Deformations, cohomologies and homotopy of relative Rota-Baxter Lie algebras

Yunhe Sheng
(Joint work with C. Bai, L. Guo, A. Lazarev and R. Tang)

Department of Mathematics, Jilin University, China

Global Poisson Webinar, April 8, 2021
The notion of Rota-Baxter operators on Lie algebras was introduced as the operator form of the classical Yang-Baxter equation.

Definition

A linear operator \(T : \mathfrak{g} \rightarrow \mathfrak{g} \) on a Lie algebra \(\mathfrak{g} \) is called a **Rota-Baxter operator** (of weight \(\lambda \)) if the following condition is satisfied:

\[
[T(x), T(y)]_\mathfrak{g} = T([T(x), y]_\mathfrak{g} + [x, T(y)]_\mathfrak{g} + \lambda [x, y]_\mathfrak{g}).
\]

Semonov-Tian-Shansky proved that if there is an \(\text{ad} \)-invariant, non-degenerate, symmetric bilinear form on \(\mathfrak{g} \), then a Rota-Baxter operator and a **triangular \(r \)-matrix** \(([r, r] = 0) \) are equivalent.
Example

Let the Lie algebra \mathfrak{g} be the direct sum of two subalgebras \mathfrak{g}_1 and \mathfrak{g}_2. Then

$$T(x_1, x_2) = -x_1, \quad \forall x_1 \in \mathfrak{g}_1, x_2 \in \mathfrak{g}_2$$

is a Rota-Baxter operator of weight 1.
Let $R \in \text{End}(\mathfrak{g})$ be a solution of the modified Yang-Baxter equation:

$$[R(u), R(v)]_\mathfrak{g} = R([R(u), v]_\mathfrak{g}) + R([u, R(v)]_\mathfrak{g}) - [u, v]_\mathfrak{g},$$

from which Semenov-Tian-Shansky obtained an Infinitesimal Factorization Theorem for the Lie algebra \mathfrak{g} with important applications to integrable systems. Under the transformation

$$R = \text{Id} + 2T,$$

the operator R satisfies the modified Yang-Baxter equation if and only if the operator T is a Rota-Baxter operator of weight 1.
Kupershmidt introduced the notion of a relative Rota-Baxter operator (also called an O-operator) on a Lie algebra \mathfrak{g} with respect to arbitrary representation.

Definition

A *relative Rota-Baxter operator* on a Lie algebra $(\mathfrak{g}, [-, -]_\mathfrak{g})$ with respect to a representation $(V; \rho)$ is a linear map $T : V \rightarrow \mathfrak{g}$ satisfying the following quadratic constraint:

$$[Tu, Tv]_\mathfrak{g} = T(\rho(Tu)(v) - \rho(Tv)(u)), \quad \forall u, v \in V.$$

A *relative Rota-Baxter Lie algebra* is a triple $((\mathfrak{g}, [\cdot, \cdot]_\mathfrak{g}), \rho, T)$, where $(\mathfrak{g}, [\cdot, \cdot]_\mathfrak{g})$ is a Lie algebra, $\rho : \mathfrak{g} \rightarrow \mathfrak{gl}(V)$ is a representation of \mathfrak{g} on a vector space V and $T : V \rightarrow \mathfrak{g}$ is a relative Rota-Baxter operator.
Consider the semidirect product Lie algebra \((\mathfrak{g} \oplus V, [\cdot, \cdot]_{\times})\):

\[
[x + u, y + v]_{\times} = [x, y]_{\mathfrak{g}} + \rho(x)v - \rho(y)u.
\]

Proposition

A linear map \(T : V \to \mathfrak{g}\) is a relative Rota-Baxter operator if and only if the graph of \(T\),

\[
G_T := \{Tu + u \mid \forall u \in V\}
\]

is a subalgebra of the semidirect product Lie algebra \((\mathfrak{g} \oplus V, [\cdot, \cdot]_{\times})\).
Example

Let \(r \in \wedge^2 g \) be a **triangular \(r \)-matrix**. Define \(r^\#: g^* \rightarrow g \) by
\[
\langle r^\#(\xi), \eta \rangle = r(\xi, \eta).
\]
Then \(r^\# \) is a relative Rota-Baxter operator on \(g \) with respect to the coadjoint representation.

It is well known that a triangular \(r \)-matrix gives rise to a triangular Lie bialgebra, which we denote by \((g, r)\). We will see that deformations and cohomologies of triangular Lie bialgebras can be studied using the general framework of relative Rota-Baxter Lie algebras.

Example

Let \(\omega \in \wedge^2 g^* \) be a **symplectic structure** on a Lie algebra \(g \). Then \((\omega^\#)^{-1} \) is a relative Rota-Baxter operator on the Lie algebra \(g \) with respect to the coadjoint representation, where \(\omega^\# : g \rightarrow g^* \) is defined by
\[
\langle \omega^\#(x), y \rangle = \omega(x, y)
\]
for \(x, y \in g \).
Examples

Example

Let $r \in \wedge^2 g$ be a triangular r-matrix. Define $r^\# : g^* \rightarrow g$ by
\[
\langle r^\#(\xi), \eta \rangle = r(\xi, \eta).
\]
Then $r^\#$ is a relative RB operator on g with respect to the coadjoint representation.

It is well known that a triangular r-matrix gives rise to a triangular Lie bialgebra, which we denote by (g, r). We will see that deformations and cohomologies of triangular Lie bialgebras can be studied using the general framework of relative Rota-Baxter Lie algebras.

Example

Let $\omega \in \wedge^2 g^*$ be a symplectic structure on a Lie algebra g. Then $(\omega^\#)^{-1}$ is a relative Rota-Baxter operator on the Lie algebra g with respect to the coadjoint representation, where $\omega^\# : g \rightarrow g^*$ is defined by
\[
\langle \omega^\#(x), y \rangle = \omega(x, y)
\]
for $x, y \in g$.
Example

Let \(r \in \wedge^2 \mathfrak{g} \) be a **triangular \(r \)-matrix.** Define \(r^\# : \mathfrak{g}^* \to \mathfrak{g} \) by
\[
\langle r^\#(\xi), \eta \rangle = r(\xi, \eta).
\]
Then \(r^\# \) is a relative RB operator on \(\mathfrak{g} \) with respect to the coadjoint representation.

It is well known that a triangular \(r \)-matrix gives rise to a triangular Lie bialgebra, which we denote by \((\mathfrak{g}, r)\). We will see that deformations and cohomologies of triangular Lie bialgebras can be studied using the general framework of relative Rota-Baxter Lie algebras.

Example

Let \(\omega \in \wedge^2 \mathfrak{g}^* \) be a **symplectic structure** on a Lie algebra \(\mathfrak{g} \). Then \((\omega^\#)^{-1}\) is a relative Rota-Baxter operator on the Lie algebra \(\mathfrak{g} \) with respect to the coadjoint representation, where \(\omega^\# : \mathfrak{g} \to \mathfrak{g}^* \) is defined by
\[
\langle \omega^\#(x), y \rangle = \omega(x, y)
\]
for \(x, y \in \mathfrak{g} \).
Rota-Baxter operators \rightsquigarrow splitting of algebras

zinbiel alg. \longrightarrow dendriform alg. \longrightarrow pre-Lie alg.

comm. alg. \longrightarrow ass. alg. \longrightarrow Lie alg.

perm. alg. \longrightarrow dialg. \longrightarrow Leibniz alg.

Averaging operators (embedding tensors) \rightsquigarrow duplication of algebras
Main results

Our approach to study deformations, cohomologies and homotopy of RB Lie algebras is using the ‘controlling algebra’.

More precisely, we construct an L_∞-algebra whose Maurer-Cartan elements are relative Rota-Baxter Lie algebras.

- A relative Rota-Baxter Lie algebra gives rise to a twisted L_∞-algebra that controls its deformations;
- The l_1 in the above twisted L_∞-algebra defines a cohomology of the relative Rota-Baxter Lie algebra;
- Replace vector spaces by graded vector spaces, we get homotopy relative Rota-Baxter Lie algebras.
Our approach to study deformations, cohomologies and homotopy of RB Lie algebras is using the ‘controlling algebra’.

More precisely, we construct an L_∞-algebra whose Maurer-Cartan elements are relative Rota-Baxter Lie algebras.

- A relative Rota-Baxter Lie algebra gives rise to a twisted L_∞-algebra that controls its deformations;
- The l_1 in the above twisted L_∞-algebra defines a cohomology of the relative Rota-Baxter Lie algebra;
- Replace vector spaces by graded vector spaces, we get homotopy relative Rota-Baxter Lie algebras.
Let \mathfrak{g} be a vector space. The graded vector space
\[C^*(\mathfrak{g}, \mathfrak{g}) = \bigoplus_{n=0}^{+\infty} C^n(\mathfrak{g}, \mathfrak{g}) = \bigoplus_{n=0}^{+\infty} \text{Hom}(\wedge^{n+1} \mathfrak{g}, \mathfrak{g}). \]
equipped with the Nijenhuis-Richardson bracket
\[[P, Q]_{\text{NR}} = P \bar{\circ} Q - (-1)^{pq} Q \bar{\circ} P, \quad \forall P \in C^p(\mathfrak{g}, \mathfrak{g}), Q \in C^q(\mathfrak{g}, \mathfrak{g}), \]
is a graded Lie algebra, where $P \bar{\circ} Q \in C^{p+q}(\mathfrak{g}, \mathfrak{g})$ is defined by
\[(P \bar{\circ} Q)(x_1, \cdots, x_{p+q+1}) = \sum_{\sigma \in S_{(q+1), p}} P(Q(x_{\sigma(1)}, \cdots, x_{\sigma(q+1)}), x_{\sigma(q+2)}, \cdots, x_{\sigma(p+q+1)}) \]

Lemma

$\mu \in \text{Hom}(\wedge^2 \mathfrak{g}, \mathfrak{g})$ defines a Lie algebra structure on \mathfrak{g} if and only if
\[[\mu, \mu]_{\text{NR}} = 0. \]
Let \mathfrak{g} be a vector space. The graded vector space

$$C^*(\mathfrak{g}, \mathfrak{g}) = \bigoplus_{n=0}^{+\infty} C^n(\mathfrak{g}, \mathfrak{g}) = \bigoplus_{n=0}^{+\infty} \text{Hom}(\wedge^{n+1}\mathfrak{g}, \mathfrak{g}).$$

equipped with the Nijenhuis-Richardson bracket

$$[P, Q]_{\text{NR}} = P\bar{\circ}Q - (-1)^{pq}Q\bar{\circ}P, \quad \forall P \in C^p(\mathfrak{g}, \mathfrak{g}), Q \in C^q(\mathfrak{g}, \mathfrak{g}),$$
is a graded Lie algebra, where $P\bar{\circ}Q \in C^{p+q}(\mathfrak{g}, \mathfrak{g})$ is defined by

$$(P\bar{\circ}Q)(x_1, \cdots, x_{p+q+1}) = \sum_{\sigma \in S_{(q+1),p}} P(Q(x_{\sigma(1)}, \cdots, x_{\sigma(q+1)}), x_{\sigma(q+2)}, \cdots, x_{\sigma(p+q+1)})$$

Lemma

$\mu \in \text{Hom}(\wedge^2\mathfrak{g}, \mathfrak{g})$ defines a Lie algebra structure on \mathfrak{g} if and only if

$$[\mu, \mu]_{\text{NR}} = 0.$$
Define d_μ by $d_\mu = [\mu, \cdot]_{\text{NR}}$. Then $(C^*(\mathfrak{g}, \mathfrak{g}), [\cdot, \cdot]_{\text{NR}}, d_\mu)$ is a dgLa, that controls deformations of the Lie algebra (\mathfrak{g}, μ).

Theorem

Let (\mathfrak{g}, μ) be a Lie algebra and $\mu' \in \text{Hom}(\wedge^2 \mathfrak{g}, \mathfrak{g})$. Then $(\mathfrak{g}, \mu + \mu')$ is a Lie algebra if and only if μ' is a Maurer-Cartan element of the dgLa $(C^*(\mathfrak{g}, \mathfrak{g}), [\cdot, \cdot]_{\text{NR}}, d_\mu)$.
It is well known that the Chevalley-Eilenberg coboundary operator $d_{CE} : \text{Hom}(\wedge^k g, g) \rightarrow \text{Hom}(\wedge^{k+1} g, g)$ for a Lie algebra g is given by

$$d_{CE}f(x_1, \cdots x_{k+1}) = \sum_{i=1}^{k} (-1)^{i+1} [x_i, f(x_1, \cdots, \hat{x}_i, \cdots, x_{k+1})] + \sum_{i<j} (-1)^{i+j} f([x_i, x_j], x_1, \cdots, \hat{x}_i, \cdots, \hat{x}_j, \cdots x_{k+1}).$$

Theorem-Definition

Let (g, μ) be a Lie algebra. Then

$$d_{CE}f = (-1)^{k+1} [\mu, f]_{NR}, \quad \forall f \in \text{Hom}(\wedge^k g, g).$$
Let V be a \mathbb{Z}-graded vector space. Denote by $\text{Hom}^n(\text{Sym}(V), V)$ the space of degree n linear maps from the graded vector space $\text{Sym}(V) = \bigoplus_{i=1}^{+\infty} \text{Sym}^i(V)$ to the \mathbb{Z}-graded vector space V. Set $C^m(V, V) := \text{Hom}^n(\text{Sym}(V), V)$ and $C^*(V, V) := \bigoplus_{n \in \mathbb{Z}} C^m(V, V)$. Then we have the graded Nijenhuis-Richardson bracket $[\cdot, \cdot]_{NR}$ on the graded vector space $C^*(V, V)$, which is a graded Lie algebra.

Theorem-Definition

The Maurer-Cartan elements $\sum_{k=1}^{+\infty} l_k$ of the graded Lie algebra $(C^*(V, V), [\cdot, \cdot]_{NR})$ are the L_∞-algebra structures on V.
The gLa structure for associative algebras is given by the Gerstenhaber bracket on $\bigoplus \text{Hom} (\otimes^k V, V)$. The cohomology groups for the deformation theories of associative algebras are the Hochschild cohomology groups;

The gLa structure for pre-Lie algebras (left-symmetric algebras) is given by the Matsushima-Nijenhuis bracket on $\bigoplus \text{Hom} (\wedge^{k-1} V \otimes V, V)$. The cohomology groups for the deformation theories of pre-Lie algebras are the Dzhumadil’daev cohomology groups;

The controlling algebra for Leibniz algebras is a gLa;

The controlling algebra for n-Lie algebras is a gLa.
An L_∞-algebra is a \mathbb{Z}-graded vector space $\mathfrak{g} = \bigoplus_{k \in \mathbb{Z}} \mathfrak{g}^k$ equipped with a collection $(k \geq 1)$ of linear maps $l_k : \otimes^k \mathfrak{g} \to \mathfrak{g}$ of degree 1 with the property that, for any homogeneous elements $x_1, \cdots, x_n \in \mathfrak{g}$, we have

(i) (graded symmetry) for every $\sigma \in \mathfrak{S}_n$,

$$l_n(x_{\sigma(1)}, \cdots, x_{\sigma(n-1)}, x_{\sigma(n)}) = \varepsilon(\sigma)l_n(x_1, \cdots, x_{n-1}, x_n),$$

(ii) (generalized Jacobi identity) for all $n \geq 1$,

$$\sum_{i=1}^{n} \sum_{\sigma \in \mathfrak{S}_{(i, n-i)}} \varepsilon(\sigma)l_{n-i+1}(l_i(x_{\sigma(1)}, \cdots, x_{\sigma(i)}), x_{\sigma(i+1)}, \cdots, x_{\sigma(n)}) = 0.$$
Maurer-Cartan elements

Definition (Getzler)

The set of **Maurer-Cartan elements** of an L_∞-algebra \mathfrak{g} is the set of those $\alpha \in \mathfrak{g}^0$ satisfying the Maurer-Cartan equation

\[
\sum_{k=1}^{+\infty} \frac{1}{k!} l_k(\alpha, \cdots, \alpha) = 0.
\]

Main results: the controlling algebra of relative Rota-Baxter Lie algebra

Let \mathfrak{g} and V be vector spaces. Denote by L' the following graded vector space

$$L' = \bigoplus_{n=0}^{+\infty} \text{Hom} (\wedge^{n+1} \mathfrak{g}, \mathfrak{g}) \oplus \text{Hom} (\wedge^n \mathfrak{g} \otimes V, V),$$

and denote by $\mathfrak{h} = \bigoplus_{n=0}^{+\infty} \text{Hom} (\wedge^{n+1} V, \mathfrak{g})$.

Theorem (Lazarev-S-Tang)

There is an L_∞-algebra structure $\{l_k\}_{k=1}^{+\infty}$ on the graded vector space $L'[1] \oplus \mathfrak{h}$, such that its Maurer-Cartan elements are exactly relative Rota-Baxter Lie algebra structures on \mathfrak{g} and V.

Maurer-Cartan elements contains

$$\mu \in \text{Hom} (\wedge^2 \mathfrak{g}, \mathfrak{g}), \quad \rho \in \text{Hom} (\mathfrak{g} \otimes V, V), \quad T \in \text{Hom} (V, \mathfrak{g}).$$
Main results: the controlling algebra of relative Rota-Baxter Lie algebra

Let \mathfrak{g} and V be vector spaces. Denote by L' the following graded vector space

$$L' = \bigoplus_{n=0}^{+\infty} \text{Hom}(\wedge^{n+1}\mathfrak{g}, \mathfrak{g}) \oplus \text{Hom}(\wedge^n \mathfrak{g} \otimes V, V),$$

and denote by $\mathfrak{h} = \bigoplus_{n=0}^{+\infty} \text{Hom}(\wedge^{n+1}V, \mathfrak{g})$.

Theorem (Lazarev-S-Tang)

There is an L_∞-algebra structure \(\{l_k\}_{k=1}^{+\infty} \) on the graded vector space $L'[1] \oplus \mathfrak{h}$, such that its Maurer-Cartan elements are exactly relative Rota-Baxter Lie algebra structures on \mathfrak{g} and V.

Maurer-Cartan elements contains

$$\mu \in \text{Hom}(\wedge^2 \mathfrak{g}, \mathfrak{g}), \quad \rho \in \text{Hom}(\mathfrak{g} \otimes V, V), \quad T \in \text{Hom}(V, \mathfrak{g}).$$
Let (μ, ρ, T) be a relative Rota-Baxter Lie algebra structure on g and V. Define $l_{k}^{\mu, \rho, T}$ by

$$l_{k}^{\mu, \rho, T}(x_1, \cdots, x_k) = \sum_{n=0}^{+\infty} \frac{1}{n!} l_{k+n}(\underbrace{\mu + \rho + T, \cdots, \mu + \rho + T}_{n}, x_1, \cdots, x_k).$$

According to Getzler’s results, $(L'[1] \oplus \mathfrak{h}, \{l_{k}^{\mu, \rho, T}\}_{k=1}^{+\infty})$ is an L_{∞}-algebra, called the twisted L_{∞}-algebra.

Theorem (Lazarev-S-Tang)

The triple $(\mu + \mu', \rho + \rho', T + T')$ is again a relative Rota-Baxter Lie algebra for

$$\mu' \in \text{Hom}(\wedge^2 g, g), \quad \rho' \in \text{Hom}(g, \mathfrak{gl}(V)), \quad T' \in \text{Hom}(V, g),$$

if and only if $\mu' + \rho' + T'$ is a Maurer-Cartan element of the L_{∞}-algebra $(L'[1] \oplus \mathfrak{h}, \{l_{k}^{\mu, \rho, T}\}_{k=1}^{+\infty})$.
There is a well known slogan, often attributed to Deligne, Drinfeld and Kontsevich: *every reasonable deformation theory is controlled by a differential graded Lie algebra (an L_∞-algebra), determined up to quasi-isomorphism.*
Related works in Poisson geometry

Recall that $\mathfrak{h} = \bigoplus_{k=1}^{+\infty} \text{Hom} (\wedge^{n+1} V, \mathfrak{g})$ and

$$L' = \bigoplus_{n=0}^{+\infty} \text{Hom} (\wedge^{n+1} \mathfrak{g}, \mathfrak{g}) \oplus \text{Hom} (\wedge^n \mathfrak{g} \otimes V, V).$$

Theorem (Lazarev-S.-Tang)

Let $((\mathfrak{g}, \mu), \rho, T)$ be a relative Rota-Baxter Lie algebra. Then the L_∞-algebra $(L'[1] \oplus \mathfrak{h}, \{\mathfrak{l}_k^{\mu, \rho, T}\}_{k=1}^{+\infty})$ is a strict extension of the L_∞-algebra $(\text{dgLa}) L'[1]$ by the L_∞-algebra $(\text{dgLa}) \mathfrak{h}$, that is, we have the following short exact sequence of L_∞-algebras:

$$0 \longrightarrow \mathfrak{h} \overset{\iota}{\longrightarrow} L'[1] \oplus \mathfrak{h} \overset{p}{\longrightarrow} L'[1] \longrightarrow 0,$$

where $\iota(\theta) = (0, \theta)$ and $p(f, \theta) = f$.
Let (μ, ρ, T) be a relative Rota-Baxter Lie algebra structure on g and V. Define the space of n-cochains $\mathcal{C}^n(\mu, \rho, T)$ by

$$\left(\text{Hom}(\wedge^n g, g) \oplus \text{Hom}(\wedge^{n-1} g \otimes V, V) \right) \oplus \text{Hom}(\wedge^{n-1} V, g).$$

Define the 	extbf{coboundary operator} $\mathcal{D} : \mathcal{C}^n(\mu, \rho, T) \to \mathcal{C}^{n+1}(\mu, \rho, T)$ by

$$\mathcal{D}(f, \theta) = (-1)^n \lambda_{1}^{\mu, \rho, T}(f, \theta).$$

We obtain that $(\bigoplus_{n=0}^{+\infty} \mathcal{C}^n(\mu, \rho, T), \mathcal{D})$ is a cochain complex.

Definition

The cohomology of the cochain complex $(\bigoplus_{n=0}^{+\infty} \mathcal{C}^n(\mu, \rho, T), \mathcal{D})$ is called the 	extbf{cohomology of the relative Rota-Baxter Lie algebra}. We denote its n-th cohomology group by $\mathcal{H}^n(\mu, \rho, T)$.
Consider infinitesimal deformations of a relative Rota-Baxter Lie algebra structure \((\mu, \rho, T)\) on \(g\) and \(V\):

\[
\begin{align*}
\mu_t &= \mu + t\mu' \\
\rho_t &= \rho + t\rho' \\
T_t &= T + tT' .
\end{align*}
\]

Theorem

There is a one-to-one correspondence between equivalence classes of infinitesimal deformations of the relative Rota-Baxter Lie algebra \((g, \mu, \rho, T)\) and the second cohomology group \(H^2(\mu, \rho, T)\).
Relations among cohomologies

Denote by

\[C^n(\mu, \rho) = \text{Hom}(\wedge^n g, g) \oplus \text{Hom}(\wedge^{n-1} g \otimes V, V), \]
\[C^n(T) = \text{Hom}(\wedge^{n-1} V, g). \]

The coboundary operator \(D : C^n(\mu, \rho, T) \rightarrow C^{n+1}(\mu, \rho, T) \) is given by

\[D(f, \theta) = (-1)^n (-[\pi, f]_{NR}, [[\pi, T]_{NR}, \theta]_{NR} + \frac{1}{n!} \underbrace{\cdots [[f, T]_{NR}, T]_{NR}, \cdots, T]_{NR}}_{n}) \]
\[= (\partial f, \delta \theta + h_T f). \]

\(D \) can be well-explained by the following diagram:

\[\cdots \rightarrow C^n(\mu, \rho) \xrightarrow{\partial} C^{n+1}(\mu, \rho) \xrightarrow{\partial} C^{n+2}(\mu, \rho) \rightarrow \cdots \]
\[\xrightarrow{h_T} \]
\[\cdots \rightarrow C^n(T) \xrightarrow{\delta} C^{n+1}(T) \xrightarrow{\delta} C^{n+2}(T) \rightarrow \cdots. \]
Theorem (Lazarev-S.-Tang)

There is a short exact sequence of the cochain complexes:

\[0 \longrightarrow (\bigoplus_{n=0}^{+\infty} C^n(T), \delta) \overset{\iota}{\longrightarrow} (\bigoplus_{n=0}^{+\infty} C^n(\mu, \rho, T), D) \overset{p}{\longrightarrow} (\bigoplus_{n=0}^{+\infty} C^n(\mu, \rho), \partial) \longrightarrow 0, \]

and there is a long exact sequence of the cohomology groups:

\[\cdots \longrightarrow H^n(T) \overset{H^n(\iota)}{\longrightarrow} H^n(\mu, \rho, T) \overset{H^n(p)}{\longrightarrow} H^n(\mu, \rho) \overset{c^n}{\longrightarrow} H^{n+1}(T) \longrightarrow \cdots, \]

where the connecting map \(c^n \) is defined by \(c^n([\alpha]) = [h_T \alpha] \), for all \([\alpha] \in H^n(\mathfrak{g}, \rho) \).
Let \((g, [\cdot, \cdot]_g, T)\) be a Rota-Baxter Lie algebra. Define the space of \(n\)-cochains \(C^n_{RB}(g, T)\) by

\[
C^n_{RB}(g, T) := C^n_{Lie}(g; g) \oplus C^n(T) = \text{Hom}(\wedge^n g, g) \oplus \text{Hom}(\wedge^{n-1} g, g).
\]

Define \(D_{RB}: C^n_{RB}(g, T) \rightarrow C^{n+1}_{RB}(g, T)\) by

\[
D_{RB}(f, \theta) = \left(d_{CE}f, \delta \theta + \Omega f \right), \quad \forall f \in \text{Hom}(\wedge^n g, g), \quad \theta \in \text{Hom}(\wedge^{n-1} g, g),
\]

where \(\Omega : \text{Hom}(\wedge^n g, g) \rightarrow \text{Hom}(\wedge^n g, g)\) is defined by

\[
(\Omega f)(x_1, \cdots, x_n) = (-1)^n \left(f(Tx_1, \cdots, Tx_n) - \sum_{i=1}^{n} Tf(Tx_1, \cdots, Tx_{i-1}, x_i, Tx_{i+1}, \cdots, Tx_n) \right).
\]
Theorem (Lazarev-S.-Tang)

The map D_{RB} is a coboundary operator, i.e. $D_{RB} \circ D_{RB} = 0$.

Definition (Lazarev-S.-Tang)

Let $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, T)$ be a Rota-Baxter Lie algebra. The cohomology of the cochain complex $(\bigoplus_{n=0}^{+\infty} \mathfrak{c}^n_{RB}(\mathfrak{g}, T), D_{RB})$ is taken to be the cohomology of the Rota-Baxter Lie algebra $(\mathfrak{g}, [\cdot, \cdot]_{\mathfrak{g}}, T)$. Denote the n-th cohomology group by $\mathcal{H}^n_{RB}(\mathfrak{g}, T)$.
Let \((g, [\cdot, \cdot]_g, r)\) be a triangular Lie bialgebra. Define the space of \(n\)-cochains \(C^n_{\text{TLB}}(g, r)\) by

\[
C^n_{\text{TLB}}(g, r) := \text{Hom} (\wedge^n g, g) \oplus \wedge^n g.
\]

Define the \textit{coboundary operator} \(D_{\text{TLB}} : C^n_{\text{TLB}}(g, r) \to C^{n+1}_{\text{TLB}}(g, r)\) by

\[
D_{\text{TLB}}(f, \chi) = \left(d_{CE} f, d_r \chi + \Theta f \right), \quad \forall f \in \text{Hom} (\wedge^n g, g), \ \chi \in \wedge^n g,
\]

where \(d_r : \wedge^n g \to \wedge^{n+1} g\) is given by \(d_r \chi = [r, \chi]\) and \(\Theta : \text{Hom} (\wedge^n g, g) \to \wedge^{n+1} g\) is defined by

\[
\langle \Theta f, \xi_1 \wedge \cdots \wedge \xi_{n+1} \rangle = \sum_{i=1}^{n+1} (-1)^{i+1} \langle \xi_i, f (r^\# (\xi_1), \cdots, r^\# (\xi_{i-1}), r^\# (\xi_{i+1}), \cdots, r^\# (\xi_{n+1})) \rangle.
\]
Theorem (Lazarev-S.-Tang)

The map \mathcal{D}_{TLB} is a coboundary operator, i.e. $\mathcal{D}_{TLB} \circ \mathcal{D}_{TLB} = 0$.

Definition (Lazarev-S.-Tang)

Let $(\mathfrak{g}, [\cdot, \cdot]_g, r)$ be a triangular Lie bialgebra. The cohomology of the cochain complex $(\bigoplus_{n=0}^{\infty} \mathfrak{c}_n^{TLB}(\mathfrak{g}, r), \mathcal{D}_{TLB})$ is called the cohomology of the triangular Lie bialgebra $(\mathfrak{g}, [\cdot, \cdot]_g, r)$. Denote the n-th cohomology group by $\mathcal{H}_{n}^{TLB}(\mathfrak{g}, r)$.
Let \((g, \{l_k\}_{k=1}^{+\infty})\) be an \(L_\infty\)-algebra and \((V, \{\rho_k\}_{k=1}^{+\infty})\) a representation. Then \((\mathfrak{h} := \bigoplus_{n\in\mathbb{Z}} \text{Hom}^n(\text{Sym}(V), g), \{l_k\}_{k=1}^{+\infty})\) is an \(L_\infty\)-algebra, where \(l_k\) is given by

\[
l_k(a_1, \cdots, a_k) = P \left[\cdots \left[\sum_{k=1}^{+\infty} (l_k + \rho_k), a_1 \right]_{\text{NR}}, a_2 \right]_{\text{NR}}, \cdots, a_k \right]_{\text{NR}}.\]

Theorem-Definition (Lazarev-S.-Tang)

A degree 0 element \(T = \sum_{k=1}^{+\infty} T_k \in \text{Hom}(\text{Sym}(V), g)\) is a homotopy relative Rota-Baxter operator on \((g, \{l_k\}_{k=1}^{+\infty})\) with respect to the representation \((V, \{\rho_k\}_{k=1}^{+\infty})\) if and only if \(T = \sum_{k=1}^{+\infty} T_k\) is a Maurer-Cartan element of the \(L_\infty\)-algebra \((\mathfrak{h}, \{l_k\}_{k=1}^{+\infty})\).
Let \((\mathfrak{g}, \{l_k\}_{k=1}^{+\infty})\) be an \(L_\infty\)-algebra and \((V, \{\rho_k\}_{k=1}^{+\infty})\) a representation. Then \((\mathfrak{h} := \bigoplus_{n \in \mathbb{Z}} \text{Hom}^n(\text{Sym}(V), \mathfrak{g}), \{l_k\}_{k=1}^{+\infty})\) is an \(L_\infty\)-algebra, where \(l_k\) is given by

\[
l_k(a_1, \cdots, a_k) = P \left[\cdots \left[\sum_{k=1}^{+\infty} (l_k + \rho_k), a_1 \right]_{\text{NR}}, a_2 \right]_{\text{NR}}, \cdots, a_k \right]_{\text{NR}}.
\]

Theorem-Definition (Lazarev-S.-Tang)

A degree 0 element \(T = \sum_{k=1}^{+\infty} T_k \in \text{Hom}(\text{Sym}(V), \mathfrak{g})\) is a homotopy relative Rota-Baxter operator on \((\mathfrak{g}, \{l_k\}_{k=1}^{+\infty})\) with respect to the representation \((V, \{\rho_k\}_{k=1}^{+\infty})\) if and only if \(T = \sum_{k=1}^{+\infty} T_k\) is a Maurer-Cartan element of the \(L_\infty\)-algebra \((\mathfrak{h}, \{l_k\}_{k=1}^{+\infty})\).
Remark

Dotsenko and Khoroshkin studied the homotopy of Rota-Baxter operators on associative algebras in

and noted that “in general compact formulas are yet to be found”. For Rota-Baxter Lie algebras, one encounters a similarly challenging situation.

We use the approach of ‘controlling algebras’ and their MC elements to formulate the notion of a homotopy version of a relative Rota-Baxter Lie algebra. Hopefully our research will provide some useful information for the operadic research of the homotopy of relative Rota-Baxter Lie algebras.
A degree 0 element $T = \sum_{k=1}^{+\infty} T_k \in \text{Hom} \left(\text{Sym}(V), \mathfrak{g} \right)$ with $T_k \in \text{Hom} \left(\text{Sym}^k(V), \mathfrak{g} \right)$ is a homotopy relative Rota-Baxter operator on an L_∞-algebra $(\mathfrak{g}, \{l_k\}_{k=1}^{+\infty})$ with respect to the representation $(V, \{\rho_k\}_{k=1}^{+\infty})$ if the following equalities hold for all $p \geq 1$ and all homogeneous elements $v_1, \cdots, v_p \in V$,

$$\sum_{1 \leq t \leq p-1} \sum_{k_1 + \cdots + k_m = t} \sum_{\sigma \in S(k_1, \cdots, k_m, 1, p-1-t)} \frac{\varepsilon(\sigma)}{m!} \cdot T_{p-t} \left(\rho_{m+1} \left(T_{k_1} (v_{\sigma(1)}, \cdots, v_{\sigma(k_1)}), \cdots, T_{k_m} (v_{\sigma(k_1+\cdots+k_m-1+1)}, \cdots, v_{\sigma(t)}, v_{\sigma(t+1)}) \right), v_{\sigma(t+2)}, \cdots, v_{\sigma(p)} \right)$$

$$= \sum_{k_1 + \cdots + k_n = p} \sum_{\sigma \in S(k_1, \cdots, k_n)} \frac{\varepsilon(\sigma)}{n!} \cdot l_n \left(T_{k_1} (v_{\sigma(1)}, \cdots, v_{\sigma(k_1)}), \cdots, T_{k_n} (v_{\sigma(k_1+\cdots+k_n-1+1)}, \cdots, v_{\sigma(p)}) \right).$$
A **pre-Lie**$_\infty$-**algebra** structure on a graded vector space V consists of degree 1 linear map $\{\theta_k\}_{k=1}^\infty$ from the graded vector space $\text{Sym}(V) \otimes V$ to V such that $\sum_{k=1}^{+\infty} \theta_k$ is a Maurer-Cartan element of the graded Lie algebra $(C^*(V, V), [\cdot, \cdot]_{MN})$.

Let $(g, \{\theta_k\}_{k=1}^{\infty})$ be a pre-$\operatorname{Lie}_\infty$-algebra. Define l_k by

$$l_k(x_1, \ldots, x_k) = \sum_{i=1}^{k} (-1)^{x_i(x_{i+1} + \cdots + x_k)} \theta_k(x_1, \ldots, \hat{x_i}, \ldots, x_k, x_i).$$

Then $(g, \{l_k\}_{k=1}^{\infty})$ is an L_∞-algebra, denoted by g^C. For all $k \geq 1$, we define $L_k : \operatorname{Sym}^{k-1}(g) \to \operatorname{gl}(g)$ by

$$L_k (x_1, \ldots, x_{k-1})(x_k) = \theta_k(x_1, \ldots, x_{k-1}, x_k).$$

Proposition

*With the above notation, $(g, \{L_k\}_{k=1}^{\infty})$ is a representation of the sub-adjacent L_∞-algebra g^C. Moreover, the identity map $\operatorname{Id} : g \to g$ is a strict homotopy relative Rota-Baxter operator on the L_∞-algebra g^C with respect to the representation $(g, \{L_k\}_{k=1}^{\infty})$.***
Theorem (Lazarev-S.-Tang)

Let $T \in \text{Hom} (V, \mathfrak{g})$ be a strict homotopy relative Rota-Baxter operator on an L_∞-algebra $(\mathfrak{g}, \{l_k\}_{k=1}^{+\infty})$ with respect to the representation $(V, \{\rho_k\}_{k=1}^{+\infty})$. Then $(V, \{\theta_k\}_{k=1}^{+\infty})$ is a pre-Lie$_\infty$-algebra, where $\theta_k : \otimes^k V \to V \ (k \geq 1)$ are linear maps of degree 1 defined by

$$\theta_k(v_1, \cdots, v_k) := \rho_k(Tv_1, \cdots, Tv_{k-1}, v_k), \quad \forall v_1 \cdots, v_k \in V.$$
The notion of an r_∞-matrix was introduced by A. Voronov and his collaborators in

D. Bashkirov and A. Voronov, r_∞-Matrices, triangular L_∞-bialgebras, and quantum$_\infty$ groups, 2015.

As expected, an r_∞-matrix gives rise to a homotopy relative Rota-Baxter operator with respect to the coadjoint representation.
Definition

A V-structure consists of a quadruple $(L, \mathfrak{h}, P, \Delta)$ where

- $(L, [\cdot, \cdot])$ is a graded Lie algebra,
- \mathfrak{h} is an abelian graded Lie subalgebra of $(L, [\cdot, \cdot])$,
- $P : L \rightarrow L$ is a projection, that is $P \circ P = P$, whose image is \mathfrak{h} and kernel is a graded Lie subalgebra of $(L, [\cdot, \cdot])$,
- Δ is an element in $\ker(P)$ such that $[\Delta, \Delta] = 0$.
Theorem (T. Voronov)

Let \((L, \mathfrak{h}, P, \Delta)\) be a \(V\)-structure. Then the graded vector space \(L[1] \oplus \mathfrak{h}\) is an \(L_\infty\)-algebra where

\[
l_1(x, a) = (-[\Delta, x], P(x + [\Delta, a])),
\]
\[
l_2(x, y) = (-1)^x [x, y],
\]
\[
l_k(x, a_1, \cdots, a_{k-1}) = P[\cdots [[x, a_1], a_2] \cdots , a_{k-1}], \quad k \geq 2,
\]
\[
l_k(a_1, \cdots, a_{k-1}, a_k) = P[\cdots [[\Delta, a_1], a_2] \cdots , a_k], \quad k \geq 2.
\]

Here \(a, a_1, \cdots, a_k \in \mathfrak{h}\) and \(x, y \in L\).

Remark

Let \(L'\) be a graded Lie subalgebra of \(L\) that satisfies \([\Delta, L'] \subset L'\). Then \(L'[1] \oplus \mathfrak{h}\) is an \(L_\infty\)-subalgebra of the above \(L_\infty\)-algebra \((L[1] \oplus \mathfrak{h}, \{l_k\}_{k=1}^{+\infty})\).
A V-structure

Let \mathfrak{g} and V be two vector spaces.

Proposition (Lazarev-S.-Tang)

We have a V-structure $(L, \mathfrak{h}, P, \Delta)$ as follows:

- the graded Lie algebra $(L, [\cdot, \cdot])$ is given by

 $$(\oplus_{n=0}^{+\infty} C^{n+1}(\mathfrak{g} \oplus V, \mathfrak{g} \oplus V), [\cdot, \cdot]_{\text{NR}});$$

- the abelian graded Lie subalgebra \mathfrak{h} is given by

 $$\mathfrak{h} := \oplus_{n=0}^{+\infty} \text{Hom}(\wedge^{n+1} V, \mathfrak{g});$$

- $P : L \longrightarrow L$ is the projection onto the subspace \mathfrak{h}, and $\Delta = 0$.

Consequently, we obtain an L_∞-algebra $(L[1] \oplus \mathfrak{h}, \{l_k\}_{k=1}^{+\infty}),$

$$l_1(Q, \theta) = P(Q),$$

$$l_2(Q, Q') = (-1)^Q [Q, Q']_{\text{NR}},$$

$$l_k(Q, \theta_1, \cdots, \theta_{k-1}) = P[\cdots [Q, \theta_1]_{\text{NR}}, \cdots, \theta_{k-1}]_{\text{NR}},$$

for $\theta, \theta_1, \cdots, \theta_{k-1} \in \mathfrak{h}, Q, Q' \in L.$
Note that $L' = \bigoplus_{k=0}^{+\infty}(\text{Hom} (\wedge^{n+1}g, g) \oplus \text{Hom} (\wedge^n g \otimes V, V))$ is a subalgebra of L.

Theorem (Lazarev-S.-Tang)

With above notation, $(L'[1] \oplus \mathfrak{h}, \{l_k\}_{k=1}^{+\infty})$ is an L_∞-algebra, where l_k are given by

\[
\begin{align*}
l_2(Q, Q') &= (-1)^Q [Q, Q']_{\text{NR}}, \\
l_k(Q, \theta_1, \cdots, \theta_{k-1}) &= P[\cdots [Q, \theta_1]_{\text{NR}}, \cdots, \theta_{k-1}]_{\text{NR}},
\end{align*}
\]

for $\theta_1, \cdots, \theta_{k-1} \in \mathfrak{h}$, $Q, Q' \in L'$.

Let $\mu \in \text{Hom} (\wedge^2 g, g)$, $\rho \in \text{Hom} (g \otimes V, V)$, $T \in \text{Hom} (V, g)$. Then $((g, \mu), \rho, T)$ is a **relative Rota-Baxter Lie algebra** if and only if $\mu + \rho + T$ is a **Maurer-Cartan element of the** L_∞-**algebra** $(L'[1] \oplus \mathfrak{h}, \{l_i\}_{i=1}^{+\infty})$.

Yunhe Sheng

Deformations, cohomologies and homotopy of RB Lie algebras
Proof

Let $\mu + \rho + T$ be a Maurer-Cartan element. Then we have

$$\sum_{k=1}^{+\infty} \frac{1}{k!} l_k \left(\mu + \rho + T, \cdots, \mu + \rho + T \right)$$

$$= \frac{1}{2!} l_2 \left(\mu + \rho + T, \mu + \rho + T \right)$$

$$+ \frac{1}{3!} l_3 \left(\mu + \rho + T, \mu + \rho + T, \mu + \rho + T \right)$$

$$= \left(-\frac{1}{2} [\mu + \rho, \mu + \rho]_{NR}, \frac{1}{2} [[\mu + \rho, T]_{NR}, T]_{NR} \right)$$

$$= (0, 0).$$

Thus, we obtain $[\mu + \rho, \mu + \rho]_{NR} = 0$ and $[[\mu + \rho, T]_{NR}, T]_{NR} = 0$, which implies that (g, μ) is a Lie algebra, $(V; \rho)$ is its representation and T is a relative Rota-Baxter operator on the Lie algebra (g, μ) with respect to the representation $(V; \rho)$.

Thanks for your attention!