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Ornstein–Zernike theory

▶ Brief history

▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
▷ Perturbative approaches: [Abraham–Kunz 1977, Paes-Leme 1978,

Bricmont–Fröhlich 1985, Zhizhina–Minlos 1988, . . . ]

▷ Early nonperturbative versions (limited applicability, not robust):
[Abraham–Chayes–Chayes 1985, Chayes–Chayes 1986, Jónsson 1986,

Campanino–Chayes–Chayes 1991, Ioffe 1998]

▷ Robust nonperturbative approach: [Campanino–Ioffe 2002, Campanino–Ioffe–V. 2003,

Campanino–Ioffe–V. 2008, Ott–V. 2018, Aoun–Ott–V. 2021].

▶ The approach developed in the latter series of works allows to couple “structurally
1D objects” with good mixing properties to directed random walks.

▶ Applies, among others, to interfaces in planar systems or to paths, clusters, etc.,
originating from graphical representations of correlation functions (high-temperature
expansion, FK-percolation, random-current, . . . ).

▶ Using this coupling, we can in many cases reduce difficult questions arising in the
Ising model to much simpler (and more classical) ones about random walks.
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Plan of the talk

Some examples of applications of OZ theory

▶ A. Asymptotics of correlations

▷ A.1. The 2-point function

▷ A.2. General correlation functions

▷ A.3 An inhomogeneous system: Ising with a defect line

▶ B. Interfaces in the planar Ising model

▷ B.1. Interface in the bulk

▷ B.2. Interface at a boundary

▷ B.3. Interface in a field
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— A. Asymptotics of correlations —
A.1. The 2-point function
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Notations

▶ Coupling constants: (Jx)x∈Zd such that J0 = 0, Jx ≥ 0, Jx = J−x and
∑

x Jx <∞.

▶ Formal Hamiltonian:

H = −
∑

i,j

Jj−iσiσj − h
∑

i

σi.

▶ We denote by ⟨·⟩β,h expectation w.r.t.

▷ the unique Gibbs measure if h ̸= 0 or if h = 0 and β < βc.

▷ the + state if h = 0 and β > βc.

▶ We write
⟨f ; g⟩β,h = ⟨f g⟩β,h − ⟨f⟩β,h⟨g⟩β,h.
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Inverse correlation length

▶ For each s⃗ ∈ Sd−1, the inverse correlation length νβ,h(⃗s) is defined by

⟨σ0 ;σn⃗s⟩β,h = e−νβ,h (⃗s)n+o(n).

where σx = σ[x], with [x] ∈ Zd the coordinatewise integer part of x ∈ Rd.

▶ Assume that there exist C, c > 0 such that ∀x ∈ Zd, Jx ≤ Ce−c∥x∥. Then,

∀(β, h) ̸= (βc, 0), min
s⃗
νβ,h(⃗s) > 0.

▷ h ̸= 0, β ∈ R: [Lebowitz–Penrose 1968]

▷ h = 0 and β < βc: [Aizenman–Barsky–Fernández 1987]

▷ (Jx) with finite range, h = 0 and β > βc: [Duminil-Copin–Goswami–Raoufi 2020]

Open problem: Remove the finite-range assumption when h = 0 and β > βc.
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Sharp asymptotics: h = 0 and β < βc

▶ Let us assume that the coupling constants decay superexponentially fast:

∀c > 0, lim
∥x∥→∞

Jx ec∥x∥ = 0.

▶ Then, one has the following Ornstein–Zernike asymptotics:

Theorem [Aoun–Ott–V. 2021]

Assume that β < βc and h = 0. Let s⃗ ∈ Sd−1. Then, as n → ∞,

⟨σ0 ;σn⃗s ⟩β,0 =
Ψβ (⃗s)
n(d−1)/2

e−νβ,0 (⃗s)n (1 + o(1)),

where the functions Ψβ and νβ,0 are positive and analytic in s⃗ .

▶ The above result has a long history. Some milestones are

▷ Ornstein–Zernike 1914, Zernike 1916: first (non-rigorous) derivation
▷ Wu 1966, Wu et al 1976: exact computation, planar model, β < βc

▷ Abraham–Kunz 1977, Paes-Leme 1978: any dimension, n.n. model, β ≪ 1
▷ Campanino–Ioffe–V. 2003: any dimension, finite range, β < βc

▷ Aoun–Ott–V. 2021: any dimension, superexponential, β < βc.
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▷ Ornstein–Zernike 1914, Zernike 1916: first (non-rigorous) derivation
▷ Wu 1966, Wu et al 1976: exact computation, planar model, β < βc

▷ Abraham–Kunz 1977, Paes-Leme 1978: any dimension, n.n. model, β ≪ 1
▷ Campanino–Ioffe–V. 2003: any dimension, finite range, β < βc

▷ Aoun–Ott–V. 2021: any dimension, superexponential, β < βc.
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Sharp asymptotics: h = 0 and β > βc

▶ Unclear how to implement OZ, so the understanding remains very limited...

▶ The following are still the best results available today:

Theorem [Wu–McCoy–Tracy–Barouch 1976]

Consider the nearest-neighbor Ising model on Z2. Assume that h = 0, β > βc.
Let s⃗ ∈ Sd−1. Then, as n → ∞,

⟨σ0 ;σn⃗s ⟩β,0 =
Ψβ,0(⃗s)

n2 e−νβ,0 (⃗s)n (1 + o(1)).

Theorem [Bricmont–Fröhlich 1985]

Consider the finite-range Ising model on Zd, d ≥ 3. Let h = 0 and s⃗ ∈ Sd−1.
Then there exists β0 such that, for all β > β0, as n → ∞,

⟨σ0 ;σn⃗s ⟩β,0 =
Ψβ,0(⃗s)
n(d−1)/2

e−νβ,0 (⃗s)n (1 + o(1)).

▶ Open problems Prove that OZ asymptotics hold for all β > βc when d ≥ 3,
but also when d = 2 and the graph is not planar.
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Sharp asymptotics: h ̸= 0

▶ Let us now consider the model in a field h ̸= 0, assuming finite-range interactions.

▶ In this case, Ornstein–Zernike asymptotics apply (at any temperature):

Theorem [Ott 2020]

Assume that h ̸= 0 and let β > 0. Let s⃗ ∈ Sd−1. Then, as n → ∞,

⟨σ0 ;σn⃗s ⟩β,h =
Ψβ (⃗s)
n(d−1)/2

e−νβ,h (⃗s)n (1 + o(1)),

where the functions Ψβ and νβ,h are analytic in s⃗ .
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Exponentially decaying interactions

▶ Why was the result about h = 0, β < βc restricted to superexponentially-decaying
coupling constants?

▶ In the (mathematical) physics literature, it was expected that OZ asymptotics would
still hold provided that Jx ≤ Ce−c∥x∥ for some C, c > 0 and all x ∈ Zd (at least at very
high temperatures). This turns out to be incorrect.

▶ It was also generally expected that the inverse correlation length would be analytic
in β in the high-temperature regime 0 < β < βc. This also turns out to be incorrect
(even in dimension 1!).

▶ Let us discuss this in more detail. Assume that

Jx = ψ(x)e−ρ(x),

where

▷ ρ(·) denotes an arbitrary norm on Rd,
▷ ψ is subexponential.

▶ For simplicity, let us also assume that

∀x ∈ Rd, ψ(x) = ψ(ρ(x)) > 0.
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Qualitative behavior of the inverse correlation length

▶ One can show that these are the only two possible scenarios:

β
βc

ρ(⃗s)

νβ,0(⃗s)

0
β

βc

ρ(⃗s)

νβ,0(⃗s)

0 βsat(⃗s)

No saturation Saturation

▶ Observe that βsat(⃗s) > 0 would imply that β 7→ νβ,0(⃗s) is not analytic on (0, βc).

▶ Criterion to determine which scenario occurs?
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Criterion for the existence of a saturation regime

▶ Let us introduce the generating function (for t ∈ Rd)

J(t) =
∑
x∈Zd

et·x Jx.

▶ Let us also introduce

W = {t ∈ Rd : ∀⃗s ∈ Sd−1, t · s⃗ ≤ ρ(⃗s)}.

Easy fact: W is the closure of the domain of convergence of J.

▶ t ∈ ∂W is dual to s⃗ ∈ Sd−1 if

t · s⃗ = ρ(⃗s).
W

s⃗
t1

t2 W

s⃗

t
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Criterion for the existence of a saturation regime

Theorem [Aoun–Ioffe–Ott-V. 2021, Aoun–Ott–V. 2022]

Let s⃗ ∈ Sd−1 and T⃗s = {t ∈ ∂W : t is dual to s⃗}. Then

βsat(⃗s) > 0 ⇐⇒ inf
t∈T⃗s

J(t) <∞.

▶ Example: let d = 2, ρ(x) = ∥x∥p and ψ(x) = ∥x∥αp , with p ∈ (2,∞). Then,

βsat(⃗s) > 0 ⇐⇒

{
α < 1

p − 2 if s⃗ ∈ {±e1,±e2},

α < −3/2 otherwise.

▶ In particular, the correlation length is not always analytic in β on (0, βc) (even in
dimension 1!), contrarily to previous expectations.

▶ What can be said about the asymptotic behavior of the 2-point function in the
regimes (0, βsat(⃗s)) and (βsat(⃗s), βc)?
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Sharp asymptotics: βsat(⃗s) < β < βc

▶ Standard Ornstein–Zernike asympotics hold when β ∈ (βsat(⃗s), βc):

Theorem [Aoun–Ott–V. 2022]

Let s⃗ ∈ Sd−1. For all β ∈ (βsat(⃗s), βc), under some (presumably technical)
condition, as n → ∞,

⟨σ0 ;σn⃗s ⟩β,0 =
Ψβ (⃗s)
n(d−1)/2

e−νβ,0 (⃗s)n (1 + o(1)),

where the functions Ψβ and νβ,0 are analytic in s⃗ .

▶ The condition is conjectured to always hold, and is known to hold, for instance,
when one of the following assumption is satisfied:

▷ sup⃗s∈Sd−1 βsat(⃗s) < β < βc

(for instance, true for all β < βc when
∑

n≥1 ψ(n⃗s) = +∞ for all s⃗ ∈ Sd−1).

▷ J· possesses all lattice symmetries and s⃗ = ek (k ∈ {1, . . . , d}).
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Sharp asymptotics: saturation regime (0 < β < βsat(⃗s))

▶ The asymptotic behavior is not of Ornstein–Zernike type when β ∈ (0, βsat(⃗s)).

Theorem [Aoun–Ott–V. 2022]

Let s⃗ ∈ Sd−1. For all β ∈ (0, βsat(⃗s)), under some (presumably technical) condi-
tion, there exists an (explicit) constant χ̃2 = χ̃2(β) > 0 such that, as n → ∞,

⟨σ0 ;σn⃗s ⟩β,0 = χ̃2 βJn⃗s (1 + o(1)).

▶ The above condition is conjectured to always hold, and is known to be true, for
instance, in the following two cases:

▷ ψ(x) = C exp(−Aρ(x)α), with A > 0 and α ∈ (0, 1).

▷ ψ(x) = Cρ(x)−α, with α > 2d.
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Behavior of typical paths

▶ These different asymptotics reflect very different behaviors of typical “paths”
contributing to graphical representations in both regimes.

0

n⃗s

0

n⃗s

0 < β < βsat(⃗s) βsat(⃗s) < β < βc
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— A. Asymptotics of correlations —
A.2. General correlation functions
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Decay of correlations

▶ We assume that h = 0, β < βc and (Jx)x∈Zd has finite range.

▶ For A ⋐ Zd, let σA =
∏

i∈A σi.
Remark: any local function (that is, depending on finitely many spins) can be expressed
as a finite linear combination of such functions.

▶ Given A, B ⋐ Zd and s⃗ ∈ Sd−1, we investigate the asymptotic behavior of

⟨σA ;σB+n⃗s⟩β,0

as n → ∞.

▶ Of course, by symmetry, ⟨σC⟩β,0 = 0 whenever |C| is odd.

⟨σA ;σB⟩β,0 = 0 whenever |A|+ |B| is odd.

▶ We are thus left with two cases to consider:

Odd-odd correlations

|A|, |B| both odd

Even-even correlations

|A|, |B| both even
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Odd-odd correlations

▶ Odd-odd correlations always display Ornstein–Zernike behavior:

Theorem [Campanino–Ioffe–V. 2004]

Let β < βc. Let A, B ⋐ Zd with |A| and |B| odd and let s⃗ ∈ Sd−1.
Then, there exists a constant 0 < C <∞ (depending on A, B, s⃗, β) such that

⟨σA ;σB+n⃗s⟩β,0 =
C

n(d−1)/2
e−νβ,0 (⃗s)n (1 + o(1)),

as n → ∞.

▶ The first rigorous results of this type were obtained for β ≪ 1 in

▷ Bricmont–Fröhlich 1985 ▷ Zhizhina–Minlos 1988
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Even-even correlations

▶ Substantially more delicate!

▶ The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

⟨σA ;σB+n⃗s⟩β,0 = e−2νβ,0 (⃗s)n (1+o(1)).

▶ However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969 Camp, Fisher 1971
n−2 d = 2

(n log n)−2 d = 3

n−(d−1) d ≥ 4

n−d for all d ≥ 2

(Note that these predictions only coincide when d = 2, where they both agree with the
exact computation obtained in Stephenson 1966 and Hecht 1967.)

▶ It turns out that Polyakov was right. This was first shown in

▷ Bricmont–Fröhlich 1985: |A| = |B| = 2 β ≪ 1 d ≥ 4
▷ Minlos–Zhizhina 1988, 1996: |A|, |B| even β ≪ 1 d ≥ 2
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Even-even correlations

▶ The best nonperturbative result to date is the following:

Let τ(n) =


n2 when d = 2,

(n log n)2 when d = 3,

nd−1 when d ≥ 4.

Theorem [Ott–V. 2019]

Let d ≥ 2 and β < βc. Let A, B ⋐ Zd with |A| and |B| even and let s⃗ ∈ Sd−1.
Then, there exist constants 0 < C− ≤ C+ < ∞ (depending on A, B, s⃗, β) such
that, for all n large enough,

C−

τ(n)
e−2νβ,0 (⃗s)n ≤ ⟨σA ;σB+n⃗s⟩ ≤

C+

τ(n)
e−2νβ,0 (⃗s)n.
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— A. Asymptotics of correlations —
A.3. An inhomogeneous system: Ising with a defect line
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Settings

▶ Defect line: L = {ke1 ∈ Zd : k ∈ Z}

▶ Coupling constants:

Jij =


1 if i ∼ j, {i, j} ̸⊂ L
J if i ∼ j, {i, j} ⊂ L
0 otherwise

▶ Fix β < βc, h = 0, J ≥ 0 and let Pβ,J be the unique infinite-volume Gibbs measure.

▶ Central quantity: longitudinal inverse correlation length νβ(J )

⟨σ0 ;σne1⟩β,J = e−νβ (J )n+o(n).

▶ McCoy–Perk 1980: explicit computation of νβ(J ) for the planar Ising model.

23/39



Settings

▶ Defect line: L = {ke1 ∈ Zd : k ∈ Z}

▶ Coupling constants:

Jij =


1 if i ∼ j, {i, j} ̸⊂ L
J if i ∼ j, {i, j} ⊂ L
0 otherwise

▶ Fix β < βc, h = 0, J ≥ 0 and let Pβ,J be the unique infinite-volume Gibbs measure.

▶ Central quantity: longitudinal inverse correlation length νβ(J )

⟨σ0 ;σne1⟩β,J = e−νβ (J )n+o(n).

▶ McCoy–Perk 1980: explicit computation of νβ(J ) for the planar Ising model.

23/39



Settings

▶ Defect line: L = {ke1 ∈ Zd : k ∈ Z}

▶ Coupling constants:

Jij =


1 if i ∼ j, {i, j} ̸⊂ L
J if i ∼ j, {i, j} ⊂ L
0 otherwise

▶ Fix β < βc, h = 0, J ≥ 0 and let Pβ,J be the unique infinite-volume Gibbs measure.

▶ Central quantity: longitudinal inverse correlation length νβ(J )

⟨σ0 ;σne1⟩β,J = e−νβ (J )n+o(n).

▶ McCoy–Perk 1980: explicit computation of νβ(J ) for the planar Ising model.

23/39



Settings

▶ Defect line: L = {ke1 ∈ Zd : k ∈ Z}

▶ Coupling constants:

Jij =


1 if i ∼ j, {i, j} ̸⊂ L
J if i ∼ j, {i, j} ⊂ L
0 otherwise

▶ Fix β < βc, h = 0, J ≥ 0 and let Pβ,J be the unique infinite-volume Gibbs measure.

▶ Central quantity: longitudinal inverse correlation length νβ(J )

⟨σ0 ;σne1⟩β,J = e−νβ (J )n+o(n).

▶ McCoy–Perk 1980: explicit computation of νβ(J ) for the planar Ising model.

23/39



Settings

▶ Defect line: L = {ke1 ∈ Zd : k ∈ Z}

▶ Coupling constants:

Jij =


1 if i ∼ j, {i, j} ̸⊂ L
J if i ∼ j, {i, j} ⊂ L
0 otherwise

▶ Fix β < βc, h = 0, J ≥ 0 and let Pβ,J be the unique infinite-volume Gibbs measure.

▶ Central quantity: longitudinal inverse correlation length νβ(J )

⟨σ0 ;σne1⟩β,J = e−νβ (J )n+o(n).

▶ McCoy–Perk 1980: explicit computation of νβ(J ) for the planar Ising model.

23/39



Properties of the longitudinal correlation length

▶ The following is proved in [Ott–V. 2018]: For any d ≥ 2, there exists Jc ≥ 1 such that

▷ When 0 ≤ J ≤ Jc: νβ(J ) is constant.

▷ When J > Jc: J 7→ νβ(J ) is decreasing and real-analytic.

▷ d = 2, 3: Jc = 1, d ≥ 4: Jc > 1.

▷ There exist constants c±2 , c±3 > 0 such that, as J ↓ Jc,

c−2 (J − Jc)
2 ≤ νβ(Jc)− νβ(J ) ≤ c+2 (J − Jc)

2 (d = 2)

e−c−3 /(J−Jc) ≤ νβ(Jc)− νβ(J ) ≤ e−c+3 /(J−Jc) (d = 3)

J
Jc

νβ(1)

νβ(J )
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Asymptotics of correlations

▶ When J > Jc, one has pure exponential decay:

Theorem [Ott–V. 2018]

Let d ≥ 2. Assume that β < βc, h = 0 and J > Jc. Then, as n → ∞,

⟨σ0 ;σne1⟩β,J = Cβ,J e−νβ (J )n (1 + o(1)).

▶ When 0 ≤ J < 1, one has the following asymptotics:

Theorem [Ott–V. 2019, Ioffe–Ott–V.–Wachtel 2020]

Assume that β < βc, h = 0 and 0 ≤ J < 1. Then, as n → ∞,

d = 2 : ⟨σ0 ;σne1⟩β,J =
Cβ,J

n3/2
e−νβ (J )n (1 + o(1)),

d = 3 : ⟨σ0 ;σne1⟩β,J =
Cβ,J

n(log n)2 e−νβ (J )n (1 + o(1)),

d ≥ 4 : ⟨σ0 ;σne1⟩β,J =
Cβ,J

n(d−1)/2
e−νβ (J )n (1 + o(1)).
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— B. Interfaces in the planar Ising model —
B.1. Interface in the bulk
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Interface in the bulk: Setting

▶ We consider the n.n. Ising model in ΛN = {−N + 1, . . . ,N}2 with β > βc and h = 0.

▶ Let s⃗ ∈ S1. We consider a system with s⃗-boundary condition:

s⃗
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Interface in the bulk: Scaling limit of the interface

Theorem [Greenberg–Ioffe 2005]

Let s⃗ ∈ S1 and β > βc. The distribution of the centered and diffusively-rescaled
interface induced by the s⃗-boundary condition converges to the distribution of√

χβ (⃗s) b,

where b is the standard Brownian bridge on [−1, 1] and χβ (⃗s) is the curvature
of the Wulff shape at the unique point t of its boundary where the normal is s⃗.

▶ Some earlier results:

▷ Abraham–Reed 1976: Expected magnetization profile (⃗s = e2) (exact computations)
▷ Abraham–Upton 1988: Expected magnetization profile (⃗s ∈ S1) (exact computations)
▷ Gallavotti 1972:

√
N fluctuations, β ≫ 1

▷ Higuchi 1979: Invariance principle for β ≫ 1
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— B. Interfaces in the planar Ising model —
B.2. Interface at a boundary
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Interface at a boundary: Setting

▶ We consider a system with boundary condition inducing an interface along the
bottom wall:
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Interface at a boundary: Scaling limit of the interface

Theorem [ Ioffe–Ott–V.–Wachtel 2020]

Let β > βc. The distribution of the diffusively-rescaled interface converges to
the distribution of

√
χβ e

where e is the standard Brownian excursion on [−1, 1] and χβ is the curvature
of the Wulff shape at its apex.

▶ Some earlier results:

▷ Abraham 1980: Expected magnetization profile (exact computations)
▷ Dobrushin 1992: Invariance principle for β ≫ 1 (with seemingly incomplete proof)
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— B. Interfaces in the planar Ising model —
B.3. Interface in a field
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Interface in a field: Settings

▶ We consider again the boundary condition

but add to the Hamiltonian a magnetic field term

−h
∑
i∈ΛN

σi

with h > 0.
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Interface in a field: Layer of unstable phase

▶ Let β > βc. Since h > 0, the layer of − phase becomes unstable:

h = 0

average width = O(N1/2)

h > 0

average width = O(1)
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Interface in a field: Critical prewetting

▶ The width of the layer increases as h decreases:

▶ It turns out to be natural to choose h = h(N) to be of the form

h =
λ

N
for some λ > 0.

35/39



Interface in a field: Scaling limit

Theorem [Ioffe, Ott, Shlosman, V. 2020]

Rescale the interface

▷ horizontally by N−2/3

▷ vertically by χ−1/2
β N−1/3.

Then, as N → ∞, its distribution weakly converges to that of the Ferrari–Spohn
diffusion introduced in the next slide.

▶ Some earlier results:

▷ V. 2004: Layer width ∼ N1/3+o(1)

▷ Ganguly-Gheissari 2021: Layer width ∼ N1/3 and other global estimates
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Interface in a field: Ferrari–Spohn diffusion

▶ Let us introduce

▷ the spontaneous magnetization: m∗
β

▷ the curvature of the Wulff shape (at its apex): χβ

▷ the Airy function Ai and its first zero −ω1

−ω1

▶ Set φ0(r) = Ai
(
(4λm∗

β
√
χβ)

1/3 r − ω1
)

.

▶ The relevant Ferrari–Spohn diffusion in the present context is the diffusion on
(0,∞) with generator

Lβ =
1
2

d
dr2 +

φ′
0

φ0

d
dr

and Dirichlet boundary condition at 0.
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— Concluding remarks —
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Concluding remarks

▶ The Ornstein–Zernike theory provides a powerful tool to analyze the ferromagnetic
Ising (and other) model nonperturbatively.

▶ It allows, in particular, a detailed understanding of asymptotics of correlation
functions in any dimension and for general ferromagnetic coupling constants, away
from the critical point.

▶ Combined with planar duality, it enables an in-depth analysis of interfacial
phenomena in 2D.

▶ The (modern version of the) Ornstein–Zernike theory was developed in a very large
part by Dima Ioffe, to whom I dedicate this talk...
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