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— Introduction —



Ising model

▷ Box: BN = {−N + 1, . . . ,N}2

▷ boundary condition:

ΩN = {σ = (σi)i∈Z2 ∈ {±1}Z
2
: ∀i ̸∈ BN, σi = 1}

▷ Hamiltonian: HN(σ) = −β
∑

{i,j}∩BN ̸=∅
i∼j

σiσj

▷ Gibbs measure: Probability measure on ΩN s.t.

µN;β(σ) =
1

ZN;β
e−HN(σ)

Extends trivially to other boundary conditions.
For instance, the boundary condition: µN;β , . . .
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Phase transition

Let βc =
1
2 log(1 +

√
2). Typical configurations at β ∈ [0,∞) for N > N0(β):

β < βc β > βc

under µN;β

under µN;β
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— Phase coexistence —



Phase coexistence: from a constraint on the magnetization

▶ Let β > βc. m∗
β = limN→∞ µN;β(σ0) > 0 is the spontaneous magnetization.

▶ Consider the Ising model with boundary condition, conditioned on the event{∑
i∈BN

σi = m|BN|
}

with m ∈ (−m∗
β ,m∗

β).
▶ Typical configurations contain a unique macroscopic droplet of phase, whose
shape becomes deterministic in the continuum limit.

Limiting shape is the Wulff shape.

Well understood for planar Ising model since 1990s ([Dobrushin, Kotecký, Shlosman ’92],
[Pfister ’91], [Ioffe ’94, ’95], [Pfister, V. ’97], [Dobrushin, Hryniv ’97], [Ioffe, Schonmann ’98], ...)
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Phase coexistence: from boundary conditions

An alternative way of enforcing spatial coexistence is to consider various types of
Dobrushin boundary condition:
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Phase coexistence: scaling limit of the interface

Typical configurations induced by these boundary conditions when β > βc

Corresponding (diffusive) scaling limits of the interface

Brownian bridge
[Greenberg, Ioffe 2005]

Brownian excursion
[Ioffe, Ott, V., Wachtel 2020]

Diffusive constant = curvature χβ of the Wulff shape at its apex:
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— Metastability —



Effect of a magnetic field: metastability

▶ Let us consider again the boundary condition

but let us add to the Hamiltonian a magnetic field term

−h
∑
i∈BN

σi

with h > 0.

▶ This induces a competition between the boundary condition and the magnetic field:

effect of the boundary condition ∼ N effect of the field ∼ hN2

competition if h ∼ 1/N

6/28



Effect of a magnetic field: metastability

▶ Let us consider again the boundary condition

but let us add to the Hamiltonian a magnetic field term

−h
∑
i∈BN

σi

with h > 0.

▶ This induces a competition between the boundary condition and the magnetic field:

effect of the boundary condition ∼ N effect of the field ∼ hN2

competition if h ∼ 1/N
6/28



Effect of a magnetic field: metastability

▶ Let h = λ/N. [Schonmann and Shlosman 1996] proved: ∃λc ∈ (0,∞) such that

λ < λc

− phase is metastable

λ > λc

− phase is unstable

▶ Question: Behavior of the layer of unstable − phase along the walls?
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— Behavior of an unstable layer —



Simpler geometry

We consider again the boundary condition

but add to the Hamiltonian a magnetic field term

−h
∑
i∈BN

σi

with h > 0.

8/28



Critical prewetting

Let β > βc. Since h > 0, the layer of − phase becomes unstable:

h = 0

mesoscopic layer
average width = O(N1/2)

h > 0

microscopic layer
average width = O(1)
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Critical prewetting

▶ The width of the layer increases as h decreases:

▶ To get a meaningful scaling limit and mimic the Schonmann–Shlosman setting, we
choose h = h(N) to be of the form

h =
λ

N
for some λ > 0.
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Earlier rigorous results

▶ This type of problem was first studied for effective models in

▷ [Abraham, Smith 1986] specific integrable model: width ∼ N1/3, corr. length ∼ N2/3

▷ [Hryniv, V. 2004] general class: width ∼ N1/3, correlation length ∼ N2/3

▷ [Ioffe, Shlosman, V. 2015] general class: weak convergence to Ferrari–Spohn diffusion

N−N

Prob(path) ∝ e−λ
N Area ProbRW(path)

▶ Results for the 2d Ising model were obtained in
▷ [V. 2004] width ∼ N1/3+o(1)

▷ [Ganguly, Gheissari 2021] width ∼ N1/3 (and various other global estimates)

Goal of this work: complete the analysis by proving weak convergence to a Ferrari–
Spohn diffusion for the (scaled) 2d Ising interface
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Parenthesis: why N1/3 ?

In effective models, it is easy to understand heuristically the origin of the N1/3 scaling.

▶ Consider a path staying in the tube [−N,N]× [H, 3H] for some fixed H > 0.

N−N

3H

H

▶ Remember that Prob(path) ∝ e−λ
N Area ProbRW(path)

▷ Energetic cost =
λ

N
· Area ∼ λ

N
· NH ∼ λH

▷ Entropic cost = − log ProbRW
(
∀k ∈ {−N, . . . ,N}, H ≤ Xk ≤ 3H

)
∼ N/H2

▷ These two costs are of the same order when λH ∼ NH−2, that is

H ∼ λ−1/3N1/3

▶ This argument can be turned into a rigorous proof (for effective models).
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The Ferrari–Spohn diffusion

▶ Remember that

▷ m∗
β is the spontaneous magnetization

▷ χβ is the curvature of the Wulff shape at its apex.

▶ Consider the Airy function Ai and its first zero −ω1

−ω1

▶ Set φ0(r) = Ai
(
(4λm∗

β
√
χβ)

1/3 r − ω1
)

.

▶ The relevant Ferrari–Spohn diffusion in the present context is the diffusion on
(0,∞) with generator

Lβ =
1
2

d
dr2 +

φ′
0

φ0

d
dr

and Dirichlet boundary condition at 0.
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Structure of the interface

▶ We want to prove weak convergence of the interface towards the FS diffusion, but
the interface is not the graph of a function:

[zoom on a piece of interface]

▶ We thus need to explain what we mean by the above-mentioned convergence.
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Structure of the interface

▶ We consider the upper and lower envelopes, whose linear interpolations are graphs
of functions from R to R.

▶ It can be shown that there exists K = K(β) such that the probability that these two
envelopes differ by less than K log N everywhere tends to 1 as N → ∞.

▶ Since the relevant vertical scale for our scaling will be N1/3, one can use any of
these envelopes for the weak convergence.
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Main result

Theorem (Informal statement [Ioffe, Ott, Shlosman, V. 2020])

Fix β > βc and λ > 0. Let γ̂+ : R → R be the function obtained from the (linearly
interpolated) upper envelope by

▷ scaling it horizontally by N−2/3

▷ scaling it vertically by χ−1/2
β N−1/3

Then, as N → ∞, the distribution of γ̂+ converges weakly to that of the trajectories
the stationary Ferrari–Spohn diffusion introduced in a previous slide.
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— Sketch of proof —



Sketch of proof — General strategy and difficulties

▶ The proofs of all the previously mentioned convergence theorems follow the same
pattern: the reduction to an effective model.

▶ More precisely, one constructs a coupling between the interface and the
trajectories of a directed random walk on Z2 (subject to suitable constraints or
external potentials).

▶ This coupling is strong enough that the desired convergence follows from the
corresponding statement for the random walk. This is useful, since establishing the
latter is both easier and more classical.

▶ The construction of the coupling is based on the Ornstein–Zernike theory as
developed, in particular, in [Campanino, Ioffe, V. 2003] and [Ott, V. 2018].
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Sketch of proof — General strategy and difficulties

▶ Let us first consider, as a warm-up, the case of the standard Dobrushin b.c. in the
absence of an external magnetic field.

▶ One can decompose the interface into pieces

▷ pieces are small (diameters have exponential moments)
▷ pieces are i.i.d. (except the two extremal ones, which have a different law)
▷ interface is contained inside the rectangles

▶ This leads to a directed RW on Z2 with increments having exponential moments.
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Sketch of proof — General strategy and difficulties

▶ Main difficulties in extending this to our case of interest:

▷ The interface lies along the bottom wall. This leads to a spatially inhomogeneous
RW, with transition probabilities depending (in a complicated way) on the
distance to the wall.

▷ The presence of a magnetic field prevents a direct use of the Ornstein–Zernike
theory.

▶ In the next slides, I sketch the solutions to these two problems, namely

▷ derivation of an a priori (rough) entropic repulsion bound that guarantees that
the interface stays far away from the bottom wall, which restores (asymptotic)
spatial homogeneity of the effective RW;

▷ proof that the magnetic-field results in a simple effective weight, which allows
reduction to the case h = 0.
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Sketch of proof — Step 1: Entropic repulsion

First, given the following setting: for any fixed (small) ϵ > 0,

BN

C

2N2/3−ϵ

N1/3+ϵ

C

B

N2/3−ϵ

Nϵ

we show that, with high probability, γ does not intersect B, using the following facts:

▷ we can restrict to the same event in the box C (by FKG)
▷ in the box C, the magnetic field is irrelevant (λN |C| = 2λ is of order 1)
▷ this allows us to use weak convergence of the interface to Brownian excursion

proved in [Ioffe, Ott, V., Wachtel 2020]
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Sketch of proof — Step 1: Entropic repulsion

▶ A union bound then allows one to conclude that, with probability tending to 1, γ
stays above the following green rectangle:

BN

N1−5ϵ

Nϵ

▶ This will turn out to be very useful when deriving the effective model later... Let us
first analyze the effect of the magnetic field on the distribution of the interface γ.
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Sketch of proof — Step 2: Effective weight induced by the magnetic field

▶ Any realization of the interface γ splits the box BN into two sets:

▷ B+
N [γ] above γ ▷ B−

N [γ] below γ

▶ Conditionally on a typical realization of γ, we expect the empirical magnetization
density in B±

N [γ] to be very close to ±m∗
β . We first make this precise.
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Sketch of proof — Step 2: Effective weight induced by the magnetic field

▶ Claim: there exists κ = κ(β) such that, apart from γ,

all contours have diameter at most κ log N

▷ Obvious inside B+
N [γ]: follows from FKG, since already true without magnetic field...

▷ Not so clear inside B−
N [γ]: the − phase is not stable⇝ may be favorable to create

giant droplets of + phase!

▷ However, the critical droplet of + phase is a “square” of sidelength D such that
2β · 4D ≲ 2λ

N · D2, that is, D ≳ 4β
λ

N.
⇝ for a typical realization of γ, there is not enough room in B−

N [γ] to accommodate a
critical droplet and the layer of − phase is metastable!
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▷ However, the critical droplet of + phase is a “square” of sidelength D such that
2β · 4D ≲ 2λ

N · D2, that is, D ≳ 4β
λ

N.
⇝ for a typical realization of γ, there is not enough room in B−

N [γ] to accommodate a
critical droplet and the layer of − phase is metastable!
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Sketch of proof — Step 2: Effective weight induced by the magnetic field

▶ Since all contours are small, we can prove that, conditionally on the realization of
γ , the magnetization concentrates (using results from [Ioffe, Schonmann 1998]):∑

i∈BN

σi ≈ m∗
β |B+

N [γ]| − m∗
β |B−

N [γ]| = m∗
β |BN| − 2m∗

β |B−
N [γ]|

▶ From this, we deduce an effective probability for the contour γ in terms of the
probability when h = 0: up to negligible corrections,

Probβ,h=λ/N(γ) ∝ exp
[
−λ

N
· 2m∗

β |B−
N [γ]|

]
Probβ,h=0(γ)
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Sketch of proof — Step 3: Full effective model

▶ Since h = 0, we can use the Ornstein–Zernike approach to couple the interface γ

with a directed random walk on Z2.

▶ Entropic repulsion bound: above the green rectangle, the distance between γ and
the bottom wall is at least Nϵ.

▶ It follows that the finite-volume weights are well approximated by infinite-volume
weights. Therefore, the resulting effective random walk can be taken spatially
homogeneous.
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Sketch of proof — Step 3: Full effective model

▶ Remember that

Probβ,h=λ/N(γ) ∝ exp
[
−

2λm∗
β

N
|B−

N [γ]|
]
Probβ,h=0(γ)

▶ This leads, in the presence of the magnetic field λ/N, to a coupling between γ and
an effective RW model subject to an area-tilt: roughly speaking,

ProbRW;h=λ/N(X) ∝ exp
[
−

2λm∗
β

N
Area(X)

]
ProbRW(X)

▶ This reduces our task to proving the desired weak convergence for this effective
model.
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Sketch of proof — Step 4: convergence for the effective model

▶ This part is done in a way very similar to the analysis in [Ioffe, Shlosman, V. 2015] and
[Ioffe, V., Wachtel 2018]:

▷ Express the relevant partition functions in terms of powers of a suitable transfer
operator.

▷ Compute the scaling limit of these quantities in terms of the scaling limit of the
generator of the induced semigroup, which can be computed explicitly.

▷ Deduce convergence of finite-dimensional distributions.

▷ Complete the analysis with a proof of tightness (rough probabilistic estimates).

▶ The main difference is that in our earlier work, the path was the space-time
trajectory of a 1d random walk rather than the spatial trajectory of a directed 2d
random walk. Mainly, this results in a random number of steps in the present
situation, which adds technicalities but does not affect the general scheme.
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Some open problems

▷ Consider h = N−α for other values of α, in particular α = 0 (i.e., first the limit
N → ∞, then the limit h ↓ 0).

▷ Extend the analysis to the case of boundary condition when λ > λc

(Schonmann–Shlosman geometry).

▷ In the case of boundary condition when λ > λc, determine the limiting process
at the junction between one arc of the droplet of phase and the layer along the
boundary. Fluctuations of all orders from N1/2 to N1/3 are expected to occur.
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Thank you for your attention!
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