Nonperturbative analysis of noncritical Ising models

Some applications of the Ornstein-Zernike theory

Yvan Velenik

Université de Genève

- ORNSTEIN-ZERNIKE THEORY -

Ornstein-Zernike theory

Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Аbraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, CAMPANINO-CHAYES-ChaYES 1991, IOFFE 1998]
\triangleright Robust nonperturbative approach: [Campanino-Ioffe 2002, Campanino-Ioffe-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

Ornstein-Zernike theory

Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Abraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
\triangleright Robust nonperturbative approach: [Campanino-Ioffe 2002, Campanino-Ioffe-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

Ornstein-Zernike theory

Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Аbraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, Campanino-Chayes-Chayes 1991, Ioffe 1998]
\triangleright Robust nonperturbative approach: [Campanino-Ioffe 2002, Campanino-loffe-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

Ornstein-Zernike theory

Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Аbraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
\triangleright Robust nonperturbative approach: [Campanino-Ioffe 2002, Campanino-Ioffe-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

Ornstein-Zernike theory

Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Аbraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
\triangleright Robust nonperturbative approach: [CAMPANIno-IOFFE 2002, CAMPANINo-IOFFE-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

- The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.

Ornstein-Zernike theory

- Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Abraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
\triangleright Robust nonperturbative approach: [Campanino-Ioffe 2002, Campanino-Ioffe-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

- The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.

Ornstein-Zernike theory

- Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Abraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
\triangleright Robust nonperturbative approach: [CAMPANIno-IOFFE 2002, CAMPANINo-IofFE-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

- The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.

Ornstein-Zernike theory

Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.

- Perturbative approaches: [Abraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, CAMPANIno-ChAYES-Chayes 1991, IOFFE 1998]
\triangleright Robust nonperturbative approach: [Campanino-Ioffe 2002, Campanino-Ioffe-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].
- The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.
- Applies, among others, to interfaces in planar systems or to paths, clusters, etc., originating from graphical representations of correlation functions (high-temperature expansion, FK-percolation, random-current, ...).

Ornstein-Zernike theory

- Brief history

\triangleright Inspired by the theory developed in 1914 By Ornstein and Zernike.
\triangleright Perturbative approaches: [Abraham-Kunz 1977, Paes-Leme 1978, Bricmont-Fröhlich 1985, Zhizhina-Minlos 1988, ...]
\triangleright Early nonperturbative versions (limited applicability, not robust):
[Abraham-Chayes-Chayes 1985, Chayes-Chayes 1986, Jónsson 1986, Campanino-Chayes-Chayes 1991, Ioffe 1998]
\triangleright Robust nonperturbative approach: [Campanino-Ioffe 2002, Campanino-Ioffe-V. 2003, Campanino-Ioffe-V. 2008, Ott-V. 2018, Aoun-Ott-V. 2021].

- The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.
- Applies, among others, to interfaces in planar systems or to paths, clusters, etc., originating from graphical representations of correlation functions (high-temperature expansion, FK-percolation, random-current, ...).
- Using this coupling, we can in many cases reduce difficult questions arising in the Ising model to much simpler (and more classical) ones about random walks.

Plan of the talk

SOME EXAMPLES OF APPLICATIONS OF OZ THEORY

- A. Asymptotics of correlations
\triangleright A.1. The 2-point function
\triangleright A.2. General correlation functions
\triangleright A. 3 An inhomogeneous system: Ising with a defect line
- B. Interfaces in the planar Ising model
\triangleright B.1. Interface in the bulk
\triangleright B.2. Interface at a boundary
\triangleright B.3. Interface in a field

Plan of the talk

SOME EXAMPLES OF APPLICATIONS OF OZ THEORY

- A. Asymptotics of correlations
\triangleright A.1. The 2-point function
\triangleright A.2. General correlation functions
\triangleright A. 3 An inhomogeneous system: Ising with a defect line
- B. Interfaces in the planar Ising model
\triangleright B.1. Interface in the bulk
\triangleright B.2. Interface at a boundary
\triangleright B.3. Interface in a field

Plan of the talk

SOME EXAMPLES OF APPLICATIONS OF OZ THEORY

- A. Asymptotics of correlations
\triangleright A.1. The 2-point function
\triangleright A.2. General correlation functions
\triangleright A. 3 An inhomogeneous system: Ising with a defect line
- B. Interfaces in the planar Ising model
\triangleright B.1. Interface in the bulk
\triangleright B.2. Interface at a boundary
\triangleright B.3. Interface in a field

Plan of the talk

SOME EXAMPLES OF APPLICATIONS OF OZ THEORY

- A. Asymptotics of correlations
\triangleright A.1. The 2-point function
\triangleright A.2. General correlation functions
\triangleright A. 3 An inhomogeneous system: Ising with a defect line
- B. Interfaces in the planar Ising model
\triangleright B.1. Interface in the bulk
\triangleright B.2. Interface at a boundary
\triangleright B.3. Interface in a field

Plan of the talk

SOME EXAMPLES OF APPLICATIONS OF OZ THEORY

- A. Asymptotics of correlations
\triangleright A.1. The 2-point function
\triangleright A.2. General correlation functions
\triangleright A. 3 An inhomogeneous system: Ising with a defect line
- B. Interfaces in the planar Ising model
\triangleright B.1. Interface in the bulk
\triangleright B.2. Interface at a boundary
\triangleright B.3. Interface in a field

Plan of the talk

SOME EXAMPLES OF APPLICATIONS OF OZ THEORY

- A. Asymptotics of correlations
\triangleright A.1. The 2-point function
\triangleright A.2. General correlation functions
\triangleright A. 3 An inhomogeneous system: Ising with a defect line
- B. Interfaces in the planar Ising model
\triangleright B.1. Interface in the bulk
\triangleright B.2. Interface at a boundary
\triangleright B.3. Interface in a field

- A. Asymptotics of correlations -

A.1. The 2-point function

Notations

- Coupling constants: $\left(J_{x}\right)_{x \in \mathbb{Z}^{d}}$ such that $J_{0}=0, J_{x} \geq 0, J_{x}=J_{-x}$ and $\sum_{x} J_{x}<\infty$.

Notations

- Coupling constants: $\left(J_{x}\right)_{x \in \mathbb{Z}^{d}}$ such that $J_{0}=0, J_{x} \geq 0, J_{x}=J_{-x}$ and $\sum_{x} J_{x}<\infty$.

Formal Hamiltonian:

$$
\mathcal{H}=-\sum_{i, j} J_{j-i} \sigma_{i} \sigma_{j}-h \sum_{i} \sigma_{i}
$$

Notations

- Coupling constants: $\left(J_{x}\right)_{x \in \mathbb{Z}^{d}}$ such that $J_{0}=0, J_{x} \geq 0, J_{x}=J_{-x}$ and $\sum_{x} J_{x}<\infty$.
- Formal Hamiltonian:

$$
\mathcal{H}=-\sum_{i, j} J_{j-i} \sigma_{i} \sigma_{j}-h \sum_{i} \sigma_{i}
$$

- We denote by $\langle\cdot\rangle_{\beta, h}$ expectation w.r.t.
\triangleright the unique Gibbs measure if $h \neq 0$ or if $h=0$ and $\beta<\beta_{\mathrm{c}}$.
\triangleright the + state if $h=0$ and $\beta>\beta_{c}$.

Notations

- Coupling constants: $\left(J_{x}\right)_{x \in \mathbb{Z}^{d}}$ such that $J_{0}=0, J_{x} \geq 0, J_{x}=J_{-x}$ and $\sum_{x} J_{x}<\infty$.
- Formal Hamiltonian:

$$
\mathcal{H}=-\sum_{i, j} J_{j-i} \sigma_{i} \sigma_{j}-h \sum_{i} \sigma_{i}
$$

- We denote by $\langle\cdot\rangle_{\beta, h}$ expectation w.r.t.
\triangleright the unique Gibbs measure if $h \neq 0$ or if $h=0$ and $\beta<\beta_{c}$.
\triangleright the + state if $h=0$ and $\beta>\beta_{c}$.
- We write

$$
\langle f ; g\rangle_{\beta, h}=\langle f g\rangle_{\beta, h}-\langle f\rangle_{\beta, h}\langle g\rangle_{\beta, h}
$$

Inverse correlation length

- For each $\vec{s} \in \mathbb{S}^{d-1}$, the inverse correlation length $\nu_{\beta, h}(\vec{s})$ is defined by

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, h}=\mathrm{e}^{-\nu_{\beta, h}(\vec{s}) n+\mathrm{o}(n)}
$$

where $\sigma_{x}=\sigma_{[x]}$, with $[x] \in \mathbb{Z}^{d}$ the coordinatewise integer part of $x \in \mathbb{R}^{d}$.

Inverse correlation length

- For each $\vec{s} \in \mathbb{S}^{d-1}$, the inverse correlation length $\nu_{\beta, h}(\vec{s})$ is defined by

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, h}=\mathrm{e}^{-\nu_{\beta, h}(\vec{s}) n+o(n)}
$$

where $\sigma_{x}=\sigma_{[x]}$, with $[x] \in \mathbb{Z}^{d}$ the coordinatewise integer part of $x \in \mathbb{R}^{d}$.

- Assume that there exist $C, C>0$ such that $\forall x \in \mathbb{Z}^{d}, J_{x} \leq C \mathrm{e}^{-c\|x\|}$. Then,

$$
\forall(\beta, h) \neq\left(\beta_{c}, 0\right), \quad \min _{\vec{s}} \nu_{\beta, h}(\vec{s})>0
$$

Inverse correlation length

- For each $\vec{s} \in \mathbb{S}^{d-1}$, the inverse correlation length $\nu_{\beta, h}(\vec{s})$ is defined by

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, h}=\mathrm{e}^{-\nu_{\beta, h}(\vec{s}) n+o(n)}
$$

where $\sigma_{x}=\sigma_{[x]}$, with $[x] \in \mathbb{Z}^{d}$ the coordinatewise integer part of $x \in \mathbb{R}^{d}$.

- Assume that there exist $C, C>0$ such that $\forall x \in \mathbb{Z}^{d}, J_{x} \leq C \mathrm{e}^{-c\|x\|}$. Then,

$$
\forall(\beta, h) \neq\left(\beta_{c}, 0\right), \quad \min _{\vec{s}} \nu_{\beta, h}(\vec{s})>0
$$

Graph of $\beta \mapsto \nu_{\beta, 0}\left(\mathbf{e}_{1}\right)$ for the planar Ising model

Inverse correlation length

- For each $\vec{s} \in \mathbb{S}^{d-1}$, the inverse correlation length $\nu_{\beta, h}(\vec{s})$ is defined by

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, h}=\mathrm{e}^{-\nu_{\beta, h}(\vec{s}) n+o(n)}
$$ where $\sigma_{x}=\sigma_{[x]}$, with $[x] \in \mathbb{Z}^{d}$ the coordinatewise integer part of $x \in \mathbb{R}^{d}$.

- Assume that there exist $C, c>0$ such that $\forall x \in \mathbb{Z}^{d}, J_{x} \leq C \mathrm{e}^{-c\|x\|}$. Then,

$$
\forall(\beta, h) \neq\left(\beta_{\mathrm{c}}, 0\right), \quad \min _{\vec{s}} \nu_{\beta, h}(\vec{s})>0
$$

$\triangleright h \neq 0, \beta \in \mathbb{R}: \quad$ [Lebowitz-Penrose 1968]
$\triangleright h=0$ and $\beta<\beta_{\mathrm{c}}$: [Aizenman-Barsky-Fernández 1987]
$\triangleright\left(J_{x}\right)$ with finite range, $h=0$ and $\beta>\beta_{c}$: [Duminil-Copin-Goswami-Raoufi 2020]
Open problem: Remove the finite-range assumption when $h=0$ and $\beta>\beta_{c}$.

Sharp asymptotics: $h=0$ and $\beta<\beta_{c}$

- Let us assume that the coupling constants decay superexponentially fast:

$$
\forall c>0, \quad \lim _{\|x\| \rightarrow \infty} J_{x} \mathrm{e}^{c\|x\|}=0
$$

Sharp asymptotics: $h=0$ and $\beta<\beta_{c}$

- Let us assume that the coupling constants decay superexponentially fast:

$$
\forall c>0, \quad \lim _{\|x\| \rightarrow \infty} J_{x} \mathrm{e}^{c\|x\|}=0
$$

- Then, one has the following Ornstein-Zernike asymptotics:

Theorem

Assume that $\beta<\beta_{\mathrm{c}}$ and $h=0$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are positive and analytic in \vec{s}.

Sharp asymptotics: $h=0$ and $\beta<\beta_{c}$

- Let us assume that the coupling constants decay superexponentially fast:

$$
\forall c>0, \quad \lim _{\|x\| \rightarrow \infty} J_{x} \mathrm{e}^{c\|x\|}=0
$$

- Then, one has the following Ornstein-Zernike asymptotics:

Theorem

[Aoun-OTT-V. 2021]

Assume that $\beta<\beta_{\mathrm{c}}$ and $h=0$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916:
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-V. 2003:
\triangleright Aoun-Ott-V. 2021:
first (non-rigorous) derivation exact computation, planar model, $\beta<\beta_{c}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

Sharp asymptotics: $h=0$ and $\beta<\beta_{c}$

- Let us assume that the coupling constants decay superexponentially fast:

$$
\forall c>0, \quad \lim _{\|x\| \rightarrow \infty} J_{x} \mathrm{e}^{c\|x\|}=0
$$

- Then, one has the following Ornstein-Zernike asymptotics:

Theorem

[Aoun-OTT-V. 2021]

Assume that $\beta<\beta_{\mathrm{c}}$ and $h=0$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916:
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-V. 2003:
\triangleright Aoun-Ott-V. 2021:
first (non-rigorous) derivation exact computation, planar model, $\beta<\beta_{\mathrm{c}}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

Sharp asymptotics: $h=0$ and $\beta<\beta_{c}$

- Let us assume that the coupling constants decay superexponentially fast:

$$
\forall c>0, \quad \lim _{\|x\| \rightarrow \infty} J_{x} \mathrm{e}^{c\|x\|}=0
$$

- Then, one has the following Ornstein-Zernike asymptotics:

Theorem

[Aoun-OTT-V. 2021]

Assume that $\beta<\beta_{\mathrm{c}}$ and $h=0$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916:
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-V. 2003:
\triangleright Aoun-Ott-V. 2021:
first (non-rigorous) derivation exact computation, planar model, $\beta<\beta_{\mathrm{c}}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

Sharp asymptotics: $h=0$ and $\beta<\beta_{c}$

- Let us assume that the coupling constants decay superexponentially fast:

$$
\forall c>0, \quad \lim _{\|x\| \rightarrow \infty} J_{x} \mathrm{e}^{c\|x\|}=0
$$

- Then, one has the following Ornstein-Zernike asymptotics:

Theorem

[Aoun-OTT-V. 2021]

Assume that $\beta<\beta_{\mathrm{c}}$ and $h=0$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916:
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
- Campanino-loffe-V. 2003:
\triangleright Aoun-Ott-V. 2021:
first (non-rigorous) derivation exact computation, planar model, $\beta<\beta_{c}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

Sharp asymptotics: $h=0$ and $\beta<\beta_{c}$

- Let us assume that the coupling constants decay superexponentially fast:

$$
\forall c>0, \quad \lim _{\|x\| \rightarrow \infty} J_{x} \mathrm{e}^{c\|x\|}=0
$$

- Then, one has the following Ornstein-Zernike asymptotics:

Theorem

[Aoun-OTT-V. 2021]

Assume that $\beta<\beta_{\mathrm{c}}$ and $h=0$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are positive and analytic in \vec{s}.

- The above result has a long history. Some milestones are
\triangleright Ornstein-Zernike 1914, Zernike 1916:
\triangleright Wu 1966, Wu et al 1976:
\triangleright Abraham-Kunz 1977, Paes-Leme 1978:
\triangleright Campanino-loffe-V. 2003:
\triangleright Aoun-Ott-V. 2021:
first (non-rigorous) derivation exact computation, planar model, $\beta<\beta_{c}$ any dimension, n.n. model, $\beta \ll 1$ any dimension, finite range, $\beta<\beta_{c}$ any dimension, superexponential, $\beta<\beta_{\mathrm{c}}$.

Sharp asymptotics: $h=0$ and $\beta>\beta_{c}$

- Unclear how to implement $O Z$, so the understanding remains very limited...

Sharp asymptotics: $h=0$ and $\beta>\beta_{c}$

- Unclear how to implement OZ, so the understanding remains very limited...
- The following are still the best results available today:

Theorem

[WU-McCOY-TRACY-BAROUCH 1976]
Consider the nearest-neighbor Ising model on \mathbb{Z}^{2}. Assume that $h=0, \beta>\beta_{c}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta, 0}(\vec{s})}{n^{2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

Sharp asymptotics: $h=0$ and $\beta>\beta_{c}$

- Unclear how to implement OZ, so the understanding remains very limited...
- The following are still the best results available today:

Theorem

[WU-McCOY-TRACY-BAROUCH 1976]
Consider the nearest-neighbor Ising model on \mathbb{Z}^{2}. Assume that $h=0, \beta>\beta_{\mathrm{c}}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta, 0}(\vec{s})}{n^{2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

Theorem

[BRICMONT-FRÖHLICH 1985]
Consider the finite-range Ising model on $\mathbb{Z}^{d}, d \geq 3$. Let $h=0$ and $\vec{s} \in \mathbb{S}^{d-1}$. Then there exists β_{0} such that, for all $\beta>\beta_{0}$, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta, 0}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

Sharp asymptotics: $h=0$ and $\beta>\beta_{c}$

- Unclear how to implement OZ, so the understanding remains very limited...
- The following are still the best results available today:

Theorem

 [WU-McCOY-TRACY-BAROUCH 1976]Consider the nearest-neighbor Ising model on \mathbb{Z}^{2}. Assume that $h=0, \beta>\beta_{c}$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta, 0}(\vec{s})}{n^{2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

Theorem

[BRICMONT-FRÖHLICH 1985]
Consider the finite-range Ising model on $\mathbb{Z}^{d}, d \geq 3$. Let $h=0$ and $\vec{s} \in \mathbb{S}^{d-1}$. Then there exists β_{0} such that, for all $\beta>\beta_{0}$, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta, 0}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

Open problems

Prove that OZ asymptotics hold for all $\beta>\beta_{\mathrm{c}}$ when $d \geq 3$, but also when $d=2$ and the graph is not planar.

Sharp asymptotics: $h \neq 0$

- Let us now consider the model in a field $h \neq 0$, assuming finite-range interactions.

Sharp asymptotics: $h \neq 0$

- Let us now consider the model in a field $h \neq 0$, assuming finite-range interactions.
- In this case, Ornstein-Zernike asymptotics apply (at any temperature):

Theorem

[OTT 2020]
Assume that $h \neq 0$ and let $\beta>0$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, h}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, n}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, h}$ are analytic in \vec{s}.

Exponentially decaying interactions

- Why was the result about $h=0, \beta<\beta_{\mathrm{c}}$ restricted to superexponentially-decaying coupling constants?

Exponentially decaying interactions

- Why was the result about $h=0, \beta<\beta_{c}$ restricted to superexponentially-decaying coupling constants?
- In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_{x} \leq C \mathrm{e}^{-c\|x\|}$ for some $C, c>0$ and all $x \in \mathbb{Z}^{d}$ (at least at very high temperatures).

Exponentially decaying interactions

- Why was the result about $h=0, \beta<\beta_{c}$ restricted to superexponentially-decaying coupling constants?
- In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_{x} \leq C \mathrm{e}^{-c\|x\|}$ for some $C, c>0$ and all $x \in \mathbb{Z}^{d}$ (at least at very high temperatures). This turns out to be incorrect.

Exponentially decaying interactions

- Why was the result about $h=0, \beta<\beta_{c}$ restricted to superexponentially-decaying coupling constants?
- In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_{x} \leq C \mathrm{e}^{-c\|x\|}$ for some $C, c>0$ and all $x \in \mathbb{Z}^{d}$ (at least at very high temperatures). This turns out to be incorrect.
- It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0<\beta<\beta_{\text {c }}$.

Exponentially decaying interactions

- Why was the result about $h=0, \beta<\beta_{\mathrm{c}}$ restricted to superexponentially-decaying coupling constants?
- In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_{x} \leq C \mathrm{e}^{-c\|x\|}$ for some $C, c>0$ and all $x \in \mathbb{Z}^{d}$ (at least at very high temperatures). This turns out to be incorrect.
- It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0<\beta<\beta_{\mathrm{c}}$. This also turns out to be incorrect (even in dimension 1!).

Exponentially decaying interactions

- Why was the result about $h=0, \beta<\beta_{\mathrm{c}}$ restricted to superexponentially-decaying coupling constants?
- In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_{x} \leq C e^{-c\|x\|}$ for some $C, c>0$ and all $x \in \mathbb{Z}^{d}$ (at least at very high temperatures). This turns out to be incorrect.
- It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0<\beta<\beta_{\mathrm{c}}$. This also turns out to be incorrect (even in dimension 1!).
- Let us discuss this in more detail. Assume that

$$
J_{x}=\psi(x) \mathrm{e}^{-\rho(x)},
$$

where
$\triangleright \rho(\cdot)$ denotes an arbitrary norm on \mathbb{R}^{d},
$\triangleright \psi$ is subexponential.

Exponentially decaying interactions

- Why was the result about $h=0, \beta<\beta_{\mathrm{c}}$ restricted to superexponentially-decaying coupling constants?
- In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_{x} \leq C \mathrm{e}^{-c\|x\|}$ for some $C, c>0$ and all $x \in \mathbb{Z}^{d}$ (at least at very high temperatures). This turns out to be incorrect.
- It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0<\beta<\beta_{\mathrm{c}}$. This also turns out to be incorrect (even in dimension 1!).
- Let us discuss this in more detail. Assume that

$$
J_{x}=\psi(x) \mathrm{e}^{-\rho(x)},
$$

where
$\triangleright \rho(\cdot)$ denotes an arbitrary norm on \mathbb{R}^{d},
$\triangleright \psi$ is subexponential.

- For simplicity, let us also assume that

$$
\forall x \in \mathbb{R}^{d}, \quad \psi(x)=\psi(\rho(x))>0
$$

Qualitative behavior of the inverse correlation length

- One can show that these are the only two possible scenarios:

Qualitative behavior of the inverse correlation length

- One can show that these are the only two possible scenarios:

No saturation

Saturation

- Observe that $\beta_{\text {sat }}(\vec{s})>0$ would imply that $\beta \mapsto \nu_{\beta, 0}(\vec{s})$ is not analytic on $\left(0, \beta_{\mathrm{c}}\right)$.

Qualitative behavior of the inverse correlation length

- One can show that these are the only two possible scenarios:

No saturation

Saturation

- Observe that $\beta_{\text {sat }}(\vec{s})>0$ would imply that $\beta \mapsto \nu_{\beta, 0}(\vec{s})$ is not analytic on $\left(0, \beta_{\mathrm{c}}\right)$.
- Criterion to determine which scenario occurs?

Criterion for the existence of a saturation regime

- Let us introduce the generating function (for $t \in \mathbb{R}^{d}$)

$$
\mathbb{J}(t)=\sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{t \cdot x} J_{x}
$$

Criterion for the existence of a saturation regime

- Let us introduce the generating function (for $t \in \mathbb{R}^{d}$)

$$
\mathbb{J}(t)=\sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{t \cdot x} J_{x} .
$$

- Let us also introduce

$$
\mathscr{W}=\left\{t \in \mathbb{R}^{d}: \forall \vec{s} \in \mathbb{S}^{d-1}, t \cdot \vec{s} \leq \rho(\vec{s})\right\}
$$

Easy fact: \mathscr{W} is the closure of the domain of convergence of \mathbb{J}.

Criterion for the existence of a saturation regime

- Let us introduce the generating function (for $t \in \mathbb{R}^{d}$)

$$
\mathbb{J}(t)=\sum_{x \in \mathbb{Z}^{d}} \mathrm{e}^{t \cdot x} J_{x} .
$$

- Let us also introduce

$$
\mathscr{W}=\left\{t \in \mathbb{R}^{d}: \forall \vec{s} \in \mathbb{S}^{d-1}, t \cdot \vec{s} \leq \rho(\vec{s})\right\}
$$

Easy fact: \mathscr{W} is the closure of the domain of convergence of \mathbb{J}.

- $t \in \partial \mathscr{W}$ is dual to $\vec{s} \in \mathbb{S}^{d-1}$ if

$$
t \cdot \vec{s}=\rho(\vec{s})
$$

Criterion for the existence of a saturation regime

Theorem

[AOUN-IOFFE-OTT-V. 2021, AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$ and $\mathscr{T}_{\vec{s}}=\{t \in \partial \mathscr{W}: t$ is dual to $\vec{s}\}$. Then

$$
\beta_{\mathrm{sat}}(\vec{s})>0 \Longleftrightarrow \inf _{t \in \mathscr{T}_{5}} \mathbb{J}(t)<\infty
$$

Criterion for the existence of a saturation regime

Theorem

[AOUN-IOFFE-OTT-V. 2021, AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$ and $\mathscr{T}_{\vec{s}}=\{t \in \partial \mathscr{W}: t$ is dual to $\vec{s}\}$. Then

$$
\beta_{\mathrm{sat}}(\vec{s})>0 \Longleftrightarrow \inf _{t \in \mathscr{T}_{5}} \mathbb{J}(t)<\infty
$$

- Example: let $d=2, \rho(x)=\|x\|_{p}$ and $\psi(x)=\|x\|_{p}^{\alpha}$, with $p \in(2, \infty)$. Then,

$$
\beta_{\text {sat }}(\vec{s})>0 \Longleftrightarrow \begin{cases}\alpha<\frac{1}{p}-2 & \text { if } \vec{s} \in\left\{ \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}\right\} \\ \alpha<-3 / 2 & \text { otherwise }\end{cases}
$$

Criterion for the existence of a saturation regime

Theorem

[AOUN-IOFFE-OTT-V. 2021, AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$ and $\mathscr{T}_{\vec{s}}=\{t \in \partial \mathscr{W}: t$ is dual to $\vec{s}\}$. Then

$$
\beta_{\mathrm{sat}}(\vec{s})>0 \Longleftrightarrow \inf _{t \in \mathscr{T}_{5}} \mathbb{J}(t)<\infty
$$

- Example: let $d=2, \rho(x)=\|x\|_{p}$ and $\psi(x)=\|x\|_{p}^{\alpha}$, with $p \in(2, \infty)$. Then,

$$
\beta_{\text {sat }}(\vec{s})>0 \Longleftrightarrow \begin{cases}\alpha<\frac{1}{p}-2 & \text { if } \vec{s} \in\left\{ \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}\right\} \\ \alpha<-3 / 2 & \text { otherwise }\end{cases}
$$

- In particular, the correlation length is not always analytic in β on $\left(0, \beta_{\mathrm{c}}\right)$ (even in dimension 1!), contrarily to previous expectations.

Criterion for the existence of a saturation regime

Theorem

Let $\vec{s} \in \mathbb{S}^{d-1}$ and $\mathscr{T}_{\vec{s}}=\{t \in \partial \mathscr{W}: t$ is dual to $\vec{s}\}$. Then

$$
\beta_{\text {sat }}(\vec{s})>0 \Longleftrightarrow \inf _{t \in \mathscr{T}_{\vec{s}}} \mathbb{J}(t)<\infty .
$$

- Example: let $d=2, \rho(x)=\|x\|_{p}$ and $\psi(x)=\|x\|_{p}^{\alpha}$, with $p \in(2, \infty)$. Then,

$$
\beta_{\text {sat }}(\vec{s})>0 \Longleftrightarrow \begin{cases}\alpha<\frac{1}{p}-2 & \text { if } \vec{s} \in\left\{ \pm \mathbf{e}_{1}, \pm \mathbf{e}_{2}\right\} \\ \alpha<-3 / 2 & \text { otherwise }\end{cases}
$$

- In particular, the correlation length is not always analytic in β on $\left(0, \beta_{c}\right)$ (even in dimension 1!), contrarily to previous expectations.
- What can be said about the asymptotic behavior of the 2-point function in the regimes $\left(0, \beta_{\text {sat }}(\vec{s})\right)$ and $\left(\beta_{\text {sat }}(\vec{s}), \beta_{c}\right)$?

Sharp asymptotics: $\beta_{\mathrm{sst}}(\vec{s})<\beta<\beta_{\mathrm{c}}$

- Standard Ornstein-Zernike asympotics hold when $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{c}\right)$:

Theorem
[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{c}\right)$, under some (presumably technical) condition, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are analytic in \vec{s}.

Sharp asymptotics: $\beta_{\mathrm{sta}}(\vec{s})<\beta<\beta_{\mathrm{c}}$

- Standard Ornstein-Zernike asympotics hold when $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{c}\right)$:

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{\mathrm{c}}\right)$, under some (presumably technical) condition, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are analytic in \vec{s}.

- The condition is conjectured to always hold, and is known to hold, for instance, when one of the following assumption is satisfied:
$\triangleright \sup _{\vec{s} \in \mathbb{S}^{d-1}} \beta_{\text {sat }}(\vec{s})<\beta<\beta_{c}$
(for instance, true for all $\beta<\beta_{c}$ when $\sum_{n \geq 1} \psi(n \vec{s})=+\infty$ for all $\vec{s} \in \mathbb{S}^{d-1}$).
$\triangleright J$. possesses all lattice symmetries and $\vec{s}=\mathbf{e}_{k} \quad(k \in\{1, \ldots, d\})$.

Sharp asymptotics: $\beta_{\mathrm{sta}}(\vec{s})<\beta<\beta_{\mathrm{c}}$

- Standard Ornstein-Zernike asympotics hold when $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{c}\right)$:

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{\mathrm{c}}\right)$, under some (presumably technical) condition, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are analytic in \vec{s}.

- The condition is conjectured to always hold, and is known to hold, for instance, when one of the following assumption is satisfied:
$\triangleright \sup _{\vec{s} \in \mathbb{S}^{d-1}} \beta_{\text {sat }}(\vec{s})<\beta<\beta_{c}$
(for instance, true for all $\beta<\beta_{c}$ when $\sum_{n \geq 1} \psi(n \vec{s})=+\infty$ for all $\vec{s} \in \mathbb{S}^{d-1}$).
$\triangleright J$. possesses all lattice symmetries and $\vec{s}=\mathbf{e}_{k} \quad(k \in\{1, \ldots, d\})$.

Sharp asymptotics: $\beta_{\mathrm{sta}}(\vec{s})<\beta<\beta_{\mathrm{c}}$

- Standard Ornstein-Zernike asympotics hold when $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{c}\right)$:

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(\beta_{\text {sat }}(\vec{s}), \beta_{\mathrm{c}}\right)$, under some (presumably technical) condition, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\frac{\Psi_{\beta}(\vec{s})}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

where the functions Ψ_{β} and $\nu_{\beta, 0}$ are analytic in \vec{s}.

- The condition is conjectured to always hold, and is known to hold, for instance, when one of the following assumption is satisfied:
$\triangleright \sup _{\vec{s} \in \mathbb{S}^{d-1}} \beta_{\text {sat }}(\vec{s})<\beta<\beta_{c}$
(for instance, true for all $\beta<\beta_{c}$ when $\sum_{n \geq 1} \psi(n \vec{s})=+\infty$ for all $\vec{s} \in \mathbb{S}^{d-1}$).
$\triangleright J$. possesses all lattice symmetries and $\vec{s}=\mathbf{e}_{k} \quad(k \in\{1, \ldots, d\})$.

Sharp asymptotics: saturation regime $\left(0<\beta<\beta_{\mathrm{st}}(\vec{s})\right)$

- The asymptotic behavior is not of Ornstein-Zernike type when $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$.

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$, under some (presumably technical) condition, there exists an (explicit) constant $\widetilde{\chi}^{2}=\widetilde{\chi}^{2}(\beta)>0$ such that, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\widetilde{\chi}^{2} \beta J_{n \vec{s}}(1+\mathrm{o}(1)) .
$$

Sharp asymptotics: saturation regime $\left(0<\beta<\beta_{\text {sat }}(\vec{s})\right)$

- The asymptotic behavior is not of Ornstein-Zernike type when $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$.

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$, under some (presumably technical) condition, there exists an (explicit) constant $\widetilde{\chi}^{2}=\widetilde{\chi}^{2}(\beta)>0$ such that, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\widetilde{\chi}^{2} \beta J_{n \vec{s}}(1+\mathrm{o}(1)) .
$$

- The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:
$\triangleright \psi(x)=C \exp \left(-A \rho(x)^{\alpha}\right)$, with $A>0$ and $\alpha \in(0,1)$.
$\triangleright \psi(x)=C \rho(x)^{-\alpha}$, with $\alpha>2 d$.

Sharp asymptotics: saturation regime $\left(0<\beta<\beta_{\text {sat }}(\vec{s})\right)$

- The asymptotic behavior is not of Ornstein-Zernike type when $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$.

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$, under some (presumably technical) condition, there exists an (explicit) constant $\widetilde{\chi}^{2}=\widetilde{\chi}^{2}(\beta)>0$ such that, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\widetilde{\chi}^{2} \beta J_{n \vec{s}}(1+\mathrm{o}(1)) .
$$

- The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:
$\triangleright \psi(x)=C \exp \left(-A \rho(x)^{\alpha}\right)$, with $A>0$ and $\alpha \in(0,1)$.
$\triangleright \psi(x)=C \rho(x)^{-\alpha}$, with $\alpha>2 d$.

Sharp asymptotics: saturation regime $\left(0<\beta<\beta_{\text {sat }}(\vec{s})\right)$

- The asymptotic behavior is not of Ornstein-Zernike type when $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$.

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$, under some (presumably technical) condition, there exists an (explicit) constant $\widetilde{\chi}^{2}=\widetilde{\chi}^{2}(\beta)>0$ such that, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\widetilde{\chi}^{2} \beta J_{n \vec{s}}(1+\mathrm{o}(1)) .
$$

- The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:
$\triangleright \psi(x)=C \exp \left(-A \rho(x)^{\alpha}\right)$, with $A>0$ and $\alpha \in(0,1)$.
$\triangleright \psi(x)=C \rho(x)^{-\alpha}$, with $\alpha>2 d$.

Sharp asymptotics: saturation regime $\left(0<\beta<\beta_{\text {sat }}(\vec{s})\right)$

- The asymptotic behavior is not of Ornstein-Zernike type when $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$.

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$, under some (presumably technical) condition, there exists an (explicit) constant $\widetilde{\chi}^{2}=\widetilde{\chi}^{2}(\beta)>0$ such that, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\widetilde{\chi}^{2} \beta J_{n \vec{s}}(1+\mathrm{o}(1)) .
$$

- The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:

$$
\begin{aligned}
& \triangleright \psi(x)=C \exp \left(-A \rho(x)^{\alpha}\right) \text {, with } A>0 \text { and } \alpha \in(0,1) . \\
& \triangleright \psi(x)=C \rho(x)^{-\alpha} \text {, with } \alpha>2 d .
\end{aligned}
$$

- This shows that $\mathbf{O Z}$ behavior can be violated at arbitrarily high temperature even though interactions decay exponentially fast, contradicting earlier expectations.

Sharp asymptotics: saturation regime $\left(0<\beta<\beta_{\text {sat }}(\vec{s})\right)$

- The asymptotic behavior is not of Ornstein-Zernike type when $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$.

Theorem

[AOUN-OTT-V. 2022]
Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in\left(0, \beta_{\text {sat }}(\vec{s})\right)$, under some (presumably technical) condition, there exists an (explicit) constant $\widetilde{\chi}^{2}=\widetilde{\chi}^{2}(\beta)>0$ such that, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \vec{s}}\right\rangle_{\beta, 0}=\widetilde{\chi}^{2} \beta J_{n \vec{s}}(1+\mathrm{o}(1)) .
$$

- The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:

$$
\begin{aligned}
& \triangleright \psi(x)=C \exp \left(-A \rho(x)^{\alpha}\right) \text {, with } A>0 \text { and } \alpha \in(0,1) . \\
& \triangleright \psi(x)=C \rho(x)^{-\alpha} \text {, with } \alpha>2 d .
\end{aligned}
$$

- This shows that $\mathbf{O Z}$ behavior can be violated at arbitrarily high temperature even though interactions decay exponentially fast, contradicting earlier expectations.
- Very similar asymptotics have been shown to hold in the simpler situation in which the coupling constants decay subexponentially [NEwMAN-Spohn 1998].

Behavior of typical paths

- These different asymptotics reflect very different behaviors of typical "paths" contributing to graphical representations in both regimes.

$0<\beta<\beta_{\text {sat }}(\vec{s})$

$\beta_{\text {sat }}(\vec{s})<\beta<\beta_{c}$

- A. Asymptotics of correlations -

A.2. General correlation functions

Decay of correlations

- We assume that $h=0, \beta<\beta_{\mathrm{c}}$ and $\left(J_{\mathrm{x}}\right)_{\mathrm{x} \in \mathbb{Z}^{d}}$ has finite range.

Decay of correlations

- We assume that $h=0, \beta<\beta_{\mathrm{c}}$ and $\left(J_{\mathrm{x}}\right)_{x \in \mathbb{Z}^{d}}$ has finite range.
- For $A \Subset \mathbb{Z}^{d}$, let $\sigma_{A}=\prod_{i \in A} \sigma_{i}$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

Decay of correlations

- We assume that $h=0, \beta<\beta_{c}$ and $\left(J_{x}\right)_{x \in \mathbb{Z}^{d}}$ has finite range.
- For $A \Subset \mathbb{Z}^{d}$, let $\sigma_{A}=\prod_{i \in A} \sigma_{i}$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

- Given $A, B \Subset \mathbb{Z}^{d}$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}
$$

as $n \rightarrow \infty$.

Decay of correlations

- We assume that $h=0, \beta<\beta_{c}$ and $\left(J_{\mathrm{x}}\right)_{\mathrm{x} \in \mathbb{Z}^{d}}$ has finite range.
- For $A \Subset \mathbb{Z}^{d}$, let $\sigma_{A}=\prod_{i \in A} \sigma_{i}$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

- Given $A, B \Subset \mathbb{Z}^{d}$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}
$$

as $n \rightarrow \infty$.

- Of course, by symmetry, $\left\langle\sigma_{C}\right\rangle_{\beta, 0}=0$ whenever $|C|$ is odd.

$$
\leadsto\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta, 0}=0 \text { whenever }|A|+|B| \text { is odd. }
$$

Decay of correlations

- We assume that $h=0, \beta<\beta_{c}$ and $\left(J_{x}\right)_{x \in \mathbb{Z}^{d}}$ has finite range.
- For $A \Subset \mathbb{Z}^{d}$, let $\sigma_{A}=\prod_{i \in A} \sigma_{i}$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

- Given $A, B \Subset \mathbb{Z}^{d}$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}
$$

as $n \rightarrow \infty$.

- Of course, by symmetry, $\left\langle\sigma_{C}\right\rangle_{\beta, 0}=0$ whenever $|C|$ is odd.

$$
\leadsto\left\langle\sigma_{A} ; \sigma_{B}\right\rangle_{\beta, 0}=0 \text { whenever }|A|+|B| \text { is odd. }
$$

- We are thus left with two cases to consider:

Odd-odd correlations
Even-even correlations
$|A|,|B|$ both odd
$|A|,|B|$ both even

Odd-odd correlations

- Odd-odd correlations always display Ornstein-Zernike behavior:

Theorem

[CAMPANINO-IOFFE-V. 2004]
Let $\beta<\beta_{c}$. Let $A, B \Subset \mathbb{Z}^{d}$ with $|A|$ and $|B|$ odd and let $\vec{s} \in \mathbb{S}^{d-1}$.
Then, there exists a constant $0<C<\infty$ (depending on A, B, \vec{s}, β) such that

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}=\frac{C}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

as $n \rightarrow \infty$.

Odd-odd correlations

- Odd-odd correlations always display Ornstein-Zernike behavior:

Theorem

[CAMPANINO-IOFFE-V. 2004]
Let $\beta<\beta_{c}$. Let $A, B \Subset \mathbb{Z}^{d}$ with $|A|$ and $|B|$ odd and let $\vec{s} \in \mathbb{S}^{d-1}$.
Then, there exists a constant $0<C<\infty$ (depending on A, B, \vec{s}, β) such that

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}=\frac{C}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta, 0}(\vec{s}) n}(1+\mathrm{o}(1))
$$

as $n \rightarrow \infty$.

- The first rigorous results of this type were obtained for $\beta \ll 1$ in
\triangleright Bricmont-Fröhlich 1985
- Zhizhina-Minlos 1988

Even-even correlations

- Substantially more delicate!

Even-even correlations

- Substantially more delicate!
- The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}=\mathrm{e}^{-2 \nu_{\beta, 0}(\vec{s}) n(1+\mathrm{o}(1))}
$$

Even-even correlations

- Substantially more delicate!
- The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}=\mathrm{e}^{-2 \nu_{\beta, 0}(\vec{s}) n(1+\mathrm{o}(1))} .
$$

- However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp, Fisher 1971	
n^{-2}	$d=2$		
$(n \log n)^{-2}$	$d=3$	$n^{-d} \quad$ for all $d \geq 2$	
$n^{-(d-1)}$	$d \geq 4$		

(Note that these predictions only coincide when $d=2$, where they both agree with the exact computation obtained in Stephenson 1966 and Hecht 1967.)

Even-even correlations

- Substantially more delicate!
- The analysis started with the case $|A|=|B|=2$. Physicists quickly understood that

$$
\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle_{\beta, 0}=\mathrm{e}^{-2 \nu_{\beta, 0}(\vec{s}) n(1+o(1))}
$$

- However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp, Fisher 1971	
n^{-2}	$d=2$		
$(n \log n)^{-2}$	$d=3$	$n^{-d} \quad$ for all $d \geq 2$	
$n^{-(d-1)}$	$d \geq 4$		

(Note that these predictions only coincide when $d=2$, where they both agree with the exact computation obtained in Stephenson 1966 and Hecht 1967.)

- It turns out that Polyakov was right. This was first shown in
\triangleright Bricmont-Fröhlich 1985:

$$
\begin{array}{lll}
|A|=|B|=2 & \beta \ll 1 & d \geq 4 \\
|A|,|B| \text { even } & \beta \ll 1 & d \geq 2
\end{array}
$$

Even-even correlations

- The best nonperturbative result to date is the following:

Let $\tau(n)= \begin{cases}n^{2} & \text { when } d=2, \\ (n \log n)^{2} & \text { when } d=3, \\ n^{d-1} & \text { when } d \geq 4 .\end{cases}$

Theorem

Let $d \geq 2$ and $\beta<\beta_{c}$. Let $A, B \Subset \mathbb{Z}^{d}$ with $|A|$ and $|B|$ even and let $\vec{s} \in \mathbb{S}^{d-1}$. Then, there exist constants $0<C_{-} \leq C_{+}<\infty$ (depending on A, B, \vec{s}, β) such that, for all n large enough,

$$
\frac{C_{-}}{\tau(n)} \mathrm{e}^{-2 \nu_{\beta, 0}(\vec{s}) n} \leq\left\langle\sigma_{A} ; \sigma_{B+n \vec{s}}\right\rangle \leq \frac{C_{+}}{\tau(n)} \mathrm{e}^{-2 \nu_{\beta, 0}(\vec{s}) n}
$$

- A. AsYmptotics Of CORRELATIONS -

A.3. An inhomogeneous system: Ising with a defect line

Settings

- Defect line: $\mathcal{L}=\left\{k \mathbf{e}_{1} \in \mathbb{Z}^{d}: k \in \mathbb{Z}\right\}$

Settings

- Defect line: $\mathcal{L}=\left\{k \mathbf{e}_{1} \in \mathbb{Z}^{d}: k \in \mathbb{Z}\right\}$
- Coupling constants:

$$
J_{i j}= \begin{cases}1 & \text { if } i \sim j,\{i, j\} \not \subset \mathcal{L} \\ J & \text { if } i \sim j,\{i, j\} \subset \mathcal{L} \\ 0 & \text { otherwise }\end{cases}
$$

Settings

- Defect line: $\mathcal{L}=\left\{k \mathbf{e}_{1} \in \mathbb{Z}^{d}: k \in \mathbb{Z}\right\}$
- Coupling constants:

$$
J_{i j}= \begin{cases}1 & \text { if } i \sim j,\{i, j\} \not \subset \mathcal{L} \\ J & \text { if } i \sim j,\{i, j\} \subset \mathcal{L} \\ 0 & \text { otherwise }\end{cases}
$$

- Fix $\beta<\beta_{\mathrm{c}}, h=0, J \geq 0$ and let $\mathbb{P}_{\beta, J}$ be the unique infinite-volume Gibbs measure.

Settings

- Defect line: $\mathcal{L}=\left\{k \mathbf{e}_{1} \in \mathbb{Z}^{d}: k \in \mathbb{Z}\right\}$
- Coupling constants:

$$
J_{i j}= \begin{cases}1 & \text { if } i \sim j,\{i, j\} \not \subset \mathcal{L} \\ J & \text { if } i \sim j,\{i, j\} \subset \mathcal{L} \\ 0 & \text { otherwise }\end{cases}
$$

- Fix $\beta<\beta_{\mathrm{c}}, h=0, J \geq 0$ and let $\mathbb{P}_{\beta, J}$ be the unique infinite-volume Gibbs measure.
- Central quantity: longitudinal inverse correlation length $\nu_{\beta}(J)$

$$
\left\langle\sigma_{0} ; \sigma_{n \mathbf{e}_{1}}\right\rangle_{\beta, J}=\mathrm{e}^{-\nu_{\beta}(J) n+\mathrm{o}(n)}
$$

Settings

- Defect line: $\mathcal{L}=\left\{k \mathbf{e}_{1} \in \mathbb{Z}^{d}: k \in \mathbb{Z}\right\}$
- Coupling constants:

$$
J_{i j}= \begin{cases}1 & \text { if } i \sim j,\{i, j\} \not \subset \mathcal{L} \\ J & \text { if } i \sim j,\{i, j\} \subset \mathcal{L} \\ 0 & \text { otherwise }\end{cases}
$$

- Fix $\beta<\beta_{\mathrm{c}}, h=0, J \geq 0$ and let $\mathbb{P}_{\beta, J}$ be the unique infinite-volume Gibbs measure.
- Central quantity: longitudinal inverse correlation length $\nu_{\beta}(J)$

$$
\left\langle\sigma_{0} ; \sigma_{n \mathbf{e}_{1}}\right\rangle_{\beta, J}=\mathrm{e}^{-\nu_{\beta}(J) n+\mathrm{o}(n)} .
$$

- McCoy-Perk 1980: explicit computation of $\nu_{\beta}(J)$ for the planar Ising model.

Properties of the longitudinal correlation length

- The following is proved in [OтT-V. 2018]: For any $d \geq 2$, there exists $J_{c} \geq 1$ such that

Properties of the longitudinal correlation length

- The following is proved in [Oтт-V. 2018]: For any $d \geq 2$, there exists $J_{c} \geq 1$ such that \triangleright When $0 \leq J \leq J_{\mathrm{c}}: \nu_{\beta}(J)$ is constant.

Properties of the longitudinal correlation length

- The following is proved in [OтT-V. 2018]: For any $d \geq 2$, there exists $J_{c} \geq 1$ such that
\triangleright When $0 \leq J \leq J_{c}: \nu_{\beta}(J)$ is constant.
\triangleright When $J>J_{c}: J \mapsto \nu_{\beta}(J)$ is decreasing and real-analytic.

Properties of the longitudinal correlation length

- The following is proved in [OтT-V. 2018]: For any $d \geq 2$, there exists $J_{c} \geq 1$ such that
\triangleright When $0 \leq J \leq J_{\mathrm{c}}: \nu_{\beta}(J)$ is constant.
\triangleright When $J>J_{\mathrm{c}}: J \mapsto \nu_{\beta}(J)$ is decreasing and real-analytic.
$\triangleright d=2,3: J_{c}=1, \quad d \geq 4: J_{c}>1$.

Properties of the longitudinal correlation length

- The following is proved in [OтT-V. 2018]: For any $d \geq 2$, there exists $J_{c} \geq 1$ such that
\triangleright When $0 \leq J \leq J_{\mathrm{c}}: \nu_{\beta}(J)$ is constant.
\triangleright When $J>J_{c}: J \mapsto \nu_{\beta}(J)$ is decreasing and real-analytic.
$\triangleright d=2,3: J_{\mathrm{c}}=1, \quad d \geq 4: J_{\mathrm{c}}>1$.
\triangleright There exist constants $c_{2}^{ \pm}, c_{3}^{ \pm}>0$ such that, as $J \downarrow J_{c}$,

$$
\begin{array}{ll}
c_{2}^{-}\left(J-J_{\mathrm{c}}\right)^{2} \leq \nu_{\beta}\left(J_{\mathrm{c}}\right)-\nu_{\beta}(J) \leq c_{2}^{+}\left(J-J_{\mathrm{c}}\right)^{2} & (d=2) \\
\mathrm{e}^{-c_{3}^{-} /\left(J-J_{\mathrm{c}}\right)} \leq \nu_{\beta}\left(J_{\mathrm{c}}\right)-\nu_{\beta}(J) \leq \mathrm{e}^{-c_{3}^{+} /\left(J-J_{\mathrm{c}}\right)} & (d=3)
\end{array}
$$

Asymptotics of correlations

- When $J>J_{\mathrm{c}}$, one has pure exponential decay:

Theorem

Let $d \geq 2$. Assume that $\beta<\beta_{c}, h=0$ and $J>J_{c}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \mathrm{e}_{1}}\right\rangle_{\beta, J}=C_{\beta, J} \mathrm{e}^{-\nu_{\beta}(J) \mathrm{n}}(1+\mathrm{o}(1))
$$

Asymptotics of correlations

- When $J>J_{\mathrm{c}}$, one has pure exponential decay:

Theorem

Let $d \geq 2$. Assume that $\beta<\beta_{\mathrm{c}}, h=0$ and $J>J_{\mathrm{c}}$. Then, as $n \rightarrow \infty$,

$$
\left\langle\sigma_{0} ; \sigma_{n \mathbf{e}_{1}}\right\rangle_{\beta, J}=C_{\beta, J} \mathrm{e}^{-\nu_{\beta}(J) n}(1+\mathrm{o}(1))
$$

- When $0 \leq J<1$, one has the following asymptotics:

Theorem

[OTT-V. 2019, IOFFE-OTT-V.-WACHTEL 2020]

Assume that $\beta<\beta_{\mathrm{c}}, h=0$ and $0 \leq J<1$. Then, as $n \rightarrow \infty$,

$$
\begin{array}{ll}
d=2: & \left\langle\sigma_{0} ; \sigma_{n \mathbf{e}_{1}}\right\rangle_{\beta, J}=\frac{C_{\beta, J}}{n^{3 / 2}} \mathrm{e}^{-\nu_{\beta}(J) \mathrm{n}}(1+\mathrm{o}(1)), \\
d=3: & \left\langle\sigma_{0} ; \sigma_{n \mathbf{e}_{1}}\right\rangle_{\beta, J}=\frac{C_{\beta, J}}{n(\log n)^{2}} \mathrm{e}^{-\nu_{\beta}(J) n}(1+\mathrm{o}(1)), \\
d \geq 4: & \left\langle\sigma_{0} ; \sigma_{n \mathbf{e}_{1}}\right\rangle_{\beta, J}=\frac{C_{\beta, J}}{n^{(d-1) / 2}} \mathrm{e}^{-\nu_{\beta}(J) n}(1+\mathrm{o}(1)) .
\end{array}
$$

- B. INTERFACES IN THE PLANAR ISING MODEL B.1. Interface in the bulk

Interface in the bulk: Setting

- We consider the n.n. Ising model in $\Lambda_{N}=\{-N+1, \ldots, N\}^{2}$ with $\beta>\beta_{\mathrm{c}}$ and $h=0$.

Interface in the bulk: Setting

- We consider the n.n. Ising model in $\Lambda_{N}=\{-N+1, \ldots, N\}^{2}$ with $\beta>\beta_{\mathrm{c}}$ and $h=0$.
- Let $\vec{s} \in \mathbb{S}^{1}$. We consider a system with \vec{s}-boundary condition:

Interface in the bulk: Scaling limit of the interface

Theorem

Let $\vec{s} \in \mathbb{S}^{1}$ and $\beta>\beta_{\mathrm{c}}$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s}-boundary condition converges to the distribution of

$$
\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b}
$$

where \mathfrak{b} is the standard Brownian bridge on $[-1,1]$ and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s}.

Interface in the bulk: Scaling limit of the interface

Theorem

Let $\vec{s} \in \mathbb{S}^{1}$ and $\beta>\beta_{\mathrm{c}}$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s}-boundary condition converges to the distribution of

$$
\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b}
$$

where \mathfrak{b} is the standard Brownian bridge on $[-1,1]$ and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s}.

- Some earlier results:
\triangleright Abraham-Reed 1976:
\triangleright Abraham-Upton 1988:
\triangleright Gallavotti 1972:
\triangleright Higuchi 1979:

Expected magnetization profile ($\vec{s}=\mathbf{e}_{2}$) (exact computations) Expected magnetization profile ($\vec{s} \in \mathbb{S}^{1}$) (exact computations)
\sqrt{N} fluctuations, $\beta \gg 1$
Invariance principle for $\beta \gg 1$

Interface in the bulk: Scaling limit of the interface

Theorem

Let $\vec{s} \in \mathbb{S}^{1}$ and $\beta>\beta_{\mathrm{c}}$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s}-boundary condition converges to the distribution of

$$
\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b}
$$

where \mathfrak{b} is the standard Brownian bridge on $[-1,1]$ and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s}.

- Some earlier results:
\triangleright Abraham-Reed 1976:
\triangleright Abraham-Upton 1988:
\triangleright Gallavotti 1972:
\triangleright Higuchi 1979:

Expected magnetization profile ($\vec{s}=\mathbf{e}_{2}$) (exact computations) Expected magnetization profile ($\vec{s} \in \mathbb{S}^{1}$) (exact computations)
\sqrt{N} fluctuations, $\beta \gg 1$
Invariance principle for $\beta \gg 1$

Interface in the bulk: Scaling limit of the interface

Theorem

Let $\vec{s} \in \mathbb{S}^{1}$ and $\beta>\beta_{\mathrm{c}}$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s}-boundary condition converges to the distribution of

$$
\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b}
$$

where \mathfrak{b} is the standard Brownian bridge on $[-1,1]$ and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s}.

- Some earlier results:
\triangleright Abraham-Reed 1976:
\triangleright Abraham-Upton 1988:
- Gallavotti 1972:
\triangleright Higuchi 1979:

Expected magnetization profile ($\vec{s}=\mathbf{e}_{2}$) (exact computations) Expected magnetization profile ($\vec{s} \in \mathbb{S}^{1}$) (exact computations)
\sqrt{N} fluctuations, $\beta \gg 1$
Invariance principle for $\beta \gg 1$

Interface in the bulk: Scaling limit of the interface

Theorem

Let $\vec{s} \in \mathbb{S}^{1}$ and $\beta>\beta_{\mathrm{c}}$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s}-boundary condition converges to the distribution of

$$
\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b}
$$

where \mathfrak{b} is the standard Brownian bridge on $[-1,1]$ and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s}.

- Some earlier results:
\triangleright Abraham-Reed 1976:
\triangleright Abraham-Upton 1988:
\triangleright Gallavotti 1972:
\triangleright Higuchi 1979:

Expected magnetization profile ($\vec{s}=\mathbf{e}_{2}$) (exact computations) Expected magnetization profile ($\vec{s} \in \mathbb{S}^{1}$) (exact computations)
\sqrt{N} fluctuations, $\beta \gg 1$
Invariance principle for $\beta \gg 1$

- B. Interfaces in the planar Ising model -

B.2. Interface at a boundary

Interface at a boundary: Setting

- We consider a system with boundary condition inducing an interface along the bottom wall:

Interface at a boundary: Scaling limit of the interface

Theorem

Let $\beta>\beta_{\mathrm{c}}$. The distribution of the diffusively-rescaled interface converges to the distribution of

$$
\sqrt{\chi_{\beta}} \mathfrak{e}
$$

where \mathfrak{e} is the standard Brownian excursion on $[-1,1]$ and χ_{β} is the curvature of the Wulff shape at its apex.

Interface at a boundary: Scaling limit of the interface

Theorem

Let $\beta>\beta_{\mathrm{c}}$. The distribution of the diffusively-rescaled interface converges to the distribution of

$$
\sqrt{\chi_{\beta}} \mathfrak{e}
$$

where \mathfrak{e} is the standard Brownian excursion on $[-1,1]$ and χ_{β} is the curvature of the Wulff shape at its apex.

- Some earlier results:
\triangleright Abraham 1980: Expected magnetization profile (exact computations)
\triangleright Dobrushin 1992: Invariance principle for $\beta \gg 1$ (with seemingly incomplete proof)

Interface at a boundary: Scaling limit of the interface

Theorem

Let $\beta>\beta_{c}$. The distribution of the diffusively-rescaled interface converges to the distribution of

$$
\sqrt{\chi_{\beta}} \mathfrak{e}
$$

where \mathfrak{e} is the standard Brownian excursion on $[-1,1]$ and χ_{β} is the curvature of the Wulff shape at its apex.

- Some earlier results:
\triangleright Abraham 1980: Expected magnetization profile (exact computations)
\triangleright Dobrushin 1992: Invariance principle for $\beta \gg 1$ (with seemingly incomplete proof)

- B. INTERFACES IN THE PLANAR ISING MODEL -

B.3. Interface in a field

Interface in a field: Settings

- We consider again the boundary condition

but add to the Hamiltonian a magnetic field term

$$
-h \sum_{i \in \Lambda_{N}} \sigma_{i}
$$

with $\boldsymbol{h}>\mathbf{0}$.

Interface in a field: Layer of unstable phase

Let $\beta>\beta_{\mathrm{c}}$. Since $h>0$, the layer of - phase becomes unstable:

$$
h=0
$$

average width $=O\left(N^{1 / 2}\right)$

Interface in a field: Layer of unstable phase

Let $\beta>\beta_{\mathrm{c}}$. Since $h>0$, the layer of - phase becomes unstable:

$$
h=0
$$

average width $=O\left(N^{1 / 2}\right)$

$$
h>0
$$

average width $=O(1)$

Interface in a field: Critical prewetting

- The width of the layer increases as h decreases:

- It turns out to be natural to choose $h=h(N)$ to be of the form

$$
h=\frac{\lambda}{N}
$$

for some $\lambda>0$.

Interface in a field: Scaling limit

Theorem
Rescale the interface

- horizontally by $\mathrm{N}^{-2 / 3}$
\triangleright vertically by $\chi_{\beta}^{-1 / 2} N^{-1 / 3}$.
Then, as $N \rightarrow \infty$, its distribution weakly converges to that of the Ferrari-Spohn diffusion introduced in the next slide.

Interface in a field: Scaling limit

Theorem

Rescale the interface
\triangleright horizontally by $\mathrm{N}^{-2 / 3}$
\triangleright vertically by $\chi_{\beta}^{-1 / 2} N^{-1 / 3}$.
Then, as $N \rightarrow \infty$, its distribution weakly converges to that of the Ferrari-Spohn diffusion introduced in the next slide.

- Some earlier results:
- V. 2004:
Layer width $\sim N^{1 / 3+o(1)}$
\triangleright Ganguly-Gheissari 2021:
Layer width $\sim N^{1 / 3}$ and other global estimates

Interface in a field: Scaling limit

Theorem

Rescale the interface
\triangleright horizontally by $\mathrm{N}^{-2 / 3}$
\triangleright vertically by $\chi_{\beta}^{-1 / 2} N^{-1 / 3}$.
Then, as $N \rightarrow \infty$, its distribution weakly converges to that of the Ferrari-Spohn diffusion introduced in the next slide.

- Some earlier results:
- V. 2004:
Layer width $\sim N^{1 / 3+o(1)}$
\triangleright Ganguly-Gheissari 2021:
Layer width $\sim N^{1 / 3}$ and other global estimates

Interface in a field: Ferrari-Spohn diffusion

- Let us introduce
\triangleright the spontaneous magnetization: m_{β}^{*}
\triangleright the curvature of the Wulff shape (at its apex): χ_{β}
\triangleright the Airy function Ai and its first zero $-\omega_{1}$

$-\operatorname{Set} \varphi_{0}(r)=\mathrm{Ai}\left(\left(4 \lambda m_{\beta}^{*} \sqrt{\chi_{\beta}}\right)^{1 / 3} r-\omega_{1}\right)$.
- The relevant Ferrari-Spohn diffusion in the present context is the diffusion on $(0, \infty)$ with generator

$$
L_{\beta}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} r^{2}}+\frac{\varphi_{0}^{\prime}}{\varphi_{0}} \frac{\mathrm{~d}}{\mathrm{~d} r}
$$

and Dirichlet boundary condition at 0 .

Interface in a field: Ferrari-Spohn diffusion

- Let us introduce
\triangleright the spontaneous magnetization: m_{β}^{*}
\triangleright the curvature of the Wulff shape (at its apex): χ_{β}
\triangleright the Airy function Ai and its first zero $-\omega_{1}$

$-\operatorname{Set} \varphi_{0}(r)=\mathrm{Ai}\left(\left(4 \lambda m_{\beta}^{*} \sqrt{\chi_{\beta}}\right)^{1 / 3} r-\omega_{1}\right)$.
The relevant Ferrari-Spohn diffusion in the present context is the diffusion on $(0, \infty)$ with generator

$$
L_{\beta}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} r^{2}}+\frac{\varphi_{0}^{\prime}}{\varphi_{0}} \frac{\mathrm{~d}}{\mathrm{~d} r}
$$

and Dirichlet boundary condition at 0 .

Interface in a field: Ferrari-Spohn diffusion

- Let us introduce
\triangleright the spontaneous magnetization: m_{β}^{*}
\triangleright the curvature of the Wulff shape (at its apex): χ_{β}
\triangleright the Airy function Ai and its first zero $-\omega_{1}$

- Set $\varphi_{0}(r)=\mathrm{Ai}\left(\left(4 \lambda m_{\beta}^{*} \sqrt{\chi_{\beta}}\right)^{1 / 3} r-\omega_{1}\right)$.

The relevant Ferrari-Spohn diffusion in the present context is the diffusion on $(0, \infty)$ with generator

$$
L_{\beta}=\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} r^{2}}+\frac{\varphi_{0}^{\prime}}{\varphi_{0}} \frac{\mathrm{~d}}{\mathrm{~d} r}
$$

and Dirichlet boundary condition at 0 .

- CONCLUDING REMARKS -

Concluding remarks

- The Ornstein-Zernike theory provides a powerful tool to analyze the ferromagnetic Ising (and other) model nonperturbatively.
- It allows, in particular, a detailed understanding of asymptotics of correlation functions in any dimension and for general ferromagnetic coupling constants, away from the critical point.
- Combined with planar duality, it enables an in-depth analysis of interfacial phenomena in 2D.
- The (modern version of the) Ornstein-Zernike theory was developed in a very large part by Dima loffe, to whom I dedicate this talk...

Concluding remarks

- The Ornstein-Zernike theory provides a powerful tool to analyze the ferromagnetic Ising (and other) model nonperturbatively.
- It allows, in particular, a detailed understanding of asymptotics of correlation functions in any dimension and for general ferromagnetic coupling constants, away from the critical point.
- Combined with planar duality, it enables an in-depth analysis of interfacial phenomena in 2D.
- The (modern version of the) Ornstein-Zernike theory was developed in a very large part by Dima loffe, to whom I dedicate this talk...

Concluding remarks

- The Ornstein-Zernike theory provides a powerful tool to analyze the ferromagnetic Ising (and other) model nonperturbatively.
- It allows, in particular, a detailed understanding of asymptotics of correlation functions in any dimension and for general ferromagnetic coupling constants, away from the critical point.
- Combined with planar duality, it enables an in-depth analysis of interfacial phenomena in 2D.
- The (modern version of the) Ornstein-Zernike theory was developed in a very large part by Dima loffe, to whom I dedicate this talk...

Concluding remarks

- The Ornstein-Zernike theory provides a powerful tool to analyze the ferromagnetic Ising (and other) model nonperturbatively.
- It allows, in particular, a detailed understanding of asymptotics of correlation functions in any dimension and for general ferromagnetic coupling constants, away from the critical point.
- Combined with planar duality, it enables an in-depth analysis of interfacial phenomena in 2D.
- The (modern version of the) Ornstein-Zernike theory was developed in a very large part by Dima Ioffe, to whom I dedicate this talk...

