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Ornstein-Zernike theory

» Brief history

> Inspired by the theory developed in 1914 By Ornstein and Zernike.

> Perturbative approaches: [ABRAHAM-KUNZ 1977, PAES-LEME 1978,
BRICMONT-FROHLICH 1985, ZHIZHINA-MINLOS 1988, ...]

> Early nonperturbative versions (limited applicability, not robust):
[ABRAHAM—CHAYES—CHAYES 1985, CHAYES—CHAYES 1986, JONSSON 1986,
CAMPANINO—CHAYES—CHAYES 1991, |OFFE 1998]

> Robust nonperturbative approach: [CAMPANINO-IOFFE 2002, CAMPANINO-IOFFE-V. 2003,
CAMPANINO-IOFFE-V. 2008, OTT-V. 2018, AOUN-OTT-V. 2021].
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» The approach developed in the latter series of works allows to couple “structurally
1D objects” with good mixing properties to directed random walks.

» Applies, among others, to interfaces in planar systems or to paths, clusters, etc.,
originating from graphical representations of correlation functions (high-temperature
expansion, FK-percolation, random-current, ...).

» Using this coupling, we can in many cases reduce difficult questions arising in the
Ising model to much simpler (and more classical) ones about random walks.
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Plan of the talk

SOME EXAMPLES OF APPLICATIONS OF OZ THEORY

» A. Asymptotics of correlations

> A.1. The 2-point function
> A.2. General correlation functions

> A.3 An inhomogeneous system: Ising with a defect line
» B. Interfaces in the planar Ising model

> B.. Interface in the bulk
> B.2. Interface at a boundary

> B.3. Interface in a field
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— A. ASYMPTOTICS OF CORRELATIONS —
Al. The 2-point function
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» Coupling constants: (J),cz¢ suchthat Jo =0, J, > 0, i = J cand }_ J, < oo.
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» Formal Hamiltonian:

7{ = — :E:: c647fCTfC7j —h :E:: aj.
ij i

» We denote by (-) g » expectation w.r.t.

> the unique Gibbs measure ifh £ 0 orifh = 0and 8 < ..
> the + stateif h = 0and 8 > f..

» We write
(f19)pn = Fa)pn— (F)a.n(9)sn
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Inverse correlation length

=\ .

» For each 5 € S, the inverse correlation length v/ ,(3) is defined by
(00 0ng) g, = e 2O,

where oy = oy, with [x] € 7 the coordinatewise integer part of x € RY.
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Graph of 3 — v o(e1) for the planar Ising model
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Inverse correlation length

=\ .

» For each 5 € S, the inverse correlation length v/ ,(3) is defined by

(00 0ng) g, = e 2O,
where oy = oy, with [x] € 7 the coordinatewise integer part of x € RY.

> Assume that there exist C, ¢ > 0 such that Vx € Z¢, J, < ce~I*Il Then,
V(B, h) 7& (ﬁho)v mjn Vﬁyh(g) > 0.
S
> h#0,8 €R: [LeBowiTz-PENROSE 1968]

> h=0and 3 < (: [AIZENMAN-BARSKY-FERNANDEZ 1987]

> (Ji) with finite range, h = 0 and 8 > S [DUMINIL-COPIN-GOSWAMI-RAOUFI 2020]

0Jol=lylaiiela) e ) Remove the finite-range assumption when h = 0and 8 > fS..
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Sharp asymptotics: h = 0 and 3 < 5.

» Let us assume that the coupling constants decay superexponentially fast:

Ve > 0, lim Je™l =o.
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» Unclear how to implement 0Z, so the understanding remains very limited...

» The following are still the best results available today:

Theorem [Wu-McCoY-TRACY-BAROUCH 1976]

Consider the nearest-neighbor Ising model on Z2. Assume that h = 0, 3 > B..
Let5 € S%~". Then, as n — oo,
Vso(5) ...
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n

\

Theorem [BRICMONT-FROHLICH 1985]

Consider the finite-range Ising model on Z9, d > 3. Leth = 0and 5 € S~
Then there exists 3y such that, forall 8 > (o, as n — oo,
_ Y5.(5)

(00;0ms)p,0 = —E e 80" (14 0(1)).

.

» (sl eelall i) Prove that OZ asymptotics hold for all 5 > 3. whend > 3,
but also when d = 2 and the graph is not planar.
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Sharp asymptotics: h # 0

» Let us now consider the model in a field h # 0, assuming finite-range interactions.
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Sharp asymptotics: h # 0

» Let us now consider the model in a field h # 0, assuming finite-range interactions.

» In this case, Ornstein-Zernike asymptotics apply (at any temperature):

Theorem [OTT 2020]

Assume that h # 0 and let 3 > 0. LetS € S9=". Then, as n — oo,

Vs (5)

(005 0ns) g =~z €1 (14 0(1),

where the functions W and v j are analytic in s.
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coupling constants?
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in 3 in the high-temperature regime 0 < 8 < [.. This also turns out to be incorrect
(even in dimension 1!).

» Let us discuss this in more detail. Assume that
o= p(x)e ",
where

> p(+) denotes an arbitrary norm on RY,
> 1 is subexponential.

» For simplicity, let us also assume that

vx e RY, 4(x) = P(p(x)) > 0.
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Qualitative behavior of the inverse correlation length

» One can show that these are the only two possible scenarios:
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Qualitative behavior of the inverse correlation length

» One can show that these are the only two possible scenarios:

vg.0(5) v5,0(5)

PO O

0 B. 0 B.6) B.

» Observe that 3..(5) > 0 would imply that 8 — v/,0(5) is not analytic on (0, /.).

» Criterion to determine which scenario occurs?
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Easy fact: # is the closure of the domain of convergence of J.

wny

»tcO¥ isdualtos € S if t,
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Criterion for the existence of a saturation regime

Theorem [AOUN-10FFE-OTT-V. 2021, AOUN-OTT-V. 2022]

Lets €S 'and % = {t € 9¥ : tisdualto5}. Then

Bx(5) >0 <= r'en;;J(t) < 0.
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> Example: let d = 2, p(x) = [|x||, and 9 (x) = [|x]| ", with p € (2, 00). Then,

a < % —2 |f§€ {:teh:l:ez},
Bsx(5) > 0 <—

a < —3/2 otherwise.

» In particular, the correlation length is not always analytic in 5 on (0, 3.) (even in
dimension 1!), contrarily to previous expectations.

» What can be said about the asymptotic behavior of the 2-point function in the

regimes (0, 8. (S)) and (Bu(S), 5:)?
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Sharp asymptotics: 3.,.(5) < 8 < .

» Standard Ornstein-Zernike asympotics hold when 8 € (3:.(5), 5.):

Theorem [AouN-0TT-V. 2022]

Lets € S Forall B € (Bw(3), ), under some (presumably technical)
condition, as n — oo,

Vs(s) ...
(00; 0ns) g0 = n(d‘i(1>/)z 228 (14 0(1)),

where the functions W and v o are analytic in s.
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Sharp asymptotics: saturation regime (0 < 8 < £..,(5))

» The asymptotic behavior is not of Ornstein-Zernike type when 3 € (0, 8.(5)).

Theorem [AouN-OTT-V. 2022]

Lets € S" . Forall B € (0, Bw(3)), under some (presumably technical) condi-
tion, there exists an (explicit) constant X*> = X°(3) > 0 such that, as n — oo,

<UO ' Gn§>5,0 = 5(42 BJn§(1 + 0( ))
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<UO ' Gn§>5,0 = 5(42 BJn§(1 + 0( ))

» The above condition is conjectured to always hold, and is known to be true, for
instance, in the following two cases:

> (x) = Cexp(—Ap(x)*), with A > 0and « € (0,1).

> (x) = Cp(x) ™%, with a > 2d.
» This shows that 0Z behavior can be violated at arbitrarily high temperature even
though interactions decay exponentially fast, contradicting earlier expectations.

» Very similar asymptotics have been shown to hold in the simpler situation in which
the coupling constants decay subexponentially [NewmAN-SPOHN 1998].
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Behavior of typical paths

» These different asymptotics reflect very different behaviors of typical “paths”
contributing to graphical representations in both regimes.

0 < B < Buil3) Baai(8) < B < Be
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— A. ASYMPTOTICS OF CORRELATIONS —

A.2. General correlation functions
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Decay of correlations

» We assume thath = 0, 8 < . and (Jx),cze has finite range.
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Decay of correlations

» We assume thath = 0, 8 < . and (Jx),cze has finite range.

d
» ForA € Z°, letoa = [[;c, 0

» Given A, B € Z% and 5 € S"~", we investigate the asymptotic behavior of

<UA ; UB+n§'>B,0

asn — oo.
» Of course, by symmetry, (oc)g,0 = 0 whenever |C| is odd.
~ (o 08) 3,0 = 0 whenever |A| + |B| is odd.

» We are thus left with two cases to consider:

0dd-odd correlations Even-even correlations

|A], |B| both odd |A], |B| both even
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0dd-odd correlations

» 0dd-odd correlations always display Ornstein-Zernike behavior:
Theorem [CAMPANINO-IOFFE-V. 2004]
Let B < fB.. Let A, B € Z° with |A| and |B| odd and let5 € S®".
Then, there exists a constant 0 < C < oo (depending on A, B, S, 3) such that

C

(On'; Opins)po = ey e~ 8.00n (14 0o(1)),

as n — oQ.
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Theorem [CAMPANINO-IOFFE-V. 2004]
Let B < fB.. Let A, B € Z° with |A| and |B| odd and let5 € S®".
Then, there exists a constant 0 < C < oo (depending on A, B, S, 3) such that

C

(On'; Opins)po = ey e~ 8.00n (14 0o(1)),

as n — oQ.

» The first rigorous results of this type were obtained for 5 < 1in

> Bricmont-Frohlich 1985 > Zhizhina-Minlos 1988
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Even-even correlations

» Substantially more delicate!
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(Note that these predictions only coincide when d = 2, where they both agree with the
exact computation obtained in Stephenson 1966 and Hecht 1967.)

20/39



Even-even correlations

» Substantially more delicate!
» The analysis started with the case |A| = |B| = 2. Physicists quickly understood that

(s Trng) .0 = €280 (o)),

» However, concerning the prefactor, two conflicting predictions were put forward:

Polyakov 1969 Camp, Fisher 1971
(nlogn)™ d= n~? foralld >2
n=@=" d>4

(Note that these predictions only coincide when d = 2, where they both agree with the
exact computation obtained in Stephenson 1966 and Hecht 1967.)

» It turns out that Polyakov was right. This was first shown in

> Bricmont-Fréhlich 1985: Al=|B|=2 pB<1 d>=&
> Minlos-Zhizhina 1988, 1996:  |A|,|Bleven S <1 d>2
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Even-even correlations

» The best nonperturbative result to date is the following:

n’ whend = 2,
Let 7(n) = { (nlogn)’ whend = 3,
=t when d > 4.

Theorem [OTT-V. 2019]

Letd > 2and B < B.. LetA, B € Z° with |A| and |B| even and let5 € S~
Then, there exist constants 0 < C_ < C; < oo (depending on A, B, S, 3) such
that, for all n large enough,

C;e—z’/ﬁ,o(g)" < <0'A : UB+n§‘> < C7+e_2’/ﬁ,0(§')”.

7(n) - — 7(n)
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— A. ASYMPTOTICS OF CORRELATIONS —

A.3. An inhomogeneous system: Ising with a defect line
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> Defect line: L = {ke; € Z° : k€ Z}
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> Defect line: L = {ke; € Z° : k€ Z}
» Coupling constants:

1 i~ i) 2 L

Ji=<J ifi~ji{i,jt C L

0 otherwise

» Fix 8 < B, h =0, > 0and let Pg, ; be the unique infinite-volume Gibbs measure.
» Central quantity: longitudinal inverse correlation length v3(J)

(00 Oney) g = e~ v8(J)nto(n)

» McCoy-Perk 1980: explicit computation of vg(.J) for the planar Ising model.
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Properties of the longitudinal correlation length

» The following is proved in [0TT-V. 2018]: For any d > 2, there exists J. > 1such that

vg(J)
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Properties of the longitudinal correlation length

» The following is proved in [OTT-V. 2018]: For any d > 2, there exists J. > 1such that
>When 0 < J < J.: vg(J) is constant.
> When J > J.: J— vg(J) is decreasing and real-analytic.
>d=2,3J.=1 d>4&J >1

> There exist constants czi, c3i > Osuchthat,as J | J,

& (J— ) <wp(J) —wp(J) < (J— J)’ (d=2)
&5 U < g(J) — vp(J) < €75 /U (a=3)
l/ff(‘]:
va(1);
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Asymptotics of correlations

» When J > J,, one has pure exponential decay:

Theorem [oTT-V. 2018]

Letd > 2. Assume that 8 < B, h = 0and J > J.. Then,as n — oo,

(005 0ney) .0 = Ca,e” 2" (14 0(1)).
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Asymptotics of correlations

» When J > J,, one has pure exponential decay:

Theorem [oTT-V. 2018]

Letd > 2. Assume that 8 < B, h = 0and J > J.. Then,as n — oo,

(005 0ney) .0 = Ca,e” 2" (14 0(1)).

» When 0 < J < 1, one has the following asymptotics:
Theorem [OTT-V. 2019, IOFFE-OTT-V.-WACHTEL 2020]

Assume that 8 < B,h =0and 0 < J < 1. Then,as n — oo,

CB,J —vg(J)n
d=2: (00; Oney ) 3,0 = nf/z el "(1+0(1)),
Cp,J —vg(J)n
d =3 ; = —2 B 1 1 Pl
(00 Oner) g, n(logn)? 3 (1+0(1))

ot v
d=>4: (00i0m)sr = e P (14 0(1)).
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— B. INTERFACES IN THE PLANAR ISING MODEL —
B.1. Interface in the bulk

26/39



Interface in the bulk: Setting

» We consider the n.n. Ising modelin Ay = {—N+1,... N} with 3 > B.and h = 0.
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Interface in the bulk: Setting

» We consider the n.n. Ising modelin Ay = {—N+1,..., N}* with 3 > B.and h = 0.

» LetS € S'. We consider a system with 5-boundary condition:
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Interface in the bulk: Scaling limit of the interface

Theorem [GREENBERG-IOFFE 2005]

Lets € S"and 3 > S.. The distribution of the centered and diffusively-rescaled
interface induced by the s-boundary condition converges to the distribution of

x5(5) b,

where b is the standard Brownian bridge on [—1, 1] and x3(5) is the curvature
of the Wulff shape at the unique point t of its boundary where the normal is 5.
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— B. INTERFACES IN THE PLANAR ISING MODEL —

B.2. Interface at a boundary
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Interface at a boundary: Setting

» We consider a system with boundary condition inducing an interface along the
bottom wall:
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Interface at a boundary: Scaling limit of the interface

Theorem [ 10FFE-OTT-V.-WACHTEL 2020]
Let 8 > (.. The distribution of the diffusively-rescaled interface converges to
the distribution of

NOTX:
where ¢ is the standard Brownian excursion on [—1,1] and x is the curvature
of the Wulff shape at its apex.
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— B. INTERFACES IN THE PLANAR ISING MODEL —

B.3. Interface in a field
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Interface in a field: Settings

» We consider again the boundary condition

but add to the Hamiltonian a magnetic field term
Yo
iehy
with h > 0.
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Interface in a field: Layer of unstable phase

» Let 3 > .. Since h > 0, the layer of — phase becomes unstable:

average width = O(N'/?)
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Interface in a field: Critical prewetting

» The width of the layer increases as h decreases:

» It turns out to be natural to choose h = h(N) to be of the form

h=2
N

for some A > 0.
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Interface in a field: Scaling limit

Theorem [loFFE, OTT, SHLOSMAN, V. 2020]

Rescale the interface

> horizontally by N~%/3

> vertically by X;/ZN’W.

Then, as N — oo, its distribution weakly converges to that of the Ferrari-Spohn
diffusion introduced in the next slide.
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Theorem [loFFE, OTT, SHLOSMAN, V. 2020]

Rescale the interface

> horizontally by N~%/3

> vertically by X;/ZN’W.

Then, as N — oo, its distribution weakly converges to that of the Ferrari-Spohn
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Interface in a field: Ferrari-Spohn diffusion

» Let us introduce

> the spontaneous magnetization: mj
> the curvature of the Wulff shape (at its apex): x s
> the Airy function Ai and its first zero —wy

> Set o (r) = Ai((4Am/x5)"°r — wy).

» The relevant Ferrari-Spohn diffusion in the present context is the diffusion on
(0, 00) with generator
1d o d
lg =-— + ) =2
2 dr? o dr
and Dirichlet boundary condition at 0.
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— CONCLUDING REMARKS —
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Concluding remarks

» The Ornstein-Zernike theory provides a powerful tool to analyze the ferromagnetic
Ising (and other) model nonperturbatively.

» It allows, in particular, a detailed understanding of asymptotics of correlation
functions in any dimension and for general ferromagnetic coupling constants, away
from the critical point.

» Combined with planar duality, it enables an in-depth analysis of interfacial
phenomena in 2D.

» The (modern version of the) Ornstein-Zernike theory was developed in a very large
part by Dima loffe, to whom | dedicate this talk...
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