On voit que c’est la solution du systéme dynamique discret z(t+1) = ax(t)
(croissance exponentielle avec coefficient de croissance a; voir § 1.2).

Le seul état stationnaire est xp = 0. C’est un attracteur si et seulement
si & < 0. Cela illustre le théoréme 5.3.1 p. 81. En efet, si A(z) = ax alors
DA = () a pour seule valeur propre a.

REMARQUES : 1) I’équation (5.28) est & variables séparables. Exercice :
trouver la solution (5.29) par la méthode de la p. 82.

2) Le champ A(z) = ax est linéaire. La solution (5.29) est un cas parti-
culier du théoréme 5.4.1 p. 84.

5.5.2 Croissance logistique

Comme dans le cas des systémes dynamiques discrets, la croissance logis-
tique, proposée par Verhulst en 1836, modélise I’évolution d’une population
animée par une croissance exponentielle mais limitée & K individus par ’en-
vironnement. L’équation différentielle de ’évolution du systéme est

& =az(l - %) (5.31)

(correspondant au systeme (R, A) avec A(z) = az(1— %)). Il y a deux états
stationnaires : x =0 et z = K. On a A'(z) = a(1 — 22/K), donc A’'(0) = «
et A/(K) = —a.Sia >0, onadonc que 0 est instable et K est un attracteur.

Le systéme dynamique continu de la croissance logistique est ainsi net-
tement plus simple que son analogue discret vu au § 1.4.

L’équation différentielle (5.31) de la croissance logistique est & variable
séparables ce qui permet de trouver, par la méthode de la p. 82 une formule
explicite de la trajectoire x(t) telle que z(0) = xg

_ xoK e
K +xglent —1)

x(t) (5.32)
Par la régle de 'Hospital, on voit que z(t) — K quand ¢t — oo (si a > 0).
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5.5.3 Proies—Prédateurs

Ce systéme a été proposé par Voltera en 1926 pour modéliser l'interaction
d’une population de proies avec leurs prédateurs (voir [9, p. 63]). C’est le
systéme (E, A) ou

1. E = {(x,y) € R? | z > 0,y > 0}. Le nombre z est la quantité de

proies et y celle de prédateurs.

2. le champ A = (A1, Ay) est A(z,y) = (z(a — By),y(yz — 9)).

Les trajectoires sont donc les solutions du systéme d’équations différentielles :

& =x(a - Py)
. 5.33

{yzy(vw—é)- (533)
Ceci rend compte des hypothéses suivantes :

1. en l'absence de prédateurs, les proies grandissent exponentiellement,
avec taux de croissance a.

2. l'effet de la prédation est de réduire la quantité de proies d’un facteur
proportionnel & x et & y. C’est le terme —Gxy.

3. en ’absence de proies, les prédateurs, qui n’ont pas de nourriture, dé-
croissent exponentiellement avec un taux 6.

4. Taccroissement des prédateurs est proportionnel & leur quantité et a
celle des proies. C’est le terme vyzy.

Siz>0ety>0,onaun unique état stationnaire (%, %)
On peut faire le changement de variables

u = %az , vi= gy. (5.34)
Avec ces nouvelles coordonnées (u,v), le systéme (5.33) devient :

{ Z‘ _ ?&S__f))' (5.35)

et Pétat stationnaire est (1,1). Le systéme d’équations différentielles (5.35)

correspond au champ de vecteurs A(u,v) := (au(l —v),dv(u — 1)).
La matrice jacobienne de DA(1,1) est

DA(1,1) = <g _Oa>
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Son polynome caractéristique est X2 + ad. Le spectre de DA(1,1) est ainsi
+iv/ad. La partie réelle de ces nombre complexes étant nulle, le théoréme
5.3.1 ne donne aucune information sur la stabilité de ’état stationnaire (1,1).

En fait, les trajectoires sont périodiques. En effet, considérons la fonction

H(u,v) := é(u—lnu) +v—Inv
a

On a

grad H = (éu_l, v—l).
a U v
d’ou1
grad H - A =0. (5.36)

Le gradient de H est donc orthogonal au champ A. Comme grad H est
orthogonal aux courbes de niveau de H, on en déduit que les trajectoires
s(t) de A sont des paramétrisations des courbes de niveau de H (et que
H(s(t)) = cte).

Or, grad H(1,1) = 0 et la matrice hessienne de H en (1,1) est

(i)

Ses valeurs propres sont positives. Par le théoréme 3.3.4, p. 59 le point (1, 1)
est un minimum local pour H. Les courbes de niveau autour d’un minimum
local sont des courbes fermeées.
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Annexe A

Notes techniques et
compléments

A.1 Notations

Logique — Ensembles

v
=
=
=

R )
ECF

{z | p(x)}
0

U
N

Ex F
E’n

pour tout, quel que soit

il existe, on peut trouver

implique, entraine

est équivalent a , si et seulement si

égal par définition a

x appartient & I’ensemble E'; x est élément de F.
FE est inclus dans F'; F est un sous-ensemble de F

ensemble des x tels que la propriété p(z) est vraie
ensemble vide

union

intersection

Ensemble produit; E x F := {(z,y)|lx € E ety € F'}

E x---x E (nfois). Les éléments de E™ sont les n-uples
(x1,...,2p) avec z; € E.

Application — Fonctions
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Une application f définie sur 'ensemble E &
valeurs dans I’ensemble F' est une correspondance qui associe & tout élément
x € E un élément y = f(z) € F. On peut 'imaginer comme une cause
x qui détermine un effet f(x). On note f : E — F et/ou f : = — y.



L’application f est déterminée par son graphe I'f :

I'y:={(z,y) e ExF|y=f(z)} CExF. () Iy

~

Lorsque E = F = R, le graphe de f est un sous- P
ensemble du plan que ’on utilise pour visualiser f.
Si E = R? et F = R, cette visualisation peut se
faire en perspective (graphe 3D).

Les mots application et fonction sont synonymes. Le terme “fonction” est
plutot reservé aux applications & valeurs numeériques (f : £ — R) mais nous
I’avons aussi employé pour des applications a valeur dans R".

Une application f: E — F est :

— injective si f(x) = f(2') = x =2’ (au plus une préimage).

— surjective si ¥ y € F, 3 x € E tel que f(z) = y (au moins une

préimage).

— bijective si elle est injective et surjective (exactement une préimage).

A.2 Entiers

Les entiers sont :
« les entiers naturels : N:={0,1,2,3,...}
o les entiers relatifs : Z:={...,-2,-1,0,1,2,...}.

Le calcul avec les nombres entiers est, par nature, un calcul machinal.
Depuis I’Antiquité, on se sert d’abaques ou de bouliers. Notre écriture de
position (unités, dizaines, etc), introduite par les Hindous et diffusée par les
Arabes dans le Haut-Moyen-Age, est un codage graphique de ces procédés. Le
logiciel d’une calculette ou d'un ordinateur est élaboré sur le méme principe
que ’abaque ou le boulier.

Les logiciels de calcul scientifique comme MAPLE sont censés calculer
exactement en nombre entier sans limite a priori. Les restrictions ne pro-
viennent que des capacités de mémoire et de rapidité de la machine sur
laquelle ils sont implantés. En revanche, de nombreux autres programmes
imposent des limites sur la grandeur des nombres entiers.

Des calculs avec des entiers de plus de 100 chiffres sont quotidiennement
effectués en cryptographie pour la sécurité des données informatiques et leur
transmission sur l'internet.
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A.3 Nombres rationnels

L’ensemble de nombres rationnels Q est ’ensemble des fractions
p
Q:Z{E | p,q € Z et q # 0}

muni de ’addition et de la multiplication usuelles

/

p P _pita’ p P o
q dq aq' g ¢ g
Avec ces opérations, Q est un corps, c’est-a-dire que pour tout z,y,z € Q
P ) ps, que p Y )
on a:

1) (z4+y)+z=x+(y+2). 5
2)0+x=2+0=ux. 6
3) 3 —xe€Qtel quex+(—z)=0. 7
4) t+y=y+zx. 8

9) les éléments non-nuls sont inversibles : si x # 0, il
existe (un unique) x~! avec xz~! =1

La propriété 9) est la seule qui ne soit pas vraie pour Z. Toutes les
propriétés algébriques de Q découlent de celles ci-dessus. Par exemple, 0z = 0
provient de 0z = (0 + 0)x = O0x + Ox.

Un nombre rationnel p/q est un couple d’entier (p,q) avec la relation
d’équivalence

(p,0) ~@.d) = pd=p4q
Les nombres rationnels se prétent donc au calcul exact & la machine, comme
les nombres entiers.

Dans la vie quotidienne, les fractions sont utilisées pour la mesure ap-
proximative des grandeurs continues (longueurs, temps, etc). Par exemple
x = 0.354 veut dire = 354/1000. Cependant, comme l'ont découvert les
Pythagoriciens (Ve siécle avant JC), les nombres rationnels sont impropres
a l'expression exacte des grandeurs continues et on ne peut pas les mettre
en bijection avec tous les points d’une droite. Par exemple, la longueur d de
la diagonale d'un carré de coté 1 satisfait I'équation d? = 2 par le théoréme
de Pythagore. Or, il n’existe aucune fraction dont le carré vaut 2. En effet :

Proposition A.3.1 Soient k et m des entiers positifs. Supposons que l’équa-
tion ¥ = m n’ait pas de solution dans Z. Alors, elle n’en a pas non plus
dans Q.
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PrEUVE: La fraction p/q qui satisferait (p/q)® = m n’est pas un entier par Uhypothése.
Donc g # 1. On suppose que p/q est une fraction réduite, c’est-a-dire qu'’il n’y a pas de
possibilité de simplification entre p et ¢ (exemple 3/4). Dans ce cas, la fraction

( B)k _pp
q q---q
est aussi réduite, car on ne peut toujours rien simplifier, et ¢* # 1. Donc la puissance k€

d’une fraction qui n’est pas un entier n’est pas non plus un entier. |:|

A.4 Nombres réels

Considérons les deux affirmations suivantes :

1. Si la température d’une piéce passe de 18° & 21° en une heure, il y a
eu au moins un instant pendant cette heure ou cette température a été
égale & 20°.

2. Quand une balle de tennis passe d’un c6té & I'autre du court, il y a un
instant ol son centre de gravité est exactement au dessus du filet.

Ces affirmations relevent du principe de continuité qui reflete notre
impression sur la nature “continue” de grandeurs comme le temps, la tempé-
rature ou la position d’un objet dans I'espace. Elles ne sont guére vérifiables
expérimentalement. On accumulerait plutdot des preuves du contraire! En
visionnant le film d’une partie de tennis image par image, la probabilité est
nulle d’en trouver une ou le centre de la balle soit exactement au dessus du
filet (& comparer avec la remarque 2.6.3, p. 43). Le principe de continuité
n’est qu’une vue de 'esprit, une sorte d’exigence du raisonnement.

Reste a trouver un systéme de nombres maniable et logiquement cohérent
dans lequel le principe de continuité soit vrai. Historiquement, ce fut une
tache difficile qui a duré plus de 2000 ans et ne fut achevée qu’a la fin du
XIXe siecle 6, ch. 2].

Le corps des nombres réels R est ’aboutissement de ces longs efforts.
Il est exactement construit pour que le principe de continuité fonctionne!.
Les mathématiciens en ont plusieurs constructions équivalentes (|1, p. 177],
[6, ch. 2]). Intuitivement, un nombre réel est une limite de fractions.

Nous nous bornerons ici & expliquer par un exemple le maniement pra-
tique des nombres réels. Considérons la grandeur z?. Comme 12 =1 < 2 et
22 = 4 > 2, le principe de continuité dit qu’il existe au moins un nombre réel

'L’adjectif “réel” est usurpé puisque le principe de continuité n’existe que dans notre
imagination. Cette confusion est source de blocages psychologiques envers les nombres
complexes, arbitrairement considérés eux comme “imaginaires”.
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1 <r < 2tel que r? = 2. Comme x — x2 est strictement croissante, il n’y
en aura qu’un. Cherchons-le :

x |11 12 13 14 15

2 <2 ‘ oui oui oul oui non
Donc 1.4 < r < 1.5. On recommence avec un pas plus fin :

x  [140 141 142

22 <2 ‘ oul oul non

donc 1.41 < r < 1.42, etc. On obtiendra ainsi, successivement, de plus en
plus de décimales de /2.

Cette procédure illustre deux des facons de s’imaginer un nombre réel :

1. comme une suite d’intervalles emboités d’extrémités rationnelles dont
la longueur tend vers 0.

2. comme un développement décimal illimité. Si le nombre est rationnel,
son développement est fini ou devient périodique. Mais un nombre
irrationnel, comme /2, a un c6té inatteignable : la connaissance de ses
décimales ne pourra pas s’obtenir en un nombre fini d’opérations.

La suite d’intervalles circonscrivant un nombre réel n’est évidemment
pas unique. En général, son écriture décimale ne l’est pas non plus. Par
exemple : 0.999.. = 1.000... En effet, si n := 0.999.., on a 10n = 9.999.., d’ou
10n —n =9 et doncn = 1.

En pratique, et avec les machines, on travaille avec des nombres réels
“arrondis” qui correspondent & de petits intervalles de nombres rationnels
fermés & gauche :

=~ 0453 <= 0.4525 <z < 0.4535

Dans MAPLE, la commande evalf(X,n) renvoie I’évaluation de l’expression
X arrondie & n chiffres, en principe sans limite sur n due au logiciel. Mais
attention aux multiples piéges! Par exemple :

> v = evalf(sqrt(2),40);
v = 1.414213562373095048801688724209698078570
>vi2-2;
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Cette réponse v2 — 2 = 0 est manifestement fausse. On a v = v/2+¢ avec
e~ 1073 (on a demandé 40 chiffre, il reste 39 décimales). D’oil

v —2=242 4+ -2 ~ 2.
On s’attend ainsi a ce que v2—2 =~ 1073 ou 10738, Il se passe qu’en effectuant
I’élévation au carré de v, MAPLE a repris sa précision par défaut, qui est
de 10 chiffres. Cette précision est controlée par la commande Digits et, si
I’on veut garder nos 40 chiffres, il faut le demander avant de commencer le
calcul -

> Digits :=45: v"2-2;
.92808 10739

Cette fois, la réponse est plausible. De tels avatars ne sont pas dus & des
imperfections du logiciel ; ils sont inhérents au maniement des nombres réels
sur une machine et imposent de séveres limites aux simulations numériques.

A.5 Entre les rationnels et les réels

Si la construction des nombres réels ne s’est achevée qu’a la fin du XIXe
siécle, on n’a pas attendu jusque-1a pour faire des calculs ! Les Arabes, puis les
Italiens, ont développé au Moyen-Age le calcul algébrique que 'on connait
avec des nombres rationnels et des expressions comme /u, etc. Il s’agit
de calcul formel. On ne s’occupe pas de savoir ce que désigne le symbole
Vu. Il est traité comme une variable de polynome, sauf qu’il satisfait a la
relation (\/5)2 = u. Cela permet, chaque fois que I'on rencontre (/u)?,
de le remplacer par u. De méme, on peut calculer avec /u, qui satistfait a
(\?’/ﬂ)?’ = u, ou avec d’autres symboles satisfaisant & des relations algébriques
plus compliquées.

Certains nombres, comme 7 ou e sont en revanche transcendants : il ne
satisfont & aucune équation polyndmiale & coefficients rationnels. Dans les
calculs, ils se comportent comme des variables, sans autres simplifications
possibles que celles usuelles dans les polynoémes.

Contrairement & ’approche numérique des nombres réels, les algorithmes
de ce calcul symbolique se prétent au calcul exact a la machine. Cela permet
de caluler exactement avec de petites parties de R. Voici deux exemples
avec MAPLE :
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> v = (1+sqrt(2))*; w = (1+Pi)%;
v = (1 + \/5)4

w:=(1+m)*

> expand(v); expand(w);
17+ 122

144r+ 672 +4m + 7t

A.6 Nombres complexes

Le passage des nombres réels R aux nombres complexes C reléve du pro-
cédé expliqué dans le § A.5 : on calcule algébriquement avec les nombres réels
et une expression v/—1 que I’on note généralement i. Un nombre complexe
est donc un polynéme en une variable 4 mais, comme 32 se remplace par —1,
on n’aura que des polynomes de degré 1. Un nombre complexe est donc un
expression a+ bi. La somme et le produit se font comme pour des polynomes,
en remplacant chaque 2 par —1. Exemple :

(3+4i)(1 —2i) =3 +4i —6i — 8> =11 —2i

i® =% = —i.
Avec ces opérations, I'ensemble C des nombres complexes est un corps (p.
93) : la seule chose non-banale & vérifier est que si a + bi # 0, il admet un
inverse. Celui-ci est donné par

a—bi

. 71_
(a+b2) —m

(A1)

Se donner un nombre complexe z = a + bi € C revient a se donner un
un couple (a,b) € R? de nombres réels. On met ainsi en bijection C avec
R?, donnant l'interprétation géométrique des nombres complexes comme les
points du plan (les nombres réels devenant les points de I’axe horizontal). Si
z=a+b € C, alors

1. a s’appelle la partie réelle et b la partie imaginaire de z.

2. Le nombre complexe Z := a — ib s’appelle le conjugué de z. Dans le
plan, z et Z s’obtiennent I’'un de l'autre par réflexion par rapport a
laxe horizontal. On a z 4+ 2/ =Z+ %" et 22/ =2z 7
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3. Observons que 2% = a® + b € R>o. Le nombre réel

|zl =VzZ=Va?>+b>0

s’appelle le module de z. Par le théoréme de Pythagore, |z| est la
distance entre z et l'origine 0. La formule A.1 peut se réécrire :

1 2
ER

4. les coordonnées polaires permettent d’écrire z = a + b sous forme

trigonométrique :
z = p(cosf + i sinB) (A.2)

On a donc a = pcosf, b = psinf et p = |z|. L’angle 0, 'argument
de z, est défini & un multiple entier de 27 prés (et non-défini si z = 0).
La relation tg 6 = 3 a lieu. La formule pour # en utilisant la fonction

arctg dont les valeurs sont dans [—F, 7] est
tg (2 ia>
- { e, ueZ (A3
gg)+m sia<0

Par exemple : 'argument de 1 + i est 7/4 et celui de —1 + ¢ est 37 /4.

=

axe imaginaire

Notation exponentielle des nombres complexes : En comparant les
développements de Taylor (voir p. 50) de coswu, sinu et e* :
cosu = 1 — 2 + Lt o+
sinuy = U — %ug +
e =1 + u + $u2 + Fud + fub +



et en remplacant u par ¢0 dans la derniére équation, Euler a trouvé que :

e = cosf + i sin 6 (A.4)
En combinant avec (A.2), on obtient la notation exponentielle des nombres
complexes :

z = pe'’ (A.5)

ou p = |z| est le module et # 'argument de z. La notation exponentielle rend
le produit des nombres complexes particuliérement simple :

2y — pezﬂp/eie’ _ pp/ei(9+9’) (A6)
On voit que lors d’un produit, les modules se multiplient et les arguments
s’additionnent. En particulier, la multiplication par ¢ est une rotation de
/2. En restreignant aux nombres réels (§ = 0 ou 7) cette interprétation
géométrique du produit des nombres complexes jette un nouvel éclairage
sur la régle des signes des nombres réels (moins par moins = plus). Quant
a l'addition des nombres complexes, c’est, géométriquement, ’addition des
vecteurs dans le plan.

A.7 Polynoémes
Un polyndme de degré n est une expression

P(x) :=apa" + -+ a1x + ag (A.7)

avec a, # 0. Les coefficients ai sont dans un corps K, pour nous R ou C. Un
polynoéme définit donc une fonction de K dans K. Un nombre v € K est une
racine du polynéme P si P(u) = 0.

Il est avantageux de pouvoir décomposer un polynéme P en produit de
polyndmes de degré plus petit. Une bonne situation est d’avoir des facteurs
du 1er degré x—u. Cela implique que u est une racine de P ; on a équivalence :

Proposition A.7.1 u € K est une racine du polynéme P si et seulement si
P est divisible par x — u, ¢’est-a-dire qu’il existe un polynome Q tel que

P(z) = (z —u)Q(x).

En particulier, un polynome de degré n o au plus n racines.
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PrEUVE: Comme pour les nombres entiers, le calcul des polynémes comprend la division
avec reste : on peut diviser P par un polynéme S # 0, obtenant un quotient ) et un
reste R :

P(z) = 5(X)Q(z) + R(x)
avec degré(R) < degré(S). Si S =z — u , le degré de S vaut 1 et donc R = 7o est un

polynéme constant. Mais comme P(u) = 0, on aura 7o = 0. |:|

Le corps des nombres complexes jouit de la propriété remarquable que
tout polyndéme se factorise de facon maximale. En effet, on peut démontrer :

Théoréme A.7.2 (Théoréme fondamental de ’algébre) Soit P(z) :=
anx"+- - -4arx+ag un polynéme a coefficients dans C. Alors, P se décompose
en produit de polynémes du ler degré :

P(z) = an [ (2 — w)
k=1

(Remarque : les racines ug, € C de P ne sont pas forcément toutes distinctes.)

Exemple : ['équation z” = 1 admet n solutions dis-
tinctes : {2 /" | k = 0,...,n — 1}. Le module de ces
nombres complexes est 1 et leur argument est 2wk/n. On
les appelle les racines néme de ’unité. Géométrique-
ment, elles constituent les sommets d’un polygone régu-

Racines 6°¢
lier & n cotés sur le cercle de rayon 1. Ce sont donc les de Dunité

racines du polynoéme 2™ — 1 qui se factorise en

M1 = (Z _ 1)(2 _ €2i7r/n)(z _ e4i7r/n) . (Z _ €2i7r(n—1)/n)'

Dans le corps des nombres réels certains polyndémes ne se factorisent pas.
Par exemple, un polynomes du 2¢ degré P(x) = ax? + bz + ¢ ne se factorise
que si son discriminant b?> — 4ac > 0. Sinon, il n’a pas de racines réelles et P
est irréductible. Il se trouve que c’est le seul cas :

Proposition A.7.3 Tout polynome a coefficients réels se factorise en pro-
duit de polyndémes de degré 1 et de polyndmes de degré 2 dont le discriminant
est strictement négatif.

PREUVE: Soit P un polynéme & coefficients réels. Considéré comme un polynome a
coefficients complexes il se factorise complétement, par le théoréme A.7.2 :

P(x) =an H(x — ug)
k=1
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avec ur € C. On peut conjuguer dans C cette derniére équation :

n

P(z)=a [ [ @ - ).

k=1

Siz € R, on a P(z) = P(x) puisque les coefficients de P sont réels. Cela entraine que si
ug, := p(cos @+ isin 0) est une racine de P non réelle, alors Ty est aussi racine de P. Dans
ce cas, on peut regrouper ces deux racines conjuguées

(@ —ug)(z —Tg) = z° + 2pcos O + p°

ce qui donne un polynome du 28 degré a coefficients réels et & discriminant négatif. []

A.8 Espaces vectoriels — Produits scalaires

Définition : Un espace vectoriel (réel) est un ensemble V' muni de deux
lois
VxV 5 v RxV — V
et .
(z,y) — z+y Ay) = Ay
satisfaisant aux axidomes suivants : il existe un élément 0 € V' (le vecteur
nul) et, pour tout z,y,z € Vet \,u € R, on a

1) (z4y)+z=x+(y+ 2). 5 A(z4+y)=A-z+ Ay
2) 0+zx=2+0=ux. 6) A +p)-x=Az+p-x.
3) A(—z) e Vtelquex+(—x)=0. 7) (Ap)-z=A(u-z).

4) z+y=y+uz. 8) 1-xz=ux.

Les éléments de V s’appellent des vecteurs et ceux de R des scalaires.
Si ’on remplace R par C, on aura la définition d’'un espace vectoriel com-
plexe. Pour alléger 1’écriture, on notera ax pour a - x.

Les axiomes 1) & 8) ci-dessus impliquent d’autres propriétés, par exemple :
0-2 = 0. En effet, par 6), on a

0-z2=(0+0)-2=0-2+0-x

En soustrayant 0 - x (possible par 3)), il reste 0 - x = 0. De méme, on a
a-0=0et (-1) -2 =—x.

Soit V' un espace vectoriel et W C V. On dit que W est un sous-espace
vectoriel de V' si 0 € W et si

2 yeW=x+yeW etdzecW VIekR.

Par exemple, dans I’espace R3, une droite ou un plan passant par 0 sont des
sous-espaces vectoriels.
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Produit scalaire : Voici la démonstration de la proposition 2.1.1 p. 16
dont nous recopions 1’énoncé :

Proposition 2.1.1 Les propriétés du produit scalaire et de la norme sont

1) (x4y)-z=z-2+y- =z

2) (Az) -y =AMz -y).

3) x-y=y-zx.

4) ||lz| =0et (|lz|| =0 & =0 ).

5) Izl = Al |-

6) llz+yl* = [zl + lyl* + 22 - y.

7) |z -yl < |lz||ly|l (inégalité de Schwarz).

8) ||z + yll < ||zl + ||yl (inégalité du triangle).
PREUVE: Les propriétés 1) a 5) découlent directement des définitions du produit scalaire
et de la norme. L’énoncé 6) vient de 1) et 3) :

lz+yl*=(@+y) - @+y)=z-ct+y y+o y+y o=’ +y|*+2cy.
L’inégalité du triangle provient de 6) et de l'inégalité de Schwarz :

le+yl* = Izl +llyl* + 2z -y < llel* + llyl* + 2]z y| <

< el + iyl + 2l iyl = =l + lyl])?*.

Il reste a démontrer I'inégalité de Schwarz. La démonstration est assez intéressante. Si
z-y =0, il n’y arien & démontrer. Supposons que z -y # 0, ce qui implique = # 0 et, par
la propriéte 4), ||z|| # 0.

On calcule ||ax + y||* pour a € R :

0 < flax +y[|* = (az +y) - (az +y) = o®|l«]|* + 2a (z - y) + [|y]|*.
Le membre de droite est un polynéme du deuxiéme degré en « :
0< Ao’ 4 Ba +C.

Cela montre que I’équation 0 = Ao’ + Ba +C a au plus une solution, d’ott B2 —4AC < 0.
En remplagant A, B et C par leurs valeurs, cette derniére inégalité devient :

4(x-y)* < 4| llyl*.

En prenant les racines carrées, on obtient 'inégalité de Schwarz. []

A.9 Composantes principales

Imaginons que l'on fasse n mesures de p grandeurs. Les données recueillies
constituent une matrice (p x n) :

’,"11 ... e Tln
R:=| : (A.8)

/r‘pl o e o e fr‘pn
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la i®me mesure donnant le ®™me vecteur colonne R; de la matrice R. On
regarde R comme un nuage de n points dans RP. L’analyse en composante
principales [15] résout la question suivante : comment projeter R dans un
sous-espace II de dimension & < p dans RP en produisant le minimum de
distorsion ? La distorsion entre deux nuages R et R’ se mesure par le nombre
S |R: — R;||%. Les motivations sont les suivantes :

1. compression de I'information pour stockage ou transmission.
2. représentation graphique des données (k = 2).

3. élimination de petites perturbations dues aux imprécisions ou a un

bruit de fond.

4. mise en évidence de certaines combinaisons linéaires des données qui
sont (presque) constantes, en vue de dégager des “lois de conservation”
(analogues & la loi de conservation de ’énergie en physique).

L’idée pour trouver II est la suivante. On suppose que » . ; R; = 0, ce
qui s’obtient en translatant 1’origine au centre de gravité %Z?:l R; =0du
nuage R. On forme alors la matrice de Gram des vecteurs ligne :

S := RR" € My,

Les coefficients s;; de S sont les produits scalaires des vecteurs ligne de R ;
S est donc une matrice symétrique. Supposons, pour simplifier, que S ait p
valeurs propres distinctes A\ > --- > X, (on peut montrer que les valeurs
propres d’une matrice de Gram sont > 0). On peut montrer :

Proposition A.9.1 1. Le k-sous-espace vectoriel II cherché est engendré
par les vecteurs propres correspondant aur valeurs propres Ai,..., A\
de la matrice S.

2. la distorsion introduite en projetant orthogonalement R sur Il est
A1+ -+ Ap. Par ezemple, A1 = Ny = -+ = A\p = 0 s1 et seule-
ment st R est déja contenu dans un sous-espace vectoriel de dimension
k (c’est-a-dire rang R = k).
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de Gram 103
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d’une application linéaire 30
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transposée 20

d’un systéme d’équations 26
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mineur 21

ordre d’un 24

principal 37
minimum local 47, 59
module, d’'un nombre complexe 98
moindres carrés, méthode des 63
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complexes 97
rationnels 93
réels 94
transcendants 96
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orthogonaux, vecteurs 17

oscillateur harmonique 86
amorti 87

partielle, dérivée 51
parties, intégration par 69
passage, matrice de 31
pente 45
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polynéme 99
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degré d’un 99
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racine d’'un 99
potentiel 53, 76
différence de 76
primitive d’une fonction 66
principal, mineur 37
principales, composantes 103
produit de matrices 19
produit scalaire 15
proies-prédateurs, systéme 89
projection sur un plan 33, 36
propre, valeur
d’une application linéaire 32
d’une matrice 32
propre, vecteur
d’une application linéaire 32
d’une matrice 32

racine
de 'unité 100
d’un polynéme 99
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rang
d’un systéme 27
d’une matrice 25,
rationnels, nombres 93
rayon spectral 38
réelle, partie 97
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régression linéaire 63
relatifs, entiers 92
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scalaire 101
Schwarz, inégalité de 16, 102

sensivité aux conditions initiales 12

Simpson, formule de 70
spectral, rayon 38
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d’une application linéaire 33
d’une matrice carrée 33
sous-espace vectoriel 101
stable,
cycle 8

ensemble invariant 81

état stationnaire 8
standard, base de R™ 18
stationnaire, état 8, 80
substitution, intégration par 67
surjective, application 92
symétrique, matrice 37
systéme dynamique

continu 80

discret 3

linéaire 37

taille d’'une matrice 19
Taylor
reste 50
formule de (1 variable) 50
formule de (n variables) 57
temps de doublement 7
tire-bouchon, régle du 25
trapézes, formule des 70
trajectoire
d’un champ de vecteurs 78
d’un systéme continu 80
d’un systéme discret 4
transcendants, nombres 96
transposée, matrice 20
travail 76
traversement, lemme de 46
triangle, inégalité du 16
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variables séparables 53
vecteur 101
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