Nonperturbative analysis of noncritical Ising models

Some applications of the Ornstein-Zernike theory

Yvan Velenik

Université de Genève

- ORNSTEIN-ZERNIKE THEORY -

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust): [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust):
 [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986,
 CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust): [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust):
 [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986,
 CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust): [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].

 The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust):
 [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986,
 CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].

 The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust): [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986, CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].

 The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust):
 [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986,
 CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].
- The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.

► Applies, among others, to **interfaces in planar systems** or to paths, clusters, etc., originating from **graphical representations of correlation functions** (high-temperature expansion, FK-percolation, random-current, ...).

- ▷ Inspired by the theory developed in 1914 By Ornstein and Zernike.
- Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978, BRICMONT-FRÖHLICH 1985, ZHIZHINA-MINLOS 1988, ...]
- Early nonperturbative versions (limited applicability, not robust):
 [ABRAHAM-CHAYES-CHAYES 1985, CHAYES-CHAYES 1986, JÓNSSON 1986,
 CAMPANINO-CHAYES-CHAYES 1991, IOFFE 1998]
- ▷ Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003, CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].
- The approach developed in the latter series of works allows to couple "structurally 1D objects" with good mixing properties to directed random walks.
- ► Applies, among others, to **interfaces in planar systems** or to paths, clusters, etc., originating from **graphical representations of correlation functions** (high-temperature expansion, FK-percolation, random-current, ...).
- ► Using this coupling, we can in many cases reduce difficult questions arising in the Ising model to much simpler (and more classical) ones about random walks.

► A. Asymptotics of correlations

- ▷ A.1. The 2-point function
- ▷ A.2. General correlation functions
- ▷ A.3 An inhomogeneous system: Ising with a defect line

- \triangleright B.1. Interface in the bulk
- ▷ B.2. Interface at a boundary
- ▷ B.3. Interface in a field

► A. Asymptotics of correlations

- ▷ A.1. The 2-point function
- ▷ A.2. General correlation functions
- \triangleright A.3 An inhomogeneous system: Ising with a defect line

- \triangleright B.1. Interface in the bulk
- ▷ B.2. Interface at a boundary
- ▷ B.3. Interface in a field

► A. Asymptotics of correlations

- ▷ A.1. The 2-point function
- ▷ A.2. General correlation functions
- ▷ A.3 An inhomogeneous system: Ising with a defect line

- \triangleright B.1. Interface in the bulk
- ▷ B.2. Interface at a boundary
- ▷ B.3. Interface in a field

► A. Asymptotics of correlations

- ▷ A.1. The 2-point function
- ▷ A.2. General correlation functions
- \triangleright A.3 An inhomogeneous system: Ising with a defect line

- ▷ B.1. Interface in the bulk
- \triangleright B.2. Interface at a boundary
- ▷ B.3. Interface in a field

► A. Asymptotics of correlations

- ▷ A.1. The 2-point function
- ▷ A.2. General correlation functions
- \triangleright A.3 An inhomogeneous system: Ising with a defect line

- \triangleright B.1. Interface in the bulk
- ▷ B.2. Interface at a boundary
- ▷ B.3. Interface in a field

► A. Asymptotics of correlations

- ▷ A.1. The 2-point function
- ▷ A.2. General correlation functions
- \triangleright A.3 An inhomogeneous system: Ising with a defect line

- \triangleright B.1. Interface in the bulk
- ▷ B.2. Interface at a boundary
- ▷ B.3. Interface in a field

- A. ASYMPTOTICS OF CORRELATIONS -

A.1. The 2-point function

▶ Coupling constants: $(J_x)_{x \in \mathbb{Z}^d}$ such that $J_0 = 0$, $J_x \ge 0$, $J_x = J_{-x}$ and $\sum_x J_x < \infty$.

Notations

- ▶ Coupling constants: $(J_x)_{x \in \mathbb{Z}^d}$ such that $J_0 = 0$, $J_x \ge 0$, $J_x = J_{-x}$ and $\sum_x J_x < \infty$.
- ► Formal Hamiltonian:

$$\mathcal{H} = -\sum_{i,j} J_{j-i}\sigma_i\sigma_j - h\sum_i \sigma_i.$$

Notations

- ▶ Coupling constants: $(J_x)_{x \in \mathbb{Z}^d}$ such that $J_0 = 0$, $J_x \ge 0$, $J_x = J_{-x}$ and $\sum_x J_x < \infty$.
- ► Formal Hamiltonian:

$$\mathcal{H} = -\sum_{i,j} J_{j-i}\sigma_i\sigma_j - h\sum_i \sigma_i.$$

• We denote by $\langle \cdot \rangle_{\beta,h}$ expectation w.r.t.

 \triangleright the unique Gibbs measure if $h \neq 0$ or if h = 0 and $\beta < \beta_c$.

 \triangleright the + state if h = 0 and $\beta > \beta_{c}$.

Notations

- ▶ Coupling constants: $(J_x)_{x \in \mathbb{Z}^d}$ such that $J_0 = 0$, $J_x \ge 0$, $J_x = J_{-x}$ and $\sum_x J_x < \infty$.
- ► Formal Hamiltonian:

$$\mathcal{H} = -\sum_{i,j} J_{j-i}\sigma_i\sigma_j - h\sum_i \sigma_i.$$

• We denote by $\langle \cdot \rangle_{\beta,h}$ expectation w.r.t.

 \triangleright the unique Gibbs measure if $h \neq 0$ or if h = 0 and $\beta < \beta_c$.

 \triangleright the + state if h = 0 and $\beta > \beta_c$.

► We write

$$\langle f;g\rangle_{\beta,h}=\langle fg\rangle_{\beta,h}-\langle f\rangle_{\beta,h}\langle g\rangle_{\beta,h}.$$

► For each $\vec{s} \in \mathbb{S}^{d-1}$, the **inverse correlation length** $\nu_{\beta,h}(\vec{s})$ is defined by

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,h} = e^{-\nu_{\beta,h}(\vec{s})n + o(n)}$$

where $\sigma_x = \sigma_{[x]}$, with $[x] \in \mathbb{Z}^d$ the coordinatewise integer part of $x \in \mathbb{R}^d$.

► For each $\vec{s} \in \mathbb{S}^{d-1}$, the **inverse correlation length** $\nu_{\beta,h}(\vec{s})$ is defined by

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,h} = e^{-\nu_{\beta,h}(\vec{s})n + o(n)}$$

where $\sigma_x = \sigma_{[x]}$, with $[x] \in \mathbb{Z}^d$ the coordinatewise integer part of $x \in \mathbb{R}^d$.

▶ Assume that there exist C, c > 0 such that $\forall x \in \mathbb{Z}^d, J_x \leq Ce^{-c ||x||}$. Then,

$$\forall (\beta, h) \neq (\beta_{c}, 0), \qquad \min_{\vec{s}} \nu_{\beta, h}(\vec{s}) > 0.$$

▶ For each $\vec{s} \in S^{d-1}$, the **inverse correlation length** $\nu_{\beta,h}(\vec{s})$ is defined by

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,h} = \mathrm{e}^{-\nu_{\beta,h}(\vec{s})n + \mathrm{o}(n)}$$

where $\sigma_x = \sigma_{[x]}$, with $[x] \in \mathbb{Z}^d$ the coordinatewise integer part of $x \in \mathbb{R}^d$.

▶ Assume that there exist C, c > 0 such that $\forall x \in \mathbb{Z}^d, J_x \leq Ce^{-c ||x||}$. Then,

$$\forall (\beta, h) \neq (\beta_{c}, 0), \qquad \min_{\vec{s}} \nu_{\beta, h}(\vec{s}) > 0.$$

Graph of $\beta\mapsto
u_{\beta,0}(\mathbf{e}_1)$ for the planar Ising model

▶ For each $\vec{s} \in \mathbb{S}^{d-1}$, the **inverse correlation length** $\nu_{\beta,h}(\vec{s})$ is defined by

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,h} = e^{-\nu_{\beta,h}(\vec{s})n + o(n)}$$

where $\sigma_x = \sigma_{[x]}$, with $[x] \in \mathbb{Z}^d$ the coordinatewise integer part of $x \in \mathbb{R}^d$.

▶ Assume that there exist C, c > 0 such that $\forall x \in \mathbb{Z}^d, J_x \leq Ce^{-c\|x\|}$. Then,

$$\forall (\beta, h) \neq (\beta_{c}, 0), \qquad \min_{\vec{s}} \nu_{\beta, h}(\vec{s}) > 0.$$

 $\triangleright \ h \neq 0, \beta \in \mathbb{R}$: [Lebowitz-Penrose 1968]

- $\triangleright~h=0~{
 m and}~eta<eta_{
 m c}$: [AIZENMAN-BARSKY-FERNÁNDEZ 1987]
- $\triangleright (J_x)$ with finite range, h=0 and $\beta>\beta_{c}$: [DUMINIL-COPIN-GOSWAMI-RAOUFI 2020]

Open problem: Remove the finite-range assumption when h = 0 and $\beta > \beta_c$.

Sharp asymptotics: h = 0 and $\beta < \beta_c$

► Let us assume that the coupling constants decay superexponentially fast:

$$\forall c > 0, \qquad \lim_{\|x\| \to \infty} J_x e^{c\|x\|} = 0.$$

$$\forall c > 0, \qquad \lim_{\|x\| \to \infty} J_x e^{c\|x\|} = 0.$$

► Then, one has the following **Ornstein–Zernike asymptotics**:

Theorem[AOUN-OTT-V. 2021]Assume that $\beta < \beta_c$ and h = 0. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$, $\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \frac{\Psi_{\beta}(\vec{s})}{n^{(d-1)/2}} e^{-\nu_{\beta,0}(\vec{s})n} (1 + o(1)),$ where the functions Ψ_{β} and $\nu_{\beta,0}$ are positive and analytic in \vec{s} .

$$\forall c > 0, \qquad \lim_{\|x\| \to \infty} J_x e^{c\|x\|} = 0.$$

► Then, one has the following **Ornstein–Zernike asymptotics**:

Theorem

[AOUN-OTT-V. 2021]

Assume that $\beta < \beta_c$ and h = 0. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_{0} \, ; \, \sigma_{nec{s}}
angle_{eta,0} = rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}} \, \mathrm{e}^{-
u_{eta,0}(ec{s})n} \, (1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are positive and analytic in \vec{s} .

▶ The above result has a long history. Some milestones are

- ▷ Ornstein–Zernike 1914, Zernike 1916:
- ▷ Wu 1966, Wu et al 1976:
- ▷ Abraham–Kunz 1977, Paes-Leme 1978:
- ▷ Campanino–Ioffe–V. 2003:
- ▷ Aoun–Ott–V. 2021:

$$\forall c > 0, \qquad \lim_{\|x\| \to \infty} J_x e^{c\|x\|} = 0.$$

► Then, one has the following **Ornstein–Zernike asymptotics**:

Theorem

[AOUN-OTT-V. 2021]

Assume that $\beta < \beta_c$ and h = 0. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_{0} \, ; \, \sigma_{nec{s}}
angle_{eta,0} = rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}} \, \mathrm{e}^{-
u_{eta,0}(ec{s})n} \, (1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are positive and analytic in \vec{s} .

▶ The above result has a long history. Some milestones are

- ▷ Ornstein–Zernike 1914, Zernike 1916:
- ▷ Wu 1966, Wu et al 1976:
- ▷ Abraham–Kunz 1977, Paes-Leme 1978:
- ▷ Campanino–Ioffe–V. 2003:
- ▷ Aoun–Ott–V. 2021:

$$\forall c > 0, \qquad \lim_{\|x\| \to \infty} J_x e^{c\|x\|} = 0.$$

► Then, one has the following **Ornstein–Zernike asymptotics**:

Theorem

[AOUN-OTT-V. 2021]

Assume that $\beta < \beta_c$ and h = 0. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_{0} \, ; \, \sigma_{nec{s}}
angle_{eta,0} = rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}} \, \mathrm{e}^{-
u_{eta,0}(ec{s})n} \, (1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are positive and analytic in \vec{s} .

▶ The above result has a long history. Some milestones are

- ▷ Ornstein–Zernike 1914, Zernike 1916:
- ▷ Wu 1966, Wu et al 1976:
- ▷ Abraham–Kunz 1977, Paes-Leme 1978:
- ▷ Campanino–Ioffe–V. 2003:
- ▷ Aoun–Ott–V. 2021:

$$\forall c > 0, \qquad \lim_{\|x\| \to \infty} J_x e^{c\|x\|} = 0.$$

► Then, one has the following **Ornstein–Zernike asymptotics**:

Theorem

[AOUN-OTT-V. 2021]

Assume that $\beta < \beta_c$ and h = 0. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_{0} \, ; \, \sigma_{nec{s}}
angle_{eta,0} = rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}} \, \mathrm{e}^{-
u_{eta,0}(ec{s})n} \, (1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are positive and analytic in \vec{s} .

▶ The above result has a long history. Some milestones are

- ▷ Ornstein–Zernike 1914, Zernike 1916:
- ▷ Wu 1966, Wu et al 1976:
- ▷ Abraham–Kunz 1977, Paes-Leme 1978:
- ▷ Campanino–Ioffe–V. 2003:
- ▷ Aoun–Ott–V. 2021:

$$\forall c > 0, \qquad \lim_{\|x\| \to \infty} J_x e^{c\|x\|} = 0.$$

► Then, one has the following **Ornstein–Zernike asymptotics**:

Theorem

[AOUN-OTT-V. 2021]

Assume that $\beta < \beta_c$ and h = 0. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_{0} \, ; \, \sigma_{nec{s}}
angle_{eta,0} = rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}} \, \mathrm{e}^{-
u_{eta,0}(ec{s})n} \, (1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are positive and analytic in \vec{s} .

▶ The above result has a long history. Some milestones are

- ▷ Ornstein–Zernike 1914, Zernike 1916:
- ▷ Wu 1966, Wu et al 1976:
- ▷ Abraham–Kunz 1977, Paes-Leme 1978:
- ▷ Campanino–Ioffe–V. 2003:
- ▷ Aoun–Ott–V. 2021:

► Unclear how to implement OZ, so the understanding remains very limited...

Sharp asymptotics: h=0 and $\beta>\beta_{\rm c}$

- ▶ Unclear how to implement OZ, so the understanding remains very limited...
- ▶ The following are still the best results available today:

Theorem

[WU-McCoy-Tracy-Barouch 1976]

Consider the **nearest-neighbor** Ising model on \mathbb{Z}^2 . Assume that h = 0, $\beta > \beta_c$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{nec s}
angle_{eta,0} = rac{\Psi_{eta,0}(ec s)}{n^2} \, \mathrm{e}^{-
u_{eta,0}(ec s)n} \, (1+\mathrm{o}(1)).$$

- ▶ Unclear how to implement OZ, so the understanding remains very limited...
- ► The following are still the best results available today:

Theorem

[WU-McCoy-Tracy-Barouch 1976]

Consider the **nearest-neighbor** Ising model on \mathbb{Z}^2 . Assume that h = 0, $\beta > \beta_c$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_0;\sigma_{nec s}
angle_{eta,0}=rac{\Psi_{eta,0}(ec s)}{n^2}\,\mathrm{e}^{-
u_{eta,0}(ec s)n}\,(1+\mathrm{o}(1)).$$

Theorem

[BRICMONT-FRÖHLICH 1985]

Consider the **finite-range** Ising model on \mathbb{Z}^d , $d \ge 3$. Let h = 0 and $\vec{s} \in \mathbb{S}^{d-1}$. Then there exists β_0 such that, for all $\beta > \beta_0$, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \frac{\Psi_{\beta,0}(\vec{s})}{n^{(d-1)/2}} e^{-\nu_{\beta,0}(\vec{s})n} (1 + o(1)).$$
- ▶ Unclear how to implement OZ, so the understanding remains very limited...
- ► The following are still the best results available today:

[Wu-McCoy-Tracy-Barouch 1976]

Consider the **nearest-neighbor** Ising model on \mathbb{Z}^2 . Assume that h = 0, $\beta > \beta_c$. Let $\vec{s} \in \mathbb{S}^{d-1}$. Then, as $n \to \infty$,

$$\langle \sigma_0;\sigma_{nec s}
angle_{eta,0}=rac{\Psi_{eta,0}(ec s)}{n^2}\,\mathrm{e}^{-
u_{eta,0}(ec s)n}\,(1+\mathrm{o}(1)).$$

Theorem

[BRICMONT-FRÖHLICH 1985]

Consider the **finite-range** Ising model on \mathbb{Z}^d , $d \ge 3$. Let h = 0 and $\vec{s} \in \mathbb{S}^{d-1}$. Then there exists β_0 such that, for all $\beta > \beta_0$, as $n \to \infty$,

$$\langle \sigma_0 ; \sigma_{n\vec{s}} \rangle_{\beta,0} = \frac{\Psi_{\beta,0}(\vec{s})}{n^{(d-1)/2}} e^{-\nu_{\beta,0}(\vec{s})n} (1 + o(1)).$$

Prove that OZ asymptotics hold for all $\beta > \beta_c$ when $d \ge 3$, but also when d = 2 and the graph is not planar.

• Let us now consider the model in a field $h \neq 0$, assuming **finite-range interactions**.

- Let us now consider the model in a field $h \neq 0$, assuming **finite-range interactions**.
- ► In this case, Ornstein-Zernike asymptotics apply (at any temperature):

Theorem	[Отт 2020]
Assume that $h eq 0$ and let $eta>0.$ Let $ec s\in \mathbb{S}^{d-1}.$ Then, as $n o\infty$,	
$\langle \sigma_0 ; \sigma_{n\overline{s}} angle_{eta,h} = rac{\Psi_eta(ec{s})}{n^{(d-1)/2}} \mathrm{e}^{- u_{eta,h}(ec{s})n} (1+\mathrm{o}(1)),$	
where the functions Ψ_{β} and $\nu_{\beta,h}$ are analytic in \vec{s} .	

▶ Why was the result about $h = 0, \beta < \beta_c$ restricted to **superexponentially-decaying** coupling constants?

▶ Why was the result about $h = 0, \beta < \beta_c$ restricted to **superexponentially-decaying** coupling constants?

▶ In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_x \leq Ce^{-c||x||}$ for some C, c > 0 and all $x \in \mathbb{Z}^d$ (at least at very high temperatures).

▶ Why was the result about $h = 0, \beta < \beta_c$ restricted to **superexponentially-decaying** coupling constants?

▶ In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_x \leq Ce^{-c||x||}$ for some C, c > 0 and all $x \in \mathbb{Z}^d$ (at least at very high temperatures). This turns out to be incorrect.

▶ Why was the result about $h = 0, \beta < \beta_c$ restricted to **superexponentially-decaying** coupling constants?

▶ In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_x \leq Ce^{-c||x||}$ for some C, c > 0 and all $x \in \mathbb{Z}^d$ (at least at very high temperatures). This turns out to be incorrect.

► It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0 < \beta < \beta_c$.

▶ Why was the result about $h = 0, \beta < \beta_c$ restricted to **superexponentially-decaying** coupling constants?

▶ In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_x \leq Ce^{-c||x||}$ for some C, c > 0 and all $x \in \mathbb{Z}^d$ (at least at very high temperatures). This turns out to be incorrect.

► It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0 < \beta < \beta_c$. This also turns out to be incorrect (even in dimension 1!).

▶ Why was the result about $h = 0, \beta < \beta_c$ restricted to **superexponentially-decaying** coupling constants?

▶ In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_x \leq Ce^{-c||x||}$ for some C, c > 0 and all $x \in \mathbb{Z}^d$ (at least at very high temperatures). This turns out to be incorrect.

► It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0 < \beta < \beta_c$. This also turns out to be incorrect (even in dimension 1!).

▶ Let us discuss this in more detail. Assume that

$$J_{\mathsf{x}} = \psi(\mathsf{x}) \mathrm{e}^{-\rho(\mathsf{x})},$$

where

 $\triangleright \
ho(\cdot)$ denotes an arbitrary norm on \mathbb{R}^d , $\triangleright \ \psi$ is subexponential. ▶ Why was the result about $h = 0, \beta < \beta_c$ restricted to **superexponentially-decaying** coupling constants?

▶ In the (mathematical) physics literature, it was expected that OZ asymptotics would still hold provided that $J_x \leq Ce^{-c||x||}$ for some C, c > 0 and all $x \in \mathbb{Z}^d$ (at least at very high temperatures). This turns out to be incorrect.

► It was also generally expected that the inverse correlation length would be analytic in β in the high-temperature regime $0 < \beta < \beta_c$. This also turns out to be incorrect (even in dimension 1!).

▶ Let us discuss this in more detail. Assume that

$$J_{\mathsf{x}} = \psi(\mathsf{x}) \mathrm{e}^{-\rho(\mathsf{x})},$$

where

- $\triangleright
 ho(\cdot)$ denotes an arbitrary norm on \mathbb{R}^d , $\triangleright \psi$ is subexponential.
- ▶ For simplicity, let us also assume that

$$\forall x \in \mathbb{R}^d, \quad \psi(x) = \psi(\rho(x)) > 0.$$

▶ One can show that these are the only two possible scenarios:

▶ One can show that these are the only two possible scenarios:

• Observe that $\beta_{sat}(\vec{s}) > 0$ would imply that $\beta \mapsto \nu_{\beta,0}(\vec{s})$ is not analytic on $(0, \beta_c)$.

One can show that these are the only two possible scenarios:

• Observe that $\beta_{sat}(\vec{s}) > 0$ would imply that $\beta \mapsto \nu_{\beta,0}(\vec{s})$ is not analytic on $(0, \beta_c)$.

Criterion to determine which scenario occurs?

▶ Let us introduce the generating function (for $t \in \mathbb{R}^d$)

$$\mathbb{J}(t) = \sum_{x \in \mathbb{Z}^d} e^{t \cdot x} J_x.$$

▶ Let us introduce the generating function (for $t \in \mathbb{R}^d$)

$$\mathbb{J}(t) = \sum_{x \in \mathbb{Z}^d} e^{t \cdot x} J_x.$$

► Let us also introduce

$$\mathscr{W} = \{t \in \mathbb{R}^d \, : \, orall ec{s} \in \mathbb{S}^{d-1}, \; t \cdot ec{s} \leq
ho(ec{s}) \}.$$

Easy fact: ${\mathscr W}$ is the closure of the domain of convergence of ${\mathbb J}.$

▶ Let us introduce the generating function (for $t \in \mathbb{R}^d$)

$$\mathbb{J}(t) = \sum_{x \in \mathbb{Z}^d} e^{t \cdot x} J_x.$$

► Let us also introduce

$$\mathscr{W} = \{t \in \mathbb{R}^d : \forall \vec{s} \in \mathbb{S}^{d-1}, \ t \cdot \vec{s} \le \rho(\vec{s})\}.$$

Easy fact: ${\mathscr W}$ is the closure of the domain of convergence of ${\mathbb J}.$

► $t \in \partial \mathscr{W}$ is **dual** to $\vec{s} \in \mathbb{S}^{d-1}$ if $t \cdot \vec{s} = \rho(\vec{s}).$

[AOUN-IOFFE-OTT-V. 2021, AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$ and $\mathscr{T}_{\vec{s}} = \{t \in \partial \mathscr{W} : t \text{ is dual to } \vec{s}\}$. Then

$$eta_{\mathrm{sat}}(ec{s}) > 0 \iff \inf_{t \in \mathscr{T}_{\overline{s}}} \mathbb{J}(t) < \infty.$$

[AOUN-IOFFE-OTT-V. 2021, AOUN-OTT-V. 2022]

Let
$$\vec{s} \in \mathbb{S}^{d-1}$$
 and $\mathscr{T}_{\vec{s}} = \{t \in \partial \mathscr{W} : t \text{ is dual to } \vec{s}\}$. Then

$$\beta_{\text{sat}}(\vec{s}) > 0 \iff \inf_{t \in \mathscr{T}_{\vec{s}}} \mathbb{J}(t) < \infty.$$

▶ Example: let d = 2, $\rho(x) = \|x\|_p$ and $\psi(x) = \|x\|_p^{\alpha}$, with $p \in (2, \infty)$. Then,

$$\beta_{\text{sat}}(\vec{s}) > 0 \iff \begin{cases} \alpha < \frac{1}{p} - 2 & \text{if } \vec{s} \in \{\pm \mathbf{e}_1, \pm \mathbf{e}_2\}, \\ \alpha < -3/2 & \text{otherwise.} \end{cases}$$

[AOUN-IOFFE-OTT-V. 2021, AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$ and $\mathscr{T}_{\vec{s}} = \{t \in \partial \mathscr{W} : t \text{ is dual to } \vec{s}\}$. Then

$$eta_{\mathrm{sat}}(ec{s}) > 0 \iff \inf_{t \in \mathscr{T}_{\overline{s}}} \mathbb{J}(t) < \infty.$$

▶ Example: let d = 2, $\rho(x) = \|x\|_p$ and $\psi(x) = \|x\|_p^{\alpha}$, with $p \in (2, \infty)$. Then,

$$\beta_{\rm sat}(\vec{s}) > 0 \iff \begin{cases} \alpha < \frac{1}{p} - 2 & \text{if } \vec{s} \in \{\pm \mathbf{e}_1, \pm \mathbf{e}_2\}, \\ \alpha < -3/2 & \text{otherwise.} \end{cases}$$

► In particular, the correlation length is not always analytic in β on $(0, \beta_c)$ (even in dimension 1!), contrarily to previous expectations.

[AOUN-IOFFE-OTT-V. 2021, AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$ and $\mathscr{T}_{\vec{s}} = \{t \in \partial \mathscr{W} : t \text{ is dual to } \vec{s}\}$. Then

$$\beta_{\text{sat}}(\vec{s}) > 0 \iff \inf_{t \in \mathscr{T}_{\vec{s}}} \mathbb{J}(t) < \infty.$$

▶ Example: let d = 2, $\rho(x) = \|x\|_p$ and $\psi(x) = \|x\|_p^{\alpha}$, with $p \in (2, \infty)$. Then,

$$eta_{\mathsf{sat}}(\vec{s}) > \mathbf{0} \iff egin{cases} lpha < rac{1}{p} - 2 & ext{if } \vec{s} \in \{\pm \mathbf{e}_1, \pm \mathbf{e}_2\}, \ lpha < -3/2 & ext{otherwise}. \end{cases}$$

► In particular, the correlation length is not always analytic in β on $(0, \beta_c)$ (even in dimension 1!), contrarily to previous expectations.

▶ What can be said about the **asymptotic behavior of the 2-point function** in the regimes $(0, \beta_{sat}(\vec{s}))$ and $(\beta_{sat}(\vec{s}), \beta_c)$?

Theorem[AOUN-OTT-V. 2022]Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (\beta_{sat}(\vec{s}), \beta_c)$, under some (presumably technical)
condition, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = rac{\Psi_{\beta}(\vec{s})}{n^{(d-1)/2}} \, \mathrm{e}^{-\nu_{\beta,0}(\vec{s})n} \, (1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are analytic in \vec{s} .

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (\beta_{sat}(\vec{s}), \beta_c)$, under some (presumably technical) condition, as $n \to \infty$,

$$\langle \sigma_{0};\sigma_{nec{s}}
angle_{eta,0}=rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}}\,\mathrm{e}^{-
u_{eta,0}(ec{s})n}\,(1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are analytic in \vec{s} .

► The condition is conjectured to always hold, and is known to hold, for instance, when one of the following assumption is satisfied:

- $$\begin{split} & \triangleright \ \sup_{\vec{s} \in \mathbb{S}^{d-1}} \beta_{\text{sat}}(\vec{s}) < \beta < \beta_{\text{c}} \\ & (\text{for instance, true for all } \beta < \beta_{\text{c}} \text{ when } \sum_{n > 1} \psi(n\vec{s}) = +\infty \text{ for all } \vec{s} \in \mathbb{S}^{d-1} \text{)}. \end{split}$$
- \triangleright J. possesses all lattice symmetries and $\vec{s} = \mathbf{e}_k$ ($k \in \{1, \dots, d\}$).

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (\beta_{sat}(\vec{s}), \beta_c)$, under some (presumably technical) condition, as $n \to \infty$,

$$\langle \sigma_{0};\sigma_{nec{s}}
angle_{eta,0}=rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}}\,\mathrm{e}^{-
u_{eta,0}(ec{s})n}\,(1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are analytic in \vec{s} .

► The condition is conjectured to always hold, and is known to hold, for instance, when one of the following assumption is satisfied:

 $\triangleright \ \sup_{\vec{s} \in \mathbb{S}^{d-1}} \beta_{\mathrm{sat}}(\vec{s}) < \beta < \beta_{\mathrm{c}}$

(for instance, true for all $\beta < \beta_c$ when $\sum_{n \ge 1} \psi(n\vec{s}) = +\infty$ for all $\vec{s} \in \mathbb{S}^{d-1}$).

 \triangleright J. possesses all lattice symmetries and $\vec{s} = \mathbf{e}_k$ ($k \in \{1, \dots, d\}$).

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (\beta_{sat}(\vec{s}), \beta_c)$, under some (presumably technical) condition, as $n \to \infty$,

$$\langle \sigma_{0};\sigma_{nec{s}}
angle_{eta,0}=rac{\Psi_{eta}(ec{s})}{n^{(d-1)/2}}\,\mathrm{e}^{-
u_{eta,0}(ec{s})n}\,(1+\mathrm{o}(1)),$$

where the functions Ψ_{β} and $\nu_{\beta,0}$ are analytic in \vec{s} .

► The condition is conjectured to always hold, and is known to hold, for instance, when one of the following assumption is satisfied:

- $$\begin{split} & \triangleright \ \sup_{\vec{s} \in \mathbb{S}^{d-1}} \beta_{\text{sat}}(\vec{s}) < \beta < \beta_{\text{c}} \\ & \text{(for instance, true for all } \beta < \beta_{\text{c}} \text{ when } \sum_{n > 1} \psi(n\vec{s}) = +\infty \text{ for all } \vec{s} \in \mathbb{S}^{d-1} \text{)}. \end{split}$$
- ▷ J. possesses all lattice symmetries and $\vec{s} = \mathbf{e}_k$ ($k \in \{1, ..., d\}$).

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (0, \beta_{sat}(\vec{s}))$, under some (presumably technical) condition, there exists an (explicit) constant $\tilde{\chi}^2 = \tilde{\chi}^2(\beta) > 0$ such that, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \widetilde{\chi}^2 \beta J_{n\vec{s}} (1 + o(1)).$$

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (0, \beta_{sat}(\vec{s}))$, under some (presumably technical) condition, there exists an (explicit) constant $\tilde{\chi}^2 = \tilde{\chi}^2(\beta) > 0$ such that, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \widetilde{\chi}^2 \beta J_{n\vec{s}} (1 + o(1)).$$

► The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:

$$\triangleright \ \psi(\mathbf{x}) = C \exp(-A\rho(\mathbf{x})^{\alpha})$$
, with $A > 0$ and $\alpha \in (0, 1)$.

$$\triangleright \ \psi(\mathbf{x}) = \mathsf{C}\rho(\mathbf{x})^{-\alpha}$$
, with $\alpha > 2d$.

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (0, \beta_{sat}(\vec{s}))$, under some (presumably technical) condition, there exists an (explicit) constant $\tilde{\chi}^2 = \tilde{\chi}^2(\beta) > 0$ such that, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \widetilde{\chi}^2 \beta J_{n\vec{s}} (1 + o(1)).$$

► The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:

$$\forall \psi(\mathbf{x}) = \mathsf{C}\exp(-\mathsf{A}\rho(\mathbf{x})^{\alpha})$$
, with $\mathsf{A} > 0$ and $\alpha \in (0, 1)$.

$$\triangleright \ \psi(\mathbf{x}) = C\rho(\mathbf{x})^{-\alpha}$$
, with $\alpha > 2d$.

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (0, \beta_{sat}(\vec{s}))$, under some (presumably technical) condition, there exists an (explicit) constant $\tilde{\chi}^2 = \tilde{\chi}^2(\beta) > 0$ such that, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \widetilde{\chi}^2 \beta J_{n\vec{s}} (1 + o(1)).$$

► The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:

$$\lor \psi(x) = C \exp(-A\rho(x)^{\alpha})$$
, with $A > 0$ and $\alpha \in (0, 1)$.

 $\triangleright \psi(\mathbf{x}) = C\rho(\mathbf{x})^{-\alpha}$, with $\alpha > 2d$.

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (0, \beta_{sat}(\vec{s}))$, under some (presumably technical) condition, there exists an (explicit) constant $\tilde{\chi}^2 = \tilde{\chi}^2(\beta) > 0$ such that, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \widetilde{\chi}^2 \beta J_{n\vec{s}} (1 + o(1)).$$

► The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:

$$\forall \psi(x) = C \exp(-A\rho(x)^{\alpha})$$
, with $A > 0$ and $\alpha \in (0, 1)$.

$$\triangleright \ \psi(\mathbf{x}) = C\rho(\mathbf{x})^{-\alpha}$$
, with $\alpha > 2d$.

► This shows that OZ behavior can be violated at arbitrarily high temperature even though interactions decay exponentially fast, contradicting earlier expectations.

Theorem

[AOUN-OTT-V. 2022]

Let $\vec{s} \in \mathbb{S}^{d-1}$. For all $\beta \in (0, \beta_{sat}(\vec{s}))$, under some (presumably technical) condition, there exists an (explicit) constant $\tilde{\chi}^2 = \tilde{\chi}^2(\beta) > 0$ such that, as $n \to \infty$,

$$\langle \sigma_0; \sigma_{n\vec{s}} \rangle_{\beta,0} = \widetilde{\chi}^2 \beta J_{n\vec{s}} (1 + o(1)).$$

► The above condition is conjectured to always hold, and is known to be true, for instance, in the following two cases:

$$\forall \psi(x) = C \exp(-A\rho(x)^{\alpha})$$
, with $A > 0$ and $\alpha \in (0, 1)$.

$$\triangleright \ \psi(\mathbf{x}) = \mathsf{C} \rho(\mathbf{x})^{-lpha}$$
, with $lpha > 2d$.

► This shows that OZ behavior can be violated at arbitrarily high temperature even though interactions decay exponentially fast, contradicting earlier expectations.

► Very similar asymptotics have been shown to hold in the simpler situation in which the coupling constants decay **subexponentially** [NEWMAN-SPOHN 1998].

► These different asymptotics reflect very different behaviors of typical "paths" contributing to graphical representations in both regimes.

- A. ASYMPTOTICS OF CORRELATIONS -

A.2. General correlation functions

▶ We assume that h = 0, $\beta < \beta_c$ and $(J_x)_{x \in \mathbb{Z}^d}$ has finite range.

▶ We assume that h = 0, $\beta < \beta_c$ and $(J_x)_{x \in \mathbb{Z}^d}$ has finite range.

▶ For $A \Subset \mathbb{Z}^d$, let $\sigma_A = \prod_{i \in A} \sigma_i$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

▶ We assume that h = 0, $\beta < \beta_c$ and $(J_x)_{x \in \mathbb{Z}^d}$ has finite range.

▶ For $A \subseteq \mathbb{Z}^d$, let $\sigma_A = \prod_{i \in A} \sigma_i$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

► Given $A, B \in \mathbb{Z}^d$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of $\langle \sigma_A; \sigma_{B+n\vec{s}} \rangle_{\beta,0}$

as $n \to \infty$.

▶ We assume that h = 0, $\beta < \beta_c$ and $(J_x)_{x \in \mathbb{Z}^d}$ has finite range.

▶ For $A \subseteq \mathbb{Z}^d$, let $\sigma_A = \prod_{i \in A} \sigma_i$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

► Given A, $B \Subset \mathbb{Z}^d$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of $\langle \sigma_A; \sigma_{B+n\vec{s}} \rangle_{\beta,0}$

as $n \to \infty$.

• Of course, by symmetry, $\langle \sigma_c \rangle_{\beta,0} = 0$ whenever |C| is odd.

 $\longrightarrow \langle \sigma_A; \sigma_B \rangle_{\beta,0} = 0$ whenever |A| + |B| is odd.
Decay of correlations

▶ We assume that h = 0, $\beta < \beta_c$ and $(J_x)_{x \in \mathbb{Z}^d}$ has finite range.

▶ For $A \subseteq \mathbb{Z}^d$, let $\sigma_A = \prod_{i \in A} \sigma_i$.

Remark: any local function (that is, depending on finitely many spins) can be expressed as a finite linear combination of such functions.

► Given $A, B \subseteq \mathbb{Z}^d$ and $\vec{s} \in \mathbb{S}^{d-1}$, we investigate the asymptotic behavior of $\langle \sigma_A; \sigma_{B+n\vec{s}} \rangle_{\beta,0}$

as $n \to \infty$.

• Of course, by symmetry, $\langle \sigma_c \rangle_{\beta,0} = 0$ whenever |C| is odd.

 $\longrightarrow \langle \sigma_A; \sigma_B \rangle_{\beta,0} = 0$ whenever |A| + |B| is odd.

► We are thus left with two cases to consider:

► Odd-odd correlations always display Ornstein-Zernike behavior:

Theorem[CAMPANINO-IOFFE-V. 2004]Let $\beta < \beta_c$. Let $A, B \Subset \mathbb{Z}^d$ with |A| and |B| odd and let $\vec{s} \in \mathbb{S}^{d-1}$.Then, there exists a constant $0 < C < \infty$ (depending on A, B, \vec{s}, β) such that $\langle \sigma_A; \sigma_{B+n\overline{s}} \rangle_{\beta,0} = \frac{C}{n^{(d-1)/2}} e^{-\nu_{\beta,0}(\vec{s})n} (1 + o(1)),$ as $n \to \infty$.

> Odd-odd correlations always display Ornstein-Zernike behavior:

Theorem[CAMPANINO-IOFFE-V. 2004]Let $\beta < \beta_c$. Let $A, B \in \mathbb{Z}^d$ with |A| and |B| odd and let $\vec{s} \in \mathbb{S}^{d-1}$.Then, there exists a constant $0 < C < \infty$ (depending on A, B, \vec{s}, β) such that $\langle \sigma_A; \sigma_{B+n\vec{s}} \rangle_{\beta,0} = \frac{C}{n^{(d-1)/2}} e^{-\nu_{\beta,0}(\vec{s})n} (1 + o(1)),$ as $n \to \infty$.

 \blacktriangleright The first rigorous results of this type were obtained for $\beta\ll$ 1 in

▷ Bricmont–Fröhlich 1985
▷ Zhizhina–Minlos 1988

 \blacktriangleright The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

$$\langle \sigma_{\mathsf{A}}; \sigma_{\mathsf{B}+n\vec{s}} \rangle_{\beta,0} = \mathsf{e}^{-\mathbf{2}\nu_{\beta,0}(\vec{s})n\,(1+o(1))}$$

 \blacktriangleright The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

$$\langle \sigma_{A}; \sigma_{B+n\vec{s}}
angle_{eta,0} = \mathrm{e}^{-\mathbf{2}
u_{eta,0}(\vec{s})n\,(1+o(1))}.$$

▶ However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp, Fisher 1971
n ⁻²	d = 2	
$(n \log n)^{-2}$	d = 3	n^{-d} for all $d \ge 2$
$n^{-(d-1)}$	$d \ge 4$	

(Note that these predictions only coincide when d = 2, where they both agree with the exact computation obtained in *Stephenson 1966* and *Hecht 1967*.)

▶ The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

$$\langle \sigma_A; \sigma_{B+n\vec{s}} \rangle_{eta,0} = \mathrm{e}^{-\mathbf{2}
u_{eta,0}(\vec{s})n\,(1+o(1))}.$$

▶ However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969		Camp, Fisher 1971
n ⁻²	d = 2	
$(n \log n)^{-2}$	d = 3	n^{-d} for all $d \ge 2$
$n^{-(d-1)}$	$d \ge 4$	

(Note that these predictions only coincide when d = 2, where they both agree with the exact computation obtained in *Stephenson 1966* and *Hecht 1967*.)

- ▶ It turns out that Polyakov was right. This was first shown in
 - ▷ Bricmont–Fröhlich 1985: |A| = |B| = 2 $\beta \ll 1$ $d \ge 4$
 - ho Minlos–Zhizhina 1988, 1996: |A|, |B| even $eta \ll 1$ $d \geq 2$

▶ The best nonperturbative result to date is the following:

Let
$$\tau(n) = \begin{cases} n^2 & \text{when } d = 2, \\ (n \log n)^2 & \text{when } d = 3, \\ n^{d-1} & \text{when } d \ge 4. \end{cases}$$

Theorem

[OTT-V. 2019]

Let $d \ge 2$ and $\beta < \beta_c$. Let $A, B \Subset \mathbb{Z}^d$ with |A| and |B| even and let $\vec{s} \in \mathbb{S}^{d-1}$. Then, there exist constants $0 < C_- \le C_+ < \infty$ (depending on A, B, \vec{s}, β) such that, for all n large enough,

$$\frac{\mathsf{C}_{-}}{\tau(n)}\mathrm{e}^{-2\nu_{\beta,0}(\vec{s})n} \leq \langle \sigma_{\mathsf{A}} ; \sigma_{\mathsf{B}+n\vec{s}} \rangle \leq \frac{\mathsf{C}_{+}}{\tau(n)}\mathrm{e}^{-2\nu_{\beta,0}(\vec{s})n}.$$

- A. ASYMPTOTICS OF CORRELATIONS -

A.3. An inhomogeneous system: Ising with a defect line

▶ Defect line: $\mathcal{L} = \{ k \mathbf{e}_1 \in \mathbb{Z}^d : k \in \mathbb{Z} \}$

- ▶ Defect line: $\mathcal{L} = \{k\mathbf{e}_1 \in \mathbb{Z}^d : k \in \mathbb{Z}\}$
- ► Coupling constants:

$$J_{ij} = \begin{cases} 1 & \text{if } i \sim j, \{i, j\} \not\subset \mathcal{L} \\ J & \text{if } i \sim j, \{i, j\} \subset \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

- ▶ Defect line: $\mathcal{L} = \{k\mathbf{e}_1 \in \mathbb{Z}^d : k \in \mathbb{Z}\}$
- ► Coupling constants:

$$J_{ij} = \begin{cases} 1 & \text{if } i \sim j, \{i, j\} \not\subset \mathcal{L} \\ J & \text{if } i \sim j, \{i, j\} \subset \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

▶ Fix $\beta < \beta_c$, h = 0, $J \ge 0$ and let $\mathbb{P}_{\beta,J}$ be the unique infinite-volume Gibbs measure.

- ▶ Defect line: $\mathcal{L} = \{k\mathbf{e}_1 \in \mathbb{Z}^d : k \in \mathbb{Z}\}$
- ► Coupling constants:

$$J_{ij} = \begin{cases} 1 & \text{if } i \sim j, \{i, j\} \not\subset \mathcal{L} \\ J & \text{if } i \sim j, \{i, j\} \subset \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

Fix $\beta < \beta_c$, h = 0, $J \ge 0$ and let $\mathbb{P}_{\beta,J}$ be the unique infinite-volume Gibbs measure.

▶ Central quantity: **longitudinal inverse correlation length** $\nu_{\beta}(J)$

$$\langle \sigma_0; \sigma_{n\mathbf{e}_1} \rangle_{\beta,J} = \mathrm{e}^{-\nu_{\beta}(J)n + \mathrm{o}(n)}$$

- ▶ Defect line: $\mathcal{L} = \{ k \mathbf{e}_1 \in \mathbb{Z}^d : k \in \mathbb{Z} \}$
- ► Coupling constants:

$$J_{ij} = \begin{cases} 1 & \text{if } i \sim j, \{i, j\} \not\subset \mathcal{L} \\ J & \text{if } i \sim j, \{i, j\} \subset \mathcal{L} \\ 0 & \text{otherwise} \end{cases}$$

▶ Fix $\beta < \beta_c$, h = 0, $J \ge 0$ and let $\mathbb{P}_{\beta,J}$ be the unique infinite-volume Gibbs measure.

▶ Central quantity: **longitudinal inverse correlation length** $\nu_{\beta}(J)$

$$\langle \sigma_0; \sigma_{n\mathbf{e}_1} \rangle_{\beta,J} = \mathrm{e}^{-\nu_{\beta}(J)n + \mathrm{o}(n)}$$

• McCoy-Perk 1980: explicit computation of $\nu_{\beta}(J)$ for the planar Ising model.

 \blacktriangleright The following is proved in [OTT-V. 2018]: For any $d \ge 2$, there exists $J_c \ge 1$ such that

▶ The following is proved in [OTT-V. 2018]: For any $d \ge 2$, there exists $J_c \ge 1$ such that

 \triangleright When $0 \leq J \leq J_c$: $\nu_{\beta}(J)$ is constant.

 \blacktriangleright The following is proved in [OTT–V. 2018]: For any $d\geq$ 2, there exists $J_{
m c}\geq$ 1 such that

 \triangleright When $0 \leq J \leq J_c$: $\nu_{\beta}(J)$ is constant.

 \triangleright When $J > J_{\mathfrak{c}}: J \mapsto \nu_{\beta}(J)$ is decreasing and real-analytic.

 \blacktriangleright The following is proved in [OTT-V. 2018]: For any $d \ge 2$, there exists $J_c \ge 1$ such that

 \triangleright When $0 \leq J \leq J_c$: $\nu_{\beta}(J)$ is constant.

 \triangleright When $J > J_{c}: J \mapsto \nu_{\beta}(J)$ is decreasing and real-analytic.

 $ightarrow d = 2, 3: J_c = 1, \quad d \ge 4: J_c > 1.$

- \blacktriangleright The following is proved in [OTT-V. 2018]: For any $d \ge 2$, there exists $J_c \ge 1$ such that
 - \triangleright When $0 \leq J \leq J_c$: $\nu_{\beta}(J)$ is constant.
 - \triangleright When $J > J_{c}: J \mapsto \nu_{\beta}(J)$ is decreasing and real-analytic.
 - $\triangleright d=2,3: \mathit{J_c}=1, \quad d\geq 4: \mathit{J_c}>1.$
 - ho There exist constants $c_2^\pm, c_3^\pm > 0$ such that, as $J \downarrow J_{
 m c}$,

$$c_2^-(J-J_c)^2 \le \nu_\beta(J_c) - \nu_\beta(J) \le c_2^+(J-J_c)^2$$
 (d = 2)

$$e^{-c_3^-/(J-J_c)} \le \nu_\beta(J_c) - \nu_\beta(J) \le e^{-c_3^+/(J-J_c)}$$
 (d = 3)

▶ When $J > J_c$, one has **pure exponential decay**:

Theorem[OTT-V. 2018]Let $d \ge 2$. Assume that $\beta < \beta_c$, h = 0 and $J > J_c$. Then, as $n \to \infty$, $\langle \sigma_0; \sigma_{ne_1} \rangle_{\beta,J} = C_{\beta,J} e^{-\nu_{\beta}(J)n} (1 + o(1)).$

▶ When $J > J_c$, one has **pure exponential decay**:

Theorem

[OTT-V. 2018]

Let $d \geq$ 2. Assume that $\beta < \beta_c$, h = 0 and $J > J_c$. Then, as $n \rightarrow \infty$,

$$\langle \sigma_0; \sigma_{n\mathbf{e}_1} \rangle_{\beta,J} = C_{\beta,J} \, \mathrm{e}^{-\nu_{\beta}(J)n} \, (1+o(1)).$$

 \blacktriangleright When 0 $\leq J <$ 1, one has the following asymptotics:

Theorem

[OTT-V. 2019, IOFFE-OTT-V.-WACHTEL 2020]

Assume that $\beta < \beta_c$, h = 0 and $0 \le J < 1$. Then, as $n \to \infty$,

$$\begin{split} d &= 2: \qquad \langle \sigma_0 \, ; \, \sigma_{ne_1} \rangle_{\beta,J} = \frac{C_{\beta,J}}{n^{3/2}} \, e^{-\nu_\beta(J)n} \, (1+o(1)), \\ d &= 3: \qquad \langle \sigma_0 \, ; \, \sigma_{ne_1} \rangle_{\beta,J} = \frac{C_{\beta,J}}{n(\log n)^2} \, e^{-\nu_\beta(J)n} \, (1+o(1)), \\ d &\geq 4: \qquad \langle \sigma_0 \, ; \, \sigma_{ne_1} \rangle_{\beta,J} = \frac{C_{\beta,J}}{n^{(d-1)/2}} \, e^{-\nu_\beta(J)n} \, (1+o(1)). \end{split}$$

- B. INTERFACES IN THE PLANAR ISING MODEL -

B.1. Interface in the bulk

▶ We consider the **n.n. Ising model in** $\Lambda_N = \{-N + 1, ..., N\}^2$ with $\beta > \beta_c$ and h = 0.

• We consider the **n.n. Ising model in** $\Lambda_N = \{-N + 1, \dots, N\}^2$ with $\beta > \beta_c$ and h = 0.

▶ Let $\vec{s} \in \mathbb{S}^1$. We consider a system with \vec{s} -boundary condition:

Theorem

[GREENBERG-IOFFE 2005]

Let $\vec{s} \in \mathbb{S}^1$ and $\beta > \beta_c$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s} -boundary condition converges to the distribution of

 $\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b},$

where b is the standard **Brownian bridge** on [-1, 1] and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s} .

Theorem

[GREENBERG-IOFFE 2005]

Let $\vec{s} \in \mathbb{S}^1$ and $\beta > \beta_c$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s} -boundary condition converges to the distribution of

 $\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b},$

where b is the standard **Brownian bridge** on [-1, 1] and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s} .

Some earlier results:

- ▷ Abraham–Reed 1976:
- ▷ Abraham–Upton 1988:
- ⊳ Gallavotti 1972:
- ⊳ Higuchi 1979:

Theorem

[GREENBERG-IOFFE 2005]

Let $\vec{s} \in \mathbb{S}^1$ and $\beta > \beta_c$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s} -boundary condition converges to the distribution of

 $\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b},$

where b is the standard **Brownian bridge** on [-1, 1] and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s} .

Some earlier results:

- ⊳ Abraham–Reed 1976:
- ▷ Abraham–Upton 1988:
- ⊳ Gallavotti 1972:
- ⊳ Higuchi 1979:

Theorem

[GREENBERG-IOFFE 2005]

Let $\vec{s} \in \mathbb{S}^1$ and $\beta > \beta_c$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s} -boundary condition converges to the distribution of

 $\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b},$

where b is the standard **Brownian bridge** on [-1, 1] and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s} .

Some earlier results:

- ⊳ Abraham–Reed 1976:
- ▷ Abraham–Upton 1988:
- ⊳ Gallavotti 1972:
- ⊳ Higuchi 1979:

Theorem

[GREENBERG-IOFFE 2005]

Let $\vec{s} \in \mathbb{S}^1$ and $\beta > \beta_c$. The distribution of the centered and diffusively-rescaled interface induced by the \vec{s} -boundary condition converges to the distribution of

 $\sqrt{\chi_{\beta}(\vec{s})} \mathfrak{b},$

where b is the standard **Brownian bridge** on [-1, 1] and $\chi_{\beta}(\vec{s})$ is the curvature of the Wulff shape at the unique point t of its boundary where the normal is \vec{s} .

Some earlier results:

- ⊳ Abraham–Reed 1976:
- ▷ Abraham–Upton 1988:
- ⊳ Gallavotti 1972:
- ⊳ Higuchi 1979:

- B. INTERFACES IN THE PLANAR ISING MODEL -

B.2. Interface at a boundary

► We consider a system with boundary condition inducing an interface along the bottom wall:

Theorem

[IOFFE-OTT-V.-WACHTEL 2020]

Let $\beta>\beta_{\rm c}.$ The distribution of the diffusively-rescaled interface converges to the distribution of

$\sqrt{\chi_{\beta}} \mathfrak{e}$

where e is the standard **Brownian excursion** on [-1, 1] and χ_{β} is the curvature of the Wulff shape at its apex.

$\label{eq:constraint} \begin{array}{ll} \mbox{Theorem} & \mbox{[lofFe-OTT-V-WACHTEL 2020]} \end{array}$

► Some earlier results:

- ▷ *Abraham 1980:* Expected magnetization profile (exact computations)
- \triangleright Dobrushin 1992: Invariance principle for $\beta \gg$ 1 (with seemingly incomplete proof)

Theorem[IOFFE-OTT-V.-WACHTEL 2020]Let $\beta > \beta_c$. The distribution of the diffusively-rescaled interface converges to
the distribution of
 $\sqrt{\chi_{\beta}} \mathfrak{e}$ where \mathfrak{e} is the standard **Brownian excursion** on [-1, 1] and χ_{β} is the curvature
of the Wulff shape at its apex.

Some earlier results:

- ▷ Abraham 1980: Expected magnetization profile (exact computations)
- \triangleright *Dobrushin* 1992: Invariance principle for $\beta \gg 1$ (with seemingly incomplete proof)

- B. INTERFACES IN THE PLANAR ISING MODEL -

B.3. Interface in a field

► We consider again the boundary condition

but add to the Hamiltonian a magnetic field term

$$-h\sum_{i\in\Lambda_N}\sigma_i$$

with h > 0.
▶ Let $\beta > \beta_c$. Since h > 0, the layer of - phase becomes **unstable**:

▶ Let $\beta > \beta_c$. Since h > 0, the layer of - phase becomes **unstable**:

Interface in a field: Critical prewetting

▶ The width of the layer increases as *h* decreases:

▶ It turns out to be natural to choose h = h(N) to be of the form

$$h = \frac{\lambda}{N}$$

for some $\lambda >$ 0.

Theorem

[IOFFE, OTT, SHLOSMAN, V. 2020]

Rescale the interface

- \triangleright horizontally by $N^{-2/3}$
- \triangleright vertically by $\chi_{\beta}^{-1/2} N^{-1/3}$.

Then, as $N \to \infty$, its distribution weakly converges to that of the **Ferrari–Spohn** diffusion introduced in the next slide.

Theorem

[IOFFE, OTT, SHLOSMAN, V. 2020]

Rescale the interface

- \triangleright horizontally by $N^{-2/3}$
- \triangleright vertically by $\chi_{\beta}^{-1/2} N^{-1/3}$.

Then, as $N \to \infty$, its distribution weakly converges to that of the **Ferrari–Spohn** diffusion introduced in the next slide.

Some earlier results:

▷ V. 2004: Layer width ~ N^{1/3+o(1)}
▷ Ganguly-Gheissari 2021: Layer width ~ N^{1/3} and other global estimates

Theorem

[IOFFE, OTT, SHLOSMAN, V. 2020]

Rescale the interface

- \triangleright horizontally by $N^{-2/3}$
- \triangleright vertically by $\chi_{\beta}^{-1/2} N^{-1/3}$.

Then, as $N \to \infty$, its distribution weakly converges to that of the **Ferrari–Spohn** diffusion introduced in the next slide.

Some earlier results:

▷ V. 2004: Layer width $\sim N^{1/3+o(1)}$ ▷ Ganguly-Gheissari 2021: Layer width $\sim N^{1/3}$ and other global estimates

- ► Let us introduce
 - \triangleright the spontaneous magnetization: m^*_β
 - $\triangleright\;$ the **curvature of the Wulff shape** (at its apex): χ_{eta}
 - $\triangleright~$ the **Airy function** Ai and its first zero $-\omega_1$

► Set $\varphi_0(r) = \operatorname{Ai}((4\lambda m_\beta^* \sqrt{\chi_\beta})^{1/3} r - \omega_1).$

 \blacktriangleright The relevant Ferrari–Spohn diffusion in the present context is the diffusion on $(0,\infty)$ with generator

$$L_{eta} = rac{1}{2}rac{\mathrm{d}}{\mathrm{d}r^2} + rac{arphi_0'}{arphi_0}rac{\mathrm{d}}{\mathrm{d}r}$$

and Dirichlet boundary condition at 0.

Interface in a field: Ferrari–Spohn diffusion

- ► Let us introduce
 - \triangleright the spontaneous magnetization: m^*_β
 - \triangleright the **curvature of the Wulff shape** (at its apex): χ_{β}
 - $\triangleright~$ the **Airy function** Ai and its first zero $-\omega_1$

► Set $\varphi_0(r) = \operatorname{Ai}((4\lambda m_\beta^* \sqrt{\chi_\beta})^{1/3} r - \omega_1).$

 \blacktriangleright The relevant Ferrari–Spohn diffusion in the present context is the diffusion on $(0,\infty)$ with generator

$$L_{\beta} = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}r^2} + \frac{\varphi_0'}{\varphi_0} \frac{\mathrm{d}}{\mathrm{d}r}$$

and Dirichlet boundary condition at 0.

Interface in a field: Ferrari–Spohn diffusion

- ► Let us introduce
 - \triangleright the spontaneous magnetization: m_{β}^*
 - \triangleright the **curvature of the Wulff shape** (at its apex): χ_{β}
 - $\triangleright~$ the **Airy function** Ai and its first zero $-\omega_1$

► Set
$$\varphi_0(r) = \operatorname{Ai}((4\lambda m_\beta^* \sqrt{\chi_\beta})^{1/3} r - \omega_1).$$

 \blacktriangleright The relevant Ferrari–Spohn diffusion in the present context is the diffusion on $(0,\infty)$ with generator

$$L_{eta} = rac{1}{2}rac{\mathrm{d}}{\mathrm{d}r^2} + rac{arphi_0'}{arphi_0}rac{\mathrm{d}}{\mathrm{d}r}$$

and Dirichlet boundary condition at 0.

- CONCLUDING REMARKS -

► It allows, in particular, a detailed understanding of **asymptotics of correlation functions** in any dimension and for general ferromagnetic coupling constants, away from the critical point.

► Combined with planar duality, it enables an in-depth analysis of **interfacial phenomena** in 2D.

► It allows, in particular, a detailed understanding of **asymptotics of correlation functions** in any dimension and for general ferromagnetic coupling constants, away from the critical point.

► Combined with planar duality, it enables an in-depth analysis of **interfacial phenomena** in 2D.

► It allows, in particular, a detailed understanding of **asymptotics of correlation functions** in any dimension and for general ferromagnetic coupling constants, away from the critical point.

Combined with planar duality, it enables an in-depth analysis of interfacial phenomena in 2D.

► It allows, in particular, a detailed understanding of **asymptotics of correlation functions** in any dimension and for general ferromagnetic coupling constants, away from the critical point.

► Combined with planar duality, it enables an in-depth analysis of **interfacial phenomena** in 2D.

