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Abstract. We consider the Random-Cluster model on Zd with interactions of infi-
nite range of the form Jx = ψ(x)e−ρ(x) with ρ a norm on Zd and ψ a subexponential
correction. We first provide an optimal criterion ensuring the existence of a non-
trivial saturation regime (that is, the existence of βsat(s) > 0 such that the inverse
correlation length in the direction s is constant on [0, βsat(s))), thus removing a reg-
ularity assumption used in our previous work [6]. Then, under suitable assumptions,
we derive sharp asymptotics (which are not of Ornstein–Zernike form) for the two-
point function in the whole saturation regime (0, βsat(s)). We also obtain a number
of additional results for this class of models, including sharpness of the phase transi-
tion, mixing above the critical temperature and the strict monotonicity of the inverse
correlation length in β in the regime (βsat(s), βc).

1. Introduction

Since the celebrated work of Ornstein and Zernike more than a century ago [24, 33],
the analysis of the asymptotic behavior of correlation functions has played an impor-
tant role in our understanding of the equilibrium properties of macroscopic systems.
In particular, Ornstein and Zernike predicted that the pair correlation function Gβ(r)
would decay, as a function of the distance r, according to r−(d−1)/2e−νβr, where νβ
denotes the inverse correlation length. This has since become known as Ornstein–
Zernike (OZ) behavior and is expected to be the generic behavior away from critical
points.

While their original work relied on unproven (both explicit and implicit) assump-
tions, the validity of OZ behavior was established rigorously in a variety of settings
(see also [28] for a more detailed overview restricted to the Ising model): the first
derivation of OZ behavior was done in the planar Ising model above the critical tem-
perature [31, 32] by explicitly computing the pair correlation function (these compu-
tations also showed that OZ behavior is violated below the critical temperature in
the planar Ising model); then, OZ behavior was established in more general systems
and in any dimension in perturbative regimes starting with the works [1, 29, 8]; the
first non-perturbative approaches were introduced in the 1980s, but were restricted
to simple models (in particular, the self-avoiding walk [15, 22] and Bernoulli percola-
tion [10]), were very model-dependent and lacked robustness. In the last two decades,
a much more powerful and robust approach was developed in the works [11, 12, 14, 27].
Among others, the latter version of the theory allowed the analysis of the odd-odd and
even-even correlations in the finite-range Ising model on Zd above Tc [13, 26], of the
2-point correlation function of the finite-range Ising model on Zd in a field at any tem-
perature [25] and of the 2-point correlation function of the finite-range Potts model
on Zd above Tc [14], including in the presence of inhomogeneities [27].
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Figure 1. The two possible behaviors of the inverse correlation length in
a direction s ∈ Sd−1 in the Ising model on Zd with coupling constants
Jx = ψ(x)e−ρ(x). Left: saturation never occurs (βsat(s) = 0). Right: satura-
tion occurs (βsat(s) > 0). In more general models, the behavior is completely
similar, except that the inverse correlation length does not necessarily con-
verge to 0 at βc.

At this stage, it was natural to proceed one step further by considering models with
interactions of infinite range. It had been understood since at least the 1960s [30] that
the pair correlation function cannot decay faster than the pair interaction (at least
in ferromagnetic-type systems). In particular, OZ behavior cannot occur when the
interactions decay slower than exponentially; the sharp asymptotic behavior of the 2-
point function in this regime was established for the Ising model on Zd above Tc in [23]
and (in the case of interactions decaying according to a power law) for the Potts model
on Zd above Tc in [4] (the extension of the latter result to interactions decaying like
a stretched exponential is provided in the present work, see below). However, it was
expected (see, for instance, [9]) that OZ behavior should occur (at least at sufficiently
high temperatures) whenever the interaction decays at least exponentially fast with
the distance. This turns out to be incorrect, as we explain now.

In [6] (see also [5]), we considered a general class of lattice spin systems on Zd with
two-body ferromagnetic interactions decaying asymptotically as ψ(x)e−ρ(x), where ρ
is a norm on Rd and ψ is a sub-exponential correction. Let us denote by Gβ(x) the
associated two-point function and by νβ(s) the corresponding inverse correlation length
in direction s, defined as the rate of exponential decay of Gβ: Gβ(ns) = e−νβ(s)n+o(n)

as n → ∞ and s ∈ Sd−1. It is easy to check that β 7→ νβ(s) is non-increasing and
that limβ↓0 νβ(s) = ρ(s) for all s ∈ Sd−1. This leads naturally to the introduction of
the saturation point βsat(s) = sup{β ≥ 0 : νβ(s) = ρ(s)} (see Figure 1). We call
(0, βsat(s)) the saturation regime (in direction s). Our goal in [6] was to understand
under which conditions saturation does occur, that is, when is βsat(s) strictly positive.
This turns out to depend on the direction s, the norm ρ and the prefactor ψ. The
main result in [6] was the derivation of a criterion characterizing exactly the prefactors
ψ leading to βsat(s) > 0 (actually, in [6], we imposed a mild regularity condition on the
behavior of the norm ρ in the neighborhood of the direction s; removing this condition
is one of the results of the present paper, as we explain below). Note that, when
βsat(s) > 0, the correlation length is not an analytic function of the temperature in
the high-temperature regime; that this could occur (even in dimension 1!) was also
unexpected.

In [6], we also described (with partial results) how the asymptotic behavior of the
two-point function is expected to change depending on whether saturation occurs. In
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the regime (βsat(s), βc), Gβ is expected to always display standard Ornstein–Zernike
asymptotics: Gβ(x) ∼ |x|−(d−1)/2e−νβ(x). This is however expected not to be true in
the regime (0, βsat(s)) in which saturation occurs; here, Gβ(x) (with x,s colinear) is
dominated by the direct interaction between the spins in the neighborhood of 0 and
those in a neighborhood of x, which should generally lead to Gβ(x) ∼ ψ(x)e−ρ(x). This
was proved for sufficiently small values of β in a variety of models in [6]. This difference
in behavior should be related to a drastic change in the morphology of typical paths
contributing to the high-temperature expansion of Gβ(x), analogous to what happens
in condensation phenomena for sums of independent random variables [18]; see Fig. 2.

0

ns

0

ns

Figure 2. Qualitative depiction of typical paths contributing to the high-
temperature expansion of the 2-point function Gβ(x) of the Ising model (with
∥x∥ ≫ 1). Left: In the saturation regime, there is a single giant edge con-
necting a vertex close to 0 to a vertex close to x. Right: In the regime
(βsat(s), βc), all edges are microscopic (and the path can in fact be coupled,
using the Ornstein–Zernike theory) to a directed random walk.

The discussion above applies to a general class of lattice spin systems. In order
to obtain more precise results, it is useful to turn to important specific examples.
In [7], we considered the ferromagnetic Ising model on Zd with coupling constants
of the form Jx = ψ(x)e−ρ(x) as above. Extending earlier results restricted to finite-
range interactions [12] (see also [28] for an overview), we proved that the two-point
function indeed exhibits Ornstein–Zernike behavior for all β ∈ (βsat(s), βc) (under some
regularity condition). This provides a precise (although not yet completely exhaustive)
description of the regime in which saturation does not occur.

In the present work, we consider the saturation regime. Our main goal is to provide
a detailed analysis of the two-point function in this regime. We do that by analyzing
the q ≥ 1 Random-Cluster model on Zd (which includes Bernoulli percolation and the
Ising and Potts models on Zd). We introduce the required terminology and notation
in Section 2 and then state our main results in Section 3.

2. Model and notations

Most of our results naturally extend to a wider set-up but we restrict attention to
Zd. We will always see Zd as canonically embedded inside Rd and will denote ∥ · ∥ the
Euclidean norm on Rd. ρ will denote a norm on Rd (and will be one of the parameters
in our analysis).
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We consider the graph (Zd, Ed) with edge set Ed =
{
{i, j} ⊂ Zd

}
, which we will

often write simply Zd. Let ΛN = {−N, . . . , N}d and ΛN(x) = x + ΛN . For x, y ∈ Zd,
we denote by [x, y] the closed line segment in Rd with endpoints x and y.

2.1. Graphs. For a graph (V,E), A ⊂ V and F ⊂ E, we write Ac = V \ A,

EA =
{
{i, j} ∈ E : {i, j} ⊂ A

}
, ∂A =

{
{i, j} ∈ E : i ∈ A, j ∈ Ac

}
,

VF =
⋃

{i,j}∈F

{i, j}, ∂F =
{
{i, j} ∈ E : i ∈ VF

}
\ F, ĒA = EA ∪ ∂EA.

We will systematically identify sets and their characteristic function (e.g., ω ⊂ E
will be identified with ω ∈ {0, 1}E, where ωe = 1 if and only if e ∈ ω).

In all this work, we will consider subgraphs of (Zd, Ed). For ω, η ⊂ Ed, we will
denote by ω|F the restriction of ω to F and by ω|Fη|F c the union of the edges in ω|F
and in η|F c . We endow the subsets of Ed with the usual partial order (that is, sets are
ordered by inclusion).

2.2. Random-Cluster model.

2.2.1. Interaction. We consider a weight function (the interaction, or the set of cou-
pling constants) J : Ed → R+ satisfying

• Translation/reflection invariance: Jij = Ji−j = Jj−i,
• No self-interaction: J0 = 0,
• Normalization:

∑
x∈Zd Jx = 1.

We will use the following terminology.

Definition 2.1. J is exponentially-bounded if Jx ≤ e−c∥x∥ for some c > 0 and all
x ∈ Zd with ∥x∥ sufficiently large. J is exponentially-decaying if Jx = ψ(x)e−ρ(x) with
ψ > 0 satisfying

lim
∥x∥→∞

logψ(x)

∥x∥
= 0,

and ρ a norm on Rd.

2.2.2. The Random-Cluster model. We refer to [19, 16] for additional details on the
Random-Cluster model. Let q ≥ 1 and β ≥ 0. Consider a finite set F ⊂ Ed. Let
η ⊂ Ed be such that the graph (Zd, η) contains at most one infinite cluster. The
Random-Cluster measure on F with boundary condition η is the probability measure
on {0, 1}F given by

Φη
F ;q,β(ω) =

1

Zη
F ;q,β

∏
e∈F

(eβJe − 1)ωeqκη(ω), (1)

where κη(ω) is the number of connected components in (Zd, ω|Fη|F c) having an end-
point in VF and Zη

F ;q,β is the partition function. For V ⊂ Zd, we set Φη
V ;q,β ≡ Φη

ĒV ;q,β
.

The following stochastic domination (with respect to the partial order on subsets of
Ed) applies:

∀η ≤ η′,∀β ≤ β′, Φη
F ;q,β ≼ Φη′

F ;q,β′ .

In particular, the boundary conditions η ≡ 0 and η ≡ 1 are extremal; they will
respectively be denoted by 0 and 1. Moreover, the following finite energy property
applies: for any e ∈ F and η′ ∈ {0, 1}F\{e}, one has

eβJe − 1

eβJe − 1 + q
≤ Φη

F ;q,β(ωe = 1 | ωF\{e} = η′) ≤ 1− e−βJe
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The limits
Φ∗

q,β = lim
F→Ed

Φ∗
F ;q,β,

exist for ∗ ∈ {0, 1} and are translation invariant. Since q ≥ 1 will be kept fixed in
our analysis, it will be removed from the notation. For F ⊂ Ed, denote by FF the
sigma-algebra generated by the edge variables ωe, e ∈ F . We say that an event A is
supported on F if A ∈ FF . As usual, we denote {x ↔ y} for the event “x connected
to y”, and {x F←→ y} for the event “x connected to y using only edges in F ”.

The two-point function of the Random-Cluster model is

Gβ(x, y) = Φ0
β(x↔ y).

When q ∈ N with q ≥ 2, one has the following correspondance with the well-known
Potts model

PPotts
β,q (1{σx=σy})−

1

q
=
q − 1

q
Φ0

β,q(x↔ y). (2)

We refer to [16] for more details.

2.3. Convex geometry. It will be convenient to introduce a few quantities associated
to the norm ρ. First, two convex sets are important: the unit ball U ⊂ Rd and the
corresponding Wulff shape

W = {t ∈ Rd : ∀x ∈ Rd, t · x ≤ ρ(x)}.

Given a direction s ∈ Sd−1, we say that the vector t ∈ Rd is dual (or ρ-dual) to s if
t ∈ ∂W and t · s = ρ(s). A direction s possesses a unique dual vector t if and only
if ∂W does not possess an affine part with normal s. Equivalently, there is a unique
dual vector when the unit ball U has a unique supporting hyperplane at s/ρ(s). (See
Fig. 3 for an illustration.)

U W

s
t1

t2
W

s

t

Figure 3. Left: The unit ball for the norm ρ(·) = ∥·∥
1
. Middle: the corre-

sponding Wulff shape W with two vectors t1 and t2 dual to s = (1, 0). Right:
the set W with the unique vector t dual to s = 1√

5
(2, 1).

The surcharge function1 associated to a dual vector t ∈ ∂W is then defined by

st(x) = ρ(x)− x · t.

It immediately follows from the definition that st(x) ≥ 0 for all x ∈ Rd and st(s) = 0
if t is dual to s.

1To avoid confusion, we warn the reader that the surcharge function used in [7] was associated to
the inverse correlation, not the interaction.
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2.4. Transition points.

2.4.1. The phase transition. There are a priori two natural transition points in the
Random-Cluster model. The first one corresponds to the onset of percolation and
reduces to the usual order/disorder phase transition in the associated Potts model
when q ≥ 2 is an integer:

βc(d, q) = inf{β ≥ 0 : Φ0
β(0↔∞) > 0}.

The second one corresponds to the boundary of the regime in which the connec-
tion probabilities decay exponentially fast with the distance, and this uniformly over
boundary conditions:

βexp(d, q) = sup{β ≥ 0 : ∃c > 0, ∃N0 ≥ 0,∀N ≥ N0,Φ
1
ΛN ;β(0↔ Λc

N) ≤ e−cN}.
We will see below that the transition is sharp, that is, these two points actually coin-
cide: βc = βexp.

2.4.2. Saturation transition. Suppose that J is exponentially-bounded. The inverse
correlation length is defined as follows: for s ∈ Sd−1,

νβ(s) = − lim
n→∞

1

n
logGβ(0, ns), (3)

where integer parts are implicitly taken on ns. The limit can be proven to exist (see [6]
for references). One always has

Gβ(0, ns) ≤ e−νβ(ns).

Moreover, when β < βexp, νβ can be extended to a non-degenerate norm on Rd

by positive homogeneity of order one. In addition, the function β 7→ νβ(s) is non-
increasing over R+, νβ(s) ≤ ρ(s).

When J is exponentially-decaying, we define the saturation point as

βsat(s) = inf{β ≥ 0 : νβ(s) < ρ(s)}.
Recall that limβ→0 νβ(s) = ρ(s) (see [6]). By definition, one clearly has βsat(s) ≤ βexp,
but a priori, we don’t know whether βsat(s) < βexp or not. There is another (family of)
point(s) with special properties related to the saturation transition: β̂sat(s) ≡ β̂sat(s, q).
To define it, introduce the generating functions:

Gβ(h) =
∑
x∈Zd

eh·xGβ(0, x) and J(h) =
∑
x∈Zd

eh·xJ0,x,

for h ∈ Rd. The closure of the convergence domain of J is W . The point β̂sat(s) is
then defined by

β̂sat(s) = sup
t∈∂W

t dual to s

sup{β ≥ 0 : Gβ(t) <∞}.

We believe that β̂sat(s) = βsat(s) (see Conjecture 3.6). Partial results in that direction
are proven in the present work. Note that one always has β̂sat(s) ≤ βsat(s) (as the
convergence of G implies the convergence of J).

Finally, when2 ψ(x) ∝ ρ(x)−α with α ∈ R>0, we define, for any s ∈ Sd−1,

αsat(s) = sup{α ∈ R>0 : βsat(s, α) = 0}.
2We write ψ(x) ∝ ρ(x)−α, since a multiplicative constant is needed in order to ensure that∑
x∈Zd Jx = 1.
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Using Theorem 3.3, and st ≥ 0, it is easy to see that one always has d ≥ αsat(s) ≥ 1.

3. Results

3.1. Sharpness and mixing in the Random-Cluster model. Our first result
establishes coincidence of the two transition points βc and βexp in the case of exponen-
tially bounded interactions. It is an extension of [17] to the infinite-range setup. This
proves Conjecture 1.11 in [6] for the Random-Cluster model (and thus for Bernoulli
percolation and the Ising and Potts models). Weaker versions of sharpness were known
in this setup for q = 1 and q = 2 [2, 3] (finite susceptibility rather than exponential
decay of connectivities uniformly in boundary conditions).

Theorem 3.1. Assume that J is exponentially-bounded, d ≥ 1 and q ≥ 1. Then
βc(d, q) = βexp(d, q).

As a corollary of this, we obtain the following mixing property below βc:

Corollary 3.2. Suppose β < βc and let Φβ be the unique infinite-volume measure at
β. Then, there exist C < ∞ and c > 0 such that, for any F, F ′ ⊂ Ed and any events
A ∈ FF , B ∈ FF ′ having positive probability,∣∣∣ Φβ(A ∩B)

Φβ(A)Φβ(B)
− 1

∣∣∣ ≤ ∑
x∈VF ,y∈VF ′

Ce−c∥x−y∥

whenever the right-hand-side is at most 1.

These results are proved in Section 4.

3.2. Optimal criterion for the existence of a saturation regime. Our second
result removes an unnecessary regularity assumption from the characterization derived
in [6], thus answering Open Problem 1.12 therein.

Theorem 3.3. Suppose J is exponentially-decaying. Let s ∈ Sd−1. Then, βsat(s) > 0
if and only if there exists t ρ-dual to s such that J(t) =

∑
x∈Zd et·xJx <∞.

Although the previous result is stated for the Random-Cluster model, it applies to
the much more general class of models considered in [6]. The proof of Theorem 3.3
can be found in Appendix A.

3.3. Sharp asymptotics in the saturation regime. Our next result provides the
sharp asymptotic behavior of the two-point function Gβ(0, ns) in the saturation regime
(0, βsat(s)). It shows, in particular, that these asymptotics are not of Ornstein–Zernike
type in this regime.

Let (χ̃n(s)) be the following sequence

χ̃n(s) = χ̃n(β, q, s) =
β

q
eρ(ns)

∑
u,v∈Zd

Φβ(0↔ u)e−ρ(ns−u−v)Φβ(0↔ v).

The first claim is a result valid at any β < β̂sat(s) (by opposition to what we proved
in [6] which was at β sufficiently small).

Theorem 3.4. Let s ∈ Sd−1. Suppose that ψ is of one of the following forms:
• ψ(x) ∝ ρ(x)−α with α > αsat(s),
• ψ(x) ∝ e−c̃ρ(x)η with c̃ > 0 and η ∈ (0, 1).
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Then, for every β < β̂sat(s), the limit χ̃(s) = limn→∞ χ̃n(β, q, s) exists and

Φβ(0↔ ns) = χ̃J0,ns(1 + on(1)).

The constant χ̃(s) is reminiscent of the squared susceptibility appearing in the case
of sub-exponentially decaying interactions, see Theorem 3.7.

The second claim supplements the first one by giving prefactors for which βsat and
β̂sat agree (giving a partial answer to Conjecture 3.6 below).

Theorem 3.5. Let s ∈ Sd−1. Suppose that ψ is of one of the following forms:

• ψ(x) ∝ ρ(x)−α with α > 2d,
• ψ(x) ∝ e−c̃ρ(x)η with c̃ > 0 and η ∈ (0, 1).

Then, βsat(s) = β̂sat(s).

This in particular implies that the conclusion of Theorem 3.4 holds in the whole
saturation regime for a restricted class of prefactors.

Remark 3.1. Although, for simplicity of exposition, the results above are only stated
for two particular classes of prefactors, they actually hold more generally than that,
with the same proof. The main properties of the prefactor are listed in (27). We also
need some mild regularity and monotonicity (for instance, ψ(x) ≍ f(ρ(x)) for some
nonincreasing positive function f).

Conjecture 3.6. βsat(s) = β̂sat(s) for general ρ, ψ.

Finally, as a rather simple adaptation of our methods, we can also obtain sharp
asymptotics for some coupling constants decaying slower than exponentially with the
distance. Namely, we prove

Theorem 3.7. Let J0,x ∝ ρ(x)−α with α > d, or J0,x ∝ e−c̃ρ(x)η with c̃ > 0, η ∈ (0, 1).
Then, for any β < βc,

Φβ(0↔ x) =
βχ(β)2

q
J0,x(1 + o∥x∥(1)),

where χ(β) =
∑

y∈Zd Φβ(0↔ y).

The fact that χ(β) < ∞ when β < βc was proved in [20]. The case q = 2 (Ising
model) was treated in [23]. In the polynomial case, the generalization of the latter to
q ≥ 1 was achieved in [4]. As mentioned in Remark 3.1 (in the case of exponentially
decaying coupling constants), our methods allow to prove the same claim under more
general assumptions.

Conjecture 3.8. The result of Theorem 3.7 holds for large enough values of β both
if we consider Gβ(0, ns) = Φβ(0 ↔ ns, |C(0)| < ∞) and for the truncated two-point
function of the Ising model without an external field. It also holds in presence of an
external field for any β > 0.

Remark 3.2. Note that it is known [21] that the truncated 2-point function of the one-
dimensional Ising model with interactions of the form Jx ∝ ∥x∥−2 and no external field
does not display the asymptotic behavior of Theorem 3.7 in an intermediate regime of
temperatures β ∈ [βc, β0) for some finite β0 > βc.
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3.4. Size of a typical cluster of 0 and ns in the saturation regime. Our proof
of Theorem 3.4 gives a control on the size of C(0) conditionned on {0 ↔ ns} in the
saturation regime.

Theorem 3.9. Let s ∈ Sd−1. Suppose that ψ is of one of the following forms:
• ψ(x) ∝ ρ(x)−α with α > αsat(s),
• ψ(x) ∝ e−c̃ρ(x)η with c̃ > 0 and η ∈ (0, 1).

Then, for every β < β̂sat(s), there exist c > 0 and C such that, for all M > 0 and
n > 0,

Φβ(|C(0)| > M | 0↔ ns) ≤ Ce−cM .

The previous Theorem is in contrast with what happens for β ∈ (βsat(s), βc) (see
Fig. 2): under suitable assumptions, it was proved for q = 2 in [7] that a typical
path contributing to the high-temperature expansion of the two-point function has a
number of points that is linear in n (see [7] for a much more precise statement).

Proof of Theorem 3.9. Fix β < β′ < βsat(s). Theorem 3.4 implies that for n big
enough

1

2
χ̃(s, β′)J0,ns ≤ Φβ′

(
0↔ ns

)
≤ 2χ̃(s, β′)J0,ns. (4)

Moreover, it follows from (17) that

Φβ

(
0↔ ns, |C0| ≥M

)
≤ CΦβ′

(
0↔ ns, |C0| ≥ N

)
e−cM ≤ 2Cχ̃(s, β′)J0,nse

−cM .

where the last inequality follows from (4). □

3.5. Strict monotonicity of ν outside of the saturation regime. Our last result
concerns the regime (βsat(s), βc). More precisely, we prove that the function β 7→ νβ(s)
is strictly decreasing outside of the saturation regime.

Lemma 3.10. Suppose J is exponentially-decaying. Let s ∈ Sd−1, and suppose βsat(s) >
0. Then, for any β ∈ (βsat(s), βc), there exists ε = εβ > 0 and C = Cβ,ε > 0 such that,
for any β′ ∈ (β, β + ε), one has

νβ(s)− νβ′(s) ≥ C(β′ − β).
In particular, the function β 7→ νβ(s) is strictly decreasing on (βsat(s), βc).

We believe that β 7→ νβ(s) is (real-)analytic on the interval (βsat(s), βc). We plan
to come back to this issue in a future work. As the proof is short and does not fit
naturally in the remaining sections, we present it here (although it refers to other parts
of the paper).

Proof of Lemma 3.10. From Theorem 3.3, βsat(s) > 0 implies the existence of t ∈ ∂W
dual to s with J(t) <∞. Fix such a t. On the one hand, since cs = ρ(s)− νβ(s) > 0,
we have (as t · s = ρ(s) by choice of t)

Φβ(0↔ ns, |C0| ≤ εn) ≤
∑
γ:0→x
|γ|≤ϵn

Φβ(γ open) ≤

≤ e−ρ(ns)

εn∑
k=1

∑
y1,··· ,yk∈Zd∑

yi=x

k∏
i=1

et·yi(1− e−βJyi ) ≤ e−n(νβ(s)+cs)

εn∑
k=1

(
β
∑
y∈Zd

Jye
t·y
)k
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where the sum after the first inequality is over self avoiding paths γ = (0, y1, y1 +
y2, · · · , x), we used finite energy to get the second inequality, and 1 − e−x ≤ x for
x ≥ 0 to get the third.

On the other hand, we know by (19) that

Φβ(0↔ ns, |C0| ≥ εn) ≤ Ce−νβ′ (ns)e−cβ,β′εn,

where cβ,β′ = β′−β
2β′Φβ′ (|C0|) . To conclude, introduce A = max(1, βJ(t)) < ∞ and a =

logA, and note that combining the two bounds with Φβ(0 ↔ ns) ≥ e−νβ(ns)(1+on(1))

gives (for n large enough)

eo(n) ≤ Ce−(νβ′ (s)−νβ(s)+cβ,β′ε)n + εne−n(cs−aε).

Taking ε > 0 small enough (as a function of s, β, β′ − β) the last display implies

νβ′(s)− νβ(s) + cβ,β′ε ≤ 0,

which is the claim. □

Remark 3.3. The same lower bound can be proved if (Jx,y)x,y∈Zd are finite range.
Indeed, in this case

Φβ(0↔ ns, |C0| ≤ εn) = 0,

for ε small enough, and (19) still holds in this case (the inequality (19) holds for any
translation-invariant coupling constants (J0,x)x∈Zd that satisfy

∑
x J0,x <∞).

4. Sharpness of the phase transition

We will use the shorter notation

ΦN ;β ≡ Φ1
ΛN ;β.

The goal of this section is to prove the following result, which implies Theorem 3.1.

Theorem 4.1. Suppose J is exponentially-bounded. Let β̃c be given by (5) below.
Then the following assertions hold.

• For any β < β̃c, there exist Cβ and cβ > 0 such that

ΦN ;β(0↔ Λc
N) ≤ Cβe

−cβN ,

for all N ≥ 1.
• For any β > β̃c,

Φ1
β(0↔∞) ≥ (β − β̃c)

e−β

9β
.

In particular, β̃c = βc = βexp.

Our approach is closely related to the one introduced in [17], which is based on the
one-monotonic version of the OSSS inequality. The main (mostly technical) differences
will be highlighted during the proofs.
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4.1. Preparations. We will need a few more objects. We first define the edge sets

EN,R =
{
{x, y} ∈ ĒΛN

: ∥x− y∥∞ ≤ R
}
, and EN,>R = EN,∞ \ EN,R.

Also, E∞,R = limN→∞EN,R. Define the shorthand {x↔R y} = {x
E∞,R←−−→ y}.

We will use the shorter notation

fN(β) = Φ2N ;β(0↔ Λc
N), FN(β) =

N−1∑
k=0

fk(β).

We then define

β̃c = sup{β ≥ 0 : ∃(Nn)n≥1 increasing,∃C, c > 0, FNn(β) ≤ C(Nn)
1−c}

= inf
{
β ≥ 0 : lim inf

N→∞

logFN(β)

logN
≥ 1

}
. (5)

Notice that, for any β < β̃c, as fN(β) is non-increasing in N , one has limN→∞ fN(β) =

0. In particular, β̃c ≤ βc. A first difference compared to [17] is the use of a lim inf

instead of a lim sup in the definition of β̃c. This will be convenient when establishing
that β̃c ≥ βc, but will generate some difficulties when proving that β < β̃c.

4.2. Differential inequality: radius. We will use the following differential inequal-
ity.

Lemma 4.2. For any β > 0, ∞ ≥ R′ ≥ R > 0, and N ≥ 1,
d

dβ
Φ2N ;β(0↔R′ Λc

N) ≥
e−β

β
Φ2N ;β(0↔R Λc

N)
N

R + 4
∑N−1

i=0 ΦN ;β(0↔R Λc
i )
. (6)

Proof. First,
d

dβ
Φ2N ;β(0↔R′ Λc

N) =
∑

e∈E2N,∞

Je
1− e−βJe

Φ2N ;β(0↔R′ Λc
N ; ωe)

≥ 1

β

∑
e∈E2N,R

Φ2N ;β(0↔R′ Λc
N ; ωe), (7)

since x
1−e−βx ≥ β−1 and the covariances are nonnegative by FKG.

We will use the two-function version of the monotonic OSSS inequality of [17],
see [20, Theorem 2.2] for the exact statement. We refer to [17, 20] for missing defini-
tions; our notations should be close enough to the ones used in theses papers for the
reader to be able to translate. We will use the following inputs in [20, Theorem 2.2]:

µ = Φ2N ;β, f = 10↔R′Λc
N
, g = 10↔RΛc

N
.

We obtain that, for any decision tree T computing g,

Φ2N ;β(f ; g) ≤
∑

e∈E2N,∞

δe(Φ2N ;β, T )Φ2N ;β(ωe ; f). (8)

We will now define some decision trees. Notice that 10↔RΛc
N

is measurable with respect
to FEN,R

. Fix some arbitrary total ordering of EN,R. We define a family of decision
trees T i, i = 1, . . . , N , as follows. T i first queries the state of all edges {x, y} ∈ EN,R

with [x, y] ∩ ∂[−i, i]d ̸= ∅ in increasing order. Let us denote the set of open edges
revealed in this way by X. Then, T i explores all the connected components, in the
configuration restricted to EN,R, of the endpoints of X together with their boundary.
We refer to [17, 20] for an explicit description of the exploration algorithm. Obviously,
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T i computes 10↔RΛc
N
. Moreover, for an edge to be queried, it has to be in EN,R

and either intersect ∂[−i, i]d or be connected to an open edge which does so. The
revealment of an edge in EN,R is therefore upper bounded by

δ{x,y}(Φ2N ;β, T
i) ≤

1[x,y]∩∂[−i,i]d ̸=∅ + Φ2N ;β(x↔R Λ|∥x∥∞−i|(x)
c) + Φ2N ;β(y ↔R Λ|∥y∥∞−i|(y)

c).

Now,
N∑
i=1

Φ2N ;β(x↔R Λ|∥x∥∞−i|(x)
c) ≤

N∑
i=1

ΦN ;β(0↔R Λc
|∥x∥∞−i|) ≤ 2

N−1∑
i=0

ΦN ;β(0↔R Λc
i ).

Taking the average over i = 1, . . . , N , one gets

1

N

N∑
i=1

δ{x,y}(Φ2N ;β, T
i) ≤ ∥x− y∥∞

N
+

4

N

N−1∑
i=0

ΦN ;β(0↔R Λc
i ).

In particular, averaging (8) over T i, i = 1, . . . , N , implies∑
e∈E2N,R

Φ2N ;β(ωe ; 0↔R′ Λc
N) ≥

∑
e∈EN,R

Φ2N ;β(ωe ; 0↔R′ Λc
N) ≥

Φ2N ;β(0↔R′ Λc
N ; 0↔R Λc

N)
N

R + 4
∑N−1

i=0 ΦN ;β(0↔R Λc
i )
. (9)

Finally,

Φ2N ;β(0↔R′ Λc
N ; 0↔R Λc

N) = Φ2N ;β(0↔R Λc
N)Φ2N ;β(0↔/ R′ Λ

c
N)

≥ Φ2N ;β(0↔R Λc
N)Φ2N ;β(0↔/ Λc

N) ≥ Φ2N ;β(0↔R Λc
N)e

−β, (10)

where the last inequality follows from finite energy and the normalization
∑

x J0x = 1.
Using (7), (9) and (10) yields the result. □

We will combine the previous differential inequality with a simple bound comparing
Φ2N ;β(0 ↔R Λc

N) and Φ2N ;β(0 ↔ Λc
N). Partitioning on whether there is an edge of

length at least R which is open or not, and using a union bound, one has

Φ2N ;β(0↔ Λc
N) ≤ Φ2N ;β(0↔R Λc

N) +
∑

e∈E2N,>R

Φ2N ;β(ωe = 1)

≤ Φ2N ;β(0↔R Λc
N) + CβNd

∑
y:∥y∥∞>R

Jy

≤ Φ2N ;β(0↔R Λc
N) + CβNde−cR,

where c > 0, we used that J is exponentially bounded in the last line, and all β-
dependencies are explicit. So, there exist C <∞, c > 0 (independent of β) such that
for any R > 0

Φ2N ;β(0↔R Λc
N) ≥ Φ2N ;β(0↔ Λc

N)− CβNde−cR. (11)

4.3. Proof of Theorem 4.1: Percolation above β̃c. We now study the differential
inequality of Lemma 4.2. The proof is very close to the corresponding ones in [17, 20].
The main difference is that we have an effect due to the infinite range of the interaction
in the differential inequality. This is where using a lim inf in the definition of β̃c instead
of a lim sup comes crucially into play.
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Lemma 4.3. For any β > β̃c,

Φ1
β(0↔∞) ≥ (β − β̃c)

e−β

9β
.

In particular, β̃c ≥ βc.

Proof. The claim will follow by lower bounding the quantity WN,M defined by

WN,M(β) =
1

logN

N∑
k=M

k−1fk(β).

Observe that WN,M is non-decreasing in β. The interest of this quantity is that one has
limM→∞ limN→∞WN,M(β) = Φ1

β(0 ↔ ∞). Indeed: the lower bound is obtained by

observing that fk(β) ≥ Φ1
β(0↔∞) and limN→∞

∑N
k=M k−1

log(N)
= 1, while the upper bound

follows from fk(β) ≤ Φ2k;β(0 ↔ Λc
M) for k ≥ M , and Φ2k;β(0 ↔ Λc

M) ≤ Φ1
β(0 ↔

Λc
M) + ok(1) (by convergence of Φ2k;β to Φ1

β), so that limN→∞WN,M ≤ Φ1
β(0↔ Λc

M).
Let β > β′ > β̃c. Let RN = (d+ 3

2
) logN

c
where c is given by (11), and let N0 be such

that RN ≤ N1/2 for all N ≥ N0. Using the bound
N−1∑
i=0

ΦN ;β(0↔R Λc
i ) ≤ 2

N/2∑
i=0

Φ2i;β(0↔ Λc
i ) ≤ 2FN(β) (12)

in Lemma 4.2 (with R′ =∞), and using (11), one obtains

d

dβ
fN(β) ≥

e−β

β
Φ2N ;β(0↔RN

Λc
N)

N

RN + 8FN(β)
. (13)

Recall that, by the definition of β̃c in (5), one has

lim inf
N→∞

logFN(β
′)

logN
≥ 1. (14)

In particular, by monotonicity of FN(β) in β, there exists N1 = N1(β
′) <∞ such that,

for any N ≥ N1 and β ≥ β′, FN(β) ≥ N1/2. Let N2 = max(N0, N1).
By (13), our choice of N2, and the inequality Rk ≤ k1/2 for k ≥ N0, for any M ≥ N2

d

dβ
WN,M(β) ≥ e−β

9β

1

logN

N∑
k=M

Φ2k;β(0↔Rk
Λc

k)

Fk(β)

≥ e−β

9β

1

logN

(
logFN+1(β)− logFM(β)−

N∑
k=M

Cβ

k2

)
,

where we used (11), Fk(β) ≥ k1/2, the choice of Rk, and

fk
Fk

=
Fk+1 − Fk

Fk

≥
∫ Fk+1

Fk

1

x
dx = logFk+1 − logFk.

Integrating this inequality between β′ and β and using the monotonicity of Fk in β
yields, for M ≥ N2,

WN,M(β) ≥ (β − β′)
e−β

9β

1

logN

(
logFN+1(β

′)− logFM(β)− c(β, β′)M−1
)
.
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Taking N →∞ followed by M →∞ and using (14), one obtains

Φ1
β(0↔∞) ≥ (β − β′)

e−β

9β
.

The result now follows by letting β′ ↓ β̃c. □

4.4. Proof of Theorem 4.1: Exponential decay below β̃c. We will rely on two
elementary lemmas on sequences, the proofs of which are relegated to the end of the
section.

Lemma 4.4. Let aN ≥ 0 be a sequence satisfying
• aN is non-increasing,
• ∃m ∈ Z≥2, ∃α <∞, ∃C1, C2 ≥ 0,∃c1 > 0,∀N ≥ 1, amN ≤ C1N

αa2N +C2e
−c1N ,

• ∃ϵ > 0,∃(Nn)n≥1 increasing, ∀n ≥ 1, aNn ≤ e−(logNn)1+ϵ.
Then there exist C ≥ 0 and c > 0 such that

∀N ≥ 1, aN ≤ Ce−cNν

,

where ν = log 2
logm

.

Lemma 4.5. Let aN ≥ 0 be a sequence satisfying
• ∃c1 > 0,∃α <∞,∃Ñ , ∀N ≥ Ñ ,

aN ≤ e−c1N +Nα

⌈2N/3⌉∑
k=⌈N/3⌉

akaN−k,

• ∃ϵ > 0,∃Ñ , ∀N ≥ Ñ , aN ≤ e−Nϵ.
Then, there exist C ≥ 0 and c > 0 such that

∀N ≥ 1, aN ≤ Ce−cN .

The idea is to establish the stretch-exponential decay of fN(β) along a subsequence
(provided by the definition of β̃c) by integrating the log version of the differential
inequality from Lemma 4.2. We then use Lemma 4.4 to push this result to all N ≥ 1.
Finally, we use Lemma 4.5 to enhance the stretch-exponential decay to exponential
decay. This last step also differs from the argument in [17], which uses a second
integration of the differential inequality. The differential inequality we obtain is not
very convenient to repeat the argument of [17].

Lemma 4.6. For any β < β̃c, there exist Cβ ≥ 0 and cβ > 0 such that, for any N ≥ 1,

ΦN ;β(0↔ Λc
N) ≤ Cβe

−cβN .

Proof. Let β′ < β̃c. By definition of β̃c, there exist c̃ = c̃(β′) > 0 and an increasing
sequence (Nn)n≥1 such that FNn(β

′) ≤ N1−c̃
n for all n ≥ 1. Without loss of generality,

we impose c̃ < 1. Let RN = N1−c̃. The first step consists in bounding fN(β) from
above along the subsequence (Nn).

Claim 1. There exists n0 ≥ 1 and c′′ > 0 such that for any β < β′, there exists
c′ = c′(β, β′) > 0 satisfying

fNn(β) ≤ exp
(
−c′N c′′

n

)
for any n ≥ n0.
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Proof. First, using (11),

fN(β) ≤ Φ2N ;β(0↔RN
Λc

N) + CβNde−N1−c̃

.

The second term has the wanted decay, so we focus on the first one. Using Lemma 4.2
with R = R′ = RN (and (12)), one then gets that, for any β ≤ β′

d

dβ
log Φ2N ;β(0↔RN

Λc
N) ≥

e−β′

β′
N

RN + 8FN(β′)
.

So, for n ≥ 1 and β ≤ β′,
d

dβ
log Φ2Nn;β(0↔RNn

Λc
Nn

) ≥ e−β′

β′
Nn

9N1−c̃
n

≡ c′N c̃
n,

where c′ ≡ c′(β′). Integrating between β and β′,

Φ2Nn;β(0↔RNn
Λc

Nn
) ≤ Φ2Nn;β′(0↔RNn

Λc
Nn

) exp
(
−c′(β′ − β)N c̃

n

)
. □

The second step is too push Claim 1 to all values of N (not just the subsequence
(Nn)). This step is the price to pay for having a lim inf instead of a lim sup in (5).

Claim 2. For any β < β′, there exists c′ > 0 such that for any N large enough

fN(β) ≤ C ′ exp
(
−c′N log(2)/ log(6)

)
.

Proof. We would now like to use Lemma 4.4. The sequence aN = fN(β) is non-
increasing and Claim 1 implies that aN satisfies the third condition of Lemma 4.4. We
now establish the second condition with m = 6. Partitioning according to whether
there is an open edge in E12N,N or not, we obtain from finite energy that

f6N(β) ≤ Φ12N ;β(0↔N Λc
6N) + Cβe

−cN

for some c > 0 and Cβ ≥ 0. Now, the event {0 ↔N Λc
6N} implies both the event

{0 ↔N Λc
N}, which is E2N,N -measurable, and the existence of a point x ∈ Λ7N \ Λ6N

such that x ↔N ΛN(x), which is (x + E2N,N)-measurable. In particular, by a union
bound and monotonicity,

Φ12N ;β(0↔N Λc
6N) ≤ CdN

dΦ2N(0↔ Λc
N)

2.

Lemma 4.4 then implies the existence of c = c(β) > 0 and C = C(β) ≥ 0 such that

∀N ≥ 1, fN(β) ≤ Ce−cNν

with ν = log 2
log 6

. □

The final step is to enhance the stretch exponential decay to exponential. This is
the content of the last claim.

Claim 3. Let β < β′. Then, the sequence

bN = ΦN ;β(0↔ Λc
N)

satisfies the hypotheses of Lemma 4.5.

Proof. The second condition of Lemma 4.5 with ϵ = log(2)
2 log(6)

follows from Claim 2. Let
us now turn to the first condition. Partitioning on whether an edge with length at
least N/3 is open or not, one obtains, for any N large enough,

ΦN ;β(0↔ Λc
N) ≤ e−c1N + ΦN ;β(0↔N/3 Λ

c
N).

Now, the event {0↔N/3 Λ
c
N} entails the existence of x, y, z ∈ ΛN (see Fig. 5.1) with

• N/3 ≤ ∥y∥∞ ≤ ∥x∥∞ ≤ 2N/3, ∥z∥∞ > ∥x∥∞,
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0

x

y
z

ΛN

Figure 4. The construction of a triplet x, y, z used in the proof of Claim 3.

• 0
EΛ∥x∥∞←−−−→N/3 x,

• ωyz = 1,

• z
EN,∞\E∥x∥∞,∞←−−−−−−−−→ Λc

N .
To see this, let γ = (γ1, . . . , γm) be a self-avoiding path of open edges in EN,N/3 with

γ1 = 0 and γm ∈ Λc
N . Let t1 be the first time γ exits ΛN/3. Set x = γt1 ∈ Λ2N/3 \ΛN/3.

x connected to 0 using only edges in EΛ∥x∥∞
, since {γ1, . . . , γt1} ⊂ Λ∥x∥∞ . Let now t2

be the last time γ exits Λ∥x∥∞ . This implies, in particular, that {γt2 , . . . , γm} ⊂ Λc
∥x∥∞

and γt2−1 ∈ Λ∥x∥∞ . We can then set y = γt2−1 and z = γt2 .
Now, for such a triplet x, y, z,

ΦN ;β

(
0

EΛ∥x∥∞←−−−→N/3 x, ωyz = 1, z
EN,∞\(E∥x∥∞,∞∪{{y,z}})
←−−−−−−−−−−−−−−→ Λc

N

)
≤ pyzΦN ;β

(
0

EΛ∥x∥∞←−−−→N/3 x
∣∣ z EN,∞\(E∥x∥∞,∞∪{{y,z}})
←−−−−−−−−−−−−−−→ Λc

N

)
ΦN ;β

(
z

EN,∞\{y,z}
←−−−−−→ Λc

N

)
≤ pyz(pyz + q(1− pyz))

pyz
Φ∥x∥∞;β

(
0

EΛ∥x∥∞←−−−→ x
)
ΦN ;β

(
y ↔ Λc

N

)
≤ cΦ∥x∥∞;β

(
0↔ Λc

∥x∥∞

)
ΦN−∥y∥∞;β

(
0↔ Λc

N−∥y∥∞

)
,

where pxy = 1 − e−βJxy , we opened {y, z} in the third line and we forced a step from
x to the outside of Λ∥x∥∞ by finite energy (manifested by the presence of the constant
c <∞ depending on q, β and J). Now, by a union bound and monotonicity,

ΦN ;β(0↔N/3Λ
c
N)

≤
2N/3∑
k=N/3

k∑
k′=N/3

∑
∥x∥∞=k

∑
∥y∥∞=k′

CNdcqΦk;β

(
0↔ Λc

k

)
ΦN−k′;β

(
0↔ Λc

N−k′

)
≤ C ′N3d−1

2N/3∑
k=N/3

Φk;β

(
0↔ Λc

k

)
ΦN−k;β

(
0↔ Λc

N−k

)
.

Plugging this into our first bound on bN , we conclude that, for any N large enough,

bN ≤ e−c1N +N3d

2N/3∑
k=N/3

bkbN−k,
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which is the first condition of Lemma 4.5. □

Application of Lemma 4.5 concludes the proof. □

Proof of Lemma 4.4. Consider the sequence ãN = max{aN , e−c1N/2}. The second con-
dition implies the existence of C3 ≥ 1 and N0 ≥ 0 such that, for any N sufficiently
large

ãmN ≤ C1N
αã2N + C2e

−c1N ≤ (C3N)αã2N .

Define bN = − log ãN . It is now sufficient to prove that bN ≥ cN ν for some c > 0 and
all N large enough. The inequality above becomes

bmN ≥ −α log(C3N) + 2bN .

In particular, for k ≥ 1 and N sufficiently large

bmkN ≥ 2kbN −
α

2

k∑
i=1

2i log
(
C3Nm

k−i
)

= 2k
(
bN −

α

2
log(C3N)

k∑
i=1

2i−k − α

2
logm

k−1∑
i=1

2i−k(k − i)
)

≥ 2k
(
bN −

α

2
log(C3N)

∞∑
i=0

2−i − α

4
logm

∞∑
i=0

2−i(i+ 1)
)

= 2k
(
bN − α log(C3N)− α logm

)
.

where the first inequality follows from an easy induction. By our third assumption,
bNn ≥ (logNn)

1+ϵ for any n ≥ 1. Let then N0 be such that bN0 ≥ α log(C3N0m) + 1,
so that

∀k ≥ 1, bmkN0
≥ 2k.

By our first assumption, bN is non-decreasing. Let ν = log 2
logm

. Set c = (mN0)
−ν . For

any N ≥ N0, one can find k ≥ 1 such that mk−1N0 ≤ N < mkN0. Hence,

bN ≥ bmk−1N0
≥ 2k−1 =

1

(mN0)ν
(mkN0)

ν ≥ cN ν . □

Proof of Lemma 4.5. From the first condition, we obtain

aN ≤ e−c1N +Nα+1 max
k∈{⌈N/3⌉,...,⌈2N/3⌉}

akaN−k,

for all N large enough. By our second condition, there exists N0 ≥ 2 such that
• the previous inequality holds for N ≥ N0,
• maxN0≤k≤3N0(16k)

α+1ak ≤ 1
2
e−3,

• 2(16N)α+1e−c1N ≤ 1
2
e−N/N0 for N ≥ N0.

We now claim that 2(16N)α+1aN ≤ e−N/N0 for any N ≥ N0. We proceed by induction
overN . The casesN ∈ {N0, . . . , 3N0} follow by the second bullet point above. Suppose
now that the claim holds up to N ≥ 3N0. Let us prove that it also holds for N + 1.

2(16(N + 1))α+1aN+1 ≤
1

2
e−(N+1)/N0 + 2(16(N + 1))α+1(N + 1)α+1max

k
akaN+1−k

≤ 1

2
e−(N+1)/N0 +

1

2
max

k
2(16k)α+1ak2(16(N + 1− k))α+1aN+1−k

≤ 1

2
e−(N+1)/N0 +

1

2
max

k
e−k/N0e−(N+1−k)/N0 = e−(N+1)/N0 ,
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where we used the induction hypothesis in the last line and the maxima are over
⌈(N + 1)/3⌉ ≤ k ≤ ⌈2(N + 1)/3⌉; in particular, for these choices of k, N+1

k
≤ 4 and

N+1
N+1−k

≤ 4. □

4.5. Ratio mixing: Proof of Corollary 3.2. Let us write Φ = Φβ. We first prove
the claim for finite F, F ′. It is sufficient to show that, for any η ∈ {0, 1}F and η′ ∈
{0, 1}F ′ ,

(1− ϵ)−1 ≥ Φ(ωF = η)

Φ(ωF = η |ωF ′ = η′)
≥ (1 + ϵ)−1

with
ϵ ≡ ϵ(F, F ′, C, c) =

∑
x∈VF ,y∈VF ′

Ce−c∥x−y∥.

Let us first prove the following result.

Lemma 4.7. Let β < βc. There exist C <∞ and c > 0 such that, for any F, F ′ finite
and η ∈ {0, 1}F ,

1− ϵ(F, F ′, C, c) ≤
Φ
(
ω|F = η

∣∣ ω|F ′ = 1
)

Φ
(
ω|F = η

∣∣ ω|F ′ = 0
) ≤ 1 + 2ϵ(F, F ′, C, c),

whenever ϵ ≤ 1/2. The same holds if one replace exactly one of {ω|F ′ = 0} or
{ω|F ′ = 1} by {ω|F ′ = η′} for any η′ ∈ {0, 1}F ′.

Proof. Let Ξ be a monotone coupling of Φ(· |ω|F ′ = 1) and Φ(· |ω|F ′ = 0) such that,
if (ω+, ω−) ∼ Ξ, ω+ ≥ ω−, one has that ω+ and ω− agree on the complement of the
cluster of VF ′ in ω+ (see the Appendix A in [27] for the proof of existence of such a
coupling). Then,

Ξ
(
ω|F = η

∣∣ ω|F ′ = 1
)
= Ξ(ω+

F = η)

= Ξ(ω+
F = η, VF ↔ω+ VF ′) + Ξ(ω+

F = η, VF ↔/ ω+ VF ′)

= Ξ(ω+
F = η, VF ↔ω+ VF ′) + Ξ(ω−

F = η, VF ↔/ ω+ VF ′)

≤ Φ
(
VF ↔ VF ′ , ω|F = η

∣∣ ω|F ′ = 1
)
+ Φ

(
ω|F = η

∣∣ ω|F ′ = 0
)
.

The uniform exponential decay of connectivities now implies that

Φ
(
VF ↔ VF ′ , ω|F = η

∣∣ ω|F ′ = 1
)
≤ Φ

(
ω|F = η

∣∣ ω|F ′ = 1
) ∑
x∈VF ,y∈VF ′

Ce−c∥x−y∥,

which yields the upper bound. The same procedure applies if one does the replacements
mentioned in the statement.

To obtain the lower bound, let us write F∗ = {e ∈ F : ηe = ∗}, ∗ ∈ {0, 1}. Then,
the ratio we want to lower bound can be expressed as

Φ
(
ω|F1 = 1

∣∣ ω|F ′ = 1
)
Φ
(
ω|F0 = 0 |ω|F1 = 1, ω|F ′ = 1

)
Φ
(
ω|F1 = 1

∣∣ ω|F ′ = 0
)
Φ
(
ω|F0 = 0

∣∣ ω|F1 = 1, ω|F ′ = 0
)

≥
Φ
(
ω|F0 = 0

∣∣ ω|F1 = 1, ω|F ′ = 1
)

Φ
(
ω|F0 = 0

∣∣ ω|F1 = 1, ω|F ′ = 0
) .

Now,

Φ
(
ω|F0 = 0

∣∣ ω|F1 = 1, ω|F ′ = 1
)
≥ Φ

(
ω|F0 = 0, VF ↔/ VF ′

∣∣ ω|F1 = 1, ω|F ′ = 1
)

≥ Φ
(
ω|F0 = 0

∣∣ ω|F1 = 1, ω|F ′ = 0
)(
1− ϵ(F, F ′)

)
,
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0

x0

x0 + y1

ns

x0 + y1 + x1

Figure 5. Depiction of a realization of the nice connection event NCx. No-
tice that all red edges are pivotal for the event {0↔ x}.

by monotonicity and the uniform exponential decay of connectivities. Again, the same
procedure applies if one does the replacements mentioned in the statement. □

To get Corollary 3.2 from there, let us write
Φ(ωF = η)

Φ(ωF = η |ωF ′ = η′)
=

∑
τ∈{0,1}F ′

Φ(ωF ′ = τ)
Φ(η | τ)
Φ(η | 0)

Φ(η | 0)
Φ(η | 1)

Φ(η | 1)
Φ(η | η′)

,

where we have written Φ(η | ∗) = Φ(ωF = η |ωF ′ = ∗), and use Lemma 4.7. To get the
case of finitely supported events A and B, we can sum over configurations in A and
B and apply the bound configuration-wise. To treat events in A ∈ FF and B ∈ FF ′

with F and F ′ infinite, we approximate the events A and B by events An and Bn

that are supported on finite sets Fn, F
′
n. ϵ(F, F ′, C, c) provides a uniform bound on

ϵ(Fn, F
′
n, C, c). So,

Φ(A ∩B)

Φ(A)Φ(B)
= lim

n→∞

Φ(An ∩Bn)

Φ(An)Φ(Bn)

{
≤ 1 + ϵ(F, F ′, C, c),

≥ 1− ϵ(F, F ′, C, c).

5. Asymptotics of connexion probabilities

In all this section we work with β < βc. So, there is a unique infinite volume measure
which is denoted Φβ.

Recall that we defined χ̃n(s) = χ̃n(s, β, q) by

χ̃n(s, β, q) =
β

q
eρ(ns)

∑
u,v∈Zd

Φβ(0↔ u)e−ρ(ns−u−v)Φβ(0↔ v).

The goal of this section is the proof of Theorems 3.4 and 3.5.

5.1. Technical preparations. We first state a few definitions/observations.

Pivotal edges. Introduce the set Pivx(ω) of edges pivotal in ω for the event {0↔ x}.

Nice connections. Let f : Rd → R+. Introduce the nice connection event:

NCx(f) = {0↔ x} ∩ {|C0| ≤ f(x)}∩
∩
{
{u, v} ⊂ C0 AND ρ(u− v) ≥ 3 log f(x) AND ωuv = 1 =⇒ {u, v} ∈ Pivx

}
. (15)

These restricted connections allow a finer control of the geometry of typical clusters.
The proof of the prefactor will be done by first reducing the analysis to this class of
events and then proving the result for them.
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Dual vector. Let s ∈ Sd−1. Let t be dual to s. Suppose that Gβ(t) < ∞. We claim
that

t · x ≤ νβ(x), (16)
for any x ∈ Rd. Indeed, suppose t · s′ > νβ(s

′) for some s′ ∈ Sd−1. Then, for any n
large enough, t · [ns′] ≥ (1 + ϵ)νβ([ns

′]) for some ϵ > 0, where [ns′] is the lattice point
closest to ns′. Thus,

Gβ(t) ≥
∑
n≥1

e−νβ([ns
′])+o(n)+t·[ns′] ≥

∑
n≥n0

eϵνβ([ns
′])/2 =∞.

We collect some intermediate results which will be at the core of the proof of The-
orem 3.4. We will again use the OSSS inequality, but closer to what is done in [20].
We will use the following inequality.

Lemma 5.1. Let A be an increasing event, N ≥ 1, λ > 0. Then,∑
e∈Ed

Φβ

(
1A1|C0|≥N ; ωe

)
≥ 1

2
Φβ

(
A, |C0| ≥ N

)( 1− e−λ

Φβ

(
1− e−λ|C0|/N

) − 1
)
.

Proof. The proof follows exactly the one in [20, Proposition 3.1], with the following
changes:

• use f = 1A1|C0|≥N instead of f = 1|C0|≥N ,
• Φβ

(
1− e−λ|C0|/N

)
= supv∈Zd Φβ

(
1− e−λ|Cv |/N

)
by translation invariance,

• use the inequality

Φβ

((
1− e−λ|C0|/N

)
1A1|C0|≥N

)
− Φβ

(
1− e−λ|C0|/N

)
Φβ

(
1A1|C0|≥N

)
≥ (1− e−λ)Φβ

(
1A1|C0|≥N

)
− Φβ

(
1− e−λ|C0|/N

)
Φβ

(
1A1|C0|≥N

)
. □

From this, we can deduce a bound on the volume of the connected component of 0
(which is the first step in comparing connections to nice connections).

Lemma 5.2. For any β < β′ < βc, there exist c = cβ,β′ > 0 and C = Cβ,β′ > 0 such
that, for any x ∈ Zd,

Φβ

(
0↔ x, |C0| ≥ N

)
≤ CΦβ′

(
0↔ x, |C0| ≥ N

)
e−cN , (17)

for any n ≥ 0, N ≥ 1. In particular, we have

Φβ

(
0↔ x, |C0| ≥ N

)
≤ Ce−νβ′ (x)−cN . (18)

Proof. First, observe that (18) follows from (17) by noting that Φβ′
(
0↔ x

)
≤ e−νβ′ (x)

(by sub-additivity). We will therefore focus on proving (17). For β < βc, we have ex-
ponential decay of connectivities in finite volume, uniformly over boundary conditions.
In particular, for any x and any N ≥ 1, Φβ

(
0↔ x, |C0| ≥ N

)
is differentiable in β on

the interval (0, βc). Moreover, it follows from Lemma 5.1 that, for any N ≥ 1, λ > 0,
d

dβ
Φβ

(
0↔ x, |C0| ≥ N

)
=

∑
e∈Ed

Je
1− e−βJe

Φβ

(
0↔ x, |C0| ≥ N ; ωe

)
≥ 1

2β
Φβ

(
0↔ x, |C0| ≥ N

)(N(1− e−λ)

λΦβ

(
|C0|

) − 1
)
,

where we used
Φβ

(
1− e−λ|C0|/N

)
≤ λ

N
Φβ(|C0|).
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By taking the limit λ ↓ 0, we deduce that, for any 0 < β < βc, x ∈ Zd, and N ≥ 1,
d

dβ
log Φβ

(
0↔ x, |C0| ≥ N

)
≥ 1

2β

( N

Φβ

(
|C0|

) − 1
)
.

Integrating this differential inequality yields: for β < β′ < βc,

Φβ

(
0↔ x, |C0| ≥ N

)
≤ Φβ′

(
0↔ x, |C0| ≥ N

)
Cβ,β′e−cβ,β′N , (19)

where cβ,β′ = β′−β
2β′Φβ′ (|C0|) and Cβ,β′ = e(β

′−β)/2β′ (note that Φβ′(|C0|) <∞). □

Next, we need to control the pivotality of “long” edges. This is the content of the
next Lemma.

Lemma 5.3. Assume that J is exponentially-decaying. Let β < βc. Then, there exist
C <∞, c > 0 such that, for any x ∈ Zd and N ≥ 1,

Φβ

(
∃{u, v} /∈ Pivx, {u, v} ⊂ C0, ωuv = 1, ρ(v − u) ≥ 3 logN | 0↔ x, |C0| ≤ N

)
≤ CN−1/2. (20)

Proof. Let β < βc. Let N ≥ 1. We want to control the number of “long” edges. Let
us introduce the random variable

LK,x = #
{
{i, j} ⊂ C0 : ρ(i− j) ≥ K, {i, j} /∈ Pivx, ωij = 1

}
.

Then, for any K large enough,

Φβ

(
LK,x > 0

∣∣ 0↔ x, |C0| ≤ N
)

≤
∑
u∈Zd

∑
v: ρ(u−v)≥K

Φβ

(
u↔ 0, {u, v} /∈ Pivx, ωuv = 1

∣∣ 0↔ x, |C0| ≤ N
)

≤
∑
u∈Zd

∑
v: ρ(u−v)≥K

(1− e−βJuv)Φβ

(
u↔ 0

∣∣ 0↔ x, |C0| ≤ N
)

≤
( ∑
v: ρ(v)≥K

βJ0v

)
Φβ

(
|C0|

∣∣ 0↔ x, |C0| ≤ N
)
≤ βCe−K/2N,

where we used the definition of J . Taking K = KN = 3 logN , one obtains the
claim, □

We then have a BK type property for connections using pivotal edges.

Lemma 5.4. Let ei = (xi, yi), i = 1, . . . , k, be oriented edges. Let z ∈ Zd. Then, for
any β ≥ 0 and q ≥ 1,

Φβ

(
0↔ z,D(e1, · · · , ek)

)
≤ Φβ(0↔ x1)

k∏
i=1

eβJxiyi − 1

q
Φβ(yi ↔ xi+1),

where xk+1 = z, and D(e1, · · · , ek) is the event that any self avoiding path of open
edges from 0 to z passes through e1, · · · , ek in that order (as a sequence of oriented
edges, in particular {xi, yi} ∈ Pivz).

Proof. Denote xk+1 = z. Let A be the event that no two elements of {x1, . . . , xk, xk+1}
are connected together. Then,

Φβ

(
0↔ z,D(e1, · · · , ek)

)
≤ Φβ(0↔ x1, A, yi ↔ xi+1, i = 1, . . . , k)

k∏
i=1

eβJxiyi − 1

q
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where we used the definition of the Random-Cluster measure to close the eis and
inclusion of events. Monotonicity then implies

Φβ(0↔ x1, A, yi ↔ xi+1, i = 1, . . . , k) ≤ Φβ(0↔ x1)
k∏

i=1

Φβ(yi ↔ xi+1). □

The final preliminary result will give a splitting of the cluster contributing to NCx

(which is the reason why we are interested in them in the first place).

Lemma 5.5. Let f̃ : R+ → R+. Define f : Zd → R+ by f(x) = f̃(ρ(x)). Suppose that
for ρ(x) large enough one has ρ(x)

f(x)
≥ 3 log f(x). Then, for any x ∈ Zd with ∥x∥ large

enough

Φβ(NCx(f)) ≤
f(x)∑
k=1

∗∑
x0,...,xk

∗∑
y1,...,yk

k∏
i=0

Φβ(0↔ xi)
k∏

j=1

eβJyj − 1

q
(21)

where the ∗ sums are over x0, . . . , xk, and y1, . . . , yk satisfying

•
∑k

i=0 xi +
∑k

j=1 yj = x,
• ρ(yj) ≥ 3 log f(x) for j = 1, . . . , k,
•
∑k

i=0 ρ(xi) ≤ f(x)3 log f(x).

Proof. The event {0 ↔ x} implies the existence of a self-avoiding path γ : 0 → x
formed of open edges. Note that any edge in Pivx belongs to that path. Fix some
arbitrary way of choosing a path from a configuration. We split γ(ω) as follows:

τ0 = −1, τi = min{r > τi : ρ(γr+1 − γr) ≥ 3 log f(x)}.

Let k be the largest index for which τk is defined and set τk+1 = |γ|, τl =∞ for l > k+1.
We then set xi = γτi+1

− γτi+1 for i = 0, . . . , k, and yj = γτj+1 − γτj for j = 1, . . . , k.
Under NCx(f), {γτi , γτi+1} ∈ Pivx. Moreover, the condition ρ(x) ≥ f(x)3 log f(x)
implies that k ≥ 1. So, summing over the possibilities for k, x0, . . . , xk and y1, . . . , yk
and using Lemma 5.4,

Φβ(NCx(f)) ≤
f(x)∑
k=1

∑
x0,...,xk∑k

i=0 ρ(xi)≤f(x)3 log f(x)

∑
y1,...,yk

ρ(yj)≥3 log f(x)

1x̄+ȳ=x

k∏
i=0

Φβ(0↔ xi)
k∏

j=1

eβJyj − 1

q

where we used translation invariance and x̄ =
∑k

i=0 xi, ȳ =
∑k

j=1 yj. The constraint
on the xis comes from the fact that |γ| ≤ |C0| ≤ f(x), and each edge in γ which is not
one of the yjs is of ρ-length at most 3 log f(x). □

5.2. Prefactor: Lower bound. The first Lemma (which we shall use again in the
upper bound) is

Lemma 5.6. Let s ∈ Sd−1. Let β < βsat(s) and suppose that there exists t dual to s
with Gβ(t) <∞. Then, the sequence χ̃n(s, β, q) converges to χ̃(s), which is given by

χ̃(s, β, q) =
β

q

∑
u,v∈Zd

et·uΦβ(0↔ u)e−gt,s(u+v)et·vΦβ(0↔ v), (22)

where gt,s(x) = limn→∞ st(ns− x), and t is any vector dual to s with Gβ(t) <∞.
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Proof. Let s, t, β be as in the statement. The first observation is that st(ns + y) is
non-increasing in n for any y ∈ Rd. Indeed, for any m, k ≥ 0 and y ∈ Rd,

st((m+ k)s+ y) = ρ((m+ k)s+ y)− t · ((m+ k)s+ y) ≤
≤ ρ(ks+ y) + ρ(ms)− t · (ks+ y)−mt · s

= ρ(ks+ y)− t · (ks+ y) = st(ks+ y),

where we used the triangle inequality in the second line, and t · s = ρ(s) (as t is
dual to s) in the third line. In particular, the surcharge being non-negative, gt,s(y) =
limn→∞ st(ns− y) is well defined.

We then prove that the sequence (χ̃n(s)) converges, and identify the limit, χ̃(s).
Observe that χ̃n(s) can be rewritten as follows:

q

β
χ̃n(s) =

∑
u,v∈Zd

et·uΦβ(0↔ u)e−st(ns−u−v)et·vΦβ(0↔ v).

Then, one has that the function fn(u, v) = et·uΦβ(0 ↔ u)e−st(ns−u−v)et·vΦβ(0 ↔ v)
is non-decreasing in n. We can therefore use the Monotone Convergence Theorem to
obtain

lim
n→∞

q

β
χ̃n(s) =

∑
u,v∈Zd

lim
n→∞

fn(u, v) =
∑

u,v∈Zd

et·uΦβ(0↔ u)e−gt,s(u+v)et·vΦβ(0↔ v),

(23)
which proves the claim. □

Remark 5.1. (1) When the norm ρ is a C1 function in a neighbourhood of s , one
has the simpler expression

χ̃(s) =
β

q
Gβ(t)

2.

Indeed, in that case, st(ns − y) = n
(
ρ(s − 1

n
y) − ρ(s)

)
− t · y = o(1), since

ρ(s − 1
n
y) − ρ(s) = ∇ρ(s) · 1

n
y + o( 1

n
) = 1

n
t · y + o( 1

n
). This implies that

gt,s(y) = 0 for all y ∈ Zd.
(2) If the norm ρ is not locally C1, then gt,s(x) ̸= 0 in general: for instance, if

ρ := |·|1 and t = s = e1, then for x ∈ Zd with x1 = 0,

st(ns− x) = |ne1 − x|1 − t · (ns− x) = |x|1.

(3) The previous remarks show that in general, the expression for χ̃(s) depends on
the local geometry of U .

We can then turn to the lower bound.

Lemma 5.7. Let s ∈ Sd−1. Suppose that ψ(x) ∝ ρ(x)−α with α > αsat(s), or ψ(x) ∝
e−c̃ρ(x)η with c̃ > 0, η ∈ (0, 1). Let β < βsat(s) and suppose that there exists t dual to s
with Gβ(t) <∞. Then,

Φβ(0↔ ns) ≥ χ̃(s)Jns(1 + on(1)).

Proof. Take Rn satisfying
• Rn is monotone increasing and limn→∞Rn =∞.
• ψ(ns+ x) = ψ(ns)(1 + on(1)) for any x ∈ ΛRn .
• R2d

n Jns = on(1).
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0

ns

u v

∆2

∆1

Figure 6. Setting in the proof of Lemma 5.7.

Define ∆1 = ΛRn(0) and ∆2 = ΛRn(ns). We proceed in this way to make the proof
easy to adapt to other coupling constants. We could use the explicit choice Rn = nδ

with δ ∈ (0, 1) chosen in the following way: if ψ has a polynomial form, then fix any
δ ∈ (0, 1). If ψ has a stretched exponential form, fix δ = (1− η)/2.

Let N denote the number of open edges from ∆1 to ∆2. Monotonicity and inclusion
of events imply the following easy bound:

Φ0
∆,β(0↔ ns,N = 1) ≤ Φβ(0↔ ns).

Now, on the event {N = 1}, there is a unique open edge {u, v} from ∆1 to ∆2. By
closing it (see Fig. 6, we obtain

1

q

∑
u∈∆1,v∈∆2

Φ0
∆,β(0↔ u, v ↔ ns,N = 0)(eβJu,v − 1) = Φ0

∆,β(0↔ ns,N = 1).

Now, conditionally on {N = 0}, the measure factorizes as follows:

Φ0
∆,β(0↔ u, v ↔ ns |N = 0) = Φ0

∆1,β
(0↔ u)Φ0

∆1,β
(0↔ v).

It is an easy consequence of the finite-energy property and of the choice of Rn that

Φ0
∆,β(N ≥ 1) ≤

∑
u∈∆1

∑
v∈∆2

βJuv
n→∞→ 0.

Combining all these inequalities, we get

et·nsΦβ(0↔ ns) ≥
β

q
ψ(ns)et·ns

∑
u∈∆1,v∈∆1

Φ0
∆1,β

(0↔ u)e−ρ(ns−u−v)Φ0
∆1,β

(0↔ v)(1 + on(1)), (24)
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where we used the definition of Rn as well as the fact eβJu,v − 1 = βJu,v(1 + on(1)) for
any u ∈ ∆1 and v ∈ ∆2. Now, by the monotone convergence theorem,

lim
n→∞

et·ns
∑

u,v∈∆1

Φ0
∆1,β

(0↔ u)e−ρ(ns−u−v)Φ0
∆1,β

(0↔ v)

= lim
n→∞

∑
u,v∈Zd

1u,v∈∆1e
t·uΦ0

∆1,β
(0↔ u)e−st(ns−u−v)et·vΦ0

∆1,β
(0↔ v)

=
∑

u,v∈Zd

et·uΦβ(0↔ u)e−gs,t(u+v)et·vΦβ(0↔ v) = χ̃(s),

which concludes the proof of the lower bound. □

5.3. Prefactor: Upper bound. The procedure here will be a combination of “good
enough bound implies the result” (Lemma 5.8) and “bound enhancement” (Lemma 5.9).

Lemma 5.8. Suppose ψ(x) ∝ ρ(x)−α with α > 0 or ψ(x) ∝ e−c̃ρ(x)η with c̃ > 0, η ∈
(0, 1). Let s ∈ Sd−1. Let β′ < βsat(s). Suppose that there exists t dual to s with
Gβ′(t) <∞. Suppose that, for any ϵ > 0, there exist C, c such that, for all n ≥ 1,

eρ(ns)Φβ′(0↔ ns) ≤ Cψ(ns)ecρ(ns)
ϵ

. (25)

Then, for any β < β′,

eρ(ns)Φβ(0↔ ns) ≤ χ̃(s, β, q)ψ(ns)(1 + on(1)).

Proof. Choose ϵ in the following way: if ψ decays polynomially, take ϵ < 1. If ψ(x) ∝
e−c̃ρ(x)η , take ϵ < 1 − η. Let β < β′. Let f(x) = κρ(x)ϵ. Then, using (17), one has
that, for any κ > 0 and x ∈ Zd,

Φβ

(
0↔ x, |C0| ≥ f(x)

)
≤ CΦβ′

(
0↔ x

)
e−cκρ(x)ϵ ,

so, using (25), et·nsΦβ

(
0 ↔ ns, |C0| ≥ f(ns)

)
≤ ψ(ns)on(1) for κ large enough. Fix

such a value of κ. By (20),

Φβ

(
0↔ x, |C0| ≤ f(x)

)
≤ Φβ

(
NCx(f)

)
+ oρ(x)(1)Φβ

(
0↔ x, |C0| ≤ f(x)

)
.

It is therefore sufficient to upper bound Φβ

(
NCns(f)

)
. Using Lemma 5.5, one obtains

Φβ(NCns(f)) ≤
f(ns)∑
k=1

∑
x0,...,xk∑k

i=0 ρ(xi)≤f(ns)Kn

∑
y1,...,yk

ρ(yj)≥Kn

1x̄+ȳ=ns

k∏
i=0

Φβ(0↔ xi)
k∏

j=1

eβJyj − 1

q
,

where x̄ =
∑k

i=0 xi, ȳ =
∑k

j=1 yj, and Kn = 3 log(κρ(ns)ϵ) diverges with n. We then
multiply both sides by eρ(ns) = et·ns =

∏k
i=0 e

t·xi
∏k

j=1 e
t·yj , and transpose the yjs so

that ρ(yk) ≥ ρ(yj) to obtain that eρ(ns)Φβ(NCns(f))(1 + on(1)) is upper bounded by

f(ns)∑
k=1

2k−1k
∑

x0,...,xk∑k
i=0 ρ(xi)≤f(ns)Kn

∑
y1,...,yk

ρ(yj)≥Kn

ρ(yk)≥ρ(yj)

1x̄+ȳ=ns

k∏
i=0

et·xiΦβ(0↔ xi)
k∏

j=1

et·yj
βJyj
q
, (26)

where we used that for ρ(y) ≥ Kn, eβJy − 1 ≤ (1 + on(1))βJy, and (1 + on(1))
k ≤

(1 + on(1))2
k−1 for n large enough.
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We will now use the form of ψ through the following properties: there exist a, b such
that for any u, v1, . . . , vk with ρ(u) ≥ ρ(vi),

ψ(u)
k∏

i=1

ψ(vi) ≤ bkψ(u+ v)
k∏

i=1

ψ(vi)
a,

Ja(t) =
∑
y∈Zd

e−st(y)ψ(y)a <∞, ψ(n+KnO(n
ϵ)) ≤ ψ(n)(1 + on(1)),

(27)

where v =
∑k

i=1 vi. Let us first see that these hold.
In the stretch exponential case (ψ(x) = cc̃,ηe

−c̃ρ(x)η), one can take a = 2 − 2η, and
b = (cc̃,η)

2η−1. The first follows from triangular inequality and repeated use of

ce−c̃(nη+mη−(n+m)η) = ce−c̃mη(λη+1−(λ+1)η) = ce−c̃mη(2−2η) = c2
η−1ψ(m)2−2η

for n ≥ m, where λ = n/m ≥ 1, c = cc̃,η, as (λη +1− (λ+1)η) is increasing in λ. The
finiteness of Ja(t) follows from the super-polynomial decay of ψ(y)a. The last point
follows from

e−c̃(n+O(Knnϵ))η = e−c̃nη(1+o(n−η))η = e−c̃nη(1+o(n−η)) = e−c̃nη

eon(1) = e−c̃nη

(1 + on(1)),

by choice of ϵ and logarithmic nature of Kn.
For the polynomial case (ψ(x) = cαρ(x)

−α), one can take a = 1, b = 2α. The first
property follows from repeated use of

(n+m)α

nαmα
≤ 2αm−α,

for n ≥ m > 0, and from triangular inequality. The bound Ja(t) = J(t) < ∞
follows from finiteness of Gβ(t). Finally, cα(n + O(nϵ))−α = cαn

−α(1 + on(1))
−α =

cαn
−α(1 + on(1)). We can now turn to the study of (26). Using (27), and that yk is

determined by x̄, y1, . . . , yk−1 (due to 1x̄+ȳ=ns), one obtains the upper bound

β

q

f(ns)∑
k=1

k
∑

x0,...,xk
ρ(x̄)≤f(ns)Kn

∑
y1,...,yk−1

ρ(yj)≥Kn

ψ(ns− x̄)e−st(ns−x̄−
∑k−1

j=1 yj)×

×
k∏

i=0

et·xiΦβ(0↔ xi)
k−1∏
j=1

e−st(yj)
2βb

q
ψ(yj)

a. (28)

We can then use ρ(x̄) ≤ f(ns)Kn ≤ Cnϵ log(n) for some C uniform over x̄ and (27)
to obtain that, uniformly over x̄, ψ(ns − x̄) ≤ ψ(ns)(1 + on(1)). We can then treat
separately the k = 1 term and the k ≥ 2 terms. Start with the latter. We have the
upper bound (for n large enough)

2β

q
ψ(ns)

f(ns)∑
k=2

kGβ(t)
k+1

( ∑
y:ρ(y)≥Kn

e−st(y)
2βb

q
ψ(y)a

)k−1

.

As Ja(t) < ∞, limn→∞
∑

y:ρ(y)≥Kn
e−st(y)ψ(y)a = 0, in particular, the whole sum over

k ≥ 2 is on(1) which implies that the k ≥ 2 terms are negligible. We now turn to the
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k = 1 term. It is upper bounded by

ψ(ns)(1 + on(1))
β

q
et·ns

∑
u,v

Φβ(0↔ u)e−ρ(ns−u−v)Φβ(0↔ v) =

= ψ(ns)(1 + on(1))χ̃n(s, β, q),

where we used the definition of st. Convergence of χ̃n(s) implies the Lemma. □

Lemma 5.9. Suppose ψ(x) ∝ e−c̃ρ(x)η with c̃ > 0, η ∈ (0, 1). Let s ∈ Sd−1. Let
β′ < βsat(s). Suppose that there exists t dual to s with Gβ′(t) <∞. Suppose that there
exist C1, c1 > 0, ϵ ∈ (0, 1) such that

eρ(ns)Φβ′(0↔ ns) ≤ C1ψ(ns)e
c1ρ(ns)ϵ . (29)

Then, for any β < β′, there exist C2, c2 > 0 such that

eρ(ns)Φβ(0↔ ns) ≤ C2ψ(ns)e
c2ρ(ns)ϵ−1+η logn.

Proof. Let s, β, β′, t be as in the statement of the lemma. Let f(x) = κρ(x)ϵ. Us-
ing (17), one has that for any κ > 0 and x ∈ Zd,

Φβ

(
0↔ x, |C0| ≥ f(x)

)
≤ CΦβ′

(
0↔ x

)
e−cκρ(x)ϵ ,

so, using our assumption, et·nsΦβ

(
0 ↔ ns, |C0| ≥ f(ns)

)
≤ ψ(ns)on(1) for κ large

enough. Fix such a value of κ. Proceeding as in the proof of Lemma 5.8, one reduces
to upper bound Φβ(NCns), which is upper bounded by (via Lemma 5.5 and the same
argument as in the proof of Lemma 5.8)

f(ns)∑
k=1

Ckk
∑

x0,...,xk∑k
i=0 ρ(xi)≤f(ns)Kn

∑
y1,...,yk

ρ(yj)≥Kn

ρ(yk)≥ρ(yj)

1x̄+ȳ=ns

k∏
i=0

et·xiΦβ(0↔ xi)
k∏

j=1

e−st(yj)ψ(yj).

Still following the same procedure as in Lemma 5.8, we use the property of ψ(x) ∝
e−c̃ρ(x)η that we used in Lemma 5.8 (see (27)) with a = 2− 2η, and the estimate

e−c̃ρ(ns−x̄)η ≤ e−c̃(ρ(ns)−Cnϵ logn)η = e−c̃ρ(ns)η(1−O(nϵ−1 logn)) = e−c̃ρ(ns)ηeO(nϵ−1+η logn),
(30)

to obtain the upper bound

C ′ψ(ns)ecn
ϵ−1+η logn

f(ns)∑
k=1

Ckk
∑

x0,...,xk

∑
y1,...,yk−1

ρ(yj)≥Kn

k∏
i=0

et·xiΦβ(0↔ xi)
k−1∏
j=1

e−st(yj)ψ(yj)
a =

= C ′ψ(ns)ecn
ϵ−1+η logn

f(ns)∑
k=1

CkkGβ(t)
k+1

( ∑
y:ρ(y)≥Kn

e−st(y)ψ(y)a
)k−1

.

As limn→∞
∑

y:ρ(y)≥Kn
e−st(y)ψ(y)a = 0, the sum over k is bounded uniformly over n.

This concludes the proof. □

We can now prove the upper bound of Theorem 3.4.

Proof of Theorem 3.4: upper bound. As β is supposed to be strictly smaller than β̂sat(s),
all hypotheses of Lemma 5.8 except (25) are obviously fulfilled. When ψ(x) ∝ ρ(x)−α,
(25) is also obviously satisfied. For ψ(x) ∝ e−c̃ρ(x)η , repeated applications of Lemma 5.9
yield the validity of (25). □
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5.4. Good dual vector. We turn to the proof of Theorem 3.5. The goal is to provide
some control over the generating function Gβ(t) for suitable ts when β < βsat(s), and
ψ decays fast enough. Namely, we prove

Theorem 5.10. Let s ∈ Sd−1. Suppose ψ(x) ≤ Cρ(x)−2d−ϵ with ϵ > 0. Then, for any
β < βsat(s), there exists t dual to s with Gβ(t) <∞.

Proof. Let β < β′ < βsat(s). We first construct t with the desired properties. As
νβ′ ≤ ρ (as norms), U ⊂ Uβ′ where Uβ′ is the unit ball for νβ′ . Then, as νβ′(s) = ρ(s),
s

ρ(s)
∈ (∂U ∩ ∂Uβ′). Let then H be a supporting hyperplane of Uβ′ passing through

s
ρ(s)

. It is also a supporting hyperplane of U . Let t′ be orthogonal to H and such that
t′ · s > 0. Set t = ρ(s)

t′·s t
′. This is a dual vector of s by construction and it satisfies

t · x ≤ νβ′(x) for any x ∈ Rd.
By (18) and the previous discussion,

Φβ

(
0↔ x, |C0| ≥ κ log ρ(x)

)
≤ Ce−t·xe−cκ log ρ(x).

In particular, for κ large enough,∑
x∈Zd

et·xΦβ

(
0↔ x, |C0| ≥ κ log ρ(x)

)
<∞.

Denote f(x) = κ log ρ(x). Then, by (20), for ∥x∥ large enough,

Φβ

(
0↔ x, |C0| ≤ f(x)

)
≤ 2Φβ

(
NCx(f)

)
.

We are thus left with showing the summability of et·xΦβ

(
NCx(f)

)
. Let Lx = (log ρ(x))δ,

δ = (d+1)/ϵ. Note that under NCx(f), any open edge {u, v} ⊂ C0 with ρ(v−u) ≥ Lx

is in Pivx, and C0 contains at least one such edge (for ρ(x) large enough). Proceeding
exactly as in the proof of Lemma 5.5 (with Lx replacing 3 log(ρ(x)) in the definition
of τi), one obtains that for ρ(x) large enough

Φβ(NCx(f)) ≤
f(x)∑
k=1

∑
x0,...,xk∑k

i=0 ρ(xi)≤f(x)Lx

∑
y1,...,yk
ρ(yj)≥Lx

1x̄+ȳ=x

k∏
i=0

Φβ(0↔ xi)
k∏

j=1

2βJyj
q

,

where x̄ =
∑k

i=0 xi, ȳ =
∑k

j=1 yj, and we used eβJy − 1 ≤ 2βJy for ρ(y) large enough.
Multiplying both sides by et·x, using ψ(x) ≤ Cρ(x)−2d−ϵ and summing over x with
ρ(x) large enough (symbolized by the ∗ sum), one obtains

∗∑
x

et·xΦβ(NCx(f)) ≤

≤ C
∗∑
x

f(x)∑
k=1

∑
x0,...,xk∑k

i=0 ρ(xi)≤f(x)Lx

∑
y1,...,yk
ρ(yj)≥Lx

1x̄+ȳ=x

k∏
i=0

et·xiΦβ(0↔ xi)
k∏

j=1

e−st(yj)cρ(yj)
−2d−ϵ.

Transposing the yjs so that ρ(yk) ≥ ρ(yj), and using the properties (27) of ρ(x)−2d−ϵ,
the last display is upper bounded by

C
∗∑
x

ρ(x)−2d−ϵ

f(x)∑
k=1

kck
∑

x0,...,xk
ρ(xi)≤f(x)Lx

∑
y1,...,yk−1

ρ(yj)≥Lx

k∏
i=0

et·xiΦβ(0↔ xi)
k−1∏
j=1

ρ(yj)
−2d−ϵ.
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Using then et·xiΦβ(0 ↔ xi) ≤ 1, and the definitions of Lx, f(x), one has the upper
bound

C

∗∑
x

ρ(x)−2d−ϵ(log ρ(x))2d(1+δ)
∑
k≥1

k
(
c(log ρ(x))d(1+δ)(log(ρ(x))δ(d−2d−ϵ)

)k−1

.

where c, C now depend on ϵ, κ, d, β, q. Using finally δ = (d+1)/ϵ, one has that the sum
over k is summable uniformly over x with ρ(x) large. Moreover, ρ(x)−2d−ϵ(log ρ(x))2d(1+δ)

is also summable, which implies the claim.

6. The case of subexponentially decaying coupling constants

In this section, we explain how the proofs of the last section can be used to prove
Theorem 3.7. We only highlight the differences. Firstly, it was proved in [20] that for
β < βc

χ(β) :=
∑
x∈Zd

Φβ(0↔ x) <∞.

Morally, the modifications go as follows: set t = 0 and νβ = 0 in the proofs. Note that
in that case, Gβ(t) = χ(β), and J(t) = 1 (by our normalization choice).

To be more detailed, we present how to adapt the proofs claim by claim. We will
need

F (r) =
∑

x:∥x∥∞≥r

Jx.

Note that 1 ≥ F (r) > 0 (as
∑

x Jx = 1), F is strictly decreasing over Z+ (as Jx > 0
for x ̸= 0) and therefore invertible (as a function Z+ → Z+), and, by summability of
Jx, F (r) → 0 as r → ∞. We denote F−1 the extension to R+ of the inverse of F by
linear interpolation.

Remark 6.1. As it was the case in the previous section, the proof of Theorem 3.7 holds
under more general assumptions on the coupling constants. We refer the interested
reader to the Appendix.

6.1. Preparations. Lemma 5.4 is valid in this context without any modification. In
Lemma 5.1 as well as in the proof of Lemma 5.2, one can bypass differentiability
problems by using Dini derivatives (as in [20]). Lemma 5.3 has to be replaced by

Lemma 6.1. Let β < βc and g : R+ → R+ be decreasing to 0. Then, there exist
C <∞, c > 0 such that, for any x ∈ Zd and N ≥ 1,

Φβ

(
∃{u, v} /∈ Pivx, {u, v} ⊂ C0, ωuv = 1, ρ(v−u) ≥ CF−1(g(N)/N) | 0↔ x, |C0| ≤ N

)
≤ g(N). (31)

The proof is a straightforward adaptation of the one of Lemma 5.3. One also needs
to change the notion of “nice connections”: Introduce the nice connection event:

NCx(f) = {0↔ x} ∩ {|C0| ≤ f(x)}∩
∩
{
{u, v} ⊂ C0 AND ρ(u− v) ≥ Kx AND ωuv = 1 =⇒ {u, v} ∈ Pivx

}
, (32)

where Kx = Kx(f) = CF−1(1/f(x) log f(x)), with C given by Lemma 6.1 for g(N) =
1/ logN .

Remark 6.2. In the case of polynomially decaying interactions, F (r) ≤ crd−α and
Kx ≍ (f(x) log f(x))1/(α−d).
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Lemma 5.5 then becomes

Lemma 6.2. Let f̃ : R+ → R+. Define f : Zd → R+ by f(x) = f̃(ρ(x)). Suppose
that for ρ(x) large enough one has ρ(x)

f(x)
> Kx(f) = Kx. Then, for any x ∈ Zd with

∥x∥ large enough

Φβ(NCx(f)) ≤
f(x)∑
k=1

∗∑
x0,...,xk

∗∑
y1,...,yk

k∏
i=0

Φβ(0↔ xi)
k∏

j=1

eβJyj − 1

q
(33)

where the ∗ sums are over x0, . . . , xk, and y1, . . . , yk satisfying
•
∑k

i=0 xi +
∑k

j=1 yj = x,
• ρ(yj) ≥ Kx for j = 1, . . . , k,
•
∑k

i=0 ρ(xi) ≤ f(x)Kx.

6.2. Lower bound. The lower bound follows closely the one of Lemma 5.7 (and is
the same as the proof of the lower bound in [23] for the Ising model). The only place
where one has to be a bit careful is when choosing the size of the boxes ∆1,∆2.

6.3. Upper bound. We need to replace Lemmas 5.8 and 5.9. They are replaced by
(the assumptions Jx ∝ ρ(x)−α with α > d or Jx ∝ e−c̃ρ(x)η are implicit)

Lemma 6.3. Let β′ < βc. Suppose that, for any ϵ > 0, there exist C, c such that for
any x ∈ Zd

Φβ′(0↔ x) ≤ CJxe
cρ(x)ϵ . (34)

Then, for any β < β′,

Φβ(0↔ x) ≤ βχ(β)2

q
Jx(1 + o∥x∥(1)).

The main difference in the proof is that, in the polynomial case, ϵ > 0 has to be
chosen small enough to be able to use Lemma 6.2.

Lemma 6.4. Suppose Jx ∝ e−c̃ρ(x)η with c̃ > 0, η ∈ (0, 1). Let β′ < βc. Suppose that
there exist C1, c1 > 0, ϵ ∈ (0, 1) such that for any x ∈ Zd

Φβ′(0↔ x) ≤ C1Jxe
c1ρ(x)ϵ . (35)

Then, for any β < β′, there exist C2, c2 > 0 such that

Φβ(0↔ x) ≤ C2Jxe
c2ρ(x)ϵ−1+η log ρ(x).

Appendix A. Existence of a saturation transition

In this appendix, we prove Theorem 3.3. As mentioned after its claim, the “if” part
was proven in [6]. For reasons explained in [6], establishing the claim for the self-
avoiding walk automatically implies its validity for a general class of models, including
the Random-Cluster model. We start by briefly recalling the relevant definitions.

A Self-Avoiding Walk (SAW) is a sequence γ = (γ0, . . . , γn) ∈ (Zd)n+1 such that
i ̸= j =⇒ γi ̸= γj. n is the length of γ and is denoted by |γ| = n. For λ ∈ R+, we
associate to walks the weight

wλ(γ) =

|γ|∏
i=1

λJγi−γi−1
,
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where the constants (Jx)x∈Zd are those introduced in Section 2.2.1 and are assumed to
be exponentially-decaying.

The two-point function of the SAW is given by the partition function

Gλ(x, y) =
∑
γ:x→y

wλ(γ),

where the notation γ : x→ y means that γ0 = x and γ|γ| = y.

Remark A.1. As explained in Appendix A.4.2 of [6], the link with the Random-Cluster
model is obtained via the following lower bound on the two-point function of the latter
model in terms of the two-point function of the SAW:

Φ0
β(x↔ y) ≥ cβGλ(β)(x, y),

with λ(β) satisfying limβ→0 λ(β) = 0 (see [6] for an explicit expression).

The inverse correlation length is defined as follows: for s ∈ Sd−1,

νλ(s) = − lim
n→∞

1

n
logGλ(0, ns).

The limit exists and its extension by positive homogeneity of order one defines a norm
on Rd (see [6] for references and details). As for ρ, introduce the associated convex set
(Wulff shape)

Wλ = {t ∈ Rd : ∀x ∈ Rd, t · x ≤ νλ(x)}
which satisfies

νλ(x) = max
t∈Wλ

t · x. (36)

As for ρ, t ∈ ∂Wλ is said to be νλ-dual to s ∈ Sd−1 if s · t = νλ(s). The same argument
as the one following (16) shows that Wλ is the closure of the convergence domain of
the generating function

Gλ(h) =
∑
x∈Zd

eh·xGλ(0, x).

As before, we define the saturation point by

λsat(s) = inf{λ ≥ 0 : νλ(s) < ρ(s)}.

Using the reduction explained in [6], Theorem 3.3 is a consequence of the following
result.

Lemma A.1. Suppose J is exponentially-decaying. Let s ∈ Sd−1. Suppose that, for
all t ρ-dual to s, J(t) =∞. Then λsat(s) = 0.

Proof. Fix J and s as in the statement of the lemma. To prove the claim, it is sufficient
to show that

Ts = {t ∈ ∂W : t is ρ-dual to s}
is at positive distance from ∂Wλ for any λ > 0. Indeed, suppose this holds. Then there
exists ϵ > 0 and h νλ-dual to s such that (1 + ϵ)h ∈ (W \ ∂W ). Hence, using (36),

ρ(s) = sup
t∈W

t · s ≥ (1 + ϵ)h · s > νλ(s).

This in turn implies that λsat(s) < λ and the conclusion thus follows, since λ is
arbitrary.

Now, as Ts is compact (since the condition for t to be ρ-dual defines a closed subset
of the compact set W), it is sufficient to show that, for any t ∈ Ts, there exists ϵ > 0
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such that Gλ

(
(1− ϵ)t

)
=∞ since Wλ is the closure of the convergence domain of Gλ.

Fix t ∈ Ts. The first observation is that one can find δ > 0 arbitrarily small such that

Y = {x ∈ Zd : ρ(x)− t · x ≤ δ∥x∥} and YR = {x ∈ Y : ∥x∥ ≤ R}
satisfy the following two properties:

• there exists u ∈ Sd−1 such that Y \ {0} ⊂ {x : x · u > 0},
• limR→∞ JR(t) =∞, where JR(t) =

∑
x∈YR

Jxe
t·x.

The first property follows from the fact that ρ is a norm: when δ ↓ 0, Y tends to the
cone generated by the affine part of ∂U towards which s points (which can be reduced
to a point). The second is a direct consequence of our assumption that J(t) =∞ and
the bound ∑

x∈Zd\Y

ψ(x)e−(ρ(x)−t·x) ≤
∑

x∈Zd\Y

ψ(x)e−δ∥x∥ <∞.

Now, observe that it follows from the strict inclusion of Y in a half space that any
concatenation of steps in Y forms a self-avoiding walk. Moreover, by continuity, one
also has

lim
ϵ↘0

JR
(
(1− ϵ)t

)
= JR(t).

Choosing R <∞ large enough and then ϵ > 0 small enough, one obtains JR((1−ϵ)t) ≥
λ−1. Therefore, for these choices of R and ϵ,

Gλ((1− ϵ)t) ≥
∑
n≥1

λn
∑

y1,...,yn∈YR

n∏
i=1

Jyie
(1−ϵ)t·yi =

∑
n≥1

(
λJR

(
(1− ϵ)t

))n
=∞,

which concludes the proof. □
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