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Preface

Equilibrium statistical mechanics is a field that has existed for more than a century.
Its origins lie in the search for a microscopic justification of equilibrium thermo-
dynamics, and it developed into a well-established branch of mathematics in the
second half of the twentieth century. The ideas and methods that it introduced to
treat systems with many components have now permeated many areas of science
and engineering, and have had an important impact on several branches of math-
ematics.

There exist many good introductions to this theory designed for physics under-
graduates. It might however come as a surprise that textbooks addressing it from a
mathematically rigorous standpoint have remained rather scarce. A reader looking
for an introduction to its more advanced mathematical aspects must often either
consult highly specialized monographs or search through numerous research arti-
cles available in peer-reviewed journals. It might even appear as if the mastery of
certain techniques has survived from one generation of researchers to the next only
by means of oral communication, through the use of chalk and blackboard...

It seems a general opinion that pedagogical introductory mathematically rigor-
ous textbooks simply do not exist. This book aims at starting to bridge this gap.
Both authors graduated in physics before turning to mathematical physics. As
such, we have witnessed this lack from the student’s point of view, before experi-
encing it, a few years later, from the teacher’s point of view. Above all, this text aims
to provide the material we would have liked to have at our disposal when entering
this field.

Although our hope is that it will also be of interest to students in theoretical
physics, this is in fact a book on mathematical physics. There is no general consen-
sus on what the latter term actually refers to. In rough terms, what it means for us
is: the analysis of problems originating in physics, at the level of rigor associated to
mathematics. This includes the introduction of concepts and the development of
tools enabling such an analysis. It is unfortunate that mathematical physics is often
held in rather low esteem by physicists, many of whom see it as useless nitpicking
and as dealing mainly with problems that they consider to be already fully under-
stood. There are however very good reasons for these investigations. First, such an
approach allows a very clear separation between the assumptions (the basic prin-
ciples of the underlying theory, as well as the particulars of the model analyzed)
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iv Preface

and the actual derivation: once the proper framework is set, the entire analysis is
done without further assumptions or approximations. This is essential in order to
ensure that the phenomenon that has been derived is indeed a consequence of the
starting hypotheses and not an artifact of the approximations made along the way.
Second, to provide a complete mathematical analysis requires us to understand the
phenomenon of interest in a much deeper and detailed way. In particular, it forces
one to provide precise definitions and statements. This is highly useful in clarifying
issues that are sometimes puzzling for students and, occasionally, researchers.

Let us emphasize two central features of this work.

• The first has to do with content. Equilibrium statistical mechanics has be-
come such a rich and diverse subject that it is impossible to cover more than
a fraction of it in a single book. Since our driving motivation is to provide an
easily accessible introduction in a form suitable for self-study, our first de-
cision was to focus on some of the most important and relevant examples
rather than to present the theory from a broad point of view. We hope that
this will help the reader build the necessary intuition, in concrete situations,
as well as provide background and motivation for the general theory. We also
refrained from introducing abstractions for their own sake and have done our
best to keep the technical level as low as possible.

• The second central feature of this book is related to our belief that the main
value of the proof of a theorem is measured by the extent to which it enhances
understanding of the phenomena under consideration. As a matter of fact,
the concepts and methods introduced in the course of a proof are often at
least as important as the claim of the theorem itself. The most useful proof,
for a beginner, is thus not necessarily the shortest or the most elegant one.
For these reasons, we have strived to provide, throughout the book, the ar-
guments we personally consider the most enlightening in the most simple
manner possible.

These two features have shaped the book from its very first versions. (They have
also contributed, admittedly, to the lengthiness of some chapters.) Together with
the numerous illustrations and exercises, we hope that they will help the beginner
to become familiarized with some of the central concepts and methods that lie at
the core of statistical mechanics.

As underlined by many authors, one of the main purposes of writing a book
should be one’s own pleasure. Indeed, leading this project to its conclusion was
by and large a very enjoyable albeit long journey! But, beyond that, the positive
feedback we have already received from students and from colleagues who have
used early drafts in their lectures, indicates that it may yet reach its goal, which is
to help beginners enter this beautiful field...
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tion.
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Conventions

a
def= b a is defined as being b
Rd d-dimensional Euclidean space
Zd d-dimensional cubic lattice
R≥0 nonnegative real numbers
R>0 positive real numbers
Z≥0 nonnegative integers: 0,1,2,3, . . .

N,Z>0 positive integers: 1,2,3, . . .
i

p
−1

Rez,Imz real and imaginary parts of z ∈C
a ∧b minimum of a and b
a ∨b maximum of a and b

log natural logarithm, that is, in base e = 2.718...
A ⊂ B A is a (not necessarily proper) subset of B
A ⊊B A is a proper subset of B
A△B symmetric difference

#A, |A| number of elements in the set A (if A is finite). At several places, also
used to denote the Lebesgue measure.

δm,n Kronecker symbol: δm,n = 1 if m = n, 0 otherwise
δx Dirac measure at x: δx (A) = 1 if x ∈ A, 0 otherwise
⌊x⌋ largest integer smaller or equal to x
⌈x⌉ smallest integer larger or equal to x

Asymptotic equivalence of functions will follow the standard conventions. For func-
tions f , g , defined in the neighborhood of x0 (possibly x0 =∞),

f (x) ∼ g (x) means limx→x0
log f (x)
log g (x) = 1,

f (x) ≃ g (x) means limx→x0
f (x)
g (x) = 1,

f (x) ≈ g (x) means 0 < liminfx→x0
f (x)
g (x) ≤ limsupx→x0

f (x)
g (x) <∞

f (x) =O(g (x)) means limsupx→x0

∣∣ f (x)
g (x)

∣∣<∞,

f (x) = o(g (x)) means limx→x0

∣∣ f (x)
g (x)

∣∣= 0.

xv
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xvi Preface

As usual, AB is identified with the set of all maps f : B → A. A sequence of
elements an ∈ E will usually be denoted as (an)n≥1 ⊂ E . At several places, we will

set 0log0
def= 0. Sums or products over empty families are defined as follows:

∑
i∈∅

ai
def= 0

∏
i∈∅

ai
def= 1.

Several important notations involving several geometrical notions on Zd will be
defined at the end of the introduction and at the beginning of Chapter 3.
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1 Introduction

Statistical mechanics is the branch of physics which aims at bridging the gap be-
tween the microscopic and macroscopic descriptions of large systems of particles
in interaction, by combining the information provided by the microscopic descrip-
tion with a probabilistic approach. Its goal is to understand the relations existing
between the salient macroscopic features observed in these systems and the prop-
erties of their microscopic constituents. Equilibrium statistical mechanics is the
part of this theory that deals with macroscopic systems at equilibrium and is, by
far, the best understood.

This book is an introduction to some classical mathematical aspects of equilib-
rium statistical mechanics, based essentially on some important examples. It does
not constitute an exhaustive introduction: many important aspects, discussed in
a myriad of books (see those listed in Section 1.6.2 below), will not be discussed.
Inputs from physics will be restricted to the terminology used (especially in this in-
troduction), to the nature of the problems addressed, and to the central probabil-
ity distribution used throughout, namely the Gibbs distribution. This distribution
provides the probability of observing a particular microscopic stateω of the system
under investigation, when the latter is at equilibrium at a fixed temperature T . It
takes the form

µβ(ω) = e−βH (ω)

Zβ
,

where β= 1/T , H (ω) is the energy of the microscopic state ω and Zβ is a normal-
ization factor called the partition function.

Saying that the Gibbs distribution is well suited to understand the phenomenol-
ogy of large systems of particles is an understatement. This book provides, to some
extent, a proof of this fact by diving into an in-depth study of this distribution when
applied to some of the most important models studied by mathematical physicists
since the beginning of the 20th century. The many facets and the rich variety of
behaviors that will be described in the following chapters should, by themselves,
constitute a firm justification for the use of the Gibbs distribution for the descrip-
tion of large systems at equilibrium.

An impatient reader with some basic notions of thermodynamics and statistical
mechanics, or who is willing to consider the Gibbs distribution as a postulate and is
not interested in additional motivations and background, can jump directly to the

1
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2 Chapter 1. Introduction

following chapters and learn about the models presented throughout the book. A
quick glance at Section 1.6 might be useful since it contains a reading guide.

The rest of this introduction is written for a reader interested in obtaining more
information on the origin of the Gibbs distribution and the associated terminology,
as well as an informal discussion of thermodynamics and its relations to equilib-
rium statistical mechanics.

One of the main themes to which this book is devoted, phase transitions, is
illustrated on gases and magnets. However, we emphasize that, in this book, the
main focus is on the mathematical structure of equilibrium statistical mechanics
and the many possible interpretations of the models we study will most of the time
not play a very important role; they can, nevertheless, sometimes provide intuition.

Although this book is undeniably written for a mathematically inclined reader,
in this introduction we will avoid delving into too much technicalities; as a conse-
quence, it will not be as rigorous as the rest of the book. Its purpose is to provide
intuition and motivation behind several key concepts, relying mainly on physical
arguments. The content of this introduction is not necessary for the understanding
of the rest of the book, but we hope that it will provide the reader with some useful
background information.

We will start with a brief discussion of the first physical theory describing
macroscopic systems at equilibrium, equilibrium thermodynamics, and present
also examples of one of the most interesting features of thermodynamic systems:
phase transitions. After that, starting from Section 1.2, we will turn our attention to
equilibrium statistical mechanics.

1.1 Equilibrium Thermodynamics

Equilibrium thermodynamics is a phenomenological theory, developed mainly
during the nineteenth century. Its main early contributors include Carnot, Clau-
sius, Kelvin, Joule and Gibbs. It is based on a few empirical principles and does not
make any assumption regarding the microscopic structure of the systems it con-
siders (in fact, the atomic hypothesis was still hotly debated when the theory was
developed).

This section will briefly present some of its basic concepts, mostly on some
simple examples; it is obviously not meant as a complete description of thermo-
dynamics, and the interested reader is advised to consult the detailed and readable
account in the books of Callen [58] and Thess [329], in Wightman’s introduction
in [176] or in Lieb and Yngvason’s paper [224].

1.1.1 On the description of macroscopic systems

Gases, liquids and solids are the most familiar examples of large physical systems
of particles encountered in nature. In the first part of this introduction, for the sake
of simplicity and concreteness, we will mainly consider the system made of a gas
contained in a vessel.

Let us thus consider a specific, homogeneous gas in a vessel (this could be, say,
one liter of helium at standard temperature and pressure). We will use Σ to de-
note such a specific system. The microscopic state, or microstate, of the gas is
the complete microscopic description of the state of the gas. For example, from
the point of view of Newtonian mechanics, the microstate of a gas of monoatomic
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1.1. Equilibrium Thermodynamics 3

molecules is specified by the position and the momentum of each molecule (called
hereafter particle). Since a gas contains a huge number of particles (of the order of
1022 for our liter of helium), the overwhelming quantity of information contained
in its microstate makes a complete analysis not only challenging, but in general im-
possible. Fortunately, we are not interested in the full information contained in the
microstate: the precise behavior of each single particle is irrelevant at our scale of
observation.

It is indeed an empirical fact that, in order to describe the state of the gas at
the macroscopic scale, only a much smaller set of variables, of a different nature,
is needed. This is particularly true when the system is in a particular kind of state
called equilibrium. Assume, for instance, that the gas is isolated, that is, it does
not exchange matter or energy with the outside world, and that it has been left
undisturbed for a long period of time. Experience shows that such a system reaches
a state of thermodynamic equilibrium, in which macroscopic properties of the gas
do not change anymore and there are no macroscopic flows of matter or energy
(even though molecular activity never ceases).

In fact, by definition, isolated systems possess a number of conserved quanti-
ties, that is, quantities that do not change through time evolution. The latter are
particularly convenient to describe the macroscopic state of the system. For our
example of a gas, these conserved quantities are the volume V of the vessel 1, the
number of particles N and the internal energy (or simply: energy) U .

We therefore assume, from now on, that the macroscopic state (or macrostate)
of the gas Σ is determined by a triple

X = (U ,V , N ) .

The variables (U ,V , N ) can be thought of as the quantities one can control in order
to alter the state of the gas. For example, U can be changed by cooling or heating the
system, V by squeezing or expanding the container and N by injecting or extracting
particles with a pump or a similar device. These variables determine the state of the
gas in the sense that setting these variables to some specific values always yield,
once equilibrium is reached, systems that are macroscopically indistinguishable.
They can thus be used to put the gas in a chosen macroscopic state reproducibly. Of
course, what is reproduced is the macrostate, not the microstate: there are usually
infinitely many different microstates corresponding to the same macrostate.

Now, suppose that we split our system, Σ, into two subsystems Σ1 and Σ2, by
adding a wall partitioning the vessel. Each of the subsystems is of the same type
as the original system and only differs from it by the values of the corresponding
variables (U m ,V m , N m), m = 1,2. Observe that the total energy U , total volume V
and total number of particles N in the system satisfy: [1]

U =U 1 +U 2 , V =V 1 +V 2 , N = N 1 +N 2 . (1.1)

Variables having this property are said to be extensive 2.

1We assume that the vessel is large enough and that its shape is simple enough (for example: a
cube), so as not to influence the macroscopic behavior of the gas and boundary effects may be ne-
glected.

2The identity is not completely true for the energy: part of the latter comes, in general, from the
interaction between the two subsystems. However, this interaction energy is generally negligible com-
pared to the overall energy (exceptions only occur in the presence of very long-range interactions, such
as gravitational forces). This will be quantified once we study similar problems in statistical mechanics.
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4 Chapter 1. Introduction

Note that the description of a system Σ composed of two subsystems Σ1 and Σ2

now requires 6 variables: (U 1,V 1, N 1,U 2,V 2, N 2). Below, a system will always come
with the set of variables used to characterize it. Note that this set of variables is not
unique: one can always split a system into two pieces in our imagination, without
doing anything to the system itself, only to our description of it.

One central property of equilibrium is that, when a system is at equilibrium,
each of its (macroscopic) subsystems is at equilibrium too, and all subsystems are
in equilibrium with each other. Namely, if we imagine that our system Σ is parti-
tioned by an imaginary wall into two subsystems Σ1,Σ2 of volume V 1 and V 2, then
the thermodynamic properties of each of these subsystems do not change through
time: their energy and the number of particles they contain remain constant 3.

Assume now that Σ1,Σ2 are originally separated (far apart, with no exchanges
whatsoever), each isolated and at equilibrium. The original state of the union
of these systems is represented by (X1,X2), where Xm = (U m ,V m , N m) is the
macrostate of Σm , m = 1,2. Suppose then that these systems are put in contact, al-
lowing them to exchange energy and/or particles, while keeping them, as a whole,
isolated from the rest of the universe (in particular, the total energy U , total volume
V and total number of particles N are fixed). Once they are in contact, the whole
system goes through a phase in which energy and particles are redistributed be-
tween the subsystems and a fundamental problem is to determine which new equi-

librium macrostate (X
1

,X
2

) is realized and how it relates to the initial pair (X1,X2).
The core postulate of equilibrium thermodynamics is to assume the existence

of a function, associated to any systemΣ, which describes how the new equilibrium
state is selected among the a priori infinite number of possibilities. This function is
called entropy.

1.1.2 The thermodynamic entropy

Let us assume that Σ is the union of two subsystems Σ1,Σ2 and that some con-
straints are imposed on these subsystems. We model these constraints by the set
Xc of allowed pairs (X1,X2). We expect that the system selects some particular pair
in Xc to realize equilibrium, in some optimal way. The main postulate of Thermo-
statics is that this is done by choosing the pair that maximizes the entropy:

Postulate (Thermostatics). To each system Σ, described by a set of variables X, is
associated a differentiable function SΣ of X, called the (thermodynamic) entropy; it
is specific to each system. The entropy of a system Σ composed of two subsystems Σ1

and Σ2 is additive:
SΣ(X1,X2) = SΣ1 (X1)+SΣ2 (X2) . (1.2)

Once the systems are put in contact, the pair (X
1

,X
2

) realizing equilibrium is the one
that maximizes SΣ(X1,X2), among all pairs (X1,X2) ∈Xc.

The principle by which a system under constraint realizes equilibrium by max-
imizing its entropy will be called the extremum principle.

3Again, this is not true from a microscopic perspective: the number of particles in each subsystem
does fluctuate, since particles constantly pass from one subsystem to the other. However, these fluctu-
ations are of an extremely small relative size and are neglected in thermodynamics (if there are of order
N particles in each subsystem, then statistical mechanics will show that these fluctuations are of orderp

N ).
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1.1. Equilibrium Thermodynamics 5

Remark 1.1. The entropy function is characteristic of the system considered (in our
example, it is the one associated to helium; if we were considering a piece of lead or
a mixture of gases, such as the air, the entropy function would be different). It also
obviously depends on the set of variables used for its description (mentally splitting
the system into two and using 6 variables instead of 3 yields a different entropy
function, even though the underlying physical system is unchanged). However, if
one considers two systems Σ1 and Σ2 of the same type and described by the same
set of variables (the latter possibly taking different values), then SΣ1 = SΣ2 . ⋄
Remark 1.2. Let us emphasize that although the thermodynamic properties of a
system are entirely contained in its entropy function (or in any of the equations of
state or thermodynamic potential derived later), thermodynamics does not provide
tools to determine what this function should be for a specific system (it can, of course,
be measured empirically in a laboratory). As we will see, the determination of these
functions for a particular system from first principles is a task that will be devolved
to equilibrium statistical mechanics. ⋄

Let us illustrate on some examples how the postulate is used.

Example 1.3. In this first example, we suppose that the system Σ is divided into
two subsystems Σ1 and Σ2 of volume V1, respectively V2, by inserting a hard, im-
permeable, fixed wall. These subsystems have, initially, energy U1, respectively U2,
and contain N1, respectively N2, particles. We assume that the wall allows the two
subsystems to exchange energy, but not particles. So, by assumption, the following
quantities are kept fixed: the volumes V1 and V2 of the two subsystems, the number
N1 and N2 of particles they contain and the total energy U = U1 +U2; these form

the constraints. The problem is thus to determine the values U
1

,U
2

of the energy
in each of the subsystems once the system has reached equilibrium.
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V1, N1 V2, N2

Since V1, N1,V2, N2 are fixed, the postulate states that the equilibrium values U 1

and U 2 are found by maximizing

(Ũ1,Ũ2) 7→ S(Ũ1,V1, N1)+S(Ũ2,V2, N2) = S(Ũ1,V1, N1)+S(U −Ũ1,V2, N2) .

We thus see that equilibrium is realized when U 1 satisfies

{ ∂S

∂Ũ1
(Ũ1,V1, N1)+ ∂S

∂Ũ1
(U −Ũ1,V2, N2)

}∣∣∣
Ũ=U 1

= 0.

Therefore, equilibrium is realized when U 1,U 2 satisfy

∂S

∂U
(U 1,V1, N1) = ∂S

∂U
(U 2,V2, N2) .
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6 Chapter 1. Introduction

The quantity 4

β
def=( ∂S

∂U

)
V ,N (1.3)

is called the inverse (absolute) temperature. The (absolute) temperature is then

defined by T
def= 1/β. It is an empirical fact that the temperature thus defined is pos-

itive, that is, the entropy is an increasing function of the energy 5. We will therefore
assume from now on that S(U ,V , N ) is increasing in U :

( ∂S

∂U

)
V ,N > 0. (1.4)

We conclude that, if two systems that are isolated from the rest of the universe are
allowed to exchange energy, then, once they reach equilibrium, their temperatures
(as defined above) will have equalized.

Note that this agrees with the familiar observation that there will be a heat flow
between the two subsystems, until both reach the same temperature. ⋄
Example 1.4. Let us now consider a slightly different situation, in which the wall
partitioning our system Σ is allowed to slide:
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�
�
�
�
�

N1 N2

In this case, the number of particles on each side of the wall is still fixed to N1

and N2, but the subsystems can exchange both energy and volume. The constraint
is thus that U =U1+U2, V =V1+V2, N1 and N2 are kept fixed. Proceeding as before,
we have to find the values U 1,U 2,V 1,V 2 maximizing

(Ũ1,Ũ2,Ṽ1,Ṽ2) 7→ S(Ũ1,Ṽ1, N1)+S(Ũ2,Ṽ2, N2) .

We deduce this time that, once equilibrium is realized, U 1, U 2, V 1 and V 2 satisfy




∂S

∂U
(U 1,V 1, N1) = ∂S

∂U
(U 2,V 2, N2) ,

∂S

∂V
(U 1,V 1, N1) = ∂S

∂V
(U 2,V 2, N2) .

Again, the first identity implies that the temperatures of the subsystems must be
equal. The quantity

p
def= T · ( ∂S

∂V

)
U ,N (1.5)

4In this introduction, we will follow the custom in thermodynamics and keep the same notation for
quantities such as the entropy or temperature, even when seen as functions of different sets of variables.
It is thus important, when writing down partial derivatives to specify which are the variables kept fixed.

5Actually, there are very special circumstances in which negative temperatures are possible, but we
will not discuss them in this book. In any case, the adaptation of what we discuss to negative tempera-
tures is straightforward.
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1.1. Equilibrium Thermodynamics 7

is known as the pressure (T , in this definition, is introduced as a convention). We
conclude that, once two systems that can exchange both energy and volume reach
equilibrium, their temperatures and pressures will have equalized. ⋄
Example 1.5. For the third and final example, we suppose that the system is parti-
tioned into two subsystems by a fixed permeable wall, that allows exchange of both
particles and energy. The constraints in this case are that U =U1+U2, N = N1+N2,
V1 and V2 are kept fixed. This time, we thus obtain that, at equilibrium, U 1, U 2, N 1

and N 2 satisfy 



∂S

∂U
(U 1,V1, N 1) = ∂S

∂U
(U 2,V2, N 2) ,

∂S

∂N
(U 1,V1, N 1) = ∂S

∂N
(U 2,V2, N 2) .

Once more, the first identity implies that the temperatures of the subsystems must
be equal. The quantity

µ
def= −T · ( ∂S

∂N

)
U ,V (1.6)

is known as the chemical potential (the sign, as well as the introduction of T is
a convention). We conclude that, when they reach equilibrium, two systems that
can exchange both energy and particles have the same temperature and chemical
potential. ⋄

We have stated the postulate for a very particular case (a gas in a vessel, consid-
ered as made up of two subsystems of the same type), but the postulate extends to
any thermodynamic system. For instance, it can be used to determine how equi-
librium is realized when an arbitrary large number of systems are put in contact:

ΣM

Σ1 Σ2 . . .

We have discussed a particular case, but (1.3), (1.5) and (1.6) provide the def-
inition of the temperature, pressure and chemical potential for any system char-
acterized by the variables U ,V , N (and possibly others) whose entropy function is
known.

Several further fundamental properties of the entropy can be readily deduced
from the postulate.

Exercise 1.1. Show that the entropy is positively homogeneous of degree 1, that is,

S(λU ,λV ,λN ) =λS(U ,V , N ) , ∀λ> 0. (1.7)

Hint: consider first λ ∈Q.
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8 Chapter 1. Introduction

Exercise 1.2. Show that the entropy is concave, that is, for all α ∈ [0,1] and any U1,
U2, V1, V2, N1, N2,

S
(
αU1 + (1−α)U2,αV1 + (1−α)V2,αN1 + (1−α)N2

)

≥αS(U1,V1, N1)+ (1−α)S(U2,V2, N2) . (1.8)

1.1.3 Conjugate intensive quantities and equations of state

The temperature, pressure and chemical potential defined above were all defined
via a partial differentiation of the entropy: ∂S

∂U , ∂S
∂V , ∂S

∂N . Generally, if Xi is any exten-
sive variable appearing in S,

fi
def= ∂S

∂Xi

is called the variable conjugate to Xi . It is a straightforward consequences of the
definitions that, in contrast to U ,V , N , the conjugate variables are not extensive,
but intensive: they remain unchanged under a global scaling of the system: for all
λ> 0,

T (λU ,λV ,λN ) = T (U ,V , N ) ,

p(λU ,λV ,λN ) = p(U ,V , N ) ,

µ(λU ,λV ,λN ) =µ(U ,V , N ) .

In other words, T , p and µ are positively homogeneous of degree 0.

Differentiating both sides of the identity S(λU ,λV ,λN ) = λS(U ,V , N ) with re-
spect to λ , at λ= 1, we obtain

S(U ,V , N ) = 1

T
U + p

T
V − µ

T
N . (1.9)

The latter identity is known as the Euler relation. It allows one to reconstruct
the entropy function from a knowledge of the functional dependence of T, p,µ on
U ,V , N :

T = T (U ,V , N ), p = p(U ,V , N ), µ=µ(U ,V , N ) . (1.10)

These relations are known as the equations of state.

1.1.4 Densities

Using homogeneity, we can write

S(U ,V , N ) =V S(U
V ,1, N

V ) or S(U ,V , N ) = N S( U
N , V

N ,1) . (1.11)

This shows that, when using densities, the entropy can actually be considered as
a density as well and seen as a function of two variables rather than three. For

example, one can introduce the energy density u
def= U

V and the particle density

ρ
def= N

V , and consider the entropy density:

s(u,ρ)
def= 1

V
S(uV ,V ,ρV ) . (1.12)
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1.1. Equilibrium Thermodynamics 9

Alternatively, using the energy per particle e
def= U

N and the specific volume (or vol-

ume per particle) v
def= V

N , one can consider the entropy per particle:

s(e, v)
def= 1

N
S(eN , v N , N ) .

In particular, its differential satisfies

ds = ∂s

∂e
de + ∂s

∂v
dv = 1

T
de + p

T
dv . (1.13)

The entropy can thus be recovered (up to an irrelevant additive constant) from the
knowledge of two of the three equations of state. This shows that the equations of
state are not independent.

Example 1.6 (The ideal gas). Consider a gas of N particles in a container of volume
V , at temperature T . An ideal gas is a gas which, at equilibrium, is described by the
following two equations of state:

pV = RN T , U = cRN T ,

where the constant c, the specific heat capacity, depends on the gas and R is some
universal constant known as the gas constant 6. Although no such gas exists, it
turns out that most gases approximately satisfy such relations when the tempera-
ture is not too low and the density of particles is small enough.

When expressed as a function of v =V /N , the first equation becomes

pv = RT . (1.14)

An isotherm is obtained by fixing the temperature T and studying p as a function
of v :

v

p

Figure 1.1: An isotherm of the equation of state of the ideal gas: at fixed tem-
perature, the pressure p is proportional to 1

v .

Let us explain how the two equations of state can be used to determine the
entropy for the system. Notice first that the equations can be rewritten as

1

T
= cR

N

U
= cR

e
,

p

T
= R

N

V
= R

v
.

Therefore, (1.13) becomes

ds = cR

e
de + R

v
dv .

6Gas constant: R = 8.3144621 Jm−1K−1.
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10 Chapter 1. Introduction

Integrating the latter equation, we obtain

s(e, v)− s0 = cR log(e/e0)+R log(v/v0) ,

where e0, v0 is some reference point and s0 an undetermined constant of integra-
tion. We have thus obtained the desired fundamental relation:

S(U ,V , N ) = N s0 +N R log
[(

U /U0
)c(V /V0

)(
N /N0

)−(c+1)] ,

where we have set U0
def= N0e0,V0

def= N0v0 for some reference N0.
Later in this introduction, the equation of state (1.14) will be derived from the

microscopic point of view, using the formalism of statistical mechanics. ⋄
It is often convenient to describe a system using certain thermodynamic vari-

ables rather than others. For example, in the case of a gas, it might be easier to
control pressure and temperature rather than volume and internal energy, so these
variables may be better suited for the description of the system. Not only is this
possible, but there is a systematic way of determining which thermodynamic po-
tential should replace the entropy in this setting and to find the corresponding ex-
tremum principle.

1.1.5 Alternative representations; thermodynamic potentials

We now describe how alternative representations corresponding to other sets of
variables, both extensive and intensive, can be derived. We treat explicitly the two
cases that will be relevant for our analysis based on statistical mechanics later.

The variables (β,V , N ). We will first obtain a description of systems characterized
by the set of variables (β,V , N ), replacing U by its conjugate quantityβ. Note that, if
we want to have a fixed temperature, then the system must be allowed to exchange
energy with the environment and is thus not isolated anymore. One can see such
a system as being in permanent contact with an infinite thermal reservoir at fixed
temperature 1/β, with which it can exchange energy, but not particles or volume.

We start with some heuristic considerations.

We suppose that our system Σ is put in contact with a much larger system ΣR ,
representing the thermal reservoir, with which it can only exchange energy:

��
��
��
��
��

��
��
��
��
��

Σ

Σtot
ΣR

Figure 1.2: A system Σ, in contact with a reservoir.

We know from Example 1.3 that, under such conditions, both systems must have
the same inverse temperature, denoted by β. The total system Σtot, of energy Utot, is
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1.1. Equilibrium Thermodynamics 11

considered to be isolated. We denote by U the energy of Σ; the energy of the reservoir
is then Utot −U .

We assume that the reservoir is so much larger than Σ that we can ignore the
effect of the actual state of Σ on the values of the intensive parameters associated
with the reservoir: βR (= β), pR and µR remain constant. In particular, by the Euler
relation (1.9), the entropy of the reservoir satisfies

SR (Utot −U ) =βRUR +βR pRVR −βRµR NR =β(Utot −U )+βpRVR −βµR NR .

Observe that, under our assumptions, the only term in the last expression that de-
pends on the state of Σ is −βU .

To determine the equilibrium value U of the energy of Σ, we must maximize the
total entropy (we only indicate the dependence on U , since the volumes and numbers
of particles are fixed): U is the value realizing the supremum in

Stot(Utot,U ) = sup
U

{
SΣ(U )+SR (Utot −U )

}
,

which, from what was said before, is equivalent to finding the value of U that real-
izes the infimum in

F̂Σ(β)
def= inf

U

{
βU −SΣ(U )

}
.

⋄

In view of the preceding considerations, we may expect the function

F̂ (β,V , N )
def= inf

U

{
βU −S(U ,V , N )

}
(1.15)

to play a role analogous to that of the entropy, when the temperature, rather than

the energy, is kept fixed. The thermodynamic potential F (T,V , N )
def= T F̂ (1/T,V , N )

is called the Helmholtz free energy (once more, the presence of a factor T is due to
conventions).

In mathematical terms, F̂ is, up to minor differences 7 the Legendre transform
of S(U ,V , N ) with respect to U ; see Appendix B.2 for the basic definition and prop-
erties of this transform. The Legendre transform enjoys of several interesting prop-
erties. For instance, it has convenient convexity properties (see the exercise below),
and it is an involution (on convex function, Theorem B.19). In other words, F̂ and
S contain the same information.

Observe now that, since we are assuming differentiability, the infimum in (1.15)
is attained when ∂S

∂U = β. Since we have assumed that the temperature is positive
(remember (1.4)), the latter relation can be inverted to obtain U = U (T,V , N ). We
get

F (T,V , N ) =U (T,V , N )−T S(U (T,V , N ),V , N ) . (1.16)

As a short hand, this relation is often written simply

F =U −T S . (1.17)

The thermodynamic potential F̂ inherits analogues of the fundamental proper-
ties of S:

7Since S is concave, −S is convex. Therefore, indicating only the dependence of S on U ,

inf
U

{βU −S(U )} =−sup
U

{(−β)U − (−S(U ))}

which is minus the Legendre transform (defined in (B.11)) of −S, at −β.
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12 Chapter 1. Introduction

Exercise 1.3. Show that F̂ is convex in V and N (the extensive variables), and con-
cave in β (the intensive variable).

Notice that, since F̂ is convex in V , we have ∂2F̂
∂V 2 ≥ 0. But, by (1.16),

( ∂F̂

∂V

)
T,N =β(∂U

∂V

)
T,N − ( ∂S

∂U

)
V ,N

︸ ︷︷ ︸
=β

(∂U

∂V

)
T,N − ( ∂S

∂V

)
U ,N =− p

T
.

Therefore, differentiating again with respect to V yields

( ∂p

∂V

)
T,N ≤ 0, (1.18)

a property known as thermodynamic stability.

A system for which ( ∂p
∂V )T,N > 0 would be unstable in the following intuitive

sense: any small increase in V would imply an increase in pressure, which in turn
would imply an increase in V , etc. ⋄

To state the analogue of the extremum principle in the present case, let us con-
sider a system Σ, kept at temperature T and composed of two subsystems Σ1, with
parameters T,V 1, N 1, and Σ2, with parameters T,V 2, N 2. Similarly as before, we as-
sume that there are constraints on the admissible values of V 1, N 1,V 2, N 2 and are

interested in determining the corresponding equilibrium values V
1

, V
2

, N
1

, N
2

.

Exercise 1.4. Show that F̂ satisfies the following extremum principle: the equilib-

rium values V
1

, V
2

, N
1

, N
2

are those minimizing

F̂ (T,Ṽ 1, Ñ 1)+ F̂ (T,Ṽ 2, Ñ 2) (1.19)

among all Ṽ 1, Ñ 1,Ṽ 2, Ñ 2 compatible with the constraints.

The variables (β,V ,µ). We can proceed in the same way for a system character-
ized by the variables (β,V ,µ). Such a system must be able to exchange both energy
and particles with a reservoir.

This time, the thermodynamic potential associated to the variables β,V , µ̂
def=

−µ/T is defined by

Φ̂G(β,V , µ̂)
def= inf

U ,N

{
βU + µ̂N −S(U ,V , N )

}
. (1.20)

The function ΦG(T,V ,µ)
def= T Φ̂G(1/T,V ,−µ/T ) is called the grand potential. As for

the Helmholtz free energy, it can be shown that Φ̂G is concave in β and µ̂, and con-
vex in V . The extremum principle extends also naturally to this case. Proceeding as
before, we can write

ΦG =U −µN −T S (1.21)

(with an interpretation analogous to the one done in (1.17)). Since, by the Euler
relation (1.9), T S =U +pV −µN , we deduce that

ΦG =−pV , (1.22)
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1.1. Equilibrium Thermodynamics 13

so that −ΦG/V coincides with the pressure of the system (expressed, of course, as a
function of (T,V ,µ)).

Generically 8, the descriptions of a given system, in terms of various sets of ther-
modynamic variables, yield the same result at equilibrium. For example, if we start
with a microstate (U ,V , N ) and compute the value of β at equilibrium, then start-
ing with the macrostate (β,V , N ) (with that particular value of β) and computing
the equilibrium value of the energy yields U again.

In the following section, we leave aside the general theory and consider an ex-
ample, in which an equation of state is progressively obtained from a combination
of experimental observations and theoretical considerations.

1.1.6 Condensation and the Van der Waals–Maxwell Theory

Although rather accurate in various situations, the predictions made by the equa-
tion of state of the ideal gas are no longer valid at low temperature or at high den-
sity. In particular, the behavior observed for a real gas at low temperature is of the
following type (compare Figure 1.3 with Figure 1.1): When v (the volume per par-

v

p

vl vg

gas

liquid

coexistence

Figure 1.3: An isotherm of a real gas at low enough temperature. See below
(Figure 1.6) for a plot of realistic values measured in the laboratory.

ticle) is large, the density of the gas is low, it is homogeneous (the same density is
observed in all subsystems) and the pressure is well approximated by the ideal gas
behavior. However, decreasing v , one reaches a value v = vg , called the condensa-
tion point, at which the following phenomenon is observed: macroscopic droplets
of liquid start to appear throughout the system. As v is further decreased, the frac-
tion of the volume occupied by the gas decreases while that of the liquid increases.
Nevertheless, the pressures inside the gas and inside the droplets are equal and
constant. This goes on until another value v = vl < vg is reached, at which all the
gas has been transformed into liquid. When decreasing the volume to values v < vl ,
the pressure starts to increase again, but at a much higher rate due to the fact that

8The word “generically” is used to exclude first-order phase transitions, since, when the latter occur,
the assumptions of smoothness and invertibility that we use to invert the relations between all these
variables fail in general. Such issues will be discussed in detail in the framework of equilibrium statistical
mechanics in later chapters.
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14 Chapter 1. Introduction

the system now contains only liquid and the latter is almost incompressible 9. The
range [vl , vg ] is called the coexistence plateau.

The condensation phenomenon shows that, from a mathematical point of view,
the equations of state of a system are not always smooth in their variables (the pres-
sure at the points vl and vg , for instance). The appearance of such singularities is
the signature of phase transitions, one of the main themes studied in this book.

For the time being, we will only describe the way by which the equation of state
of the ideal gas can be modified to account for the behavior observed in real gases.

The Van der Waals Theory of Condensation

The first theory of condensation originated with Van der Waals’ thesis in 1873. Van
der Waals succeeded in establishing an equation of state that described significant
deviations from the equation of the ideal gas. His analysis is based on the following
two fundamental hypotheses on the microscopic structure of the system 10:

1. The gas has microscopic constituents, the particles. Particles are extended in
space. They interact repulsively at short distances: particles do not overlap.

2. At larger distances, the particles also interact in an attractive way. This part of
the interaction is characterized by a constant a > 0 called specific attraction.

The short-distance repulsion indicates that, in the equation of state, the volume
v available to each particle should be replaced by a smaller quantity v −b taking
into account the volume of space each particle occupies. In order to deal with the
attractive part of the interaction, Van der Waals assumed that the system is homoge-
neous, a drastic simplification to which we will return later. These two hypotheses
led Van der Waals to his famous equation of state:

(
p + a

v2

)(
v −b

)= RT . (1.23)

The term a
v2 can be understood intuitively as follows. Let ρ

def= N
V = 1

v denote
the density of the gas (number of particles per unit volume). We assume that each
particle only interacts with particles in its neighborhood, up to some large, finite dis-
tance. By the homogeneity assumption, the total force exerted by the other particles
on a given particle deep inside the vessel averages to zero. However, for a particle in
a small layer along the boundary of the vessel, the force resulting from its interaction
with other particles has a positive component away from the boundary, since there
are more particles in this direction. This inward force reduces the pressure exerted on
the boundary of the vessel. Now, the number of particles in this layer along a portion
of the boundary of unit area is proportional to ρ. The total force on each particle in
this layer is proportional to the number of particles it interacts with, which is also
proportional to ρ. We conclude that the reduction in the pressure, compared to an
ideal gas, is proportional to ρ2 = 1/v2. A rigorous derivation will be given in Chap-
ter 4. ⋄

9At even smaller specific volumes, the system usually goes through another phase transition at
which the liquid transforms into a solid, but we will not discuss this issue here.

10The interaction between two particles at distance r is often modeled by a Lennard-Jones poten-
tial, that is, an interaction potential of the form Ar−12 −Br−6, with A,B > 0. The first term models the
short-range repulsion between the particles, while the second one models the long-range attraction.
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1.1. Equilibrium Thermodynamics 15

Of course, the ideal gas is recovered by setting a = b = 0. The analysis of (1.23)
(see Exercise 1.5 below) reveals that, in contrast to those of the ideal gas, the iso-
therms present different behaviors depending on the temperature being above or
below some critical temperature Tc, see Figure 1.4.

v

p

T < Tc

T > Tc

b

Figure 1.4: Isotherms of the Van der Waals equation of state (1.23) at low and
high temperature.

For supercritical temperatures, T > Tc, the behavior is qualitatively the same as
for the ideal gas; in particular, p is strictly decreasing in v . However, for subcriti-

cal temperatures, T < Tc, there is an interval over which ( ∂p
∂v )T > 0, thereby violat-

ing (1.18); this shows that this model has unphysical consequences. Moreover, in
real gases (remember Figure 1.3), there is a plateau in the graph of the pressure, cor-
responding to values of v at which the gas and liquid phases coexist. This plateau
is absent from Van der Waals’ isotherms.

Exercise 1.5. Study the equation of state (1.23) for v > b and show that there exists
a critical temperature,

Tc = Tc(a,b)
def= 8a

27Rb
,

such that the following occurs:

• When T > Tc, v 7→ p(v,T ) is decreasing everywhere.

• When T < Tc, v 7→ p(v,T ) is increasing on some interval.

Maxwell’s Construction

Van der Waals’ main simplifying hypothesis was the assumption that the system
remains homogeneous, which by itself makes the theory inadequate to describe the
inhomogeneities that must appear at condensation.

In order to include the condensation phenomenon in Van der Waals’ theory,
Maxwell [235] proposed a natural, albeit ad hoc, procedure to modify the low-
temperature isotherms given by (1.23). Since the goal is to allow the system to split
into regions that contain either gas or liquid, the latter should be at equal temper-
ature and pressure; he thus replaced p(v), on a well-chosen interval [vl , vg ], by a
constant ps , called saturation pressure .
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16 Chapter 1. Introduction

From a physical point of view, Maxwell’s determination of ps , and hence of
vg and vl , can be understood as follows. The integral

∫ vg
vl

p(v)dv represents the
area under the graph of the isotherm, between vl and vg , but it also represents the
amount of work necessary to compress the gas from vg down to vl . Therefore, if
one is to replace p(v) by a constant value between vl and vg , this value should be
chosen such that the work required for that compression be the same as the original
one. That is, vl , vg and ps should satisfy

∫ vl

vg

p(v)dv =
∫ vl

vg

ps dv ,

which gives ∫ vl

vg

p(v)dv = ps · (vg − vl ) . (1.24)

This determination of ps can also be given a geometrical meaning: it is the
unique height at which a coexistence interval can be chosen in such a way that the
two areas delimited by the Van der Waals isotherm and the segment are equal. For
that reason, the procedure proposed by Maxwell is usually called Maxwell’s equal-
area rule, or simply Maxwell’s Construction. We denote the resulting isotherm by
v 7→ MC p(v,T ); see Figure 1.5.

v

MC p

vl vg

ps

Figure 1.5: Maxwell’s Construction. The height of the segment, ps , is chosen
in such a way that the two connected regions delimited by the graph of p and
the segment (shaded in the picture) have equal areas.

Although it relies on a mixture of two conflicting hypotheses (first assume ho-
mogeneity, build an equation of state and then modify it by plugging in the con-
densation phenomenon, by hand, using the equal-area rule), the Van der Waals–
Maxwell theory often yields satisfactory quantitative results. It is a landmark in the
understanding of the thermodynamics of the coexistence of liquids and gases and
remains widely taught in classrooms today.

There are many sources in the literature where the interested reader can find
additional information about the Van der Waals–Maxwell theory; see, for instance,
[89, 130]. We will return to the liquid-vapor equilibrium in a more systematic (and
rigorous) way in Chapter 4.
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v

p

v

p

Figure 1.6: Left: some of the isotherms resulting from the Van der Waals–
Maxwell theory, which will be discussed in detail in Chapter 4. The shaded
region indicates the pairs (v, p) for which coexistence occurs. Right: the
isotherms of carbonic acid, measured by Thomas Andrews in 1869 [12].

1.2 From Micro to Macro: Statistical Mechanics

Just as was the case for thermodynamics, the object of statistical mechanics is the
description of macroscopic systems. In sharp contrast to the latter, however, sta-
tistical mechanics relies on a reductionist approach, whose goal is to derive the
macroscopic properties of a system from the microscopic description provided by
the fundamental laws of physics. This ambitious program was initiated in the sec-
ond half of the 19th Century, with Maxwell, Boltzmann and Gibbs as its main con-
tributors. It was essentially complete, as a general framework, when Gibbs pub-
lished his famous treatise [137] in 1902. The theory has known many important de-
velopments since then, in particular regarding the fundamental problem of phase
transitions.

As we already discussed, the enormous number of microscopic variables in-
volved renders impossible the problem of deriving the macroscopic properties of a
system directly from an application of the underlying fundamental theory describ-
ing its microscopic constituents. However, rather than giving up, one might try to
use this at our advantage: indeed, the huge number of objects involved makes it
conceivable that a probabilistic approach might be very efficient (after all, in how
many areas does one have samples of size of order 1023?). That is, the first step in
statistical mechanics is to abandon the idea of providing a complete deterministic
description of the system and to search instead for a probability distribution over
the set of all microstates, which yields predictions compatible with the observed
macrostate. Such a distribution should provide the probability of observing a given
microstate and should make it possible to compute the probability of events of in-
terest or the averages of relevant physical quantities.

This approach can also be formulated as follows: suppose that the only infor-
mation we have on a given macroscopic system (at equilibrium) is its microscopic
description (namely, we know the set of microstates and how to compute their en-
ergy) and the values of a few macroscopic variables (the same fixed in thermody-
namics). Equipped with this information, and only this information, what can be
said about a typical microstate?

The main relevant questions are therefore the following:

• What probability distributions should one use to describe large systems at
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18 Chapter 1. Introduction

equilibrium?

• With a suitable probability distribution at hand, what can be said about the
other macroscopic observables? Is it possible to show that their distribution
concentrates on their most probable value, when the system becomes large,
thus yielding deterministic results for such quantities?

• How can this description be related to the one provided by equilibrium ther-
modynamics?

• Can phase transitions be described within this framework?

Note that the goal of equilibrium statistical mechanics is not limited to the compu-
tation of the fundamental quantities appearing in equilibrium thermodynamics.
The formalism of statistical mechanics allows one to investigate numerous prob-
lems outside the scope of the latter theory. It allows for example to analyze fluc-
tuations of macroscopic quantities in large finite systems and thus obtain a finer
description than the one provided by thermodynamics.

In this section, we will introduce the central concepts of equilibrium statistical
mechanics, valid for general systems, not necessarily gases and liquids, although
such systems (as well as magnets) will be used in our illustrative examples.

As mentioned above, we assume that we are given the following basic inputs
from a more fundamental theory describing the system’s microscopic constituents:

1. The set Ω of microstates. To simplify the exposition and since this is enough to
explain the general ideas, we assume that the setΩ of microstates describing
the system is finite:

|Ω| <∞. (1.25)

2. The interactions between the microscopic constituents, in the form of the en-
ergy H (ω) associated to each microstate ω ∈Ω:

H :Ω→R ,

called the Hamiltonian of the system. We will use U
def= {

U =H (ω) : ω ∈Ω}
.

Assumption (1.25) will require space to be discretized. The latter simplification,
which will be made throughout the book, may seem rather extreme. It turns out
however that many phenomena of interest can still be investigated in this setting,
while the mathematical analysis becomes much more tractable. ⋄

We denote the set of probability distributions onΩ by M1(Ω). Since we assume
thatΩ is finite, a distribution 11 µ ∈M1(Ω) is entirely characterized by the collection
(µ({ω}))ω∈Ω of the probabilities associated to each microstateω ∈Ω; we will usually
abbreviate µ(ω) ≡ µ({ω}). By definition, µ(ω) ≥ 0 for all ω ∈ Ω and

∑
ω∈Ωµ(ω) = 1.

We call observable the result of a measurement on the system. Mathematically, it

11Although we already use it to denote the chemical potential, we also use the letter µ to denote a
generic element of M1(Ω), as done very often in the literature.
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1.2. From Micro to Macro: Statistical Mechanics 19

corresponds to a random variable f : Ω→ R. We will often denote the expected
value of an observable f under µ ∈M1(Ω) by

〈 f 〉µ def=
∑
ω∈Ω

f (ω)µ(ω) ,

although some alternative notations will occasionally be used in later chapters.

1.2.1 The microcanonical ensemble

The term “ensemble” was originally introduced by Gibbs [2]. In more modern
terms, it could simply be considered as a synonym of “probability space”. In statisti-
cal mechanics, working in a specific ensemble usually means adopting either of the
three descriptions described below: microcanonical, canonical, grand canonical. ⋄

In Section 1.1.1, we saw that it was convenient, when describing an isolated sys-
tem at equilibrium, to use extensive conserved quantities as macroscopic variables,
such as U ,V , N in our gas example.

We start our probabilistic description of an isolated system in the same way.
The relevant conserved quantities depend on the system under consideration, but
always contain the energy. Quantities such as the number of particles and the vol-
ume are assumed to be encoded into the set of microstates. Namely, we denote by
ΩΛ;N the set of all microstates describing a system of N particles located inside a
domainΛ of volume |Λ| =V (see the definition of the lattice gas in Section 1.2.4 for
a specific example). For our current discussion, we assume that the only additional
conserved quantity is the energy.

So, let us assume that the energy of the system is fixed to some value U . We are
looking for a probability distribution on ΩΛ;N that is concentrated on the set of all
microstates compatible with this constraint, that is, on the energy shell

ΩΛ;U ,N
def= {

ω ∈ΩΛ;N : H (ω) =U
}

.

If this is all the information we have on the system, then the simplest and most
natural assumption is that all configurations ω ∈ΩΛ;U ,N are equiprobable. Indeed,
if we consider the distribution µ as a description of the knowledge we have of the
system, then the uniform distribution represents faithfully the totality of our in-
formation. This is really just an application of Laplace’s Principle of Insufficient
Reason [3]. It leads naturally to the following definition:

Definition 1.7. Let U ∈U . The microcanonical distribution (at energy U ), νMic
Λ;U ,N ,

associated to a system composed of N particles located in a domainΛ, is the uniform
probability distribution concentrated onΩΛ;U ,N :

νMic
Λ;U ,N (ω)

def=
{

1
|ΩΛ;U ,N | if ω ∈ΩΛ;U ,N ,

0 otherwise.
(1.26)

Although the microcanonical distribution has the advantage of being natural
and easy to define, it can be difficult to work with, since counting the configurations
on the energy shell can represent a challenging combinatorial problem, even in
simple cases. Moreover, one is often more interested in the description of a system
at a fixed temperature T , rather than at fixed energy U .
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1.2.2 The canonical ensemble

Our goal now is to determine the relevant probability distribution to describe a
macroscopic system at equilibrium at a fixed temperature. As discussed earlier,
such a system is not isolated anymore, but in contact with a thermal reservoir with
which it can exchange energy.

Once we have the microcanonical description, the problem of constructing the
relevant probability distribution describing a system at equilibrium with an infinite
reservoir with which it can exchange energy and/or particles becomes conceptually
straightforward from a probabilistic point of view. Indeed, similarly to what we did
in Section 1.1.5, we can consider a system Σ in contact with a reservoir ΣR , the union
of the two forming a systemΣtot isolated from the rest of the universe, as in Figure 1.2.
SinceΣtot is isolated, it is described by the microcanonical distribution, and the prob-
ability distribution of the subsystem Σ can be deduced from this microcanonical dis-
tribution by integrating over all the variables pertaining to the reservoir. That is, the
measure describing Σ is the marginal of the microcanonical distribution correspond-
ing to the subsystem Σ. This is a well-posed problem, but also a difficult one. It turns
out that implementing rigorously such an approach is possible, once the statement
is properly formulated, but a detailed discussion is beyond the scope of this book. In
Section 4.7.1, we consider a simplified version of this problem; see also the discussion
(and the references) in Section 6.14.1.

Instead of following this path, we are going to use a generalization of the argu-
ment that led us to the microcanonical distribution to derive the distribution de-
scribing a system interacting with a reservoir. ⋄

When we discussed the microcanonical distribution above, we argued that the
uniform measure was the proper one to describe our knowledge of the system when
the only information available to us is the total energy. We would like to proceed
similarly here. The problem is that the temperature is not a mechanical quantity
as was the energy (that is, there is no observable ω 7→ T (ω)), so one cannot restrict
the setΩΛ;N to microstates with fixed temperatures. We thus need to take a slightly
different point of view.

Even though the energy of our system is not fixed anymore, one might still mea-
sure its average, which we also denote by U . In this case, extending the approach
used in the microcanonical case corresponds to looking for the probability dis-
tribution µ ∈ M1(ΩΛ;N ) that best encapsulates the fact that our only information
about the system is that 〈H 〉µ =U .

The Maximum Entropy Principle. In terms of randomness, the outcomes of a
random experiment whose probability distribution is uniform are the least pre-
dictable. Thus, what we did in the microcanonical case was to choose the most
unpredictable distribution on configurations with fixed energy.

Let Ω be an arbitrary finite set of microstates. One convenient (and essentially
unique, see below) way of quantifying the unpredictability of the outcomes of a
probability distribution µ on Ω is to use the notion of entropy introduced in infor-
mation theory by Shannon [301]:
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1.2. From Micro to Macro: Statistical Mechanics 21

Definition 1.8. The (Shannon) entropy [4] of µ ∈M1(Ω) is defined by

SSh(µ)
def= −

∑
ω∈Ω

µ(ω) logµ(ω) . (1.27)

Exercise 1.6. SSh : M1(Ω) →R is concave: for all µ,ν ∈M1(Ω) and all α ∈ [0,1],

SSh

(
αµ+ (1−α)ν

)≥αSSh(µ)+ (1−α)SSh(ν) .

The Shannon entropy provides a characterization of the uniform distribution
through a variational principle.

Lemma 1.9. The uniform distribution onΩ, νUnif(ω)
def= 1

|Ω| , is the unique probability
distribution at which SSh attains its maximum:

SSh(νUnif) = sup
µ∈M1(Ω)

SSh(µ) . (1.28)

Proof. Consider ψ(x)
def= −x log x, which is concave. Using Jensen’s Inequality (see

Appendix B.8.1) gives

SSh(µ) = |Ω|
∑
ω∈Ω

1

|Ω|ψ(µ(ω))

≤ |Ω|ψ
( ∑
ω∈Ω

1

|Ω|µ(ω)
)
= |Ω|ψ

( 1

|Ω|
)
= log |Ω| = SSh(νUnif) ,

with equality if and only if µ(·) is constant, that is, if µ= νUnif.

Since it is concave, with a unique maximum at νUnif, Shannon’s entropy provides a
way of measuring how far a distribution is from being uniform. As shown in Ap-
pendix B.11, the Shannon entropy is the unique (up to a multiplicative constant)
such function (under suitable assumptions). We can thus use it to select, among all
probability distributions in some set, the one that is “the most uniform”.

Namely, assume that we have a set of probability distributions M ′
1(Ω) ⊂M1(Ω)

representing the set of all distributions compatible with the information at our dis-
posal. Then, the one that best describes our state of knowledge is the one maximiz-
ing the Shannon entropy; this way of selecting a distribution is called the Maximum
Entropy Principle. Its application to statistical mechanics, as an extension of the
Principle of Insufficient Reason, was pioneered by Jaynes [181].

For example, the microcanonical distribution νMic
Λ;U ,N has maximal entropy

among all distributions concentrated on the energy shellΩ(U ):

SSh(νMic
Λ;U ,N ) = sup

µ∈M1(ΩΛ;N ):
µ(ΩΛ;U ,N )=1

SSh(µ) . (1.29)

The canonical Gibbs distribution. We apply the Maximum Entropy Principle to
find the probability distribution µ ∈M1(ΩΛ;N ) that maximizes SSh, under the con-
straint that 〈H 〉µ = U . From an analytic point of view, this amounts to searching
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for the collection (µ(ω))ω∈ΩΛ;N of nonnegative real numbers that solves the follow-
ing optimization problem:

Minimize
∑

ω∈ΩΛ;N

µ(ω) logµ(ω) when





∑
ω∈ΩΛ;N

µ(ω) = 1,

∑
ω∈ΩΛ;N

µ(ω)H (ω) =U .
(1.30)

For this problem to have a solution, we require that U ∈ [Umin,Umax], where Umin
def=

infωH (ω), Umax = supωH (ω). Such problems with constraints can be solved by
using the method of Lagrange multipliers. Since there are two constraints, let us
introduce two Lagrange multipliers, λ and β, and define the following Lagrange
function:

L(µ)
def=

∑
ω∈ΩΛ;N

µ(ω) logµ(ω)+λ
∑

ω∈ΩΛ;N

µ(ω)+β
∑

ω∈ΩΛ;N

µ(ω)H (ω) .

The optimization problem then turns into the analytic study of a system of |ΩΛ;N |+
2 unknowns: 




∇L = 0,∑
ω∈ΩΛ;N

µ(ω) = 1,

∑
ω∈ΩΛ;N

µ(ω)H (ω) =U ,

where ∇ is the gradient involving the derivatives with respect to each µ(ω), ω ∈
ΩΛ;N . The condition ∇L = 0 thus corresponds to

∂L

∂µ(ω)
= logµ(ω)+1+λ+βH (ω) = 0, ∀ω ∈ΩΛ;N .

The solution is of the form µ(ω) = e−βH (ω)−1−λ. The first constraint
∑
µ(ω) = 1

implies that e1+λ = ∑
ω∈ΩΛ;N e−βH (ω). In conclusion, we see that the distribution

we are after is

µβ(ω)
def= e−βH (ω)

∑
ω′∈ΩΛ;N e−βH (ω′)

,

where the Lagrange multiplier β must be chosen such that
∑

ω∈ΩΛ;N

µβ(ω)H (ω) =U . (1.31)

Note that this equation always possesses exactly one solution β = β(U ) when U ∈
(Umin,Umax); this is an immediate consequence of the following

Exercise 1.7. Show that β 7→ 〈H 〉µβ is continuously differentiable, decreasing and

lim
β→−∞

〈H 〉µβ =Umax , lim
β→+∞

〈H 〉µβ =Umin .

Since β can always be chosen in such a way that the average energy takes a given
value, it will be used from now on as the natural parameter for the canonical dis-
tribution. To summarize, the probability distribution describing a system at equi-
librium that can exchange energy with the environment and possesses an average
energy is assumed to have the following form:
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Definition 1.10. The canonical Gibbs distribution at parameter β associated to a
system of N particles located in a domain Λ is the probability distribution on ΩΛ;N

defined by

µΛ;β,N (ω)
def= e−βH (ω)

ZΛ;β,N
.

The exponential e−βH is called the Boltzmann weight and the normalizing sum

ZΛ;β,N
def=

∑
ω∈ΩΛ;N

e−βH (ω)

is called the canonical partition function.

We still need to provide an interpretation for the parameter β. As will be argued
below, in Section 1.3 (see also Exercise 1.12), β can in fact be identified with the
inverse temperature.

Exercise 1.8. Using the Maximum Entropy Principle, determine the probability dis-
tribution of maximal entropy, µ = (µ(1), . . . ,µ(6)), for the outcomes of a dice whose
expected value is 4.

1.2.3 The grand canonical ensemble

Let us generalize the preceding discussion to the case of a system at equilibrium
that can exchange both energy and particles with the environment. From the ther-
modynamical point of view, such a system is characterized by its temperature and
its chemical potential.

One can then proceed exactly as in the previous section and apply the Maxi-
mum Entropy Principle to the set of all probability distributions with prescribed

average energy and average number of particles. Let us denote byΩΛ
def= ⋃

N≥0ΩΛ;N

the set of all microstates with an arbitrary number of particles all located inside
the region Λ. A straightforward adaptation of the computations done above (with
two Lagrange multipliers β and µ̂) shows that the relevant distribution in this case
should take the following form (writing µ̂=−βµ).

Definition 1.11. The grand canonical Gibbs distribution at parameters β and µ

associated to a system of particles located in a regionΛ is the probability distribution
onΩΛ defined by

νΛ;β,µ(ω)
def= e−β(H (ω)−µN )

ZΛ;β,µ
, if ω ∈ΩΛ;N .

The normalizing sum

ZΛ;β,µ
def=

∑
N

eβµN
∑

ω∈ΩΛ;N

e−βH (ω)

is called the grand canonical partition function.

Similarly as before, the parametersβ andµ have to be chosen in such a way that the
expected value of the energy and number of particles match the desired values. In
Section 1.3, we will argue thatβ and µ can be identified with the inverse temperature
and chemical potential.
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1.2.4 Examples: Two models of a gas.

We now present two examples of statistical mechanical models of a gas. The first
one, although outside the main theme of this book, will be a model in the contin-
uum, based on the description provided by Hamiltonian mechanics. The second
one will be a lattice gas model, which can be seen as a simplification of the previ-
ous model and will be the main topic of Chapter 4.

The continuum gas.

We model a gas composed of N particles, contained in a vessel represented by a
bounded subset Λ ⊂ Rd . As a reader familiar with Hamiltonian mechanics might
know, the state of such a system consists in the collection (pk , qk )k=1,...,N of the
momentum pk ∈ Rd and the position qk ∈Λ of each particle. In particular, the set
of microstates is

ΩΛ;N = (Rd ×Λ)N .

The Hamiltonian takes the usual form of a sum of a kinetic energy and a poten-
tial energy:

H (p1, q1, . . . , pN , qN )
def=

N∑
k=1

∥pk∥2
2

2m
+

∑
1≤i< j≤N

φ(∥q j −qi∥2) ,

where m is the mass of each particle and the potential φ encodes the contribu-
tion to the total energy due to the interaction between the i th and j th particles,
assumed to depend only on the distance ∥q j −qi∥2 between the particles.

Let us consider the canonical distribution associated to such a system. Our dis-
cussion above does not apply verbatim, since we assumed that ΩΛ;N was finite,
while here it is a continuum. Nevertheless, the conclusion in this case is the nat-
ural generalization of what we saw earlier. Namely, the probability of an event B
under the canonical distribution at inverse temperature β is also defined using the
Boltzmann weight:

µΛ;β,N (B)
def= 1

ZΛ;β,N

∫

ΩΛ;N

1B e−βH (p1,q1,...,pN ,qN )dp1dq1 · · ·dpN dqN ,

where 1B = 1B (p1, q1, . . . , qN , pN ) is the indicator of B and

ZΛ;β,N
def=

∫

ΩΛ;N

e−βH (p1,q1,...,pN ,qN )dp1dq1 · · ·dpN dqN .

Note that we cannot simply give the probability of each individual microstate, since
they all have zero probability. Thanks to the form of the Hamiltonian, the integra-
tion over the momenta can be done explicitly:

ZΛ;β,N =
{∫

R
e−

β
2m p2

dp
}d N

∫

ΛN
e−βH conf(q1,...,qN )dq1 · · ·dqN =

(2πm

β

)d N /2
Zconf
Λ;β,N ,

where we have introduced the configuration integral

Zconf
Λ;β,N

def=
∫

ΛN
e−βH conf(q1,...,qN )dq1 · · ·dqN ,

and H conf(q1, . . . , qN )
def= ∑

1≤i< j≤N φ(∥q j −qi∥2).
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In fact, when an event B only depends on the positions of the particles, not
on their momenta, the factors originating from the integration over the momenta
cancel in the numerator and in the denominator, giving

µΛ;β,N (B) = 1

Zconf
Λ;β,N

∫

ΛN
1B e−βH conf(q1,...,qN )dq1 · · ·dqN .

We thus see that the difficulties in analyzing this gas from the point of view
of the canonical ensemble come from the positions: the momenta have no effect
on the probability of events depending only on the positions, while they only con-
tribute an explicit prefactor to the partition function. The position-dependent part,
however, is difficult to handle as soon as the interaction potential φ is not trivial.

Usually, φ is assumed to contain two terms, corresponding respectively to the
short- and long-range part of the interaction:

φ(x) =φshort(x)+φlong(x) .

If we assume that the particles are identified with small spheres of fixed radius r0 >
0, a simple choice for φshort is the following hard-core interaction:

φshort(x)
def=

{
+∞ if |x| ≤ 2r0 ,

0 otherwise.

The long-range part of the interaction can be of any type, but it should at least
vanish at long distance:

φlong(x) → 0 when |x|→∞ .

The decay at +∞ should be fast enough, so as to guarantee the existence of Zconf
Λ;β,N

for instance, but we will not describe this in any further detail.

Unfortunately, even under further strong simplifying assumptions on φ, the
mathematical analysis of such systems, in particular the computation of Zconf

Λ;β,N re-

mains as yet intractable in most cases. This is the reason for which we consider
discretized versions of these models. The model we will now introduce, although
representing a mere caricature of the corresponding continuum model, is based
on an interaction embodying Van der Waals’ two main assumptions: short-range
repulsion and long-range attraction.

The Lattice Gas.

The lattice gas is obtained by first ignoring the momenta (for the reasons explained
above) and assuming that the particles’ positions are restricted to a discrete subset
of Rd . In general, this subset is taken to be the d -dimensional cubic lattice

Zd def= {
i = (i1, . . . , id ) ∈Rd : ik ∈Z for each k ∈ {1, . . . ,d}

}
.

In other words, one imagines that Rd is composed of small cells and that each cell
can accommodate at most one particle. To describe the microstates of the model,
we consider a finite region Λ ⊂ Zd representing the vessel and one associates an
occupation number ηi taking values in {0,1} to each cell i ∈Λ: the value 0 means
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that the cell is empty, while the value 1 means that it contains a particle. The set of
microstates is thus simply

ΩΛ
def= {0,1}Λ .

Note that this model automatically includes a short-range repulsion between
the particles, since no two particles are allowed to share a same cell. The attrac-
tive part of the interaction can then be included into the Hamiltonian: for any
η= (ηi )i∈Λ ∈ΩΛ,

H (η)
def=

∑
{i , j }⊂Λ

J ( j − i )ηiη j ,

which is completely similar to the Hamiltonian H conf(q1, . . . , qN ) above, the func-
tion J :Zd →R playing the role of φlong (one may assume that J ( j − i ) depends only
on the distance between the cells i and j , but this is not necessary). Note that the
contribution of a pair of cells {i , j } is zero if they do not both contain a particle.

The number of particles inΛ is given by

NΛ(η)
def=

∑
i∈Λ

ηi .

It will be useful to distinguish the partition functions in the various ensembles. The
canonical partition function will be denoted

QΛ;β,N =
∑

η∈ΩΛ;N

e−βH (η) ,

whereΩΛ;N
def= {

η ∈ΩΛ : NΛ(η) = N
}
, and the grand canonical one will be denoted

ΘΛ;β,µ =
∑
N

eβµN
∑

η∈ΩΛ;N

e−βH (η) .

Example 1.12. The simplest instance of the lattice gas is obtained by setting J ≡ 0, in
which case the Hamiltonian is identically 0. Since its particles only interact through
short-range repulsion, this model is called the hard-core lattice gas. ⋄

1.3 Linking Statistical Mechanics and Thermodynamics

So far, we have introduced the central probability distributions of statistical me-
chanics. With these definitions, the analysis of specific systems reduces to an ap-
plication of probability theory and the statistical properties of any observable can
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1.3. Linking Statistical Mechanics and Thermodynamics 27

(in principle) be deduced. Nevertheless, if one wishes to establish a link with ther-
modynamics, then one must identify the objects in statistical mechanics that cor-
respond to the quantities in thermodynamics that are not observables, that is, not
functions of the microstate, such as the entropy or the temperature.

This will be done by making certain identifications, making one assumption
(Boltzmann’s Principle) and using certain analogies with thermodynamics. The real
justification that these identifications are meaningful lies in the fact that the prop-
erties derived for and from these quantities in the rest of the book parallel precisely
their analogues in thermodynamics. A reader unconvinced by these analogies can
simply take them as motivations for the terminology used in statistical mechanics.

Since our discussion of thermodynamics mostly dealt with the example of a gas,
it will be more convenient to discuss the identifications below in a statistical me-
chanical model of a lattice gas as well. But everything we explain can be extended
to general systems.

1.3.1 Boltzmann’s Principle and the thermodynamic limit

Consider the lattice gas in a region Λ ⊂ Zd with |Λ| = V , composed of N particles
and of total energy U . How should the entropy, function of the macrostate (U ,V , N ),
be defined? We are looking for an additive function, as in (1.2), associated to an
extremum principle that determines equilibrium.

Let us first generalize the energy shell and consider, for each macrostate
(U ,V , N ), the set of all microstates compatible with (U ,V , N ):

ΩΛ;U ,N
def= {

η ∈ΩΛ : H (η) =U , NΛ(η) = N
}

.

Definition 1.13. The Boltzmann entropy associated to a system of N particles inΛ
with total energy U is defined by 12

SBoltz(Λ;U , N )
def= log |ΩΛ;U ,N | .

We motivate this definition with the following discussion.

Consider two lattice gases at equilibrium, in two separate vessels with equal vol-
umes |Λ1| = |Λ2| = V , containing N 0

1 and N 0
2 particles respectively. For simplicity,

assume that the particles interact only through hard-core repulsion (H ≡ 0) and

that N
def= N 0

1 +N 0
2 is even.

Let us now put the two vessels in contact so that they can exchange particles.
To reach a new equilibrium state, the N particles are redistributed among the two
vessels, using the total volume at their disposal:

N 0
1

=⇒

V V 2V

N 0
2 N 0

1 +N 0
2

+

12Physicists usually write this condition as SBoltz(Λ;U , N )
def= kB log |Ω(Λ;U , N )|, where kB is Boltz-

mann’s constant. In this book, we will always assume that the units are chosen so that kB = 1.
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According to the postulate of thermostatics, equilibrium is realized once the
pair giving the number of particles in each vessel, (N1, N2), maximizes the sum of
the entropies of the vessels, under the constraint that N 0

1 +N 0
2 = N . Let us see why

Boltzmann’s definition of entropy is the most natural candidate for the function
describing this extremum principle.

From the point of view of statistical mechanics, once the vessels have been put

in contact, the whole system is described by νMic
Λ;N1+N2

(we set Λ
def= Λ1 ∪Λ2), under

which the probability of observing N1 particles in Λ1, and thus N2 = N −N1 in Λ2,
is given by

|ΩΛ1;N1 | · |ΩΛ2;N2 |
|ΩΛ;N | . (1.32)

We are interested in the pairs (N1, N2) that maximize this probability, under the
constraint N1 + N2 = N . In (1.32), only the numerator depends on N1, N2, and
|ΩΛk ;Nk | =

( V
Nk

)
. As can be easily verified (see Exercise 1.9 below),

max
N1,N2:

N1+N2=N

(
V

N1

)(
V

N2

)
=

(
V
N
2

)(
V
N
2

)
, (1.33)

meaning that the most probable configuration is the one in which the two vessels
have the same number of particles. In terms of the Boltzmann entropy, (1.33) takes
the form

max
N1,N2:

N1+N2=N

{
SBoltz(Λ1; N1)+SBoltz(Λ2; N2)

}
= SBoltz

(
Λ1; N

2

)+SBoltz

(
Λ2; N

2

)
, (1.34)

which, since this is a discrete version of the postulate of thermodynamics, makes
SBoltz a natural candidate for the entropy of the system.

Unfortunately, this definition still suffers from one important defect. Namely,
if the system is large, although having the same number of particles in each half,
(N1, N2) = ( N

2 , N
2 ), is more likely than any other repartition (N ′

1, N ′
2), it is never-

theless an event with small probability! (Of order 1p
N

, see the exercise below.)

Moreover, any other pair (N ′
1, N ′

2) such that N ′
1 + N ′

2 = N , |N ′
1 − 1

2 N | ≪ N 1/2 and
|N ′

2 − 1
2 N |≪ N 1/2 has essentially the same probability.

Exercise 1.9. Prove (1.33). Then, show the probability of having the same number
of particles, N

2 in each vessel, is of the order 1p
N

.

What must be considered, in order to have a deterministic behavior, is not the
number of particles in each vessel but their densities. Let therefore

ρΛ1

def= NΛ1

V
, ρΛ2

def= NΛ2

V

denote the random variables giving the densities of particles in each of the two
halves. The constraint N1 +N2 = N translates into

ρΛ1 +ρΛ2

2
= N

2V
def= ρ ,

which is the overall density of the system.
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1.3. Linking Statistical Mechanics and Thermodynamics 29

For a large system, ρΛ1 and ρΛ2 are both close to ρ, but they always undergo
microscopic fluctuations around ρ: the probability of observing a fluctuation of
size at least ϵ > 0, νMic

Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)
, is always positive, even though it might be

very small.
If we are after a more macroscopic statement, of the type “at equilibrium, the

densities in the two halves are (exactly) equal to ρ”, then some limiting procedure
is necessary, similar to the one used in the Law of Large Numbers.

The natural setting is that of a large system with a fixed density. Let us thus fix ρ,
which is the overall density of the system. We will let the size of the system |Λ| =V
increases indefinitely, V →∞, and also let the total number of particles N →∞, in
such a way that

N

2V
→ ρ .

This procedure is called the thermodynamic limit. One might then expect, in this
limit, that the densities in the two subsystems concentrate on ρ, in the sense that

νMic
Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)= νMic

Λ;N

(|ρΛ2 −ρ| ≥ ϵ
)→ 0, for all ϵ> 0.

Let us see how this concentration can be obtained and how it relates to Boltzmann’s
definition of entropy. Keeping in mind that N2 = N −N1,

νMic
Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)=

∑
N1:∣∣ N1

V −ρ
∣∣≥ϵ

|ΩΛ1;N1 | · |ΩΛ2;N2 |
|ΩΛ;N |

=
∑
N1:∣∣ N1

V −ρ
∣∣≥ϵ

exp
(
SBoltz(Λ1; N1)+SBoltz(Λ2; N2)−SBoltz(Λ; N )

)
. (1.35)

It turns out that, in the case of the hard-core gas we are considering, the Boltz-
mann entropy has a well defined density in the thermodynamic limit. Namely, since
|ΩΛ;N | = (2V

N

)
, by a simple use of Stirling’s formula (Lemma B.3),

lim
1

2V
SBoltz(Λ; N ) = shard

Boltz(ρ)
def= −ρ logρ− (1−ρ) log(1−ρ) .

We can therefore use the entropy density shard
Boltz(·) in each of the terms appearing in

the exponential of (1.35). Letting ρk
def= Nk

V and remembering that ρ1+ρ2
2 = ρ,

νMic
Λ;N

(|ρΛ1 −ρ| ≥ ϵ
)= eo(1)V

∑
N1:

|ρ1−ρ|≥ϵ

exp
{(
shard

Boltz(ρ1)+ shard
Boltz(ρ2)−2shard

Boltz(ρ)
)
V

}
,

where o(1) tends to 0 in the thermodynamic limit 13. Now, shard
Boltz is concave and so

shard
Boltz(ρ1)+ shard

Boltz(ρ2)

2
≤ shard

Boltz(ρ) .

In fact, it is strictly concave, which implies that there exists c(ϵ) > 0 such that

inf
{
shard

Boltz(ρ)− shard
Boltz(ρ1)+ shard

Boltz(ρ2)

2
:
ρ1 +ρ2

2
= ρ, |ρ1 −ρ| ≥ ϵ

}
= c(ϵ) .

13Strictly speaking, one should treat values of ρ close to 0 and 1 separately. To keep the exposition
short, we ignore this minor issue here. It will be addressed in Chapter 4.
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ρ

shard
Boltz

ρ1 ρ2ρ

c(ε)

Therefore, since the number of terms in the sum is bounded above by V , we con-
clude that

νMic
Λ;U ,N (|ρ1 −ρ| ≥ ϵ) ≤V e−(2c(ϵ)−o(1))V .

The latter quantity tends to 0 in the limit V →∞, for any ϵ > 0. We conclude that
the densities in each of the two subsystems indeed concentrate on ρ as V →∞.

In other words, to make the parallel with the discrete version (1.34), we have
proven that in the thermodynamic limit, the densities in the two boxes become
both equal to ρ; these are the unique densities that realize the supremum in

sup
ρ1,ρ2:

ρ1+ρ2
2 =ρ

{
shard

Boltz(ρ1)+ shard
Boltz(ρ2)

}= shard
Boltz(ρ)+ shard

Boltz(ρ) .

The above discussion was restricted to the hard-core lattice gas, but it shows
that, while the Boltzmann entropy SBoltz does not fully satisfy our desiderata, con-
sidering its density in the thermodynamic limit yields a function that correctly de-
scribes the equilibrium values of the thermodynamic parameters, as the unique
solution of an extremum principle.

Let us then consider a generic situation of a system with macrostate (U ,V , N ).
To treat models beyond the hard-core lattice gas, the definition of the thermody-
namic limit must include a limit U →∞ with U /V → u.

Definition 1.14. Fix u and ρ. Consider the thermodynamic limit, U →∞, V →∞,
N →∞, in such a way that U

V → u and N
V → ρ, and let Λ be increasing, such that

|Λ| = V . The Boltzmann entropy density at energy density u and particle density ρ
is defined by the following limit, when it exists:

sBoltz(u,ρ)
def= lim

1

V
SBoltz(Λ,U , N ) .

Of course, two nontrivial claims are hidden in the definition of the Boltzmann en-
tropy density: the existence of the limit and the fact that it does not depend on the
chosen sequence of sets Λ. This can be proved for a very large class of models, at
least for sufficiently regular sequences (cubes would be fine, but much more gen-
eral shapes can be accommodated). Several statements of this type will be proved
in later chapters.

In view of the above discussion, it seems natural to consider the Boltzmann en-
tropy density as the statistical mechanical analogue of the thermodynamic entropy
density s(u,ρ) = 1

V S(U ,V , N ).
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1.3. Linking Statistical Mechanics and Thermodynamics 31

Boltzmann’s Principle. The thermodynamic entropy density associated to the
macrostate (U ,V , N ), corresponding to densities u = U

V , ρ = N
V , will be identified with

the Boltzmann entropy density:

s(u,ρ) ↔ sBoltz(u,ρ) .

It is possible, at least for reasonably well-behaved systems, to prove that sBoltz

possesses all the properties we established for its thermodynamic counterpart. For
this introduction, we will only give some plausibility argument to show that sBoltz is
concave in general (similar arguments will be made rigorous in Chapter 4).

Consider again a gas Σ contained in a cubic domain Λ, with parameters V =
|Λ|,U , N . Let u = U

V , ρ = N
V . Fix α ∈ (0,1) and consider u1,u2 and ρ1,ρ2 such that

u =αu1 + (1−α)u2 , and ρ =αρ1 + (1−α)ρ2 .

We think of Σ as being composed of a large number M of subsystems, Σ1, . . . ,ΣM ,
each contained in a sub-cube of volume V ′ = V /M . If one can neglect the energy
due to the interaction between the subsystems (which is possible if we assume that
the latter are still very large), then one way of having energy and particle densities
u and ρ in Σ is to have energy and particle densities u1 and ρ1 in a fraction α of the
subsystems, and energy and particle densities u2 and ρ2 in the remaining ones. We
then have

|ΩΛ;U ,N | ≥ |ΩΛ′;u1V ′,ρ1V ′ |αM |ΩΛ′;u2V ′,ρ2V ′ |(1−α)M ,

whereΛ′ denotes a cube of volume V ′. Therefore,

1

V
log |ΩΛ;U ,N | ≥α 1

V ′ log |ΩΛ′;u1V ′,ρ1V ′ |+ (1−α)
1

V ′ log |ΩΛ′;u2V ′,ρ2V ′ | .

Letting first M →∞ and then taking the thermodynamic limit V ′ →∞ yields

sBoltz

(
αu1 + (1−α)u2,αρ1 + (1−α)ρ2

)≥αsBoltz(u1,ρ1)+ (1−α)sBoltz(u2,ρ2) ,

as desired.

Assuming that sBoltz(u,ρ) exists and satisfies the relations we have seen in ther-
modynamics, and using Boltzmann’s principle, we will now motivate the definition
of the thermodynamic potentials studied in the canonical and grand canonical en-
sembles of statistical mechanics, namely the free energy and pressure.

Canonical ensemble.

Observe first that the canonical partition function at parameter β of a lattice gas
with N particles in a vessel of size |Λ| =V can be rewritten as

QΛ;β,N =
∑

U∈U
e−βU |ΩΛ;U ,N | =

∑
U∈U

e−βU+SBoltz(Λ;U ,N ) = eo(1)V
∑

U∈U
e−(βu−sBoltz(u,ρ))V ,

where we introduced u
def= U /V , ρ

def= N /V and used the definition of the Boltzmann
entropy density:

SBoltz(Λ;U , N ) = (sBoltz(u,ρ)+o(1))V .

One can then bound the sum from above and from below by keeping only its largest
term

e−V infu {βu−sBoltz(u,ρ)} ≤
∑

U∈U
e−(βu−sBoltz(u,ρ))V ≤ |U |e−V infu {βu−sBoltz(u,ρ)} . (1.36)
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To be more specific, let us assume that the lattice gas has finite-range interactions,
meaning that J ( j−i ) = 0 as soon as ∥ j−i∥2 is larger than some fixed constant. In this
case, |U | is bounded by a constant times V , which gives 1

V log |U | → 0. Therefore,
in the thermodynamic limit (N ,V →∞, N /V → ρ), we obtain

lim
1

V
logQΛ;β,N =− inf

u
{βu − sBoltz(u,ρ)}

def= − f̂ (β,ρ) . (1.37)

In order to make the desired identifications with thermodynamics, we first argue
that, under the canonical Gibbs distribution, the energy density of the system con-
centrates, in the thermodynamic limit, on the value u = u(β,ρ) minimizing βu −
sBoltz(u,ρ). (Note the similarity between the argument below and the discussion in
Section 1.1.5.) Indeed, for ϵ> 0, let

Uϵ
def= {

U ∈U :
∣∣βu − sBoltz(u,ρ)−β{u − sBoltz(u,ρ)}

∣∣≤ ϵ}

denote the set of values of the energy for which βu−sBoltz(u,ρ) differs from its min-
imum value by at most ϵ. Then, repeating (1.36) for the sum over U ∈U \Uϵ,

µΛ;β,N
(H

V ̸∈Uϵ

)=
∑

U∈U \Uϵ
e−βU+SBoltz(Λ;U ,N )

QΛ;β,N

≤ |U |e−V {βu−sBoltz(u,ρ)+ϵ}

e−V {βu−sBoltz(u,ρ)}
eo(1)V ≤ e−(ϵ−o(1))V ,

which tends to 0 as V →∞, for any ϵ> 0.
Up to now, the arguments were purely probabilistic. We are now going to use

Boltzmann’s Principle in order to relate relevant quantities to their thermodynamic
counterparts.

First, since the energy density concentrates on the value u, it is natural to iden-
tify the latter with the thermodynamic equilibrium energy density. Now, note that
u is also the value such that (assuming differentiability)

β= ∂sBoltz

∂u
(u,ρ) . (1.38)

Using Boltzmann’s Principle to identify sBoltz with the thermodynamic entropy den-
sity s and comparing (1.38) with the right-hand side of (1.3), we see that the pa-
rameter β of the canonical distribution should indeed be interpreted as the inverse
temperature.

In turn, comparing (1.37) and (1.15), we see that f (T,ρ) = T f̂ (1/T,ρ) can be
identified with the Helmholtz free energy density. We conclude that, when it exists,
the limit

− lim
1

βV
logQΛ;β,N (1.39)

is the relevant thermodynamic potential for the description of the canonical lattice
gas. It will simply be called the free energy.

Exercise 1.10. Show that f̂ (β,ρ) defined in (1.37) is concave in β, in agreement with
the result of Exercise 1.3 obtained in the thermodynamical context.
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1.3. Linking Statistical Mechanics and Thermodynamics 33

Exercise 1.11. Let νMic
Λ;U ,N denote the microcanonical distribution inΛ associated to

the parameters U , N . Show that its Shannon entropy coincides with the Boltzmann
entropy:

SSh(νMic
Λ;U ,N ) = SBoltz(Λ;U , N ) .

Therefore, Boltzmann’s Principle actually identifies the Shannon entropy density as-
sociated to the microcanonical distribution with the thermodynamic entropy den-
sity.

Exercise 1.12. Let µΛ;β(U ),N be the canonical Gibbs distribution associated to the
parameter β(U ) for which (1.31) holds. Show that

∂SSh(µΛ;β(U ),N )

∂U
=β(U ) .

Therefore, identifying, in analogy with what is done in Exercise 1.11, the Shannon
entropy of the canonical distribution with the thermodynamical entropy yields an
alternative motivation to identify the parameter β with the inverse temperature.

Compute also U −T (U )SSh(µβ(U )) and verify that it coincides with the definition
of free energy in the canonical ensemble.

Grand canonical ensemble.

We can do the same type of argument for the grand canonical partition function at
parameter β,µ of a gas in a region of volume |Λ| =V :

ΘΛ;β,µ =
∑

N ,U
eβµN−βU |ΩΛ;U ,N |

=
∑

N ,U
eβµN−βU+SBoltz(Λ;U ,N ) = eo(1)V

∑
ρ,u

e−{βu−βµρ−s(u,ρ)}V .

Arguing as before, we conclude that, in the thermodynamic limit V →∞,

lim
1

V
logΘΛ;β,µ =− inf

u,ρ
{βu −βµρ− s(u,ρ)}

def= −φ̂G(β,−µ/T ) . (1.40)

Again, the particle and energy densities concentrate on the values u = u(β,µ) and
ρ = ρ(β,µ) such that

β= ∂s

∂u
(u,ρ) , βµ= ∂s

∂ρ
(u,ρ) .

In view of (1.3) and (1.6), this allows us to interpret the parameters β and µ of the
grand canonical distribution as the inverse temperature and the chemical poten-

tial, respectively. Moreover, comparing (1.40) with (1.20), we see that φG(T,µ)
def=

T φ̂G(1/T,−µ/T ) can be identified with the density of the grand potential, which,
by (1.22), corresponds to minus the pressure p(T,µ) of the model.

We thus see that, when the limit exists,

lim
1

βV
logΘΛ;β,µ (1.41)

is the relevant thermodynamical potential for the description of the grand canoni-
cal ensemble; it will simply be called the pressure.

In later chapters, we will see precise (and rigorous) versions of the kind of argu-
ment used above.
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1.3.2 Deriving the equation of state of the ideal gas

Computing the free energy or the pressure of a given model is not trivial, in general,
and will be done for several interesting cases in later chapters. Nevertheless, if we
consider the simplest possible case, the hard-core lattice gas, then some explicit
computations can be done.

Fix β > 0 and µ ∈ R. Since H ≡ 0, the grand canonical partition function is
easily computed:

ΘΛ;β,µ =
V∑

N=0

(
V

N

)
eβµN = (

1+eβµ
)V .

It follows from (1.41) that, in the thermodynamic limit V →∞, the pressure is given
by

p(T,µ) = T log(1+eβµ) . (1.42)

The average number of particles is given by

〈
NΛ

〉
νΛ;β,µ

= 1

β

∂ logΘΛ;β,µ

∂µ
= eβµ

1+eβµ
V .

In particular, in the thermodynamic limit V →∞,

ρ(β,µ)
def= lim

V →∞
〈 NΛ

V

〉
νΛ;β,µ

= eβµ

1+eβµ
.

Using this in (1.42), we obtain the equation of the isotherms:

p =−T log(1−ρ) . (1.43)

For a diluted gas, ρ≪ 1, a Taylor expansion gives p = ρT +O(ρ2), which in terms of
the specific volume v = 1/ρ becomes

pv = T +O( 1
v ) ,

and we recover the equation of state for an ideal gas, see (1.14).

v

p =−T log(1− 1
v )

1

The reason we observe deviations from the ideal gas law at higher densities (small
v) is due to the repulsive interaction between the particles, which comes from the
fact that there can be at most one of them in each cell. Note, also, that we do not
find a coexistence plateau in this model, see (1.43). This is due to the absence of
attractive interaction between the particles. More general situations will be con-
sidered in Chapter 4.
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1.3.3 The basic structure

The structure provided by the formalism presented so far, applied to the lattice gas,
can be summarized as follows:

Ω, Hamiltonian

Finite-volume Gibbs distribution, pressure/free energy

Thermodynamic limit

Macroscopic properties, phase transitions

Many models will be introduced and analyzed in the rest of the book, based
on this structure. These models will be used to study various aspects of equilib-
rium statical mechanics: macroscopic features, first-order phase transitions, fluc-
tuations, equivalence of the different ensembles, etc. Since it is mathematically
simpler and physically often more relevant, we will mostly work at fixed tempera-
ture rather than fixed energy; the basic object for us will thus be the canonical and
grand canonical Gibbs distributions.

Let us now move on to another type of phenomenon which can be studied in
this formalism and which will be one of the main concerns of later chapters.

1.4 Magnetic systems

In this section, we describe another important class of macroscopic systems en-
countered in this book: magnets. We will discuss the two main types of behavior
magnets can present, paramagnetism and ferromagnetism, and introduce one of
the main models used for their description.

1.4.1 Phenomenology: Paramagnets vs. Ferromagnets

Consider a sample of some material whose atoms are arranged in a regular crys-
talline structure [5]. We suppose that each of these atoms carries a magnetic mo-
ment (picture a small magnet attached to each atom) called its spin. We assume
that each spin has the tendency of aligning with its neighbors and with an external
magnetic field.

If the magnetic field points in a fixed direction, the spins are globally ordered:
they tend to align with the field and thus all point roughly in the same direction. If
we then slowly decrease the intensity of the external field to zero, two behaviors are
possible.

Paramagnetic behaviour. In the first scenario, the global order is progressively
lost as the field decreases and, when the latter reaches zero, the spins’ global order
is lost. Such a behavior is called paramagnetism:
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This phenomenon can be measured quantitatively by introducing the magne-
tization, which is the average of the spins, projected along the direction of the mag-
netic field. For a paramagnet, when the field decreases from a positive value to zero
(maintaining the direction fixed), or similarly if it increases from a negative value
to zero, the magnetization tends to zero:

field

magnetization

Ferromagnetic behaviour. But another scenario is possible: as the external field
decreases, the global order decreases, but the local interactions among the spins
are strong enough for the material to maintain a globally magnetized state even
after the external field has vanished. Such a behavior is called ferromagnetism:

A ferromagnet thus exhibits spontaneous magnetization, that is, global order-
ing of the spins even in the absence of an external magnetic field. The value of
the spontaneous magnetization, ±m∗, depends on whether the external field ap-
proached zero from positive or negative values:
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field

magnetization

+m∗

−m∗

Observe that as the field goes through zero, the magnetization suffers a discontinu-
ity: it jumps from a strictly positive to a strictly negative value. This corresponds to
a first-order phase transition.

Using the process described above, one can in principle prepare a ferromag-
netic material with a spontaneous magnetization pointing in an arbitrary direc-
tion, by simply applying a magnetic field in that direction and slowly decreasing its
intensity to zero.

The distinction between these two types of magnetic behavior was first made by
Pierre Curie in 1895 and initiated the modern theory of magnetism. Among other
important results, Curie observed that a same material can present both types of
behavior, depending on the temperature: its behavior can suddenly change from
ferromagnetic to paramagnetic once its temperature is raised above a well-defined,
substance-specific temperature, now known as the Curie temperature.

1.4.2 A simple model for a magnet: the Ising model

The Ising model was introduced by Wilhelm Lenz in 1920 [221], in view of obtaining
a theoretical understanding of the phase transition from ferromagnetic to param-
agnetic behavior described above. The name “Ising model” (sometimes, but much
less frequently, more aptly called the Lenz–Ising model, as suggested by Ising him-
self) was coined in a famous paper by Rudolph Peierls [266] in reference to Ernst
Ising’s 1925 PhD thesis [175], which was undertaken under Lenz’s supervision and
devoted to the one-dimensional version of the model.

A major concern and a much debated issue, in the theoretical physics commu-
nity at the beginning of the 20th century, was to determine whether phase transi-
tions could be described within the framework of statistical mechanics, still a young
theory at that time. [6]

This question was settled using the Ising model. The latter is indeed the first
system of locally interacting units for which it was possible to prove the existence of
a phase transition. This proof was given in the above-mentioned paper by Peierls
in 1936, using an argument that would later become a central tool in statistical me-
chanics. [7]

Its simplicity and the richness of its behavior have turned the Ising model into
a preferred laboratory to test new ideas and methods in statistical mechanics. It
is nowadays, undoubtedly, the most famous model in this field, and has been the
subject of thousands of research papers. Moreover, through its numerous inter-
pretations in physics as well as in many other fields, it has been used to describe
qualitatively, and sometimes quantitatively, a great variety of situations. [8]
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Figure 1.7: A spin configuration ω ∈ΩB(4).

We model the regular crystalline structure corresponding to the positions of the
atoms of our magnet by a finite, non-oriented graph G = (Λ,E ), whose set of ver-
tices Λ is a subset of Zd . A typical example, often used in this book, is the box of
radius n:

B(n)
def= {−n, . . . ,n}d

For example, B(4) is represented on Figure 1.7. The edges of the graph will most
often be between nearest neighbors, that is, pairs of vertices i , j with ∥ j − i∥1 = 1,

where the norm is defined by ∥i∥1
def= ∑d

k=1 |ik |. We write i ∼ j to indicate that i and
j are nearest neighbors. So, the set of edges in the box B(n) is

{
{i , j } ⊂B(n) : i ∼ j

}
,

as depicted in Figure 1.7.

The Ising model is defined by first assuming that a spin is located at each vertex
of the graph G = (Λ,E ). One major simplification is the assumption that, unlike the
pictures of Section 1.4.1, the spins are restricted to one particular direction, point-
ing either “up” or “down”; the corresponding two states are traditionally denoted
by +1 (“up”) and −1 (“down”). It follows that, to describe a microstate, a variableωi

taking two possible values ±1 is associated to each vertex i ∈Λ; this variable will be
called the spin at i .

A microstate of the system, usually called a configuration, is thus an element
ω ∈ΩΛ, where

ΩΛ
def= {−1,1}Λ .

The microscopic interactions among the spins are defined in such a way that:

1. There is only interaction between pairs of spins located at neighboring vertices.
That is, it is assumed that the spins at two distinct vertices i , j ∈Λ interact if
and only if the pair {i , j } is an edge of the graph.

2. The interaction favors agreement of spin values. In the most common in-
stance of the model, to which we restrict ourselves here, this is done in the
simplest possible way: a pair of spins at the endpoints i and j of an edge
decreases the overall energy of the configuration if they agree (ωi = ω j ) and
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1.4. Magnetic systems 39

increases it if they differ; more precisely, the spins at the endpoints of the edge
{i , j } contribute to the total energy by an amount

−ωiω j .

Therefore, configurations in which most pairs of neighbors are aligned have
smaller energy.

3. Spins align with the external magnetic field. Assume that a constant external
magnetic field of intensity h ∈ R (oriented along the same direction as the
spins) acts on the system. Its interaction with the spin at i contributes to the
total energy by an amount

−hωi .

That is, when the magnetic field is positive, the configurations with most of
their spins equal to +1 have smaller energy.

The energy of a configuration ω is obtained by summing the interactions over all
pairs and by adding the interaction of each spin with the external magnetic field.
This leads to the Hamiltonian of the Ising model:

HΛ;h(ω)
def= −

∑
i , j∈Λ
i∼ j

ωiω j −h
∑
i∈Λ

ωi , ω ∈ΩΛ . (1.44)

Since it favors local alignment of the spins, the Hamiltonian of the model is said to
be ferromagnetic. (Note that this terminology does not necessarily imply that the
models behaves like a ferromagnet.)

The Gibbs distribution is denoted by

µΛ;β,h(ω) = e−βHΛ;h (ω)

ZΛ;β,h
,

where ZΛ;β,h is the associated partition function. The expectation of an observable
f :ΩΛ→R under µΛ;β,h is denoted 〈 f 〉Λ;β,h .

An important observation is that, in the absence of a magnetic field (that is,
when h = 0), even though local spin alignment is favored by the Hamiltonian, nei-
ther of the orientations (+1 or −1) is favored globally. Namely, if −ω denotes the

spin-flipped configuration in which (−ω)i
def= −ωi , then HΛ;0(−ω) = HΛ;0(ω); this

implies that
µΛ;β,0(−ω) =µΛ;β,0(ω).

The model is then said to be invariant under global spin flip. When h ̸= 0, this
symmetry no longer holds.

1.4.3 Thermodynamic behavior

Our goal is to study the Ising model in a large region Λ and to eventually take the
thermodynamic limit, for instance takingΛ=B(n) and letting n →∞.

To simplify the discussion, we will first consider the model in the absence of a
magnetic field: h = 0. A natural question, which will be a central theme in this book,
is: under which circumstances does the ferromagnetic nature of the model, whose
tendency is to align the spins locally, induce order also at the global/macroscopic
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scale? To make this question more precise, we need suitable ways to quantify global
order. One natural such quantity is the total magnetization

MΛ(ω)
def=

∑
i∈Λ

ωi .

Then, the magnetization density

MΛ(ω)

|Λ| ∈ [−1,1]

equals the difference between the fractions of spins that take the value +1 and −1
respectively; it therefore provides some information on the balance between the
two spin values in the whole system.

As we already pointed out, the Gibbs distribution is invariant under a global
spin-flip when h = 0. As a consequence, the average magnetization is zero at all
temperatures:

Exercise 1.13. Show that
〈MΛ〉Λ;β,0 = 0. (1.45)

The interpretation of (1.45) is that, on average, the densities of + and − spins
are equal. However, as we will see below, this does not necessarily mean that the
densities of two species of spins are equal in typical configurations of the model.
As a first natural step, let us study the fluctuations of MΛ around this average value.
Since the spins are dependent, this is a subtle question.

To approach the problem of understanding the dependence on the tempera-
ture, we will first study the fluctuations of MΛ in two limiting situations, namely
that of infinite temperature (β = 1/T ↓ 0) and zero temperature (β = 1/T ↑ ∞).
Although these two cases are essentially trivial from a mathematical point of view,
they will already provide some hints as to what might happen at other values of the
temperature, in the infinite-volume Ising model. For the sake of concreteness, we
takeΛ=B(n).

Infinite temperature. Consider the model on B(n) (with a fixed n). In the limit
β ↓ 0, the Gibbs distribution converges to the uniform distribution on ΩB(n): for
each ω ∈ΩB(n),

lim
β↓0

µB(n);β;0(ω) =µB(n);0,0(ω) = 1

|ΩB(n)|
. (1.46)

Therefore, after β ↓ 0, MB(n) is a sum of independent and identically distributed
random variables. Its behavior in regions of increasing sizes can thus be described
using the classical limit theorems of Probability Theory. For instance, the Law of
Large Numbers implies that, for all ϵ> 0,

µB(n);0,0

( MB(n)

|B(n)| ̸∈ [−ϵ,ϵ]
)
−→ 0 as n →∞ . (1.47)

Looking at a finer scale, the Central Limit Theorem states that, for all a < b,

µB(n);0,0

( a√
|B(n)|

≤ MB(n)

|B(n)| ≤
b√

|B(n)|
)
−→ 1p

2π

∫ b

a
e−x2/2 dx . (1.48)
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1.4. Magnetic systems 41

Zero temperature. In the opposite regime, in which β ↑ ∞ in a fixed box B(n),
the distribution µB(n);β,0 concentrates on those configurations that minimize the
Hamiltonian, the so-called ground states. It is easy to check that the Ising model
in B(n) has exactly two ground states: the constant configurations η+,η− ∈ΩB(n),
defined by

η+i
def= +1 ∀i ∈B(n) , η−i

def= −1 ∀i ∈B(n) .

For any configurationω different from η+ and η−, there exists at least one pair {i , j }
of nearest-neighbors in B(n) such that ωi ̸=ω j . Therefore,

HB(n)(ω)−HB(n)(η
±) =

∑
i , j∈B(n)

i∼ j

(
1−ωiω j

)≥ 2. (1.49)

Consequently,

µB(n);β,0(ω)

µB(n);β,0(η±)
= e−βHB(n)(ω)

e−βHB(n)(η±)
≤ e−2β→ 0 as β ↑∞ .

Since µB(n);β,0(η−) =µB(n);β,0(η+), we thus get

lim
β↑∞

µB(n);β,0(ω) =
{

1
2 if ω ∈ {η+,η−},

0 otherwise,
(1.50)

which means that, in the limit of very low temperatures, the Gibbs distribution
“freezes” the system in either of the ground states.

The two very different behaviors observed above in the limits β ↑ ∞ and β ↓ 0
suggest two possible scenarios for the high- and low-temperature behavior of the
Ising model in a large box B(n):

1. Whenβ is small (high temperature), the global magnetization density is close
to zero: with high probability,

MB(n)

|B(n)|
∼= 0.

In this scenario, in a typical configuration, the fractions of + and − spins are
essentially equal.

2. When β is large (low temperature), µB(n);β,0 concentrates on configurations
that mostly coincide with the ground states η+, η−. In particular, with high
probability,

either
MB(n)

|B(n)|
∼=+1, or

MB(n)

|B(n)|
∼=−1.

In this scenario, spontaneous magnetization/global order is observed, since
a majority of spins has the same sign. Observe that the Law of Large Num-
bers would not hold in such a regime. Namely, each spin has an average value
equal to zero and, nevertheless, the observation of the system as a whole
shows that |B(n)|−1 ∑

i∈B(n)ωi is not close to 0. The symmetry under a global
spin flip is spontaneously broken, in the sense that typical configurations
favor one of the two types of spins, even though the Gibbs distribution is
completely neutral with respect to both species of spins.
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The main problem is to determine which of these behaviors (if any) gives the cor-
rect description of the system for intermediate values 0 <β<∞.

From the physical point of view, the question we will be most interested in is to
determine whether the global alignment of the spins observed atβ=∞ survives, in
arbitrarily large systems, for large but finite values of β. This is a delicate question,
since the argument given above actually consisted in fixing n and observing that the
ground states were dominant when β ↑∞. But the true limiting procedure we are
interested in is to take the thermodynamic limit at fixed temperature, that is to fix β
(possibly very large) and then let n →∞. It turns out that, in this limit, the ground
states are in fact very unlikely to be observed. Indeed, let us denote by Ωk

B(n)
the

set of configurations coinciding everywhere with either η+ or η−, except at exactly
k vertices where the spins disagree with the ground state. Such local deformations
away from a ground-state are often called excitations. Then, for each ω ∈Ωk

B(n)
,

HB(n);0(ω)−HB(n);0(η±) ≤ 4dk .

(This bound is saturated when none of these k misaligned spins are located at
neighboring vertices and none is located along the boundary of B(n).) Observe

that |Ωk
B(n)

| = (|B(n)|
k

)
and that k is always at most equal to |B(n)|/2. This means

that, for any k ≥ 1,

µB(n);β,0(Ωk
B(n)

)

µB(n);β,0(η±)
=

∑

ω∈Ωk
B(n)

e−β(HB(n);0(ω)−HB(n);0(η±))

≥
(
|B(n)|

k

)
e−4dβk ≥ 1

k !

( 1
2 |B(n)|e−4dβ)k ≫ 1,

for all n large enough (at fixed β). In other words, even at very low temperature, it is
always much more likely to have misaligned spins in large regions. This discussion
shows that there are two competing aspects when analyzing typical configurations
under a Gibbs distribution at low temperature. On the one hand, configurations
with low energy are favored, since the latter have a larger individual probability;
this is the energy part. On the other hand, the number of configurations with a
given number of excitations grows fast with the size of the system and rapidly out-
numbers the small number of ground states; this is the entropy part. This compe-
tition between energy and entropy is at the heart of many phenomena described by
equilibrium statistical mechanics (Note that it can already be witnessed in (1.37)),
in particular in methods to prove the existence of a phase transition.

These questions will be investigated in detail in Chapter 3. As we will see, the
dimension of the underlying graph Zd will play a central role in the analysis. In the
next section, we discuss this dependence on d on the basis of numerical simula-
tions.

Behavior onZd

The one-dimensional model. The following figure shows simulations of typical
configurations of the one-dimensional Ising model on B(50), for increasing values
of the inverse temperature β (at h = 0). For the sake of clarity, +, resp. −, spins are
represented by black, resp. white, dots:
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As the value ofβ increases, we see that spins tend to agree on ever larger regions; lo-
cally, a configuration looks like either of the ground states η+, η−. Increasingβ even
more would yield, with high probability, a configuration with all spins equal. Nev-
ertheless, for any value of β, one observes that taking the system’s size sufficiently
large, regions of + and − spins even out and the global magnetization is always zero
on the macroscopic scale.

As seen before, global order can be conveniently quantified using
MB(n)
|B(n)| . Since

the latter has an expectation value equal to zero (Exercise 1.13), we consider the
expectation of its absolute value.

n = 10
n = 100
n = 1000
n = 10000

1

1

〈∣∣ MB(n)
|B(n)|

∣∣〉
B(n);β,0

p

Figure 1.8: The expected value of the absolute value of the magnetization
density, as a function of p = 1− e−2β, for the one-dimensional Ising model,
tending to zero as n →∞ for all p ∈ [0,1).

This reflects the fact that, in d = 1, the Ising model exhibits paramagnetic be-
havior at all positive temperatures; see the discussion below.

The model in dimensions d ≥ 2. In contrast to its one-dimensional version, the
Ising model in higher dimensions exhibits ferromagnetic and paramagnetic behav-
iors, as the temperature crosses a critical value, similarly to what Curie observed in
real magnets.

The phase transition is characterized by two distinct regimes (low and high tem-
peratures), in which the large-scale behavior of the system presents important dif-
ferences which become sharper as the size of the system increases. A few simula-
tions will reveal these behaviors in d = 2. Consider first the model without a mag-
netic field (h = 0), in a square box B(n). A few typical configurations for n = 100 are
shown in Figure 1.9, for various values of the inverse temperature β≥ 0. For conve-

nience, instead of varying β, we vary p = p(β)
def= 1− e−2β, which has the advantage

of taking values in [0,1). Values of p near 0 thus correspond to high temperatures,
while values of p near 1 correspond to low temperatures.
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10 pc

Figure 1.9: Typical configurations of the two-dimensional Ising model in the
box B(100), for different values of p = 1−e−2β. Black dots represent + spins,
white dots represent − spins. When p is close to 0 (β small), the spins behave
roughly as if they were independent and thus appear in equal proportions.
When p is close to 1 (β large), a typical configuration is a small perturbation
of either of the ground states η+,η−; in particular, it has a magnetization near
either +1 or −1.

Figure 1.9 shows that, in contrast to what we observed in the one-dimensional
case, the large-scale behavior of the system in two dimensions depends strongly
on the temperature. When p is small, the symmetry under global spin flip is pre-
served in typical configurations and the fractions of + and − spins are essentially
equal. When p is close to 1, this symmetry is spontaneously broken: one of the
two spin types dominates the other. The simulations suggest that this change of
behavior occurs when p is near 0.58, that is, when β is near 0.43. Therefore, the
high- and low-temperature behaviors conjectured on the basis of the limiting cases
β= 0 and β ↑∞ are indeed observed, at least for a system in B(100). In Figure 1.10,

〈|MB(n)
B(n) |〉B(n);β,0 is represented as a function of p, for different values of n.

n = 5
n = 12

n =∞
n = 50
n = 250

1

1

p

〈∣∣ MB(n)
|B(n)|

∣∣〉
B(n);β,0

Figure 1.10: The expected value of the absolute value of the magnetization
density, as a function of p, for the two-dimensional Ising model.

The simulations suggest that, as n increases, the sequence of functions p 7→
〈|MB(n)

B(n) |〉B(n);p converges to some limiting curve. This is indeed the case and the
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limiting function can be computed explicitly: [9]

p 7→ m∗
p

def=




0 if p < pc ,[
1− ( 2(1−p)

p(2−p)

)4
]1/8

if p ≥ pc ,
(1.51)

where

pc
def=

p
2

1+
p

2
∼= 0.586

is the critical point, to which corresponds the critical inverse temperature

βc
def= − 1

2 log(1−pc ) ∼= 0.441.

The above explicit expression implies, in particular, that the limiting magneti-
zation density is continuous (but not differentiable) at pc .

Exercise 1.14. Using (1.51), show that the behavior of m∗
p(β) as β ↓βc is

m∗
p(β) ∼ (β−βc)1/8 ,

in the sense that limβ↓βc

logm∗
p(β)

log(β−βc) = 1
8 .

Concerning the dependence of the Ising model on the magnetic field when h ̸=
0, two main quantities of interest will be considered: the average magnetization

density
〈 MB(n)
|B(n)|

〉
B(n);β,h and the pressure

ψB(n)(β,h)
def= 1

β|B(n)| logZB(n);β,h .

Remark 1.15. The reader might wonder why the term pressure is used for the mag-
net. In fact, a one-to-one correspondence can be established between the mi-
crostates of the lattice gas and those of the Ising model, by

ωi ↔ 2ηi −1.

In the Ising model, the number of spins is of course fixed and equal to the size of
the region on which it is defined. But the number of + (or −) spins is not fixed and
can vary. Therefore, the number of particles in the lattice gas, under the above cor-
respondence, can also vary; it thus corresponds to a grand canonical description,
in which the natural thermodynamic potential is the pressure.

The relation between the lattice gas and the Ising model will be fully described,
and exploited, in Chapter 4. ⋄

The following infinite-volume limits will be considered:

m(β,h)
def= lim

n→∞

〈 MB(n)

|B(n)|
〉
B(n);β,h

, ψ(β,h)
def= lim

n→∞ψB(n)(β,h) .

Besides showing that the above limits exist, we will show that, for all h ̸= 0,

∂ψ(β,h)

∂h
= m(β,h) .
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h

1

−1

1

−1

m(β,h)

h

m(β,h)β<βc(2) : β>βc(2) :

Figure 1.11: Dependence of the magnetization density of the two-
dimensional Ising model on the magnetic field (obtained from numerical
simulations): paramagnetic behavior at high temperature (left), ferromag-
netic behavior at low temperature (right).

The map h 7→ m(β,h) is plotted in Figure 1.11 for sub- and supercritical tempera-
tures.

The presence of two different typical behaviors when h = 0 and β > βc shows
how sensitive the system becomes to perturbation by an external field. On the one
hand, when β < βc, a small magnetic field h > 0 induces a positive magnetization
density which is approximately proportional to h: the response of the system is lin-
ear for small h and vanishes when h → 0. On the other hand, when β > βc, the
introduction of an infinitesimal magnetic field h > 0 (resp. h < 0) induces a mag-
netization density close to +1 (resp. −1) ! This implies that, in contrast to the one-
dimensional case, the pressure is not differentiable at h = 0: the phase transition
is of first order in the magnetic field. Informally, one can say that in the absence
of magnetic field, the system “hesitates” between two different behaviors and the
introduction of a nonzero, arbitrarily small magnetic field is enough to tip the bal-
ance in the corresponding direction.

1.5 Some general remarks

1.5.1 The role of the thermodynamic limit

In Section 1.3.1, the thermodynamic limit has been introduced as a way of estab-
lishing a precise link between statistical mechanics and thermodynamics.

Approximating a large system by an infinite one might seem a rather radical
step, since real systems are always finite (albeit quite large: a cube of iron with a
sidelength of 1cm contains roughly 1023 iron atoms).

It turns out that taking a limit of infinite volume is important for other reasons
as well.

Deterministic macroscopic behavior. As we have seen, one of the main assump-
tions in thermodynamics is that, once a small set of thermodynamic quantities
has been fixed (say, the pressure and the temperature for an ideal gas), the val-
ues of all other macroscopic quantities are in general completely determined. In
statistical mechanics, macroscopic observables associated to large finite systems
are random variables which are only approximately determined: they still undergo
fluctuations, although the latter decrease with the system’s size. As we will see in
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Chapter 6, it is only in the thermodynamic limit that all macroscopic observables
take on deterministic values (actually, we already saw concentration of some ob-
servables: the density of particles in a subsystem for the hard-core lattice gas in the
microcanonical ensemble, the energy density in the canonical ensemble, etc.).

The emergence of deterministic behavior should be reminiscent of certain cen-
tral results in mathematics, such as the Law of Large Numbers or the Ergodic The-
orem.

Equivalence of ensembles. On the one hand, we have seen that, in thermody-
namics, many choices are possible for the thermodynamic parameters used to
describe a system. In the case of the gas, for example, one might use (U ,V , N ),
(T,V , N ), etc. If the values are suitably chosen, all these approaches lead to the
same predictions for the equilibrium properties (except, possibly, at phase transi-
tions).

On the other hand, we have seen that, in statistical mechanics, to each partic-
ular set of thermodynamic parameters corresponds an ensemble (microcanonical,
canonical, grand canonical), that is, a particular probability distribution on the set
of microstates. Obviously, the latter do not coincide for finite systems. It turns out
that they indeed become equivalent, in general, but only once the thermodynamic
limit has been taken: in this limit, the local behavior of the system in different en-
sembles generally coincide, provided that the thermodynamic parameters are cho-
sen appropriately. In this limit, one says that there is equivalence of ensembles. Al-
though equivalence of ensembles will not be described in full generality, we will
come back to it in Sections 4.4, 4.7.1 and 6.14.1.

Phase transitions. One additional major reason to consider infinite-volume lim-
its is that it is the only way the formalism of equilibrium statistical mechanics can
lead to the singular behaviors thermodynamics associates to phase transitions,
such as the coexistence plateau in the liquid-vapor equilibrium, or the disconti-
nuity of the magnetization in a ferromagnet.

Notice that the dependence of a finite system on its parameters is always
smooth. Consider, for example, the Ising model in B(n). From an algebraic point
of view, its partition function can be written (up to an irrelevant smooth prefactor)
as a polynomial in the variables e−2β and e−2h , with nonnegative (real) coefficients.
It follows that the pressure ψB(n)(β,h) is real-analytic for all values of β and h. Of
course, the same is true of the magnetization in B(n). An analytic singularity, such
as a discontinuity of the magnetization when going from h > 0 to h < 0, can only
occur if the thermodynamic limit is taken.

In view of the above, one might wonder how this can be compatible with our
everyday experience of various types of phase transitions. The crucial point is that,
although finite-volume thermodynamic quantities are always smooth, in very large
systems their behavior will be closely approximated by the singular behavior of
the corresponding infinite-volume quantities. This was already witnessed in Fig-
ure 1.10, in which the finite-volume magnetization of a system in a box as small
as B(250) already displays a near-singular behavior. For real macroscopic systems,
the behavior will be experimentally indistinguishable from a genuine singularity.

Genuine long-range order vs. apparent long-range order. In our discussion of
the one-dimensional Ising model, we mentioned that, for a box of arbitrary size,
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with probability close to 1, configurations of this model will be perfectly ordered
(all spins being equal) as soon as the temperature is low enough. Nevertheless, we
will prove in Chapter 3 that the infinite one-dimensional Ising model is disordered
at all positive temperatures. This shows that looking at finite systems might lead
us to “wrong” conclusions. Of course, real systems are finite, so that a “real” one-
dimensional Ising model would typically display order. But this ordering would be
a finite-size effect only. Being able to distinguish between such effects and gen-
uine ordering is essential to obtain a conceptual understanding of these issues (for
example, the role of the dimension). An important example will be discussed in
Chapter 9.

This short discussion shows that, from the point of view of statistical mechan-
ics, thermodynamics is only an approximate theory dealing (very effectively!) with
idealized systems of infinite size. In order to recover predictions from the latter in
the framework of the former, it is thus necessary to take the limit of infinite systems.
Of course, once a system is well understood in the thermodynamic limit, it can be
of great interest to go beyond thermodynamics, by analyzing the finite-volume cor-
rections provided by equilibrium statistical mechanics.

1.5.2 On the role of simple models

The lattice gas and the Ising model share an obvious feature: they are extremely
crude models of the systems they are supposed to describe. In the case of the lattice
gas, the restriction of the particles to discrete positions is a dramatic simplification
and the interaction only keeps very superficial resemblance with the interactions
between particles of a real gas. Similarly, in a real magnet, the mechanism responsi-
ble for the alignment of two spins is of a purely quantum mechanical nature, which
the Ising model simply ignores; moreover, the restriction of the spin to one direc-
tion is also not satisfied in most real ferromagnets.

One may thus wonder about the purpose of studying such rough approxima-
tions of real systems. This was indeed a major preoccupation of physicists in the
early 20th century, who believed that such models might be of interest to mathe-
maticians, but are certainly irrelevant to physics [10].

Nevertheless, the point of view on the role of models and on the actual goal of
theoretical physics changed substantially at that time. In the realm of statistical
mechanics, the mathematical analysis of realistic models of physical systems is in
general of such a degree of complexity as to be essentially hopeless. As a conse-
quence, one must renounce to obtain, in general, a complete quantitatively pre-
cise description of most phenomena (for example, computing precisely the critical
temperature of a real magnet). However, it is still possible and just as important to
try to understand complex phenomena at a qualitative level: What are the mecha-
nisms underlying some particular phenomenon? What are the relevant features of
the real system that are responsible for its occurrence? For this, simple models are
invaluable [11]. We will see all along this book that many subtle phenomena can be
reproduced qualitatively in such models, without making any further uncontrolled
approximation.

One additional ingredient that played a key role in this change of perspective
is the realization that, in the vicinity of a critical point, the behavior of a system
becomes essentially independent of its microscopic details, a phenomenon called
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universality. Therefore, in such a regime, choosing a simple model as the repre-
sentative of the very large class of systems (including the real ones) that share the
same behavior, allows one to obtain even a quantitative understanding of these real
systems near the critical point.

Finally, one nice side-effect of considering very simple descriptions is that they
often admit many different interpretations. Already in the 1930s, the Ising model
was used as a model of a ferromagnet, of a fluid, of a binary alloy and to model an
adsorbed monolayer at a surface. The fact that the same model describes qualita-
tively a wide variety of different systems clarifies the observations made at the time
that these very different physical systems exhibit very similar behavior.

1.6 About this book

We wrote this book because we believe that there does not yet exist, in the litera-
ture, a book that is self-contained, starts at an elementary level and yet provides a
detailed analysis of some of the main ideas, techniques and models of the field.

The target reader we have in mind is an advanced undergraduate or graduate
student in mathematics or physics, or anybody with an interest in learning more
about some central concepts and results in rigorous statistical mechanics.

Let us list some of the main characteristic features of this book.

• It is mostly self-contained. It is only assumed that the reader has basic notions
of analysis and probability (only Chapter 6 requires notions from measure
theory, and the latter are summarized in Appendix B).

• It discusses only the equilibrium statistical mechanics of classical lattice sys-
tems. Other aspects of statistical mechanics, not treated here, can be found
in the books listed in Section 1.6.2 below.

• It favors the discussion of specific enlightening examples over generality. In
each chapter, the focus is on a small class of models that we consider to be
the best representatives of the topic discussed. These are listed right below
in Section 1.6.1.

• It aims at conveying understanding and not only proofs. In particular, the
proofs given are not always the shortest, most elegant ones, but those we
think best help to understand the underlying mechanisms. Moreover, the
methods, ideas and concepts introduced in the course of the proof of a state-
ment are often as important as the statement itself.

1.6.1 Contents, chapter by chapter

The first chapters are devoted mainly to the study of models whose spin variables
are discrete and take values in a finite set:

• Chapter 2: The Curie–Weiss model. Mean field models play a useful role,
both from the physical and mathematical point of view, as first approxima-
tion to more realistic ones. This chapter gives a detailed account of the Curie–
Weiss model, which can be seen as the mean-field version of the Ising model.
The advantage is that this model exhibits a phase transition between param-
agnetic and ferromagnetic behaviors that can be described with elementary
tools.
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• Chapter 3: The Ising model. As we already said, the Ising model is the sim-
plest “realistic” model which exhibits a non-trivial collective behavior. As
such, it has played, and continues to play, a central role in statistical me-
chanics. This chapter uses it to introduce several very important notions for
the first time, such as the notion of infinite-volume state or precise defini-
tions of phase transitions. Then, the complete phase diagram of the model is
constructed, in all dimensions, using simple mathematical tools developed
from scratch.

• Chapter 4: Liquid-vapor equilibrium. Historically, the liquid-vapor equilib-
rium played a central role in the first theoretical studies of phase transitions.
In this chapter, the mathematical description of the lattice gas is exposed in
detail, as well as its mean-field and nearest-neighbor (Ising) versions. The
mean-field (Kac) limit is also studied in a simple case, providing a rigorous
justification of the van der Waals–Maxwell theory of condensation.

• Chapter 5: Cluster Expansion. The cluster expansion remains the most im-
portant perturbative technique in mathematical statistical mechanics. It is
presented in a simple fashion and several applications to the Ising model and
the lattice gas are presented. It is also used several times later in the book and
plays, in particular, a central role in the implementation of the Pirogov–Sinai
theory of Chapter 7.

• Chapter 6: Infinite-volume Gibbs measures. In this chapter, we present a
probabilistic description of infinite systems of particles at equilibrium, which
is known nowadays as the theory of Gibbs measures or the DLR (Dobrushin–
Lanford–Ruelle) formalism. This theory is developed from scratch, using the
Ising model as a guiding example. Several important aspects, such as Do-
brushin’s Uniqueness Theorem, spontaneous symmetry breaking, extremal
measures and the extremal decomposition, are also exposed in detail. At the
end of the chapter, the variational principle is introduced; the latter is closely
linked with the basic concepts of equilibrium thermodynamics.

• Chapter 7: Pirogov–Sinai Theory. The Pirogov–Sinai theory is one of the very
few general approaches to the rigorous study of first-order phase transitions.
It yields, under weak assumptions, a sharp description of such phase tran-
sitions in perturbative regimes. This theory is first introduced in a rather
general setting and then implemented in detail on one specific three-phase
model: the Blume–Capel model.

The last three chapters are devoted to models whose variables are of a continuous
nature:

• Chapter 8: The Gaussian Free Field. In this chapter, the lattice version of the
Gaussian Free Field is analyzed. Several features related to the non-compact-
ness of its single-spin-space are discussed, exploiting the Gaussian nature of
the model. The model has a random walk representation, whose recurrence
properties are crucial in the study of the behavior of the model in the ther-
modynamic limit.

• Chapter 9: Models with continuous symmetry. An important class of mod-
els with a continuous symmetry, including the X Y and Heisenberg models,
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is studied in this chapter. The emphasis is on the implications of the pres-
ence of the continuous symmetry on long-range order in these models in low
dimensions. In particular, a strong form of the celebrated Mermin–Wagner
theorem is proved in an simple way.

• Chapter 10: Reflection positivity. Reflection positivity is another tool that
plays a central role in the rigorous study of phase transitions. We first ex-
pose it in detail, proving its two central estimates: the infrared bound and
the chessboard estimate. We then apply the latter to obtain several results of
importance. In particular, we prove the existence of a phase transition in the
anisotropic XY model in dimensions d ≥ 2, as well as in the (isotropic) O(N )
model in dimensions d ≥ 3. Combined with the results of Chapter 9, this
provides a detailed description of this type of systems in the thermodynamic
limit.

In order to facilitate the reading of the content of each chapter, which can some-
times be pretty technical, the bibliographical references have been placed at the
end of the chapter, in a section called Bibliographical references. Some chapters
also contain a section Complements and further reading, in which the interested
reader can find further results (usually without proofs) and suggestions for further
reading. The goal of these complements is to provide information about some
more advanced themes that cannot be treated in detail in the book.

The book ends with three appendices:

• Appendix A: Notes. This appendix regroups short Notes that are sometimes
referred to in the text.

• Appendix B: Mathematical appendices. Since we want the book to be mostly
self-contained, we introduce various mathematical topics used throughout
the book, which might not be part of all undergraduate curricula. For ex-
ample: elementary properties of convex functions, some aspects of com-
plex analysis, measure theory, conditional expectation, random walks, etc.,
are briefly introduced, not always in a self-contained manner, often without
proofs, but with references to the literature.

• Appendix C: Solutions to exercises. Exercises appear in each of the chapters,
with various levels of difficulty. Hints or solutions for most of them can be
found in this appendix.

We would like to emphasize that Chapter 3 plays a central role, since it intro-
duces several important concepts that are then used constantly in the rest of the
book; it should be considered as a priority for a novice reader. The only other true
constraint is that Chapter 5 should be read before Chapter 7. Besides that, the chap-
ters can mostly be read independently of each other, and any path following the
arrows in the picture below represents a possible way through the book:
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Chapter 1
Introduction

Chapter 2
Curie–Weiss

Chapter 4
Liquid-Vapor

Chapter 5
Cluster expansion

Chapter 6
Gibbs measures

Chapter 7
Pirogov–Sinai

Chapter 10
Reflection positivity

Chapter 9
Continuous symmetry

Chapter 8
Gaussian Free Field

Chapter 3
Ising model

Warning: As we said, we have strived to make the book as self-contained as possi-
ble, and to assume as little prior knowledge from the reader as possible. Moreover,
we have tried to make the chapters as independent from each other as possible, re-
specting when possible the conventional notations used in the field. This has had
some consequence on the final form of the book.

• Together with the fact that we have avoided developing too general a theory,
writing essentially independent chapters has had the inevitable consequence
of introducing various repetitions: the partition function of a model, for in-
stance, or its Gibbs distribution in finite volume, is always defined in a way
suited for the particular analysis used for that model. The same holds for the
pressure and other recurring quantities. We therefore warn the reader that
corresponding notions might be written slightly differently from one chapter
to the other.

• Like in many areas, the notational conventions in statistical mechanics are
different in the mathematical and physical communities. For example, prob-
abilists define the free energy as 1

V logZ whereas in physics it is written as
− 1
βV logZ, respecting the structure that appeared in the analogies with ther-

modynamics.

In this book, we have adopted one convention or the other, depending on
the physical relevance of the theory developed in the chapter. Chapter 4, for
example, was a natural place where to use the physicists’ conventions, since
it describes the liquid-vapor equilibrium.

The choices made are always indicated at the beginning of the chapters and
we hope that this will not generate too much confusion when jumping from
one chapter to another.
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1.6.2 The existing literature

This book does not aim at presenting the most recent developments in statistical
mechanics. Rather, it presents a set of models and methods, most of which were al-
ready known in the 1980s. However, these classical topics form the backbone of this
subject and should still be learned by new researchers entering this field. The ab-
sence of an introductory text aimed at beginners was deplored by many colleagues
and prompted us to write this book.

Statistical mechanics is now such a wide field that it has become impossible to
cover more than a fraction of it in one book. In this section, we provide some refer-
ences to other works covering the various aspects that are either not discussed at all
in the present text or only very superficially. Note that we mostly restrict ourselves
to books aimed at mathematicians and mathematical physicists.

Books covering similar areas. There exist several books covering some of the ar-
eas discussed in the present text. Although the distinction is a bit subjective, we
split the list into two, according to what we consider to be the intended audience.

The first set of books is aimed at mathematical physicists. Ruelle wrote the
first book [289] on rigorous equilibrium statistical mechanics in 1969. Discussing
both classical and quantum systems, in the continuum and on the lattice, this book
played a major role in the development of this field. Israel’s book [176] provides an
in-depth discussion of the variational principle, Gibbs measures as tangent func-
tionals and the role of convexity in equilibrium statistical mechanics. It contains
many abstract results found nowhere else in book form. Sinai’s book [312] discusses
the general theory of Gibbs measures on a lattice with an emphasis on phase tran-
sitions and includes perturbative expansions, the Pirogov–Sinai theory, as well as
a short introduction to the renormalization group (mostly in the context of hierar-
chical lattices). Minlos’s short book [247] covers similar grounds. The book [227]
by Malyshev and Minlos deals with more or less the same topics, but with an ap-
proach based systematically on the cluster expansion. Simon’s book [308] provides
an extensive discussion of the pressure, Gibbs states and their basic properties, and
perturbative expansions, both for classical and quantum lattice systems. Presutti’s
book [279] proposes an alternative approach to several of the topics covered in the
present book, but with a strong emphasis on models with Kac interactions. Lavis’
book [207] provides a coverage of a wide class of models and techniques.

The second set of books is aimed at probabilists. For this audience, Georgii’s
remarkable book [134] has become the standard reference for the theory of Gibbs
measures; although less accessible than the present text, it is highly recommended
to more advanced readers interested in very general results, in particular on the
topics covered in our chapter 6. The shorter book [282] by Prum covers similar
grounds, but in less generality. Preston’s book [278] contains an interesting early
account of Gibbs measures, aimed at professional probabilists and limited to rather
abstract general results. Kinderman and Snell’s very pedagogical monograph [192]
includes a clear and intuitive exposition of the phase transition in the two-dimen-
sional Ising model.

Disordered systems. One of the important topics in equilibrium statistical me-
chanics that is not even touched upon in the present book is disordered systems, in
which the Gibbs measures considered depend on additional randomness (such as
random interactions). In spite of the activity in this domain, there are only a limited
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number of books available for mathematically-inclined readers. The book [254] by
Newman discusses short-range models for spin glasses; see also [321] for an in-
troduction. Talagrand’s books [325, 326, 327] provide a comprehensive account of
mean-field models for spin glasses. Bovier’s book [37] starts with an introduction
to equilibrium statistical mechanics (including a discussion of the DLR formalism
and cluster expansion) and then moves on to discuss both mean-field and lattice
models of disordered systems.

Large deviations. Large deviations theory plays an important role in equilibrium
statistical mechanics, both at a technical level and at a conceptual level, providing
the natural framework to relate thermodynamics and statistical mechanics. This
theme will be recurrent in the present text. Nevertheless, we do not develop the
general framework here. There are now many books on large deviation theory, with
various levels of emphasis on the applications to statistical mechanics, such as the
books by Deuschel and Stroock [77], Dembo and Zeitouni [74], den Hollander [75],
Ellis [100], Rassoul-Agha and Seppäläinen [283] and Olivieri and Vares [258], as well
as the lecture notes by Lanford [205], Föllmer [108] and Pfister [274]. Georgii’s book
also has a section on this topic [134, Section 15.5]. Let us also mention the more
elementary introduction by Touchette [334].

Quantum systems. In this book, we only consider classical lattice spin systems. A
discussion of quantum lattice spin systems can be found, for example, in the books
by Sewell [300], Simon [308] and Bratteli and Robinson [43, 44].

Historical aspects. Except in some remarks, we do not discuss historical aspects
in this book. Good references on the general history of statistical mechanics are
the books by Brush [54] and Cercignani [63]; Gallavotti’s treatise [130] also provides
interesting information on this subject. More specific references to historical as-
pects of lattice spin systems are given in the articles by Brush [55], Domb [89] and
Niss [255, 256, 257].

Percolation. Bernoulli percolation is a central model in probability theory, with
strong links to equilibrium statistical mechanics. These links (which we only su-
perficially address in Section 3.10.6) lead to an alternative approach to the analysis
of some lattice spin systems (such as the Ising and Potts models), reinterpreting the
phase transition as a percolation transition. The percolation model is discussed in
detail in the books by Kesten [189], Grimmett [149, 151] and by Bollobás and Rior-
dan [31]. The link with Ising and Potts models is explained in the books by Grim-
mett [150] and Werner [350], in the review paper [132] by Georgii, Häggström and
Maes and in the lecture notes by Duminil-Copin [91].

Thermodynamic formalism. Some core ideas from equilibrium statistical me-
chanics have been successfully imported into the theory of dynamical systems,
where it is usually known as the thermodynamic formalism. An excellent early ref-
erence is Bowen’s book [40]. Other references are the books by Ruelle [291] and
Keller [187], or the lecture notes by Sarig [293].
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Stochastic dynamics. An area that is closely related to several problems studied
in this book is the analysis of the stochastic dynamics of lattice spin systems. In
the latter, one considers Markov chains on set Ω of microscopic configurations,
under which the Gibbs distributions are invariant. The book [225] by Liggett and
the lecture notes [232] by Martinelli provide good introductions to this topic.

Critical phenomena. This topic is one of the major omissions in this book. See
the short discussion and the bibliographical references given in Section 3.10.11.

Exactly solvable models. A discussion of the exact (but not always necessarily
rigorous) solutions of various models of statistical mechanics can be found in the
books by McCoy and Wu [239], Baxter [17], Palmer [261] or Lavis [207].

Foundations of equilibrium statistical mechanics. There are several books on
the foundations of statistical mechanics and its relations to thermodynamics, such
as, for example, those by Gallavotti [130], Martin-Löf [230], Khinchin [190] and
Sklar [314].
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2 The Curie–Weiss Model

In statistical mechanics, a mean-field approximation is often used to approximate
a model by a simpler one, whose global behavior can be studied with the help of
explicit computations. The information thus extracted can then be used as an in-
dication of the kind of properties that can be expected from the original model. In
addition, this approximation turns out to provide quantitatively correct results in
sufficiently high dimensions.

The Ising model, which will guide us throughout the book, is a classical example
of a model with a rich behavior but with no explicit solution in general (the excep-
tions being the one-dimensional model, see Section 3.3, and the two-dimensional
model when h = 0). In this chapter, we consider its mean-field approximation, in
the form of the Curie–Weiss model. Although it is an over-simplification of the Ising
model, the Curie–Weiss model still displays a phase transition, with distinct be-
haviors at high and low temperature. It will also serve as an illustration of various
techniques and show how the probabilistic behavior is intimately related to the an-
alytic properties of the thermodynamic potentials (free energy and pressure) of the
model.

2.1 The mean-field approximation

Consider a system of Ising spins living on Zd , described by the Ising Hamiltonian
defined in (1.44). In that model, the spin ωi located at vertex i interacts with the
rest of the system via its neighbors. The contribution to the total energy coming
from the interaction of ωi with its 2d neighbors can be written as

−β
∑

j : j∼i
ωiω j =−2dβωi ·

1

2d

∑
j : j∼i

ω j . (2.1)

Written this way, one can interpret the contribution of ωi to the total energy as an
interaction of ωi with a local magnetization density, produced by the average of its
2d nearest neighbors:

1

2d

∑
j : j∼i

ω j .

Of course, this magnetization density is local and varies from one point to the other.
The mean-field approximation consists in assuming that each local magnetization

57
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58 Chapter 2. The Curie–Weiss Model

density can be approximated by the global magnetization density,

1

N

N∑
j=1

ω j ,

where N is the number of spins in the system. The mean-field approximation of the
Ising model thus amounts to do the following transformation on the Hamiltonian
(1.44) (up to a multiplicative constant that will be absorbed in β):

Replace −β
∑
i∼ j

ωiω j by − dβ

N

∑
i , j
ωiω j .

The term involving the magnetic field, on the other hand, remains unchanged. This
leads to the following definition.

Definition 2.1. The Curie–Weiss Hamiltonian for a collection of spins ω =
(ω1, . . .ωN ) at inverse temperature β and with an external magnetic field h is defined
by

H CW
N ;β,h(ω)

def= −dβ

N

N∑
i , j=1

ωiω j −h
N∑

i=1
ωi . (2.2)

In contrast to those of the Ising model, the interactions of the Curie–Weiss model
are global: each spin interacts with all other spins in the same way, and the relative
positions of the spins can therefore be ignored. Actually, due to this lack of geome-
try, one may think of this model as defined on the complete graph with N vertices,
which has an edge between any pair of distinct vertices:

Figure 2.1: The complete graph with 12 vertices. In the Curie–Weiss model,
all spins interact: a pair of spins living at vertices i , j contributes to the total

energy by an amount −dβ
N ωiω j .

We denote by ΩN
def= {±1}N the set of all possible configurations of the Curie–

Weiss model. The Gibbs distribution onΩN is written

µCW
N ;β,h(ω)

def= e
−H CW

N ;β,h (ω)

Z CW
N ;β,h

, where Z CW
N ;β,h

def=
∑

ω∈ΩN

e
−H CW

N ;β,h (ω)
.

As mentioned in the introduction, the expectation (or average) of an observable
f :ΩN →R under µCW

N ;β,h will be denoted by 〈 f 〉CW
N ;β,h .

Our aim, in the rest of the chapter, is to show that the Curie–Weiss model ex-
hibits paramagnetic behavior at high temperature and ferromagnetic behavior at
low temperature.
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2.2 The behavior for large N when h = 0

We will first study the model in the absence of a magnetic field. The same heuristic
arguments given in Section 1.4.3 for the Ising model also apply here. For instance,
when h = 0, the Hamiltonian is invariant under the global spin flip ω 7→ −ω (which
changes each ωi into −ωi ), which implies that the magnetization density

mN
def= MN

N
, where MN

def=
N∑

i=1
ωi ,

has a symmetric distribution: µCW
N ;β,0(mN =−m) =µCW

N ;β,0(mN =+m). In particular,

〈mN 〉CW
N ;β,0 = 0. (2.3)

As discussed in Section 1.4.3, we expect that the spins should be essentially inde-
pendent when β is small, but that, when β is large, the most probable configura-
tions should have most spins equal and thus be close to one of the two ground
states, in which all spins are equal. The following theorem confirms these predic-
tions.

Theorem 2.2. (h = 0) Let βc =βc(d)
def= 1

2d . Then, the following holds.

1. When β≤ βc, the magnetization concentrates at zero: for all ϵ> 0, there exists
c = c(β,ϵ) > 0 such that, for large enough N ,

µCW
N ;β,0

(
mN ∈ (−ϵ,ϵ)

)≥ 1−2e−cN .

2. When β > βc, the magnetization is bounded away from zero. More precisely,
there exists m∗,CW(β) > 0, called the spontaneous magnetization, such that,
for all small enough ϵ> 0, there exists b = b(β,ϵ) > 0 such that if

J∗(ϵ)
def= (−m∗,CW(β)−ϵ,−m∗,CW(β)+ϵ)∪ (

m∗,CW(β)−ϵ,m∗,CW(β)+ϵ) ,

then, for large enough N ,

µCW
N ;β,0

(
mN ∈ J∗(ϵ)

)≥ 1−2e−bN .

βc is called the inverse critical temperature or inverse Curie temperature

In other words, when N is large,

∀β≤βc , mN ≃ 0 with high probability,

whereas

∀β>βc , mN ≃
{
+m∗,CW(β) with probability close to 1

2 ,

−m∗,CW(β) with probability close to 1
2 .

This behavior is understood easily by simply plotting the distribution of mN :
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−1 −0.5 0 0.5 1 −1 −0.5 0 0.5 1

Figure 2.2: The distribution of the magnetization of the Curie–Weiss model,
µCW

N ;β,0(mN = ·), with N = 100 spins, when h = 0, plotted using (2.9) below.

At high temperature (on the left, 2dβ = 0.8), mN concentrates around zero. At
low temperature (on the right, 2dβ= 1.2), the distribution of mN becomes bimodal,
with two peaks near ±m∗,CW(β). In both cases, 〈mN 〉CW

N ;β,0 = 0. The width of the

peaks in the above pictures tends to 0 when N →∞, which means that

lim
N→∞

µCW
N ;β,0(mN ∈ ·) =

{
δ0(·) if β≤βc ,
1
2

(
δ+m∗,CW(β)(·)+δ−m∗,CW(β)(·)

)
if β>βc ,

where δm is the Dirac mass at m (that is, the probability measure on [−1,1] such
that δm(A) = 1 or 0, depending on whether A contains m or not.)

Remark 2.3. We emphasize that, when β > βc and N is large, the above results say
that the typical values of the magnetization observed when sampling a configura-
tion are close to either +m∗,CW(β) or −m∗,CW(β). Of course, this does not contradict
the fact that it is always zero on average: 〈mN 〉CW

N ;β,0 = 0. The proper interpretation

of the latter average comes from the Law of Large Numbers. Namely, let us fix N
and sample an infinite sequence of independent realizations of the magnetization
density: m(1)

N ,m(2)
N , . . ., each distributed according to µCW

N ;β,0. Then, by the Strong

Law of Large Numbers, the empirical average over the n first samples converges
almost surely to zero as n →∞:

m(1)
N +·· ·+m(n)

N

n
−→〈mN 〉CW

N ;β,0 = 0.

There is another natural Law of Large numbers that one might be interested in
this context. When β= 0, the random variables

σi (ω)
def= ωi

are independent Bernoulli random variables of mean 0, which also satisfy a Law
of Large Numbers: their empirical average 1

N

∑N
i=1σi converges to 〈σ1〉CW

N ;0,0 = 0 in
probability. One might thus wonder whether this property survives the introduc-
tion of an interaction between the spins: β> 0. Since 1

N

∑N
i=1σi = mN , Theorem 2.2

shows that this is the case if and only if β≤βc. ⋄
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To the inverse critical temperature βc corresponds the critical temperature Tc =
1
βc

. The range T > Tc (that is, β < βc) is called the supercritical regime, while the
range T < Tc (that is, β > βc) is the subcritical regime, also called the regime of
phase coexistence . The value T = Tc corresponds to the critical regime. The result
above shows that the Curie–Weiss model is not ordered in this regime; it can be
shown, however, that the magnetization possesses peculiar properties at Tc, such
as non-Gaussian fluctuations.

The Curie–Weiss model possesses a remarkable feature, which makes its analy-
sis much easier than that of the Ising model on Zd : since

N∑
i , j=1

ωiω j =
( N∑

i=1
ωi

)2
≡ M 2

N ,

the Hamiltonian H CW
N ;β,0 is entirely determined by the magnetization density:

H CW
N ;β,0 =−dβm2

N N . (2.4)

This property will make it possible to compute explicitly the thermodynamic po-
tentials (and other quantities) associated to the Curie–Weiss model.

The thermodynamic potential that plays the central role in the study of the
Curie–Weiss model is the free energy:

Definition 2.4. Let e(m)
def= −dm2 and

s(m)
def= −1−m

2
log

1−m

2
− 1+m

2
log

1+m

2
.

Then
f CW
β (m)

def= βe(m)− s(m) (2.5)

is called the free energy of the Curie–Weiss model.

The claims of Theorem 2.2 will be a direct consequence of the following propo-
sition, which shows the role played by the free energy in the asymptotic distribution
of the magnetization.

Proposition 2.5. For any β,

lim
N→∞

1

N
log Z CW

N ;β,0 =− min
m∈[−1,1]

f CW
β (m) . (2.6)

Moreover, for any interval J ⊂ [−1,1],

lim
N→∞

1

N
logµCW

N ;β,0(mN ∈ J ) =− inf
m∈J

I CW
β (m) , (2.7)

where
I CW
β (m)

def= f CW
β (m)− min

m̃∈[−1,1]
f CW
β (m̃) . (2.8)

One can write (2.7) roughly as follows:

For large N , µCW
N ;β,0(mN ∈ J ) ≃ exp

(
−{

inf
m∈J

I CW
β (m)

}
N

)
.
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62 Chapter 2. The Curie–Weiss Model

(In the language of large deviations theory, I CW
β

is called a rate function.) Notice

that I CW
β

≥ 0 and

min
m∈[−1,1]

I CW
β (m) = 0.

Thus, if J ⊂ [−1,1] is such that I CW
β

is uniformly strictly positive on J,

inf
m∈J

I CW
β (m) > 0,

thenµCW
N ;β,0(mN ∈ J ) converges to zero exponentially fast when N →∞, meaning that

the magnetization is very likely to take values outside J . This shows that the typical
values of the magnetization correspond to the regions where I CW

β
vanishes. ⋄

Proof of Proposition 2.5: Observe that for a fixed N , mN is a random variable taking
values in the set

AN
def=

{
−1+ 2k

N : k = 0, . . . , N
}
⊂ [−1,1] .

Let J ⊂ [−1,1] be an interval. Then,

µCW
N ;β,0(mN ∈ J ) =

∑
m∈J∩AN

µCW
N ;β,0(mN = m) .

Since there are exactly
( N

1+m
2 N

)
configurations ω ∈ΩN which have mN (ω) = m, one

can express explicitly the distribution of mN using (2.4):

µCW
N ;β,0(mN = m) =

∑
ω∈ΩN :

mN (ω)=m

e
−H CW

N ;β,0(ω)

Z CW
N ;β,0

= 1

Z CW
N ;β,0

(
N

1+m
2 N

)
edβm2N . (2.9)

In the same way,

Z CW
N ;β,0 =

∑
m∈AN

(
N

1+m
2 N

)
edβm2N . (2.10)

Since we are interested in its behavior on the exponential scale and since it is a sum
of only |AN | = N + 1 positive terms, Z CW

N ;β,0 can be estimated by keeping only its

dominant term:

max
m∈AN

(
N

1+m
2 N

)
edβm2N ≤ Z CW

N ;β,0 ≤ (N +1) max
m∈AN

(
N

1+m
2 N

)
edβm2N .

To study the large N behavior of the binomial factors, we use Stirling’s Formula. The
latter implies the existence of two constants c−,c+ > 0 such that, for all m ∈AN ,

c−N−1/2eN s(m) ≤
(

N
1+m

2 N

)
≤ c+eN s(m) . (2.11)

Exercise 2.1. Verify (2.11).

We can thus compute an upper bound as follows:

Z CW
N ;β,0 ≤ c+(N +1)exp

(
N max

m∈AN

{dβm2 + s(m)}
)

≤ c+(N +1)exp
(−N min

m∈[−1,1]
f CW
β (m)

)
,
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which yields

limsup
N→∞

1

N
log Z CW

N ;β,0 ≤− min
m∈[−1,1]

f CW
β (m) .

For the lower bound, we first use the continuity of m 7→ {dβm2 + s(m)} on [−1,1]
and consider some m′ ∈ [−1,1] for which f CW

β
(m′) = minm f CW

β
(m). Fix ϵ > 0, and

choose some m ∈ AN such that | f CW
β

(m)− f CW
β

(m′)| ≤ ϵ, which is always possible

once N is large enough. We then have

Z CW
N ;β,0 ≥ c−N−1/2 exp

{−N ( f CW
β (m′)+ϵ)

}
.

This yields

liminf
N→∞

1

N
log Z CW

N ;β,0 ≥− min
m∈[−1,1]

f CW
β (m)−ϵ .

Since ϵ was arbitrary, (2.6) follows.
A similar computation can be done for the sum over m ∈ J ∩AN ,

lim
N→∞

1

N
log

∑
m∈J∩AN

(
N

1+m
2 N

)
edβm2N =− inf

m∈J
f CW
β (m) ,

and we get (2.7).

Proof of Theorem 2.2. As discussed after the statement of Proposition 2.5, we must
locate the zeros of I CW

β
. Since the latter is smooth and I CW

β
≥ 0, the zeros correspond

to the solutions of
∂I CW
β

∂m = 0. After a straightforward computation, we easily see that
this condition is equivalent to the mean-field equation:

tanh(2dβm) = m . (2.12)

Since limm→±∞ tanh(βm) =±1, there always exists at least one solution and, as an
analysis of the graph of m 7→ tanh(βm) shows (see below), the number of solutions
of (2.12) depends on whether 2dβ is larger or smaller than 1, that is, whether β is
larger or smaller than βc.

On the one hand, when β ≤ βc, (2.12) has a unique solution, given by m = 0.
On the other hand, when β > βc, there are two additional non-trivial solutions,
+m∗,CW(β) and −m∗,CW(β) (which depend on β):

m

β≤βc:

m

β>βc:

p−m∗,CW

p
+m∗,CW

p

The trivial solution m = 0 is a local maximum of I CW
β

, whereas +m∗,CW(β) and

−m∗,CW

β
are global minima (see Figure 2.3).
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m
0

I CW
β

(m)

p p

β≤βc:

m

I CW
β

(m)

p pp
−m∗,CW

p
+m∗,CW

β>βc:

Figure 2.3: The rate function of the Curie–Weiss model. The values taken
by the magnetization density of a very large system lie in a neighborhood of
the points m at which I CW

β
vanishes, with probability very close to 1, as seen

in Figure 2.2. In the supercritical and critical phases (β ≤ βc), there exists a
unique global minimum m = 0. In the subcritical phase (β > βc), there exist
two non-zero typical values ±m∗,CW(β): there is a phase transition at βc.

Combined with (2.7), this analysis proves the theorem.

Remark 2.6. One clearly sees from the graphical characterization of m∗,CW(β) that

m∗,CW(β) ↓ 0 as β ↓βCW
c . (2.13)

A more quantitative analysis is provided in Section 2.5.3. ⋄
The above analysis revealed that the typical values of the magnetization of the

model are those near which the function I CW
β

vanishes. Since I CW
β

differs from f CW
β

only by a constant, this means that the typical values of the magnetization are those
that minimize the free energy, a property typical of the thermodynamic behavior
studied in Section 1.1.5 (when letting a system exchange energy with a heat reser-
voir), or as was already derived non-rigorously in Section 1.3.1.

The bifurcation of the typical values taken by the magnetization in the Curie–
Weiss model at low temperature originated in the appearance of two global minima
in the free energy. On the one hand, e(m) = −dm2 is the energy density associ-
ated to configurations of magnetization density m; it is minimal when m = +1 or
−1 (all spins equal). On the other hand, s(m) is the entropy density, which mea-
sures the number of configurations with a magnetization density m; it is maximal
at m = 0 (equal proportions of + and − spins). Since βe(m) and s(m) are both con-
cave, the convexity/concavity properties of their difference depend on the temper-
ature. When β is small, entropy dominates and f CW

β
(m) is strictly convex. When

β is large, energy starts to play a major role by favoring configurations with small
energy: f CW

β
(m) is not convex and has two global minima.

As already mentioned in Chapter 1, this interplay between energy and entropy
is fundamental in the mechanism leading to phase transition.

Remark 2.7. The non-convex free energy observed at low temperature in the Curie–
Weiss model is a consequence of the lack of geometry in the model. As will be seen
later, the free energy of more realistic systems (such as the Ising model on Zd , or
the lattice gas of Chapter 4) is always convex. ⋄
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Exercise 2.2. Let ζ : N→ R>0. Consider the following modification of the Curie–
Weiss Hamiltonian (with h = 0):

H̃N ;β,0(ω)
def= − β

ζ(N )

N∑
i , j=1

ωiω j .

Denote by µ̃N ;β the corresponding Gibbs distribution. Show that the following holds.

1. If limN→∞
ζ(N )

N =∞, then mN tends to 0 in probability for all β≥ 0.

2. If limN→∞
ζ(N )

N = 0, then |mN | tends to 1 in probability for all β> 0.

This shows that the only scaling leading to a nontrivial dependence inβ is when ζ(N )
is of the order of N .

2.3 The behavior for large N when h ̸= 0

In the presence of an external magnetic field h, the analysis is similar. The relevant
thermodynamic potential associated to the magnetic field is the pressure.

Theorem 2.8. The pressure

ψCW
β (h)

def= lim
N→∞

1

N
log Z CW

N ;β,h .

exists and is convex in h. Moreover, it equals the Legendre transform of the free
energy:

ψCW
β (h) = max

m∈[−1,1]
{hm − f CW

β (m)} . (2.14)

Proof. We start by decomposing the partition function as in (2.10):

Z CW
N ;β,h =

∑
m∈AN

∑
ω∈ΩN :

mN (ω)=m

e
−H CW

N ;β,h (ω) =
∑

m∈AN

(
N

1+m
2 N

)
e(hm+dβm2)N .

We can then proceed as in the proof of Theorem 2.2. For example,

Z CW
N ;β,h ≤ c+(N +1)p

N
exp

{
N max

m∈[−1,1]
{hm − f CW

β (m)}
}

.

A lower bound of the same type is not difficult to establish, yielding (2.14) in the
limit N →∞. As shown in Appendix B.2.3, a Legendre transform is always convex.

We first investigate the behavior of the pressure as a function of the magnetic
field and later apply it to the study of the typical values of the magnetization density.

Again, since hm − f CW
β

(m) is smooth (analytic, in fact) in m, we can find the

maximum in (2.14) by explicit differentiation. Before that, let us plot the graph of
m 7→ hm − f CW

β
(m) for different values of h (here, at low temperature):

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

66 Chapter 2. The Curie–Weiss Model

h < 0: h = 0: h > 0:

mCW
β

(h)mCW
β

(h)

When h ̸= 0, the supremum of hm− f CW
β

(m) is attained at a unique point which

we denote by mCW
β

(h). This point can be computed by solving ∂
∂m {hm− f CW

β
(m)} = 0,

which is equivalent to
∂ f CW

β

∂m = h, and can be written as the modified mean-field
equation:

tanh(2dβm +h) = m . (2.15)

Again, this equation always has at least one solution. Let βc(= 1/2d) denote the
inverse critical temperature introduced before. When β< βc, the solution to (2.15)
is unique. When β > βc, there can be more than one solution, depending on h; in
every case, mCW

β
(h) is the largest (resp. smallest) one if h > 0 (resp. h < 0).

Preliminary Draft, July 1, 2022 — © S. Friedli and Y. Velenik
www.unige.ch/math/folks/velenik/smbook

m

β≤βc:

m

β>βc, h > 0:

p
+mCW

β
(h)

p

−h
2dβ

Figure 2.4: Equation (2.15) has a unique solution when β ≤ βc (left), but up
to 3 different solutions when β > βc (right) and one must choose the largest
(resp. smallest) one when h > 0 (resp. h < 0).

On the one hand, a glance at the above graph shows that, when β≤βc,

lim
h↑0

mCW
β (h) = lim

h↓0
mCW
β (h) = 0. (2.16)

On the other hand, when β>βc,

lim
h↑0

mCW
β (h) =−m∗,CW(β) <+m∗,CW(β) = lim

h↓0
mCW
β (h) . (2.17)
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h h h

Figure 2.5: The magnetization h 7→ mCW
β

(h) for β < βc (on the left), β = βc

(center) and β> βc (on the right). These pictures were made by a numerical
study of the solutions of (2.15).

Exercise 2.3. Show that h 7→ mCW
β

(h) is analytic on (−∞,0) and on (0,∞).

Exercise 2.4. Using (2.14), show that the pressure can be written explicitly as

ψCW
β (h) =−dβmCW

β (h)2 + logcosh
(
2dβmCW

β (h)+h
)+ log2.

Conclude, in particular, that it is analytic on (−∞,0) and (0,+∞).

β

mCW
β

(h)

h

Figure 2.6: The graph of (β,h) 7→ mCW
β

(h). At fixed β > 0, one observes the

curves h 7→ mCW
β

(h) of Figure 2.5; in particular these are discontinuous when

β>βc.

Using the terminology of Section 1.4.1, we thus see that the Curie–Weiss model
provides a case in which paramagnetism is observed at high temperature and fer-
romagnetism at low temperature.

We then move on to the study of the pressure, by first considering non-zero
magnetic fields: h ̸= 0. In this case, we can express ψCW

β
(h) using the Legendre

transform:
ψCW
β (h) = h ·mCW

β (h)− f CW
β (mCW

β (h)) ,

from which we deduce, using Exercise 2.3 and the analyticity of m 7→ f CW
β

(m) on

(−1,1), that h 7→ψCW
β

(h) is analytic on (−∞,0)∪ (0,∞). Differentiating with respect
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to h yields, when h ̸= 0,

∂ψCW
β

∂h
(h) = mCW

β (h) . (2.18)

To study the behavior at h = 0, we first notice that since ψCW
β

is convex, Theorem

B.28 guarantees that its one-sided derivative,
∂ψβ
∂h+

∣∣
h=0 (resp.

∂ψβ
∂h−

∣∣
h=0) exists and is

right-continuous (resp. left-continuous). If β≤βc, (2.16) gives

∂ψCW
β

∂h−
∣∣
h=0 = lim

h→0−

∂ψCW
β

∂h
= lim

h→0−
mCW
β (h)

= 0

= lim
h→0+

mCW
β (h) = lim

h→0+

∂ψCW
β

∂h
=
∂ψCW

β

∂h+
∣∣
h=0 .

As a consequence, ψCW
β

is differentiable at h = 0. Assume then that β>βc. By (2.18)

and (2.17), the same argument yields

∂ψCW
β

∂h−
∣∣
h=0 =−m∗,CW(β) < 0 < m∗,CW(β) =

∂ψCW
β

∂h+
∣∣
h=0 ,

and so ψCW
β

is not differentiable at h = 0.

h h h

Figure 2.7: The pressureψCW
β

(h) of the Curie–Weiss model with the same val-

ues of β as in Figure 2.5.

Finally, we let the reader verify that, when h ̸= 0, the magnetization density mN

concentrates exponentially fast on mCW
β

(h).

Exercise 2.5. Adapting the analysis of the case h = 0, show that an expression of the
type (2.7) holds:

lim
N→∞

1

N
logµCW

N ;β,h

(
mN ∈ J

)=− inf
m∈J

I CW
β,h(m) , (2.19)

with
I CW
β,h(m)

def= f CW
β (m)−hm − min

m̃∈[−1,1]

(
f CW
β (m̃)−hm̃

)
.

Show that, when h ̸= 0, the rate function I CW
β,h(m) has a unique global minimum at

mCW
β

(h), for all β> 0 (see the figure below).
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m

I CW
β,h(m)

p pp
mCW
β

(h)

h < 0:

m

I CW
β,h(m)

p pp
mCW
β

(h)

h > 0:

Figure 2.8: The rate function of the Curie–Weiss model with a magnetic field
h ̸= 0 has a unique global minimum at mCW

β
(h).

2.4 Bibliographical references

The Curie–Weiss model, as it is described in this chapter, has been introduced inde-
pendently by many people, including Temperley [328], Husimi [167] and Kac [183].
There exist numerous mathematical treatments where the interested reader can get
much more information, such as Ellis’ book [100].

In our study of the van der Waals model of a gas in Section 4.9, we will reinter-
pret the Curie–Weiss model as a model of a lattice gas. There, we will derive, in a
slightly different language, additional information on the free energy, the pressure
and the relationship between these two quantities.

2.5 Complements and further reading

2.5.1 The “naive” mean-field approximation.

This approximation made its first appearance in the early 20th century work of
Pierre-Ernest Weiss, based on earlier ideas of Pierre Curie, in which the method
now known as mean-field theory was developed. The latter is somewhat different
from what is done in this chapter, but leads to the same results.

Namely, consider the nearest-neighbor Ising model on Λ ⋐ Zd . The distribu-
tion of the spin at the origin, conditionally on the values taken by its neighbors, is
given by

µΛ;β,h(σ0 =±1 |σ j =ω j , j ̸= 0) = 1

Z
exp

{±(
β

∑
j∼0

ω j +h
)}

,

where Z
def= 2cosh(β

∑
j∼0ω j +h) is a normalization factor. The naive mean-field

approximation corresponds to assuming that each of the neighboring spinsω j can
be replaced by its mean value m. This yields the following distribution

ν(σ0 =±1)
def= 1

Z ′ exp
{±(2dβm +h)

}
,

with the normalization Z ′ def= 2cosh(2dβm +h). The expected value of σ0 under ν
is equal to tanh(2dβm +h). However, for this approximation to be self-consistent,
this expected value should also be equal to m. This yields the following consistency
condition:

m = tanh(2dβm +h) ,
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which is precisely (2.15). Notice that the approximation made above, replacing
each ω j by m, seems reasonable in large dimensions, where the average of the 2d
nearest-neighbor spins is expected to already have a value close to the expected
magnetization m.

2.5.2 Alternative approaches to analyze the Curie–Weiss model.

Our analysis of the Curie–Weiss model was essentially combinatorial. We briefly
describe two other alternative approaches, whose advantage is to be more readily
generalizable to more complex models.

The Hubbard–Stratonovich transformation

The first alternative approach has a more analytic flavor; it relies on the Hubbard–
Stratonovich transformation [322, 166].

Observe first that, for any α> 0, a simple integration yields

exp
{
αx2}= 1p

πα

∫ ∞

−∞
exp

{
− y2

α
+2y x

}
dy . (2.20)

This can be used to express the interactions among spins in the Boltzmann weight
as

exp
{dβ

N

( N∑
i=1

ωi
)2

}
=

√
N

πdβ

∫ ∞

−∞
exp

{
− N

dβ
y2 +2y

N∑
i=1

ωi

}
dy .

The advantage of this reformulation is that the quadratic term in the spin variables
has been replaced by a linear one. As a consequence, the sum over configurations,
in the partition function, can now be performed as in the previous subsection:

Z CW
N ;β,h =

∑
ω∈ΩN

e
−H CW

N ;β,h (ω) =
√

N

πdβ

∫ ∞

−∞
e−N y2/dβ

N∏
i=1

∑
ωi=±1

exp
{
(2y +h)ωi

}
dy

=
√

N

πdβ

∫ ∞

−∞
e−Nϕβ,h (y) dy ,

where

ϕβ,h(y)
def= y2/dβ− log(2cosh(2y +h)) .

Exercise 2.6. Show that

lim
N→∞

p
N

∫ ∞

−∞
e−N (ϕβ,h (y)−miny ϕβ,h (y)) dy > 0.

Hint: Use second-order Taylor expansions of ϕβ,h around its minima.

We then obtain

ψCW
β (h) = lim

N→∞
1

N
log Z CW

N ;β,h =−min
y
ϕβ,h(y) ,

and leave it as an exercise to check that this expression coincides with the one given

in Exercise 2.4 (it might help to minimize over m
def= y/dβ).
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Stein’s methods for exchangeable pairs

The second alternative approach we mention, which is more probabilistic, relies on
Stein’s method for exchangeable pairs. We only describe how it applies to the Curie–
Weiss model and refer the reader to Chatterjee’s paper [66] for more information.

We start by defining a probability measure P on ΩN ×ΩN by sampling (ω,ω′)
as follows: (i) ω is sampled according to the Gibbs distribution µCW

N ;β,h ; (ii) an index

I ∈ {1, . . . , N } is sampled uniformly (with probability 1
N ); (iii) we set ω′

j = ω j , for all

j ̸= I , and then let ω′
I be distributed according to µCW

N ;β,h , conditionally on the other

spins ω j , j ̸= I . That is, ω′
I =+1 with probability

exp
(
2dβm̌I +h

)

exp
(
2dβm̌I +h

)+exp
(−2dβm̌I −h

) ,

where

m̌i = m̌i (ω)
def= 1

N

∑
j ̸=i

ω j .

The reader can easily check that the pair (ω,ω′) is exchangeable:

P
(
(ω,ω′)

)= P
(
(ω′,ω)

)
for all (ω,ω′) ∈ΩN ×ΩN .

Let F (ω,ω′) def= ∑N
i=1(ωi −ω′

i ). The pairs (ω,ω′) with P
(
(ω,ω′)

) > 0 differ on at most
one vertex, and so |F (ω,ω′)| ≤ 2. Denoting by E the expectation with respect to P ,
let

f (ω)
def= E

[
F (ω,ω′)

∣∣ ω]= 1

N

N∑
i=1

{
ωi − tanh

(
2dβm̌i (ω)+h

)}
.

Again, for a pair (ω,ω′) with non-zero probability,

| f (ω)− f (ω′)| ≤ 2+4dβ

N
.

(We used | tanh x − tanh y | ≤ |x − y |.) The next crucial observation is the following:
for any function g onΩN ,

E
(

f (ω)g (ω)
)= E

(
F (ω,ω′)g (ω)

)= E
(
F (ω′,ω)g (ω′)

)=−E
(
F (ω,ω′)g (ω′)

)
.

We used the tower property of conditional expectation in the first identity and ex-
changeability in the second. Combining the first and last identities,

E
[

f (ω)g (ω)
]= 1

2 E
[
F (ω,ω′)(g (ω)− g (ω′))

]
.

In particular, since each element of the pair (ω,ω′) has distribution µCW
N ;β,h , and

since E [ f ] = 0,

VarCW
N ;β,h( f ) = E [ f (ω)2] = 1

2 E
[
F (ω,ω′)( f (ω)− f (ω′))

]≤ 2+4dβ

N
.

Therefore, by Chebyshev’s inequality (B.18), for all ϵ> 0,

µCW
N ;β,h(| f | > ϵ) ≤ 2+4dβ

Nϵ2 .
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72 Chapter 2. The Curie–Weiss Model

Finally, since |m̌i (ω)−mN (ω)| ≤ 1/N for all i ,

∣∣ f (ω)−{
mN (ω)− tanh

(
2dβmN (ω)+h

)}∣∣≤ 2dβ

N
,

from which we conclude that, for all N large enough,

µCW
N ;β,h

(∣∣mN (ω)− tanh
(
2dβmN (ω)+h

)∣∣> 2ϵ
)≤µCW

N ;β,h(| f | > ϵ) ≤ 2+4dβ

Nϵ2 .

This implies that the magnetization density mN concentrates, as N → ∞, on the
solution of (2.15). Further refinements can be found in [66], such as much stronger
concentration bounds and the computation of the distribution of the fluctuations
of the magnetization density in the limit N →∞.

2.5.3 Critical exponents

As we have seen in this chapter, the Curie–Weiss model exhibits two types of phase
transitions:

• When β> βc = 1/2d , the magnetization, as a function of h, is discontinuous
at h = 0: there is a first-order phase transition.

• When h = 0, the magnetization, as a function of β is continuous, but not
analytic at βc: there is a continuous phase transition.

It turns out that the behavior of statistical mechanical systems at continuous
phase transitions displays remarkable properties, which will be briefly described
in Section 3.10.11. In particular, the different models of statistical mechanics fall
into broad universality classes, in which all models share the same type of critical
behavior, characterized by their critical exponents.

In this section, we will take a closer look at the critical behavior of the Curie–
Weiss model in the neighborhood of the point β = βc,h = 0 at which a continuous
phase transition takes place. This will be done by defining certain critical expo-
nents associated to the model. Having the graph of Figure 2.6 in mind might help
the reader understand the definitions of these exponents.

To start, let us approach the transition point by varying the temperature from
high to low. We know that h 7→ mCW

β
(h) is continuous at h = 0 when β≤βc, but dis-

continuous when β> βc. We can consider this phenomenon from different points
of view, each associated to a way of fixing one variable and varying the other. First,
one can see how the derivative of mCW

β
(h) with respect to h at h = 0 diverges as

β ↑βc. Let us thus consider the magnetic susceptibility , ,

χ(β)
def=
∂mCW

β
(h)

∂h

∣∣∣
h=0

,

which is well defined for all β<βc. Since χ(β) must diverge when β ↑βc, one might
expect a singular behavior of the form

χ(β) ∼ 1

(βc −β)γ
, as β ↑βc , (2.21)
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for some constant γ > 0. More precisely, the last display should be understood in
terms of the following limit:

γ
def= − lim

β↑βc

logχ(β)

log(βc −β)
.

βc

β

χ(β)

Figure 2.9: Magnetic susceptibility of the Curie–Weiss model.

On the other hand, one can fix β = βc and consider the fast variation of the
magnetization at h = 0:

mCW
βc

(h) ∼ h1/δ , as h ↓ 0, (2.22)

with δ defined by

δ−1 def= lim
h↓0

logmCW
βc

(h)

logh
.

−1

1

h

mCW
βc

(h)

Figure 2.10: Magnetization of the Curie–Weiss model as a function of h at βc.

But one can also approach the transition by varying the temperature from low
to high. So, for β > βc, consider the magnetization m∗,CW(β), in the vicinity of βc.
We have already seen in Remark 2.6 that m∗,CW(β) vanishes as β ↓ βc, and one is
naturally led to expect some behavior of the type:

m∗,CW(β) ∼ (β−βc)b , (2.23)

with b defined by

b
def= lim

β↓βc

logm∗,CW(β)

log(β−βc)
.
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βc

1

β

m∗,CW(β)

Figure 2.11: The spontaneous magnetization of the Curie–Weiss model at h =
0, as a function of β.

(Usually, the letter used for b is β, but we rather use b for obvious reasons.)

Let us introduce one last pair of exponents. This time, in order for our definition
to match the standard one in physics, we consider the dependence on the temper-
ature T = β−1 and on H , defined by h ≡ βH . Let us define the internal average
energy density by

u(T, H)
def= lim

N→∞
1

βN

〈
H CW

N ;β,βH

〉CW

N ;β,βH ,

and define the heat capacity

cH (β)
def= ∂u

∂T
.

The exponents α and α′ are defined through

cH=0(β) ∼
{

(βc −β)−α as β ↑βc ,

(β−βc)−α
′

as β ↓βc ,

or, more precisely, by

α
def= − lim

β↑βc

logcH=0(β)

log(βc −β)
,

and similarly for α′.

βc

1.5

β

cH=0

Figure 2.12: Heat capacity of the Curie–Weiss model at H = 0.

The numbersα,α′,b,γ,δ are examples of critical exponents. Similar exponents
can be defined for any model at a continuous phase transition, but are usually dif-
ficult to compute. These exponents can vary from one model to the other, but co-
incide for models belonging to the same universality class. We have seen, for in-
stance, in Exercise 1.14, that b = 1/8 for the two-dimensional Ising model (more
information on this topic can be found in Section 3.10.11).

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

2.5. Complements and further reading 75

Theorem 2.9. For the Curie–Weiss model,

α=α′ = 0, b = 1
2 , γ= 1, δ= 3.

Proof. We start with b. Since m∗,CW(β) > 0 is the largest solution of (2.12) and since
βm∗,CW(β) is small when β is sufficiently close to βc, we can use a Taylor expansion
for tanh(·):

m∗,CW(β) = tanh(2dβm∗,CW(β))

= 2dβm∗,CW(β)− 1
3 (2dβm∗,CW(β))3 +O

(
(βm∗,CW(β))5)

= 2dβm∗,CW(β)− (1+o(1)) (2dβ)3

3 (m∗,CW(β))3 ,

where o(1) tends to zero when β ↓βc. We thus get

m∗,CW(β) = (1+o(1))
(3(β−βc)

4d 2β3

)1/2
, (2.24)

(using the fact that βc = 1/2d) which shows that b = 1/2.
To study χ(β) with β < βc, we start by the definition of mCW

β
= mCW

β
(h), as the

unique solution to the mean-field equation (2.15), which we differentiate implicitly
with respect to h, to obtain

χ(β) =
∂mCW

β

∂h

∣∣∣
h=0

=
1− tanh2(2dβmCW

β
)

1−2dβ(1− tanh2(2dβmCW
β

))

∣∣∣
h=0

= βc

βc −β
,

which shows that γ= 1.
Let us now turn to the exponentsα,α′. The internal energy density of the Curie–

Weiss model at H = 0 is given by

u =−d lim
N→∞

〈m2
N 〉CW

N ;β,0 .

Now, by Theorem 2.2,

lim
N→∞

〈m2
N 〉CW

N ;β,0 =
{

0 if β<βc ,

m∗,CW(β)2 if β>βc .

We immediately deduce that u = 0 when β<βc and, thus, α= 0. When β>βc,

∂u

∂T
= 2dβ2m∗,CW(β)

∂m∗,CW(β)

∂β
.

Differentiating (2.12) with respect to β, we get

∂m∗,CW(β)

∂β
= (

1− tanh2(2dβm∗,CW(β))
)(

2dm∗,CW(β)+2dβ
∂m∗,CW(β)

∂β

)
.

Rearranging, expanding the hyperbolic tangents to leading order and using (2.24),
we obtain that, as β ↓βc,

∂m∗,CW(β)

∂β
= 1− tanh2(2dβm∗,CW(β))

1−2dβ+2dβ tanh2(2dβm∗,CW(β))
2dm∗,CW(β) = (1+o(1))

2(β−βc)
m∗,CW(β) .

Using once more (2.24), we conclude that, as β ↓βc,

cH=0(β) = dβ2

β−βc

(m∗,CW(β))2(1+o(1)) = 3

2

βc

β
(1+o(1)) ,

so that limβ↓βc cH=0(β) = 3/2 and α′ = 0.
We leave the proof that δ= 3 to the reader.
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2.5.4 Links with other models on Zd .

One of the main reasons for the interest in mean-field models is that the results
obtained often shed light on the type of behavior that might be expected in more
realistic lattice models on Zd , of the type discussed in the rest of this book. In view
of the approximation involved, one might expect the agreement between a lattice
spin system on Zd and its mean-field version to improve as the number of spins
with which one spin interacts increases, which happens when either the range of
the interaction becomes large, or the dimension of the lattice increases. It turns
out that, in many cases, this can in fact be quantified rather precisely. We will
not discuss these issues in much detail, but will rather provide some references.
Much more information can found in Sections II.13–II.15 and V.3–V.5 of Simon’s
book [308] and in Section 4 of Biskup’s review [22].

Rigorous bounds. A first type of comparison between models on Zd and their
mean-field counterpart is provided by various bounds on some quantities associ-
ated to the former in terms of the corresponding quantities associated to the latter.

First, the mean-field pressure is known to provide a rigorous lower bound on
the pressure in very general settings. For example, we will show in Theorem 3.53
that

ψ
Ising on Zd

β
(h) ≥ψCW

β (h) .

(Remember that the dimensional parameter d also appears in the definition of the
Curie–Weiss model in the right-hand side.) See also Exercise 6.28 for a closely re-
lated result.

Second, the mean-field critical temperature is known to provide rigorous up-
per bound on the critical temperature of models on Zd . Again, this is done for the
Ising model, via a comparison of the magnetizations of these two models, in The-
orem 3.53. More information and references on this topic can be found in [308,
Sections V.3 and V.5].

Convergence. The bounds mentioned above enable a general comparison be-
tween models in arbitrary dimensions and their mean-field approximation, but do
not yield quantitative information about the discrepancy. Here, we consider vari-
ous limiting procedures, in which actual convergence to the mean-field limits can
be established.

First, one can consider spin systems on Zd with spread-out interactions (for
example, such that any pair of spins located at a distance less than some large value
interact). A prototypical example are models with Kac interactions. An example of
the latter is discussed in detail in Section 4.10 and a proof that the corresponding
pressure converges to the corresponding mean-field pressure when the range of
the interactions diverges is provided in Theorem 4.31. Additional information and
references on this topic can be found at the end of Chapter 4.

Another approach is to consider models on Zd and prove convergence of the
pressure or the magnetization as d → ∞. A general result can be found in [308,
Theorem II.14.1] with the relevant bibliography. Alternatively, one might try to pro-
vide quantitative bounds for the difference between the magnetization of a model
on Zd and the magnetization of its mean-field counterpart. This is the approach
developed in [23, 24, 68]; see also the lecture notes by Biskup [22]. This approach
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is particularly interesting for models in which the mean-field magnetization is dis-
continuous. Indeed, once the dimension is large enough (or the interaction is suf-
ficiently spread-out), the error term becomes small enough that the magnetization
of the corresponding model on Zd must necessarily be also discontinuous. This
provides a powerful technique to prove the existence of first-order phase transi-
tions in some models.

Critical exponents. Finally, as mentioned in Section 2.5.3 and as will be discussed
in more detail in Section 3.10.11, when a continuous phase transition occurs, de-
scribing qualitatively quantities exhibiting singular behavior is of great interest. In
particular, a challenging problem is to determine the corresponding critical expo-
nents, as we did for the Curie–Weiss model in Section 2.5.3. It is expected that the
critical exponents of models on Zd coincide with those of their mean-field coun-
terpart for all large enough dimensions (and not only in the limit!). Namely, there
exists a critical dimension du, known as the upper critical dimension, such that the
critical exponents take their mean-field values for all d > du. This has been proved
in several cases, such as the Ising model, for which du = 4. A thorough discussion
can be found in the book by Fernández, Fröhlich and Sokal [102].
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3 The Ising Model

In this chapter, we study the Ising model on Zd , which was introduced informally
in Section 1.4.2. We provide both precise definitions of the concepts involved and
a detailed analysis of the conditions ensuring the existence or absence of a phase
transition in this model, therefore providing full rigorous justification to the discus-
sion in Section 1.4.3. Namely,

• In Section 3.1, the Ising model on Zd is defined, together with various types
of boundary conditions.

• In Section 3.2, several concepts of fundamental importance are introduced,
including: the thermodynamic limit, the pressure and the magnetization.
The latter two quantities are then computed explicitly in the case of the one-
dimensional model (Section 3.3).

• The notion of infinite-volume Gibbs state is given a precise meaning in Sec-
tion 3.4. In Section 3.6, we discuss correlation inequalities, which play a cen-
tral role in the analysis of ferromagnetic systems like the Ising model.

• In Section 3.7, the phase diagram of the model is analyzed in detail. In par-
ticular, several criteria for the presence of first-order phase transitions, based
on the magnetization and the pressure of the model, are introduced in Sec-
tion 3.7.1. The latter are used to prove the existence of a phase transition
when h = 0 (Sections 3.7.2 and 3.7.3) and the absence of a phase transition
when h ̸= 0 (Section 3.7.4). A summary with a link to the discussion in the
Introduction is given in Section 3.7.5.

• Finally, in Section 3.10, the reader can find a series of complements to this
chapter, in which a number of interesting topics, related to the core of the
chapter but usually more advanced or specific, are discussed in a somewhat
less precise manner.

We emphasize that some of the ideas and concepts introduced in this chapter
are not only useful for the Ising model, but are also of central importance for sta-
tistical mechanics in general. They are thus fundamental for the understanding of
other parts of the book.

79
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80 Chapter 3. The Ising Model

3.1 Finite-volume Gibbs distributions

In this section, the Ising model on Zd is defined precisely and some of its basic
properties are established. As a careful reader might notice, some of the definitions
in this chapter differ slightly from those of Chapter 1. This is done for later conve-
nience.

▶ Finite volumes with free boundary condition. The configurations of the Ising
model in a finite volume Λ⋐Zd with free boundary condition are the elements of
the set

ΩΛ
def= {−1,1}Λ .

A configuration ω ∈ΩΛ is thus of the form ω= (ωi )i∈Λ. The basic random variable
associated to the model is the spin at a vertex i ∈Zd , which is the random variable

σi :ΩΛ→ {−1,1} defined by σi (ω)
def= ωi .

We will often identify a finite setΛwith the graph that contains all edges formed
by nearest-neighbor pairs of vertices ofΛ. We denote the latter set of edges by

EΛ
def= {

{i , j } ⊂Λ : i ∼ j
}

.

To each configuration ω ∈ΩΛ, we associate its energy, given by the Hamiltonian

H ∅
Λ;β,h(ω)

def= −β
∑

{i , j }∈EΛ
σi (ω)σ j (ω)−h

∑
i∈Λ

σi (ω) ,

where β ∈ R≥0 is the inverse temperature and h ∈ R is the magnetic field. The su-
perscript ∅ indicates that this model has free boundary condition: spins in Λ do
not interact with other spins located outside ofΛ.

Definition 3.1. The Gibbs distribution of the Ising model in Λ with free boundary
condition, at parameters β and h, is the distribution onΩΛ defined by

µ∅
Λ;β,h(ω)

def= 1

Z∅
Λ;β,h

exp
(−H ∅

Λ;β,h(ω)
)

.

The normalization constant

Z∅
Λ;β,h

def=
∑

ω∈ΩΛ
exp

(−H ∅
Λ;β,h(ω)

)

is called the partition function in Λwith free boundary condition.

▶ Finite volumes with periodic boundary condition. We now consider the Ising
model on the torus Tn , defined as follows. Its set of vertices is given by

Vn
def= {0, . . . ,n −1}d ,

and there is an edge between each pair of vertices i = (i1, . . . , id ), j = ( j1, . . . , jd ) such
that i − j has only one nonzero component and the latter is equal to ±1 modulo n;
see Figure 3.1 for illustrations in dimensions 1 and 2. We denote by E per

Vn
the set of

edges of Tn .
Configurations of the model are now the elements of {−1,1}Vn and have an en-

ergy given by

H per

Vn ;β,h(ω)
def= −β

∑

{i , j }∈E per
Vn

σi (ω)σ j (ω)−h
∑

i∈Vn

σi (ω) .

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

3.1. Finite-volume Gibbs distributions 81

Figure 3.1: Left: the one-dimensional torus T12. Right: the two-dimensional
torus T16.

Definition 3.2. The Gibbs distribution of the Ising model in Vn with periodic
boundary condition, at parameters β and h, is the probability distribution on
{−1,1}Vn defined by

µ
per

Vn ;β,h(ω)
def= 1

Zper

Vn ;β,h

exp
(−H per

Vn ;β,h(ω)
)

.

The normalization constant

Zper

Vn ;β,h
def=

∑
ω∈ΩVn

exp
(
−H per

Vn ;β,h(ω)
)

is called the partition function in Vn with periodic boundary condition.

▶ Finite volumes with configurations as boundary condition. It will turn out to
be useful to consider the Ising model on the full lattice Zd , but with configurations
which are frozen outside a finite set.

Let us thus consider configurations of the Ising model on the infinite lattice Zd ,
that is, elements of

Ω
def= {−1,1}Z

d
.

Fixing a finite set Λ⋐ Zd and a configuration η ∈Ω, we define a configuration of
the Ising model inΛwith boundary condition η as an element of the finite set

Ω
η

Λ

def= {
ω ∈Ω : ωi = ηi , ∀i ̸∈Λ}

.

The energy of a configuration ω ∈Ωη

Λ
is defined by

HΛ;β,h(ω)
def= −β

∑

{i , j }∈E b
Λ

σi (ω)σ j (ω)−h
∑
i∈Λ

σi (ω) , (3.1)

where we have introduced

E b
Λ

def= {
{i , j } ⊂Zd : {i , j }∩Λ ̸=∅, i ∼ j

}
. (3.2)

Note that E b
Λ differs from EΛ by the addition of all the edges connecting vertices

insideΛ to their neighbors outsideΛ.
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82 Chapter 3. The Ising Model

Figure 3.2: The model in a boxΛ (shaded) with + boundary condition.

Definition 3.3. The Gibbs distribution of the Ising model in Λ with boundary con-
dition η, at parameters β and h, is the probability distribution onΩη

Λ
defined by

µ
η

Λ;β,h(ω)
def= 1

Zη
Λ;β,h

exp
(−HΛ;β,h(ω)

)
.

The normalization constant

Zη
Λ;β,h

def=
∑

ω∈Ωη
Λ

exp
(−HΛ;β,h(ω)

)

is called the partition function with η-boundary condition.

It will be seen later (in particular in Chapter 6) why defining µη
Λ;β,h on configura-

tions in infinite volume is convenient (here, we could as well have defined it onΩΛ
and included the effect of the boundary condition in the Hamiltonian).

Two boundary conditions play a particularly important role in the analysis of

the Ising model: the + boundary condition η+, for which η+i
def= +1 for all i (see

Figure 3.2), and the − boundary condition η−, similarly defined by η−i
def= −1 for

all i . The corresponding Gibbs distributions will be simply denoted by µ+
Λ;β,h and

µ−
Λ;β,h ; similarly, we will writeΩ+

Λ,Ω−
Λ for the corresponding sets of configurations.

On the notations used below. In the following, we will use the symbol # to denote
a generic type of boundary condition. For instance, Z#

Λ;β,h can denote Z∅
Λ;β,h , Zper

Λ;β,h

or Zη
Λ;β,h . In the case of periodic boundary condition, Λ will always implicitly be

assumed to be a cube (see below).

Following the custom in statistical physics, expectation of a function f with re-
spect to a probability distribution µ will be denoted by a bracket: 〈 f 〉µ. When the
distribution is identified by indices, we will apply the same indices to the bracket.
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3.2. Thermodynamic limit, pressure and magnetization 83

For example, expectation of a function f under µ#
Λ;β,h will be denoted by

〈 f 〉#
Λ;β,h

def=
∑

ω∈Ω#
Λ

f (ω)µ#
Λ;β,h(ω) .

We will often use 〈·〉#
Λ;β,h and µ#

Λ;β,h(·) interchangeably.

3.2 Thermodynamic limit, pressure and magnetization

3.2.1 Convergence of subsets

It is well known that various statements in probability theory, such as the strong
law of large numbers or the ergodic theorem, take on a much cleaner form when
considering infinite samples. For the same reason, it is convenient to have some
notion of Gibbs distribution for the Ising model on the whole of Zd . The theory
describing Gibbs measures of infinite lattice systems will be discussed in detail in
Chapter 6.

In this chapter, we adopt a more elementary point of view, using a procedure
which consists in approaching an infinite system by a sequence of growing sets.
This procedure, crucial for a proper description of thermodynamics and phase
transitions, is called the thermodynamic limit.

To define the Ising model on the whole lattice Zd (one often says “in infinite
volume”), the thermodynamic limit will be considered along sequences of finite
subsetsΛn ⋐Zd which converge toZd , denoted byΛn ↑Zd , in the sense that

1. Λn is increasing: Λn ⊂Λn+1,

2. Λn invades Zd :
⋃

n≥1Λn =Zd .

Sometimes, in order to control the influence of the boundary condition and of the
shape of the box on thermodynamic quantities, it will be necessary to impose a
further regularity property on the sequenceΛn . We will say that a sequenceΛn ↑Zd

converges toZd in the sense of van Hove, which we denote byΛn ⇑Zd , if and only
if

lim
n→∞

|∂inΛn |
|Λn |

= 0, (3.3)

where ∂inΛ
def= {

i ∈Λ : ∃ j ̸∈Λ, j ∼ i
}
. The simplest sequence to satisfy this condition

is the sequence

B(n)
def= {−n, . . . ,n}d .

Exercise 3.1. Show that B(n) ⇑Zd . Give an example of a sequenceΛn that converges
to Zd , but not in the sense of van Hove.

3.2.2 Pressure

The partition functions introduced above play a very important role in the theory,
in particular because they give rise to the pressure of the model.

Definition 3.4. The pressure in Λ⋐ Zd , with boundary condition of the type #, is
defined by

ψ#
Λ(β,h)

def= 1

|Λ| logZ#
Λ;β,h .
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84 Chapter 3. The Ising Model

Exercise 3.2. Show that, for all Λ⋐Zd , all β≥ 0 and all h ∈R,

ψ∅
Λ

(β,h) =ψ∅
Λ

(β,−h) , ψ
per

Λ
(β,h) =ψper

Λ
(β,−h) , ψ+

Λ(β,h) =ψ−
Λ(β,−h) .

The following simple observation will play an important role in the sequel.

Lemma 3.5. For each type of boundary condition #, (β,h) 7→ψ#
Λ(β,h) is convex.

Proof. We consider ψ
η

Λ
(β,h), but the other cases are similar. Let α ∈ [0,1].

Since HΛ;β,h is an affine function of the pair (β,h), Hölder’s inequality (see Ap-
pendix B.1.1) yields

Zη
Λ;αβ1+(1−α)β2,αh1+(1−α)h2

=
∑

ω∈Ωη
Λ

e−αHΛ;β1,h1 (ω)−(1−α)HΛ;β2,h2 (ω)

≤
( ∑

ω∈Ωη
Λ

e−HΛ;β1,h1 (ω)
)α( ∑

ω∈Ωη
Λ

e−HΛ;β2,h2 (ω)
)(1−α)

.

Therefore, ψη

Λ
is convex:

ψ
η

Λ

(
αβ1 + (1−α)β2,αh1 + (1−α)h2

)≤αψη

Λ
(β1,h1)+ (1−α)ψη

Λ
(β2,h2) .

Of course, the finite-volume pressure ψ#
Λ depends on Λ and on the boundary con-

dition used. However, as the following theorem shows, when Λ is so large that
|Λ|≫ |∂Λ|, the boundary condition and the shape ofΛ only provide negligible cor-
rections: there exists a function ψ(β,h) such that

ψ#
Λ(β,h) =ψ(β,h)+O(|∂Λ|/|Λ|) .

ψ(β,h) then provides a better candidate for the corresponding thermodynamic po-
tential, since the latter does not depend on the “details” of the observed system,
such as its shape.

Theorem 3.6. In the thermodynamic limit, the pressure

ψ(β,h)
def= lim

Λ⇑Zd
ψ#
Λ(β,h)

is well defined and independent of the sequence Λ ⇑Zd and of the type of boundary
condition. Moreover, ψ is convex (as a function on R≥0 ×R) and is even as a function
of h.

Proof. ▶ Existence of the limit. We start by proving convergence in the case of free
boundary condition. The proof is done in two steps. We will first show existence of
the limit

lim
n→∞ψ

∅
Dn

(β,h) ,

where Dn
def= {1,2, . . . ,2n}d . After that, we extend the convergence to any sequence

Λn ⇑Zd . Since the pair (β,h) is fixed, we will omit it from the notations most of the
time, until the end of the proof.

The pressure associated to the box Dn+1 will be shown to be close to the one
associated to the box Dn . Indeed, let us decompose Dn+1 into 2d disjoint translates

of Dn , denoted by D (1)
n , . . . ,D (2d )

n :
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3.2. Thermodynamic limit, pressure and magnetization 85

Figure 3.3: A cube Dn+1 and its partition into 2d translates of Dn . The inter-
action between different sub-boxes is denoted by Rn (ω).

The energy of ω in Dn+1 can be written as

H ∅
Dn+1

=
2d∑

i=1
H ∅

D(i )
n
+Rn ,

where Rn represents the energy of interaction between pairs of spins that belong
to different sub-boxes. Since each face of Dn+1 contains (2n+1)d−1 points, we have
|Rn(ω)| ≤βd (2n+1)d−1. To obtain an upper bound on the partition function, we can

write H ∅
Dn+1

≥−βd (2n+1)d−1 +∑2d

i=1 H ∅
D(i )

n
, which yields

Z∅
Dn+1

≤ eβd2(n+1)(d−1) ∑
ω∈ΩDn+1

2d∏
i=1

exp
(−H ∅

D(i )
n

(ω)
)

.

Splitting the sum over ω ∈ Dn+1 into 2d sums over ω(i ) ∈ D (i )
n ,

∑
ω∈ΩDn+1

2d∏
i=1

exp
(−H ∅

D(i )
n

(ω)
)=

2d∏
i=1

∑
ω(i )∈Ω

D(i )
n

exp
(−H ∅

D(i )
n

(ω(i ))
)=

(
Z∅

Dn

)2d

,

where we have used the fact that Z∅
D(i )

n
= Z∅

Dn
for all i . A lower bound can be obtained

in a similar fashion, leading to

e−βd2(n+1)(d−1)
(
Z∅

Dn

)2d

≤ Z∅
Dn+1

≤ eβd2(n+1)(d−1)
(
Z∅

Dn

)2d

.

After taking the logarithm, dividing by |Dn+1| = 2d(n+1) and taking n large enough,

|ψ∅
Dn+1

−ψ∅
Dn

| ≤βd 2−(n+1) .

This implies that ψDn is a Cauchy sequence: for all n ≤ m,

|ψ∅
Dm

−ψ∅
Dn

| ≤βd
m∑

k=n+1
2−k =βd(2−n −2−m) .

Therefore, limn→∞ψ∅
Dn

exists; we denote it by ψ.
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86 Chapter 3. The Ising Model

Let us now consider an arbitrary sequence Λn ⇑ Zd . We fix some integer k
and consider a partition of Zd into adjacent disjoint translates of Dk . For each

n, consider a minimal covering of Λn by elements D ( j )
k of the partition, and let

[Λn]
def= ⋃

j D ( j )
k :

Λn

2k

[Λn]

We use the estimate

|ψ∅
Λn

−ψ| ≤ |ψ∅
Λn

−ψ∅
[Λn ]|+ |ψ∅

[Λn ] −ψ
∅
Dk

|+ |ψ∅
Dk

−ψ| . (3.4)

Fix ϵ> 0. Since ψ∅
Dk

→ψ when k →∞, there exists k0, depending on β and ϵ, such

that |ψ∅
Dk

−ψ| ≤ ϵ/3 for all k ≥ k0. We then compute ψ∅
[Λn ] by writing

H ∅
[Λn ] =

∑
j

H ∅

D
( j )
k

+Wn ,

where |Wn | ≤ β |[Λn ]|
|Dk | d(2k )d−1 = βd 2−k |[Λn]|. Therefore, there exists k1 (also de-

pending on β and ϵ) such that

|ψ∅
[Λn ] −ψ

∅
Dk

| ≤βd2−k < ϵ/3,

for all k ≥ k1. Let us then fix k ≥ max{k0,k1}. Let us write∆n
def= [Λn]\Λn . We observe

that ∣∣H ∅
Λn

−H ∅
[Λn ]

∣∣≤ (2dβ+|h|) |∆n | .
Therefore,

Z∅
[Λn ] =

∑
ω∈Ω[Λn ]

e−H ∅
[Λn ](ω) ≤

∑
ω∈ΩΛn

e−H ∅
Λn

(ω) ∑
ω′∈Ω∆n

e(2dβ+|h|) |∆n |

= e(2dβ+|h|+log2) |∆n | Z∅
Λn

.

Proceeding similarly to get a lower bound and observing that ∆n contains at most
|∂inΛn ||Dk | vertices, this yields

∣∣logZ∅
Λn

− logZ∅
[Λn ]

∣∣≤ |∂inΛn ||Dk |
(
2dβ+|h|+ log2

)
. (3.5)

Since

1 ≤ |[Λn]|
|Λn |

≤ 1+ |∂inΛn ||Dk |
|Λn |
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and since ψ∅
Λ

is uniformly bounded (for example, by 2dβ+ |h| + log2), it follows
from (3.3) and (3.5) that

|ψ∅
Λn

−ψ∅
[Λn ]| ≤ ϵ/3,

for all n large enough. Combining all these estimates, we conclude from (3.4) that,
when n is sufficiently large,

|ψ∅
Λn

−ψ| ≤ ϵ .

(An alternative proof of convergence, using a subadditivity argument, is proposed
in Exercise 3.3.)

▶ Independence of boundary condition. Let Λ⋐ Zd , η ∈Ω and ω ∈ΩΛ. Denote by
ω′ the configuration in Ωη

Λ
coinciding with ω inside Λ. Then, |HΛ(ω′)−H ∅

Λ
(ω)| ≤

2dβ|∂inΛ|. This observation implies that

e−β2d |∂inΛ| Z∅
Λ
≤ Zη

Λ
≤ eβ2d |∂inΛ| Z∅

Λ
.

Applying this to each Λn and using (3.3) shows that limΛn⇑Zd ψ
η

Λn
exists and coin-

cides with ψ. A completely similar argument, comparing Z∅
Vn

and Zper

Vn
, shows that

limn→∞ψ
per

Vn
=ψ.

▶ Convexity. Since (β,h) 7→ψ#
Λ(β,h) is convex (Lemma 3.5), its limit Λ ⇑Zd is also

convex (Exercise B.3).

▶ Symmetry. The fact that h 7→ψ(β,h) is even is a direct consequence of the above
and Exercise 3.2.

The following exercise provides an alternative proof for the existence of the
pressure (along a specific sequence of boxes), using a subadditivity argument. [1]

Exercise 3.3. Let R be the set of all parallelepipeds of Zd , that is sets of the form
Λ= [a1,b1]× [a2,b2]×·· ·× [ad ,bd ]∩Zd .

1. By writing σiσ j = (σiσ j − 1)+ 1, express the Hamiltonian as H ∅
Λ

= H̃ ∅
Λ

−
β|EΛ|, and observe that, for any disjoint sets Λ1,Λ2 ⋐Zd ,

H̃ ∅
Λ1∪Λ2

≥ H̃ ∅
Λ1

+H̃ ∅
Λ2

.

Conclude that
Z̃∅
Λ1∪Λ2

≤ Z̃∅
Λ1

Z̃∅
Λ2

. (3.6)

2. Use (3.6) and Lemma B.6 to show existence of limn→∞ 1
|Λn | log Z̃∅

Λn
along any

sequence Λn ↑Zd withΛn ∈R for all n.

3.2.3 Magnetization

As we already emphasized in the previous chapters, another quantity of central im-
portance is the magnetization density inΛ⋐Zd , which is the random variable

mΛ
def= 1

|Λ|MΛ ,

where MΛ
def= ∑

i∈Λσi is the total magnetization. We also define, for anyΛ⋐Zd ,

m#
Λ(β,h)

def= 〈mΛ〉#
Λ;β,h .
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88 Chapter 3. The Ising Model

As can be easily checked,

m#
Λ(β,h) =

∂ψ#
Λ

∂h
(β,h) . (3.7)

Exercise 3.4. Check that, more generally, the cumulant generating function asso-
ciated to MΛ (see Appendix B.8.3) can be expressed as

log〈e t MΛ〉#
Λ;β,h = |Λ|(ψ#

Λ(β,h + t )−ψ#
Λ(β,h)

)
.

Deduce that the r th cumulant of MΛ is given by

cr (MΛ) = |Λ|
∂rψ#

Λ

∂hr (β,h) .

The observation made in the previous exercise explains the important role
played by the pressure, a fact that might surprise a reader with little familiarity with
physics; after all, the partition function is just a normalizing factor. Indeed, we ex-
plain in Appendix B.8.3 that the cumulant generating function of a random variable
encodes all the information about its distribution. In view of the central importance
of the magnetization in characterizing the phase transition, as explained in Chap-
ters 1 and 2, the pressure should hold precious information about the occurrence of
a phase transition in the model. ⋄

It will turn out to be important to determine whether (3.7) still holds in the ther-
modynamic limit. There are really two issues here: on the one hand, one has to

address the existence of limΛ⇑Zd
∂ψ#

Λ
∂h (β,h) and whether the limit depends on the

chosen boundary condition; on the other hand, there is also the problem of inter-
changing the thermodynamic limit and the differentiation with respect to h, that
is, to verify whether it is true that

lim
Λ⇑Zd

∂ψ#
Λ

∂h
?= ∂

∂h
lim
Λ⇑Zd

ψ#
Λ = ∂ψ

∂h
.

These issues are intimately related to the differentiability of the pressure as a func-
tion of h. This is a delicate matter, which will be investigated in Section 3.7. Nev-
ertheless, partial answers can already be deduced from the convexity properties of
the pressure.

For instance, the one-sided derivatives of h 7→ψ(β,h),

∂ψ

∂h− (β,h)
def= lim

h′↑h

ψ(β,h′)−ψ(β,h)

h′−h
,

∂ψ

∂h+ (β,h)
def= lim

h′↓h

ψ(β,h′)−ψ(β,h)

h′−h
,

exist everywhere (by item 1 of Theorem B.12) and are respectively left- and right-
continuous (by item 5). Of course, the pressure will be differentiable with respect
to h if and only if these two one-sided derivatives coincide. It is thus natural to
introduce, for each β, the set

Bβ
def= {

h ∈R : ψ(β, ·) is not differentiable at h
}

= {
h ∈R : ∂ψ

∂h− (β,h) ̸= ∂ψ
∂h+ (β,h)

}
.

It follows from item 6 of Theorem B.12 that, for each β, the set Bβ is at most count-
able. On the complement of this set, one can answer the question raised above.
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3.2. Thermodynamic limit, pressure and magnetization 89

Corollary 3.7. For all h ̸∈Bβ, the average magnetization density

m(β,h)
def= lim

Λ⇑Zd
m#
Λ(β,h)

is well defined, independent of the sequence Λ ⇑ Zd and of the boundary condition
and satisfies

m(β,h) = ∂ψ

∂h
(β,h) . (3.8)

Moreover, the function h 7→ m(β,h) is non-decreasing on R\Bβ and is continuous at
every h ̸∈Bβ. It is however discontinuous at each h ∈Bβ: for any h ∈Bβ,

lim
h′↓h

m(β,h′) = ∂ψ
∂h+ (β,h) , lim

h′↑h
m(β,h′) = ∂ψ

∂h− (β,h) . (3.9)

In particular, the spontaneous magnetization

m∗(β)
def= lim

h↓0
m(β,h)

is always well defined.

Proof. When h ̸∈Bβ,

∂ψ

∂h
(β,h) = ∂

∂h
lim
Λ⇑Zd

ψ#
Λ(β,h) = lim

Λ⇑Zd

∂

∂h
ψ#
Λ(β,h) = lim

Λ⇑Zd
m#
Λ(β,h) ,

which proves (3.8), the existence of the thermodynamic limit of the magnetiza-
tion density and the fact that it depends neither on the boundary condition nor
on the sequence of volumes. Above, the second equality follows from item 7 of
Theorem B.12 and the third one from (3.7).

The monotonicity and continuity of h 7→ m(β,h) onR\Bβ follow from (3.8) and
items 4 and 5 of Theorem B.12.

Suppose now that h ∈ Bβ and let (hk )k≥1 be an arbitrary sequence in R \Bβ

such that hk ↓ h (there are always such sequences, since Bβ is at most countable).

By (3.8), ∂ψ
∂h+ (β,hk ) = m(β,hk ) for all k. The claim (3.9) thus follows from (3.8) and

item 5 of Theorem B.12.

3.2.4 A first definition of phase transition

The above discussion shows that the average magnetization density is discontinu-
ous precisely when the pressure is not differentiable in h. This leads to the following

Definition 3.8. The pressure ψ exhibits a first-order phase transition at (β,h) if
h 7→ψ(β,h) fails to be differentiable at that point.

Later, we will introduce another notion of first-order phase transition, of a more
probabilistic nature. Determining whether phase transitions occur or not, and at
which values of the parameters, is one of the main objectives of this chapter.
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90 Chapter 3. The Ising Model

3.3 The one-dimensional Ising model

Before pursuing with the general case, we briefly discuss the one-dimensional Ising
model, for which explicit computations are possible.

Theorem 3.9. (d = 1) For all β ≥ 0 and all h ∈ R, the pressure ψ(β,h) of the one-
dimensional Ising model is given by

ψ(β,h) = log
{

eβ cosh(h)+
√

e2β cosh2(h)−2sinh(2β)
}

. (3.10)

The explicit expression (3.10) shows that h 7→ψ(β,h) is differentiable (real-analytic
in fact) everywhere, for all β≥ 0, thus showing that Bβ =∅ when d = 1.

h h

Figure 3.4: The pressure h 7→ ψ(β,h) of the one-dimensional Ising model,
analytic in h at all temperature (β= 0.8 on the left, β= 2 on the right).

Consequently, as seen in Corollary 3.7, the average magnetization density m(β,h)
is given by

m(β,h) = ∂ψ

∂h
(β,h) , ∀h ∈R .

h

+1

−1

h

+1

−1

Figure 3.5: The average magnetization density m(β,h) of the one-
dimensional Ising model (for the same values of β as in Figure 3.4).

Since h 7→ψ(β,h) is analytic, its derivative h 7→ m(β,h) is also analytic, in particu-
lar continuous. Therefore, m∗(β) = limh↓0 m(β,h) = m(β,0). But, since (see Exer-

cise 3.2) ψ(β,h) = ψ(β,−h), we get ∂ψ
∂h (β,0) = 0. This shows that the spontaneous

magnetization of the one-dimensional Ising model is zero at all temperatures:

m∗(β) = 0, ∀β> 0.

In particular, the model exhibits paramagnetic behavior at all non-zero tempera-
tures (remember the discussion in Section 1.4.3). We will provide an alternative
proof of this fact in Section 3.7.3.
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3.3. The one-dimensional Ising model 91

Only in the limit β → ∞ does ψ(β,h) become non-differentiable at h = 0, as
seen in the following exercise.

Exercise 3.5. Using (3.10), compute m(β,h). Check that

lim
h→±∞

m(β,h) =±1, ∀β≥ 0,

lim
β→∞

m(β,h) =





+1 if h > 0,

0 if h = 0,

−1 if h < 0.

Proof of Theorem 3.9: As seen in Theorem 3.6, the pressure is independent of the
choice of boundary condition and of the sequence of volumes Λ ⇑ Z. The most
convenient choice is to work on the torus Tn , that is, to use Vn = {0, . . . ,n −1} with
periodic boundary conditions; see Figure 3.1 (left). The advantage of this particular
choice is that Zper

Vn ;β,h can be written as the trace of a 2×2 matrix. Indeed, writing
ωn ≡ω0,

Zper

Vn ;β,h =
∑

ω∈ΩVn

e
−H per

Vn ;β,h (ω)

=
∑

ω0=±1
· · ·

∑
ωn−1=±1

n−1∏
i=0

eβωiωi+1+hωi

=
∑

ω0=±1
· · ·

∑
ωn−1=±1

n−1∏
i=0

Aωi ,ωi+1 ,

where the numbers A+,+ = eβ+h , A+,− = e−β+h , A−,+ = e−β−h and A−,− = eβ−h can
be arranged in the form of a matrix, called the transfer matrix:

A
def=

(
eβ+h e−β+h

e−β−h eβ−h

)
. (3.11)

The useful observation is that Zper

Vn ;β,h can now be interpreted as the trace of the nth

power of A:
Zper

Vn ;β,h =
∑

ω0=±1
(An)ω0,ω0 = Tr(An) .

A straightforward computation shows that the eigenvaluesλ+ andλ− of A are given
by

λ± = eβ cosh(h)±
√

e2β cosh2(h)−2sinh(2β) .

Writing A = BDB−1, with D = (λ+ 0
0 λ−

)
, and using the fact that Tr(G H) = Tr(HG), we

get
Zper

Vn ;β,h = Tr(An) = Tr(BDnB−1) = Tr(Dn) =λn
++λn

− .

Since λ+ >λ−, this givesψ(β,h) = logλ+ and (3.10) is proved. (An interested reader
with some familiarity with discrete-time, finite-state Markov chains can find some
additional information on this topic in Section 3.10.4.)

When h = 0, there exist several simple ways of computing the pressure of the
one-dimensional Ising model: two are proposed in the following exercise and an-
other one will be proposed in Exercise 3.26.
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92 Chapter 3. The Ising Model

Exercise 3.6. (Assuming h = 0.)

1. Configurations can be characterized by the collection of edges {i , i + 1} such
that ωi ̸=ωi+1. What is the contribution of a configuration with k such edges?
Use that to compute the pressure.

2. Express the partition function in terms of the variables (ω1,τ1, . . . ,τn−1), where
τi =ωi−1ωi . Use this to compute the pressure.

Hint: since this does not affect the end result, one should choose a boundary condi-
tion that simplifies the analysis. We recommend using free boundary condition.

With an explicit analytic expression for the pressure, we can extract information
on the typical values of the magnetization density in large finite boxes. We will only
consider the case h = 0; the extension to an arbitrary magnetic field is left as an
exercise.

A consequence of the next theorem is that mΛn concentrates on 0 underµ#
Λn ;β,0,

as n →∞, for any type of boundary condition.

Theorem 3.10. (d = 1) Let 0 < β < ∞ and consider any sequence Λn ⇑ Z, with an
arbitrary boundary condition #. For all ϵ> 0, there exists c = c(β,ϵ) > 0 such that, for
large enough n,

µ#
Λn ;β,0

(
mΛn ̸∈ (−ϵ,ϵ)

)≤ e−c|Λn | . (3.12)

Proof of Theorem 3.10: We start by writing

µ#
Λn ;β,0

(
mΛn ̸∈ (−ϵ,ϵ)

)=µ#
Λn ;β,0(mΛn ≥ ϵ)+µ#

Λn ;β,0(mΛn ≤−ϵ) ,

These two terms can be studied in the same way. The starting point is to use Cher-
nov’s Inequality (B.19): for all h ≥ 0,

µ#
Λn ;β,0(mΛn ≥ ϵ) ≤ e−hϵ|Λn |〈ehmΛn |Λn |〉#

Λn ;β,0 .

Since 〈ehmΛn |Λn |〉#
Λn ;β,0 = Z#

Λn ;β,h/Z#
Λn ;β,0, we have

limsup
n→∞

1

|Λn |
logµ#

Λn ;β,0(mΛn ≥ ϵ) ≤ lim
n→∞

(
ψ#
Λn

(β,h)−ψ#
Λn

(β,0)
)−hϵ

= Iβ(h)−hϵ ,

where Iβ(h)
def= ψ(β,h)−ψ(β,0). Since h ≥ 0 was arbitrary, we can minimize over the

latter:

limsup
n→∞

1

|Λn |
logµ#

Λn ;β,0(mΛn ≥ ϵ) ≤−sup
h≥0

{hϵ− Iβ(h)} . (3.13)

In order to prove that µ#
Λn ;β(mΛn ≥ ϵ) decays exponentially fast in n, one must es-

tablish that suph≥0{hϵ− Iβ(h)} > 0. Remember that the explicit expression for ψ

provided by Theorem 3.9 is real-analytic in h. Moreover, Iβ(0) = 0 and, if I ′
β
= ∂

∂h Iβ,

then I ′
β

(0) = 0 and I ′
β

(h) → 1 as h → ∞, as was seen in Exercise 3.5. Therefore,

for each 0 < ϵ < 1, there exists some h∗ > 0, depending on ϵ and β, such that
suph≥0{hϵ− Iβ(h)} = h∗ϵ− Iβ(h∗) > 0 (see Figure 3.6). This proves (3.12).
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h

Iβ(h)

hε

p
h∗

Figure 3.6: A picture showing the graphs of h 7→ Iβ(h) =ψ(β,h)−ψ(β,0) and
h 7→ hϵ, on which it is clear that suph≥0{hϵ− Iβ(h)} > 0 as soon as ϵ> 0.

Exercise 3.7. Proceeding as above, show that, under µ#
Λn ;β,h with h ̸= 0, mΛn con-

verges to m(β,h) as n →∞ (in the same sense as in (3.12)), for any boundary condi-
tion.

As explained above, the pressure contains a lot of information on the magneti-
zation density. We will see in the following sections that smoothness of the pressure
also guarantees uniqueness of the infinite-volume Gibbs state.

As we have seen in this section, explicitly computing the pressure yields useful
information on the system. Unfortunately, computing the pressure becomes much
more difficult, if at all possible, in higher dimensions. In fact, in spite of much
effort, the only known results are for the two-dimensional Ising model with h = 0.
In the latter case, Onsager determined, in a celebrated work, the explicit expression
for the pressure:

ψ(β,0) = log2+ 1

8π2

∫ 2π

0

∫ 2π

0
log

{
(cosh(2β))2 − sinh(2β)(cosθ1 +cosθ2)

}
dθ1dθ2 .

(3.14)
If we want to gain some understanding of the behavior of the Ising model on Zd ,
d ≥ 2, other approaches are therefore required. This will be our main focus in the
remainder of this chapter.

3.4 Infinite-volume Gibbs states

The pressure only provides information about the thermodynamical behavior of
the system in large volumes. If one is interested in the statistical properties of gen-
eral observables, such as the fluctuations of the magnetization density in a finite
region or the correlations between far apart spins, one needs to understand the
behavior of the Gibbs distribution µ#

Λ;β,h in large volumes.

One way of doing is to define infinite-volume Gibbs measures by taking some
sequenceΛn ↑Zd and by considering the accumulation points (if any) of sequences
of the type (µηn

Λn ;β,h)n≥1. This is possible and will be done in detail in Chapter 6,

by introducing a suitable notion of convergence for sequences of probability mea-
sures. Such an approach necessitates, however, rather abstract topological and
measure-theoretic notions. In the present chapter, we avoid this, by following a
more hands-on approach: a state (in infinite volume) will be identified with an
assignment of an average value to each local function, that is, to each observable
whose value only depends on finitely many spins.
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94 Chapter 3. The Ising Model

Definition 3.11. A function f : Ω → R is local if there exists ∆ ⋐ Zd such that
f (ω) = f (ω′) as soon asω and ω′ coincide on∆. The smallest 1such set ∆ is called the
support of f and denoted by supp( f ).

For example, the value taken by the spin at the origin, σ0, or the magnetization
density in a set Λ⋐ Zd , mΛ = 1

|Λ|
∑

i∈Λσi , are local functions with supports given
respectively by {0} andΛ.

Remark 3.12. In the sequel, we will occasionally make the following mild abuse of
notation: if f : Ω→ R is a local function and ∆ ⊃ supp( f ), then, for any ω′ ∈ Ω∆,
f (ω′) is defined as the value of f evaluated at any configuration ω ∈ Ω such that
ωi =ω′

i for all i ∈∆. (Clearly, that value does not depend on the choice of ω.) ⋄

Definition 3.13. An infinite-volume state (or simply a state) is a mapping associ-
ating to each local function f a real number 〈 f 〉 and satisfying:

Normalization: 〈1〉 = 1.

Positivity: If f ≥ 0, then 〈 f 〉 ≥ 0.

Linearity: For any λ ∈R, 〈 f +λg 〉 = 〈 f 〉+λ〈g 〉.

The number 〈 f 〉 is called the average of f in the state 〈·〉.

Definition 3.14. Let Λn ↑Zd and (#n)n≥1 be a sequence of boundary conditions. The
sequence of Gibbs distributions (µ#n

Λn ;β,h)n≥1 is said to converge to the state 〈·〉 if and

only if
lim

n→∞〈 f 〉#n
Λn ;β,h = 〈 f 〉 ,

for every local function f . The state 〈·〉 is then called a Gibbs state (at (β, h)).

We simply write, as a shorthand,

〈·〉 = lim
n→∞〈·〉#n

Λn ;β,h

to indicate that 〈·〉#n
Λn ;β,h converges to 〈·〉.

The above notion of convergence is natural. Indeed, from a thermodynamical
perspective, it is expected that the properties of large systems at equilibrium should
be well approximated by those of the corresponding infinite systems. In particular,
finite-size effects, such as those resulting from the macroscopic shape of the system,
should not affect local observations made far from the boundary of the system. The
notion of convergence stated above corresponds precisely to a formalization of this
principle, by saying that the measurement of a local quantity in a large system, corre-
sponding to 〈 f 〉#n

Λn ;β,h , is well approximated by the corresponding measurement 〈 f 〉
in the infinite system. This is discussed in a more precise manner in Section 3.10.8. ⋄

Remark 3.15. The reader familiar with functional analysis will probably have no-
ticed that, using the Riesz–Markov–Kakutani representation theorem, the average

1The reason one can speak about the smallest such set is the following observation: if a function f is
characterized by (ωi )i∈∆1 and is also characterized by (ωi )i∈∆2 , then it is characterized by (ωi )i∈∆1∩∆2 .
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〈 f 〉 of a local function f in a state 〈·〉 can always be seen as the expectation of f

under some probability measure µ (on {+1,−1}Z
d

):

〈 f 〉 =
∫

f dµ .

We are mostly interested in states 〈·〉 that can be constructed as limits of finite-
volume Gibbs distributions: 〈·〉 = limn→∞〈·〉ηn

Λn ;β,h . We will see that, in this case, the

corresponding measureµ coincides with the weak limit of the probability measures
µ
ηn

Λn ;β,h :

µ
ηn

Λn ;β,h ⇒µ .

This will be explained in Chapter 6, where the necessary framework for weak con-

vergence of probability measures on {+1,−1}Z
d

will be introduced. ⋄
Since states are defined on the infinite lattice, it is natural to distinguish those

that are translation invariant. The translation by j ∈ Zd , θ j : Zd → Zd is defined
by

θ j i
def= i + j .

Translations can naturally be made to act on configurations: if ω ∈Ω, then θ jω is
defined by

(θ jω)i
def= ωi− j . (3.15)

Definition 3.16. A state 〈·〉 is translation invariant if 〈 f ◦θ j 〉 = 〈 f 〉 for every local
function f and for all j ∈Zd .

The first important question is: can Gibbs states be constructed for the Ising
model with parameters (β,h)? The following theorem shows that the constant-spin
boundary conditions η+ and η− can be used to construct two states which will play
a central role in the sequel.

Theorem 3.17. Let β≥ 0 and h ∈ R. Along any sequence Λn ↑Zd , the finite-volume
Gibbs distributions with +- or − boundary condition converge to infinite-volume
Gibbs states:

〈·〉+β,h = lim
n→∞〈·〉+Λn ;β,h , 〈·〉−β,h = lim

n→∞〈·〉−Λn ;β,h . (3.16)

The states 〈·〉+
β,h , 〈·〉−

β,h do not depend on the sequence (Λn)n≥1 and are both transla-
tion invariant.

The proof will be given later (on page 102), after introducing some important tools.

Remark 3.18. The previous theorem does not claim that 〈·〉+
β,h and 〈·〉−

β,h are distinct

Gibbs states. Determining the set of values of the parametersβ and h for which this
is the case will be one of our main tasks in the remainder of this chapter. ⋄

More generally, one can prove, albeit in a non-constructive way, that any se-
quence of finite-volume Gibbs distributions admits converging subsequences.

Exercise 3.8. Let (ηn)n≥1 be a sequence of boundary conditions and Λn ↑Zd . Prove
that there exists an increasing sequence (nk )k≥1 of integers and a Gibbs state 〈·〉 such
that

〈·〉 = lim
k→∞

〈·〉ηnk
Λnk

;β,h

is well defined.
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96 Chapter 3. The Ising Model

Another explicit example using the free boundary condition will be considered in
Exercise 3.16.

3.5 Two families of local functions.

The construction of Gibbs states consists in proving the existence of the limit

lim
n→∞〈 f 〉ηn

Λn ;β,h

for each local function f . Ideally, one would like to test convergence only on a re-
stricted family of functions. The following lemma provides two particularly conve-
nient such families, which will be especially well suited for the use of the correlation
inequalities introduced in the next section. Define, for all A ⋐Zd ,

σA
def=

∏
j∈A

σ j , nA
def=

∏
j∈A

n j ,

where n j
def= 1

2 (1+σ j ) is the occupation variable at j .

Lemma 3.19. Let f be local. There exist real coefficients ( f̂ A)A⊂supp( f ) and
( f̃ A)A⊂supp( f ) such that both of the following representations hold:

f =
∑

A⊂supp( f )
f̂ AσA , f =

∑
A⊂supp( f )

f̃ AnA .

Proof. The following orthogonality relation will be proved below: for all B ⋐Zd and
all configurations ω,ω̃,

2−|B | ∑
A⊂B

σA(ω̃)σA(ω) = 1{ωi=ω̃i ,∀i∈B} . (3.17)

Applying (3.17) with B = supp( f ),

f (ω) =
∑

ω′∈Ωsupp( f )

f (ω′)1{ωi=ω′
i ∀i∈supp( f )}

=
∑

ω′∈Ωsupp( f )

f (ω′)2−|supp( f )| ∑
A⊂supp( f )

σA(ω)σA(ω′)

=
∑

A⊂supp( f )

{
2−|supp( f )| ∑

ω′∈Ωsupp( f )

f (ω′)σA(ω′)
}
σA(ω) .

This shows that the first identity holds with

f̂ A = 2−|supp( f )| ∑
ω′∈Ωsupp( f )

f (ω′)σA(ω′).

Since σA =∏
i∈A(2ni −1), the second identity follows from the first one.

We now prove (3.17). Let us first assume that ωi = ω̃i , for all i ∈ B . In that
case, σA(ω̃)σA(ω) = ∏

i∈A ω̃iωi = 1, since ω̃iωi = ω2
i = 1 for all i ∈ A ⊂ B . This
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implies (3.17). Assume then that there exists i ∈ B such that ωi ̸= ω̃i (and thus
ωi ω̃i =−1). Then,

∑
A⊂B

σA(ω̃)σA(ω) =
∑

A⊂B\{i }

(
σA(ω̃)σA(ω)+σA∪{i }(ω̃)σA∪{i }(ω)

)

=
∑

A⊂B\{i }
(σA(ω̃)σA(ω)+ωi ω̃iσA(ω̃)σA(ω))

=
∑

A⊂B\{i }
σA(ω̃)σA(ω) (1+ωi ω̃i ) = 0.

Thanks to the above lemma and to linearity, checking convergence of
(〈 f 〉ηn

Λn ;β,h)n≥1 for all local functions can now be reduced to showing convergence

of (〈σA〉ηn

Λn ;β,h)n≥1 or (〈nA〉ηn

Λn ;β,h)n≥1 for all finite A ⋐ Zd . This task will be greatly

simplified once we will have described some of the so-called correlation inequali-
ties that hold for the Ising model.

3.6 Correlation inequalities

Correlation inequalities are one of the major tools in the mathematical analysis of
the Ising model. We will use them to construct 〈·〉+

β,h and 〈·〉−
β,h , and to study many

other properties.
The Ising model enjoys many such inequalities, but we will restrict our atten-

tion to the two most prominent ones: the GKS and FKG inequalities. Since the
proofs are not particularly enlightening, they are postponed to the end of the chap-
ter, in Section 3.8.

3.6.1 The GKS inequalities.

As a motivation, consider the Ising model in a volume Λ, with + boundary condi-
tion. First, the ferromagnetic nature of the model makes it likely that the + bound-
ary condition will favor a nonnegative magnetization inside the box, at least when
h ≥ 0. Therefore, if i is any point of Λ, it seems reasonable to expect that h ≥ 0
implies

〈σi 〉+Λ;β,h ≥ 0. (3.18)

Similarly, knowing that the spin at some vertex j takes the value +1 should not
decrease the probability of observing a + spin at another given vertex i , that is, one
would expect that

µ+
Λ;β,h(σi = 1 |σ j = 1) ≥µ+

Λ;β,h(σi = 1) ,

which can equivalently be written

µ+
Λ;β,h(σi = 1,σ j = 1) ≥µ+

Λ;β,h(σi = 1)µ+
Λ;β,h(σ j = 1) .

Since 1{σi=1} = 1
2 (σi +1), this can also be expressed as

〈σiσ j 〉+Λ;β,h ≥ 〈σi 〉+Λ;β,h〈σ j 〉+Λ;β,h . (3.19)

This is equivalent to asking whether σi and σ j are positively correlated under
µ+
Λ;β,h .
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98 Chapter 3. The Ising Model

Inequalities (3.18) and (3.19) are actually true, and will be particular instances
of the GKS inequalities (named after Griffiths, Kelly and Sherman) which hold in a
more general setting.

Namely, let J = (Ji j ) be a collection of nonnegative real numbers Ji j indexed by
pairs {i , j } ∈ E b

Λ. Let also h = (hi ) be a collection of real numbers indexed by vertices

ofΛ. We write h ≥ 0 as a shortcut for hi ≥ 0 for all i ∈Λ. We then write, for ω ∈Ωη

Λ
,

HΛ;J,h(ω)
def= −

∑

{i , j }∈E b
Λ

Ji jσi (ω)σ j (ω)−
∑
i∈Λ

hiσi (ω) . (3.20)

We denote the corresponding finite-volume Gibbs distribution by µη
Λ;J,h. Of course,

we recover HΛ;β,h and µ
η

Λ;β,h by setting Ji j = β for all {i , j } ∈ E b
Λ and hi = h for all

i ∈Λ.
The GKS inequalities are mostly restricted to +, free and periodic boundary

conditions and to nonnegative magnetic fields. They deal with expectations and
covariances of random variables of the type σA , which is precisely what is needed
for the study of the thermodynamic limit.

Theorem 3.20 (GKS inequalities). Let J,h be as above and Λ ⋐ Zd . Assume that
h ≥ 0. Then, for all A,B ⊂Λ,

〈σA〉+Λ;J,h ≥ 0, (3.21)

〈σAσB 〉+Λ;J,h ≥ 〈σA〉+Λ;J,h〈σB 〉+Λ;J,h . (3.22)

These inequalities remain valid for 〈·〉∅
Λ;J,h and 〈·〉per

Λ;J,h.

Exercise 3.9. Let A ⊂ Λ⋐ Zd . Under the assumptions of Theorem 3.20, prove that
〈σA〉+Λ;J,h is nondecreasing in both J and h.

3.6.2 The FKG inequality.

The FKG Inequality (named after Fortuin, Kasteleyn and Ginibre) states that in-
creasing events are positively correlated.

The total order on the set {−1,1} induces a partial order onΩ : ω≤ω′ if and only
if ωi ≤ ω′

i for all i ∈ Zd . An event E ⊂ Ω is increasing if ω ∈ E and ω ≤ ω′ implies
ω′ ∈ E . If E and F are both increasing events depending on the spins inside Λ,
then again, due to the ferromagnetic nature of the model, one can expect that the
occurrence of an increasing event enhances the probability of another increasing
event. That is, assuming that F has positive probability:

µ+
Λ;β,h(E |F ) ≥µ+

Λ;β,h(E) .

Multiplying by the probability of F , this inequality can be written as:

µ+
Λ;β,h(E ∩F ) ≥µ+

Λ;β,h(E)µ+
Λ;β,h(F ) . (3.23)

The precise result will be stated and proved in a more general setting, involving
the expectation of nondecreasing local functions, of which 1E and 1F are particular
instances.

A function f :Ω→R is nondecreasing if and only if f (ω) ≤ f (ω′) for all ω≤ω′.
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Exercise 3.10. Prove that the following functions are nondecreasing: σi , ni , nA ,∑
i∈A ni −nA , for any i ∈Zd , A ⋐Zd .

A particularly useful feature of the FKG inequality is its applicability for all pos-
sible boundary conditions and arbitrary (that is, not necessarily nonnegative) val-
ues of the magnetic field. They are also valid in the general setting presented in the
last section, in which β and h are replaced by J and h:

Theorem 3.21 (FKG inequality). Let J = (Ji j )i , j∈Zd be a collection of nonnegative
real numbers and let h = (hi )i∈Zd be a collection of arbitrary real numbers. Let Λ⋐
Zd and # be some arbitrary boundary condition. Then, for any pair of nondecreasing
functions f and g ,

〈 f g 〉#
Λ;J,h ≥ 〈 f 〉#

Λ;J,h〈g 〉#
Λ;J,h . (3.24)

Inequality (3.23) follows by taking Ji j =β and hi = h, and f = 1E , g = 1F . Note also
that 〈 f g 〉η

Λ;J,h ≤ 〈 f 〉η
Λ;J,h〈g 〉η

Λ;J,h whenever f is nondecreasing and g is nonincreasing
(simply apply (3.24) to f and −g ).

Actually, (3.24) can be seen as a natural extension of the following elementary
result: if f and g are two nondecreasing functions from R to R and µ is a probability
measure on R, then

〈 f g 〉µ ≥ 〈 f 〉µ〈g 〉µ .

Namely, it suffices to write

〈 f g 〉µ−〈 f 〉µ〈g 〉µ = 1
2

∫
( f (x)− f (y))(g (x)− g (y))µ(dx)µ(dy) ,

and to observe that f (x)− f (y) and g (x)−g (y) have the same sign, since f and g are
both nondecreasing. ⋄

3.6.3 Consequences

Many useful properties of finite-volume Gibbs distributions can be derived from
the correlation inequalities of the previous section. The first is exactly the ingredi-
ent that will be needed for the study of the thermodynamic limit:

Lemma 3.22. Let f be a nondecreasing function and Λ1 ⊂Λ2 ⋐ Zd . Then, for any
β≥ 0 and h ∈R,

〈 f 〉+Λ1;β,h ≥ 〈 f 〉+Λ2;β,h . (3.25)

The same statement holds for the − boundary condition and a nonincreasing func-
tion f .

Before turning to the proof, we need a spatial Markov property satisfied by
µ
η

Λ;β,h .

Exercise 3.11. Prove that, for all ∆⊂Λ⋐ Zd and all configurations η ∈Ω and ω′ ∈
Ω
η

Λ
,

µ
η

Λ;β,h

( ·
∣∣ σi =ω′

i , ∀i ∈Λ\∆
)=µω′

∆;β,h( · ) . (3.26)
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100 Chapter 3. The Ising Model

The probability in the right-hand side of (3.26) really only depends on ω′
i for

i ∈ ∂ex∆, where ∂ex∆ is the exterior boundary of ∆, defined by

∂ex∆
def= {

i ̸∈∆ : ∃ j ∈∆, j ∼ i
}

.

This implies that

µ
η

Λ;β,h

(
A

∣∣ σi =ω′
i , ∀i ∈Λ\∆

)=µη
Λ;β,h

(
A

∣∣ σi =ω′
i , ∀i ∈ ∂ex∆

)
,

for all events A depending only on the spins located inside ∆. In this sense, (3.26) is
indeed a spatial Markov property. ⋄

Proof of Lemma 3.22: It follows from (3.26) that

〈 f 〉+Λ1;β,h = 〈
f

∣∣ σi = 1, ∀i ∈Λ2 \Λ1
〉+
Λ2;β,h .

The indicator 1{σi=1,∀i∈Λ2\Λ1} being a nondecreasing function, the FKG inequality
implies that

〈 f 〉+Λ1;β,h =
〈

f 1{σi=1,∀i∈Λ2\Λ1}
〉+
Λ2;β,h〈

1{σi=1,∀i∈Λ2\Λ1}
〉+
Λ2;β,h

≥
〈 f 〉+

Λ2;β,h

〈
1{σi=1,∀i∈Λ2\Λ1}

〉+
Λ2;β,h〈

1{σi=1,∀i∈Λ2\Λ1}
〉+
Λ2;β,h

= 〈 f 〉+Λ2;β,h .

Actually, some form of monotonicity with respect to the volume can also be
established for the Gibbs distributions with free boundary condition:

Exercise 3.12. Using the GKS inequalities, prove that, for all β,h ≥ 0,

〈σA〉+Λ1;β,h ≥ 〈σA〉+Λ2;β,h , 〈σA〉∅Λ1;β,h ≤ 〈σA〉∅Λ2;β,h ,

for all A ⊂Λ1 ⊂Λ2 ⋐Zd .

The next lemma shows that the Gibbs distributions with+ and−boundary con-
dition play an extremal role, in the sense that they maximally favor +, respectively
−, spins.

Lemma 3.23. Let f be an arbitrary nondecreasing function. Then, for any β ≥ 0
and h ∈R,

〈 f 〉−Λ;β,h ≤ 〈 f 〉η
Λ;β,h ≤ 〈 f 〉+Λ;β,h ,

for any boundary condition η ∈Ω and any Λ⋐Zd . Similarly, if f is a local function
with supp( f ) ⊂Λ, resp. supp( f ) ⊂VN , then

〈 f 〉−Λ;β,h ≤ 〈 f 〉∅
Λ;β,h ≤ 〈 f 〉+Λ;β,h ,

〈 f 〉−VN−1;β,h ≤ 〈 f 〉per

VN ;β,h ≤ 〈 f 〉+VN−1;β,h .

Proof. Let I (ω) = exp
{
β

∑
i∈Λ, j ̸∈Λ

i∼ j
ωi (1−η j )

}
. First, observe that

∑
ω∈Ω+

Λ

e−HΛ;β,h (ω) =
∑

ω∈Ωη
Λ

e−HΛ;β,h (ω)I (ω) ,
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3.6. Correlation inequalities 101

Figure 3.7: Left: The two-dimensional torus T16 with all spins along Σ16
forced to take the value +1. Right: opening the torus along the first “circle” of
+1 yields an equivalent Ising model on a cylinder with + boundary condition
and all spins forced to take the value +1 along a line. Further opening the
cylinder along the line of frozen + spins yields an equivalent Ising model in
the square {1, . . . ,15}2 with + boundary condition.

and, for any nondecreasing f ,
∑

ω∈Ω+
Λ

e−HΛ;β,h (ω) f (ω) ≥
∑

ω∈Ωη
Λ

e−HΛ;β,h (ω)I (ω) f (ω) .

(The inequality is a consequence of our not assuming that supp( f ) ⊂Λ.) This im-
plies that

〈 f 〉+Λ;β,h =
∑
ω∈Ω+

Λ
e−HΛ(ω) f (ω)

∑
ω∈Ω+

Λ
e−HΛ(ω)

≥
∑
ω∈Ωη

Λ
e−HΛ(ω)I (ω) f (ω)

∑
ω∈Ωη

Λ
e−HΛ(ω)I (ω)

=
〈I f 〉η

Λ;β,h

〈I 〉η
Λ;β,h

≥ 〈 f 〉η
Λ;β,h ,

where we applied the FKG inequality in the last step, making use of the fact that the
function I is nondecreasing.

The proof for the free boundary condition is identical, using the nondecreasing
function I (ω) = exp

{
β

∑
i∈Λ, j ̸∈Λ

i∼ j
ωi

}
.

Let us finally consider the Gibbs distribution with periodic boundary condition.
In that case, we can argue as in the proof of Lemma 3.22, since, for any ω ∈Ω+

VN−1

(considering VN = {0, . . . , N }d as a subset of Zd ),

µ
per

VN ;β,h

(
ω|VN

∣∣ σi = 1 ∀i ∈ΣN
)=µ+

VN−1;β,h(ω) ,

where ΣN
def= {

i = (i1, . . . , id ) ∈ VN : ∃1 ≤ k ≤ d such that ik = 0
}

(see Figure 3.7) and
the restriction of a configuration ω ∈Ω to a subset S ⊂Zd is defined by

ω|S def= (ωi )i∈S .

Exercise 3.13. Let η,ω ∈Ω be such that η ≤ ω. Let f be a nondecreasing function.
Show that, for any β≥ 0 and h ∈R,

〈 f 〉η
Λ;β,h ≤ 〈 f 〉ωΛ;β,h ,

for any Λ⋐Zd . Hint: adapt the argument in the proof of Lemma 3.23.
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102 Chapter 3. The Ising Model

We can now prove existence and translation invariance of 〈·〉+
β,h and 〈·〉−

β,h .

Proof of Theorem 3.17: We consider the + boundary condition. Let f be a local
function. By Lemma 3.19 and linearity,

〈 f 〉+Λn ;β,h =
∑

A⊂supp( f )
f̃ A〈nA〉+Λn ;β,h .

Since the functions nA are nondecreasing, (3.25) implies that, for all A,

〈nA〉+Λn ;β,h ≥ 〈nA〉+Λn+1;β,h , ∀n ≥ 1.

Being nonnegative, 〈nA〉+Λn ;β,h thus converges as n → ∞. It follows that 〈 f 〉+
Λn ;β,h

also has a limit, which we denote by

〈 f 〉+β,h
def= lim

n→∞〈 f 〉+Λn ;β,h .

Since it is obviously linear, positive and normalized, 〈·〉+
β,h is a Gibbs state. We check

now that it does not depend on the sequence Λn ↑Zd . Let Λ1
n ↑Zd and Λ2

n ↑Zd be
two such sequences, and let us denote by 〈·〉+,1

β,h and 〈·〉+,2
β,h the corresponding limits.

SinceΛ1
n ↑Zd andΛ2

n ↑Zd , we can always find a sequence (∆n)n≥1 such that, for all
k ≥ 1,

∆2k−1 ∈
{
Λ1

n : n ≥ 1
}

, ∆2k ∈ {
Λ2

n : n ≥ 1
}

, ∆k ⊊∆k+1 .

Of course, ∆n ↑ Zd . Our previous considerations thus imply that limk→∞〈 f 〉+
∆k ;β,h

exists, for every local function f . Moreover, since (〈 f 〉+
∆2k−1;β,h)k≥1 is a subsequence

of (〈 f 〉+
Λ1

n ;β,h
)n≥1 and (〈 f 〉+

∆2k ;β,h)k≥1 is a subsequence of (〈 f 〉+
Λ2

n ;β,h
)n≥1, we conclude

that
lim

n→∞〈 f 〉+
Λ1

n ;β,h
= lim

k→∞
〈 f 〉+∆k ;β,h = lim

n→∞〈 f 〉+
Λ2

n ;β,h
,

for all local functions f . This shows that the state 〈·〉+
β,h does not depend on the

choice of the sequence (Λn)n≥1.
We still have to prove translation invariance. Let again f be a local function. For

all j ∈Zd , f ◦θ j is also a local function and θ− jΛn ↑Zd (θiΛ
def= Λ+ i ). We thus have

〈 f 〉+Λn ;β,h →〈 f 〉+β,h and 〈 f ◦θ j 〉+θ− jΛn ;β,h →〈 f ◦θ j 〉+β,h .

The conclusion follows, since 〈 f ◦θ j 〉+θ− jΛn ;β,h = 〈 f 〉+
Λn ;β,h (see Figure 3.8).

j

Λn

θ− jΛn

supp( f )

supp( f ◦θ j )

Figure 3.8: Proof of invariance under translations.
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Exercise 3.14. Prove that 〈·〉+
β,h and 〈·〉−

β,h are also invariant under lattice rotations

and reflections of Zd .

Exercise 3.15. Let β ≥ 0 and h ∈ R. Show that 〈·〉+
β,h has short-range correlations,

in the sense that, for all local functions f and g ,

lim
∥i∥1→∞

〈 f · (g ◦θi )〉+β,h = 〈 f 〉+β,h〈g 〉+β,h .

Hint: Use the FKG inequality to prove first the result with f = nA and g = nB for
arbitrary A,B ⋐Zd .

With similar arguments, one can also construct Gibbs states using the free
boundary condition:

Exercise 3.16. Prove that, for all β≥ 0, h ∈R and any sequenceΛn ↑Zd , the sequence
(〈·〉∅

Λn ;β,h)n≥1 converges to a Gibbs state 〈·〉∅
β,h , independent of the sequence (Λn)n≥1

chosen. Show that 〈·〉∅
β,h is translation invariant.

3.7 Phase Diagram

Now that we have seen that infinite-volume Gibbs states for a pair (β,h) can be
constructed rigorously in various ways (for example, using + or − boundary condi-
tions), the next problem is to determine whether these are the same Gibbs states,
or whether there exist some values of the temperature and magnetic field for which
the influence of the boundary condition survives in the thermodynamic limit, lead-
ing to multiple Gibbs states.

The answer to this question will be given in the next sections: it will depend
on the dimension d and on the values of β and h. Contrarily to what often hap-
pens in mathematics, the lack of uniqueness is not a defect of this approach, but is
actually one of its main features: lack of uniqueness means that providing a com-
plete microscopic description of the system (that is, the set of configurations and
the Hamiltonian) as well as fixing all the relevant thermodynamic parameters (β
and h) is not sufficient to completely determine the macroscopic behavior of the
system.

Definition 3.24. If at least two distinct Gibbs states can be constructed for a pair
(β,h), we say that there is a first-order phase transition at (β, h).

Later in this chapter (see Theorem 3.34), we will relate this probabilistic definition
of a first-order phase transition to the analytic one associated to the pressure (Def-
inition 3.8).

We can now turn to the main result of this chapter, which establishes the phase
diagram of the Ising model, that is, the determination for each pair (β,h) of whether
there is a unique or multiple Gibbs states. We gather the corresponding claims in
the form of a theorem, the proof of which will be given in the remainder of the
chapter (see Figure 3.9).
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104 Chapter 3. The Ising Model

Theorem 3.25. 1. In any d ≥ 1, when h ̸= 0, there is a unique Gibbs state for all
values of β ∈R≥0.

2. In d = 1, there is a unique Gibbs state at each (β,h) ∈R≥0 ×R.

3. When h = 0 and d ≥ 2, there exists βc =βc(d) ∈ (0,∞) such that:

• when β<βc, the Gibbs state at (β,0) is unique,

• when β>βc, a first-order phase transition occurs at (β,0):

〈·〉+β,0 ̸= 〈·〉−β,0 .

h

0
βc

β

uniqueness

uniqueness

non-uniqueness

Figure 3.9: The phase diagram of the Ising model in d ≥ 2. The line {(β,0) :
β > βc} is called the coexistence line. This diagram should be compared
with the simulations of Figure 1.9.

The proof of Theorem 3.25 is quite long and is spread over several sections. The
first item will be proved in Section 3.7.4. The second item was already proved in
Section 3.3 (once the results there are combined with Theorem 3.34) and will be
given an alternative proof in Section 3.7.3. The proof of the third item has two parts:
the proof that βc <∞ is done in Section 3.7.2, while the proof that βc > 0 is done in
Section 3.7.3.

Remark 3.26. It can be proved that uniqueness holds also at (βc,0), when d ≥ 2, but
the argument is beyond the scope of this book. [2] The phase transition occurring
as β crosses βc (at h = 0) is thus continuous. ⋄
Remark 3.27. Although the above theorem claims the existence of at least two dis-
tinct Gibbs states when d ≥ 2, h = 0 and β > βc, it does not describe the structure
of the set of Gibbs states associated to those values of (β,h). This is a much more
difficult problem, to which we will return in Section 3.10.8. ⋄

3.7.1 Two criteria for (non)-uniqueness

In this subsection, we establish a link between uniqueness of the Gibbs state, the
average magnetization density and differentiability of the pressure. We use these
quantities to formulate several equivalent characterizations of uniqueness of the
Gibbs state, which play a crucial role in our determination of the phase diagram.
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3.7. Phase Diagram 105

Moreover, the second criterion provides the rigorous link between the analytic and
probabilistic definitions of first-order phase transition introduced earlier.

A first characterization of uniqueness

The major role played by the states 〈·〉+
β,h and 〈·〉−

β,h is made clear by the following

result.

Theorem 3.28. Let (β,h) ∈R≥0 ×R. The following statements are equivalent:

1. There is a unique Gibbs state at (β,h).

2. 〈·〉+
β,h = 〈·〉−

β,h .

3. 〈σ0〉+β,h = 〈σ0〉−β,h .

Proof. The implications 1⇒2⇒3 are trivial. Let us prove that 3⇒2. Take Λn ↑ Zd

and A ⋐ Zd . Since
∑

i∈A ni −nA is nondecreasing (Exercise 3.10), Lemma 3.23 im-
plies that, for all k,

〈∑
i∈A

ni −nA

〉−
Λk ;β,h

≤
〈∑

i∈A
ni −nA

〉+
Λk ;β,h

.

Using linearity, letting k →∞ and rearranging, we get

∑
i∈A

(〈ni 〉+β,h −〈ni 〉−β,h

)≥ 〈nA〉+β,h −〈nA〉−β,h .

If 3 holds, the left-hand side vanishes, since translation invariance then implies that

〈ni 〉+β,h −〈ni 〉−β,h = 〈n0〉+β,h −〈n0〉−β,h = 1
2

(〈σ0〉+β,h −〈σ0〉−β,h

)= 0.

But 〈nA〉+β,h ≥ 〈nA〉−β,h (again by Lemma 3.23), and so 〈nA〉+β,h = 〈nA〉−β,h . Together

with Lemma 3.19, this implies that 〈 f 〉+
β,h = 〈 f 〉−

β,h for every local function f . There-

fore, 2 holds.

It only remains to prove that 2⇒1. Lemma 3.23 implies that any Gibbs state at
(β,h), say 〈·〉β,h , is such that 〈nA〉−β,h ≤ 〈nA〉β,h ≤ 〈nA〉+β,h . If 2 holds, this implies

〈nA〉−β,h = 〈nA〉β,h = 〈nA〉+β,h . By Lemma 3.19, this extends to all local functions and,

therefore, 〈·〉−
β,h = 〈·〉β,h = 〈·〉+

β,h . We conclude that 1 holds.

Some properties of the magnetization density

Remember that the average magnetization density in Λ ⋐ Zd with an arbitrary

boundary condition # was defined by m#
Λ(β,h)

def= 〈mΛ〉#
Λ;β,h . The uniqueness cri-

terion developed in Theorem 3.28 is expressed in terms of the averages 〈σ0〉+β,h and

〈σ0〉−β,h . It is natural to wonder whether these quantities are related to m+
Λ(β,h) and

m−
Λ(β,h). The following result shows that they in fact coincide in the thermody-

namic limit.
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Proposition 3.29. For any sequence Λ ⇑Zd , the limits

m+(β,h)
def= lim

Λ⇑Zd
m+
Λ(β,h) , m−(β,h)

def= lim
Λ⇑Zd

m−
Λ(β,h)

exist and
m+(β,h) = 〈σ0〉+β,h , m−(β,h) = 〈σ0〉−β,h .

Moreover, h 7→ m+(β,h) is right-continuous, while h 7→ m−(β,h) is left-continuous.

Remark 3.30. By Corollary 3.7, m+(β,h) and m(β,h) are equal when h ̸∈Bβ. There-
fore, considering a sequence h ↓ 0 in Bc

β
,

m∗(β) = lim
h↓0

m(β,h) = lim
h↓0

m+(β,h) = m+(β,0) = 〈σ0〉+β,0 .

Note also that, by Exercise 3.15,

lim
∥i∥1→∞

〈σ0σi 〉+β,0 =
(〈σ0〉+β,0

)2 = m∗(β)2 , ∀β≥ 0.

This observation provides a convenient approach for its explicit computation in
d = 2, which avoids having to work with a nonzero magnetic field. ⋄

Proof. Let Λn ⇑Zd . By the translation invariance of 〈·〉+
β,h and by the monotonicity

property (3.25),
〈σ0〉+β,h = 〈mΛn 〉+β,h ≤ 〈mΛn 〉+Λn ;β,h .

This gives 〈σ0〉+β,h ≤ liminfn〈mΛn 〉+Λn ;β,h . For the other bound, fix k ≥ 1 and let i ∈
Λn . On the one hand, if i +B(k) ⊂Λn , (3.25) again gives

〈σi 〉+Λn ;β,h ≤ 〈σi 〉+i+B(k);β,h = 〈σ0〉+B(k);β,h .

On the other hand, if i +B(k) ̸⊂ Λn , then the box i +B(k) intersects ∂inΛn . As a
consequence,

〈mΛn 〉+Λn ;β,h = 1

|Λn |
∑

i∈Λn :
i+B(k)⊂Λn

〈σi 〉+Λn ;β,h + 1

|Λn |
∑

i∈Λn :
i+B(k )̸⊂Λn

〈σi 〉+Λn ;β,h

≤ 〈σ0〉+B(k);β,h +2
|B(k)||∂inΛn |

|Λn |
,

since |〈σi 〉+Λn ;β,h | ≤ 1. (Note that 〈σ0〉+B(k);β,h
can be negative; this is the reason for

the factor 2 in the last term). This implies that, for all k ≥ 1, limsupn〈mΛn 〉+Λn ;β,h ≤
〈σ0〉+B(k);β,h

. Since limk→∞〈σ0〉+B(k);β,h
= 〈σ0〉+β,h , the desired result follows. The one-

sided continuity of m+(β,h) and m−(β,h) will follow from Lemma 3.31 below.

Lemma 3.31. 1. For all β ≥ 0, h 7→ 〈σ0〉+β,h is nondecreasing and right-

continuous and h 7→ 〈σ0〉−β,h is nondecreasing and left-continuous.

2. For all h ≥ 0, β 7→ 〈σ0〉+β,h is nondecreasing and, for all h ≤ 0, β 7→ 〈σ0〉−β,h is
nonincreasing.
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Proof of Lemma 3.31: We prove the properties for 〈σ0〉+β,h (symmetry then allows us

to deduce the corresponding properties for 〈σ0〉−β,h).

1. LetΛ⋐Zd . It follows from the FKG inequality that

∂

∂h
〈σ0〉+Λ;β,h =

∑
i∈Λ

(〈σ0σi 〉+Λ;β,h −〈σ0〉+Λ;β,h〈σi 〉+Λ;β,h

)≥ 0.

So, at fixedΛ, h 7→ 〈σ0〉+Λ;β,h is nondecreasing. This monotonicity clearly persists in

the thermodynamic limit. Let then (hm)m≥1 be a sequence of real numbers such
that hm ↓ h and (Λn)n≥1 be a sequence such that Λn ↑ Zd . Lemma 3.22 implies
that the double sequence (〈σ0〉+Λn ;β,hm

)m,n≥1 is nonincreasing and bounded. Con-

sequently, it follows from Lemma B.4 that

lim
m→∞〈σ0〉+β,hm

= lim
m→∞ lim

n→∞〈σ0〉+Λn ;β,hm

= lim
n→∞ lim

m→∞〈σ0〉+Λn ;β,hm
= lim

n→∞〈σ0〉+Λn ;β,h = 〈σ0〉+β,h .

The third identity relies on the fact that the finite-volume expectation 〈σ0〉+Λn ;β,h is

continuous in h.
2. Proceeding as before and using (3.22) with A = {0} and B = {i , j },

∂

∂β
〈σ0〉+Λ;β,h =

∑

{i , j }∈E b
Λ

(〈σ0σiσ j 〉+Λ;β,h −〈σ0〉+Λ;β,h〈σiσ j 〉+Λ;β,h

)≥ 0.

This monotonicity also clearly persists in the thermodynamic limit.

Exercise 3.17. Let A ⋐ Zd and h ≥ 0. Show that β 7→ 〈σA〉∅β,h is left-continuous

and β 7→ 〈σA〉+β,h is right-continuous.

Defining the critical inverse temperature

Since 〈σ0〉−β,0 = −〈σ0〉+β,0 by symmetry, Theorem 3.28 and Remark 3.30 imply that,

when h = 0, uniqueness is equivalent to m∗(β) = 0. Since Lemma 3.31 implies that
m∗(β) = 〈σ0〉+β,0 is monotone in β, we are led naturally to the following definition.

Definition 3.32. The critical inverse temperature is

βc(d)
def= inf

{
β≥ 0 : m∗(β) > 0

}= sup
{
β≥ 0 : m∗(β) = 0

}
. (3.27)

That is, βc(d) is the unique value of β such that m∗(β) = 0 if β< βc, and m∗(β) > 0
if β > βc. Of course, one still has to determine whether βc(d) is non-trivial, that is,
whether 0 <βc(d) <∞.

Remark 3.33. By translation invariance, 〈σi 〉+β,0 = 〈σ0〉+β,0 = m∗(β) for all i ∈ Zd .

This implies, using the FKG inequality, that

〈σ0σi 〉+β,0 ≥ 〈σ0〉+β,0〈σi 〉+β,0 = m∗(β)2 .

In particular,
inf

i∈Zd
〈σ0σi 〉+β,0 > 0, ∀β>βc . (3.28)
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108 Chapter 3. The Ising Model

Such a behavior is referred to as long-range order. The presence of long-range
order does not, however, imply that the random variables σi display strong corre-
lations at large distances. Indeed, as follows from Exercise 3.15 (see also the more
general statement in point 4 of Theorem 6.58), for any β,

lim
∥i∥1→∞

〈σ0σi 〉+β,0 −〈σ0〉+β,0〈σi 〉+β,0 = 0,

so that σ0 and σi are always asymptotically (as ∥i∥1 →∞) uncorrelated. [3] ⋄

A second characterization of uniqueness

The following theorem provides the promised link between the two notions of first-
order phase transition introduced in Definitions 3.8 and 3.24: non-uniqueness oc-
curs at (β,h) if and only if the pressure fails to be differentiable in h at this point.
The theorem also provides the extension of the relation (3.8) to values of h at which
the pressure is not differentiable. In that case, we can rely on the convexity of
the pressure, which we proved in Theorem 3.6, to conclude that its right- and left-
derivatives with respect to h are always well defined.

Theorem 3.34. The following identities hold for all values of β≥ 0 and h ∈R:

∂ψ

∂h+ (β,h) = m+(β,h),
∂ψ

∂h− (β,h) = m−(β,h) .

In particular, h 7→ψ(β,h) is differentiable at h if and only if there is a unique Gibbs
state at (β,h).

Remark 3.35. Theorem 3.34 shows that the pressure is differentiable with respect
to h precisely for those values of β and h at which there is a unique infinite-volume
Gibbs state. We will see later (Exercise 6.33) that uniqueness of the infinite-volume
Gibbs state also implies differentiability with respect to β. (Actually, although we
will not prove it, the pressure of the Ising model on Zd is always differentiable with
respect to β.) ⋄
Proof. Remember that the set Bβ of points of non-differentiability of the pressure
is at most countable. Therefore, for each h ∈ R, it is possible to find a sequence
hk ↓ h such that hk ̸∈Bβ for all k ≥ 1. It then follows from (3.9) that

∂ψ

∂h+ (β,h) = lim
hk↓h

m(β,hk ) = lim
hk↓h

m+(β,hk ) = m+(β,h) ,

since m+(β,h′) = m(β,h′) for all h′ ̸∈ Bβ (Corollary 3.7) and m+(β,h) is a right-
continuous function of h (Proposition 3.29). Now, by symmetry,

∂ψ

∂h− (β,h) =− ∂ψ

∂h+ (β,−h) =−m+(β,−h) = m−(β,h) .

As a consequence, we conclude that

∂ψ

∂h
(β,h) exists ⇔ m+(β,h) = m−(β,h) .

The conclusion follows since, by Proposition 3.29 and Theorem 3.28,

m+(β,h) = m−(β,h) ⇔ 〈σ0〉+β,h = 〈σ0〉−β,h ⇔ uniqueness at (β,h).

In the following two sections, we prove item 3 of Theorem 3.25 which estab-
lishes, at h = 0, distinct low- and high-temperature behaviors.
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3.7.2 Spontaneous symmetry breaking at low temperatures

In this subsection, we prove that βc(d) < ∞, for all d ≥ 2. In order to do so, it is
sufficient to show that, uniformly in the size of Λ,

µ+
Λ;β,0(σ0 =−1) ≤ δ(β) , (3.29)

where δ(β) ↓ 0 when β→∞. Indeed, this has the consequence that

〈σ0〉+Λ;β,0 =µ+
Λ;β,0(σ0 =+1)−µ+

Λ;β,0(σ0 =−1)

= 1−2µ+
Λ;β,0(σ0 =−1)

≥ 1−2δ(β) .

Therefore, if one fixes β large enough, so that 1 − 2δ(β) > 0, and then takes the
thermodynamic limitΛ ↑Zd , one deduces that

m∗(β) = 〈σ0〉+β,0 > 0. (3.30)

Using the characterization (3.27), this shows that βc <∞: a first-order phase tran-
sition indeed occurs at low temperatures.

The proof of (3.29) uses a key idea originally due to Peierls, today known as
Peierls’ argument and considered a cornerstone in the understanding of phase tran-
sitions. It consists in making the following idea rigorous.

When β is large, neighboring spins with different values make a high contri-
bution to the total energy and are thus strongly suppressed. Therefore the contours,
which are the lines that separate regions of + and − spins, should be rare and a typ-
ical configuration under µ+

Λ;β,0 should have the structure of a “sea” of +1 spins with

small “islands” of − spins (see Figure 3.10). ⋄

In other words, when β is large, typical configurations under µ+
Λ;β,0 are small

perturbations of the ground state η+, and these perturbations are realized by the
contours of the configurations.

We will implement this strategy for the two-dimensional model and will see
later how it can be extended to higher dimensions.

Low-temperature representation

Consider the two-dimensional Ising model inΛ⋐Z2 , with zero magnetic field and
+ boundary condition. We fix some configuration ω ∈ Ω+

Λ and give a geometrical
description of ω whose purpose is to account for the above-mentioned fact that a
low temperature favors the alignment of nearest-neighbor spins. The starting point
is thus to express the Hamiltonian in a way that emphasizes the role played by pairs
of opposite spins:

HΛ;β,0 =−β
∑

{i , j }∈E b
Λ

σiσ j =−β|E b
Λ|+

∑

{i , j }∈E b
Λ

β(1−σiσ j ) .

The dependence on ω is only in the sum
∑

{i , j }∈E b
Λ

β(1−σiσ j ) =
∑

{i , j }∈E b
Λ :

σi ̸=σ j

2β= 2β ·#
{
{i , j } ∈ E b

Λ : σi ̸=σ j
}

.
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110 Chapter 3. The Ising Model

Figure 3.10: A configuration of the two-dimensional Ising model in a finite
box Λ with + boundary condition. At low temperature, the lines separating
regions of + and − spins are expected to be short and sparse, leading to a
positive magnetization inΛ (and thus the validity of (3.29)).

Let us associate to each vertex i ∈Z2 the closed unit square centered at i :

Si
def= i + [− 1

2 , 1
2 ]2 . (3.31)

The boundary (in the sense of the standard topology on R2) of Si , denoted by ∂Si ,
can be considered as being made of four edges connecting nearest-neighbors of
the dual lattice

Z2
∗ =Z2 + ( 1

2 , 1
2 )

def= {
(i1 + 1

2 , i2 + 1
2 ) : (i1, i2) ∈Z2} .

Notice that a given edge e of the original lattice intersects exactly one edge e⊥ of the
dual lattice. If we associate to a configuration ω ∈Ω+

Λ the random set

M (ω)
def=

⋃
i∈Λ :σi (ω)=−1

Si ,

then again ∂M (ω) is made of edges of the dual lattice. Moreover, each edge e⊥ =
{i , j }⊥ ⊂ ∂M (ω) separates two opposite spins: σi (ω) ̸= σ j (ω). One can therefore
write

HΛ;β,0(ω) =−β|E b
Λ|+2β|∂M (ω)| .
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(Here, |∂M (ω)| denotes the number of edges contained in ∂M (ω) or, equivalently,
the total length of ∂M (ω).) A configuration ω with its associated set ∂M (ω) is rep-
resented in Figure 3.10.

We will now decompose ∂M (ω) into disjoint components. For that, it is conve-
nient to fix a deformation rule to decide how these components are defined. To this
end, we first remark that each dual vertex of Z2

∗ is adjacent to either 0, 2 or 4 edges
of ∂M (ω) 2. When this number is 4, we deform ∂M (ω) using the following rule:

=⇒

Figure 3.11: The deformation rule.

An application of this rule at all points at which the incidence number is 4 yields
a decomposition of ∂M (ω) into a set of disjoint closed simple paths on the dual
lattice, as in Figure 3.12. In terms of dual edges,

∂M (ω) = γ1 ∪·· ·∪γn .

Each path γi is called a contour of ω. Let Γ(ω)
def= {γ1, . . . ,γn} and define the length

|γ| of a contour γ ∈ Γ(ω) as the number of edges of the dual lattice that it contains.
For example, in Figure 3.12, |γ5| = 14.

Using the above notations, the energy of a configuration ω ∈ Ω+
Λ can be very

simply expressed in terms of its contours:

HΛ;β,0(ω) =−β|E b
Λ|+2β

∑
γ∈Γ(ω)

|γ| .

Consequently, the partition function in Λ with + boundary condition can be writ-
ten

Z+
Λ;β,0 = eβ|E

b
Λ |

∑
ω∈Ω+

Λ

∏
γ∈Γ(ω)

e−2β|γ| . (3.32)

(As usual, the product is defined as equal to 1 when Γ(ω) =∅.) Finally, the proba-
bility of ω ∈Ω+

Λ can be expressed in terms of contours as

µ+
Λ;β,0(ω) = e−HΛ;β,0(ω)

Z+
Λ;β,0

=
∏
γ∈Γ(ω) e−2β|γ|

∑
ω

∏
γ∈Γ(ω) e−2β|γ| . (3.33)

Remark 3.36. The above probability being a ratio, the terms eβ|E
b
Λ | have canceled

out. Therefore, having defined the Hamiltonian without the constant term β|E b
Λ|

would have led to the same Gibbs distribution: the energy of a system can always
be shifted by a constant without affecting the distribution. ⋄

2 One way to show that is to consider a dual vertex x ∈ Z2∗ together with the four surrounding
points of Z2, which we denote (in clockwise order) by i , j ,k, l . Since (ωiω j )(ω jωk )(ωkωl )(ωlωi ) =
ω2

i ω
2
jω

2
kω

2
l = 1, the number of products equal to −1 in the leftmost expression is even. But such a

product is equal to −1 precisely when the edge of a contour separates the corresponding spins.
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γ1

γ2 γ3

γ4

γ5

γ6

γ7

γ8

γ9

Figure 3.12: The contours (paths on the dual lattice) associated to the config-
uration of Figure 3.10. Together with the value of the spins on the boundary
(+1 in the present case), the original configurationω can be reconstructed in
a unique manner.

Peierls’ argument

We consider the boxB(n) = {−n, . . . ,n}2. To studyµ+
B(n);β,0

(σ0 =−1), we first observe

that any configuration ω ∈ Ω+
B(n)

such that σ0(ω) = −1 must possess at least one
(actually, an odd number of) contours surrounding the origin.

To make this statement precise, notice that each contour γ ∈ Γ(ω) is a bounded
simple closed curve in R2 and therefore splits the plane into two regions, exactly
one of which is bounded, called the interior of γ and denoted Int(γ). We can thus
write

µ+
B(n);β,0(σ0 =−1) ≤µ+

B(n);β,0

(∃γ∗ ∈ Γ : Int(γ∗) ∋ 0
)≤

∑
γ∗:Int(γ∗)∋0

µ+
B(n);β,0(Γ ∋ γ∗) .

Lemma 3.37. For all β> 0 and any contour γ∗,

µ+
B(n);β,0(Γ ∋ γ∗) ≤ e−2β|γ∗| . (3.34)

The bound (3.34) shows that the probability that a given contour appears in a con-
figuration becomes small whenβ is large or when the contour is long. Later, we will
refer to such a fact by saying that the ground state η+ is stable.
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Proof of Lemma 3.37. Using (3.33),

µ+
B(n);β,0(Γ ∋ γ∗) =

∑
ω:Γ(ω)∋γ∗

µ+
B(n);β,0(ω)

= e−2β|γ∗|
∑
ω:Γ(ω)∋γ∗

∏
γ∈Γ(ω)\{γ∗} e−2β|γ|

∑
ω

∏
γ∈Γ(ω) e−2β|γ| . (3.35)

We will show that the ratio in (3.35) is bounded above by 1, by proving that the sum
in the numerator is the same as the one in the denominator, but with an additional
constraint. To each configuration ω with Γ(ω) ∋ γ∗ appearing in the sum of the
numerator, we associate the configuration Eγ∗ (ω) obtained from ω by “removing
γ∗”. This can be done by simply flipping all spins in the interior of γ∗:

(Eγ∗ (ω))i
def=

{
−ωi if i ∈ Int(γ∗),

ωi otherwise.
(3.36)

It is important to realize that Eγ∗ (ω) is the configuration whose set of contours is
exactly Γ(ω) \ {γ∗}. For instance, even if Int(γ∗) contains other contours (as γ3 in
Figure 3.12, which contains γ4 and γ6 in its interior), these continue to exist after
flipping the spins. Let then C(γ∗) be the set of configurations that can be obtained
by removing γ∗ from a configuration containing γ∗. We have

∑
ω:Γ(ω)∋γ∗

∏
γ∈Γ(ω)\{γ∗}

e−2β|γ| =
∑

ω′∈C(γ∗)

∏
γ′∈Γ(ω′)

e−2β|γ′| .

But since the sum overω′ ∈C(γ∗) is less than the sum over allω′ ∈Ω+
B(n)

, this shows
that the ratio in (3.35) is indeed bounded above by 1.

Each of the sums in the ratio in (3.35) is typically exponentially large or small in
|B(n)|. We have proved that the ratio is nevertheless bounded above by 1 by flipping
the spins of the configuration inside the contour γ∗, an operation that relied crucially
on the symmetry of the model under a global spin flip. ⋄

Using (3.34), we bound the sum over all contours that surround the origin, by
grouping them according to their lengths. Since the smallest contour surrounding
the origin is made of 4 dual edges,

µ+
B(n);β,0(σ0 =−1) ≤

∑
γ∗: Int(γ∗)∋0

e−2β|γ∗| (3.37)

=
∑
k≥4

∑
γ∗: Int(γ∗)∋0

|γ∗|=k

e−2β|γ∗|

=
∑
k≥4

e−2βk #
{
γ∗ : Int(γ∗) ∋ 0, |γ∗| = k

}
. (3.38)

A contour of length k surrounding the origin necessarily contains a vertex of the set{
(u − 1

2 , 1
2 ) : u = 1, . . . , [k/2]

}
. But the total number of contours of length k starting

from a given vertex is at most 4 · 3k−1. Indeed, there are 4 available directions for
the first segment, then at most 3 for each of the remaining k−1 segments (since the
contour does not use twice the same edge). Therefore,

#
{
γ∗ : Int(γ∗) ∋ 0, |γ∗| = k

}≤ k
2 ·4 ·3k−1 . (3.39)
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Gathering these estimates,

µ+
B(n);β,0(σ0 =−1) ≤ 2

3

∑
k≥4

k3k e−2βk def= δ(β) . (3.40)

If β is large enough (so that 3e−2β < 1), then the series in (3.40) converges. More-
over, δ(β) ↓ 0 as β→∞. This proves (3.29), which concludes the proof that βc(2) <
∞.

Before turning to the case d ≥ 3, let us see what additional information about
the low-temperature behavior of the two-dimensional Ising model can be extracted
using the approach discussed above. The next exercise shows that, at sufficiently
low temperatures, typical configurations in B(n), for the model with + boundary
condition, consist of a “sea” of + spins with small islands of − spins (the latter pos-
sibly containing “lakes” of + spins, etc.). Namely, the largest contour in B(n) has a
length of order logn.

Exercise 3.18. Consider the two-dimensional Ising model.

1. Show that there exists β0 <∞ such that the following holds for all β> β0. For
any c > 0, there exists K0(c) <∞ such that, for all K > K0(c) and all n,

µ+
B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≤ n−c .

2. Show that, for all β ≥ 0 and all c > 0, there exist K1(β,c) > 0 and n0(c) < ∞
such that, for all K < K1(β,c) and all n ≥ n0(c),

µ+
B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≥ 1−e−n2−c

.

Introducing a positive magnetic field h should only make the appearance of con-
tours less likely, so that it is natural to expect that the claims of the previous exercise
still hold in that case.

Exercise 3.19. Extend the claims of Exercise 3.18 to the case h > 0. Hint: For the
first claim, observe that the existence of a long contour implies the existence of a long
path of − spins, which is a decreasing event; then use the FKG inequality.

Extension to larger dimensions. It remains to show that a phase transition also
occurs in the Ising model in dimensions d ≥ 3. Adapting Peierls’ argument to higher
dimensions is possible, but the counting in (3.39) becomes a little trickier.

Exercise 3.20. Show that Peierls’ estimate can be extended to Zd , d ≥ 3. The combi-
natorial estimate on the sum of contours can be done using Lemma 3.38 below.

Nevertheless, we will analyze the model in d ≥ 3 by following an alternative ap-
proach: using the natural embedding of Zd into Zd+1 and the GKS inequalities, we
will prove that βc(d) is nonincreasing in d .

The idea is elementary: one can build the Ising model on Zd+1 by considering
a stack of Ising models on Zd and adding interactions between neighboring spins
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living in successive layers. Then, the GKS inequalities tell us that adding these inter-
actions does not decrease the magnetization and, thus, does not increase the inverse
critical temperature. ⋄

To simplify notation, we treat explicitly only the case d = 3; the extension to
higher dimensions is straightforward. We will seeZ2 as embedded inZ3. Therefore,
we will temporarily use the following notations:

B3(n)
def= {−n, . . . ,n}3 , B2(n)

def= {−n, . . . ,n}2 .

We claim that

〈σ0〉+B3(n);β,0 ≥ 〈σ0〉+B2(n);β,0 .

Namely, consider the set of edges {i , j } connecting two nearest-neighbor vertices
i = (i1, i2, i3) and j = ( j1, j2, j3) such that i3 = 0 and | j3| = 1. The two spins liv-
ing at the endpoints of such an edge contribute to the total energy by an amount
−βσiσ j ≡ −Ji jσiσ j (remember the Hamiltonian written as in (3.20)). Thanks to
the GKS inequalities,

∂

∂Ji j
〈σ0〉+B3(n);β,0 = 〈σ0σiσ j 〉+B3(n);β,0 −〈σ0〉+B3(n);β,0〈σiσ j 〉+B3(n);β,0 ≥ 0.

We can therefore consider those edges, one after the other, and for each of them
gradually decrease the interaction from its initial value Ji j = β down to Ji j = 0.

Denoting by µ+,0
B3(n);β,0

the Gibbs distribution obtained after all those coupling con-

stants Ji j have been brought down to zero, we obtain

〈σ0〉+B3(n);β,0 ≥ 〈σ0〉+,0
B3(n);β,0

.

Observe that the spins contained in the layer { j3 = 0} interact now as if they were in
a two-dimensional system, and so 〈σ0〉+,0

B3(n);β,0
= 〈σ0〉+B2(n);β,0

. We therefore get

lim
n→∞〈σ0〉+B3(n);β,0 ≥ lim

n→∞〈σ0〉+B2(n);β,0 .

Combined with (3.27), this inequality shows, in particular, that βc(3) ≤ βc(2). The
existence of a first-order phase transition at low temperatures for the Ising model
on Z3 thus follows from the already proven fact that βc(2) <∞.

Improved bound. It is known that the inverse critical temperature of the two-
dimensional Ising model equals

βc(2) = 1
2 arsinh(1) ∼= 0.441.

Obviously, not much care was taken, in our application of Peierls’ argument, to
optimize the resulting upper bound on βc(2). The following exercise shows how a
slightly more careful application of the same ideas can lead to a rather decent upper
bound (with a relative error of order 10%, compared to the exact value).
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Exercise 3.21. 1. Check, using (3.40), that βc(2) < 0.88.

2. The aim of this exercise is to improve this estimate to βc(2) < 0.493. This will
be done by showing that

βc(2) ≤ 1
2 logµ ,

where µ is the connectivity constant of Z2, defined by

logµ
def= lim

n→∞
1

n
logCn ,

where Cn is the number of nearest-neighbor paths of length n starting at the
origin and visiting each of its vertices at most once. It is known that 2.62 <µ<
2.68. Hint: Proceed similarly as in (3.37) and show that the ratio

µ+
B(n);β,0

(
σi =−1∀i ∈B(R)

)

µ−
B(n);β,0

(
σi =−1∀i ∈B(R)

) < 1,

uniformly in n, provided that β> 1
2 logµ and that R is large enough.

3.7.3 Uniqueness at high temperature

There exist several distinct methods to prove that there is a unique Gibbs state
when the spins are weakly dependent, that is, at high temperatures. Two general
approaches will be presented in Section 6.5. Here, we will rely on a graphical repre-
sentation, which is well adapted to a description of high-temperatures correlations.

High-temperature representation. This representation relies on the following el-
ementary identity. Since σiσ j only takes the two values ±1,

eβσiσ j = cosh(β)+σiσ j sinh(β) = cosh(β)
(
1+ tanh(β)σiσ j

)
. (3.41)

Identity (3.41) can be used to rewrite the Boltzmann weight. For all Λ ⋐ Zd and
ω ∈Ω+

Λ,

e−HΛ;β,0(ω) =
∏

{i , j }∈E b
Λ

eβσi (ω)σ j (ω) = cosh(β)|E
b
Λ |

∏

{i , j }∈E b
Λ

(
1+ tanh(β)ωiω j

)
, (3.42)

where E b
Λ was defined in (3.2). We will now expand the product over the edges.

Exercise 3.22. Show that, for any nonempty finite set E ,

∏
e∈E

(1+ f (e)) =
∑

E⊂E

∏
e∈E

f (e) . (3.43)

(As usual, the product in the right-hand side is 1 if E =∅.)

Using (3.43) in (3.42) and changing the order of summation, we get

Z+
Λ;β,0 = cosh(β)|E

b
Λ |

∑

E⊂E b
Λ

tanh(β)|E | ∑
ω∈Ω+

Λ

∏
{i , j }∈E

ωiω j

︸ ︷︷ ︸
=∏

i∈Λω
I (i ,E)
i

,
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where I (i ,E) is the incidence number: I (i ,E)
def= #

{
j ∈Zd : {i , j } ∈ E

}
. Now, the sum-

mation over ω ∈Ω+
Λ can be made separately for each vertex i ∈Λ:

∑
ωi=±1

ωI (i ,E)
i =

{
2 if I (i ,E) is even,

0 otherwise.
(3.44)

We conclude that

Z+
Λ;β,0 = 2|Λ| cosh(β)|E

b
Λ |

∑

E∈E+;even
Λ

tanh(β)|E | , (3.45)

where

E+;even

Λ

def= {
E ⊂ E b

Λ : I (i ,E) is even for all i ∈Λ}
.

When convenient, we will identify such sets of edges with the graph they induce 3.
The expression (3.45) is called the high-temperature representation of the parti-

tion function. Proceeding in the same manner, we see that 〈σ0〉+Λ;β,0 can be written

〈σ0〉+Λ;β,0 =
(
Z+
Λ;β,0

)−12|Λ| cosh(β)|E
b
Λ |

∑

E∈E+;0
Λ

tanh(β)|E |

=
∑

E∈E+;0
Λ

tanh(β)|E |

∑
E∈E+;even

Λ
tanh(β)|E | , (3.46)

where

E+;0
Λ

def= {
E ⊂ E b

Λ : I (i ,E) is even for all i ∈Λ\ {0}, but I (0,E) is odd
}

.

Given E ⊂ E b
Λ, we denote by ∆(E) the set of all edges of E b

Λ sharing no endpoint

with an edge of E . Any collection of edges E ∈E+;0
Λ

can then be decomposed as E =
E0 ∪E ′, with E0 ̸=∅ the connected component of E containing 0, and E ′ ∈ E+;even

Λ
satisfying E ′ ⊂∆(E0). Therefore,

〈σ0〉+Λ;β,0 =
∑

E0∈E+;0
Λ

connected,E0∋0

tanh(β)|E0|
∑

E ′∈E+;even
Λ

:E ′⊂∆(E0) tanh(β)|E
′|

∑
E∈E+;even

Λ
tanh(β)|E | . (3.47)

Proof that βc(d) > 0, for all d . Bounding the ratio in (3.47) by 1,

〈σ0〉+B(n);β,0 ≤
∑

E0∈E+;0
B(n)

connected,E0∋0

tanh(β)|E0| . (3.48)

The sum can be bounded using the following lemma.

Lemma 3.38. Let G be a connected graph with N edges. Starting from an arbitrary
vertex of G, there exists a path in G crossing each edge of G exactly twice.

3The graph induced by a set E of edges is the graph having E as edges and the endpoints of the
edges in E as vertices.
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Proof. The proof proceeds by induction on N , observing that an arbitrary con-
nected graph can always be built one edge at a time in such a way that all inter-
mediate graphs are also connected. When N = 1, the result is trivial. Suppose that
the result holds when N = k and let π= (π(1), . . . ,π(2k)) be one of the correspond-
ing paths. We add a new edge to the graph, keeping it connected; this implies that
at least one endpoint v of this edge belongs to the original graph. The desired path
is obtained by following π until the first visit at v , then crossing the new edge once
in each direction, and finally following the path π to its end.

Using this lemma, we see that the number of graphs E0 with ℓ edges contributing
to (3.48) is bounded above by the number of paths of length 2ℓ starting from 0.
The latter is certainly smaller than (2d)2ℓ since each new edge can be taken in at
most 2d different directions. On the other hand, E0 connects necessarily 0 toB(n)c:
Indeed,

∑
i∈Zd I (i ,E0) = 2|E0| is even; since I (0,E0) is odd, there must be at least one

vertex i ̸= 0 with I (i ,E0) odd; however, such a vertex cannot belong to B(n), since
I (i ,E0) is even for all i ∈ B(n) \ {0}. We conclude that |E0| ≥ n, which yields, since
tanh(β) ≤β,

〈σ0〉+B(n);β,0 ≤
∑
ℓ≥n

(4d 2β)ℓ ≤ e−cn , (3.49)

with c = c(β,d) > 0, for all β< 1/(4d 2). In particular, 〈σ0〉+β,0 = 0 for all β< 1/(4d 2),

which implies that βc(d) > 0, that is, uniqueness at high temperatures, by Theo-
rem 3.28 and the characterization (3.27).

Proof that βc(1) =+∞. Consider the Ising model in a one-dimensional box B(n)
with + boundary condition:

0 +n−n

Due to the structure ofZ, there are only few subgraphs of E ⊂ E b
B(n)

appearing in
the ratio (3.46) and they are particularly simple. We first consider the denominator.
Since the subgraphs appearing in the sum must be such that the incidence number
of each i ∈B(n) is either 0 or 2,E+;even

B(n)
can contain only two graphs: the graph whose

set of edges is E =∅, as in the previous figure, and the one for which E = E b
B(n)

:

0 +n−n

On the other hand, E+;0
B(n)

also reduces to two graphs, one composed of all edges
with two nonnegative endpoints, and one composed of all edges with two nonpos-
itive endpoints:

0 +n−n

0 +n−n
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Consequently, (3.46) becomes

〈σ0〉+B(n);β,0 =
2tanh(β)n+1

1+ tanh(β)2(n+1)
,

which indeed tends to 0 when n →∞, for all β<∞.

Exercise 3.23. Derive representations similar to (3.47) for 〈σiσ j 〉+Λ;β,0, Z∅
Λ;β,0 and

〈σiσ j 〉∅Λ;β,0.

The next exercise shows that the 2-point function decays exponentially when β is
small enough.

Exercise 3.24. Using Exercise 3.23, prove that, for all β sufficiently small, there exists
c = c(β) > 0 such that 〈σiσ j 〉β,0 ≤ e−c∥ j−i∥1 , for all i , j ∈Zd , where 〈·〉β,0 is the unique
Gibbs state.

Note that, as shown in the next exercise, the decay of the 2-point function can never
be faster than exponential (when β ̸= 0):

Exercise 3.25. Using the GKS inequalities, prove that, in any dimension d ≥ 1 and
at any β≥ 0,

〈σiσ j 〉+β,0 ≥ 〈σiσ j 〉∅β,0 ≥ 〈σ0σ∥ j−i∥1〉d=1
Λi , j ;β,0 ,

where the expectation in the right-hand side is with respect to the Gibbs distri-
bution with free boundary condition in the box Λi j = {0, . . . ,∥ j − i∥1} ⊂ Z. Us-
ing Exercise 3.23, show that the 2-point function in the right-hand side is equal to
(tanhβ)∥ j−i∥1 .

Remark 3.39. It is actually possible to prove that the exponential decay of 〈σiσ j 〉β,0

and the exponential relaxation of 〈σ0〉+B(n);β,0
toward 〈σ0〉+β,0 hold true for all β <

βc(d). [3] ⋄

Exercise 3.26. Use the high-temperature representation as an alternative way of
computing the pressure of the one-dimensional Ising model with h = 0. Compare
the expressions for ψ+

B(n)
, ψ∅

B(n)
and ψper

B(n)
.

3.7.4 Uniqueness in nonzero magnetic field

We are now left with the proof of item 1 of Theorem 3.25, which states that, when
h ̸= 0, the Gibbs state associated to (β,h) is always unique, regardless of the value
of β. The proof will take us on a detour, using results from complex analysis, and
will allow us to establish a very strong property of the pressure of the Ising model.

We will study the existence and properties of the pressure when h takes values
in the complex domains

H+ def= {z ∈C :Rez > 0} ,

H− def= {z ∈C :Rez < 0} .

Since the inverse temperature β > 0 will play no particular role in this section, we
will omit it from the notations at some places. For example, we will write ψ(h)
rather than ψ(β,h).
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Theorem 3.40. Let β > 0. As a function of the magnetic field h, the pressure of the
Ising model in the thermodynamic limit, ψ = ψ(h), can be extended from {h ∈ R :
h > 0} (resp. {h ∈ R : h < 0}) to an analytic function on the whole domain H+ (resp.
H−). On H+ and H−, ψ can be computed using the thermodynamic limit with free
boundary condition.

This result of course implies that the complex derivative of ψ with respect to h ex-

ists on H+ and H−. Therefore, the real partial derivative ∂ψ
∂h exists at each real h ̸= 0.

By Theorem 3.34, this implies uniqueness of the Gibbs state for all h ̸= 0, thus com-
pleting the proof of Theorem 3.25.

Remark 3.41. The GHS inequality, which is not discussed in this book, allows to
give an alternative proof of the differentiability of the pressure when h ̸= 0, avoiding
complex analysis. Namely, the GHS inequality can be used to show that the magne-
tization h 7→ 〈σ0〉+β,h is concave, and hence continuous, onR≥0. This implies that its

antiderivative (which is equal to ψ up to a constant) exists and is differentiable on
(0,+∞). Of course, combined with Theorem 3.34, Theorem 3.40 implies the much
stronger statement that h 7→ 〈σ0〉+β,h is real analytic on {h < 0} and {h > 0}. ⋄

We have seen that, for real parameters, the thermodynamic limit of the pres-
sure can be computed using an arbitrary boundary condition. When the magnetic
field is complex, the boundary condition becomes a nuisance. It turns out that the
free boundary condition is particularly convenient. We will therefore work in finite
volumesΛ⋐Zd and study

ψ∅
Λ

(h) = 1

|Λ| logZ∅
Λ;β,h .

The existence and analyticity properties of the pressure are established by taking
the thermodynamic limit Λ ⇑ Zd for this choice of boundary condition. The ana-
lytic function obtained is then the analytic continuation of the pressure to complex
values of the field 4.

On the one hand when the magnetic field is real, Z∅
Λ;β,h being a finite linear

combination of powers of e±h , is real-analytic in h. Moreover, since

Z∅
Λ;β,h > 0 for all h ∈R , (3.50)

the pressure ψ∅
Λ

(·) is also real-analytic in h. It is not true, however, that this real

analyticity always holds in the thermodynamic limit Λ ⇑Zd . Indeed, we have seen
(using Peierls’ argument) that, at low temperature, the pressure is not even differ-
entiable at h = 0.

On the other hand, since the Boltzmann weights are complex numbers when
h ∈C, the partition function Z∅

Λ;β,h can very well vanish, leading to a problem even

for the definition of the finite-volume pressure.

Fortunately, the celebrated Lee–Yang Circle Theorem, Theorem 3.43, will show
that the partition function satisfies a remarkable property, analogous to (3.50), in
suitable domains of the complex plane. This will allow us to control the analyticity
of the pressure in the thermodynamic limit, as explained in the following result.

4We remind the reader of the following fact: if two functions analytic on a domain D coincide on a
set A ⊂ D which has an accumulation point in D , then these two functions are equal on D . Therefore, if
it were possible to obtain another pressure ψ̃ using a different boundary condition, analytic on H+ and
H−, then, since this pressure coincides with the one obtained with free boundary conditions on the real
axis, it must coincide with it on H+ and H−.
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Theorem 3.42 (Lee–Yang). Let β≥ 0. Let D ⊂C be open, simply connected and such
that D ∩R is an interval of R. Assume that, for every finite volume Λ⋐Zd ,

Z∅
Λ;β,h ̸= 0 ∀h ∈ D . (3.51)

Then, the pressure h 7→ψ(h) admits an analytic continuation to D.

We know from the analysis done in the previous sections that the pressure is not
differentiable at h = 0 when β > βc(d). When this happens, the previous theo-
rem implies that there must exist a sequence (hk ) ∈C, tending to 0 and a sequence
Λk ⇑ Zd such that Z∅

Λk ;β,hk
= 0 for all k. Therefore, even though the partition func-

tions never vanish as long as h is real, complex zeroes approach the point h = 0 in
the thermodynamic limit. In this sense, although values of the magnetic field with
a nonzero imaginary part may be experimentally meaningless [4], the way the par-
tition function behaves for such complex values of the magnetic field turns out to
have profound physical consequences.

Proof of Theorem 3.42: (The precise statements of the few classical results of com-
plex analysis needed in the proof below can be found in Appendix B.3.)

LetΛn ⇑Zd . Using (3.51), Theorem B.23 guarantees that one can find a function
h 7→ logZ∅

Λn ;β,h analytic on D and coinciding with the quantity studied in the rest of

this chapter when h ∈ D ∩R (see Remark B.24 for the existence of a branch of the
logarithm with this property). One can then define

gn(h)
def= exp

(|Λn |−1 logZ∅
Λn ;β,h

)
,

which is also analytic on D . Now, when h ∈ D ∩R, gn(h) coincides with eψ
∅
Λn

(h),

and Theorem 3.6 thus guarantees that, for such values of h, gn(h) → g (h)
def= eψ(h)

as n →∞, where ψ is the pressure of the Ising model in infinite volume.
The next observation is that the sequence (gn) is locally uniformly bounded on

D , since

|Z∅
Λn ;β,h | ≤

∑
ω∈ΩΛn

∣∣exp
(−H ∅

Λn ;β,h(ω)
)∣∣

=
∑

ω∈ΩΛn

exp
(−H ∅

Λn ;β,Reh(ω)
)≤ exp

(
(2dβ+|Reh|+ log2)|Λn |

)
,

and thus |gn(h)| = exp(|Λn |−1 log |Z∅
Λn ;β,h |) ≤ exp(2dβ+|Reh|+ log2) for all h ∈ D .

We are now in a position to apply Vitali’s convergence theorem (Theorem B.25)
in order to conclude that (gn)n≥1 converges locally uniformly, on D , to an analytic
function g .

Moreover, since gn(h) ̸= 0 for all h ∈ D and all n ≥ 1, Hurwitz’ theorem (Theo-
rem B.26) implies that g has no zeroes on D . Indeed, the other possibility (that is,
g ≡ 0 on D) is incompatible with the fact that g = eψ > 0 on D ∩R.

Since g does not vanish on D , it follows from Theorem B.23 that the latter ad-
mits an analytic logarithm in D . However, choosing again the branch that is real on
D ∩R, the function log g coincides with the pressure of the Ising model on the real
axis, which proves the theorem.

To prove Theorem 3.40 using Theorem 3.42, we still have to show
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Theorem 3.43 (Lee–Yang Circle Theorem). Condition (3.51) is satisfied when D =
H+ and when D = H−.

The proof given below will involve working with the variable

z
def= e−2h

rather than h. But h ∈ H+ if and only if z ∈U, where U is the open unit disk

U
def= {z ∈C : |z| < 1} .

Therefore, Theorem 3.43 implies that all zeroes of Z∅
Λn ;β,h (seen as a function of z)

lie on the unit circle. This explains the origin of the name associated to the above
result.

Proof. Whenβ= 0, the claim is trivial. We therefore assume from now on thatβ> 0.
It will be convenient to consider the model as defined on a subgraph of Zd with
no isolated vertices, that is, to consider the model on a graph (V ,E) where E is a
finite set of edges between nearest-neighbors of Zd and where V is the set of all
endpoints of edges in E . It will be assumed that the interactions among the spins
on V appearing in the Hamiltonian are only between spins at vertices connected
by an edge of E .

As we already said, the partition function with free boundary condition in V is
a finite linear combination of powers of e±h . We will now express it as a polynomial
in the variable z = e−2h . Namely,

Z∅
V ;β,h =

∑
ω∈ΩV

∏
{i , j }∈E

eβσi (ω)σ j (ω)
∏
i∈V

ehσi (ω)

= eβ|E |+h|V | ∑
ω∈ΩV

∏
{i , j }∈E

eβ(σi (ω)σ j (ω)−1)
∏
i∈V

eh(σi (ω)−1) .

A configuration ω ∈ΩV can always be identified with the set X = X (ω) ⊂V defined

by X (ω)
def= {i ∈V :σi (ω) =−1}. We can therefore write

∑
ω∈ΩV

∏
{i , j }∈E

eβ(σi (ω)σ j (ω)−1)
∏
i∈V

eh(σi (ω)−1) =
∑

X⊂V
aE (X )z |X | def= PE (z) ,

where aE (∅) = aE (V )
def= 1 and, in all other cases,

aE (X )
def=

∏
{i , j }∈E

i∈X , j∈V \X

e−2β .

Observe that these coefficients satisfy aE (X ) ∈ [0,1]. Since Z∅
V ;β,h = eβ|E |+h|V |PE (z),

in order to show that Z∅
V ;β,h ̸= 0 for all h ∈ H+, it suffices to prove that PE (z) does

not vanish on U.
The next step is to turn the one-variable but high-degree polynomial PE into a

many-variables but degree-one (in each variable) polynomial: let zV = (zi )i∈V ∈CV

and consider the polynomial

P̂E (zV )
def=

∑
X⊂V

aE (X )
∏
i∈X

zi .
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Of course, the original polynomial PE (z) is recovered by taking zi = z for all i ∈V .
We will show that

|zi | < 1,∀i ∈V =⇒ P̂E (zV ) ̸= 0. (3.52)

The proof proceeds by induction on the cardinality of E . We first check that (3.52)
holds when E consists of a single edge {i , j }. In that case, since aE ({i }) = aE ({ j }) =
e−2β,

P̂E (z{i , j }) = zi z j +e−2β(zi + z j )+1.

Therefore, P̂E (z{i , j }) = 0 if and only if

zi =−e−2βz j +1

z j +e−2β
.

Using the fact that 0 ≤ e−2β < 1, it is easy to check (see Exercise 3.27 below) that the
Möbius transformation z 7→ −(e−2βz + 1)/(z + e−2β) interchanges the interior and
the exterior of U. This implies that if |z j | < 1, then |zi | > 1, so that P̂E (zi , z j ) never
vanishes when both |zi |, |z j | < 1.

Let us now assume that (3.52) holds for (V ,E) and let b = {i , j } be an edge of
Zd not contained in E . We want to show that (3.52) still holds for the graph (V ∪
{i , j },E ∪ {b}).

There are three cases to consider, depending on whether V ∩{i , j } is empty, con-
tains one vertex, or contains two vertices.

Case 1: V ∩ {i , j } =∅. In this case, the sum over X ⊂ V ∪ {i , j } can be split into two
independent sums, over X1 ⊂V and X2 ⊂ {i , j }, giving

P̂E∪{b}(zV ∪{i , j }) = P̂E (zV )P̂{b}(z{i , j }) . (3.53)

Since neither of the polynomials on the right-hand side vanishes (by the induction
hypothesis) when |zk | < 1 for all k ∈V ∪ {i , j }, the same must be true of the polyno-
mial on the left-hand side.

Case 2: V ∩ {i , j } = {i }. The main idea here is to add the new edge b in two steps.
First, we add to E a “virtual” edge b′ = {i ′, j }, where i ′ is a virtual vertex not present
in V , and then identify i ′ with i , by a procedure called Asano contraction:

i ji ′ j

E E

i

On the one hand, since V ∩ {i ′, j } = ∅, we are back to Case 1: the polynomial
P̂E∪{b′}(zV ∪{i ′, j }) can be factorized as in (3.53) and, by the induction hypothesis,
we conclude that it cannot vanish when all its variables have modulus smaller than
1.

On the other hand, the sum over X ⊂ V ∪ {i ′, j } in P̂E∪{b′}(zV ∪{i ′, j }) can be split
depending on X ∩ {i ′, i } being {i , i ′}, {i ′}, {i } or ∅, giving

P̂E∪{b′}(zV ∪{i ′, j }) = P̂−,−zi zi ′ +P̂+,−zi ′ +P̂−,+zi +P̂+,+ ,
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where P̂+,+,P̂+,−,P̂−,+ and P̂−,− are polynomials in the remaining variables: z j

and zk , k ∈V \ {i }.
The Asano-contraction of P̂E∪{b′}(zV ∪{i ′, j }) is defined as the polynomial

P̂−,−zi +P̂+,+ .

It turns out that the latter polynomial coincides with P̂E∪{b}(zV ∪{ j }).

Lemma 3.44. P̂E∪{b}(zV ∪{ j }) = P̂−,−zi +P̂+,+.

Proof. Let Ṽ
def= (V \ {i })∪ { j }. For σ1,σ2 ∈ {−,+}, the polynomials P̂σ1,σ2 are explic-

itly given by
P̂σ1,σ2 =

∑
X⊂Ṽ

aσ1,σ2
E∪{b′}(X )

∏
k∈X

zk ,

with

a−,−
E∪{b′}(X )

def= (
1{X∋ j } +1{X ̸∋ j }e

−2β)
aE (X ∪ {i }) ,

a+,−
E∪{b′}(X )

def= (
1{X∋ j } +1{X ̸∋ j }e

−2β)
aE (X ) ,

a−,+
E∪{b′}(X )

def= (
1{X ̸∋ j } +1{X∋ j }e

−2β)
aE (X ∪ {i }) ,

a+,+
E∪{b′}(X )

def= (
1{X ̸∋ j } +1{X∋ j }e

−2β)
aE (X ) .

Doing a similar decomposition for the polynomial P̂E∪{b}(zV ∪{ j }), we get:

P̂E∪{b}(zV ∪{ j }) = P̂−zi +P̂+ ,

where, for σ ∈ {−,+}, we have introduced

P̂σ def=
∑

X⊂Ṽ

aσE∪{b}(X )
∏

k∈X
zk ,

with

a−
E∪{b}(X )

def= (
1{X∋ j } +1{X ̸∋ j }e

−2β)
aE (X ∪ {i }) ,

a+
E∪{b}(X )

def= (
1{X ̸∋ j } +1{X∋ j }e

−2β)
aE (X ) .

The conclusion follows.

Since we have seen that the polynomial P̂E∪{b′}(zV ∪{i ′, j }) does not vanish when
all its variables have modulus smaller than 1, it suffices to show that its Asano-
contraction also cannot vanish when all its variables have modulus smaller than
1.

Let us fix the variables zk , k ∈ V \ {i }, and z j so that they all belong to U. By

Case 1, we know that, in this situation, P̂E∪{b′}(zE∪{i ′, j }) cannot vanish when zi and
zi ′ also both belong to U. By taking zi = zi ′ = z, we conclude that

z 7→ P̂−,−z2 + (P̂−,++P̂+,−)z +P̂+,+

cannot have zeros of modulus smaller than 1. In particular, the product of its two
roots has modulus 1 or larger. But the latter implies that |P̂+,+| ≥ |P̂−,−| and, thus,
z 7→ P̂−,−z +P̂+,+ cannot vanish when |z| < 1.
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Case 3: V ∩ {i , j } = {i , j }. This case is treated in a very similar way, so we only sketch
the argument and leave the details as an exercise to the reader.

Adding a virtual edge b′′ = {i ′, j ′} yields a polynomial P̂E∪{b′′}(zV ∪{i ′, j ′}) satisfy-
ing (3.52) by Case 1. We then proceed as above and apply two consecutive Asano
contractions: the first to identify the variables z j ′ and z j , the second to identify the
variables zi ′ and zi .

i ′

j ′

E

j

i i ′

j

E i i

j

E

Figure 3.13: A picture of case 3: We first add a virtual edge {i ′, j ′} to E , then
identify first j and j ′, and then i and i ′.

Remark 3.45. The reader might have noticed that the proof given above does not
depend on the structure of the graph inherited from the Hamiltonian of the model.
Moreover, the fact that the interaction is the same between each pair of nearest-
neighbor spins, was not used: the coupling constant β used for all edges could be
replaced by couplings Ji j varying from edge to edge. Therefore, the Circle Theorem
and its consequence, Theorem 3.42, can be adapted to obtain analyticity of the
pressure in more general settings. ⋄

Exercise 3.27. Let ϕ(z)
def= αz+1

α+z , where 0 ≤α< 1. Show that ∂U is invariant under ϕ,
and that ϕ maps the interior of U onto its exterior and vice versa.

Exercise 3.28. Using the explicit formula (3.10) for the pressure of the one-
dimensional Ising model, determine the location of its singularities as a function
of the (complex) magnetic field h. What happens as β tends to infinity?

The next exercise provides an alternative approach to the analyticity of the pres-
sure in a smaller open part of the complex plane, still containing R\ {0}.

Exercise 3.29. Assume that Reh > 0. Observe that, by considering two independent
copies of the system with magnetic field h and h̄, one can write

|Z∅
Λ;β,h |

2 =
∑
ω,ω′

exp
{
β

∑
{i , j }∈EΛ

(ωiω j +ω′
iω

′
j )+

∑
i∈Λ

(hωi + h̄ω′
i )

}
.

We define θi ∈ {0,π/2,π,3π/2}, i ∈ Λ, by cosθi
def= 1

2 (ωi +ω′
i ) and sinθi

def= 1
2 (ωi −

ω′
i ). Show that, after changing to these variables and expanding the exponential,

one obtains

|Z∅
Λ;β,h |

2 =
∑

(θi )i∈Λ

∑
m=(mi )i∈Λ
mi∈{0,1,2,3}

α̂me i
∑

i∈Λmiθi = 4|Λ| α̂(0,...,0) ,

with coefficients α̂m nonnegative and nondecreasing in Reh +Imh and in Reh −
Imh. Conclude that |Z∅

Λ;β,h | > 0 when Reh > |Imh|.
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3.7.5 Summary of what has been proved

In this brief subsection, we summarize the main results that have been derived.
First, we emphasize that the main features of the discussion in Section 1.4.3 have
been fully recovered (compare, in particular, with Figure 1.11):

Theorem 3.46. Let βc(d) be the inverse critical temperature of the Ising model onZd

(we have seen that βc(1) =+∞, while 0 <βc(d) <∞ for d ≥ 2).

1. For all β < βc(d), the average magnetization density m(β,h) is well defined
(and independent of the boundary condition and of the sequence of boxes used
in its definition) for all h ∈R. It is an odd, nondecreasing, continuous function
of h; in particular, m(β,0) = 0.

2. For all β > βc(d), the average magnetization density m(β,h) is well defined
(and independent of the boundary condition and of the sequence of boxes used
in its definition) for all h ∈ R \ {0}. It is an odd, nondecreasing function of h,
which is continuous everywhere except at h = 0, where

lim
h↓0

m(β,h) = m+(β,h) > 0, lim
h↑0

m(β,h) = m−(β,h) < 0.

In particular, the spontaneous magnetization satisfies

m∗(β) = 0 when β<βc(d) , m∗(β) > 0 when β>βc(d) .

Remark 3.47. As has already been mentioned, it is known that m∗(βc) = 0. By Exer-
cise 3.17, this implies that the function β 7→ m∗(β) is continuous at βc. ⋄
Remark 3.48. It follows from the above that, when h = 0, the spontaneous magne-
tization m∗(β) allows one to distinguish the ordered regime (in which m∗(β) > 0)
from the disordered regime (in which m∗(β) = 0). A function with this property is
said to be an order parameter. ⋄

Proof of Theorem 3.46. On the one hand, we know from Theorem 3.43 that, for all
β ≥ 0, the pressure ψ(β,h) is differentiable with respect to h at all h ̸= 0. On the
other hand, point 3 of Theorem 3.25 and Theorem 3.34 imply that the function
h 7→ ψ(β,h) is differentiable at h = 0 when β < βc(d), but is not differentiable at
h = 0 when β > βc(d). This implies that Bβ =∅ when h ̸= 0 or β < βc(d), and that
Bβ = {0} when h = 0 and β>βc(d).

By Corollary 3.7, the above implies that m(β,h) is well defined and independent
of the boundary condition whenever h ̸= 0 or β < βc(d). This shows, in particular,
that m(β,h) = m+(β,h) for all h > 0.

The claim that m(β,h) is an odd, nondecreasing function of h that is continuous
for all h ̸∈Bβ follows from symmetry and Corollary 3.7.

We have also seen that the Gibbs states provide a satisfactory description of the
model in the thermodynamic limit. These objects give a first glimpse of the way
by which models in infinite volume will be described later in the book. The states
〈·〉+

β,h and 〈·〉−
β,h , constructed with + and − boundary conditions respectively, were

instrumental in characterizing the uniqueness regime. Much more will be said on
these states, in particular in Chapter 6.
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3.8 Proof of the Correlation Inequalities

3.8.1 Proof of the GKS inequalities

Although the GKS inequalities (3.21) and (3.22) are already more than we need to
study the (nearest-neighbor) Ising model, we will prove them in an even more gen-
eral setting.

Let Λ ⋐ Zd and let K = (KC )C⊂Λ be a family of real numbers, called coupling
constants. Consider the following probability distribution onΩΛ:

νΛ;K(ω)
def= 1

ZΛ;K
exp

{ ∑
C⊂Λ

KCωC
}

,

whereωC
def= ∏

i∈C ωi and ZΛ;K is the associated partition function. The Gibbs distri-
butions µ+

Λ;J,h, µ∅
Λ;J,h and µper

Λ;J,h can all be written in this form, with KC ≥ 0 ∀C ⊂Λ,

if h ≥ 0. For example, µ+
Λ;β,h = νΛ;K once

KC =





h +β#
{

j ̸∈Λ : j ∼ i
}

if C = {i } ⊂Λ,

β if C = {i , j } ⊂Λ, i ∼ j ,

0 otherwise.

Exercise 3.30. Check that µ∅
Λ;β,h and µ

per
Λ;β,h can also be written in this form for a

suitable choice of the coefficients K, and that these coefficients can all be taken non-
negative if h ≥ 0.

We can now state the following generalization of Theorem 3.20.

Theorem 3.49. Let K = (KC )C⊂Λ be such that KC ≥ 0 for all C ⊂ Λ. Then, for any
A,B ⊂Λ,

〈σA〉Λ;K ≥ 0, (3.54)

〈σAσB 〉Λ;K ≥ 〈σA〉Λ;K〈σB 〉Λ;K . (3.55)

Proof. Clearly, ZΛ;K > 0. We can thus focus on the numerators. Expanding the ex-
ponentials as Taylor series as eKCωC =∑

nC≥0
1

nC ! K
nC
C ω

nC
C , we can write

ZΛ;K〈σA〉Λ;K =
∑
ω
ωA

∏
C⊂Λ

eKCωC

=
∑

(nC )C⊂Λ
nC≥0

∏
C⊂Λ

K nC
C

nC !

∑
ω
ωA

∏
C⊂Λ

ω
nC
C . (3.56)

We rewrite ωA
∏

C⊂Λω
nC
C =∏

i∈Λω
mi
i , where mi = 1{i∈A} +

∑
C⊂Λ,C∋i nC . Upon sum-

mation, since
∑

ωi=±1
ω

mi
i =

{
2 if mi is even,

0 if mi is odd,

it follows that ∑
ω

∏
i∈Λ

ω
mi
i =

∏
i∈Λ

∑
ωi=±1

ω
mi
i ≥ 0.
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This establishes (3.54). To prove (3.55), we duplicate the system. That is, we con-
sider the product probability distribution νΛ;K ⊗νΛ;K onΩΛ×ΩΛ defined by

νΛ;K ⊗νΛ;K(ω,ω′) def= νΛ;K(ω)νΛ;K(ω′) .

If we define σi (ω,ω′) def= ωi and σ′
i (ω,ω′) def= ω′

i , then

〈σAσB 〉Λ;K −〈σA〉Λ;K〈σB 〉Λ;K = 〈σA(σB −σ′
B )〉νΛ;K⊗νΛ;K .

The problem is thus reduced to proving the nonnegativity of

(ZΛ;K)2〈σA(σB −σ′
B )〉νΛ;K⊗νΛ;K =

∑
ω,ω′

ωA(ωB −ω′
B )

∏
C⊂Λ

eKC (ωC+ω′
C ) .

Introducing the variables ω′′
i

def= ωiω
′
i =ω′

i /ωi ,

∑
ω,ω′

ωA(ωB −ω′
B )

∏
C⊂Λ

eKC (ωC+ω′
C ) =

∑
ω,ω′′

ωAωB (1−ω′′
B )

∏
C⊂Λ

eKC (1+ω′′
C )ωC

=
∑
ω′′

(1−ω′′
B )

∑
ω
ωAωB

∏
C⊂Λ

eKC (1+ω′′
C )ωC .

Since 1−ω′′
B ≥ 0, (3.55) follows by treating this last sum overω (for each fixedω′′) as

the one in (3.56), working with coupling constants KC (1+ω′′
C ) ≥ 0.

Exercise 3.31. Let K = (KC )C⊂Λ and K′ = (K ′
C )C⊂Λ be such that KC ≥ |K ′

C | (in partic-
ular, KC ≥ 0), for all C ⊂Λ. Show that, for any A ⊂Λ,

〈σA〉Λ;K ≥ 〈σA〉Λ;K′ .

Hint: apply a variant of the argument used to prove (3.55).

3.8.2 Proof of the FKG inequality

We provide here a very general and short proof of the FKG inequality. The inter-
ested reader can find an alternative proof in Section 3.10.3, based on Markov chain
techniques, which he might find more intuitive.

Our aim is to show that, for a finite volume Λ ⋐ Zd and two nondecreasing
functions f , g :Ω→R,

〈 f g 〉η
Λ;J,h ≥ 〈 f 〉η

Λ;J,h〈g 〉η
Λ;J,h . (3.57)

Again, we will prove a result that is more general than required. Remember that the
order we use on ΩΛ is the following: ω ≤ ω′ if and only if ωi ≤ ω′

i for all i ∈ Λ. We
also define, for ω= (ωi )i∈Λ and ω′ = (ω′

i )i∈Λ,

ω∧ω′ def= (ωi ∧ω′
i )i∈Λ ,

ω∨ω′ def= (ωi ∨ω′
i )i∈Λ .

As explained below, (3.57) is a consequence of the following general result.
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Theorem 3.50. Let µ=⊗
i∈Λµi be a product measure on ΩΛ. Let f1, . . . , f4 :ΩΛ→R

be nonnegative functions onΩΛ such that

f1(ω) f2(ω′) ≤ f3(ω∧ω′) f4(ω∨ω′), ∀ω,ω′ ∈ΩΛ. (3.58)

Then
〈 f1〉µ〈 f2〉µ ≤ 〈 f3〉µ〈 f4〉µ . (3.59)

Before turning to the proof of this result, let us explain why it implies (3.57). With
no loss of generality, we can assume that f and g depend only on the values of the
configuration insideΛ and that both are nonnegative 5. For i ∈Λ, s ∈ {±1}, let

µi (s)
def= ehs+s

∑
j ̸∈Λ, j∼i Ji jη j .

We have

〈 f 〉η
Λ;J,h =

∑
ω∈ΩΛ

f (ω)p(ω)µ(ω) = 〈 f p〉µ ,

where

p(ω)
def=

exp{
∑

{i , j }∈EΛ Ji jωiω j }

Zη
Λ;J,h

.

Let f1 = p f , f2 = pg , f3 = p, f4 = p f g . If (3.58) holds for this choice, then (3.59)
holds, and so (3.57) is proved. To check (3.58), we must verify that

p(ω)p(ω′) ≤ p(ω∨ω′)p(ω∧ω′) .

But this is true since

ωiω j +ω′
iω

′
j ≤ (ωi ∨ω′

i )(ω j ∨ω′
j )+ (ωi ∧ω′

i )(ω j ∧ω′
j ) .

Indeed, the inequality is obvious if both terms in the right-hand side are equal to 1.
Let us therefore assume that at least one of them is equal to −1. This cannot happen
if both ωi ̸= ω′

i and ω j ̸= ω′
j . Without loss of generality, we can thus suppose that

ωi =ω′
i . In that case, the right-hand side equals

ωi
{
(ω j ∨ω′

j )+ (ω j ∧ω′
j )

}=ωi (ω j +ω′
j ) =ωiω j +ω′

iω
′
j .

Remark 3.51. As the reader can easily check, the proof below does not rely on the
fact that the spins take their values in {±1}; it actually holds for arbitrary real-valued
spins. ⋄

Proof of Theorem 3.50. For some fixed i ∈Λ, any configurationω ∈ΩΛ can be iden-
tified with the pair (ω̃,ωi ), where ω̃ ∈ΩΛ\{i }. We will show that

f1(ω) f2(ω′) ≤ f3(ω∧ω′) f4(ω∨ω′) . (3.60)

implies
f̃1(ω̃) f̃2(ω̃′) ≤ f̃3(ω̃∧ ω̃′) f̃4(ω̃∨ ω̃′) , (3.61)

5Indeed, if these hypotheses are not verified, we can redefine f (ω), for ω ∈ ΩΛ, by f (ωη|Λc ) −
minω′ f (ω′η|Λc ) where ωη|Λc is the configuration that coincides with ω on Λ and with η on Λc. The
same can be done with g . Note that this does not affect the covariance of f and g .
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where (for k = 1,2,3,4) f̃k (ω̃)
def= 〈 fk (ω̃, · )〉µi =

∑
v=±1 fk (ω̃, v)µi (v). Using this obser-

vation |Λ| times yields the desired result.
The left-hand side of (3.61) can be written

〈 f1(ω̃,u) f2(ω̃′, v)〉µi⊗µi = 〈1{u=v} f1(ω̃,u) f2(ω̃′, v)〉µi⊗µi

+〈1{u<v}( f1(ω̃,u) f2(ω̃′, v)+ f1(ω̃, v) f2(ω̃′,u))〉µi⊗µi .

Similarly, the right-hand side of (3.61) can be written

〈 f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)〉µi⊗µi = 〈1{u=v} f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)〉µi⊗µi

+〈1{u<v}( f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)+ f3(ω̃∧ ω̃′, v) f4(ω̃∨ ω̃′,u))〉µi⊗µi .

We thus obtain

f̃3(ω̃∧ ω̃′) f̃4(ω̃∨ ω̃′)− f̃1(ω̃) f̃2(ω̃′)

= 〈1{u=v}
(

f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′, v)− f1(ω̃,u) f2(ω̃′, v)
)〉µn⊗µn

+〈1{u<v}
(
C +D − A−B

)〉µn⊗µn , (3.62)

where we have introduced A
def= f1(ω̃,u) f2(ω̃′, v), B

def= f1(ω̃, v) f2(ω̃′,u), C
def= f3(ω̃∧

ω̃′,u) f4(ω̃∨ ω̃′, v) and D
def= f3(ω̃∧ ω̃′, v) f4(ω̃∨ ω̃′,u).

The first term in the right-hand side of (3.62) is nonnegative thanks to inequal-
ity (3.60). The desired claim (3.61) will thus follow if we can show that A+B ≤C+D .

Observe first that (3.60) implies that A ≤C , B ≤C and

AB = f1(ω̃,u) f2(ω̃′,u) f1(ω̃, v) f2(ω̃′, v)

≤ f3(ω̃∧ ω̃′,u) f4(ω̃∨ ω̃′,u) f3(ω̃∧ ω̃′, v) f4(ω̃∨ ω̃′, v) =C D .

On the one hand, if C = 0, then A = B = 0 and the inequality A+B ≤C+D is obvious.
On the other hand, when C ̸= 0, the inequality follows from

(C +D − A−B)/C ≥ 1+ AB/C 2 − (A+B)/C = (1− A/C )(1−B/C ) ≥ 0.

3.9 Bibliographical references

The Ising model is probably the most studied model in statistical physics and, as
such, is discussed in countless books and review articles. An old, but very good,
general discussion in the spirit of what is done here is [146]. We list some references
for the material presented in the chapter.

Pressure. The notion of convergence in the sense of van Hove (formulated in a
slightly different, but equivalent way) was first introduced in [345].

In the context of lattice spin systems, the existence and the basic properties of
the thermodynamic limit for the pressure were first established by Griffiths [145]
and Gallavotti and Miracle-Solé [128]. The proofs given in this chapter (Theo-
rem 3.6 and Exercise 3.3) can be extended to cover a very wide class of models,
possibly with interactions of infinite range. See the books by Ruelle [289] and Si-
mon [308] for additional results and information.

The computation of the pressure of the one-dimensional (nearest-neighbor)
Ising model (Theorem 3.9) was the main result of Ising’s PhD thesis and was pub-
lished in [175]. It relied on some simple combinatorics in order to compute the
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generating function
∑

N ZVN ;β,h sN , from which Ising then extracted the value of the
partition function. The transfer matrix computation seems to be due to Kramers
and Wannier [200].

The first computation of the pressure of the two-dimensional Ising model with-
out magnetic field, whose result is stated at the end of Section 3.3, was achieved
in a groundbreaking work by Onsager [259]. Extensions of the computations to
nonzero magnetic field in two dimensions, or to higher dimensions, have not been
found despite much effort.

Gibbs states. The notion of Gibbs state as used in this chapter (rather than the
more general version discussed in Chapter 6) was commonly used in the 1960s and
1970s, see, for example, the early review by Gallavotti [127].

Correlation inequalities and applications. The first version of the GKS inequali-
ties was obtained by Griffiths [142]; in the form stated in Theorem 3.49 they are due
to Kelly and Sherman [188]. These inequalities admit important generalizations to
more general single-spin spaces; see, for example, [139, 310]. The proof of the GKS
inequalities given in Section 3.8 is due to Ginibre [138].

The FKG inequality has first been established by Fortuin, Kasteleyn and Gini-
bre [110]. The proof given in Section 3.8.2 is due to Ahlswede and Daykin [2]; our
presentation is inspired by [10]. The alternative proof presented in Section 3.10.3
was found by Holley [163]; see also [132, 225].

The applications of the correlation inequalities given in Section 3.6 are part of
the folklore and are spread out over many papers. A good early reference is [146].
Exercise 3.15 is adapted from [229].

The uniqueness criteria given in Theorems 3.28 and 3.34 are due to Lebowitz
and Martin-Löf [219]. The other claims concerning the magnetization density are
again part of the folklore.

Peierls’ argument. The geometric proof described in Section 3.7.2 is due to
Peierls [266]; see also [144, 80]. This argument has become central in the rigor-
ous analysis of first-order phase transitions and is at the basis of the Pirogov–Sinai
theory, a far-reaching generalization which is the main topic of Chapter 7.

The approach described in Exercise 3.21 is inspired by [198]. The more precise
bounds on the connectivity constant 2.625622 <µ< 2.679193 can be found in [182]
and [277] respectively. Numerically, the best estimate at the moment of writing
seems to be µ∼= 2.63815853032790(3) [180].

High-temperature representation. The high-temperature representation, which
is described in Section 3.7.3, was introduced by van der Waerden in [340].

The proof of uniqueness based on the high-temperature expansion is again part
of the folklore. There are many alternative ways of establishing uniqueness at high
enough temperature, among which: Dobrushin’s uniqueness theorem (discussed
in Section 6.5.2), the cluster expansion (discussed in Section 6.5.4) and disagree-
ment percolation (see, for example, [132]). These can be used to extract additional
information, such as analyticity of the pressure, exponential decay of correlations,
exponential convergence of the finite-volume expectations of local functions, etc.;
see [86] for a discussion of the remarkable additional properties that hold at suffi-
ciently high temperatures.
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Uniqueness in non-zero magnetic field. Theorems 3.40, 3.42 and 3.43 are due to
Lee and Yang and appeared first in [353, 220]. The Asano contraction method used
in the proof of the latter theorem was introduced by Asano in [13]; see also [290].
For a rather extensive bibliography on this topic and various extensions, see [33].

Although we do not discuss this in the text, it is possible to derive various prop-
erties of interest from the Lee–Yang theorem, such as exponential decay of trun-
cated correlation functions (for example, 〈σ0σi 〉β,h −〈σ0〉β,h〈σi 〉β,h) at all β when
h ̸= 0 [95], as well as analyticity in h of correlation functions [216]. See also [120,
121].

Another route to the proof of uniqueness at non-zero magnetic field is through
the GHS inequality. The latter was first proved by Griffiths, Hurst and Sherman
in [143]. It states that the Ising model with magnetic field h = (hi )i∈Λ satisfies

∂2

∂hi∂h j
〈σk〉∅Λ;β,h ≤ 0,

for all Λ ⋐ Zd and i , j ,k ∈ Λ, provided that hℓ ≥ 0 for all ℓ ∈ Λ. Taking hi = h for
all i , it implies in particular that the magnetization density m(β,h) is concave (in
particular, continuous) as a function of h ≥ 0.

The alternative argument given in Exercise 3.29 is adapted from a more general
approach by Dunlop [96].

3.10 Complements and further reading

3.10.1 Kramers–Wannier duality

In this section we present an argument, proposed by Kramers and Wannier [200],
which suggests that the critical inverse temperature of the Ising model on Z2 is
equal to

βc(2) = 1
2 log(1+

p
2) . (3.63)

The starting point is the representation of the partition function with + boundary
condition in terms of contours in (3.32):

Z+
B(n);β,0 = eβ|E

b
B(n)|

∑
ω∈Ω+

B(n)

∏
γ∈Γ(ω)

e−2β|γ| . (3.64)

Let B(n)∗ = {−n − 1
2 ,−n + 1

2 , . . . ,n − 1
2 ,n + 1

2 }2 ⊂ Z2
∗ be the box dual to B(n). From

Exercise 3.23, we have the high-temperature representation

Z∅
B(n)∗;β∗,0

= 2|B(n)∗| cosh(β∗)|EB(n)∗ |
∑

E∈Eeven
B(n)∗

tanh(β∗)|E | . (3.65)

We will now identify each set E ∈Eeven
B(n)∗ with the edges of the contours of a unique

configuration ω ∈Ω+
B(n)

:
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B(n) B(n)∗

Lemma 3.52. Let E ∈ EB(n)∗ . Then E ∈ Eeven
B(n)∗ if and only if E coincides with the

edges of the contours of a configuration ω ∈Ω+
B(n)

.

Proof. If E ∈ Eeven
B(n)∗ , then applying the rounding operation of Figure 3.11 yields a

set of disjoint closed loops which are the contours of the configuration ω ∈ Ω+
B(n)

defined by

ωi
def= (−1)|{loops surrounding i }| , i ∈B(n) .

Conversely, we have already seen in footnote 2, page 111, that the set of edges of
the contours of a configuration ω ∈Ω+

B(n)
belong to Eeven

B(n)∗ .

It follows from the previous lemma that

∑
E∈Eeven

B(n)∗

tanh(β∗)|E | =
∑

ω∈Ω+
B(n)

∏
γ∈Γ(ω)

tanh(β∗)|γ| .

Therefore, if β∗ satisfies
tanh(β∗) = e−2β , (3.66)

we obtain the identity

2−|B(n)∗| cosh(β∗)−|EB(n)∗ |Z∅
B(n)∗;β∗,0

= e−β|E
b
B(n)|Z+

B(n);β,0 . (3.67)

When n →∞,
|B(n)∗|
|B(n)| → 1,

|EB(n)∗ |
|B(n)| → 2,

|E b
B(n)

|
|B(n)| → 2.

We thus obtain, by Theorem 3.6,

ψ(β,0) =ψ(β∗,0)− logsinh(2β∗) . (3.68)

The meaning of (3.68) is that the pressure is essentially invariant under the trans-
formation

β 7→β∗ = artanh(e−2β) , (3.69)

which interchanges the low and high temperatures, as can be verified in the follow-
ing exercise.

Exercise 3.32. Show that the mapping φ : x 7→ artanh(e−2x ) is an involution (φ ◦
φ = id) with a unique fixed (self-dual) point βsd equal to 1

2 log(1+
p

2). Moreover,
φ([0,βsd)) = (βsd,∞].
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Since φ and logsinh are both analytic on (0,∞), it follows from (3.68) that any
non-analytic behavior of ψ(·,0) at some inverse temperature β must also imply a
non-analytic behavior atβ∗ =φ(β). Consequently, if one assumes that the pressure
ψ(·,0)

1. is non-analytic at βc,

2. is analytic everywhere else,

then βc must coincide with βsd. This leads to the conjecture (3.63).

That the inverse critical temperature of the Ising model onZ2 actually coincides
with the self-dual point of this transformation follows from the exact expression for
the pressure derived by Onsager. There exists in fact a variety of ways to prove that
this is the correct value for βc in the two-dimensional Ising model, relying on the
self-duality of the model, but avoiding exact computations; see, for example, [350].
Extensions to other planar graphs is possible, see [70] and references therein.

The duality relation (3.67) and various generalizations have found numerous
other uses in the rigorous analysis of the two-dimensional Ising model. The book
by Gruber, Hintermann and Merlini [154] discusses duality in considerably more
detail and in a more general framework.

3.10.2 Mean-field bounds

Let ψCW
β

(h), mCW
β

(h) and βCW
c

def= (2d)−1 be the pressure, magnetization and critical

inverse temperature of the Curie–Weiss model associated to the d-dimensional
Ising model (remember the dependence on d in the Hamiltonian (2.2)). The fol-
lowing theorem, due to Thompson [332, 330], shows that these quantities provide
rigorous bounds on the corresponding quantities for the Ising model on Zd . Refer-
ences to additional results pertaining to the relations between a model on Zd and
its mean-field approximation can be found in Section 2.5.4.

Theorem 3.53. The following holds for the Ising model on Zd , d ≥ 1:

1. ψ(β,h) ≥ψCW
β

(h), for all β≥ 0 and all h ∈R;

2. 〈σ0〉+β,h ≤ mCW
β

(h), for all β≥ 0 and all h ≥ 0;

3. βc(d) ≥βCW
c , for all d ≥ 1.

Proof. 1. Since the pressures are even functions of h, we can assume that h ≥ 0. We
start by decomposing the Hamiltonian with periodic boundary condition:

H per

Vn ;β,h
def= −β

∑

{i , j }∈E per
Vn

σiσ j −h
∑

i∈Vn

σi =H per,0
Vn ;β,h +H per,1

Vn ;β,h ,

where

H per,0
Vn ;β,h

def= dβ|Vn |m2 − (h +2dβm)
∑

i∈Vn

σi ,

H per,1
Vn ;β,h

def= −β
∑

{i , j }∈E per
Vn

(σi −m)(σ j −m) ,
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where m ∈ R will be chosen later. We can then rewrite the corresponding partition
function as

Zper

Vn ;β,h
def=

∑
ω∈ΩVn

exp
(−H per

Vn ;β,h(ω)
)

=
∑

ω∈ΩVn

exp
(−H per,1

Vn ;β,h(ω)
)

exp
(−H per,0

Vn ;β,h(ω)
)

= Zper,0
Vn ;β,h

〈
exp

(−H per,1
Vn ;β,h

)〉per,0
Vn ;β,h ,

where we have introduced the Gibbs distribution

µ
per,0
Vn ;β,h(ω)

def=
exp

(−H per,0
Vn ;β,h(ω)

)

Zper,0
Vn ;β,h

, with Zper,0
Vn ;β,h

def=
∑

ω∈ΩVn

exp
(−H per,0

Vn ;β,h(ω)
)

.

By Jensen’s inequality,

Zper

Vn ;β,h ≥ Zper,0
Vn ;β,h exp

(−〈
H per,1

Vn ;β,h

〉per,0
Vn ;β,h

)
.

Observe that

〈
H per,1

Vn ;β,h

〉per,0
Vn ;β,h =−β

∑

{i , j }∈E per
Vn

(〈σi 〉per,0
Vn ;β,h −m

)(〈σ j 〉per,0
Vn ;β,h −m

)

=−βd |Vn |
(
m −〈σ0〉per,0

Vn ;β,h

)2 .

Since
〈σ0〉per,0

Vn ;β,h = tanh(2dβm +h) ,

choosing m to be the largest solution to

m = tanh(2dβm +h)

we get
〈
H per,1

Vn ;β,h

〉per,0
Vn ;β,h = 0 and, therefore,

Zper

Vn ;β,h ≥ Zper,0
Vn ;β,h = e−dβm2|Vn |2|Vn | cosh(2dβm +h)|Vn | .

The conclusion follows (just compare with the expression in Exercise 2.4).
2. Let Λ=B(n), with n ≥ 1, and let i ∼ 0 be any nearest-neighbor of the origin.

Let 〈·〉+,1
Λ;β,h denote the expectation with respect to the Gibbs distribution in Λ with

no interaction between the two vertices 0 and i . Then, using (3.41),

〈σ0〉+Λ;β,h =
∑
ω∈Ω+

Λ
ω0 exp

{
β

∑
{ j ,k}∈E b

Λ
\{0,i }ω jωk

}(
1+ω0ωi tanhβ

)
∑
ω∈Ω+

Λ
exp

{
β

∑
{ j ,k}∈E b

Λ
\{0,i }ω jωk

}(
1+ω0ωi tanhβ

)

=
〈σ0〉+,1

Λ;β,h +〈σi 〉+,1
Λ;β,h tanhβ

1+〈σ0σi 〉+,1
Λ;β,h tanhβ

≤
〈σ0〉+,1

Λ;β,h +〈σi 〉+,1
Λ;β,h tanhβ

1+〈σ0〉+,1
Λ;β,h〈σi 〉+,1

Λ;β,h tanhβ
, (3.70)
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where we used the GKS inequality. Now, observe that, for any x ≥ 0, a ∈ [0,1] and
b ∈ [−1,1],

b +a tanh(x)

1+ba tanh(x)
≤ b + tanh(ax)

1+b tanh(ax)
. (3.71)

Indeed, y 7→ (b + y)/(1+ by) is increasing in y ≥ 0, and tanh(ax) ≥ a tanh(x) (by
concavity). Applying (3.71) to (3.70), we get

〈σ0〉+Λ;β,h ≤
〈σ0〉+,1

Λ;β,h + tanh
(
β〈σi 〉+,1

Λ;β,h

)

1+〈σ0〉+,1
Λ;β,h tanh

(
β〈σi 〉+,1

Λ;β,h

) .

But, since
(
tanh(x)+ tanh(y)

) / (
1+ tanh(x) tanh(y)

)= tanh(x + y), this gives

〈σ0〉+Λ;β,h ≤ tanh
{

artanh
(〈σ0〉+,1

Λ;β,h

)+β〈σi 〉+,1
Λ;β,h

}
,

which can be rewritten as

artanh
(〈σ0〉+Λ;β,h

)≤ artanh
(〈σ0〉+,1

Λ;β,h

)+β〈σi 〉+,1
Λ;β,h .

Finally, by GKS inequalities, 〈σi 〉+,1
Λ;β,h ≤ 〈σi 〉+Λ;β,h , so that

artanh
(〈σ0〉+Λ;β,h

)≤ artanh
(〈σ0〉+,1

Λ;β,h

)+β〈σi 〉+Λ;β,h . (3.72)

Clearly, one can iterate (3.72), removing all edges between 0 and its nearest-neigh-
bors, one at a time. This yields

artanh
(〈σ0〉+Λ;β,h

)≤ artanh
(〈σ0〉∅{0};β,h

)+β
∑
i∼0

〈σi 〉+Λ;β,h .

Of course, 〈σ0〉∅{0};β,h = tanh(h). Therefore,

artanh
(〈σ0〉+Λ;β,h

)≤ h +β
∑
i∼0

〈σi 〉+Λ;β,h ,

that is,
〈σ0〉+Λ;β,h ≤ tanh

(
h +β

∑
i∼0

〈σi 〉+Λ;β,h

)
.

We can now let Λ ↑ Zd and use the fact that 〈σi 〉+β,h = 〈σ0〉+β,h for all i to obtain the

desired bound:
〈σ0〉+β,h ≤ tanh

(
h +2dβ〈σ0〉+β,h

)
.

From this we conclude that 〈σ0〉+β,h ≤ mCW
β

(h).

3. When β < βCW
c , the previous item implies that 〈σ0〉+β,0 ≤ mCW

β
(0) = 0. This

implies β<βc(d), which proves the claim.

3.10.3 An alternative proof of the FKG inequality

Here, we provide an alternative proof of the FKG inequality. Although possibly less
general and somewhat longer than the one provided in Section 3.8.2, we believe
that it has the undeniable advantage of being more enlightening. It relies on some
basic knowledge of discrete-time finite-state Markov chains, as exposed, for exam-
ple, in the book [156].
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The Gibbs sampler. Let Λ ⋐ Zd and let µ be some probability distribution on
ΩΛ = {−1,1}Λ satisfying µ(ω) > 0 for all ω ∈ΩΛ.

We construct a discrete-time Markov chain (Xn)n≥0 onΩΛ as follows: given that
Xn =ω ∈ΩΛ, the value of Xn+1, say ω′, is sampled using the following algorithm:

1. Sample a number u according to the uniform distribution on [0,1] (indepen-
dently of all other sources of randomness).

2. Sample a vertex i ∈ Λ with uniform distribution (independently of all other
sources of randomness).

3. Set ω′
j =ω j for all j ̸= i .

4. Set

ω′
i =

{
+1 if u ≤µ(

σi = 1
∣∣ σ j =ω j ∀ j ̸= i

)
,

−1 otherwise.

In other words, there are no transitions between two configurations differing at
more than one vertex; moreover, given two configurations ω,ω′ ∈ ΩΛ differing at
a single vertex i ∈Λ, the transition probability from ω to ω′ is given by

p(ω→ω′) = 1

|Λ| µ
(
σi =ω′

i

∣∣ σ j =ω j ∀ j ̸= i
)= 1

|Λ|
µ(ω′)

µ(ω)+µ(ω′)
.

Observe that the Markov chain (Xn)n≥0 is irreducible (since one can move between
two arbitrary configurations by changing one spin at a time, each such transition
occurring with positive probability) and aperiodic (since p(ω→ω) > 0). Therefore
the distribution of Xn converges almost surely towards the unique stationary dis-
tribution. We claim that the latter is given by µ. Indeed, (Xn)n≥0 is reversible with
respect to µ: if ω,ω′ ∈ΩΛ are two configurations differing only at one vertex, then

µ(ω)p(ω→ω′) = 1

|Λ|
µ(ω)µ(ω′)
µ(ω)+µ(ω′)

=µ(ω′)p(ω′ →ω) .

Monotone coupling. Let us now consider two probability distributions µ and µ̃

onΩΛ. As above, we assume that µ(ω) > 0 and µ̃(ω) > 0. Moreover, we assume that

µ
(
σi = 1

∣∣ σ j =ω j ∀ j ̸= i
)≤ µ̃(

σi = 1
∣∣ σ j = ω̃ j ∀ j ̸= i

)
, (3.73)

for all ω,ω̃ ∈ΩΛ such that ω̃≥ω.
Let us denote by (Xn)n≥0 and (X̃n)n≥0 the Markov chains on ΩΛ associated to

µ and µ̃, as described above. We are going to define the monotone coupling of
these two Markov chains. The coupling is defined by the previous construction,
but using, at each step of the process, the same u ∈ [0,1] and i ∈Λ for both chains.
The important observation is that

X̃n ≥ Xn =⇒ X̃n+1 ≥ Xn+1 .

Indeed, let us denote by i the vertex which has been selected at this step. In order to
violate the inequality X̃n+1 ≥ Xn+1, it is necessary that σi (Xn+1) = 1 and σi (X̃n+1) =
−1. But this is impossible, since for the former to be true, one needs to have u ≤
µ(σi = 1 |σ j =σ j (Xn) ∀ j ̸= i ), which, by (3.73), would imply that u ≤ µ̃(σi = 1 |σ j =
σ j (X̃n) ∀ j ̸= i ) and, thus, σi (X̃n+1) = 1.
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Stochastic domination. Let µ and µ̃ be as above. It is now very easy to prove that,
for every nondecreasing function f ,

〈 f 〉µ̃ ≥ 〈 f 〉µ . (3.74)

In that case, we say that µ̃ stochastically dominatesµ.
Let us consider the two monotonically coupled Markov chains, as described

above, with initial values X0 = η− ≡ −1 and X̃0 = η+ ≡ 1. We denote by P the dis-
tribution of the coupled Markov chains. Now, since these chains converge, respec-
tively, to µ and µ̃, we can write

〈 f 〉µ̃−〈 f 〉µ = lim
n→∞

∑
η,η̃∈ΩΛ

{
f (η̃)− f (η)

}
P
(
Xn = η, X̃n = η̃)

.

Moreover, by monotonicity of the coupling,

P
(
X̃n ≥ Xn , for all n ≥ 0

)= 1.

We can thus restrict the summation to pairs η̃≥ η:

〈 f 〉µ̃−〈 f 〉µ = lim
n→∞

∑
η,η̃∈ΩΛ
η̃≥η

{
f (η̃)− f (η)

}
P
(
Xn = η, X̃n = η̃)

.

(3.74) follows since η̃≥ η implies that f (η̃)− f (η) ≥ 0.

Proof of the FKG inequality. We can now prove the FKG inequality for the Ising
model on Zd . LetΛ⋐Zd , η ∈Ω, β≥ 0 and h ∈R. We want to prove that

〈 f g 〉η
Λ;β,h ≥ 〈 f 〉η

Λ;β,h 〈g 〉η
Λ;β,h , (3.75)

for all nondecreasing functions f and g . Note that we can, and will, assume that
g (τ) > 0 for all τ ∈Ωη

Λ
, since adding a constant to g does not affect (3.75). We can

thus consider the following two probability distributions onΩΛ:

µ(ω)
def= µ

η

Λ;β,h(ωη) , µ̃(ω)
def= g (ωη)

〈g 〉η
Λ;β,h

µ
η

Λ;β,h(ωη) ,

where, givenω ∈ΩΛ,ωη denotes the configuration coinciding withω inΛ and with
η outside Λ. Clearly µ(ω) > 0 and µ̃(ω) > 0 for all ω ∈ΩΛ. (3.75) can then rewritten
as

〈 f 〉µ̃ ≥ 〈 f 〉µ .

Since this is exactly (3.74), it is sufficient to prove that (3.73) holds for these two
distributions.

Observe first that, since g is nondecreasing,

µ̃
(
σi = 1

∣∣ σ j = ω̃ j ∀ j ̸= i
)= µ((+1)ω̃)g ((+1)ω̃)

µ((+1)ω̃)g ((+1)ω̃)+µ((−1)ω̃)g ((−1)ω̃)

=
{

1+ µ((−1)ω̃)

µ((+1)ω̃)

g ((−1)ω̃)

g ((+1)ω̃)

}−1

≥
{

1+ µ((−1)ω̃)

µ((+1)ω̃)

}−1
,
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where (+1)ω̃, resp. (−1)ω̃, is the configuration given by ω̃ at vertices different from
i and by +1, resp. −1, at i .

Now,

µ((−1)ω̃)

µ((+1)ω̃)
=
µ
η

Λ;β,h((−1)ω̃η)

µ
η

Λ;β,h((+1)ω̃η)
= exp

(
−2β

∑
j∼i

(ω̃η) j −2h
)

is a nonincreasing function of ω̃. It follows that, for any ω ∈ΩΛ such that ω̃≥ω,

µ̃(σi = 1 |σ j = ω̃ j ∀ j ̸= i ) ≥
{

1+ µ((−1)ω)

µ((+1)ω)

}−1

=µ(
σi = 1

∣∣ σ j =ω j ∀ j ̸= i
)

,

and (3.73), and thus (3.75), follows.

3.10.4 Transfer matrix and Markov chains

In Section 3.3, we described how the pressure of the one-dimensional Ising model
could be determined using the transfer matrix. Readers familiar with Markov
chains might have noted certain obvious similarities. In this complement, we ex-
plain how these tools can be related and what additional information can be ex-
tracted.

Let A be the transfer matrix of the one-dimensional Ising model, defined

in (3.11). For simplicity, let us denote by Zs,s′
n ≡ Zη

s,s′

Λn ;β,h , s, s′ ∈ {±1}, the partition

function of the model on Λn = {1, . . . ,n}, with boundary condition ηs,s′ given by

ηs,s′
i = s if i ≤ 0 and ηs,s′

i = s′ if i > 0.
Proceeding as in Section 3.3, the transfer matrix can be related to the partition

function Zs,s′
n in the following way: for all n ≥ 1,

Zs,s′
n = (

An+1)
s,s′ .

Let λ > 0 be the largest of the two eigenvalues of A. We denote by ϕ, respectively
ϕ∗, the right-eigenvector, respectively left-eigenvector, associated to λ: Aϕ = λϕ,
ϕ∗A =λϕ∗. We assume that these eigenvectors satisfy the following normalization
assumption: ϕ ·ϕ∗ = 1. All these quantities can be computed explicitly, but we will
not need the resulting expressions here. Notice however that, either by an explicit
computation or by the Perron–Frobenius theorem [45, Theorem 1.1], all compo-
nents of ϕ and ϕ∗ are positive.

We now define a new matrixΠ= (πs,s′ )s,s′=±1 by

πs,s′
def= ϕs′

λϕs
As,s′ .

Π is the transition matrix of an irreducible, aperiodic Markov chain. Indeed, for
s ∈ {±1}, ∑

s′∈{±1}

πs,s′ =
1

λϕs

∑
s′∈{±1}

As,s′ϕs′ =
1

λϕs

(
Aϕ

)
s = 1.

Irreducibility and aperiodicity follow from the positivity of πs,s′ for all s, s′ ∈ {±1}.
Being irreducible,Π possesses a unique stationary distribution ν, given by

ν({s}) =ϕsϕ
∗
s , s ∈ {±1} .
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Indeed, ν({1})+ν({−1}) = 1, by our normalization assumption, and

(
νΠ

)
({s′}) =

∑
s∈{±1}

ν({s})πs,s′ =
1

λ
ϕs′

∑
s∈{±1}

ϕ∗
s As,s′ =ϕs′ϕ

∗
s′ = ν({s′}) ,

since ϕ∗A =λϕ∗.
The probability distribution ν on {±1} provides the distribution of σ0 under the

infinite-volume Gibbs state. Indeed, denoting by µs,s′
B(n);β,h

the Gibbs distribution

on B(n) = {−n, . . . ,n} with boundary condition ηs,s′ , the probability that σ0 = s0 is
given by

µs,s′
B(n);β,h

(σ0 = s0) = Zs,s0
n Zs0,s′

n

Zs,s′
2n+1

=
(

An+1
)

s,s0

(
An+1

)
s0,s′(

A2n+2
)

s,s′
.

Now, as can be checked, for any s, s′ ∈ {±1},

(
An)

s,s′ =λn ϕs

ϕs′

(
Πn)

s,s′ ,

which gives, after substitution in the above expression,

µs,s′
B(n);β,h

(σ0 = s0) =
(
Πn

)
s,s0

(
Πn

)
s0,s′(

Π2n+2
)

s,s′
.

Since the Markov chain is irreducible and aperiodic, limn→∞(Πn)s,s′ = ν({s′}) for all
s, s′ ∈ {±1}. We conclude that

lim
n→∞µ

s,s′
B(n);β,h

(σ0 = s0) = ν({s0})ν({s′})

ν({s′})
= ν({s0}) .

One can check similarly that the joint distribution of any finite collection (σi )a≤i≤b

of spins is given by

lim
n→∞µ

s,s′
B(n);β,h

(
σk = sk ,∀a ≤ k ≤ b

)= ν({sa})
b−1∏
k=a

πsk ,sk+1 .

The interested reader can find much more information, in a more general setting,
in [134, Chapter 11].

3.10.5 The Ising antiferromagnet

The Ising antiferromagnet is a model whose neighboring spins tend to point in op-
posite directions, this effect becoming stronger at lower temperatures. It therefore
does not exhibit spontaneous magnetization.

We only consider the antiferromagnet in the absence of a magnetic field. This
model can be thought of as an Ising model with negative coupling constants:

H anti
Λ;β (ω)

def= β
∑

{i , j }∈E b
Λ

σi (ω)σ j (ω) . (3.76)

Let a vertex i = (i1, . . . , id ) ∈ Zd be called even (resp. odd) if i1 + ·· ·+ id is even
(resp. odd). Consider the transformation τeven :Ω→Ω defined by

(τevenω)i
def=

{
+ωi if i is even,

−ωi otherwise.
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One can then define τodd :Ω→Ω by

(τoddω)i
def= −(τevenω)i , i ∈Zd .

Not surprisingly, the main features of this model can be derived from the results
obtained for the Ising model:

Exercise 3.33. Observing that

H anti
Λ;β (ω) =HΛ;β(τevenω) ,

use the results obtained in this chapter to show that, when β > βc(d), two distinct
Gibbs states can be constructed, 〈·〉even

β
and 〈·〉odd

β
. Describe the typical configurations

under these two states.

Let us just emphasize that the trick used in the previous exercise to reduce the anal-
ysis to the ferromagnetic case relies in an essential way on the fact that the lattice
Zd is bipartite, that is, one can color each of its vertices in either black or white in
such a way that no neighboring vertices have the same color. On a non-bipartite
lattice, or in the presence of a magnetic field, the behavior of the antiferromagnet
is much more complicated; some aspects will be discussed in Exercises 7.5 and 7.7.

3.10.6 Random-cluster and random-current representations.

In this chapter, we chose an approach to the Ising model that we deemed best
suited to the generalization to other models done in the rest of the book. In partic-
ular, we barely touched on the topics of geometrical representations: we only intro-
duced the low- and high-temperature representations in Sections 3.7.2 and 3.7.3,
in the course of our analysis of the phase diagram. In this section, we briefly in-
troduce two other graphical representations that have played and continue to play
a central role in the mathematical analysis of the Ising model, the random-cluster
and random-current representations.

Good references to the random-cluster representation can be found in the re-
view paper [132] by Georgii, Häggström and Maes, and the books by Grimmett [150]
and Werner [350]. The lecture notes [91] by Duminil-Copin provide a good in-
troduction to several graphical representations, including the random-cluster and
random-current representations. In addition to the latter, graphical representa-
tions of correlation functions in terms of interacting random paths (an example of
which being the high-temperature representation of Section 3.7.3) are also very im-
portant tools; a thorough discussion can be found in the book [102] by Fernández,
Fröhlich and Sokal.

The random-cluster representation. This representation was introduced by For-
tuin and Kasteleyn [109]. Besides playing an instrumental role in many mathemati-
cal investigations of the Ising model, it also provides a deep link with other classical
models, in particular the q-state Potts model and the Bernoulli bond percolation
process. Moreover, this representation is the basis of numerical algorithms, first
introduced by Swendsen and Wang [323], that are very efficient at sampling from
such Gibbs distributions.

The starting point is similar to what was done to derive the high-temperature
representation of the model: we expand in a suitable way the Boltzmann weight.
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Here, we write

eβσiσ j = e−β+ (eβ−e−β)1{σi=σ j } = eβ
(
(1−pβ)+pβ1{σi=σ j }

)
,

where we have introduced pβ
def= 1−e−2β ∈ [0,1].

Let Λ⋐Zd . Using the above notations, we obtain, after expanding the product
(remember Exercise 3.22),

∏

{i , j }∈E b
Λ

eβσiσ j = eβ|E
b
Λ |

∑

E⊂E b
Λ

p |E |
β

(1−pβ)|E
b
Λ \E | ∏

{i , j }∈E
1{σi=σ j } .

The partition function Z+
Λ;β,0 can thus be expressed as

Z+
Λ;β,0 = eβ|E

b
Λ |

∑

E⊂E b
Λ

p |E |
β

(1−pβ)|E
b
Λ \E | ∑

ω∈Ω+
Λ

∏
{i , j }∈E

1{σi (ω)=σ j (ω)}

= eβ|E
b
Λ |

∑

E⊂E b
Λ

p |E |
β

(1−pβ)|E
b
Λ \E | 2N w

Λ (E)−1 ,

where N w
Λ(E) denotes the number of connected components (usually called clus-

ters in this context) of the graph (Zd ,E∪EZd \Λ) (in other words, the graph obtained
by considering all vertices of Zd and all edges of Zd which either belong to E or do
not intersect the box Λ). Indeed, in the sum over ω ∈Ω+

Λ, the only configurations
contributing are those in which all spins belonging to the same cluster agree.

The FK-percolation process in Λ with wired boundary condition is the prob-
ability distribution on the set P(E b

Λ) of all subsets of E b
Λ assigning to a subset of

edges E ⊂ E b
Λ the probability

νFK,w
Λ;pβ,2(E)

def=
p |E |
β

(1−pβ)|E
b
Λ \E | 2N w

Λ (E)

∑
E ′⊂E b

Λ
p |E ′|
β

(1−pβ)|E
b
Λ

\E ′| 2N w
Λ

(E ′)
.

Remark 3.54. Observe that, by replacing the factor 2 in the above expression by
1, the distribution νFK,w

Λ;pβ,2 reduces to the Bernoulli bond percolation process on

E b
Λ, in which each edge of EZd belongs to E with probability pβ, independently

from the other edges. Similarly, the random-cluster representation of the q-state
Potts model is obtained by replacing the factor 2 by q . In this sense, the FK-
percolation process provides a one-parameter family of models interpolating be-
tween Bernoulli percolation, Ising and Potts models. ⋄

For A,B ⊂Zd , let us write {A ↔ B} for the event that there exists a cluster inter-
secting both A and B .

Exercise 3.34. Proceeding as above, check the following identities: for any i , j ∈Λ⋐
Zd ,

〈σi 〉+Λ;β,0 = νFK,w
Λ;pβ,2(i ↔ ∂exΛ) , 〈σiσ j 〉+Λ;β,0 = νFK,w

Λ;pβ,2(i ↔ j ) .

One feature that makes the random-cluster representation particularly useful,
as it makes it possible to successfully import many ideas and techniques developed
for Bernoulli bond percolation, is the availability of an FKG inequality. Let Λ⋐ Zd

and consider the partial order on P(E b
Λ) given by E ≤ E ′ if and only if E ⊂ E ′.
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Exercise 3.35. Show, using Theorem 3.50, that

νFK,w
Λ;pβ,2(A ∩B) ≥ νFK,w

Λ;pβ,2(A )νFK,w
Λ;pβ,2(B) ,

for all pairs A ,B of nondecreasing events on P(E b
Λ).

As an immediate application, one can prove the existence of the thermody-
namic limit.

Exercise 3.36. Show that, for every local increasing event A ,

lim
Λ↑Zd

νFK,w
Λ;pβ,2(A )

exists. Hint: proceed as in the proof of Theorem 3.17.

As already mentioned in Remark 3.15 and as will be explained in more detail in
Chapter 6, it follows from the previous exercise and the Riesz–Markov–Kakutani
representation theorem that one can define a probability measure νFK,w

pβ,2 on E such

that

νFK,w
pβ,2(A ) = lim

Λ↑Zd
νFK,w
Λ;pβ,2(A ) ,

for all local events A . A simple but remarkable observation is that the statements
of Exercise 3.34 still hold under νFK,w

pβ,2. In particular,

〈σ0〉+β,0 = νFK,w
pβ,2(0 ↔∞) , (3.77)

where {0 ↔∞}
def= ⋂

n{0 ↔ ∂exB(n)} corresponds to the event that there exists an in-
finite path of disjoint open edges starting from 0 (or, equivalently, that the cluster
containing 0 has infinite cardinality). Since Theorem 3.28 shows that the existence
of a first-order phase transition at inverse temperature β (and magnetic field h = 0)
is equivalent to 〈σ0〉+β,0 > 0, the above relation implies that the latter is also equiv-

alent to percolation in the associated FK-percolation process. This observation
provides new insights into the phase transition we have studied in this chapter and
provides the basis for a geometrical analysis of the Ising model using methods in-
herited from percolation theory.

Exercise 3.37. Prove the identity (3.77).

The random-current representation. Also of great importance in the mathemat-
ical analysis of the Ising model, with many fundamental applications, this repre-
sentation had already been introduced in [143], but its true power was realized by
Aizenman [4].

Once again, the strategy is to expand the Boltzmann weight in a suitable way,
then expand the product over pairs of neighbors, and finally sum explicitly over the
spins. For the first step, we simply expand the exponential as a Taylor series:

eβσiσ j =
∞∑

n=0

βn

n!
(σiσ j )n .
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We then get, writing n = (ne )e∈E b
Λ

for a collection of nonnegative integers,

∏

{i , j }∈E b
Λ

eβσiσ j =
∑
n

{ ∏

e∈E b
Λ

βne

ne !

} ∏

{i , j }∈E b
Λ

(σiσ j )n{i , j } .

The partition function Z+
Λ;β,0 can thus be expressed as

Z+
Λ;β,0 =

∑
n

{ ∏

e∈E b
Λ

βne

ne !

} ∑
ω∈Ω+

Λ

∏

{i , j }∈E b
Λ

(σi (ω)σ j (ω))n{i , j }

=
∑
n

{ ∏

e∈E b
Λ

βne

ne !

} ∏
i∈Λ

∑
ωi=±1

ωÎ (i ,n)
i ,

where Î (i ,n)
def= ∑

j : j∼i n{i , j }. Since

∑
ωi=±1

ωm
i =

{
2 if m is even,

0 if m is odd,

we conclude that

Z+
Λ;β,0 = 2|Λ|

∑
n:∂Λn=∅

∏

e∈E b
Λ

βne

ne !
= 2|Λ|eβ|E

b
Λ |P+

Λ;β(∂Λn =∅) ,

where ∂Λn
def= {

i ∈ Λ : Î (i ,n) is odd
}

and, under the probability distribution P+
Λ;β,

n = (ne )e∈E b
Λ

is a collection of independent random variables, each one distributed

according to the Poisson distribution of parameter β. We will call n a current con-
figuration inΛ.

In the same way, one easily derives similar representations for arbitrary corre-
lation functions.

Exercise 3.38. Derive the following identity: for all A ⊂Λ⋐Zd ,

〈σA〉+Λ;β,0 =
P+
Λ;β(∂Λn = A)

P+
Λ;β(∂Λn =∅)

.

The power of the random-current representation, however, lies in the fact that it
also allows a probabilistic interpretation of truncated correlations in terms of var-
ious geometric events. The crucial result is the following lemma, which deals with

a distribution on pairs of current configurations P+(2)
Λ;β (n1,n2)

def= P+
Λ;β(n1)P+

Λ;β(n2).

Let us denote by i
n←→ ∂exΛ the event that there is a path connecting i to ∂exΛ along

which n takes only positive values.

Lemma 3.55 (Switching Lemma). Let Λ⋐ Zd , A ⊂Λ, i ∈Λ and I a set of current
configurations inΛ. Then,

P
+(2)
Λ;β (∂Λn1 = A,∂Λn2 = {i },n1 +n2 ∈I )

=P+(2)
Λ;β (∂Λn1 = A △ {i },∂Λn2 =∅,n1 +n2 ∈I , i

n1+n2

←→ ∂exΛ) . (3.78)
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Proof. We will use the following notations:

w(n)
def=

∏
e∈EΛ

βne

ne !

and, for two current configurations satisfying n ≤ m (that is, ne ≤ me , ∀e ∈ E b
Λ),

(
m

n

)
def=

∏

e∈E b
Λ

(
me

ne

)
.

We are going to change variables from the pair (n1,n2) to the pair (m,n) where m =
n1 +n2 and n = n2. Since ∂Λ(n1 +n2) = ∂Λn1 △ ∂Λn2, n ≤ m and

w(n1)w(n2) =
(

n1 +n2

n2

)
w(n1 +n2) =

(
m

n

)
w(m) ,

we can write

∑
∂Λn1=A
∂Λn2={i }

n1+n2∈I

w(n1)w(n2) =
∑

∂Λm=A△{i }
m∈I

w(m)
∑

n≤m
∂Λn={i }

(
m

n

)
. (3.79)

The first observation is that i
m

↚→ ∂exΛ =⇒ i
n

↚→ ∂exΛ, since n ≤ m. Consequently,

∑
n≤m

∂Λn={i }

(
m

n

)
= 0, when i

m
↚→ ∂exΛ, (3.80)

since i
n←→ ∂exΛwhenever ∂Λn = {i }. Let us therefore assume that i

m←→ ∂exΛ, which
allows us to use the following lemma, which will be proven below.

Lemma 3.56. Let m be a current configuration in Λ ⋐ Zd and C ,D ⊂ Λ. If there
exists a current configuration k such that k ≤ m and ∂Λk =C , then

∑
n≤m
∂Λn=D

(
m

n

)
=

∑
n≤m

∂Λn=C△D

(
m

n

)
. (3.81)

An application of this lemma with C = D = {i } yields

∑
n≤m

∂Λn={i }

(
m

n

)
=

∑
n≤m
∂Λn=∅

(
m

n

)
, when i

m←→ ∂exΛ. (3.82)

Using (3.80) and (3.82) in (3.79), and returning to the variables n1 = m−n and n2 =
n, we get

∑
∂Λn1=A
∂Λn2={i }

n1+n2∈I

w(n1)w(n2) =
∑

∂Λm=A△{i }
m∈I

i
m←→∂exΛ

w(m)
∑

n≤m
∂Λn=∅

(
m

n

)

=
∑

∂Λn1=A△{i }
∂Λn2=∅

n1+n2∈I

w(n1)w(n2)1
{i

n1+n2
←→ ∂exΛ}

,

and the proof is complete.
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Proof of Lemma 3.56. Let us associate to the configuration m the graph Gm with
verticesΛ∪∂exΛ and with me edges between the endpoints of each edge e ∈ E b

Λ. By
assumption, Gm possesses a subgraph Gk with ∂ΛGk = C , where ∂ΛGk is the set of
vertices ofΛ belonging to an odd number of edges.

The left-hand side of (3.81) is equal to the number of subgraphs G of Gm sat-
isfying ∂ΛG = D , while the right-hand side counts the number of subgraphs G of
Gm satisfying ∂ΛG =C △ D . But the application G 7→G △Gk defines a bijection be-
tween these two families of graphs, since ∂Λ(G △Gk) = ∂ΛG △ ∂ΛGk and (G △Gk)△
Gk =G .

As one simple application of the Switching Lemma, let us derive a probabilistic
representation for the truncated 2-point function.

Lemma 3.57. For all distinct i , j ∈Λ⋐Zd ,

〈σi ;σ j 〉+Λ;β,0 =
P
+(2)
Λ;β (∂Λn1 = {i , j },∂Λn2 =∅, i

n1+n2

↚→ ∂exΛ)

P
+(2)
Λ;β (∂Λn1 =∅,∂Λn2 =∅)

. (3.83)

Proof. Using the representation of Exercise 3.38,

〈σi ;σ j 〉+Λ;β,0 =
P+
Λ;β(∂Λn = {i , j })

P+
Λ;β(∂Λn =∅)

−
P+
Λ;β(∂Λn = {i })

P+
Λ;β(∂Λn =∅)

P+
Λ;β(∂Λn = { j })

P+
Λ;β(∂Λn =∅)

=
P
+(2)
Λ;β (∂Λn1 = {i , j },∂Λn2 =∅)−P+(2)

Λ;β (∂Λn1 = {i },∂Λn2 = { j })

P
+(2)
Λ;β (∂Λn1 =∅,∂Λn2 =∅)

.

Since the Switching Lemma implies that

P
+(2)
Λ;β (∂Λn1 = {i },∂Λn2 = { j }) = P

+(2)
Λ;β (∂Λn1 = {i , j },∂Λn2 = ∅, i

n1+n2

←→ ∂exΛ) ,

we can cancel terms in the numerator and the conclusion follows.

Observe that (3.83) implies that 〈σi ;σ j 〉+Λ;β,0 ≥ 0, which is a particular instance of

the GKS (or FKG) inequalities. However, having such a probabilistic representation
also opens up the possibility of proving nontrivial lower and upper bounds.

Among the numerous fundamental applications of the random-current rep-
resentation, let us mention the proof that m∗(βc(d)) = 0 in all dimensions d ≥
2 [3, 7, 8], the proof that, for all β < βc(d) and all d ≥ 1, there exists c = c(β,d) > 0
such that 〈σ0σi 〉+β,0 ≤ e−c∥i∥2 [5], the fact that 〈σ0σi 〉βc(d),0 ≃ cd∥i∥2−d

2 in all large

enough dimensions [292] and the determination of the sign of all Ursell functions
in [306]. Additional information can be found in the references given above.

3.10.7 Non-translation-invariant Gibbs states and interfaces.

In this subsection, we briefly discuss the existence or absence of non-translation-
invariant Gibbs states describing coexistence of phases. The first proof of the ex-
istence of non-translation-invariant Gibbs states in the Ising model on Zd , d ≥ 3,
at sufficiently low temperatures, is due to Dobrushin [81]; the much simpler argu-
ment we provide below is due to van Beijeren [338].
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Figure 3.14: In d = 2, with Dobrushin boundary condition, a configuration
always has a unique open contour (called interface in the text, the thickest
line on the figure) connecting the two vertical sides of the box.

We require the parameters of the model to be such that the system is in the non-
uniqueness regime. So, for the rest of the section, we always assume that d ≥ 2,
h = 0 and β>βc(d).

A natural way to try to induce spatial coexistence of the + and − phases in a
system is to use non-homogeneous boundary conditions. Let us therefore consider
the Dobrushin boundary condition ηDob, defined by (see Figure 3.14)

ηDob
i

def=
{
+1 if i = (i1, . . . , id ) with id ≥ 0,

−1 otherwise.

Let us then define the sequence of boxes to be used for the rest of the section,
more suited to the use of the Dobrushin boundary condition,

Λd (n)
def= {

i ∈Zd : −n ≤ i j ≤ n if 1 ≤ j < d , −n ≤ id ≤ n −1
}

,

If i = (i1, i2, . . . , id−1, id ) ∈Zd , we denote by ī = (i1, i2, . . . , id−1,−1−id ) ∈Zd its reflec-
tion through the plane

{
x ∈Rd : xd =− 1

2

}
.

The non-homogeneity of the Dobrushin boundary condition can be shown to
have a significant effect in higher dimensions:

Theorem 3.58. Assume d ≥ 3. Then, for all β > βc(d −1), there exists a sequence of
integers nk ↑∞ along which

〈·〉Dob
β,0

def= lim
k→∞

〈·〉Dob

Λd (nk );β,0

is a well-defined Gibbs state that satisfies

〈σ0〉Dob
β,0 > 0 > 〈σ0̄〉Dob

β,0 .

In particular, 〈·〉Dob
β,0 is not invariant under vertical translations.
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The states constructed in the previous theorem are usually called Dobrushin states.
The proof of this result relies on the following key inequality:

Proposition 3.59. Let d ≥ 2. Then, for all i ∈Bd (n) such that id = 0,

〈σi 〉Dob

Bd (n);β,0
≥ 〈σi 〉+Bd−1(n);β,0

, (3.84)

where the expectation in the right-hand side is for the Ising model in Zd−1.

Proof of Proposition 3.59. We use an argument due to van Beijeren [338]. To sim-
plify notations, we stick to the case d = 3, but the argument can be adapted in a
straightforward way to higher dimensions. To show that

〈σ0〉Dob

B3(n);β,0 ≥ 〈σ0〉+B2(n);β,0 , (3.85)

the idea is to couple the two-dimensional Ising model in the box B2(n) with the

layer B3,0(n)
def= {

i ∈ B3(n) : i3 = 0
}

of the three-dimensional model. It will be con-
venient to distinguish the spins of the three-dimensional model and those of the
two-dimensional one. We thus continue to denote by σi the former, but we write

τi for the latter. We then introduce new random variables. For all i ∈ B3,+(n)
def={

i ∈B3(n) : i3 > 0
}
, we set

si
def= 1

2 (σi +σi ) , ti
def= 1

2 (σi −σi ) ,

where , for i = (i1, i2, i3), we have set i
def= (i1, i2,−i3). Moreover, for all i ∈B3,0(n), we

set
si

def= 1
2 (σi +τi ) , ti

def= 1
2 (σi −τi ) .

These random variables are {−1,0,1}-valued and satisfy the constraint

si = 0 ⇔ ti ̸= 0, ∀i ∈B3,+(n)∪B3,0(n) . (3.86)

Observe now that (3.85) is equivalent to

〈t0〉 ≥ 0, (3.87)

where the expectation is with respect to µDob

B3(n);β,0
⊗µ+

B2(n);β,0
. The conclusion thus

follows from Exercise 3.39 below.

(3.87) is actually a particular instance of a set of GKS-type inequalities, origi-
nally studied by Percus.

Exercise 3.39. Prove (3.87). Hint: Expand the numerator of 〈t0〉 according to the
realization of A = {

i ∈B3,+(n)∪B3,0(n) : si = 0
}
. Observe that, once A is fixed, there

remains exactly one nontrivial {−1,1}-valued variable at each vertex. Verify that you
can then apply the usual GKS inequalities to show that each term of the sum is non-
negative (you will have to check that the resulting Hamiltonian has the proper form).

Proof of Theorem 3.58. The construction of 〈·〉Dob
β,0 along some subsequence Λd (nk )

can be done as in Exercise 3.8. Observe that, by symmetry,

〈σ0〉Dob

Λd (nk );β,0
=−〈σ0̄〉Dob

Λd (nk );β,0
, (3.88)
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Figure 3.15: A typical configuration of the low-temperature three-
dimensional Ising model with Dobrushin boundary condition. For conve-
nience, in this picture, − spins are represented by balls and + spins by empty
space. The interface is a perfect plane with only local defects.

which gives, after k →∞,
〈σ0〉Dob

β,0 =−〈σ0̄〉Dob
β,0 . (3.89)

Observe that, by the FKG inequality, applying a magnetic field h ↑ ∞ on the
spins living in Bd (nk ) \Λd (nk ) yields

〈σ0〉Dob

Λd (nk );β,0
≥ 〈σ0〉Dob

Bd (nk );β,0
.

Using (3.84), we deduce that

〈σ0〉Dob

Λd (nk );β,0
≥ 〈σ0〉+Bd−1(nk );β,0

.

The limit k →∞ of the right-hand side converges to the spontaneous magnetiza-
tion of the (d −1)-dimensional Ising model, which is positive when β > βc(d −1).
The claim thus follows from (3.89).

The interface. Whether non-translation-invariant infinite-volume Gibbs states
exist in d ≥ 3 is in fact closely related to the behavior of the macroscopic interface
induced by the Dobrushin boundary condition.

Let ω ∈ΩDob

Λd (n)
and consider the set

B(ω)
def=

⋃
{i , j }∈E

Zd
ωi ̸=ω j

πi j ,

where eachπi j
def= Si ∩S j (remember (3.31)) is called a plaquette. By construction,

B contains a unique infinite connected component (coinciding with the plane
{

x ∈
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Rd : xd = − 1
2

}
everywhere outside Λd (n)). We call this component the interface

and denote it by Γ= Γ(ω).

It turns out that, in d ≥ 3, Γ is rigid at low temperature: in typical configura-
tions, Γ coincides with {xd = − 1

2 } apart from local defects; see Figure 3.15. This
can be quantified very precisely using cluster expansion techniques, as was done
in Dobrushin’s original work [81]. The much simpler description given below pro-
vides substantially less information, but still allows to prove localization of Γ in a
weaker sense.

Theorem 3.60. Assume that d ≥ 3. There exists c ′(β) > 0 satisfying limβ→∞ c ′(β) = 0

such that, uniformly in n and in i ∈ {
j ∈Λd (n) : jd = 0

}
,

µDob

Λd (n);β,0
(Γ⊃πi ī ) ≥ 1− c ′(β) .

Proof of Theorem 3.60. We first decompose

〈σiσī 〉Dob

Λd (n);β,0
= 〈σiσī 1{Γ⊃πi ī }〉Dob

Λd (n);β,0
+〈σiσī 1{Γ̸⊃πi ī }〉Dob

Λd (n);β,0
. (3.90)

On the one hand, σiσī =−1 whenever Γ⊃ πi ī . On the other hand, when Γ ̸⊃ πi ī , i
and ī belong to the same (random) component of Λd (n) \Γ, with constant (either
+ or −) boundary condition. More precisely, to a fixed interface Γ we associate
a partition of Λd (n) into connected regions D1, . . . ,Dk . The Dobrushin boundary
condition, together with Γ, induces a well-defined constant boundary condition #i

on each region Di , either + or −. Γ ̸⊃ πi ī means that the edge {i , ī } is contained
inside one of these components, say D∗. We can therefore write

〈σiσī 1{Γ̸⊃πi ī }〉Dob

Λd (n);β,0
=

∑
Γ̸⊃πi ī

〈σiσī 〉#∗
D∗;β,0µ

Dob

Λd (n);β,0
(Γ(ω) = Γ) . (3.91)

Assume that #∗ =+. Then the GKS inequalities (see Exercise 3.12) imply that

〈σiσī 〉+D∗;β,0 ≥ 〈σiσī 〉+Λd (n);β,0
≥ 〈σiσī 〉+β,0 .

When #∗ = −, the same holds since, by symmetry, 〈σiσī 〉+D∗;β,0 = 〈σiσī 〉−D∗;β,0 and

〈σiσī 〉+β,0 = 〈σiσī 〉−β,0. Thus,

〈σiσī 1{Γ̸⊃πi ī }〉Dob

Λd (n);β,0
≥ 〈σiσī 〉+β,0µ

Dob

Λd (n);β,0
(Γ ̸⊃πi ī ) .

Collecting the above and rearranging the terms, we get

µDob

Λd (n);β,0
(Γ⊃πi ī ) ≥ 1−

1+〈σiσī 〉Dob

Λd (n);β,0

1+〈σiσī 〉+β,0

.

Let us consider the numerator in the right-hand side. Using Jensen’s inequality, we
can write

〈σiσī 〉Dob

Λd (n);β,0
= 1− 1

2

〈
(σi −σī )2〉Dob

Λd (n);β,0 ≤ 1− 1
2

(〈σi −σī 〉Dob

Λd (n);β,0

)2 .

But 〈σī 〉Dob

Λd (n);β,0
=−〈σi 〉Dob

Λd (n);β,0
and so, by Proposition 3.59,

〈σi −σī 〉Dob

Λd (n);β,0
= 2〈σi 〉Dob

Λd (n);β,0
≥ 2〈σ0〉+β,0;d−1 ,
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from which we conclude that

µDob

Λd (n);β,0
(Γ⊃πi ī ) ≥ 1−2

1− (〈σ0〉+β,0;d−1

)2

1+〈σiσī 〉+β,0

≥ 1−2
1− (〈σ0〉+β,0;d−1

)2

1+ (〈σ0〉+β,0

)2 .

This lower bound is uniform in n and i and converges to 1 as β→∞.

Of course, Theorem 3.58 only shows the existence of non-translation-invariant
Gibbs states when β>βc(d −1), and one might wonder what happens for values of
β in the remaining interval (βc(d),βc(d −1)]. It turns out that this problem is still
open. The conjectured behavior, however, is as follows: [5]

• When d = 3, there should exist a value βR ∈ (βc(3),βc(2)] such that the exis-
tence of Gibbs states which are not translation invariant holds for all β> βR,
but not for β < βR. At βR, the system is said to undergo a roughening tran-
sition. At this transition the interface is supposed to lose its rigidity and to
start having unbounded fluctuations. [6]

• When d ≥ 4, Dobrushin’s non-translation-invariant Gibbs states are believed
to exist (with a rigid interface) for all β>βc(d).

Two-dimensional model. The behavior of the interface in two dimensions is very
different and, from a mathematical point of view, a rather detailed and complete
picture is available.

Consider again a configurationω ∈ΩDob
Λn

and, in particular, the associated inter-

face Γ. Let us denote byωΓ the configuration inΩDob
Λn

for which B(ωΓ) = {Γ}. We can

then define the upper and lower “envelopes” Γ± :Z→Z of Γ by

Γ+(i )
def= max

{
j ∈Z : σ(i , j )(ωΓ) =−1

}+1,

Γ−(i )
def= min

{
j ∈Z : σ(i , j )(ωΓ) =+1

}−1.

Note that Γ+(i ) > Γ−(i ) for all i ∈ Z. One can show [60] that, with probability close
to 1, Γ− and Γ+ remain very close to each other: there exists K = K (β) < ∞ such
that, with probability tending to 1 as n →∞,

max
i∈Z

|Γ+(i )−Γ−(i )| ≤ K logn . (3.92)

Let us now introduce the diffusively-rescaled profiles Γ̂± : [−1,1] →R. Given y =
(y1, . . . , yd ) ∈Rd , let us write ⌊y⌋ def= (⌊y1⌋, . . . ,⌊yd ⌋). We then set, for any x ∈ [−1,1],

Γ̂+(x) = 1p
n
Γ+(⌊nx⌋) ,

and similarly for Γ−. Observe that, thanks to (3.92), we know that

lim
n→∞µ

Dob
Λn

(
sup

x∈[−1,1]
|Γ̂+(x)− Γ̂−(x)| ≤ ϵ)= 1, for all ϵ> 0.

Since the interfaceΓ is squeezed betweenΓ+ andΓ−, studying the limiting behavior
of Γ̂+ suffices to understand the asymptotic behavior of the interface under diffu-
sive scaling. This is the content of the next theorem, first proved by Higuchi [161]
for large enough values of β and then extended to all β > βc(2) by Greenberg and
Ioffe [141].
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Figure 3.16: A typical configuration of the low-temperature two-dimensional
Ising model with Dobrushin boundary condition. Once properly rescaled,
the interface between the two phases converges weakly to a Brownian Bridge
process.

Theorem 3.61. For all β > βc(2), there exists κβ ∈ (0,∞) such that Γ̂+ converges
weakly to a Brownian bridge on [−1,1] with diffusivity constant κβ.

(The Brownian bridge is a Brownian motion (Bt )t∈[−1,1] starting at 0 at t = −1 and
conditioned to be at 0 at t = +1; see [251].) It is also possible [141] to express the
diffusivity constant κβ in terms of the physically relevant quantity, the surface ten-
sion, but this is beyond the scope of this book.

Theorem 3.61 shows that, in contrast to what happens in higher dimensions,
the interface of the two-dimensional Ising model is never rigid (except in the trivial
case β = +∞); see Figure 3.16. Moreover, in a finite box Λn , Γ undergoes vertical
fluctuations of order

p
n. A consequence of this delocalization of the interface is the

following: when n becomes very large, the behavior of the system near the center
of the boxΛn will be typical of either the + phase (if Γ has wandered far away below
the origin) or the − phase (if Γ has wandered far away above the origin), and the
probability of each of these two alternatives converges to 1

2 as n →∞. In particular,
in this case, the infinite-volume Gibbs state resulting from Dobrushin boundary
condition is translation invariant and given by 1

2µ
+
β,0 + 1

2µ
−
β,0. More details and far-

reaching generalizations are discussed in Section 3.10.8.

3.10.8 Gibbs states and local behavior in large finite systems

When introducing the notion of Gibbs state in Section 3.4, we motivated the def-
inition by saying that the latter should lead to an interpretation of Gibbs states as
providing approximate descriptions of all possible local behaviors in large finite
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systems, the quality of this approximation improving with the distance to the sys-
tem’s boundary. It turns out that, in the two-dimensional Ising model, this heuristic
discussion can be made precise and rigorous.

Let us consider an arbitrary finite subset Λ ⋐ Zd and an arbitrary boundary
condition η ∈ Ω. We are interested in describing the local behavior of the Gibbs
distribution µη

Λ;β,0 in the vicinity of a point i ∈Λ. Since Λ and η are arbitrary, there

is no loss of generality in assuming that i = 0.

The case of pure boundary conditions. Let us first consider the simpler case of
constant boundary conditions, which we will assume to be + for the sake of con-
creteness. We know from the definition of 〈·〉+

β,0 that, for any local function f ,

〈 f 〉+Λ;β,0 →〈 f 〉+β,0 asΛ ↑Zd .

We will now state a result, first proved by Bricmont, Lebowitz and Pfister [49], that
says that 〈·〉+

β,0 actually provides an approximation for the finite-volume expecta-

tion 〈·〉+
Λ;β,0 with an error exponentially small in the distance from the support of f

to the boundary of the box. Let

R
def= max{n : B(n) ⊂Λ}

denote the distance from the origin to boundary ofΛ and let r
def= ⌊R/2⌋.

Theorem 3.62 (Exponential relaxation). Assume that β > βc(2). There exists c1 =
c1(β) > 0 such that the following holds. Let Λ⋐Z2. Then, uniformly in all functions
f with supp( f ) ⊂B(r ),

∣∣〈 f 〉+Λ;β,0 −〈 f 〉+β,0

∣∣≤ 1
c1
∥ f ∥∞e−c1R .

The same holds for the − boundary condition.

This fully vindicates the statement that the Gibbs state 〈·〉+
β,0 (resp. 〈·〉−

β,0) provides

an accurate description of the local behavior of any finite-volume Gibbs distribu-
tion with + (resp. −) boundary condition, in regions of size proportional to the dis-
tance to the boundary of the system.

The case of general boundary conditions. Let us now turn to the case of a Gibbs
distribution with an arbitrary boundary condition η, which is much more delicate.
For Λ⋐ Zd , take R as before, but this time define r as follows: fix some small ϵ ∈
(0,1/2) and set

r
def= ⌊R1/2−ϵ⌋ . (3.93)

We call circuit a set of distinct vertices (t0, t1, . . . , tk ) of Z2 with the property that
∥tm − tm−1∥∞ = 1, for all 1 ≤ m ≤ k, and ∥tk − t0∥∞ = 1. Let Cϵ be the event that there
is a circuit surrounding B(2r ) inΛ∪∂exΛ and along which the spins take a constant
value. We decompose Cϵ = C +

ϵ ∪C −
ϵ according to the sign of the spins along the

outermost such circuit. The main observation is that the event Cϵ is typical when
β>βc(2), a fact first proved by Coquille and Velenik [73].
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Figure 3.17: A (square) box Λ with a non-constant boundary condition. The
boundary condition induces open Peierls contours inside the system. With
probability close to 1, none of them intersect the box B(2r ) located in the
middle (represented by the dark square). Left: A realization of the open
Peierls contours. The event C −

ϵ occurs. The relevant − spins, the value of
which is forced by the realization of the open contours, are indicated (and
shaded). Right: The induced random box with − boundary condition. The
box B(r ), represented by the small white square in the middle, is located at a
distance at least r from the boundary of this box.

Theorem 3.63. Assume that β>βc(2). For all ϵ> 0, there exists c2 = c2(β,ϵ) > 0 such
that

µ
η

Λ;β,0(Cϵ) ≥ 1− c2R−ϵ ,

uniformly inΛ⋐Z2 and η ∈Ω.

Therefore, neglecting an event of probability at most c2R−ϵ, we can assume that
one of the events C +

ϵ or C −
ϵ occurs. For definiteness, let us consider the latter case

and let us denote by π the corresponding outermost circuit. Observe now that,
conditionally on C −

ϵ and π, any function f with supp( f ) ⊂ B(r ) finds itself in a
box (delimited by π) with − boundary condition (see Figure 3.17). Moreover, its
support is at a distance at least r from the boundary of this box. It thus follows from
Theorem 3.62 that its (conditional) expectation is closely approximated by 〈 f 〉−

β,0.

This leads [73] to the following generalization of Theorem 3.62.

Theorem 3.64. Assume that β>βc(2). There exist constants α=α(Λ,η,β) and c3 =
c3(β) such that, uniformly in functions f with supp( f ) ⊂B(r ), one has

∣∣∣〈 f 〉η
Λ;β,0 −

(
α〈 f 〉+β,0 + (1−α)〈 f 〉−β,0

)∣∣∣≤ c3 ∥ f ∥∞ R−ϵ . (3.94)

The coefficients α and 1−α in (3.94) are given by

α=µη
Λ;β,0(C +

ϵ |Cϵ) , 1−α=µη
Λ;β,0(C −

ϵ |Cϵ) ,

that is, by the probabilities that the box B(R) (in which one measures f ) finds itself
deep inside a +, resp. −, region (conditionally on the typical event Cϵ).
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Again, the statement (3.94) fully vindicates the interpretation of Gibbs states as
describing all possible local behaviors of any finite-volume system, with an accu-
racy improving with the distance to the system’s boundary. This requires however,
in general, that the size of the observation window be chosen small compared to
the square-root of the distance to the boundary. We will explain the reason for this
restriction at the end of the section.

Note that (3.94) also shows that, in the two-dimensional Ising model, the only
possible local behaviors are those corresponding to the + and − phases, since the
approximation is stated in terms of the two Gibbs states 〈·〉+

β,0 and 〈·〉−
β,0. In other

words, looking at local properties of the system, one will see behavior typical of the
+ phase with probably close toα, and of the − phase with probability close to 1−α.
Actually this can be made a little more precise, as we explain now.

What are the possible Gibbs states? Let us consider a sequence of boundary con-
ditions (ηn)n≥1 and a sequence of boxes Λn ↑ Z2. We assume that the correspond-
ing sequence of Gibbs distributions (µηn

Λn ;β,0)n≥1 converges to some Gibbs state 〈·〉.
Then, applying (3.94) with f =σ0, we conclude that

lim
n→∞

∣∣∣〈σ0〉ηn

Λn ;β,0 −
(
αn 〈σ0〉+β,0 + (1−αn)〈σ0〉−β,0

)∣∣∣= 0.

Since, by assumption, limn→∞〈σ0〉ηn

Λn ;β,0 = 〈σ0〉, this implies the existence of

α
def= lim

n→∞αn =
〈σ0〉−〈σ0〉−β,0

〈σ0〉+β,0 −〈σ0〉−β,0

.

Applying again (3.94) to arbitrary local functions, we conclude that

〈·〉 = lim
n→∞〈·〉ηn

Λn ;β,0 =α〈·〉+β,0 + (1−α)〈·〉−β,0 ,

and thus all possible Gibbs states are convex combinations of the Gibbs states 〈·〉+
β,0

and 〈·〉−
β,0. This is the Aizenman–Higuchi theorem, originally derived by Aizen-

man and Higuchi [160] directly for infinite-volume states; see also [135] for a self-
contained, somewhat simpler and more general argument.

A more general formulation of the previous derivation will be presented in
Chapter 6, once we have introduced the notion of infinite-volume Gibbs measures.

As we have seen in Section 3.10.7, when d ≥ 3 and β is large enough, there exist
Gibbs states which are not translation invariant. In particular, this implies that the
Aizenman–Higuchi theorem does not extend to this setting. Nevertheless, it can
proved that all translation-invariant Gibbs states of the Ising model on Zd , d ≥ 3
are convex combinations of 〈·〉+

β,h and 〈·〉−
β,h . This result is due to Bodineau [27],

who completed earlier analyses started by Gallavotti and Miracle-Solé [129] and by
Lebowitz [218].

Why this constraint on the size of the observation window? In the case of pure
boundary conditions, it was possible to take an observation window with a radius
proportional to the distance to the boundary. We now explain why one cannot, in
general, improve Theorem 3.64 to larger windows. Let us thus consider an obser-
vation window B(r ), with now an arbitrary radius r .

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

156 Chapter 3. The Ising Model

The reason is to be found in the probability of observing some “pathological”
behavior in our finite system. Namely, we have seen above that, typically, the event
Cϵ is realized. It turns out that, for some choices of the boundary condition η, the
probability of not observing Cϵ is really of order r /

p
R and thus small only when

r ≪
p

R.
A simple example consists in considering the box Λ=B(n) with the Dobrushin

boundary condition ηDob, as introduced in Section 3.10.7. As explained there, in
that case the open Peierls contour has fluctuations of order

p
n and its scaling limit

is a Brownian bridge. This implies that the probability that this contour intersects
B(2r ) is indeed of order r /

p
n; note that, when this occurs, the event Cϵ becomes

impossible.

Remark 3.65. In the uniqueness regime, quantitative estimates are easier to obtain.
Consider an Ising model either at β < βc(2) and h = 0, or at h ̸= 0 and arbitrary β,
and let 〈·〉β,h denote the associated (unique) Gibbs state. Then it can be shown [49,
95] that there is again exponential relaxation: there exists a constant c4 = c4(β,h)
such that ∣∣〈 f 〉η

Λ;β,h −〈 f 〉β,h
∣∣≤ c ∥ f ∥∞ e−R/c4 ,

uniformly in functions f satisfying supp( f ) ⊂B(r ), r = ⌊R/2⌋. ⋄

3.10.9 Absence of analytic continuation of the pressure.

From the point of view of complex analysis, the properties of the pressure of the
Ising model that we have obtained raise natural questions, that will turn out to
have physical relevance, as explained in Chapter 4, in particular in the discussion
of Section 4.12.3. Since we are interested in fixing the temperature and studying
the analyticity properties with respect to the magnetic field, in this section, we will
denote the pressure by

h 7→ψβ(h) .

For the sake of concreteness, let us consider only positive fields (by the identity
ψβ(−h) =ψβ(h), everything we say here admits an equivalent for negative fields).
Although the pressure was first shown to exist on the real axis, we have seen in
Theorem 3.42 that it can actually be extended to the whole half-plane H+ = {Reh >
0} as an analytic function ψβ : H+ → C. We will also see in Section 5.7.1 how to

obtain the coefficients of the expansion ofψβ(h) in the variable e−2h , with the latter
being convergent for all h ∈ H+. Unfortunately, these results do not provide any

information on the behavior of the pressure on the boundary of H+, ∂H+ def= {Reh =
0}. In function-theoretic terms, the most natural question is whether ψβ can be
analytically continued outside H+. We will thus distinguish two scenarios.

Scenario 1: Analytic continuation is possible. Analytic continuation means that
there exists a strictly larger domain H ′ ⊃ H+ and an analytic map ψ̃β : H ′ → C,
which coincides with ψβ on H+, as depicted in Figure 3.18. This scenario is seen,
for example, in the one-dimensional Ising model: the exact solution (3.10) guaran-
tees that ψβ can be continued analytically through h = 0, at all temperatures. Of
course, since it can be defined as an analytic function on the whole real line, the
analytic continuation ψ̃β obtained when crossing h = 0 is nothing but the usual
pressure: for h < 0, ψ̃β(h) =ψβ(h) (see Figure 3.4).
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Reh

Imh

H−

H ′

H+

Figure 3.18: In Scenario 1, there exists an interval of the imaginary axis
through which the pressure can be continued analytically.

Another example where analytic continuation is possible is provided by the
Curie–Weiss model. Indeed, we have already seen in Exercise 2.4 that starting from

ψCW
β (h) = max

m
{hm − f CW

β (m)} ,

a more explicit expression can be obtained for the pressure:

ψCW
β (h) =−

βmCW
β

(h)2

2
+ logcosh

(
βmCW

β (h)+h
)+ log2.

Although this function is not differentiable at h = 0 when β is large, it possesses an
analytic continuation across h = 0. Namely, remember that mCW

β
(h) is the largest

solution (in m) of the mean-field equation

tanh(βm +h) = m . (3.95)

A look at Figure 2.4 shows that the map h 7→ mCW
β

(h), well-defined for h > 0, can

obviously be continued analytically through h = 0, to small negative values of h,
see Figure 3.19. The continuation m̃CW

β
(·), for small h < 0, is still a solution of (3.95),

but corresponds only to a local maximum of m 7→ hm − f CW
β

(m), and thus does not

represent the equilibrium value of the magnetization.
As a consequence, the pressure ψβ(h) can also be continued analytically

through h = 0, h 7→ ψ̃CW
β

(h), as depicted in Figure 3.19.

Remark 3.66. If the analytic continuation can be made to reach the negative real
axis {h ∈R : h < 0}, as in Figure 3.19 above, then the analytically continued pres-
sure at such (physically relevant) values of h < 0 can acquire an imaginary part,
and some (non-rigorous) theories predict that this imaginary component should
be related to the lifetime of the corresponding metastable state. See [206]. ⋄

Scenario 2: Analytic continuation is blocked by the presence of singularities. In
the second scenario, there exist no analytic continuation across the imaginary axis.
This happens when the singularities form a dense subset of the imaginary axis, see
Figure 3.20. In such a case, {Reh = 0} is called a natural boundary for ψβ.

Which scenario occurs in the Ising model on Zd , d ≥ 2? With the exception of
the (trivial) one-dimensional case, the results concerning the possibility of analyti-
cally continuing the pressure of the Ising model across ∂H+ are largely incomplete.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

158 Chapter 3. The Ising Model

h

mCW
β

(h)

h

ψCW
β

(h)

ψ̃CW
β

(h)

Figure 3.19: Left: the analytic continuation (dotted) of the magnetization of
the Curie–Weiss model, across h = 0, along h → 0+. Right: the corresponding
analytic continuation of the pressure. Whenβ>βc, the analytic continuation
differs from the values of the true pressure for small h < 0: ψ̃CW

β
(h) <ψCW

β
(h).

Reh

Imh

H+

Figure 3.20: In Scenario 2, {Reh = 0} is a natural boundary of the pressure:
any path crossing the imaginary axis “hits” a singularity, which prevents an-
alytic continuation.

In the supercritical regime β< βc(d), the pressure is differentiable at h = 0 and
analytic continuation is expected to be possible, through any point of the imaginary
axis. (Analyticity at h = 0 for the two-dimensional Ising model at any β < βc is
established in [231].) For sufficiently large temperatures, a proof will be provided
in Chapter 5 using the cluster expansion technique (see Exercise 5.8).

In the subcritical regime β> βc(d), the only rigorous contribution remains the
study of Isakov [174], who considered the d-dimensional Ising model (d ≥ 2) at low
temperature and studied the high-order derivatives of the pressure at h = 0. Before
stating his result, note that Theorem 3.42 allows one to use Cauchy’s formula to
obtain that, for all h0 ∈ H+,

dkψβ

dhk
(h0) = k !

2πi

∮

γ

ψβ(z)

(z −h0)k+1
dz , (3.96)

where γ is a smooth simple closed curve contained in H+, surrounding h0, oriented
counterclockwise. Choosingγ as the circle of radius |Reh0|/2 centered at h0, we get
the upper bound

∣∣∣
dkψβ

dhk
(h0)

∣∣∣≤C k k ! . (3.97)

The constant C being proportional to 1/|Reh0|, this upper bound provides no in-
formation on the behavior near the imaginary axis.
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Isakov showed that, for all k, the kth one-sided derivative at h = 0 6,
dkψβ

dhk
+

(0),

exists, is finite and equals

dkψβ

dhk
+

(0) = lim
h0↓0

dkψβ

dhk
(h0) ,

where the limit h0 ↓ 0 is taken along the real axis. This implies that the pressure, al-
though not differentiable at h = 0, has right-derivatives of all orders at h = 0. There-
fore, the Taylor series for the pressure at h = 0 exists:

a0 +a1h +a2h2 +a3h3 + . . . , where ak = 1

k !

dkψβ

dhk
+

(0) . (3.98)

But Isakov also obtained the following remarkable result:

Theorem 3.67. (d ≥ 2) There exist β0 <∞ and 0 < A < B <∞, both depending on β,
such that, for all β≥β0, as k →∞,

Ak k !
d

d−1 ≤ lim
h0↓0

∣∣∣
dkψβ

dhk
(h0)

∣∣∣≤ B k k !
d

d−1 . (3.99)

Since d
d−1 > 1, (3.99) shows that the high-order derivatives at 0 ∈ ∂H+ diverge much

faster than inside H+, as seen in (3.97). This implies in particular that the se-
ries (3.98) diverges for all h ̸= 0, and therefore does not represent the function in
a neighborhood of 0 [7]. In other words, the pressure has a singularity at h = 0
and there exist no analytic continuation ofψβ through the transition point. We will
study this phenomenon in a simple toy model in Exercise 4.16.

Although this result has only been established at very low temperature, it is ex-
pected to hold for all β > βc. Observe that, since e(h+2πki)σ j = ehσ j , the pressure is
periodic in the imaginary direction, with period 2π. The singularity at h = 0 there-
fore implies the presence of singularities at each of the points 2πki ∈ ∂H+.

Isakov’s result was later extended to other models (see the references at the end
of Section 4.12.3). But the problem of determining whether there exists some an-
alytic continuation around the singularity at h = 0, across some interval on the
imaginary axis as on Figure 3.18, is still open.

3.10.10 Metastable behavior in finite systems.

As explained in Section 3.10.9, the spontaneous magnetization of the Ising model
at low temperatures cannot be analytically continued from negative values of h to
positive values of h. Of course, this only applies in the thermodynamic limit, since
the magnetization is an analytic function in a finite system. It is thus of interest
to understand what happens, in finite systems, to the − phase when h becomes
positive.

To discuss this issue, let us consider the low-temperature d-dimensional Ising
model in the box B(n) with a magnetic field h and − boundary condition. When
h ≤ 0 and β is large enough, typical configurations are given by small perturbations

6For k = 1, the one-sided derivative is the same as encountered earlier in the chapter:
dψβ
dh+ (0). For

k ≥ 2, the kth one-sided derivative is defined by induction.
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of the ground state η−: they consist in a large sea of − spins with small islands of +
spins (see Exercises 3.18 and 3.19). The − boundary condition is said to be stable
in B(n). The situation is more interesting when h > 0. To get some insight, let
us consider the two configurations ω−,ω+ ∈ Ω−

B(n)
, in which all the spins in B(n)

take the value −1, resp. +1. Then, HB(n);β,h(ω−)−HB(n);β,h(ω+) = −2β|∂exB(n)| +
2h|B(n)| . We thus see that ω− and ω+ have the same energy if and only if

h =β |∂exB(n)|
|B(n)| = 2dβ

|B(n)|1/d
.

We would thus expect that, provided that h > 0 satisfies

h|B(n)|1/d < 2dβ , (3.100)

the − boundary condition should remain stable inB(n) even though there is a posi-
tive magnetic field, in the sense that typical low temperature configurations should
be small perturbations of ω−, as on the left of Figure 3.21. In contrast, when h sat-
isfies

h|B(n)|1/d > 2dβ , (3.101)

one would expect the + phase to invade the box, with only a narrow layer of −
phase along the boundary of B(n), as on the right of Figure 3.21. In this case, the −
boundary condition is unstable.

Of course, the previous argument is very rough, taking into account only con-
stant configurations insideB(n), and one should expect the above claims to be valid
only for extremely low temperatures. Nevertheless, in a more careful analysis [296],
Schonmann and Shlosman have showed that the above remains qualitatively true
for the two-dimensional Ising model at any β> βc(2): there exists c = c(β) ∈ (0,∞)
such that the − boundary condition is stable as long as h < c|B(n)|−1/2, while it
becomes unstable when h > c|B(n)|−1/2. In the latter case, the macroscopic shape
of the region occupied by the + phase can be characterized precisely (showing, in
particular, that macroscopic regions remain occupied by the − phase near the four
corners of B(n) as long as h is not too large). In particular, these results show that
the magnetization at the center of the box satisfies, for large n and small |h|,

〈σ0〉−B(n);β,h
∼=

{
−m∗ if h < c|B(n)|−1/2 ,

+m∗ if h > c|B(n)|−1/2 .

In this sense, the negative-h magnetization can be “continued” into the positive-
h region, but only as long as h < c|B(n)|−1/2. The fact that the size of the latter
interval vanishes as n →∞ explains why the above discussion does not contradict
the absence of analytic continuation in the thermodynamic limit.

3.10.11 Critical phenomena.

As explained in this chapter, a first-order phase transition occurs at each point of
the line

{
(β,h) ∈R≥0 ×R : β>βc(d), h = 0

}
, whereβc(d) ∈ (0,∞) for all d ≥ 2. One of

the manifestations of these first-order phase transitions is the discontinuity of the
magnetization density at h = 0:

lim
h↓0

{
m(β,h)−m(β,−h)

}= 2m∗(β) > 0
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Figure 3.21: Typical low-temperature configurations of the two-dimensional
Ising model in a box of sidelength 100 with − boundary condition and mag-
netic field h > 0. Left: For small positive values of h (depending on β and the
size of the box), typical configurations are small perturbations of the ground
state η−, even though the − phase is thermodynamically unstable, the cost
of creating a droplet of + phase being too large. Right: For larger values of
h, the + phase invades the box, while the unstable − phase is restricted to a
layer along the boundary, where it is stabilized by the boundary condition.
Partial information on the size of this layer (in a slightly different geometrical
setting) can be found in [346].

for all β > βc(d). It can be shown [352, 7, 8] (for d = 2, remember (1.51) and Fig-
ure 1.10) that β 7→ m∗(β) is decreasing and vanishes continuously as β ↓βc. There-
fore, since m∗(β) = 0 for all β≤ βc(d), the magnetization density m(β,h) (and thus
the pressure) cannot be analytic at the point (βc(d),0). The corresponding phase
transition, however, is not of first order anymore: it is said to be continuous and
the point (βc(d),0) is said to be a critical point.

As we had already mentioned in Section 2.5.3, the behavior of a system at a crit-
ical point displays remarkable features. In particular, many quantities of interest
have singular behavior, whose qualitative features depend only on rough proper-
ties of the model, such as its spatial dimensionality, its symmetries and the short-
or long-range nature of its interactions. Models can then be distributed into large
families with the same critical behavior, known as universality classes.

Among the characteristic features that are used to determine the universality
class to which a model belongs, an important role is played by the critical expo-
nents. The definitions of several of the latter have been given for the Curie–Weiss
model in Section 2.5.3 and can be used also for the Ising model (using the corre-
sponding quantities). For the Ising model, we have gathered these exponents in
Table 3.1:
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d = 2 d = 3 d ≥ 4
α 0 0.110(1) 0
b 1/8 0.3265(3) 1/2
γ 7/4 1.2372(5) 1
δ 15 4.789(2) 3

Table 3.1: Some critical exponents of the Ising model. The exponents given
are rigorously only known to hold when d = 2 [259, 352, 59] and when d ≥
4 [318, 4, 9, 7]. The values given for d = 3 are taken from the review [267];
much more precise estimates are now available [194].

Observe that the exponents become independent of the dimension as soon as

d ≥ 4. The dimension du
def= 4, is known as the upper critical dimension. Above du,

the exponents take the same values as in the Curie–Weiss model (see Section 2.5.3),
in line with the interpretation of the mean-field approximation as the limit of the
model as d →∞ (see Section 2.5.4). Such a behavior is expected to be general, but
with a value of du depending on the universality class.

At a heuristic level, the core reason for this universality can be traced back to the
divergence of the correlation length at the critical point. The latter measures the
range over which spins are strongly correlated. In the Ising model, the correlation
length ξ is such that

〈σ0;σi 〉+β,h
def= 〈σ0σi 〉+β,h −〈σ0〉+β,h〈σi 〉+β,h ∼ e−∥i∥2/ξ ,

for all i for which ∥i∥2 is large enough. More precisely,

ξ(β,h)(n)
def= lim

k→∞
−k

log〈σ0;σ[kn]〉+β,h

,

where n is a unit-vector in Rd and we have written [x]
def= (⌊x(1)⌋, . . . ,⌊x(d)⌋) for any

x = (x(1), . . . , x(d)) ∈Rd .
In the Ising model, it is expected that the correlation length is finite (in all di-

rections) for all (β,h) ̸= (βc(d),0). This has been proved when d = 2 [239]; in higher
dimensions, this is only known when either β<βc(d) [5] or when β is large enough
(we will prove it in Theorem 5.16), while it is known to diverge as β ↑βc(d) [238].

Under the assumption that there is only one relevant length scale close to the
critical point, the divergence of the correlation length implies the absence of any
characteristic length scale at the critical point: at this point, the system is expected
to be invariant under a change of scale. Based on such ideas, physicists have devel-
oped a non-rigorous, but powerful framework in which this picture can be substan-
tiated and which allows the approximate determination of the critical behavior: the
renormalization group.

Let us briefly describe the idea in a simple case. We define a mapping T :Ω→Ω

as follows: given ω ∈Ω, ω′ def= T (ω) is defined by

ω′
i

def=
{
+1 if

∑
j∈3i+B(1)ω j > 0,

−1 if
∑

j∈3i+B(1)ω j < 0.

In other words, we partition Zd into cubic blocks of sidelength 3, and replace the
3d spins in each of these blocks by a single spin, equal to +1 if the magnetization in
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the block is positive, and to −1 otherwise. This transformation is called a majority
transformation.

One can then iterate this transformation. Figure 3.22 shows the first two it-
erations starting from 3 different initial configuration, corresponding to the two-
dimensional Ising model at h = 0 and at three values of β: slightly subcritical (β <
βc(2)), critical (β=βc(2)) and slightly supercritical (β>βc(2)). At first sight, it looks
as though the transformation corresponds to decreasing β in the first case, keeping
it critical in the second and increasing it in the third. Of course, the situation cannot
be that simple: the probability distribution describing the transformed configura-
tion clearly does not correspond to an Ising model anymore. Nevertheless, it might
correspond to a model with additional interactions. One could then consider the
action of this transformation in the space of all Hamiltonians. The idea is then the
following: this transformation has two stable fixed points corresponding to infinite
and zero temperatures, which attracts all initial states with β < βc(d), respectively
β > βc(d). In addition it has an unstable fixed point corresponding to the criti-
cal point. This can, heuristically, be understood in terms of the correlation length:
since each application of the transformation corresponds roughly to a zoom by a
factor 3, the correlation length is divided by 3 at each step. As the number of it-
erations grows, the correlation length converges to 0, which corresponds to β = 0
or β = ∞, except if it was initially equal to infinity, in which case it remains infi-
nite; this case corresponds to the critical point. An analysis of the behavior of the
transformation close to the unstable fixed point then provides information on the
critical behavior of the original system.

These ideas are compelling but, at least in this naive form, the above proce-
dure is known to be problematic from a mathematical point of view; see [343] for
a detailed discussion or the comments in Section 6.14.2. Nevertheless, more so-
phisticated versions do allow physicists to obtain remarkably accurate estimates
of critical exponents. Moreover, the philosophy of the renormalization group has
played a key role in several rigorous investigations (even outside the realm of criti-
cal phenomena).

From a rigorous point of view, the analysis of critical systems is usually done us-
ing alternative approaches, limited to rather specific classes of models and mostly
in two situations: systems above their upper critical dimensions and two-dimen-
sional systems. Since research in these fields is still very actively developing, we will
not discuss them any further. Instead, we list several good sources where these top-
ics are discussed at length; these should be quite accessible if the reader is familiar
with the content of the present book.

A first approach to critical phenomena in lattice spin systems and (Euclidean)
quantum field theory, based on random walk (or random surfaces) representations,
is exposed in considerable detail in the monograph [102] by Fernández, Fröhlich
and Sokal; it provides a thorough discussion of scaling limits, inequalities for criti-
cal exponents, the validity of mean-field exponents above the upper critical dimen-
sion, etc.

A second approach is described in the books by Brydges [57] and Mastropi-
etro [234]. It is based on a rigorous implementation of a version of the renormal-
ization group. These books cover both the perturbative and nonperturbative renor-
malization group approaches from the functional-integral point of view and cover
a broad spectrum of applications.

A third approach is presented in the book [315] by Slade. The latter provides an
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β<βc :

T−→ T−→

β=βc :

T−→ T−→

β>βc :

T−→ T−→

Figure 3.22: Two iterations of the majority transformation at different tem-
peratures.

introduction to the lace expansion, a powerful tool allowing one to obtain precise
information on the critical behavior of systems above their upper critical dimen-
sion, at least for quantities admitting representation in terms of self-interacting
random paths.

A fourth approach, at the base of many of the recent developments of this field,
is based on the Schramm–Löwner evolution (SLE). This approach to critical phe-
nomena is restricted to two-dimensional systems, but yields extremely detailed and
complete information when it is applicable. An introduction to SLE can be found
in the book [210] and in lecture notes by Werner [349] and Lawler [208]. Combined
with discrete complex analytic methods and specific graphical representations of
spin systems, this approach yields remarkable results, such as the conformal in-
variance of the scaling limit, explicit expression for the critical exponents, etc. Good
references on this topic are the books by Werner [350] and Duminil-Copin [91, 92],
as well as the lecture notes by Duminil-Copin and Smirnov [94].

3.10.12 Exact solution

A remarkable feature of the planar Ising model is that many quantities of interest
(pressure, correlation functions, magnetization, etc.) can be explicitly computed
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when h = 0. The insights yielded by these computations have had an extremely im-
portant impact on the development of the theory of critical phenomena. There ex-
ist today many different approaches. The interested reader can find more informa-
tion on this topic in the books by McCoy and Wu [239], Baxter [17] or Palmer [261],
for example.

3.10.13 Stochastic dynamics.

Another topic we have only barely touched upon is the analysis of the stochastic
dynamics of lattice spin systems. In the latter, one considers Markov chains on
Ω, whose invariant measures are given by the corresponding Gibbs measures. We
made use of such a dynamics in Section 3.10.3 in the simplest case of the finite-
volume Ising model. The book [225] by Liggett and the lecture notes [232] by Mar-
tinelli provide good introductions to this topic.
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4 Liquid-Vapor Equilibrium

In this chapter, we develop a rigorous theory of the liquid-vapor equilibrium. In
particular, we will provide a version of the van der Waals–Maxwell theory of con-
densation, that was briefly presented in Section 1.1.6. For that, we will study the
lattice gas and construct the main two thermodynamic quantities associated to it,
namely the free energy and the pressure, under general two-body interactions. The
latter will be studied for different types of microscopic interactions:

1. When particles do not interact with each other except through exclusion, the
thermodynamic quantities can be computed explicitly (like in the ideal gas).
This will be done in Section 4.7, where the hard-core gas will be studied in
detail.

2. In the nearest-neighbor gas (Section 4.8), only neighboring particles attract
each other, and a direct link with the Ising model, as introduced in Chapter 3,
can be made. A satisfactory qualitative thermodynamical description of the
condensation phenomenon will then be obtained by importing results from
Chapter 3.

3. The van der Waals gas (Section 4.9) is the mean-field version of the lattice gas,
and is a reformulation in this language of the Curie–Weiss model of Chap-
ter 2. As we will see, this model displays a number of unphysical properties.
Nevertheless, it turns out that Maxwell’s construction appears naturally as a
consequence of the Legendre transform.

4. Finally, we consider Kac interactions (Section 4.10), in which a small param-
eter γ> 0 is used to tune the range of the interaction. By sending the range of
the interaction to infinity, in the so-called van der Waals limit, we will make
a bridge between the two previous models, restoring the correct behavior of
the thermodynamic potentials, and put Maxwell’s construction on rigorous
grounds.

In contrast to most other chapters, this one focuses more on the study of the
thermodynamic potentials, free energy and pressure, rather than on the Gibbs dis-
tribution and its sensitivity to boundary conditions. Typical configurations un-
der the relevant Gibbs distributions will nevertheless be briefly discussed in Sec-
tions 4.6 and 4.12.1.

167
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168 Chapter 4. Liquid-Vapor Equilibrium

Figure 4.1: In the lattice gas approximation, the vessel is divided into imagi-
nary cells, such that each cell can contain at most one particle.

Remark 4.1. In order to ease the physical interpretation of the results obtained, we
will adopt, in this chapter, the convention used in physics: namely, we will keep
the inverse temperature β outside the Hamiltonian, and will add a multiplicative
constant 1

β in front of the free energy and pressure. ⋄
We will rely on some results on real convex functions; these are collected in

Appendix B.2.

4.1 The lattice gas approximation

The lattice gas was introduced informally in Chapter 1, Section 1.2.4. Consider a gas
contained in a vessel. We will build a model based on van der Waals’ [1] two main
assumptions concerning the interactions between the particles that compose the
gas:

• repulsion: at short distances, particles interact in a repulsive way (as small,
impenetrable spheres).

• attraction: attractive forces act at larger distances.

In order to avoid the many technicalities inherent to the continuum (and be-
cause this book is about lattice models), we will introduce a natural discretization.
Although it might appear as a significant departure from reality, we will see that
it leads to satisfactory results and allows a good qualitative understanding of the
corresponding phenomena.

In the lattice gas approximation, the vessel is partitioned into imaginary mi-
croscopic cubic cells of sidelength 1 (in some suitable units), and it is assumed that
each cell can be either empty or occupied by exactly one particle; see Figure 4.1. Since
it prevents particles from overlapping, this assumption embodies the short-range
repulsive part of the interaction. Each cell is identified with a vertex i ∈Λ, where Λ
is some finite subset of Zd . As an additional simplification, we only keep track of
the cells that are occupied, and not of the exact position of each particle inside its
cell.

Turning to the attractive part of the interaction, we assume that a pair of parti-
cles in cells i and j contributes an amount −K (i , j ) ≤ 0 to the total energy, where
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4.1. The lattice gas approximation 169

K (i , j ) decreases to zero when ∥ j − i∥2 → ∞. We also assume that K (·, ·) is trans-
lation invariant: K (i , j ) = K (0, j − i ), and symmetric: K (0,− j ) = K (0, j ). The total
interaction energy of the system is thus

−
∑

{i , j }⊂Λ
i and j occupied

K (i , j ) .

Later, some specific choices for K (i , j ) will be considered.
It is natural to associate to every cell i ∈Λ its occupation number (notice that

in Chapter 3, the corresponding random variables were denoted ni )

ηi
def=

{
1 if i contains a particle,

0 otherwise.

A configuration of the lattice gas in the vessel is therefore given by the set of oc-
cupation numbers, η = (ηi )i∈Λ, and is thus an element of {0,1}Λ. Using occupa-
tion numbers, one can consider the interaction between pairs of cells i and j ,
−K (i , j )ηiη j , which can be non-zero only if i and j both contain a particle.

Definition 4.2. Let Λ⋐Zd , η ∈ {0,1}Λ. The Hamiltonian of the lattice gas inΛ is

HΛ;K (η)
def= −

∑
{i , j }⊂Λ

K (i , j )ηiη j (4.1)

We will actually be mostly interested in systems with finite-range interactions,
that is, those for which

r
def= inf

{
R ≥ 0 : K (i , j ) = 0 if ∥ j − i∥2 > R

}<∞ .

More generally, in order to have a well-defined thermodynamic limit, we will need
to assume that the maximal interaction between a particle and the rest of the sys-
tem is bounded. In our case, this condition can be written

κ
def= sup

i∈Zd

∑
j ̸=i

K (i , j ) =
∑
j ̸=0

K (0, j ) <∞ ,

since −κ represents the interaction of a particle with the rest of an infinite system
in which each other cell contains a particle.

The number of particles in a configuration η can be expressed as

NΛ(η)
def=

∑
i∈Λ

ηi ,

and the empirical density is defined by

ρΛ
def= NΛ

|Λ| .

When studying the lattice gas in a large vessel, we will either assume that the num-
ber of particles is fixed (describing a fluid confined to some hermetically sealed
container), or that this number can fluctuate (the system can exchange particles
with an external reservoir). As explained in Chapter 1, these two descriptions of the
gas are called respectively canonical and grand canonical. They will both be as-
sociated to a thermodynamic potential (respectively, the free energy and the pres-
sure), which will contain the relevant information about the thermodynamic be-
havior of the system.
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170 Chapter 4. Liquid-Vapor Equilibrium

Remark 4.3. Except in our discussion in Section 4.12.1, we will only consider free
boundary condition in this chapter. The reason for this is that we are mostly inter-
ested in thermodynamic potentials and the latter turn out to be insensitive to the
chosen boundary condition, for precisely the same reason as in Chapter 3. ⋄

4.2 Canonical ensemble and free energy

In the canonical ensemble (Section 1.2.2), the number of particles is fixed.

Definition 4.4. Let Λ⋐ Zd , N ∈ {0,1,2, . . . , |Λ|}. The canonical Gibbs distribution
at inverse temperature β is the probability distribution on {0,1}Λ defined by

νΛ;β,N (η)
def= exp(−βHΛ;K (η))

QΛ;β,N
1{NΛ(η)=N } , (4.2)

where the canonical partition function is defined by

QΛ;β,N
def=

∑

η∈{0,1}Λ:
NΛ(η)=N

exp
(−βHΛ;K (η)

)
. (4.3)

The thermodynamic potential describing an infinite system of fixed density at
equilibrium is the free energy. It is convenient to first define the free energy in a
finite region Λ as a function of a continuous parameter ρ ∈ [0,1]. For that, assume
first that ρ is such that ρ|Λ| ∈ {0,1, . . . , |Λ|} and let

fΛ;β(ρ)
def= −1

β|Λ| logQΛ;β,ρ|Λ| . (4.4)

This defines a function on {0, 1
|Λ| ,

2
|Λ| , . . . , |Λ|−1

|Λ| ,1}, which can be extended to a con-

tinuous function on [0,1] by interpolating linearly on each interval [ k
|Λ| ,

k+1
|Λ| ].

When taking the thermodynamic limit Λ ⇑ Zd (for a definition, see page 83)
in the canonical ensemble, the number of particles will increase with the size of
the system, N →∞, but the density of particles will remain constant. To simplify,
we will not consider the thermodynamic limit along general sequences Λn that
converge in the sense of van Hove, but rather use everywhere sequences of par-
allelepipeds, that is, sets of the form

(
[a1,b1]× [a2,b2]× ·· ·× [ad ,bd ]

)∩Zd . Argu-
ments similar to those used in Section 3.2.2 can be used to remove this restriction.
We denote by R the collection of all parallelepipeds.

Theorem 4.5. Let R ∋Λn ⇑Zd . Let ρ ∈ [0,1] and Nn ∈N be such that Nn
|Λn | → ρ. The

limit
fβ(ρ)

def= lim
n→∞ fΛn ;β(Nn/|Λn |) (4.5)

exists, does not depend on the choice of the sequences (Λn)n≥1 and (Nn)n≥1, and is
called the free energy. Moreover, the convergence is uniform on compact subsets of
(0,1) and ρ 7→ fβ(ρ) is convex and continuous on [0,1].

To prove Theorem 4.5, the first ingredient is the following basic property of the
canonical partition function:
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4.2. Canonical ensemble and free energy 171

Lemma 4.6. Consider two disjoint regionsΛ,Λ′ ⋐Zd . If N ≤ |Λ| and N ′ ≤ |Λ′|, then

QΛ∪Λ′;β,N+N ′ ≥ QΛ;β,N QΛ′;β,N ′ . (4.6)

Proof. In QΛ∪Λ′;β,N+N ′ , we obtain a lower bound by keeping only the configura-
tions in whichΛ contains N particles andΛ′ contains N ′ particles. Moreover, since
K (i , j ) ≥ 0, we can ignore the interactions between pairs of particles at vertices
i ∈ Λ, j ∈ Λ′. After summing separately over the configurations in Λ and Λ′, we
get (4.6).

The second ingredient is the following “continuity” property of the partition
function with respect to the number of particles in the vessel:

Lemma 4.7. Let Λ⋐Zd and N ∈ {0,1, . . . , |Λ|−1}. Then,

|Λ|−N
N+1 QΛ;β,N ≤ QΛ;β,N+1 ≤ eβκ |Λ|−N

N+1 QΛ;β,N . (4.7)

Proof. Observe that

QΛ;β,N+1 =
∑

η∈{0,1}Λ:
NΛ(η)=N+1

exp
(−βHΛ;K (η)

)

= 1

N +1

∑

η∈{0,1}Λ:
NΛ(η)=N

∑

η′∈{0,1}Λ:
η′i≥ηi ,∀i

NΛ(η′)=N+1

exp
(−βHΛ;K (η′)

)
.

Since HΛ;K (η)−κ ≤ HΛ;K (η′) ≤ HΛ;K (η) and since there are exactly |Λ| −N terms
in the sum over η′, this proves (4.7).

Exercise 4.1. Using Lemma 4.7, show that, for all ϵ > 0, when Λ is large, QΛ;β,N ≤
ϵQΛ;β,N+1 if N

|Λ| is sufficiently small, and QΛ;β,N+1 ≤ ϵQΛ;β,N if N
|Λ| is sufficiently close

to 1.

Proof of Theorem 4.5: For simplicity, we do not includeβ in the notation of the par-
tition functions. Let ρ ∈ [0,1]. We will first take for Nn the particular sequence
Nn = ⌈ρ|Λn |⌉, and show the existence of the limit

fβ(ρ) = lim
n→∞

−1

β|Λn |
logQΛn ;⌈ρ|Λn |⌉ . (4.8)

The boundary cases ρ = 0, ρ = 1, can be computed explicitly:

fβ(0) = 0, fβ(1) =−κ
2 . (4.9)

For intermediate densities, we use a subadditivity argument. For convenience, we
write (4.7) as follows:

c−1QΛ;N ≤ QΛ;N+1 ≤ c QΛ;N , (4.10)

for some c > 1 that can be chosen uniformly if N
|Λ| belongs to some closed interval

[a,b] ⊂ (0,1).
Let ρ ∈ (0,1). For all disjoint Λ′,Λ′′ ∈R, with Λ=Λ′∪Λ′′ ∈R, we have ⌈ρ|Λ|⌉ ≥

⌈ρ|Λ′|⌉+⌈ρ|Λ′′|⌉−2. Therefore, applying (4.10) twice, followed by (4.6),

QΛ;⌈ρ|Λ|⌉ ≥ c−2QΛ′;⌈ρ|Λ′|⌉QΛ′′;⌈ρ|Λ′′|⌉ .
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It follows that the numbers a(Λ)
def= − log(c−2QΛ;⌈ρ|Λ|⌉) enjoy the following subaddi-

tivity property:
a(Λ′∪Λ′′) ≤ a(Λ′)+a(Λ′′) .

Moreover, these numbers are translation invariant: a(Λ+ i ) =Λ. This implies (see
Lemma B.6) that

lim
n→∞

a(Λn)

|Λn |
exists and equals inf

Λ∈R
a(Λ)

|Λ| .

This shows the existence of the limit in (4.8) but also provides the following useful
upper bound, valid for allΛ ∈R:

QΛ;⌈ρ|Λ|⌉ ≤ c2e−β fβ(ρ)|Λ| . (4.11)

Remark 4.8. Before going further, let us derive some simple bounds on fβ(ρ), which
we will need later. First, we can bound the energy of each configuration η appearing
in QΛ;⌈ρ|Λ|⌉ (everywhere below,Λ ∈R):

−βHΛ;K (η) = 1
2β

∑
i∈Λ

ηi
∑
j∈Λ
j ̸=i

K (i , j )η j ≤ 1
2βκ⌈ρ|Λ|⌉ ,

which gives

QΛ;⌈ρ|Λ|⌉ ≤ e
1
2βκ⌈ρ|Λ|⌉

(
|Λ|

⌈ρ|Λ|⌉

)
. (4.12)

Approximating the combinatorial factor using Stirling’s formula as in (B.2), we
can write, when |Λ|, N and |Λ|−N are large,

(
|Λ|
N

)
= 1+o(1)√

2πN (1− N
|Λ| )

{( N
|Λ|

) N
|Λ|

(
1− N

|Λ|
)1− N

|Λ|
}−|Λ|

. (4.13)

Therefore, letting

s l.g. (ρ)
def= −ρ logρ− (1−ρ) log(1−ρ) , (4.14)

using (4.12) and taking the thermodynamic limit, we obtain

− 1
2κρ− 1

β s l.g. (ρ) ≤ fβ(ρ) ≤ 0. (4.15)

This bound implies in particular that fβ(ρ) is finite, since κ<∞. One can also use
−βHΛ;K (η) ≥ 0, which gives

fβ(ρ) ≤− 1
β s l.g. (ρ) . (4.16)

Alternatively, one can bound the partition function from below by keeping a single
configuration,

QΛ;⌈ρ|Λ|⌉ ≥ e−βHΛ;K (η∗) . (4.17)

Exercise 4.2. Show that there is a configuration η∗, contributing to QΛ;⌈ρ|Λ|⌉, such
that

HΛ;K (η∗) =− 1
2κρ|Λ|+o(|Λ|) . (4.18)
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Using (4.18) in (4.17) gives

fβ(ρ) ≤− 1
2κρ . (4.19)

⋄
Let us now assume that (Nn)n≥1 is an arbitrary sequence satisfying Nn

|Λn | → ρ. We
can again use (4.10) repeatedly and get, for large n,

c−|Nn−⌈ρ|Λn |⌉|QΛn ;⌈ρ|Λn |⌉ ≤ QΛn ;Nn ≤ c |Nn−⌈ρ|Λn |⌉|QΛn ;⌈ρ|Λn |⌉ .

Since Nn−⌈ρ|Λn |⌉
|Λn | → 0, this shows that the limit in (4.5) exists and coincides with the

one in (4.8).

Let I = [a,b] ⊂ (0,1). Using (4.7) for N
|Λ| ,

N+1
|Λ| ∈ I ,

∣∣ fΛ;β
( N+1

|Λ|
)− fΛ;β

( N
|Λ|

)∣∣≤ 1
|Λ|

{
κ+ 1

β sup
ρ∈I

log( 1−ρ
ρ )

}
.

From this, one easily deduces the existence of C =C (β, I ) > 0 such that, for all Λ⋐
Zd ,

| fΛ;β(ρ)− fΛ;β(ρ′)| ≤C |ρ−ρ′| , ∀ρ,ρ′ ∈ I . (4.20)

Combined with the already established pointwise convergence, (4.20) implies uni-
form convergence on I . Moreover, the limiting function fβ(ρ) is continuous (actu-
ally, C -Lipschitz) on I . Using (4.15)–(4.19) yields limρ↓0 fβ(ρ) = 0 and limρ↑1 fβ(ρ) =
−κ

2 , which by (4.9) guarantees continuity at 0 and 1.

To show that fβ is convex, we fix ρ1,ρ2 ∈ (0,1) and consider the sequence of

cubes Dk = {1,2,3, . . . ,2k }d . For each k, Dk+1 is the union of 2d translates of Dk ,

denoted D (1)
k , . . . ,D (2d )

k . We split these boxes into two groups, each subgroup con-

taining 2d /2 boxes. Putting ⌈ρ1|Dk |⌉ particles in each box of the first group and
⌈ρ2|Dk |⌉ particles in each box of the second group, and using translation invari-
ance,

Q
Dk+1;⌈ρ1+ρ2

2 |Dk+1|⌉
≥ c−2d

{QDk ;⌈ρ1|Dk |⌉}
2d /2{QDk ;⌈ρ2|Dk |⌉}

2d /2 .

This implies, after letting k →∞,

fβ
(ρ1+ρ2

2

)≤ 1
2 { fβ(ρ1)+ fβ(ρ2)} . (4.21)

Convexity of fβ(ρ) thus follows from its continuity (see Lemma B.11).

4.3 Grand canonical ensemble and pressure

In the grand canonical ensemble (Section 1.2.3), the system can exchange particles
with an external reservoir of fixed chemical potential µ (and inverse temperature
β).

Remark 4.9. In this chapter, the letter µ always denotes the chemical potential, not
a probability measure. ⋄
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Definition 4.10. Let µ ∈R. The grand canonical Gibbs distribution at inverse tem-
perature β is the probability distribution on {0,1}Λ defined by

νΛ;β,µ(η)
def= exp(−β{HΛ;K (η)−µNΛ(η)})

ΘΛ;β,µ
, (4.22)

where the grand canonical partition function is defined by

ΘΛ;β,µ
def=

∑

η∈{0,1}Λ
exp

(−β{HΛ;K (η)−µNΛ(η)}
)

. (4.23)

By summing over the possible number of particles, one gets the following simple
relation between the canonical and grand canonical partition functions:

ΘΛ;β,µ =
|Λ|∑

N=0
eβµN QΛ;β,N . (4.24)

Exercise 4.3. Let Λ⋐ Zd , and let f , g : {0,1}Λ → R be two nondecreasing functions.
Using Theorem 3.50, prove that f and g are positively correlated: For all β≥ 0,µ ∈R,

CovΛ;β,µ( f , g ) ≥ 0,

where CovΛ;β,µ denotes the covariance under νΛ;β,µ.

The thermodynamic potential describing an infinite system at equilibrium with a
reservoir of particles at fixed chemical potential is the pressure. The pressure in a
finite volume Λ⋐Zd is defined as

pΛ;β(µ)
def= 1

β|Λ| logΘΛ;β,µ , µ ∈R .

Observe that the derivative of the latter quantity yields the average density of par-
ticles under νΛ;β,µ:

∂pΛ;β

∂µ
= 〈 NΛ

|Λ|
〉
Λ;β,µ . (4.25)

We thus see that tuning the chemical potential allows one to control the average
number of particles in the system. In particular, as discussed in Exercise 4.6 below,
large negative values of µ result in a dilute (gas) phase, while large positive values
of µ yield a dense (liquid) phase.

Theorem 4.11. Let R ∋Λn ⇑Zd . For all µ ∈R, the limit

pβ(µ)
def= lim

n→∞pΛn ;β(µ) (4.26)

exists and does not depend on the choice of the sequence (Λn)n≥1; it is called the
pressure. Moreover, µ 7→ pβ(µ) is convex and continuous.

Since pβ is convex, its derivative

ρβ(µ)
def=
∂pβ
∂µ

(µ) (4.27)
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exists everywhere except possibly on a countable set of points (Theorem B.12) and
will be called the average (grand canonical) density. The one-sided derivatives
∂pβ
∂µ+ and

∂pβ
∂µ− , are well defined at each µ. Theorem B.12, together with (4.25), also

guarantees that, when ρβ(µ) exists, it equals

ρβ(µ) = lim
n→∞

〈 NΛn

|Λn |
〉
Λn ;β,µ .

The existence of the limit in (4.26) will be seen to be a consequence of the exis-
tence of the free energy (see below), but it can also be proved directly:

Exercise 4.4. Prove the existence of the pressure in Theorem 4.11 using the method
suggested in Exercise 3.3.

Theorem 4.11 leaves open the possibility that the pressure has affine pieces,
along which an increase of the chemical potential µwould not result in an increase
of the average density ρβ(µ). This turns out to be impossible:

Theorem 4.12. µ 7→ pβ(µ) is strictly convex and increasing.

Proof. Differentiating (4.25) once again,

∂2pΛ;β

∂µ2 = β

|Λ| VarΛ;β,µ(NΛ) ,

where VarΛ;β,µ denotes the variance under νΛ;β,µ. Let us first observe that there
exists c > 0, depending on β,κ and µ, such that

c < νΛ;β,µ
(
ηi = 1 |η j = m j ,∀ j ∈Λ\ {i }

)< 1− c , ∀i ∈Λ , (4.28)

for all choices of m j ∈ {0,1}, j ∈Λ \ {i }. In particular, VarΛ;β,µ(ηi ) ≥ c2) for all i ∈Λ.
Moreover, Exercise 4.3 guarantees that CovΛ;β,µ(ηi ,η j ) ≥ 0, so

VarΛ;β,µ(NΛ) =
∑
i∈Λ

VarΛ;β,µ(ηi )+
∑

i , j∈Λ
i ̸= j

CovΛ;β,µ(ηi ,η j ) ≥ c2 |Λ| .

That pβ is increasing and strictly convex follows from the fact that
∂2pΛ;β

∂µ2 ≥βc2 > 0,

uniformly inΛ⋐Zd (see Exercise B.5).

Exercise 4.5. Find the constant c in (4.28).

Exercise 4.6. Assuming that pβ(µ) exists, show that

lim
µ→−∞pβ(µ) = 0, lim

µ→+∞
pβ(µ)

µ
= 1. (4.29)

Conclude that
lim

µ→−∞ρβ(µ) = 0, lim
µ→+∞ρβ(µ) = 1. (4.30)
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4.4 Equivalence of ensembles

During our brief discussion of thermodynamics in Chapter 1, we saw that the en-
tropy was related to the other thermodynamic potentials through Legendre trans-
forms. We now check that similar relations between the free energy and pressure
hold for the lattice gas.

Theorem 4.13. Equivalence of ensembles at the level of potentials holds for the
general lattice gas. That is, the free energy and pressure are each other’s Legendre
transform:

fβ(ρ) = sup
µ∈R

{µρ−pβ(µ)} ∀ρ ∈ [0,1] , (4.31)

pβ(µ) = sup
ρ∈[0,1]

{ρµ− fβ(ρ)} ∀µ ∈R . (4.32)

Since each can be obtained from the other by a Legendre transform, fβ and pβ
contain the same information about the system, and either of them can be used to
study the thermodynamical behavior of the lattice gas.

Proof. We use (4.24). Since the |Λn |+1 terms of that sum are all nonnegative,

max
N

{eβµN QΛn ;β,N } ≤ΘΛn ;β,µ ≤ (|Λn |+1)max
N

{eβµN QΛn ;β,N } .

By Exercise 4.1, we see that the maximum over N is attained for values of N
|Λ|

bounded away from 0 or 1. For those N , one can use (4.11):

eβµN QΛn ;β,N ≤ c2 exp
(
β{µ N

|Λn | − fβ( N
|Λn | )}|Λn |

)

≤ c2 exp
(
βsup

ρ
{µρ− fβ(ρ)}|Λn |

)
.

This gives
limsup

n→∞
1

β|Λn | logΘΛn ;β,µ ≤ sup
ρ

{ρµ− fβ(ρ)} .

For the lower bound, we first use the continuity of ρ 7→ ρµ− fβ(ρ), and consider
some ρ∗ ∈ [0,1] for which supρ{ρµ− fβ(ρ)} = ρ∗µ− fβ(ρ∗). Let ϵ > 0, and n be

large enough to ensure that QΛn ;β,⌈ρ∗|Λn |⌉ ≥ e−β fβ(ρ∗)|Λn |−βϵ|Λn |. Then, taking N =
⌈ρ∗|Λn |⌉,

max
N

{eβµN QΛn ;β,N } ≥ eβµ⌈ρ∗|Λn |⌉QΛn ;β,⌈ρ∗|Λn |⌉

≥ exp
(
β
{ ⌈ρ∗|Λn |⌉

|Λn | µ− fβ(ρ∗)
}|Λn |−βϵ|Λn |

)
,

which gives
liminf

n→∞
1

β|Λn | logΘΛn ;β,µ ≥ ρ∗µ− fβ(ρ∗)−ϵ .

Since this holds for all ϵ > 0, (4.32) (and thereby the existence of the pressure) is
proved. Then, fβ(ρ) being convex and continuous, it coincides with the Legendre
transform of its Legendre transform (Theorem B.19 1). This proves (4.31).

1To apply that theorem, one needs to define fβ(ρ)
def= +∞ for all ρ ̸∈ [0,1], so that fβ :R→R∪ {∞} is

convex and lower semi-continuous.
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The equivalence of ensembles allows to derive a further smoothness property
for the free energy.

Corollary 4.14. The free energy fβ is differentiable everywhere on (0,1).

Proof. If there existed a point ρ∗ at which fβ were not differentiable, Theorem B.20
would imply that pβ is affine on some interval; this would contradict the claim of
Theorem 4.12.

4.5 An overview of the rest of the chapter

The existence of the free energy and pressure and the equivalence of ensembles,
proved in the previous sections, hold under quite general assumptions (in our case:
κ<∞). In Section 4.6, we will see how these can be used to derive general proper-
ties of the canonical and grand canonical Gibbs distributions (similarly to what was
done in earlier chapters for the Curie–Weiss and Ising models). Namely, the first
concerns the typical density of particles, NΛ

|Λ| , under the grand canonical distribu-
tion νΛ;β,µ, and the second concerns the geometrical properties of configurations
under the canonical distribution νΛ;β,N .

The remainder of this chapter is devoted to the study of particular cases. Our
main concern will be to determine under which conditions phase transitions can
occur at low temperature. For each of the models considered, we will study the
qualitative properties of the free energy fβ(ρ) and of the pressure pβ(µ). We will
also express the pressure as a function of the density ρ ∈ (0,1) and of the volume

per particle v
def= ρ−1, yielding two functions ρ 7→ p̃β(ρ), v 7→ p̂β(v). Since the latter

are considered at a fixed value of β, they are isotherms of the pressure.

A salient feature of the occurrence of phase transitions, in the canonical lattice
gas, is the condensation phenomenon, that is, the coexistence of macroscopic re-
gions with different densities, gas and liquid. Although a complete description of
this phenomenon is outside the scope of this book, some aspects of the problem
will be described in the complements at the end of the chapter (Section 4.12.1, see
Figure 4.23).

4.6 Concentration and typical configurations

In this section, still under general assumptions (we only assume that κ < ∞), we
use the existence of the free energy and pressure to derive properties of the Gibbs
distributions.

4.6.1 Typical densities

In the grand canonical ensemble, the number of particles in Λ, NΛ, can fluctuate,
and we expect NΛ

|Λ| to concentrate around its average value, given by (4.25):

〈 NΛ

|Λ|
〉
Λ;β,µ =

∂pΛ;β

∂µ
.

The next result characterizes the typical values of the density under νΛn ;β,µ as
minimizers of a suitable function (compare with the similar results obtained in Sec-
tion 2.2 in the context of mean-field models).
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178 Chapter 4. Liquid-Vapor Equilibrium

Theorem 4.15. Let R ∋Λn ⇑Zd and let J ⊂ [0,1] be a closed interval. Then,

lim
n→∞

1

|Λn |
logνΛn ;β,µ

( NΛn

|Λn |
∈ J

)
=−min

ρ∈J
Iβ,µ(ρ) ,

where
Iβ,µ(ρ)

def= β
{
( fβ(ρ)−µρ)− min

ρ′∈[0,1]
( fβ(ρ′)−µρ′)

}
(4.33)

is called the rate function.

Proof. The proof follows the same steps as the proof of the equivalence of ensem-
bles. Using the same decomposition as in (4.24),

νΛ;β,µ
( NΛ
|Λ| ∈ J

)= 1

ΘΛ;β,µ

∑
0≤N≤|Λ|:
N /|Λ|∈J

eβµN QΛ;β,N .

The denominatorΘΛ;β,µ is treated using Theorem 4.13. For the numerator,

max
N : N /|Λ|∈J

{eβµN QΛ;β,N } ≤
∑

0≤N≤|Λ|:
N /|Λ|∈J

eβµN QΛ;β,N ≤ (|Λ|+1) max
N : N /|Λ|∈J

{eβµN QΛ;β,N } ,

and we can proceed as in the proof of Theorem 4.13.

Consider the set of minimizers of Iβ,µ ≥ 0:

Mβ,µ
def= {

ρ ∈ [0,1] : Iβ,µ(ρ) = 0
}

.

By continuity of Iβ,µ, Mβ,µ is closed. Since fβ is convex, so is Iβ,µ. Therefore, Mβ,µ

is either a singleton, or a closed interval:

ρ∗ 1
ρ

1
ρ

Iβ,µ(ρ) Iβ,µ(ρ)

Figure 4.2: Depending on (β,µ), the minimizers of the rate function form
either a singleton, Mβ,µ = {ρ∗} (on the left), or a closed interval (on the right).

Remark 4.16. Most of the plots given in this chapter were made to illustrate im-
portant features of the functions under consideration; in order to better emphasize
the latter, we have often decided to accentuate them. Nevertheless, the qualita-
tive properties have been preserved. Only those for the hard-core gas, and some of
those for the van der Waals model, are drawn from an expression computed rigor-
ously. ⋄

Theorem 4.15 thus says that, in a grand canonical system with chemical poten-
tial µ, the particle density NΛ

|Λ| concentrates on Mβ,µ, in the following sense: for any
open set G ⊂ [0,1], with G ⊃Mβ,µ, we have that

asΛ ⇑Zd , νΛ;β,µ

( NΛ

|Λ| ∈G
)
→ 1 exponentially fast in |Λ|.
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4.6. Concentration and typical configurations 179

Indeed, for any closed interval J ⊂ [0,1] \Mβ,µ, we have λ
def= minρ∈J Iβ,µ(ρ) > 0 and,

for any large enough boxΛ,

νΛ;β,µ

( NΛ

|Λ| ∈ J
)
≤ e−

λ
2 |Λ| .

Densities outside Mβ,µ are therefore very atypical in large systems. Of course, it
does not follow from the above theorem that all values in the set Mβ,µ are equally
likely. Investigating this question requires a much more delicate analysis, taking
into account surface effects; see the complements to this chapter (Section 4.12.1)
for a discussion.

Remark 4.17. Using the equivalence of ensembles, one can also express Mβ,µ as

Mβ,µ =
{
ρ ∈ [0,1] : pβ(µ) =µρ− fβ(ρ)

}
. ⋄

When the pressure is differentiable (that is, in the absence of a first-order phase
transition), one knows exactly at which value the density concentrates:

Proposition 4.18. Assume that pβ is differentiable at µ. Then, under νΛ;β,µ, the

density NΛ
|Λ| concentrates on ρβ(µ)

def= ∂pβ
∂µ : for all ϵ> 0, as Λ ⇑Zd ,

νΛ;β,µ

(∣∣∣ NΛ

|Λ| −ρβ(µ)
∣∣∣≥ ϵ

)
→ 0, exponentially fast in |Λ|.

Proof. If
∂pβ
∂µ exists, then Mβ,µ must be a singleton (if it were an interval, fβ would

be affine on that interval, a contradiction with Theorem B.20): Mβ,µ = {ρ∗}. We

only need to check that ρ∗ = ∂pβ
∂µ . Using Remark 4.17, we see that ρ∗ must satisfy

pβ(µ) =µρ∗− fβ(ρ∗). It thus follows from (4.32) that, for all ϵ> 0,

pβ(µ+ϵ)−pβ(µ) ≥ {
(µ+ϵ)ρ∗− fβ(ρ∗)

}−pβ(µ) = ϵρ∗

and
pβ(µ)−pβ(µ−ϵ) ≤ pβ(µ)−{

(µ−ϵ)ρ∗− fβ(ρ∗)
}= ϵρ∗ ,

which, dividing by ϵ and letting ϵ ↓ 0, gives
∂pβ
∂µ = ρ∗, proving the claim.

4.6.2 Strict convexity and spatial homogeneity

In this section we describe typical configurations of particles in the canonical en-
semble, by looking at how the density can vary from one point to another. More
precisely, we will consider the canonical Gibbs distribution νΛ;β,N in a large box Λ,

and assume that the density N
|Λ| ≃ ρ belongs to some interval I on which the free

energy is strictly convex:

fβ(λρ1 + (1−λ)ρ2) <λ fβ(ρ1)+ (1−λ) fβ(ρ2) ,

for all 0 < λ < 1 and all ρ1 < ρ2 in I . We will show that, under such conditions,
the system is homogeneous: with high probability under νΛ;β,N , all macroscopic
sub-boxes of Λ have the same density ρ. (We have proved a similar claim in the
microcanonical ensemble, in Section 1.3.1.)

We will consider the thermodynamic limit along a sequence R ∋ Λ ⇑ Zd and,
for each 0 < α < 1 and each Λ, consider a collection Dα(Λ) ⊂ R of subsets Λ′ ⊂Λ,
translates of each other, with the property that |Λ′|

|Λ| →α whenΛ ⇑Zd .
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Theorem 4.19. Let R ∋ Λ ⇑ Zd . Assume that N
|Λ| → ρ ∈ (0,1) and that fβ is strictly

convex in a neighborhood of ρ. Fix 0 <α< 1. Then, for all small ϵ> 0, as Λ ⇑Zd ,

νΛ;β,N

(
∃Λ′ ∈Dα(Λ) such that

∣∣∣ NΛ′

|Λ′| −ρ
∣∣∣≥ ϵ

)
→ 0, (4.34)

exponentially fast in |Λ|.

Proof. Together with R ∋Λ ⇑Zd , we consider N →∞ such that N
|Λ| → ρ ∈ (0,1). Fix

ϵ > 0 and some δ > 0 (which will be fixed later), and cover [0,1] \ (ρ− ϵ,ρ+ ϵ) with
closed intervals Jk , k = 1, . . . ,m, of sizes ≤ δ, all at distance at least ϵ from ρ. We can
assume that m ≤ 2/δ. We will first show that there exists b0 > 0 such that, when Λ
is large enough,

νΛ;β,N

( NΛ′

|Λ′| ∈ Jk

)
≤ |Λ|e−b0|Λ| , (4.35)

for all Λ′ ∈ Dα(Λ) and all k. Since there are at most |Λ| sub-boxes Λ′ ∈ Dα(Λ) and
since the number of intervals Jk is bounded, the main claim will then follow.

Consider some Jk . For definiteness, we assume that min Jk > ρ (the other
case is treated similarly). We can of course assume that ρ, α and Jk are such that
{NΛ′/|Λ′| ∈ Jk } ̸=∅. First, decompose

νΛ;β,N

( NΛ′

|Λ′| ∈ Jk

)
=

∑

N ′: N ′
|Λ′ |∈Jk

νΛ;β,N (NΛ′ = N ′) . (4.36)

Let Λ′′ def= Λ \Λ′. If the interaction has finite range (see Exercise 4.7 below for the
general case), then, for all configurations η ∈ {0,1}Λ,

HΛ;K (η) =HΛ′;K (η|Λ′ )+HΛ′′;K (η|Λ′′ )+O(|∂Λ|) , (4.37)

where, as usual, we denote by η|∆ the restriction of η ∈ {0,1}Λ to ∆ ⊂Λ. Therefore,

letting N ′′ def= N −N ′,

νΛ;β,N (NΛ′ = N ′) ≤ eO(|∂Λ|) QΛ′;β,N ′QΛ′′;β,N ′′

QΛ;β,N
.

For the denominator, we will use

lim
Λ⇑Zd

1

β|Λ| logQΛ;β,N =− fβ(ρ) .

Let N ′
min = min{N ′ : N ′/|Λ′| ∈ Jk }, N ′′

max = N −N ′
min. Using Lemma 4.7 repeatedly,

QΛ′;β,N ′ ≤
[

eβκ
(1−N ′

min/|Λ′|
N ′

min/|Λ′| ∨1
)]N ′−N ′

min QΛ′;β,N ′
min

,

QΛ′′;β,N ′′ ≤
( (N ′′

max +1)/|Λ′′|
1−N ′′

max/|Λ′′| ∨1
)N ′′

max−N ′′
QΛ′′;β,N ′′

max
.

AsΛ ⇑Zd , we have

N ′
min

|Λ′| → ρk
min

def= min Jk ,
N ′′

max

|Λ′′| → ρk
max ,

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook
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where ρk
max satisfies

αρk
min + (1−α)ρk

max = ρ .

Therefore, sinceΛ′ ∈R and |Λ′|/|Λ|→α,

lim
Λ⇑Zd

1

β|Λ| logQΛ′;β,N ′
min

=−α fβ(ρk
min) .

Observe thatΛ′′ is not a parallelepiped, but we can use Lemma 4.6 as follows:

QΛ′′;β,N ′′
max

≤
QΛ;β,Ñ

QΛ′;β,Ñ ′
, (4.38)

where Ñ ′ def= ⌊N ′′
max

|Λ′′| |Λ′|⌋, Ñ
def= N ′′

max+Ñ ′. Now, Ñ
|Λ| → ρk

max, and Ñ ′
|Λ′| → ρk

max. Therefore,

lim
Λ⇑Zd

1

β|Λ| log
QΛ;β,Ñ

QΛ′;β,Ñ ′
=−(1−α) fβ(ρk

max) .

We have thus proved that

limsup
Λ⇑Zd

1

β|Λ| log max
N ′: N ′

|Λ′ |∈Jk

νΛ;β,N (NΛ′ = N ′)

≤Mkδ−
{
α fβ(ρk

min)+ (1−α) fβ(ρk
max)− fβ(ρ)

}
,

where

Mk
def= κ+ log

(1−ρk
min

ρk
min

∨1
)
+ log

( ρk
max

1−ρk
max

∨1
)

.

Observe that Mk is bounded uniformly in k. Namely, there exists 0 < ϵ′ < ϵ (de-
pending on ρ and α) such that ρk

max < ρ− ϵ′ < ρ+ ϵ < ρk
min for all k. Moreover, by

the strict convexity of fβ in a neighborhood of ρ, there exists some b0 > 0 such that

min
1≤k≤m

{
α fβ(ρk

min)+ (1−α) fβ(ρk
max)− fβ(ρ)

}≥ 2b0 > 0,

uniformly in m. One can thus take δ small enough so that Mkδ ≤ b0. The sum
in (4.36) contains at most |Λ| terms, which proves (4.35) for large enoughΛ.

Exercise 4.7. Show that, when the interaction is not of finite range (but assuming
κ<∞), (4.37) becomes

HΛ;K (η) =HΛ′;K (η|Λ′ )+HΛ′′;K (η|Λ′′ )+o(|Λ|) ,

so that the rest of the proof remains unchanged.

4.7 The hard-core lattice gas

Let us see what happens when
K (i , j ) = 0

for all pairs i , j . This model, already considered in Chapter 1, is called the hard-
core lattice gas, since the only interaction between the particles is the constraint
of having at most one of them at each vertex. Due to the lack of an attractive part
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182 Chapter 4. Liquid-Vapor Equilibrium

in its Hamiltonian, this model will not present a particularly interesting behavior,
but it remains a good starting point, since its thermodynamic potentials can be
computed explicitly.

When K ≡ 0, the canonical partition function becomes a purely combinatorial
quantity, counting the configurations η ∈ {0,1}Λ with NΛ(η) = N :

Qhard
Λ;N =

(
|Λ|
N

)
.

Since
(|Λ|

0

) = (|Λ|
|Λ|

) = 1, we get f hard
β

(0) = f hard
β

(1) = 0. For intermediate densities, 0 <
ρ < 1, we use again (4.13)–(4.14), and obtain (see Figure 4.3)

f hard
β (ρ) =− 1

β s l.g. (ρ) . (4.39)

ρ
f hard
β

(ρ)

Figure 4.3: The free energy of the hard-core lattice gas, strictly convex at all
temperatures.

The pressure can also be computed explicitly (see Figure 4.4), using either the
equivalence of ensembles, or simply (4.24):

Θhard
Λ;µ =

|Λ|∑
N=0

(
|Λ|
N

)
eβµN = (1+eβµ)|Λ| ,

which yields

phard
β (µ) = 1

β
log(1+eβµ) . (4.40)

The expressions obtained for f hard
β

(ρ) and phard
β

(µ) imply that these functions are

analytic. We will now see how to express the pressure as a function of ρ rather than
µ. To this end, one must answer the following question: can one realize a chosen
average density ρ by suitably tuning µ?

Observe that the average density of particles,

ρhard
β (µ) =

∂phard
β

∂µ
= eβµ

1+eβµ
, (4.41)

is smooth for all values of µ: when µ increases from −∞ to +∞, the density of the
hard-core gas increases from 0 to 1 without discontinuities and exhibits no phase
transition (see Figure 4.4). This absence of condensation is of course due to the lack
of attraction between the particles.

By Proposition 4.18, we also know that the density of particles in a large grand
canonical system, NΛ

|Λ| , concentrates on ρhard
β

(µ). Since ρhard
β

(µ) is increasing inµ, the
equation

ρhard
β (µ) = ρ (4.42)
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µ

phard
β

(µ)

µ

ρhard
β

(µ)

1

Figure 4.4: The pressure and average density of the hard-core lattice gas.

has a unique solution in µ, for each fixed ρ ∈ (0,1). This solution can of course be
given explicitly:

µhard
β (ρ) = 1

β log ρ
1−ρ .

Therefore, densities ρ ∈ (0,1) are in one-to-one correspondence with chemical po-
tentials µ ∈ R. This bijection allows to express the pressure as a function of the
density:

p̃hard
β (ρ)

def= phard
β (µhard

β (ρ)) =− 1
β log(1−ρ) .

At low densities, log(1−ρ) ≃ −ρ, which allows to recover the qualitative behavior
provided by the equation of state of the ideal gas:

βp̃hard
β (ρ) = ρ+O(ρ2) (ρ small) .

In terms of the volume per particle, v = ρ−1,

p̂hard
β (v)

def= p̃hard
β (v−1) =− 1

β log
(
1− 1

v

)
.

Remark 4.20. When v is large, − log(1− 1
v ) ≃ 1

v , and the above provides an approxi-
mation to the Ideal Gas Law (1.14), with R = 1,

pv = RT . ⋄

4.7.1 Parenthesis: equivalence of ensembles at the level of measures

Consider the canonical hard-core lattice gas along a sequenceΛ ⇑Zd , N →∞, with
N
|Λ| → ρ. What can be said about the distribution of particles in a smaller subsystem

∆⊂Λ, whose size remains fixed asΛ ⇑Zd ?

Although the density of particles in Λ is fixed, close to ρ, the number of par-
ticles in ∆ can fluctuate. We therefore expect to obtain, when Λ ⇑ Zd , some dis-
tribution of the grand canonical type inside ∆, with a chemical potential µ to be
determined; not surprisingly, it will be exactly the one obtained earlier through the
relation (4.42).

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

184 Chapter 4. Liquid-Vapor Equilibrium

Λ, N

∆

Figure 4.5: In a large systemΛwith a fixed number of particles N , what can be
said about the probability distribution describing a smaller subsystem∆⊂Λ?

Proposition 4.21. Let ∆ ⋐ Zd , Λ ⇑ Zd , and assume that N
|Λ| → ρ ∈ (0,1). Let η∆ ∈

{0,1}∆ be any configuration of particles in ∆. Then, as Λ ⇑Zd ,

νΛ;β,N
(
{η : η|∆ = η∆}

)−→ ν∆;β,µ(η∆) , (4.43)

where µ is the unique solution to (4.42).

Relation (4.43) is the simplest instance of equivalence of ensembles at the level
of measures. A similar statement holds much more generally, at least away from
phase transitions, but is substantially harder to establish [2].

Proof. The proof is a direct application of Stirling’s formula: if M = N∆(η∆),

νΛ;β,N
(
{η : η|∆ = η∆}

)=
(|Λ|−|∆|

N−M

)
(|Λ|

N

) = (1+o(1))
(
1− N

|Λ|
)|∆|( N

|Λ|−N

)M
.

Since N
|Λ| → ρ and since (4.42) can be written as ρ

1−ρ = e
βµhard

β
(ρ)

,

( N

|Λ|−N

)M
−→

( ρ

1−ρ
)M

= exp
{
βµhard

β (ρ)M
}

,

and (
1− N

|Λ|
)|∆|

−→ (1−ρ)|∆| = 1

(1+e
βµhard

β
(ρ)

)|∆|
= 1

Θ∆;β,µhard
β

(ρ)

.

4.8 The nearest-neighbor lattice gas

In this section, we take further advantage of the binary nature of the lattice gas to
link it precisely to the Ising ferromagnet. The occupation numbers ηi ∈ {0,1} of the
lattice gas can be mapped to Ising spins ωi ∈ {−1,+1}, by

ηi 7→ωi
def= 2ηi −1. (4.44)

Expressed in terms of the Ising spins, the exponent in (4.22) becomes

β
{
HΛ;K (η)−µNΛ(η)

}=−β
4

∑
{i , j }⊂Λ

K (i , j )ωiω j − β
4 (κ+2µ)

∑
i∈Λ

ωi −β(µ2 + κ
8 )|Λ|+bΛ ,
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−→
ϕ

Figure 4.6: On the left, a configuration of the lattice gas, in which each cell
i is either occupied by a particle, or empty. The occupation variables ηi ∈
{0,1} are mapped to spin variables ωi ∈ {±1} (picture on the right) using the
mapping (4.44).

where bΛ = o(|Λ|) (see exercise below). We thus see that the lattice gas is linked to

an Ising ferromagnet with coupling constants Ji j = β
4 K (i , j ) ≥ 0 and magnetic field

h′ = β
4 (κ+2µ).

Exercise 4.8. Compute bΛ, and show that

lim
Λ⇑Zd

|bΛ|
|Λ| = 0.

In order to take advantage of the results obtained in Chapter 3, in this subsection
we restrict to the nearest-neighbor lattice gas, for which

K (i , j )
def= 1{i∼ j } . (4.45)

In this case, κ= 2d .

4.8.1 The pressure

The parameters (β,µ) of the grand-canonical lattice gas are related to those of the
nearest-neighbor Ising model, (β′,h′), by the relations

β′ = 1
4β , h′ = β

4 (κ+2µ) .

By Exercise 4.8, for all ϵ> 0, one can take n sufficiently large so that

e−ϵ|B(n)|eβ( µ2 + κ
8 )|B(n)|Z∅

B(n);β′,h′ ≤ΘB(n);β,µ ≤ eϵ|B(n)|eβ( µ2 + κ
8 )|B(n)|Z∅

B(n);β′,h′ .

We thus get, after taking the limits n →∞ and ϵ ↓ 0,

βpβ(µ) =ψβ′ (h′)+ βµ
2 + βκ

8 . (4.46)

We can now extract qualitative information from the Ising model and translate it
into the lattice gas language.
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186 Chapter 4. Liquid-Vapor Equilibrium

For instance, we know from Theorem 3.9 that, in d = 1, h′ 7→ ψβ′ (h′) is every-
where analytic in h′ (at all temperatures). This implies that the corresponding lat-
tice gas has no phase transition, µ 7→ pβ(µ) being analytic everywhere. In fact, the
exact solution of Theorem 3.9, together with (4.46), yields an explicit expression for
pβ(µ).

When d ≥ 2, it follows from the Lee–Yang Circle Theorem and Theorem 3.40
that ψβ′ is analytic at least outside h′ = 0. Therefore, to h′ = 0 corresponds the
unique value of the chemical potential at which the lattice gas can exhibit a first-
order phase transition, namely:

µ∗
def= − 1

2κ .

We also know, from Theorem 3.34 and Peierls’ argument, that there exists an inverse
critical temperature βc(d) ∈ (0,∞) such that a first-order phase transition does oc-
cur whenever β′ >βc(d); see (3.27). We gather these results in the following

Theorem 4.22. Let µ 7→ pβ(µ) denote the pressure of the nearest-neighbor lattice gas.

1. When d = 1, pβ is analytic everywhere.

2. When d ≥ 2, pβ is analytic everywhere on {µ :µ ̸=µ∗}. Moreover, letting

βl.g.
c =βl.g.

c (d)
def= 4βc(d) ,

pβ is differentiable at µ∗ if β<βl.g.
c , but non-differentiable at µ∗ if β>βl.g.

c .

In particular, at all temperatures, the density of particles µ 7→ ρβ(µ) = ∂pβ
∂µ exists

(and is analytic) everywhere outside µ∗. Using (4.46), the latter can be related di-
rectly to the infinite-volume magnetization mβ′ of the Ising model:

ρβ(µ) =
∂pβ
∂µ

= 1

β

∂ψβ′

∂h′
∂h′

∂µ
+ 1

2
=

1+mβ′ (h′)

2
.

(We write mβ′ (h′) rather than m(β′,h′), since we are mainly interested in the de-
pendence on h′.) We call (−∞,µ∗) the gas branch of the pressure, and (µ∗,+∞)
the liquid branch. Although the pressure is not differentiable at µ∗ when β> β

l.g.
c ,

convexity guarantees that its one-sided derivatives are well defined and given by

ρl
def=
∂pβ
∂µ+

∣∣∣
µ∗

=
1+m∗

β′

2
, ρg

def=
∂pβ
∂µ−

∣∣∣
µ∗

=
1−m∗

β′

2
.

At µ∗, the grand-canonical system becomes sensitive to the boundary condition,
and the density is only guaranteed to satisfy ρg ≤ ρ ≤ ρl . The reader can actually
take a look back at the pictures of Figure 1.9 for the typical configurations of the
lattice gas at low and high temperature. Observe that the densities ρg ,ρl always
satisfy

ρg +ρl = 1. (4.47)

(Let us mention that this property is really a consequence of the hidden spin-
flip symmetry of the underlying Ising model, and does not hold in general lattice
gases.) The pressure and the density have therefore the qualitative behavior dis-
played in Figure 4.7. (We remind the reader that the graphs shown in this section
are only qualitative; their purpose is to emphasize the main features observed in
the nearest-neighbor lattice gas.)
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pβ(µ)

µ∗
µ

liquid

gas

ρβ(µ)

µ∗

1

ρg

ρl

µ

Figure 4.7: The pressure and density of the nearest-neighbor lattice gas, ex-
hibiting a first-order phase transition when β>βl.g.

c . The function µ 7→ pβ(µ)
is analytic everywhere, except at µ∗, at which the one-sided derivatives dif-
fer, implying a jump in density, corresponding to the change from a gas of
density ρg to a liquid of density ρl .

4.8.2 The free energy

In the canonical ensemble, we can obtain the main qualitative properties of the free
energy using the fact that it is the Legendre transform of the pressure and applying
Theorem B.20.

At high temperature, β< βl.g.
c , the pressure is differentiable everywhere and the

free energy is therefore strictly convex; see Figure 4.8. By Theorem 4.19, this implies
that the typical configurations under the canonical Gibbs distribution are always
spatially homogeneous, at all densities.

ρ

fβ(ρ)
1

Figure 4.8: The free energy of the nearest-neighbor lattice gas is strictly con-
vex when β<βl.g.

c .

At low temperature, when β > β
l.g.
c , pβ is not differentiable at µ∗ and, again by

Theorem B.20, fβ is affine on the interval [ρg ,ρl ], called the coexistence plateau.
As for the pressure, we refer to (0,ρg ) as the gas branch, and to (ρl ,1) as the liquid
branch; see Figure 4.9.

Exercise 4.9. Show that when β>βl.g.
c , fβ is analytic on the gas and liquid branches.

Hint: use Theorem 4.22, the strict convexity of the pressure, and the implicit function
theorem.
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ρg

gas

liquid

coex.

ρl
ρ

fβ(ρ)
1

Figure 4.9: The free energy of the nearest-neighbor lattice gas, when β>βl.g.
c ,

is analytic everywhere (see Exercise 4.9) except at ρg and ρl . On the coexis-
tence plateau [ρg ,ρl ], both gas and liquid are present in the system, in vari-
ous proportions: there is coexistence and phase separation.

4.8.3 Typical densities

The typical density NΛ
|Λ| under the grand canonical Gibbs distribution νΛ;β,µ can be

characterized using the analysis following Theorem 4.15; see Figure 4.10.
When β ≤ β

l.g.
c and for all µ ∈ R, the rate function Iβ,µ is strictly convex and

has a unique minimizer, Mβ,µ = {∂pβ/∂µ}, at which the density concentrates. The

scenario is similar if β>βl.g.
c and µ ̸=µ∗.

When β > β
l.g.
c and µ = µ∗, the rate function attains its minima on the coexis-

tence plateau: Mβ,µ = [ρg ,ρl ].

gas liquid

ρβ(µ) ρg ρl 1
ρ

1
ρ

Iβ,µ(ρ) Iβ,µ∗ (ρ)

Figure 4.10: Values of the density at which the rate function does not attain
its minimum are very unlikely to be observed in a large system distributed
according to νΛ;β,µ. When β<βl.g.

c , or when β>βl.g.
c and µ ̸=µ∗ (on the left),

Iβ,µ(ρ) has a unique minimum at ρβ(µ). When β > β
l.g.
c and µ = µ∗ (on the

right), Iβ,µ∗ (ρ) is minimal on the whole coexistence plateau.

Theorem 4.15 does not provide any information on the typical densities when
µ = µ∗, beyond concentration on the coexistence plateau, and a more detailed
analysis is necessary; this will be discussed in Section 4.12.1.

4.8.4 The pressure as a function of ρ and v.

Let us now express the pressure in terms of either the density ρ or the volume per
particle v = ρ−1.

When β≤βl.g.
c , pβ is differentiable for all values of µ and ρβ(µ) = ∂pβ

∂µ is continu-
ous (Theorem B.12) and increasing. Remember from Exercise 4.6 that ρβ(µ) → 0 as
µ→−∞, and ρβ(µ) → 1 as µ→+∞. Therefore, one can proceed as for the hardcore
gas: for any ρ ∈ (0,1), the equation

ρβ(µ) = ρ (4.48)
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4.8. The nearest-neighbor lattice gas 189

has a unique solution, which we denote µl.g.

β
(ρ). We can thus define

p̃β(ρ)
def= pβ(µl.g.

β
(ρ)) , ρ ∈ (0,1) . (4.49)

Whenβ>βl.g.
c , existence of a solution to (4.48) is not guaranteed for all ρ ∈ (0,1),

because of the jump ofρβ(µ) atµ∗ (see Figure 4.7). In fact, inversion is only possible

when ρ < ρg or ρ > ρl ; in this case, we also denote the inverse by µl.g.

β
(ρ). To extend

this function to a well-defined µl.g.

β
: (0,1) →R, we set

µ
l.g.

β
(ρ)

def= µ∗ ∀ρ ∈ [ρg ,ρl ] . (4.50)

The reason for defining the inverse that way on the coexistence plateau is that,

for finite systems, the average particle density in Λ, which is equal to
∂pΛ;β(µ)

∂µ , is in-
creasing and differentiable (in fact, analytic) as a function of µ. In particular, to any
density ρ ∈ (0,1) is associated a unique value µΛ;β(ρ) of the chemical potential. The

latter function being increasing, it is clear that it converges for all ρ ∈ (0,1), asΛ ⇑Zd ,
to the function µl.g.

β
(ρ) defined above. ⋄

We can then define p̃β(ρ) as in (4.49). Its qualitative behavior is sketched in
Figure 4.11.

ρg ρl

coex.
gas

liquid

ρ
1

p̃β(ρ)

Figure 4.11: The pressure of the nearest-neighbor lattice gas at low tempera-
ture, as a function of the density ρ ∈ (0,1).

Remark 4.23. In Section 5.7.2, we will see that the nearest-neighbor lattice gas also
presents the ideal gas behavior at small densities:

βp̃β(ρ) = ρ+O(ρ2) , (ρ small) .

Using the cluster expansion technique, we will see in Theorem 5.12 that the coeffi-
cients of the virial expansion can actually be computed, yielding the exact higher-
order corrections to the pressure at low density:

βp̃β(ρ) = ρ+b2ρ
2 +b3ρ

3 + . . . (ρ small). ⋄

Exercise 4.10. Show that, when β>βl.g.
c , ρ 7→ p̃β(ρ) is analytic on the gas and liquid

branches.
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190 Chapter 4. Liquid-Vapor Equilibrium

Finally, we can also express the pressure as a function of the volume per particle,
v = ρ−1,

p̂β(v)
def= p̃β(v−1) , v ∈ (1,∞) ,

to obtain the qualitative behavior of the isotherms in a form directly compara-
ble to the van der Waals–Maxwell theory. The sketch of a typical low temperature

isotherm is given in Figure 4.12, where we have set vl
def= ρ−1

l and vg
def= ρ−1

g .

vgvl

gas

liquid

coex.
ps

v
1

p̂β(v)

Figure 4.12: The pressure of the nearest-neighbor lattice gas at low tempera-
ture, as a function of the volume per particle v > 1. The value v = 1 plays the
same role as v = b in van der Waals’ isotherms (Figure 1.4). The saturation
pressure is given by ps = pβ(µ∗).

4.9 The van der Waals lattice gas

In this section, we consider a lattice gas that does not fit in the general framework
described earlier, but which will be important from the point of view of the van der
Waals–Maxwell theory, especially in the next section.

Consider a lattice gas in a vessel Λ⋐ Zd , in which the interaction between the
particles at vertices i , j ∈Λ is given by

K (i , j )
def= 1

|Λ| . (4.51)

This type of interaction is not physical, since the contribution to the total energy
from a pair of particles depends on the size of the region Λ in which they live: it
becomes of infinite range and tends to zero when |Λ| →∞. Nevertheless, the sum
over the pairs of particles can be expressed as

∑
{i , j }⊂Λ

K (i , j )ηiη j =
1

2|Λ|
∑
i∈Λ

∑
j∈Λ
j ̸=i

ηiη j

= 1

2|Λ|
∑
i∈Λ

ηi

( ∑
j∈Λ

η j −ηi

)
= 1

2ρ
2
Λ|Λ|− 1

2ρΛ ,

where ρΛ
def= NΛ

|Λ| is the empirical density. Since it is bounded, the second term − 1
2ρΛ

does not contribute on the macroscopic scale and will be neglected.
Therefore, although not physically realistic, interactions of the form (4.51) lead

to a model in which the square of the density appears explicitly in the Hamiltonian.
In this sense, it can be considered as a microscopic toy model that embodies the
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4.9. The van der Waals lattice gas 191

main assumption made by van der Waals and discussed in Chapter 1. This model,
with Hamiltonian

H vW
Λ;µ

def= − 1
2ρ

2
Λ|Λ|−µρΛ|Λ| ,

will be called the van der Waals model.
We already encountered the same interaction (formulated in the spin language)

when considering the Curie–Weiss Model in Section 2.1 (remember in particular
the Curie–Weiss Hamiltonian (2.4)). Therefore, this model could also be called the
mean-field or Curie–Weiss lattice gas. A large part of the rest of this section will
be the translation of the discussion of Section 2.1 in the lattice gas language. We
nevertheless discuss a new important feature: its link with Maxwell’s Construction.

Let us denote the canonical and grand canonical partition functions of the van
der Waals model by QvW

Λ;β,N , respectively ΘvW
Λ;β,µ , and consider the associated free

energy and pressure:

f vW
β (ρ)

def= lim
n→∞

−1

β|Λn |
logQvW

Λn ;β,⌈ρ|Λn |⌉ , ρ ∈ [0,1] ,

pvW
β (µ)

def= lim
n→∞

1

β|Λn |
logΘvW

Λn ;β,µ , µ ∈R .

The dependence of K (i , j ) on Λ prevents us from using Theorems 4.5 and 4.11 to
show the existence of these limits. However, it is not difficult to compute the latter
explicitly. Remember the definition of s l.g. (ρ) in (4.14).

Theorem 4.24. The above limits exist, and are given by

f vW
β (ρ) =− 1

2ρ
2 − 1

β s l.g. (ρ) , (4.52)

pvW
β (µ) = sup

ρ∈[0,1]
{µρ− f vW

β (ρ)} . (4.53)

Exactly as we already saw in (2.5), the free energy splits into an energy term − 1
2ρ

2

and an entropy term − 1
β s l.g. (ρ).

Proof. The simple structure of the Hamiltonian yields

QvW
Λ;β,N =

(
|Λ|
N

)
e

1
2βρ

2
Λ|Λ| .

We then use (4.13) and get (4.52). For the pressure, we use a decomposition as the
one in (4.24) and proceed as in the proof of (4.32).

Of course, the properties of f vW
β

and pvW
β

can also be derived directly from those

of the Curie–Weiss model. Therefore, parts of the material presented below has
already been presented, in a different form, in Chapter 2.

By (4.53), pvW
β

is the Legendre transform of f vW
β

, but the converse is only true

when f vW
β

is convex.
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ρ
1 1

β≤βvW
c β>βvW

c

f vW
β

(ρ) f vW
β

(ρ)

Figure 4.13: The free energy (4.52) of the van der Waals model at high (on the
left) and low (on the right) temperatures.

4.9.1 (Non-)convexity of the free energy.

Since f vW
β

(ρ) is the sum of a concave energy term and of a convex entropy term, its

convexity is not clear a priori. But an elementary computation shows that

∂2 f vW
β

∂ρ2 ≥ 0 ∀ρ ∈ (0,1) if and only if β≤βvW
c , (4.54)

where the critical inverse temperature is

βvW
c

def= 4.

We can thus determine exactly when f vW
β

is the Legendre transform of pvW
β

:

1. When β≤βvW
c , f vW

β
is convex and, since the Legendre transform is an involu-

tion on convex lower semicontinuous functions (Theorem B.19), this means
that

f vW
β (ρ) = sup

µ∈R

{
ρµ−pvW

β (µ)
}

.

Therefore, equivalence of ensembles holds at high temperature.

2. When β > βvW
c , f vW

β
is non-convex and therefore cannot be the Legendre

transform of pvW
β

(see Exercise B.6): there exist values of ρ for which

f vW
β (ρ) ̸= sup

µ∈R

{
ρµ−pvW

β (µ)
}

. (4.55)

Therefore, equivalence of ensembles does not hold at low temperature.

The reader might wonder whether physical significance can be attached to the Leg-
endre transform of the pressure, namely the right-hand side of (4.55). In fact, since
the pressure is the Legendre transform of the free energy (by (4.53)), its Legendre
transform is given by (see Theorem B.17)

sup
µ∈R

{ρµ−pvW
β (µ)} = CE f vW

β (ρ) , (4.56)

where CE f vW
β

(ρ) is the convex envelope 2 of f vW
β

, defined by

CE f vW
β

def= largest convex function g such that g ≤ f vW
β . (4.57)

2A more precise definition can be found in Appendix B.2.3.
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4.9. The van der Waals lattice gas 193

The regime β>βvW
c thus corresponds to CE f vW

β
̸= f vW

β
(see Figure 4.14). In the next

section, we will relate this to Maxwell’s construction.

ρlρg

fβ(ρl )

fβ(ρg )

ρ
1

CE f vW
β

Figure 4.14: At low temperature, the free energy of the van der Waals model
differs from its convex envelope. The points ρg and ρl will be identified be-
low.

The non-convexity observed at low temperature in the van der Waals model is
due to the fact that the geometry of the system plays no role: any pair of particles
interacts in the same way, no matter how distant. Therefore, not surprisingly, we
end up with the same conclusions as in van der Waals’ theory when making the
homogeneity assumption.

Convexity is known, since Chapter 1, to be a consequence of the variational
principles satisfied by the fundamental functions of thermostatics. For systems with
finite-range interactions, it appeared in the proof of Theorem 4.5. In the present set-
ting, the argument can be formulated as follows. A system with density ρ ∈ (ρg ,ρl )
living in Λ can always be split into two subsystems: a first one, with volume |Λ1| =
α|Λ| and density ρg and a second one with volume |Λ2| = (1−α)|Λ| and density ρl ,
where α is chosen such that the overall density is unchanged: αρg +(1−α)ρl = ρ. In-
deed, the free energy density associated to these two systems is α f (ρg )+ (1−α) f (ρl ),
which is smaller than the free energy density of the original system: α f (ρg )+ (1−
α) f (ρl ) ≤ f

(
αρg + (1−α)ρl

)= f (ρ).
The reason this does not occur in the van der Waals model is that it is impossible

to split the system into two pieces in such a way that the energy of interaction between
the two subsystems is negligible (that is, is o(|Λ|)). It is this peculiarity, ultimately due
to the long-range nature of the interactions, which explains the unphysical features
of these systems, such as the non-convexity of the free energy. In models with short-
range interactions, such a splitting is indeed possible, and the spatial coexistence of
gas and liquid phases occurs at the phase transition. ⋄

4.9.2 An expression for the pressure; Maxwell’s construction

We have already seen in (4.56) that the Legendre transform of the pressure is given
by CE f vW

β
. At low temperature, CE f vW

β
is affine on a segment (Figure 4.14), and by

Theorem B.20, this implies that pvW
β

has a point of non-differentiability. We make

this analysis more explicit below.
Using (4.53), the analysis of the pressure pvW

β
(µ) for a fixed µ can be done

through the study of the maxima of the function ρ 7→ µρ − f vW
β

(ρ). Since f vW
β

is
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differentiable, these can be found by solving

∂ f vW
β

∂ρ
=µ , (4.58)

which can be written as
θ(ρ) =β(ρ+µ) , (4.59)

where θ(ρ)
def= log ρ

1−ρ . We fix µ and make a qualitative analysis of the solutions (in
ρ) to (4.59). Observe that θ(ρ) →−∞ when ρ ↓ 0, and θ(ρ) →+∞ when ρ ↑ 1. The
graph of θ(ρ) therefore intersects the straight line ρ 7→β(ρ+µ) at least once, for all
µ ∈ R and β> 0; see Figure 4.15. However, the graph of θ(ρ) may intersect that line
more than once. Actually, since θ′(ρ) ≥ θ′( 1

2 ) = 4 =βvW
c , we see that this intersection

is unique when β≤βvW
c , but not necessarily so when β>βvW

c .

−µ

β(ρ+µ)

ρ1
1
2

θ(ρ)

Figure 4.15: Solving (4.59).

The van der Waals pressure when β≤βvW
c

When β≤ βvW
c , the unique solution to (4.59), denoted µ 7→ ρvW

β
(µ), is differentiable

(analytic in fact) with respect to µ, and the pressure is given by

pvW
β (µ) =µρvW

β (µ)− f vW
β (ρvW

β (µ)) . (4.60)

Since ρvW
β

(µ) = ρ can be inverted to obtain µvW
β

(ρ), we can express the pressure as a

function of the density; from (4.58),

p̃vW
β (ρ)

def= pvW
β (µβ(ρ)) =

∂ f vW
β

∂ρ
ρ− f vW

β (ρ) =− 1
2ρ

2 − 1
β log(1−ρ) . (4.61)

Exercise 4.11. Check (4.61).

Once more, at low densities, (4.61) reduces to the equation of state for the ideal
gas (1.14):

βp̃vW
β (ρ) = ρ+O(ρ2) .
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4.9. The van der Waals lattice gas 195

As a function of v = ρ−1 (see Figure 4.19),

p̂vW
β (v) =− 1

2v2 − 1

β
log

(
1− 1

v

)
. (4.62)

Once more, for fixed β, once v is taken large enough, p̂vW
β

(v) is well approximated

by the solution to (
p + ( 1

2 + 1
2β

) 1

v2

)
(v −1) =β−1 ,

which is essentially van der Waals’ expression (1.23), with a = 1
2 + 1

2β and b = 1.

The van der Waals pressure when β>βvW
c

When β>βvW
c , the pressure is also of the form (4.60), but the solution to (4.59) may

not be unique. In that case, one must select those that correspond to a maxima of
ρ 7→µρ− fβ(ρ). This can be made visually transparent by defining a new variable:

x
def= ρ− 1

2 .

(This change of variable symmetrizes the problem using a variable better suited
than ρ. The analysis then reduces to the one done for the Curie–Weiss model, in
Section 2.3.) After rearranging the terms, we are thus looking for the points x ∈[− 1

2 , 1
2

]
that maximize the function

x 7→ϕµ(x)
def= (

µ+ 1
2

)
x − gβ(x) ,

where gβ(x)
def= − 1

2 x2− 1
β s l.g. ( 1

2 +x), and where we have ignored a term that depends
on µ but not on x. The advantage of working with the variable x is that gβ(−x) =
gβ(x). This shows that

µvW
∗

def= − 1
2

is the only value of µ for which ϕµ is symmetric and has two distinct maximizers.
For all other values of µ this maximizer is unique; see Figure 4.16.

xg

ϕµ(x) ϕµ(x) ϕµ(x)

xl

µ<µvW∗ : µ=µvW∗ : µ>µvW∗ :

xβ(µ) xβ(µ)

Figure 4.16: Left and right: the unique maximizer xβ(µ) of ϕµ when µ ̸=µvW∗ .
Middle: The two maximizers xg and xl when µ=µ∗.

When µ increases from µ< µvW
∗ to µ> µvW

∗ , the unique maximizer of x 7→ϕµ(x)

jumps discontinuously from a value xg
def= ρg − 1

2 < 0 to a value xl
def= ρl − 1

2 > 0. We
conclude that ρ 7→ µρ− f vW

β
(ρ) has two distinct maximizers when µ= µvW

∗ : ρg and
ρl = 1−ρg . Moreover,

pvW
β (µvW

∗ ) =µvW
∗ ρg − f vW

β (ρg ) =µvW
∗ ρl − f vW

β (ρl ) . (4.63)
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When µ ̸= µvW
∗ , the maximizer is unique; we continue denoting it by ρvW

β
(µ). Of

course, ρvW
β

(µ) < ρg when µ<µvW
∗ , ρvW

β
(µ) > ρl when µ>µvW

∗ , and

ρg = lim
µ↑µvW∗

ρvW
β (µ) , ρl = lim

µ↓µvW∗
ρvW
β (µ) .

Since we have, for µ ̸=µvW
∗ ,

∂pvW
β

∂µ
= ∂

∂µ

{
µρvW

β (µ)− f vW
β (ρvW

β (µ))
}= ρvW

µ (µ)

and since pvW
β

is convex (being a Legendre transform), Theorem B.12 then gives

∂pvW
β

∂µ−

∣∣∣
µvW∗

= ρg < ρl =
∂pvW

β

∂µ+

∣∣∣
µvW∗

.

Remark 4.25. By Theorem B.20, the lack of differentiability of pvW
β

at µvW
∗ implies

that its Legendre transform is affine on [ρg ,ρl ] and µvW
∗ gives the slope of CE f vW

β
on

[ρg ,ρl ]. Using the second and third terms in (4.63), we get

f vW
β (ρl )− f vW

β (ρg ) =µvW
∗ (ρl −ρg ) =

∂ f vW
β

∂ρ

∣∣∣
ρg

(ρl −ρg ) .

This is clearly seen on the graph of Figure 4.14. ⋄
Let us then complete the description of the pressure in terms of the variables

ρ and v . Since ρvW
β

(µ) behaves discontinuously at µvW
∗ , we define its inverse as we

did earlier (see page 189). For ρ < ρg or ρ > ρl , ρvW
β

(µ) = ρ has an inverse which we

again denote µvW
β

(ρ) and, for those densities, the pressure is obtained as in (4.61).

Then,

µ̃β(ρ)
def=





µvW
β

(ρ) if ρ ∈ (0,ρg ) ,

µvW
∗ if ρ ∈ [ρg ,ρl ] ,

µvW
β

(ρ) if ρ ∈ (ρl ,1) .

As a function of the density, p̃vW
β

(ρ)
def= pβ(µ̃vW

β
(ρ)) then takes the following form (see

Figure 4.17).

p̃vW
β (ρ) =





− 1
2ρ

2 − 1
β log(1−ρ) if ρ ∈ (0,ρg ) ,

pvW
β

(µvW
∗ ) if ρ ∈ [ρg ,ρl ] ,

− 1
2ρ

2 − 1
β log(1−ρ) if ρ ∈ (ρl ,1) .

(4.64)

Remark 4.26. On the gas branch, at any temperature, we can use the Taylor expan-
sion for log(1−ρ), and get

βp̃vW
β (ρ) = ρ+ 1

2 (1−β)ρ2 + 1
3ρ

3 + 1
4ρ

4 +·· ·

The above series, which in fact converges for all complex ρ inside the unit disk, is
called the virial expansion for the pressure. It provides high-order corrections to
the equation of the ideal gas. ⋄
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ρ 1

p̃vW
β

(ρ)

1

p̃vW
β

(ρ)

ρlρg

Figure 4.17: The pressure of the van der Waals model, as a function of the
density. On the left, the regime β≤βvW

c , on the right, β>βvW
c .

Finally, we can express the pressure as a function of the volume per particle,
v = ρ−1. At low temperature, p̂vW

β
(v) presents a striking difference with its high-

temperature counterpart, computed earlier. Namely, at low temperature, the ex-
pression (4.62) has to be replaced by a constant on the coexistence plateau [vl , vg ],

where vl
def= ρ−1

l , vg
def= ρ−1

g . Quite remarkably, this constant is the same as the one
provided by Maxwell’s construction; see Figure 4.18.

1 vl vg

− 1
2v2 − 1

β log(1− 1
v )

v

p̂vW
β

(v)

Figure 4.18: The pressure of the van der Waals model at low temperature, as
a function of the volume per particle v > 1, obtained by applying the equal
area rule (Maxwell construction) to an everywhere smooth function: the two
shaded areas are equal. The coexistence plateau is at a height given by the
saturation pressure pvW

β
(µvW∗ ).

Theorem 4.27 (Maxwell’s Construction). When β>βvW
c ,

p̂vW
β (v) = MC

{
− 1

2v2 − 1

β
log

(
1− 1

v

)}
. (4.65)

Proof. As in (1.24), we must show that

∫ vg

vl

{
− 1

2v2 − 1

β
log

(
1− 1

v

)}
dv = pvW

β (µvW
∗ )(vg − vl ) . (4.66)
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A straightforward integration shows that this integral equals, after rearrangement,

1
2

[
1
v

]vg

vl
− 1

β

[
(v −1)log(v −1)− v log v

]vg

vl
= 1

2

{
1

vg
− 1

vl

}
− 1

β

[
−v s l.g. ( 1

v )
]vg

vl

=− 1
2

vg −vl

vl vg
− 1

β

{
vl s l.g. ( 1

vl
)− vg s l.g. ( 1

vg
)
}

.

We then use the fact that − 1
2 = µvW

∗ , 1
vl vg

= ρlρg = ρg (1−ρg ), s l.g. ( 1
vl

) = s l.g. (ρl ) =
s l.g. (1−ρl ) = s l.g. (ρg ) = s l.g. ( 1

vg
), as well as (4.63), to obtain

∫ vg

vl

{
− 1

2v2 − 1

β
log

(
1− 1

v

)}
dv = (vg − vl )

{
µvW
∗ ρg + 1

2ρ
2
g + 1

β s l.g. (ρg )
}

= (vg − vl )
{
µvW
∗ ρg − fβ(ρg )

}

= (vg − vl )pvW
β (µvW

∗ ) .

1
v

p̂vW
β

(v)

Figure 4.19: The pressure of the van der Waals–Maxwell model as a func-
tion of v > 1. The top four curves represent isotherms for values of β ≤
βvW

c (see (4.62)) and are smooth everywhere; the fourth one is the critical
isotherm. The remaining curves correspond to values β>βvW

c and include a
coexistence plateau due to Maxwell’s Construction. The shaded region rep-
resents the values of the parameters (v, p) located on a coexistence plateau.
These plots were obtained from (4.65).

4.10 Kac interactions and the van der Waals limit

Although Maxwell’s construction was obtained rigorously in the previous section,
it was only proved to occur in a model with non-physical interactions. It therefore
remains to understand whether the van der Waals–Maxwell theory can be given a
precise meaning in the framework of equilibrium statistical mechanics, but starting
from finite-range interactions. This will be done in this section.

Consider a lattice gas in a large vessel, with a fixed density. We have seen how
van der Waals’ main simplifying hypothesis could be realized in a model (the van
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4.10. Kac interactions and the van der Waals limit 199

der Waals model), in which a quadratic term ρ2
Λ appears in the Hamiltonian, as a

consequence of the non-local structure of the interaction.

As explained earlier, the local density of a real gas at fixed overall density ρ can
undergo large fluctuations, in particular in the coexistence regime. This makes it
possible to observe the true physical phenomenon of interest: condensation.

Instead of making homogeneity assumptions on the density, we introduce a
class of interactions that allows one to compute the energy in large but finite re-
gions, whatever the density of particles is (in that region). To this end, we will con-
sider some initial pair interaction, given by some functionϕ, and then scale it in an
appropriate way:

Definition 4.28. Let ϕ : Rd → R≥0 be a Riemann-integrable function with compact
support, satisfying ϕ(−x) =ϕ(x) and

∫
ϕ(x)dx = 1. (4.67)

The Kac interaction associated toϕwith scaling parameter γ> 0 is

Kγ(i , j )
def= γdϕ

(
γ( j − i )

)
.

We will mostly be interested in small values of γ,that is, when the interaction of
a particle at i ∈ Zd is essentially the same with all the other particles located in a
neighborhood of i of diameter γ−1. The smaller γ, the more particles interact, but
the less a pair {i , j } contributes to the total energy. In this respect, the interaction
Kγ is similar, at a microscopic scale, to the van der Waals model. Nevertheless,
because ϕ is compactly supported, Kγ always has a finite range of order γ−1. Let
us denote the maximal interaction of a particle with the rest of the system by κγ =∑

j ̸=0 Kγ(0, j ).

Exercise 4.12. Show, using (4.67), that

lim
γ↓0

κγ = 1. (4.68)

A possible choice for ϕ is

ϕ(x)
def=

{
2−d if ∥x∥∞ ≤ 1,

0 if ∥x∥∞ > 1.
(4.69)

The scaling of this function, for some 0 < γ< 1, is depicted in Figure 4.20.
The canonical and grand canonical partition functions associated to HΛ;Kγ will

be denoted QΛ;γ,β,N , respectively ΘΛ;γ,β,µ. The free energy and pressure will be de-
noted fΛ;γ,β(ρ), respectively pΛ;γ,β(µ).

We will consider a two-steps limiting procedure: first, we will take the thermo-
dynamic limit at a fixed positive value of γ (below, Λ ⇑ Zd actually means using
R ∋Λn ⇑Zd ):

fγ,β(ρ) = lim
Λ⇑Zd

fΛ;γ,β(ρ) , pγ,β(µ) = lim
Λ⇑Zd

pΛ;γ,β(µ) .

The existence of these limits is guaranteed by Theorems 4.5 and 4.11. In the second
step, we will let the parameter γ tend to 0.
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x ∈Rd

2−d

γdϕ(γx)

γd 2−d

+1−1

γ−1

ϕ(x)

Figure 4.20: The function ϕ in (4.69)

Definition 4.29. The limit γ ↓ 0 is called the van der Waals limit 2. When they exist,
we denote the limits by

f0+,β(ρ)
def= lim

γ↓0
fγ,β(ρ) , p0+,β(µ)

def= lim
γ↓0

pγ,β(µ) .

Remark 4.30. To summarize, the relevant limiting procedure, in the study of Kac
interactions, is limγ↓0 limΛ⇑Zd {. . . }. Observe that if the limits are taken in the other
order, limΛ⇑Zd limγ↓0{. . . }, this yields the hard-core model of Section 4.7. Indeed, for

all fixed i , j ∈Zd ,
lim
γ↓0

Kγ(i , j ) = 0. (4.70)

Therefore,

lim
Λ⇑Zd

lim
γ↓0

fΛ;γ,β(ρ) = lim
Λ⇑Zd

f hard
Λ;β (ρ) = f hard

β (ρ) =− 1
β s l.g. (ρ) ,

lim
Λ⇑Zd

lim
γ↓0

pΛ;γ,β(µ) = lim
Λ⇑Zd

phard
Λ;β (µ) = phard

β (µ) = 1
β log(1+eβµ) ,

as seen in (4.39) and (4.40)). Therefore, taking the limits in that order does not lead
to interesting phenomena. ⋄

4.10.1 van der Waals limit of the thermodynamic potentials

When γ ↓ 0, Kac interactions become, loosely speaking, infinitely weak and of infi-
nite range. We therefore expect p0+,β and f0+,β to be related to the thermodynamic
potentials of the van der Waals model, in some sense.

Notice also that, since pγ,β and fγ,β are convex, their limits as γ ↓ 0 must also be
convex. Since we know that non-convexity does occur in the van der Waals model
at low temperature, some new feature is to be expected.

Theorem 4.31 (van der Waals limit of Kac interactions). For all β> 0,

f0+,β(ρ) = CE f vW
β (ρ) , ∀ρ ∈ [0,1] , (4.71)

p0+,β(µ) = pvW
β (µ) , ∀µ ∈R . (4.72)

2This limit is also called mean field, Kac or Lebowitz–Penrose limit.
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4.10. Kac interactions and the van der Waals limit 201

The most remarkable feature of this result is that the limiting behavior of Kac in-
teractions is described by the van der Waals model, but with a free energy having
the correct convexity property. (We remind the reader that the convex envelope did
not appear naturally in the van der Waals model, but only when considering the
Legendre transform of the pressure in (4.56).) Remember that

f vW
β (ρ) =− 1

2ρ
2 − 1

β s l.g. (ρ) .

The double limiting procedure limγ↓0 limΛ⇑Zd {·} thus leads to two main features.

The first is the appearance of a quadratic term in the free energy, − 1
2ρ

2, without
it having been introduced artificially in the Hamiltonian. Here, as will be seen, it
stems from the interaction of a particle with the rest of the system, which provides
a non-vanishing contribution even in the limit γ ↓ 0. The second new feature is of
course the geometric modification of f vW

β
by the convex envelope. This modifica-

tion is non-trivial at low temperature, since it leads to the appearance of an affine
portion on the graph of the free energy, as seen earlier; see Figure 4.21.

ρlρg
ρ

1 1

f vW
β

(ρ)

f0+,β(ρ)f0+,β(ρ)

Figure 4.21: The van der Waals limit of the free energy; left: β ≤ βvW
c , right:

β>βvW
c .

Proof of (4.71):

Since the temperature plays no role in the proof below, we will usually omit β from
the notations.

As the mechanism of the proof will show, the appearance of the convex enve-
lope in (4.71) is precisely due to the fact that, for finite-range interactions, the sys-
tem is free to let the density of particles vary from place to place.

We thus use an intermediate scale, ℓ ∈ N, which we assume to be large, of the
form ℓ = 2p , but smaller than the scale of the interaction, ℓ≪ γ−1. In the end, we
shall consecutively take the limitsΛ ⇑Zd , then γ ↓ 0 and finally ℓ ↑∞.

By Theorem 4.5, the free energy can be computed using a sequence of cubic
boxes Λ ⇑ Zd whose sidelength is always a multiple of ℓ. We therefore consider a
partition of Zd into cubes Λ(α), α = 1,2, . . . , of sidelength ℓ (see Figure 4.22). For
simplicity, we can assume that Λ(1) always contains the origin, that Λ is a cube of
sidelength ℓ2n , given by the union of M cubes of the partition and centered on the
cubeΛ(1), and denote these cubes byΛ(1), . . . ,Λ(M).

We fix ρ and take N = ⌈ρ|Λ|⌉. The starting point is to consider all possible ar-
rangements of the N particles in the boxesΛ(α), by writing

QΛ;γ,N =
∑

N1,...,NM :
N1+···+NM=N

QΛ;γ,N (N1, . . . , NM ) , (4.73)
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ℓΛ(1)

ℓ

Λ

Figure 4.22: Zd is partitioned into cubes Λ(α), α = 1,2, . . ., of sidelength ℓ.
The box Λ is assumed to be built from boxes of the partition, and centered
on the boxΛ(1).

where QΛ;γ,N (N1, . . . , NM ) denotes the canonical partition function in which the
sum is restricted to configurations in whichΛ(α) contains Nα particles,α= 1, . . . , M .
We then express the Hamiltonian in a way that takes into account the location of
the particles among the boxesΛ(α):

HΛ;Kγ =
∑
α

HΛ(α);Kγ
+

∑
{α,α′}
α̸=α′

Iγ(α,α′) ,

where Iγ(α,α′) represents the interactions between the particles in Λ(α) and those

inΛ(α′):
Iγ(α,α′) =−

∑

i∈Λ(α)

∑

j∈Λ(α′)
Kγ(i , j )ηiη j .

By defining

K γ(α,α′) def= max
i∈Λ(α), j∈Λ(α′)

Kγ(i , j ) ,

K γ(α,α′) def= min
i∈Λ(α), j∈Λ(α′)

Kγ(i , j ) ,

we have
−K γ(α,α′)N

Λ(α) N
Λ(α′) ≤ Iγ(α,α′) ≤−K γ(α,α′)N

Λ(α) N
Λ(α′) . (4.74)

Upper bound. Since fγ(ρ) is convex, its limit as γ ↓ 0 is also convex, and there-
fore continuous (Exercise B.3 and Proposition B.9). (Continuity at 0 and 1 follows
from (4.9), (4.15), (4.16) and (4.19).) It is thus sufficient to prove an upper bound
for (4.71) for densities ρ belonging to a dense subset of (0,1). So, let us fix a dyadic
density, of the form ρ = k

2m , 0 < k < 2m . By construction, when ℓ is large enough,

N∗
def= ⌈ρ|Λ(α)|⌉ = ρ|Λ(α)| for each α. We thus get a lower bound on the partition
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function by keeping only the configurations in which each box Λ(α) contains ex-
actly N∗ particles:

QΛ;γ,N ≥ QΛ;γ,N (N∗, . . . , N∗) . (4.75)

Using (4.74) and performing separately the sums over the configurations of N∗ par-
ticles in each boxΛ(α),

QΛ;γ,N (N∗, . . . , N∗) ≥ {QΛ(1);γ,N∗ }M
∏

{α,α′}
α̸=α′

eβK γ(α,α′)N 2∗

= {QΛ(1);γ,N∗ }M exp
(

1
2βN 2

∗
M∑
α=1

M∑
α′=1

(α′ ̸=α)

K γ(α,α′)
)

.

Now,
M∑
α′=1

(α′ ̸=α)

K γ(α,α′) =
∑
α′≥1

(α′ ̸=α)

K γ(α,α′)−
∑
α′≥1

(Λ(α′) ̸⊂Λ)

K γ(α,α′) . (4.76)

By translation invariance, the first sum on the right-hand side does not depend on
α, which can thus be assumed to be equal to 1. Then, since Kγ has finite range, say
Rγ, the second sum is (finite and) non-zero only if Λ(α) is at distance at most Rγ

from Λc. It thus represents a boundary term, of order (Rγ/ℓ)d |∂exΛ|. Since we take
the thermodynamic limit before the limit γ ↓ 0, we get, after letting Λ ⇑ Zd (along
that specific sequence of cubes),

fγ(ρ) ≤ −1

β|Λ(1)| logQΛ(1);γ,N∗ −
ρ2

2
|Λ(1)|

∑
α′>1

K γ(1,α′) . (4.77)

Exercise 4.13. For all fixed ℓ ∈N,

lim
γ↓0

|Λ(1)|
∑
α′>1

K γ(1,α′) =
∫
ϕ(x)dx = lim

γ↓0
|Λ(1)|

∑
α′>1

K γ(1,α′) . (4.78)

We can now compute the van der Waals limit. By (4.70), limγ↓0 QΛ;γ,N∗ = Qhard
Λ;N∗ and,

since we assumed that
∫
ϕ(x)dx = 1, (4.77) and (4.78) yield

limsup
γ↓0

fγ(ρ) ≤ f hard

Λ(1) (ρ)− 1
2ρ

2 .

Taking ℓ→∞ gives

limsup
γ↓0

fγ(ρ) ≤− 1
2ρ

2 − 1
β s l.g. (ρ) = f vW

β (ρ) .

This bound holds for all dyadic ρ ∈ (0,1). Since fγ(ρ) is convex, limsupγ↓0 fγ(ρ) also
is; in particular, it is continuous. This implies that this last upper bound holds for
all ρ ∈ (0,1), and, using again the convexity of limsupγ↓0 fγ(ρ),

limsup
γ↓0

fγ(ρ) ≤ CE f vW
β (ρ) .
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Lower bound. We start by bounding (4.73) as follows:

QΛ;γ,N ≤N (N ; M) max
N1,...,NM :

N1+···+NM=N

QΛ;γ,N (N1, . . . , NM ) ,

where N (N ; M) is the number of M-tuples (N1, . . . , NM ) with N1 +·· ·+NM = N .

Exercise 4.14. Show that, for all ρ ∈ (0,1),

lim
ℓ→∞

lim
Λ⇑Zd

1

|Λ| logN (⌈ρ|Λ|⌉; M) = 0. (4.79)

Then, using again (4.74),

QΛ;γ,N (N1, . . . , NM ) ≤
{∏
α

QΛ(α);γ,Nα

} ∏
{α,α′}
α̸=α′

eβK γ(α,α′)NαNα′ .

For the first product, we write

QΛ(α);γ,Nα
= exp

(−β fΛ(1);γ( Nα

|Λ(α)| )|Λ
(1)|) .

For the second, we use NαNα′ ≤ 1
2 (N 2

α
+ N 2

α′ ) and the same argument given af-
ter (4.76) to obtain

∏
{α,α′}
α̸=α′

eβK γ(α,α′)NαNα′ ≤ ec|∂exΛ| exp
(

1
2βκγ|Λ(1)|

M∑
α=1

( Nα

|Λ(α)|
)2

)
,

where c depends on γ and ℓ, and

κγ
def= |Λ(1)|

∑
α′>1

K γ(1,α′) .

By Lemma 4.13, κγ→ 1 as γ ↓ 0. If we define gΛ(1),γ(ρ)
def= − 1

2κγρ
2 + fΛ(1);γ(ρ), then

−1

β|Λ| logQΛ;γ,N ≥ −1

β|Λ| logN (N ; M)

+ min
N1,...,NM :

N1+···+NM=N

1

M

M∑
α=1

gΛ(1);γ

( Nα

|Λ(α)|
)− c|∂exΛ|

β|Λ| .

Now, for each M-tuple (N1, . . . , NM ) above,

1

M

M∑
α=1

gΛ(1);γ

( Nα

|Λ(α)|
)≥ 1

M

M∑
α=1

CE gΛ(1);γ

( Nα

|Λ(α)|
)

≥ CE gΛ(1);γ

(
1

M

M∑
α=1

Nα

|Λ(α)|

)
= CE gΛ(1);γ

( N
|Λ|

)
.

For the first inequality, we used that g ≥ CE g , and then that CE g is convex (see
Exercise B.2). Since N

|Λ| → ρ,

fγ(ρ) ≥ liminf
Λ⇑Zd

−1

β|Λ| logN (N ; M)+CE gΛ(1);γ(ρ) .
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By (4.79), the first term on the right-hand side will vanish once we take the limit
ℓ→∞. To take the van der Waals limit in the second term, we first observe that

lim
γ↓0

gΛ(1);γ(ρ) =− 1
2ρ

2 + f hard

Λ(1) (ρ) , (4.80)

uniformly in ρ ∈ (0,1), and rely on the following

Exercise 4.15. Let fn : [a,b] → R be a sequence of functions converging uniformly
to f : [a,b] →R. Then CE fn converges uniformly to CE f .

We therefore get, for all ρ ∈ [a,b] ⊂ [0,1],

liminf
γ↓0

fγ(ρ) ≥ liminf
Λ⇑Zd

−1

β|Λ| logN (N ; M)+CE
{−ρ2

2 + f hard

Λ(1) (ρ)
}

.

We finally take the limit ℓ→∞, which yields

liminf
γ↓0

fγ(ρ) ≥ CE f vW
β (ρ) .

This concludes the proof of (4.71).

Proof of (4.72):

For a fixed µ ∈R, we take γ ↓ 0 on both sides of

pγ,β(µ) = sup
ρ∈[0,1]

{ρµ− fγ,β(ρ)} .

We first show that the right-hand side converges to supρ∈[0,1]{ρµ− f0+,β(ρ)}.

Since they are fixed, let us omit β and µ from the notations. Let Fγ(ρ)
def= ρµ−

fγ(ρ) and F0+ (ρ)
def= limγ↓0 Fγ(ρ) = ρµ− f0+ (ρ). As we already know, F0+ attains its

maximum away from 0 and 1. Therefore we can take δ > 0 small enough so that
supρ F0+ (ρ) = supρ∈K F0+ (ρ), where K = [δ,1−δ]. Observe that, because ρ 7→ F0+ (ρ)
is concave and by our choice of δ, ∂+F0+ (δ) > 0 and ∂−F0+ (1 − δ) < 0; by Theo-
rem B.12, this implies that ∂+Fγ(δ) > 0, ∂−Fγ(1−δ) < 0, for all small enough γ > 0.
Since the family ( fγ)γ>0 is bounded by (4.15)–(4.19), the convergence fγ → f0+ is
uniform on K (Lemma B.10). This implies

lim
γ↓0

sup
ρ∈K

Fγ(ρ) = sup
ρ∈K

F0+ (ρ) ,

which implies what we wanted. Therefore, in terms of the Legendre transform (·)∗,
we have obtained p0+ = ( f0+ )∗ = (CE f vW )∗. But, by Corollary B.18, (CE f vW )∗ =
( f vW )∗ = pvW .

4.11 Bibliographical references

Lattice models of gases have been studied since the early stages of statistical me-
chanics; Boltzmann, in particular, already considered similar approximations as a
computational device. See the book of Gallavotti [130] and references therein.
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Thermodynamic potentials and equivalence of ensembles. The construction of
the thermodynamic potentials and the derivation of their general convexity prop-
erties are classical and can be found in several sources. A very general approach
can be found in the important work of Lanford [205]. A classical reference for the
existence of the pressure is the book of Ruelle [289]. See also, the more recent book
of Presutti [279], in which the equivalence of ensembles is proved at the level of
thermodynamic potentials. More on the equivalence of ensembles at the level of
measures can be found in Section 6.14.1.

Van der Waals lattice gas. The van der Waals model studied in Section 4.9 in-
corporates the main assumptions made by van der Waals [339] about the interac-
tions of a gas of particles, which we had already discussed in Chapter 1. As already
mentioned in Chapter 2, the Curie–Weiss version of the van der Waals lattice gas
model was introduced independently by many people, including Temperley [328],
Husimi [167] and Kac [183]. Our treatment of its pressure, as a function of the vari-
ables ρ and v , was taken from Dorlas’ book [90].

Ising lattice gas. The mapping between the Ising model and the lattice gas ap-
peared first explicitly in [220].

Kac limit. The first justification of Maxwell’s construction based on the van der
Waals limit was given by Kac, Uhlenbeck and Hemmer [184] for a one-dimension-
al gas of hard rods. The result was then substantially generalized by Lebowitz and
Penrose [215]; our proof of Theorem 4.31 follows essentially theirs. A general ref-
erence covering much more material on systems with Kac interactions is Presutti’s
book [279]. More bibliographical references on Kac interactions will be given in the
complements.

4.12 Complements and further reading

4.12.1 The phase separation phenomenon

In the current chapter, we have provided a satisfactory description of the conden-
sation phenomenon in terms of the thermodynamic potentials, but we have not
discussed what really happens during condensation, as observed in typical config-
urations. In this section, we provide a brief description of what can be said about
this problem from a mathematical point of view. To keep the discussion as sim-
ple as possible, only the nearest-neighbor lattice gas will be considered, although
much of what follows can be extended to general finite-range ferromagnetic inter-
actions. Detailed information and more references can be found in the review [28].

Consider the nearest-neighbor lattice gas in B(n) ⊂ Zd , d ≥ 2. We have seen in
Theorem 4.15 that, in the grand canonical ensemble with µ=µ∗, the typical values
of the density lie in the interval [ρg ,ρl ], on which the rate function Iβ,µ vanishes. In
particular, this result does not allow us to discriminate between the various possi-
ble values of the density in this interval. There is a reason for that: in this regime,
the average density in the box is in fact very sensitive to the boundary condition
and thus cannot be derived using only the thermodynamic limit of the pressure
and of the free energy.
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Similarly, in the canonical ensemble with ρ ∈ [ρg ,ρl ], the lack of strict convex-
ity of the free energy prevents us from using Theorem 4.19 to determine the typical
values of the local density in various subsets of the box Λ = B(n) for such values
of ρ. As we will see, in this regime, typical values of the local density are still given
by ρg and ρl . However, on a macroscopic scale, typical configurations are not ho-
mogeneous anymore, but exhibit phase coexistence. Namely, in order to satisfy the
constraint that the overall density in Λ is ρ, the system reacts by spatially segregat-
ing the gas and liquid phases: for example, if the boundary condition favors the gas
phase, there is spontaneous creation of a droplet of liquid phase surrounded by the
gas phase, as depicted in Figure 4.23.

Figure 4.23: A typical configuration of the nearest-neighbor lattice gas in a
box of size 500×500 in the canonical ensemble at inverse temperature β= 2
(with a boundary condition favoring the gas phase). The simulation was
made by fixing the density to the value ρ = 1

2 ∈ (ρg ,ρl ). Clearly, spatial ho-
mogeneity in the sense of (4.34) is no longer true; phase separation occurs. In
a typical configuration, a macroscopic liquid droplet of density ρl appears,
immersed in a gas phase of density ρg . This droplet’s shape is described,
asymptotically, by a Wulff crystal (see below).

In the thermodynamic limit, the droplet’s macroscopic shape becomes deter-
ministic, with microscopic fluctuations. Namely, let us denote by V ⊂Λ the droplet.
The following occurs with a probability tending to 1 asΛ ↑Zd :

1. Up to microscopic corrections, its volume is given by |V | = ρ−ρg

ρl−ρg
|Λ|. In this

way, the average density inΛ is indeed ρ, since

ρl |V |+ρg (|Λ|− |V |) ≃ ρ|Λ| .

2. The shape of the droplet converges to a deterministic shape characterized as
a minimizer of a surface functional involving the surface free energy, to be
defined below.
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208 Chapter 4. Liquid-Vapor Equilibrium

These two statements will be given a more precise form in Theorem 4.33 below.
We will see that the macroscopic geometry of the regions occupied by the gas and
liquid phases depends strongly on the boundary condition and thus, again, cannot
be deduced using only the thermodynamic limit of the pressure and of the free
energy. In order to go further, we need to go beyond such bulk quantities, and
consider corrections coming from surface effects.

Surface corrections to the pressure

In order to discuss corrections to the pressure, we need to consider non-trivial
boundary conditions. Similarly to what we did in Chapter 3, we consider the Hamil-
tonian

HΛ;µ∗ (η)
def= −

∑

{i , j }∈E b
Λ

ηiη j −µ∗
∑
i∈Λ

ηi ,

defined on infinite configurations η ∈Ω def= {0,1}Z
d

. Let

Ω1
Λ

def= {
η ∈Ω : ηi = 1 for all i ̸∈Λ}

, Ω0
Λ

def= {
η ∈Ω : ηi = 0 for all i ̸∈Λ}

.

We denote by ν1
Λ;β,µ∗ and ν0

Λ;β,µ∗ the corresponding Gibbs distributions inΛ:

ν1
Λ;β,µ∗ (η)

def= e−βHΛ;µ∗ (η)

Θ1
Λ;β,µ∗

1{η∈Ω1
Λ

} , ν0
Λ;β,µ∗ (η)

def= e−βHΛ;µ∗ (η)

Θ0
Λ;β,µ∗

1{η∈Ω0
Λ

} ,

whereΘ1
Λ;β,µ∗

andΘ0
Λ;β,µ∗

are the associated partition functions.

Using the mapping between the lattice gas and the Ising model, it is easy to
check that these two probability measures correspond exactly to the Gibbs distri-
bution of the Ising model, at inverse temperatureβ/4 and with magnetic field h = 0,
inΛwith +, respectively −, boundary condition. It thus follows from the analysis in
Chapter 3 that, when β > β

l.g.
c , typical configurations under ν1

Λ;β,µ∗ have a (homo-

geneous) density larger than 1/2, while typical configurations under ν0
Λ;β,µ∗ have

a (homogeneous) density smaller than 1/2. They thus describe, respectively, the
liquid and gas phases.

Let us now turn to the corresponding finite-volume pressures:

p1
Λ;β

def= 1

β|Λ| logΘ1
Λ;β,µ∗ , p0

Λ;β
def= 1

β|Λ| logΘ0
Λ;β,µ∗ .

(For simplicity, we do not indicate µ∗ in the notations for the pressures.) As usual,
since the boundary condition plays no role in the definition of the thermodynamic
pressure, p1

Λ;β and p0
Λ;β both converge to pβ in the thermodynamic limit, which

implies in particular that

p1
Λ;β|Λ| = pβ|Λ|+o(|Λ|) ,

and similarly for p0
Λ;β. In fact, it follows from the proof of Theorem 3.6 that the error

o(|Λ|) is in fact a boundary term, that is, it is O(|∂inΛ|). It should thus not come as
a surprise that this error term depends in general on the choice of the boundary
condition. We therefore expect a more accurate description of the following type:

p1
Λ;β|Λ| = pβ|Λ|−τ1

β|∂inΛ|+o(|∂inΛ|) ,

p0
Λ;β|Λ| = pβ|Λ|−τ0

β|∂inΛ|+o(|∂inΛ|) .
(4.81)
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Here, −τ1
β

(resp. −τ0
β

) should be interpreted as the contribution per unit of area to

p1
Λ;β|Λ| (resp. p0

Λ;β|Λ|), resulting from the interaction between the phase contained

insideΛ and the boundary of the box. (The negative signs are introduced to respect
the conventions, making τ1

β
and τ0

β
non-negative.)

Surface tension. Up to now, we have only considered the correction to the pres-
sure in cases in which the boundary condition typically induces homogeneous con-
figurations inside the box. We now consider what happens when the boundary
condition induces the presence of a macroscopic interface. The surface tension
measures the free energy (per unit of area) associated to an interface. It is given
by a function τβ(·) defined on

{
n ∈Rd : ∥n∥2 = 1

}
, where n represents the direction

perpendicular to the interface.

In order to induce the presence of a macroscopic interface, we proceed as in
Section 3.10.7. Let us fix a direction n ∈Rd and define, for each i ∈Zd ,

ηn
i

def=
{

0 if i ·n ≥ 0,

1 otherwise,

where i ·n denotes the scalar product on Rd . This boundary condition is illustrated
in Figure 4.24; it is a natural generalization of Dobrushin’s boundary condition,
which was introduced in Section 3.10.7. As explained there, the boundary con-
dition ηn leads to the presence of an interface, separating the lower part of the box
(filled with liquid) from its upper half (filled with gas).

n

∂inΛ+

Πn(Λ)

∂inΛ−

Figure 4.24: A picture representing the construction of the surface tension
τβ(n), by fixing a boundary condition in which all cells below (resp. above)
the plane {x ·n = 0} are occupied by particles (resp. vacant).

Let us now extract the contribution to the pressure pn
Λ;β due to this interface.

Let Πn(Λ)
def= {

x ∈ [−n,n]d : x ·n = 0
}

be the intersection of the hyperplane or-
thogonal to n with the box (seen as a subset of Rd ). In the discussion below, we
assume that n has its last coordinate positive. This will allow to refer to the parts of
Λ located above and below Πn(Λ).
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210 Chapter 4. Liquid-Vapor Equilibrium

Figure 4.25: The surface tension of the two-dimensional nearest-neighbor
lattice gas (as a function of the direction) for β = 2.0, 4.0, 8.0 and 16.0 (the
scale differs for each value of β).

With the boundary condition ηn, two contributions to the pressure should
come from ∂inΛ: one coming from the contact of the liquid with the lower part of
the boundary of the box (below Πn(Λ)), denoted −τ1

β
|∂inΛ−|, and the other coming

from the contact of the gas with the upper part of the boundary of the box (above
Πn(Λ)), denoted −τ0

β
|∂inΛ+|.

Finally, the third contribution to the pressure should come from the interface
that crosses the box, whose existence is forced by the choice of the boundary con-
dition; it should depend on n and be proportional to |Πn(Λ)| (that is, the area of
Πn(Λ)). The decomposition of the pressure into its volume and surface contribu-
tions should therefore be

pn
Λ;β|Λ| = pβ|Λ|−τ0

β|∂inΛ+|−τ1
β|∂inΛ−|−τβ(n)|Πn(Λ)|+o(|∂inΛ|) . (4.82)

Using (4.82), (4.81) and the fact that |∂inΛ| = 2|∂inΛ±|, we get

τβ(n)|Πn(Λ)| = −pn
Λ;β|Λ|+ 1

2 (p0
Λ;β+p1

Λ;β)|Λ|+o(|∂inΛ|)

=− 1

β
log

Θn
Λ;β,µ∗(

Θ0
Λ;β,µ∗

Θ1
Λ;β,µ∗

)1/2
+o(|∂inΛ|) .

This then leads to the following natural definition.

Definition 4.32. Let n be a unit vector in Rd . The surface tension per unit area,
orthogonally to the direction n, is defined by

τβ(n)
def= − lim

k→∞
1

β|Πn(B(k))| log
Θn
B(k);β,µ∗(

Θ0
B(k);β,µ∗

Θ1
B(k);β,µ∗

)1/2
.

The existence of the above limit can be proved using a subadditivity argument. We
refer to [244] for a proof in a more general setup.

The surface tension has a number of important properties, the main one, for
our purposes, being the following: for all n,

τβ(n) > 0 if and only if β>βl.g.
c . (4.83)

The proof can be found in [53] and [217]. More information on the surface tension
can be found in the review [271].
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Equilibrium crystal shapes

We can then define a functional on subsets V ⊂ Rd with a smooth boundary (suf-
ficiently smooth, say, to have a well defined exterior unit normal nx at almost all
x ∈ ∂V):

W (V)
def=

∫

∂V
τβ(nx )dSx ,

where dSx represents the infinitesimal surface element of ∂V at x.

We can now get back to the problem of describing the droplet mentioned at
the beginning of the section. Let therefore Λ = B(n) with n large. Below, we also
identifyΛwith the subset of Rd given as the union of all closed unit cubes centered
at the vertices ofΛ.

Consider then the following variational problem 3:

Minimize W (V) among all V⊂Λwhose volume equals |V| = ρ−ρg

ρl−ρg
|Λ|.

It can be shown that, up to translations, the solution to this problem is unique; we
denote it by V∗ = V∗(β,ρ). As a matter of fact, it can be given explicitly. Consider
the Wulff shape or equilibrium crystal shape associated to τβ(·), defined by (see
Figure 4.26)

v∗ = v∗(β)
def= {

x ∈Rd : x ·n ≤ τβ(n) for every unit vector n ∈Rd }
.

A solution to the variational problem is then given by an appropriate dilation of v∗
(together with translations), provided that it is not too large to fit insideΛ:

V∗ = ρ−ρg

ρl −ρg
|Λ| v∗|v∗|

.

In the general case, the solution is also obtained starting from v∗, but with some
modifications; see [28].

Figure 4.26: The equilibrium crystal shape for the two-dimensional Ising lat-
tice gas at β= 2.0, 4.0, 8.0 and 16.0 (with the same fixed area).

Let us now state the result that characterizes the separation of phases. To keep
things simple, and because the most precise results have been obtained in this con-
text, we only discuss the two-dimensional case.

It will be convenient to describe the configurations using the Peierls contours
introduced in section 3.7.2; in the lattice gas language, the latter separate empty
vertices from those containing a particle.

Let us state a precise result, choosing a specific boundary condition:

3For this to make full sense, we should impose some regularity on the class of sets V involved, but
we will abstain from discussing these issues here and refer to [28] for more information.
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Theorem 4.33. Consider the two-dimensional nearest-neighbor lattice gas in the
box Λ=B(n) with 0-boundary condition. Assume that β>βl.g.

c , fix some ρ ∈ (ρg ,ρl )
and set N = ⌊ρ|Λ|⌋. Then,

lim
n→∞ν

0
Λ;β,N (D) = 1,

where D is the event defined as follows. There exist constants c1,c2, depending only
on β, such that

• all contours, except one which we denote by γ0, have diameter at most c1 logn;

• the contour γ0 has macroscopic size; it is closely approximated by a translate
of V∗:

min
x∈[−1,1]2

n−1dH
(
γ0, x +∂V∗

)≤ c2n−1/4(logn)1/2 ,

where dH(A;B) denotes the Hausdorff distance between A and B.

It can also be shown that the local density is given by ρg outside γ0 and by ρl inside.
Together with the analysis of the thermodynamic potentials developed earlier

in this chapter, this theory provides a satisfactory description of the condensation
phenomenon at equilibrium.

The first result on phase separation is due to Minlos and Sinai [248], who
showed that, at very low temperature, a unique large contour appears in Λ, whose
shape is close to a square. (Their result actually holds in all d ≥ 2.) For the two-
dimensional model, the proper understanding of the role played by the surface ten-
sion, and the description of the scaling limit of this contour as the Wulff shape was
first achieved by Dobrushin, Kotecký and Shlosman [79]. A different proof was then
obtained by Pfister [270]. Building on the latter work, Ioffe managed to extend the
proof to all β> βc(2) [170, 171]; the version stated above is due to Ioffe and Schon-
mann [173]. Extension to the Ising model in higher dimensions have been obtained
by Bodineau [26] (at sufficiently low temperatures) and Cerf and Pisztora [64] (for
all β> βc(d)). A detailed analysis of the effect of boundary conditions on the equi-
librium crystal shape is given in [272, 29]. Further relevant references and historical
notes can be found in the review paper [28]. Similar results have been obtained for
models with Kac interactions; see, for example, [18].

4.12.2 Kac interactions when γ is small but fixed

We saw in Theorem 4.31 that, at low temperature, the limiting free energy and pres-
sure obtained via the van der Waals limit exhibit the characteristic features of a
first-order phase transition. Let us make a few comments concerning what hap-
pens when studying these thermodynamic potentials when γ> 0 is small but fixed,
not necessarily tending to 0.

First of all, observe that regardless of the dimension of the system, the functions
obtained in the van der Waals limit are all given by some transformation of the
same function f vW

β
(ρ), that is, in the van der Waals limit γ ↓ 0, the system loses its

dependence on the dimension. This leads us to an important remark.
Namely, when d = 1, since γ> 0 corresponds to a potential with finite range in-

teractions, the associated pressure µ 7→ pγ,β(µ) is differentiable at all temperatures,
as will be seen in Exercise 6.34 (in fact, it is even analytic [289, Theorem 5.6.2]).
Therefore, by Theorem B.20, ρ 7→ fγ,β(ρ) is always strictly convex when β>βvW

c , for
all γ> 0, and only becomes affine on the coexistence plateau in the limit γ ↓ 0. This
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is of course not in contradiction with Theorem 4.31, since a convex but non-strictly
convex function can be uniformly approximated arbitrarily well by a strictly convex
function. Therefore when β > βvW

c , when d = 1, the functions obtained in the van
der Waals limit, f0+,β(ρ) and p0+,β(µ), present non-analytic behaviors that are not
representative of what happens when γ> 0, however small γ might be.

When d ≥ 2, the situation is different, since we know that the Ising model ex-
hibits a phase transition at sufficiently low temperature. One is thus naturally led
to ask about the behavior of fγ,β and pγ,β for small but fixed values of γ > 0. This
problem is not trivial since the interactions between two particles at fixed vertices
(for example nearest neighbors) becomes small when γ is small.

The next theorem answers this question; it follows from the original works of
Cassandro and Presutti [62] and Bovier and Zahradník [39], who introduced a con-
venient notion of contours for the Ising ferromagnet with Kac interactions.

Theorem 4.34. (d ≥ 2) Let β>βvW
c . There exists γ0 = γ0(β) > 0 such that, for all 0 <

γ < γ0, pγ,β(µ) is non-differentiable at µ∗,γ
def= −κγ/2 and, as a consequence, fγ,β(ρ)

is affine on [ρg ,γ,ρl ,γ], where

ρg ,γ =
∂pγ,β

∂µ−
∣∣
µ∗,γ

<
∂pγ,β

∂µ+
∣∣
µ∗,γ

= ρl ,γ .

Moreover, as γ ↓ 0, ρg ,γ→ ρg and ρl ,γ→ ρl , where ρg and ρl are the endpoints of the
coexistence plateau of van der Waals’ model.

Models with Kac interactions at small values of γ can be considered as perturba-
tions of the mean-field behavior observed in the limit γ ↓ 0. This allows for in-
stance to compare the expectation of local observables with their mean-field coun-
terparts, and extract useful information to study the model. This method was used
by Lebowitz, Mazel and Presutti in [214] to provide one of the very few rigorous
proofs of occurrence of a phase transition in the continuum.

For a much more detailed description of systems with Kac interactions, we refer
the reader to the book of Presutti [279]. More comments on the case γ> 0 are made
in the next section.

4.12.3 Condensation, metastability and the analytic structure of the isotherms

As we already said, from its very beginning, one of the central issues of statistical
mechanics was to provide an explanation to the phase transitions observed in gases
and liquids. In particular, the condensation phenomenon was used as a test to
decide whether the theory of Boltzmann and Gibbs provided a sufficient structure
on which phase transitions could be firmly understood. It was not even clear, at
that time, whether a detailed study of the partition function could lead to a single
function describing two distinct states, gas and liquid, or whether some additional
hypotheses had to be made in order to allow for their coexistence.

The results obtained in this chapter, in particular those concerning the con-
densation phenomenon at low temperature, provide a satisfactory answer. Since
condensation has been, historically, one of the cornerstones in the development
of statistical mechanics, we will end this chapter with some comments regarding
some of the first attempts made at describing condensation rigorously.
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Mayer’s conjecture. The first notable attempt at obtaining a theoretical explana-
tion of the condensation phenomenon, starting only from the partition function,
was initiated by Mayer in the 1930s. In a series of papers with several coauthors,
Mayer developed a theory to study the pressure of a model of particles in the con-
tinuum with pairwise interactions. Although not completely rigorous, his theory
also firmly established the basis of the method invented by Ursell [337], known
nowadays as the cluster expansion (see Chapter 5). We will not enter into too much
detail, but rather sketch the argument he proposed for the mathematical descrip-
tion of condensation.

In [236], Mayer provided an expression for the coefficients an of the expansion

of the pressure as a function of the fugacity z
def= eβµ:

βpβ(µ) = a1z +a2z2 +a3z3 + . . . . (4.84)

Mayer’s argument then proceeded as follows. The series should converge at least
for small values of z, which corresponds to large negative values of µ, that is, to a
dilute phase. But if the series converges when 0 ≤ z < r0, and z is allowed to take
complex values, then it defines a function, analytic in the disc {z ∈C : |z| < r0}.

With a function describing the gas phase for small values of z at hand, Mayer
associated the condensation phenomenon to the first singularity encountered when
continuing the pressure analytically along the real axis, from small to large values
of z. Let us assume that one such singularity is indeed encountered and denote
it by zs ; see Figure 4.27. This way of defining the condensation point (the same
characterization can be used when using other variables, like ρ or v) would later be
referred to as Mayer’s conjecture.

r0

Imz

Rez
zs

Figure 4.27: The determination of the condensation point according to
Mayer: find the first singularity of the function defined by the series a1z +
a2z2 +a3z3 + . . ., encountered along the positive real axis.

At that time, the question of whether Mayer’s method could really describe the
condensation phenomenon was debated (see [36]). One reason for that was that
Mayer obtained (4.84) under several radical assumptions, one of them being that
the particles of the system are sufficiently far apart, which is equivalent to assuming
that the system is in a dilute (gas) phase. Therefore the equation of state given
by the series had no reason a priori to be able to describe at the same time the
dense (liquid) phase. This indicates that, in order for the full equation of state to be
given, some other argument should be used to yield a second function describing
the dense phase (large values of z). The two functions should then be combined,
possibly using a thermodynamical argument similar to the Maxwell construction,
in order for equilibrium to be described.
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But another question was raised. If a singularity zs is indeed found on the pos-
itive real axis, closest to the origin, does it necessarily describe the true conden-
sation point? Here, van der Waals and Maxwell’s theory provides the immediate
counter-example showing that condensation is not necessarily related to a singu-
larity. Namely, consider the pressure of the van der Waals model at low tempera-
ture, computed in Section 4.9.2. On the gas branch, ρ ∈ (0,ρg ), we obtained

p̃vW
β (ρ) =− 1

2ρ
2 − 1

β log(1−ρ) ,

and Taylor expanded log(1−ρ) (Remark 4.26) to obtain the virial expansion

βp̃vW
β (ρ) = ρ+ 1

2 (1−β)ρ2 + 1
3ρ

3 + 1
4ρ

4 +·· ·
The radius of convergence of the latter series is equal to 1: it defines an analytic
function on the unit disk

{
ρ ∈C : |ρ| < 1

}
and, as ρ increases from ρ = 0, the first

singularity along the positive real axis is encountered at ρ = 1, not at ρ = ρg < 1.
This shows that, for this model, Mayer’s way of determining the condensation point
fails: the absence of a complex singularity at ρg makes it impossible to determine
the position of the condensation point only from the knowledge of the values of the
pressure on the gas branch.

Since the van der Waals–Maxwell theory remained of central importance at the
time, theoretical physicists had good reasons to believe that its way of describing
isotherms, by patching different branches together, was generic and should be a
consequence of the first principles of statistical mechanics. It was therefore taken
for granted at that time in the physics community that analytic continuations such
as the one observed in van der Waals’ theory were always possible. They were actu-
ally even given some importance, due to their relation to another important physi-
cal phenomenon.

Metastable states. Consider the isotherm of Figure 1.5. What is the significance of
the part of van der Waals’ isotherm p(v) that is left out after Maxwell’s construction,
that is for v ∈ [vl , vg ]?

From a mathematical point of view, p(v) provides of course the unique analytic
continuation from one of the branches of MC p(v) to the other, along the paths
v ↑ vl and v ↓ vg . From an experimental point of view, an interesting observation
can be made, which we have not described yet. Namely, if the experiment is done
with care, it is actually possible to slowly drive a real gas along the path v ↓ vg ,
across vg , without it starting to condense. The state obtained has a pressure which
is larger than the saturation pressure, and is called a super-saturated vapor. It is
not an equilibrium state, but what is called a metastable gas state. Such a state can
have a very long lifetime, but a sufficiently strong external perturbation abruptly
drives the system away from it, resulting in a mixture of equilibrium gas and liquid
phases at the saturation pressure. Similarly, it is possible to observe a metastable
liquid phase, the so-called superheated liquid, by slowly increasing v beyond vl

starting from the liquid phase.
Since metastable states are observed in the laboratory but are not equilibrium

states in the sense of statistical mechanics, theoretical physicists considered ana-
lytic continuation as a way of at least defining their pressure [206].

Moving back to the case considered earlier, the analytic continuation of p̃β(ρ)
through ρg coming from the gas branch, as represented by the dotted line below,
would therefore provide the pressure of a supersaturated vapor:
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ρg

p̃β(ρ)

Singularity and the droplet mechanism. However, the true analytic structure of
isotherms would later prove to be very different. In the 1960–1970s, an argument
of a completely different nature suggested that the branches of an isotherm were
separated by singularities preventing an analytic continuation. The argument was
based on the use of the droplet model, whose pressure mimics the pressure of a sin-
gle droplet of fluid immersed in a gas. This model was introduced for the first time
by Andreev [11] and studied more systematically by Fisher [106] (see Exercise 4.16
below).

The striking feature suggested by this toy model was that the actual condensa-
tion phenomenon, namely the appearance of large stable droplets of liquid, was
responsible for the presence of a singularity of the pressure at the condensation
point.

These predictions were confirmed rigorously in the celebrated work [174] of
Isakov, which we already mentioned in Section 3.10.9, Theorem 3.67. Isakov im-
plemented rigorously the mechanism suggested by Andreev and Fisher, by giving a
detailed study of the large contours (representing droplets) in the low-temperature
Ising model (d ≥ 2), as a function of the magnetic field. In essence, he showed that
the coexistence of both phases, at h = 0, was responsible for the peculiar behavior
of the derivatives of the pressure seen in (3.99).

When translated into the nearest-neighbor lattice gas language, Isakov’s anal-
ysis implies that, when β is sufficiently large, all the thermodynamic potentials
considered in Section 4.8 have singularities blocking analytic continuation at their
transition points. For instance pβ, which is analytic on the branches (−∞,µ∗) and
(µ∗,∞) by Theorem 4.22, has a singularity at µ∗ that forbids analytic continuations
along the paths µ ↑ µ∗ and µ ↓ µ∗. This can be shown to also prevent the existence
of analytic continuations of fβ and p̃β along ρ ↑ ρg or ρ ↓ ρl , or of p̂β along v ↑ vl or
v ↓ vg (see [112]).

These results strongly support Mayer’s conjecture, at least for discrete spin sys-
tems with finite-range interactions: the condensation point can in principle be de-
tected by studying a single branch up to its first singularity. They also definitely rule
out the possibility of studying metastability by means of analytic continuation (see
the bibliographical references given below).

Moreover, Isakov’s result indicates that the global structure of the isotherms in
“real” systems is more complex since the branches of the isotherms are represented
by functions that cannot be united into one single analytic function. In particular,
the pressure of a model with short range interactions is not obtained by applying
some Maxwell-type construction to a smooth function. This sharp contrast with the
van der Waals model comes from the fact that separation of phases (as briefly de-
scribed in Section 4.12.1) occurs in systems with finite-range interactions, but not
in mean-field models.

We mention further bibliographical references related to the topics discussed
above. Interesting papers related to Mayer’s conjecture include the papers of Kahn
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and Uhlenbeck [185], and Born and Fuchs [36]. In [204], Lanford and Ruelle ruled
out the possibility of analytic continuation of the pressure, using an argument in-
volving the variational principle for Gibbs states (this variational problem will be
described later in Chapter 6).

Prior to the work of Isakov, various attempts had been made at describing meta-
stability via analytic continuation for several toy models. These include papers of
Schulman and coauthors [253, 281, 280].

In [114], the analysis of Isakov was generalized to the class of two-phase mod-
els with finite-range interactions considered in Pirogov–Sinai Theory (Chapter 7).
The link between the absence of analytic continuation for finite-range models and
the mean-field behavior of the van der Waals model was clarified in [113], where
a Kać potential with a magnetic field was considered, and the disappearance of its
singularity in the van der Waals limit was analyzed in detail.

Additional information on the non-analytic aspects of thermodynamic poten-
tials at first-order phase transitions can be found in the review of Pfister [275] or
in [112].

It is widely accepted, nowadays, that metastability is a dynamical phenomenon
that does not enter the framework of equilibrium statistical mechanics. An impor-
tant contribution to the understanding of metastability from such a point of view
can be found in [297]. A modern presentation of metastability, from the point of
view of stochastic dynamics, can be found in the books by Olivieri and Vares [258]
and Bovier and den Hollander [38].

Exercise 4.16. Consider, for d ≥ 2,

ψβ(h)
def=

∑
n≥1

e−β2dn(d−1)/d
e−hn ,

which is a version of the droplet toy model considered by Fisher [106], formulated in
the spin language. (The sum is to be interpreted as the pressure of a cubic droplet of −
spins immersed in a sea of + spins, centered at the origin; if the droplet has volume
n, −β2dn(d−1)/d represents its surface energy, and −hn the energy due to the effect of

the magnetic field on its volume.) Verify that ψβ is analytic in H+ def= {Reh > 0}. Then,
show that ψβ has no analytic continuation across h = 0 (along h ↓ 0), by computing
the limits

lim
h↓0

dkψβ

dhk

∣∣∣
h

and showing that they have the same behavior as the one described in (3.99).
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5 Cluster Expansion

5.1 Introduction

The cluster expansion is a powerful tool in the rigorous study of statistical me-
chanics. It was introduced by Mayer during the early stages of the study of the
phenomenon of condensation and remains widely used nowadays. In particular,
it remains at the core of the implementation of many renormalization arguments
in mathematical physics, yielding rigorous results that no other methods have yet
been able to provide.

Simply stated, the cluster expansion provides a method for studying the loga-
rithm of a partition function. We will use it in various situations, for instance to
obtain new analyticity results for the Ising model in the thermodynamic limit.

In a first application, we will obtain new results on the pressure h 7→ ψβ(h),
completing those of Chapter 3. There, we saw that the pressure is analytic in the
half space {Reh > 0}, but the techniques we used did not provide further quantita-
tive information. Here we will use the cluster expansion to compute the coefficients
of the expansion of ψβ(h)−h, in terms of the variable z = e−2h :

ψβ(h)−h = a0 +a1z +a2z2 +a3z3 + . . . , (Reh large).

In our second application, we will fix h = 0, and study the analyticity of β 7→ψβ(0).
We will obtain, when β is sufficiently small, an expansion in terms of the variable
z = tanh(β),

ψβ(0)−d log(coshβ) = b0 +b1z +b2z2 +b3z3 + . . . , (β small).

One might hope that this series converges for all β < βc(d). Unfortunately, the
method developed in this chapter will guarantee analyticity only when β < β0,
where β0 = β0(d) is some number, strictly smaller than the critical value βc(d). We
will call a regime such as β< β0 a regime of very high temperature to distinguish it
from the high temperature regime β<βc used in earlier chapters.

Similarly, we will also obtain, when β is sufficiently large, an expansion in terms
of the variable z = e−2β,

ψβ(0)−βd = c0 + c1z + c2z2 + c3z3 + . . . , (β large).

219
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220 Chapter 5. Cluster Expansion

Once again, this series will be guaranteed to converge at very low temperature, that
is for all β>β′

0, where β′
0 >βc(d).

Of course, the cluster expansion is not limited to the study of the pressure in
these different regimes and we will show how it can be used to extract additional
information on other quantities of interest. In particular, at very low temperatures,
we will derive a series expansion for the spontaneous magnetization and prove ex-
ponential decay of the truncated 2-point function.

We hope that this sample of applications will convince the reader that the clus-
ter expansion is a versatile tool that, even though applicable only in restricted re-
gions of the space of parameters, provides there precious information, which is
often unavailable when using other techniques.

Remark 5.1. The cluster expansion will also be used in other parts of this book. We
will use it in Chapter 6 to derive uniqueness of the infinite-volume Gibbs state at
sufficiently high temperatures for a rather large class of models and it will play a
central role in the Pirogov–Sinai theory exposed in Chapter 7. ⋄

5.2 Polymer models

The cluster expansion applies when the model under consideration has a partition
function that can be written in a particular form, already encountered earlier in
the book. For instance, remember from Section 3.7.2 that the configurations of the
Ising model at low temperature were conveniently described using extended geo-
metric objects, the contours, rather than the individual spins; namely (see (3.32)):

1. each configuration was set in one-to-one correspondence with a family of
pairwise disjoint contours;

2. once expressed in terms of contours, the Boltzmann weight split into a prod-
uct of weights associated to the contours.

Relying on this geometric representation, the Peierls argument allowed us to prove
positivity of the spontaneous magnetization at sufficiently low temperature.

Later, when studying the Ising model at high temperature, a different represen-
tation of the partition function was used. Although the objects involved were of
a different nature (especially in higher dimensions, see (3.45)), they also satisfied
some geometric compatibility condition, namely that of being pairwise disjoint.
Moreover, the Boltzmann weight again factorized as a product of the weights asso-
ciated to these objects.

The description of a system in terms of geometrical objects (rather than the
original microscopic components, such as Ising spins) turns out to be common in
equilibrium statistical mechanics; the resulting class of models, usually called poly-
mer models, is precisely the one for which the cluster expansion will be developed.
The corresponding partition functions often have a common structure that can be
exploited to provide, under suitable hypotheses, detailed information on their log-
arithm.

Consider a finite set Γ, the elements of which are called polymers and usually
denoted by γ ∈ Γ. In specific situations, polymers can be complicated objects, but
in this abstract setting we only need two main ingredients:
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1. To each polymer γ ∈ Γ is associated a weight (or activity) w(γ), which can be
a real or complex number.

2. The interaction between polymers is pairwise and is encoded in a function
δ : Γ×Γ→ R, which is assumed to be symmetric (that is, δ(γ,γ′) = δ(γ′,γ))
and to satisfy the following two conditions:

δ(γ,γ) = 0, ∀γ ∈ Γ , (5.1)

|δ(γ,γ′)| ≤ 1, ∀γ,γ′ ∈ Γ . (5.2)

Definition 5.2. The (polymer) partition function is defined by

Ξ
def=

∑
Γ′⊂Γ

{ ∏
γ∈Γ′

w(γ)
}{ ∏

{γ,γ′}⊂Γ′
δ(γ,γ′)

}
, (5.3)

where the sum is over all finite subsets of Γ.

Of course, each pair {γ,γ′} appears only once in the product. We allow Γ′ =∅, in
which case the products are, as usual, defined to be 1.

The polymers will always be geometric objects of finite size living on Zd (or,
possibly, on the dual lattice) and their interaction will be related to pairwise geo-
metric compatibility conditions between the polymers; these conditions will usu-
ally be local, that is, the compatibility of two polymers can be checked by inspecting
their “neighborhood” on Zd .

5.3 The formal expansion

The cluster expansion provides an explicit expansion for logΞ, in the form of a se-
ries. To obtain the coefficients of this expansion, we will perform a sequence of
operations on Ξ, leading to an expression of the form

Ξ= exp(· · · ) .

As a first step, the sum over Γ′ ⊂ Γ can be decomposed according to the number |Γ′|
of polymers contained in Γ′:

∑
Γ′⊂Γ

(· · ·)= 1+
∑

n≥1

∑
Γ′⊂Γ:
|Γ′|=n

(· · ·) .

For convenience, we now transform the second sum over Γ′ ⊂ Γ into a sum over or-
dered n-tuples. So let Gn = (Vn ,En) be the complete graph on Vn = {1,2, . . . ,n}. That
is, Gn is the simple undirected graph in which there is precisely one edge {i , j } ∈ En

for each pair of distinct vertices i , j ∈Vn (see Figure 2.1). We can then write

Ξ= 1+
∑

n≥1

1

n!

∑
γ1

· · ·
∑
γn

{ ∏
i∈Vn

w(γi )
}{ ∏

{i , j }∈En

δ(γi ,γ j )
}

. (5.4)

Notice that, the sum being now over all ordered n-tuples (γ1, . . . ,γn) ∈ ΓVn , we had
to introduce a factor 1

n! to avoid overcounting. Observe that only collections in
which all polymers γ1, . . . ,γn are distinct contribute to the sum, since δ(γi ,γ j ) = 0
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whenever γi = γ j . This means that only a finite number of terms, in this sum over
n ≥ 1, are non-zero.

The next step is the following: rather than working with a sum over the n-tuples
of ΓVn , we will work with a sum over suitable subgraphs of Gn . We write G ⊂Gn to
indicate that G is a subgraph of Gn with the same set of vertices Vn and with a set
of edges which is a subset of En . Given a graph G = (V ,E), we will often write i ∈G ,
respectively e ∈G , instead of i ∈V , respectively e ∈ E .

Subgraphs of Gn can be introduced if one uses the “+1−1” trick to expand the
product containing the interactions between the polymers (see Exercise 3.22). Let-
ting

ζ(γ,γ′) def= δ(γ,γ′)−1,

we get ∏
{i , j }∈En

δ(γi ,γ j ) =
∏

{i , j }∈En

(1+ζ(γi ,γ j )) =
∑

E⊂En

∏
{i , j }∈E

ζ(γi ,γ j ) .

Since a set E ⊂ En can be put in one-to-one correspondence with the subgraph

G ⊂Gn defined by G
def= (Vn ,E), we can interpret the sum over E ⊂ En as a sum over

G ⊂Gn . We thus obtain

Ξ= 1+
∑

n≥1

1

n!

∑
G⊂Gn

∑
γ1

. . .
∑
γn

{ ∏
i∈Vn

w(γi )
}{ ∏

{i , j }∈E
ζ(γi ,γ j )

}

= 1+
∑

n≥1

1

n!

∑
G⊂Gn

Q[G] , (5.5)

where we have introduced, for a graph G = (V ,E),

Q[G]
def=

∑
γ1

· · ·
∑
γ|V |

{∏
i∈V

w(γi )
}{ ∏

{i , j }∈E
ζ(γi ,γ j )

}
.

Let us now define the Ursell functions ϕ on ordered families (γ1, . . . ,γm) by

ϕ(γ1)
def= 1, when m = 1, and

ϕ(γ1, . . . ,γm)
def= 1

m!

∑
G⊂Gm

connected

∏
{i , j }∈G

ζ(γi ,γ j ) ,

when m ≥ 2.

Proposition 5.3.

Ξ= exp
( ∑

m≥1

∑
γ1

· · ·
∑
γm

ϕ(γ1, . . . ,γm)
∏

i∈Vm

w(γi )
)

. (5.6)

Observe that, even if Ξ is a finite sum, the resulting series in (5.6) is infinite, since a
given polymer can appear several times in the same collection, without the Ursell
function necessarily vanishing. In the next section, we will state conditions that
ensure that the series is actually absolutely convergent, which will justify the rear-
rangements done in the proof below. For the time being, however, we are only in-
terested in the structure of its coefficients, so the series in (5.6) should (temporarily)
only be considered as formal.
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Proof of Proposition 5.3: Notice that, if G ′
1, . . . ,G ′

k are the (maximal) connected
components of G , then

Q[G] =
k∏

r=1
Q[G ′

r ] .

Now, observe that Q[G] =Q[G ′] whenever G and G ′ are isomorphic 1. One can thus
replace the vertex set V ′

i of G ′
i by {1, . . . ,mi }, where mi = |V ′

i |. Therefore,

∑
G⊂Gn

Q[G] =
n∑

k=1

∑
G⊂Gn

G=(G ′
1,...,G ′

k )

k∏
r=1

Q[G ′
r ]

=
n∑

k=1

1

k !

∑
m1,...,mk

m1+···+mk=n

n!

m1! · · ·mk !

∑
G ′

1⊂Gm1
connected

· · ·
∑

G ′
k⊂Gmk

connected

k∏
r=1

Q[G ′
r ] , (5.7)

where, in the second identity, the coefficient n!/(m1! · · ·mk !) takes into account the
number of ways of partitioning Vn into k disjoint subsets of respective cardinalities
m1, . . . ,mk ≥ 1. Observe that, at least formally,

∑
n≥1

n∑
k=1

∑
m1,...,mk

m1+···+mk=n

(· · ·)=
∑
k≥1

∑
n≥k

∑
m1,...,mk

m1+···+mk=n

(· · ·)=
∑
k≥1

∑
m1,...,mk

(· · ·) , (5.8)

which leads to

Ξ= 1+
∑
k≥1

1

k !

∑
m1,...,mk

k∏
r=1

{ 1

mr !

∑
G ′

r ⊂Gmr
connected

Q[G ′
r ]

}

= 1+
∑
k≥1

1

k !

( ∑
m≥1

∑
γ1

· · ·
∑
γm

ϕ(γ1, . . . ,γm)
m∏

j=1
w(γ j )

)k
,

which is (5.6).

Let us emphasize the delicate point ignored in the above computation. In a first
step, in (5.5), Ξwas written with the help of a sum

∑
n≥1 an , where n indexes the size

of the complete graph Gn , and where the an are all equal to zero when n is sufficiently
large. In a second step (see (5.7)), each an was decomposed as an =∑n

k=1 bk,n , where
the index k denotes the number of connected components of the subgraph G ⊂ Gn .
Since an vanishes for large n, this means that important cancellations occur among
the bk,n (when summed over k). The main formal computation that requires justifi-
cation was done in (5.8), when we interchanged the summations over n and k:

∑
n≥1

an =
∑

n≥1

n∑
k=1

bk,n =
∑
k≥1

∑
n≥k

bk,n .

Namely, the interchange is allowed only if each of the series
∑

n≥k bk,n is known to
converge, and this is not guaranteed in general. ⋄

1Two graphs G = (V ,E) and G = (V ′,E ′) are isomorphic if there exists a bijection f : V → V ′ such
that an edge e = {x, y} belongs to E if and only if e′ = { f (x), f (y)} belongs to E ′.
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Proving that Ξ has a well-defined logarithm implies in particular that Ξ ̸= 0.
As we saw when studying uniqueness in the Ising model, the absence of zeros of
the partition function on a complex domain (for each Λ along a sequence Λ ⇑ Zd )
entails in fact uniqueness of the infinite-volume Gibbs measure of this model. This
indicates that guaranteeing the absolute convergence of the series for logΞ is non-
trivial in general, and the latter will usually hold only for some restricted range of
values of the parameters of the underlying model.

5.4 A condition ensuring convergence

We now impose conditions on the weights that ensure that the series in (5.6) con-
verges absolutely:

∑
k≥1

∑
γ1

· · ·
∑
γk

|ϕ(γ1, . . . ,γk )|
k∏

i=1
|w(γi )| <∞ . (5.9)

The main ingredient is the following:

Theorem 5.4. Assume that (5.2) holds and that there exists a : Γ→ R>0 such that,
for each γ∗ ∈ Γ, ∑

γ
|w(γ)|ea(γ)|ζ(γ,γ∗)| ≤ a(γ∗) . (5.10)

Then, for all γ1 ∈ Γ,

1+
∑
k≥2

k
∑
γ2

· · ·
∑
γk

|ϕ(γ1,γ2, . . . ,γk )|
k∏

j=2
|w(γ j )| ≤ ea(γ1) . (5.11)

In particular, (5.9) holds.

Remark 5.5. In this chapter, we always assume that |Γ| <∞. Nevertheless, this re-
striction is not necessary. When it is not imposed, in addition to (5.10), one has to
require that ∑

γ
|w(γ)|ea(γ) <∞ . ⋄

The series in (5.10) should remind the reader of those considered when imple-
menting Peierls’ argument, such as (3.37). Actually, verifying that these conditions
hold in a specific situation usually amounts to a similar energy-entropy argument.

⋄

Exercise 5.1. Verify that (5.11) implies (5.9).

Proof of Theorem 5.4: We fix γ1 ∈ Γ and show that, for all N ≥ 2,

1+
N∑

k=2
k

∑
γ2

· · ·
∑
γk

|ϕ(γ1,γ2, . . . ,γk )|
k∏

j=2
|w(γ j )| ≤ ea(γ1) . (5.12)

Clearly, letting N →∞ in (5.12) yields (5.11). The proof of (5.12) is done by induc-
tion over N .
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5.4. A condition ensuring convergence 225

For N = 2, the only connected graph G ⊂G2 is the one with one edge connecting
1 and 2, and so ϕ(γ1,γ2) = 1

2!ζ(γ1,γ2). Therefore, the left-hand side of (5.12) is

1+2
∑
γ2

|ϕ(γ1,γ2)||w(γ2)| = 1+
∑
γ2

|ζ(γ1,γ2)||w(γ2)| ≤ ea(γ1) ,

where we used 1 ≤ ea(γ2), (5.10) and 1+x ≤ ex . This proves (5.12) for N = 2. We now
show that if (5.12) holds for N , then it also holds for N +1.

To do that, consider the left-hand side of (5.12) with N + 1 in place of N , take
some k ≤ N +1, and consider any connected graph G ⊂ Gk appearing in the sum
defining ϕ(γ1,γ2, . . . ,γk ). Let E ′ denote the non-empty set of edges of G with an
endpoint at 1. The graph G ′, obtained from G by removing 1 together with each
edge of E ′, splits into a set of connected components G ′

1, . . . ,G ′
l .

1

2

7

5

8

6

3

4

9

G ′
1

G ′
2

G ′
3

We can thus see G as obtained by (i) partitioning the set {2,3, . . . ,k} into subsets
V ′

1, . . . ,V ′
l , l ≤ k −1, (ii) associating to each V ′

i a connected graph G ′
i , and (iii) con-

necting 1 in all possible ways to at least one point in each connected component
V ′

i . Accordingly,

ϕ(γ1,γ2, . . . ,γk ) = (5.13)

1

k !

k−1∑
l=1

1

l !

∑
V ′

1,...,V ′
l

l∏
i=1

{ ∑
G ′

i :V (G ′
i )=V ′

i
connected

∏
{i ′, j ′}∈G ′

i

ζ(γi ′ ,γ j ′ )
}{ ∑

Ki⊂V ′
i

Ki ̸=∅

∏
j ′∈Ki

ζ(γ1,γ j ′ )
}

.

The next step is to specify the number of points in each V ′
i . If |V ′

i | = mi ,

∑
G ′

i :V (G ′
i )=V ′

i
connected

∏
{i ′, j ′}∈G ′

i

ζ(γi ′ ,γ j ′ ) = mi !ϕ
(
(γ j ′ ) j ′∈V ′

i

)
.

Moreover, ∑
Ki⊂V ′

i
Ki ̸=∅

∏
j ′∈Ki

ζ(γ1,γ j ′ ) =
{ ∏

j ′∈V ′
i

(
1+ζ(γ1,γ j ′ )

)}−1. (5.14)

Exercise 5.2. Assuming |1+αk | ≤ 1 for all k ≥ 1, show that

∣∣∣
n∏

k=1
(1+αk )−1

∣∣∣≤
n∑

k=1
|αk | . (5.15)
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Since (5.2) guarantees that |1+ζ| ≤ 1, (5.14) and (5.15) yield
∣∣∣

∑
Ki⊂V ′

i
Ki ̸=∅

∏
j ′∈Ki

ζ(γ1,γ j ′ )
∣∣∣≤

∑
j ′∈V ′

i

|ζ(γ1,γ j ′ )| .

We now use (5.13) to bound the sum on the left-hand side of (5.12) (with N +1 in
place of N ). The sum over the sets V ′

i will be made as in the proof of Proposition 5.3:
the number of partitions of {2,3, . . . ,k} into (V ′

1, . . . ,V ′
l ), with |V ′

i | = mi , m1+·· ·+ml =
k −1, is equal to (k−1)!

m1!···ml ! . But, since the summands are nonnegative, we can bound

N+1∑
k=2

k−1∑
l=1

∑
m1,...,ml :

m1+···+ml=k−1

(· · ·)=
N∑

l=1

N+1∑
k=l+1

∑
m1,...,ml :

m1+···+ml=k−1

(· · ·)

≤
N∑

l=1

N∑
m1=1

· · ·
N∑

ml=1

(· · ·) ,

which leaves us with

N+1∑
k=2

k
∑
γ2

· · ·
∑
γk

|ϕ(γ1,γ2, . . . ,γk )|
k∏

j=2
|w(γ j )|

≤
∑
l≥1

1

l !

l∏
i=1

{ N∑
mi=1

∑
γ′1

· · ·
∑
γ′mi

|ϕ(γ′1, . . . ,γ′mi
)|

mi∏
j ′=1

|w(γ′j ′ )|
mi∑

j ′=1

|ζ(γ1,γ′j ′ )|
}

. (5.16)

Lemma 5.6. If (5.12) holds, then, for all γ∗ ∈ Γ,

N∑
k=1

∑
γ1

· · ·
∑
γk

{ k∑
i=1

|ζ(γ∗,γi )|
}
|ϕ(γ1, . . . ,γk )|

k∏
j=1

|w(γ j )| ≤ a(γ∗) . (5.17)

Proof. We fix γ∗ ∈ Γ, and multiply both sides of (5.12) by |ζ(γ∗,γ1)| · |w(γ1)|, and
sum over γ1. Using (5.10), the right-hand side of the expression obtained can be
bounded by a(γ∗), whereas the left-hand side becomes

N∑
k=1

k
∑
γ1

· · ·
∑
γk

|ζ(γ∗,γ1)||ϕ(γ1, . . . ,γk )|
k∏

j=1
|w(γ j )| .

But clearly, for all i ∈ {2, . . . ,k},

∑
γ1

· · ·
∑
γk

|ζ(γ∗,γ1)||ϕ(γ1, . . . ,γk )|
k∏

j=1
|w(γ j )|

=
∑
γ1

· · ·
∑
γk

|ζ(γ∗,γi )||ϕ(γ1, . . . ,γk )|
k∏

j=1
|w(γ j )| ,

which proves the claim.

Using (5.17), we can bound (5.16) by
∑

l≥1
1
l ! a(γ1)l = ea(γ1) −1. This concludes

the proof of Theorem 5.4.

The determination of a suitable function a(γ) for (5.10) will depend on the
problem considered. As we will see in the applications below, a(γ) will usually be
naturally related to some measure of the size of γ.
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5.5. When the weights depend on a parameter 227

Example 5.7. As the most elementary application of the previous lemma, let us
consider the expansion of log(1+ z) for small |z|.

The function 1+z can be seen as a particularly simple example of polymer par-
tition function: one with a single polymer, Γ = {γ}, and a weight w(γ) = z. Indeed,
in this case, there are only two terms in the right-hand side of (5.3) (Γ′ = ∅ and
Γ′ = {γ}) and the partition function reduces to

Ξ= 1+ z .

Condition (5.10) then becomes
|z|ea ≤ a ,

where a > 0 is a constant we can choose. Since a 7→ ae−a is maximal when a = 1,
the best possible choice for a is a = 1 and the condition for convergence becomes

|z| ≤ e−1 .

Theorem 5.4 then guarantees convergence of the cluster expansion for logΞ for all
such values of z: by (5.6),

log(1+ z) = logΞ=
∑

m≥1
ϕm zm ,

where we have introduced

ϕm
def= ϕ (γ, . . . ,γ)︸ ︷︷ ︸

m copies

= 1

m!

(m
2

)
∑
k=0

(−1)k |Gm,k | ,

and Gm,k is the set of all connected subgraphs of the complete graph Gm with m
vertices and k edges.

It is instructive to compare the above result with the classical Taylor expansion

log(1+ z) =
∑

m≥1

(−1)m−1

m
zm .

First, we see that the condition in Theorem 5.4 is not optimal, since the latter series
actually converges whenever |z| < 1. Moreover, identifying the coefficients of zn in
both expansions, we obtain the following nontrivial combinatorial identity:

(m
2

)
∑
k=0

(−1)k |Gm,k | = (−1)m−1(m −1)! . ⋄

5.5 When the weights depend on a parameter

The convergence of the cluster expansion is very often used to prove analyticity of
the pressure in the thermodynamic limit. So let us assume that the weights of the
polymers depend on some complex parameter:

z 7→wz (γ) , z ∈ D ,

where D is a domain of C. When each weight depends smoothly (for example, an-
alytically) on z, it can be useful to determine whether this smoothness extends to
logΞ.
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228 Chapter 5. Cluster Expansion

Theorem 5.8. Assume that z 7→wz (γ) is analytic on D, for each γ ∈ Γ, and that there
exists a real weight w(γ) ≥ 0 such that

sup
z∈D

|wz (γ)| ≤w(γ) , ∀γ ∈ Γ , (5.18)

and such that (5.10) holds with w(γ) in place of w(γ). Then, (5.6) and (5.9) hold
with wz (γ) in place of w(γ), and z 7→ logΞ is analytic on D.

Proof. Let us write the expansion as logΞ=∑
n≥1 fn(z), where

fn(z)
def=

∑
γ1

· · ·
∑
γn

ϕ(γ1, . . . ,γn)
n∏

i=1
wz (γi ) .

Since |Γ| <∞, fn is a sum containing only a finite number of terms; it is therefore
analytic in D . If we can verify that the series

∑
n fn is uniformly convergent on com-

pact sets K ⊂ D , Theorem B.27 will imply that it represents an analytic function on
D . We therefore compute

sup
z∈K

∣∣∣
∑

n≥1
fn(z)−

N∑
n=1

fn(z)
∣∣∣≤ sup

z∈K

∑
n>N

| fn(z)|

≤
∑

n>N
sup
z∈K

| fn(z)|

≤
∑

n>N

∑
γ1

· · ·
∑
γn

|ϕ(γ1, . . . ,γn)|
n∏

i=1
w(γi ) . (5.19)

By our assumptions, Theorem 5.4 implies that (5.9) holds, with w(·) in place of
|w(·)|. This implies that (5.19) goes to zero when N →∞. The fact that (5.11) holds
is immediate.

5.6 The case of hard-core interactions

Up to now, we have considered fairly general interactions. But often in practice, and
in all cases treated in this book, δ takes the particularly simple form of a hard-core
interaction, that is,

δ(γ,γ′) ∈ {0,1} for all γ,γ′ ∈ Γ.

In such a case, two polymers γ and γ′ will be said to be compatible if δ(γ,γ′) = 1
and incompatible if δ(γ,γ′) = 0. Obviously, only collections of pairwise compatible
polymers yield a non-zero contribution to the partition function Ξ in (5.4).

Let us now turn to the series (5.6) for logΞ. We say that a collection {γ1, . . . ,γn}
is decomposable if it is possible to express it as a disjoint union of two non-empty
sets, in such a way that each γi in the first set is compatible with each γ j in the
second. It follows immediately from the definition of the Ursell functions that

ϕ(γ1, . . . ,γn) = 0 if {γ1, . . . ,γn} is decomposable.

In particular, the non-zero contributions to logΞ in (5.6) therefore come from the
non-decomposable collections. An unordered, non-decomposable collection X =
{γ1, . . . ,γn} is called a cluster. Note that X is actually a multiset, that is, the same
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polymer can appear multiple times. We denote by nX (γ) the number of times the
polymer γ ∈ Γ appears in X . We can write

logΞ=
∑

n≥1

∑
γ1

· · ·
∑
γn

ϕ(γ1, . . . ,γn)
n∏

i=1
w(γi ) =

∑
X
Ψ(X ) ,

where the sum is over all clusters of polymers in Γ and, for a cluster X = {γ̃1, . . . , γ̃n},

Ψ(X )
def=

{∏
γ∈Γ

1

nX (γ)!

}{ ∑
G⊂Gn

connected

∏
{i , j }∈G

ζ(γ̃i , γ̃ j )
} n∏

i=1
w(γ̃i ) . (5.20)

Indeed, given a cluster X = {γ̃1, . . . , γ̃n}, there are n!∏
γ∈ΓnX (γ)! distinct ways of assign-

ing the polymers γ̃1, . . . , γ̃n to the summation variables γ1, . . . ,γn above.

5.7 Applications

The cluster expansion can be applied in many situations. Our main systematic use
of it will be in Chapter 7, when developing the Pirogov–Sinai theory. We will also
use it to obtain a uniqueness criterion for infinite-volume Gibbs measures, in Sec-
tion 6.5.4.

Before that, we apply it in various ways to the Ising model (and to the corre-
sponding nearest-neighbor lattice gas). We will see that to different regions of the
phase diagram correspond different well-suited polymer models. The cluster ex-
pansion can then be used to extract useful information on the model for parame-
ters in these regions.

When checking Condition (5.10), we will see that the regions in which the clus-
ter expansion converges for those polymer models are all far from the point (β,h) =
(βc,0):

large h > 0 (Section 5.7.1)

large h < 0 (Section 5.7.1)

βc

large β (Section 5.7.4)

small β (Section 5.7.3)

h

β

5.7.1 The Ising model in a strong magnetic field

Consider the Ising model with a complex magnetic field h ∈ C, at an arbitrary in-
verse temperature β ≥ 0. The Lee–Yang Circle theorem proved in Chapter 3 yields

existence and analyticity of the pressure in the half planes H+ def= {h ∈C : Reh > 0}

and H− def= {h ∈C : Reh < 0}. Here, we will use the cluster expansion to obtain a
weaker result, namely that analyticity holds in the regions {h ∈C : Reh > x0 > 0}
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230 Chapter 5. Cluster Expansion

and {h ∈C : Reh <−x0 < 0} (see below for the value of x0). Although theses regions
are proper subsets of the half-planes H+ and H−, the convergent expansion pro-
vides a wealth of additional information on the pressure in these regions, not pro-
vided by the Lee–Yang approach.

We will consider the case Reh > 0. As seen in Chapter 3, when h ∈ R, the pres-
sure does not depend on the boundary condition used in the thermodynamic limit,
and we can thus choose the most convenient one. In this section, this turns out to
be the + boundary condition. The first step is to define a polymer model that is well
suited for the analysis of the Ising model with a large magnetic field.

When the magnetic field h > 0 is large, there is a very strong incentive for spins
to take the value +1. It is therefore natural to describe configurations by only keeping
track of the negative spins. ⋄

We emphasize the role of the negative spins by writing the Hamiltonian as fol-
lows:

HΛ;β,h =−β
∑

{i , j }∈E b
Λ

σiσ j −h
∑
i∈Λ

σi

=−β|E b
Λ|−h|Λ|−β

∑

{i , j }∈E b
Λ

(σiσ j −1)−h
∑
i∈Λ

(σi −1) . (5.21)

Let ω ∈Ω+
Λ. Introducing the set

Λ−(ω)
def= {i ∈Λ : ωi =−1} , (5.22)

we can write

HΛ;β,h(ω) =−β|E b
Λ|−h|Λ|+2β|∂eΛ

−(ω)|+2h|Λ−(ω)| ,

where we remind the reader that ∂e A
def= {

{i , j } : i ∼ j , i ∈ A, j ̸∈ A
}
. Notice that

HΛ;β,h has a unique ground state, namely the constant configuration η+ (in which
all spins equal +1), for whichΛ−(η+) =∅ and

HΛ;β,h(η+) =−β|E b
Λ|−h|Λ| .

We can then write the partition function by emphasizing that configurationsωwith
Λ−(ω) ̸=∅ represent deviations from the ground state:

Z+
Λ;β,h = eβ|E

b
Λ |+h|Λ| ∑

Λ−⊂Λ
e−2β|∂eΛ

−|−2h|Λ−|

= eβ|E
b
Λ |+h|Λ|

{
1+

∑
Λ−⊂Λ:
Λ− ̸=∅

e−2β|∂eΛ
−|−2h|Λ−|

}
.

Let us declare two vertices i , j ∈Λ− to be connected if d1(i , j )
def= ∥ j −i∥1 = 1. We can

then decomposeΛ− into maximal connected components (see Figure 5.1):

Λ− = S1 ∪·· ·∪Sn .
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Figure 5.1: A configuration of the Ising model. Each connected component
of the shaded area delimits one of the polymers S1, . . . ,S17.

By definition, d1(Si ,S j )
def= inf

{
d1(k, l ) : k ∈ Si , l ∈ S j

} > 1 if i ̸= j . The compo-
nents Si play the role of the polymers in the present application. Since |∂eΛ

−| =∑n
i=1 |∂e Si | and |Λ−| =∑n

i=1 |Si |, we can write

Z+
Λ;β,h = eβ|E

b
Λ |+h|Λ|ΞLF

Λ;β,h , (5.23)

where the large-field polymer partition function is

ΞLF
Λ;β,h

def= 1+
∑

n≥1

1

n!

∑
S1⊂Λ

· · ·
∑

Sn⊂Λ

{ n∏
i=1

wh(Si )
}{ ∏

1≤i< j≤n
δ(Si ,S j )

}
. (5.24)

Each sum
∑

Si⊂Λ is over non-empty connected subsets of Λ (from now on, all sets
denoted by the letter S, with or without a subscript, will be considered as non-
empty and connected), the weights are

wh(Si )
def= e−2β|∂e Si |−2h|Si | ,

and the interactions are of hard-core type:

δ(Si ,S j )
def=

{
1 if d1(Si ,S j ) > 1,

0 otherwise.

We will now show that there exists a function a(S) ≥ 0 such that (5.10) holds
when Reh is taken sufficiently large. In the present context, this condition be-
comes

∀S∗ ⊂Λ ,
∑

S⊂Λ
|wh(S)|ea(S)|ζ(S,S∗)| ≤ a(S∗) , (5.25)

where we remind the reader that ζ(S,S∗)
def= δ(S,S∗)−1. Observe that ζ(S,S∗) ̸= 0 if

and only if S ∩ [S∗]1 ̸=∅, where

[S∗]1
def=

{
j ∈Zd : d1( j ,S∗) ≤ 1

}
.
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Therefore, the sum in (5.25) can be bounded by
∑

S⊂Λ
|wh(S)|ea(S)|ζ(S,S∗)| ≤ |[S∗]1| max

j∈[S∗]1

∑
S∋ j

|wh(S)|ea(S) ,

where now the sum over S ∋ j is an infinite sum over all finite connected subsets of
Zd that contain the point j . Let us define, for all S,

a(S)
def= |[S]1| .

Since both the weights and a(·) are invariant under translations,

max
j∈[S∗]1

∑
S∋ j

|wh(S)|e |[S]1| =
∑
S∋0

|wh(S)|e |[S]1| .

Therefore, guaranteeing that
∑
S∋0

|wh(S)|e |[S]1| ≤ 1 (5.26)

ensures that (5.25) is satisfied. The weightwh(S) contains two terms: a surface term
e−2β|∂e S|, and a volume term e−2h|S|. Observe that e |[S]1| is also a volume term, since

|S| ≤ |[S]1| ≤ (2d +1)|S| .

We therefore see that, in order for the series in (5.26) to converge and be smaller
or equal to 1, the real part of the magnetic field will need to be taken sufficiently
large for e−2Reh|S| to compensate e(2d+1)|S|. It will also be necessary to compensate
for the number of sets S ∋ 0 as a function of their size, since the latter also grows
exponentially fast with |S|. The surface term, on the other hand, will be of no help
and will be simply bounded by 1. So, grouping the sets S ∋ 0 by size,

∑
S∋0

|wh(S)|e |[S]1| =
∑
k≥1

e−2kReh
∑
S∋0
|S|=k

e−2β|∂e S|e |[S]1|

≤
∑
k≥1

e−(2Reh−2d−1)k #{S ∋ 0 : |S| = k} .

Exercise 5.3. Using Lemma 3.38, show that

#{S ∋ 0 : |S| = k} ≤ (2d)2k . (5.27)

Using (5.27), we get ∑
S∋0

|wh(S)|e |[S]1| ≤ η(Reh,d) , (5.28)

where η(x,d)
def= ∑

k≥1 e−(2x−2d−1−2log(2d))k . If we define

x0 = x0(d)
def= inf

{
x > 0 : η(x,d) ≤ 1

}

and let
H+

x0

def= {h ∈C : Reh > x0} ,

then, for all h ∈ H+
x0

, the cluster expansion

logΞLF
Λ;β,h =

∑
n≥1

∑
S1⊂Λ

· · ·
∑

Sn⊂Λ
ϕ(S1, . . . ,Sn)

n∏
i=1

wh(Si )
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converges absolutely. As seen in Section 5.6, the contributions to the expansion
come from the clusters X = {S1, . . . ,Sn}. We define the support of X = {S1, . . . ,Sn} by

X
def= S1 ∪·· ·∪Sn . With these notations,

∑
n≥1

∑
S1⊂Λ

· · ·
∑

Sn⊂Λ
ϕ(S1, . . . ,Sn)

n∏
i=1

wh(Si ) =
∑

X : X⊂Λ
Ψ(X ) ,

whereΨ(·) was defined in (5.20).
We will now see how to use this to extract the volume and surface contributions

to the pressure in Λ. First, notice that, when defining x0 above, we have actually
guaranteed that the sum in (5.28) converges even if the sum is over all connected
subsets S ∋ 0 (not only over those contained in Λ). This allows us to bound series
containing clusters of all sizes whose support includes a given vertex: using Theo-
rem 5.4 for the terms n ≥ 2,

∑

X : X∋i

|Ψ(X )| ≤
∑

n≥1
n

∑
S1∋i

∑
S2

· · ·
∑
Sn

|ϕ(S1, . . . ,Sn)|
n∏

k=1
|wh(Sk )|

≤
∑

S1∋i
|wh(S1)|e |[S1]1| ≤ η(Reh,d) ≤ 1. (5.29)

We can then rearrange the terms of the cluster expansion in Λ as follows. Since
1
|X |

∑
i∈Λ1{X∋i } = 1 for any X ⊂Λ,

∑

X : X⊂Λ
Ψ(X ) =

∑
i∈Λ

∑
X :

i∈X⊂Λ

1

|X |
Ψ(X )

=
∑
i∈Λ

{∑
X :

i∈X

1

|X |
Ψ(X )−

∑
X :

i∈X ̸⊂Λ

1

|X |
Ψ(X )

}
. (5.30)

The difference between the two series is well defined, since both are absolutely con-
vergent. Notice that both of them contain clusters of unbounded sizes. By trans-
lation invariance, the first sum over X in the right-hand side of (5.30) does not de-
pend on i , and thus yields a constant contribution. The second sum is a boundary
term. Indeed, whenever i ∈ X ̸⊂Λ, there must exist at least one component Sk ∈ X
which intersects the boundary of Λ: X ∩∂exΛ ̸=∅. Therefore, using (5.29) for the
second inequality,

∣∣∣
∑
i∈Λ

∑
X :

i∈X ̸⊂Λ

1

|X |
Ψ(X )

∣∣∣≤ |∂exΛ| max
j∈∂exΛ

∑

X : X∋ j

|Ψ(X )| ≤ |∂exΛ| .

We thus obtain

1

|Λ| logZ+
Λ;β,h =β

|E b
Λ|

|Λ| +h +
∑

X : X∋0

1

|X |
Ψ(X )+ O(|∂exΛ|)

|Λ| . (5.31)

We now fix h ∈ H+
x0

and take the thermodynamic limit in (5.31) along
the sequence of boxes B(n). In this limit, the boundary term vanishes and
|E b

B(n)
|/|B(n)|→ d , yielding

ψβ(h) =βd +h +
∑

X : X∋0

1

|X |
Ψ(X ) , Reh > x0 . (5.32)

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

234 Chapter 5. Cluster Expansion

Remark 5.9. Inserting (5.32) into (5.31), we can write, for any fixed regionΛ,

Z+
Λ;β,h = eψβ(h)|Λ|+O(|∂exΛ|) , (5.33)

which provides a direct access to the finite-volume corrections to the pressure (the
boundary term can of course be written down explicitly, as was done above). Thus,
the cluster expansion provides a tool to study systematically finite-size effects, at
least in perturbative regimes. This plays a particularly important role when extract-
ing information about thermodynamic behavior from (finite-volume) numerical
simulations. Such a decomposition will also be used repeatedly in Chapter 7. ⋄

The cluster expansion of the pressure, in (5.32), describes the contributions to
the pressure when Reh is large. Namely, the termβd+h corresponds to the energy
density of the ground state η+:

lim
n→∞

−HB(n);β,h(η+)

|B(n)| =βd +h .

The contributions due to the excitations away from η+ are added successively by
considering terms of the series associated to larger and larger clusters. The contri-
bution of a cluster X = {S1, . . . ,Sn} is of order e−2h(|S1|+···+|Sn |). Thanks to the abso-
lute summability of the series (5.32), we can regroup all terms coming from clusters
contributing to the same order e−2nh , n ≥ 1. In this way, we obtain an absolutely
convergent series for ψβ(h)−βd −h in the variable e−2h .

Lemma 5.10. When h ∈ H+
x0

, the pressure of the Ising model on Zd satisfies, with

z = e−2h ,
ψβ(h)−βd −h = a1z +a2z2 +a3z3 +·· · , (5.34)

where

a1 = e−4dβ ,

a2 = de−(8d−4)β− ( 1
2 +d)e−8dβ .

Proof. As pointed out above, the contribution of a cluster X = {S1, . . . ,Sn} is of or-
der e−2h(|S1|+···+|Sn |). The associated combinatorial factor can be read from (5.20)
and (5.32), namely

1

|X |︸︷︷︸
A

∏
S∈Γ

1

nX (S)!
︸ ︷︷ ︸

B

{ ∑
G⊂Gn

connected

∏
{i , j }∈G

ζ(Si ,S j )

︸ ︷︷ ︸
C

} n∏
i=1

wh(Si ) ,

where Γ is here the set of all connected components in Zd . The only cluster con-
tributing to a1 is the cluster composed of the single polymer {0}. In this case, A = 1,
B = 1 and C = 1; this yields the first coefficient since ∂e {0} = 2d .

There are two types of clusters contributing to a2: the clusters composed of a
single polymer of size 2 containing 0, and the clusters made of two polymers of size
1, at least one of which is {0}.

Let us first consider the former: there are exactly 2d polymers of size 2 contain-
ing the origin and, for each such polymer S, ∂e S = 2(2d −1), A = 1

2 , B = 1 and C = 1;
this yields a contribution

2d · 1

2
·e−2(2d−1)2β = de−(8d−4)β .
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Let us now turn to the clusters made up of two polymers of size 1, at least one of
which is {0}. The first possibility is that both polymers are {0}, and therefore A = 1,
B = 1

2 and C =−1; this yields the contribution

− 1
2 e−2·4dβ =− 1

2 e−8dβ .

The second possibility is that X = {S1,S2} = {{0}, {i }}, with i ∼ 0. There are 2d ways
of choosing i , and for each of those, A = 1

2 , B = 1 and C = −1; we thus obtain a
contribution of

2d · (− 1
2 ) ·e−2·4dβ =−de−8dβ .

It is of course possible to compute the coefficients to arbitrary order, but the com-
putations become tricky when the order gets large.

Exercise 5.4. Show that

a3 = ((2d +1)d + 1
3 )e−12d β−4d 2e−(12d−4)β+d(2d −1)e−(12d−8)β .

Remark 5.11. The expansion obtained in (5.34) converges when |z| < e−2x0 . Re-
member that the Lee–Yang theorem (Theorem 3.43) implies analyticity of the pres-
sure (as a function of z) in the whole open unit disk U = {z ∈ C : |z| < 1}. By the
uniqueness of the Taylor coefficients, this means that the series in (5.34) converges
not only for Reh > x0, but for all Reh > 0. ⋄

Using the + boundary condition was quite convenient, but the same analysis
could have been done with any other boundary condition, with slight changes, and
would have led to the same expansion (5.32), only the boundary term in (5.30) be-
ing affected by the choice of boundary condition.

Exercise 5.5. Prove that last statement. What changes must be made if one uses
non-constant boundary conditions? Conclude that, when |Reh| is large, the ther-
modynamic limit for the pressure exists for arbitrary boundary conditions.

To summarize, we have seen that considering the Ising model with Reh > 0
large allows one to see the regions of − spins as perturbations of the ground-state
η+. These perturbations are under control whenever the cluster expansion con-
verges. This led us to a series expansion for the pressure of the model in the variable
e−2h .

5.7.2 The virial expansion for the lattice gas

(In order for him to get motivation and notation for the material in this section, we
strongly recommend the reader to have a look at Chapter 4.)

We have seen, in Section 4.8, that the pressure pβ(µ) of the nearest-neighbor
lattice gas is analytic everywhere except at µ∗, where it has a discontinuous deriva-
tive if the temperature is sufficiently low. To express the pressure as a function of

the particle density ρ ∈ [0,1], we inverted the relation ρ = ∂pβ
∂µ , to obtain µβ =µβ(ρ),

and defined p̃β(ρ)
def= pβ(µβ(ρ)). The latter function was shown to be analytic on the

gas branch (0,ρg ), constant on the coexistence plateau [ρg ,ρl ], and again analytic
on the liquid branch (ρl ,1) (see Figure 4.11 and Exercise 4.10).
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236 Chapter 5. Cluster Expansion

In this section, we go one step further. We will consider the behavior of the
model on the gas branch, for small values of the density, and obtain a representa-
tion of p̃β as a convergent series, called the virial expansion:

βp̃β(ρ) = b1ρ+b2ρ
2 +b3ρ

3 +·· · (ρ small) ,

with (in principle) explicit expressions for the virial coefficients bk , k ≥ 1.

The canonical lattice gas at low density corresponds, in the grand canonical
ensemble, to large negative values of the chemical potential µ (remember Exer-
cise 4.6). We have also seen in Section 4.8 that the nearest-neighbor lattice gas can
be mapped, via ηi 7→ 2ηi −1, to the Ising model with an inverse temperatureβ′ = 1

4β

and magnetic field h′ = β
2 (2d +µ); in particular, their pressures are related by

βpβ(µ) =ψβ′ (h′)+ βµ
2 + βκ

8 . (5.35)

Since a large negative chemical potential corresponds to a large negative magnetic
field, we can derive the virial expansion from the results for the Ising model at large
values of Reh which were obtained in the previous section. Namely, using the
symmetry ψβ(−h) =ψβ(h) and using the expansion (5.34), in terms of the variable

z ′ = e2h′
, with Reh′ <−x0:

ψβ′ (h′) =β′d −h′+a1z ′+a2z ′2 +a3z ′3 + . . . (5.36)

(Remember that each an should be used with β′ instead of β.) This gives

βpβ(µ) =
∑

n≥1
an z ′n , (5.37)

which is called the Mayer expansion. The Mayer series is absolutely convergent

and can therefore be differentiated term by term with respect to µ. Since ∂z ′n
∂µ =

nβz ′n , this yields

ρ =
∂pβ
∂µ

=
∑

n≥1
nan z ′n def=

∑
n≥1

ãn z ′n def= φ(z ′) .

We will obtain the virial expansion by inverting this last expression, obtaining z ′ =
φ−1(ρ), and injecting the result into (5.37). Since dφ

dz (0) = a1 = e−4dβ > 0, the ana-
lytic Implicit Function Theorem (Theorem B.28) implies that φ can indeed be in-
verted on a small disk D ⊂ C centered at the origin, and the inverse is analytic on
that disk. We write the Taylor expansion of the inverse by φ−1(ρ) = ∑

k ckρ
k . As-

suming that the coefficients ck are known (they will be computed below), we can
write down the virial expansion. Namely,

βp̃β(ρ) =
∑

n≥1
an{φ−1(ρ)}n

=
∑

n≥1
an

∑
k1≥1

· · ·
∑

kn≥1

n∏
i=1

cki ρ
ki

=
∑

n≥1
an

∑
m≥n

∑
k1,...,kn≥1

k1+···+kn=m

n∏
i=1

cki ρ
ki =

∑
m≥1

b̃mρ
m ,
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where

b̃m
def=

m∑
n=1

an
∑

k1,...,kn≥1
k1+···+kn=m

n∏
i=1

cki .

A similar computation can be used in the following exercise.

Exercise 5.6 (Computing the Taylor coefficients of an inverse function). Let φ(z) =∑
k≥1 ãk zk be convergent in a neighborhood of z = 0, with ã1 ̸= 0 (in particular, φ

is invertible in a neighborhood of z = 0). Write its compositional inverse φ−1 as
φ−1(z) =∑

k≥1 ck zk . Show that c1 = ã−1 and that, for all m ≥ 2,

m∑
n=1

ãn
∑

k1,...,kn≥1
k1+···+kn=m

n∏
i=1

cki = 0.

Using this, compute the first few coefficients of φ−1:

c2 =− ã2

ã3
1

, c3 = 2
ã2

2

ã5
1

− ã3

ã4
1

, etc.

As can be verified, using the coefficients ak computed in Lemma 5.10,

b̃1 = 1, b̃2 =−a2

a2
1

= 1
2 +d −deβ , etc.

We have thus shown

Theorem 5.12. At low densities, the pressure of the nearest-neighbor lattice gas sat-
isfies

βp̃β(ρ) = ρ+ ( 1
2 +d −deβ)ρ2 +O(ρ3) .

5.7.3 The Ising model at high temperature (h = 0)

In this section, we consider again the pressure of the Ising model but in another
regime: h = 0 and β≪ 1. In the latter, thermal fluctuations are so strong that the
spins behave nearly independently from each other.

We choose the free boundary condition, as it is the most convenient one in the
high-temperature regime. Proceeding as in Section 3.7.3, we express the partition
function as in Exercise 3.23:

Z∅
Λ;β,0 = 2|Λ|(coshβ)|EΛ|

∑
E∈Eeven

Λ

(tanhβ)|E | , (5.38)

where the sum is over all subsets of edges E ⊂ EΛ such that the number of edges of
E incident to each vertex i ∈Λ is even.

Each set E ∈ Eeven
Λ can be identified with a graph, by simply considering it to-

gether with the endpoints of each of its edges. This graph can be decomposed into
(maximal) connected components, which play the role of polymers. In terms of
edges, this decomposition can be written E = E1 ∪·· ·∪En , so that we obtain

Z∅
Λ;β,0 = 2|Λ|(coshβ)|EΛ|ΞHT

Λ;β,0 ,
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with

ΞHT
Λ;β,0

def= 1+
∑

n≥1

1

n!

∑
E1⊂EΛ

· · ·
∑

En⊂EΛ

{ n∏
i=1

(tanhβ)|Ei |
} ∏

1≤i< j≤n
δ(Ei ,E j ) ,

where Ei ∈Eeven
Λ , for all i , and

δ(Ei ,E j )
def=

{
1 if Ei and E j have no vertex in common,

0 otherwise,

is again of hard-core type.

The above representation is well suited to the high-temperature regime, since
the weight (tanhβ)|Ei |, associated to a polymer Ei , decays fast when β is small. ⋄

Proceeding as in Section 5.7.1, we can show that the conditions for the con-
vergence of the cluster expansion are satisfied when β is sufficiently small, thus
proving that the pressure behaves analytically at high temperature:

Theorem 5.13. There exists r0 > 0 such that β 7→ ψβ(0) is analytic in the disk{
β ∈C : |β| < r0

}
.

Exercise 5.7. Prove Theorem 5.13, and compute the first few terms of the expansion
of ψβ(0)−d log(coshβ)− log2 as a power series in the variable z = tanhβ.

Remark 5.14. Even though we have only considered analyticity of the pressure as
a function of β here, it is possible to extract a lot of additional information on the
model in this regime. In Section 6.5.4, we will use a variant of the above approach
to prove uniqueness of the infinite volume Gibbs measure at all sufficiently high
temperatures, for a large class of models. ⋄

It follows from the results of Chapter 3 that h 7→ ψβ(h) is continuously differ-
entiable at h = 0 when β < βc(d). In the next exercise, the reader is asked to adapt
the high-temperature representation to show that it is in fact analytic in a neigh-
borhood of h = 0, at least when β is sufficiently small.

Exercise 5.8. Show that there exists β0 = β0(d) > 0 such that, for all 0 ≤ β ≤ β0,
h 7→ψβ(h) is analytic at h = 0.

5.7.4 The Ising model at low temperature (h = 0)

We now consider the Ising model on Zd , d ≥ 2, at very low temperature and in the
absence of a magnetic field. Our goals, in this regime, are (i) to establish analyticity
of the pressure β 7→ ψβ(0), (ii) to derive an explicit series expansion for the mag-
netization and (iii) to prove exponential decay of the truncated 2-point correlation
function 〈σi ;σ j 〉+β,0 as ∥i − j∥2 →∞.

We know from Section 3.7.2 that, when h = 0 and β is large, the relevant objects
for the description of configurations are the contours separating the regions of +
and − spins. In dimension 2, we used the deformation rule of Figure 3.11. Since
that deformation was specific to d = 2, we will here define contours in a slightly
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different manner. The description will be used in any dimension d ≥ 2, in a large
boxΛ, with either + or − boundary condition.

We again write the Hamiltonian in a way that emphasizes the role played by
pairs of neighboring spins with opposite signs:

HΛ;β,0 =−β|E b
Λ|−β

∑

{i , j }∈E b
Λ

(σiσ j −1) . (5.39)

We consider the + boundary condition in a region Λ⋐ Zd . Given ω ∈Ω+
Λ, we use

againΛ−(ω) to denote the set of vertices i at whichωi =−1. Rather thanΛ−(ω) itself
(which was relevant when considering a large magnetic field), we will be interested
only in its boundary.

We associate to each i ∈Zd the closed unit cube of Rd centered at i :

Si
def= i + [− 1

2 , 1
2 ]d ,

and let

M (ω)
def=

⋃
i∈Λ−(ω)

Si . (5.40)

We can then consider the (maximal) connected components of ∂M (ω) (here, the
boundary ∂ is in the sense of the Euclidean topology of Rd ):

Γ′(ω)
def= {γ1, . . . ,γn} .

Each γi is called a contour of ω. (Note that when d = 2, this notion slightly dif-
fers from the one used in Chapter 3.) In d = 2 (see Figure 3.10), contours can be
identified with connected sets of dual edges. In higher dimensions, contours are
connected sets of plaquettes, which are the (d −1)-dimensional faces of the d-di-
mensional hypercubes Si , i ∈ Zd . The number of plaquettes contained in γi will
be denoted |γi |. Observe that there is a one-to-one mapping between the plaque-
ttes of ∂M (ω) and the edges of ∂eΛ

−(ω) (associating to a plaquette the unique edge
crossing it), and so |∂eΛ

−(ω)| =∑n
i=1 |γi |. We can thus write

Z+
Λ;β,0 = eβ|E

b
Λ |

∑
ω∈Ω+

Λ

∏
γ∈Γ′(ω)

wβ(γ) ,

where

wβ(γ)
def= e−2β|γ| . (5.41)

The final step is to transform the summation overω into a summation over families

of contours. To this end, we introduce a few notions. Let ΓΛ
def= {

γ ∈ Γ′(ω) : ω ∈Ω+
Λ

}

denote the set of all possible contours inΛ.
A collection of contours Γ′ ⊂ ΓΛ is admissible if there exists a configuration ω ∈

Ω+
Λ such that Γ′(ω) = Γ′. We say that Λ ⊂ Zd is c-connected if Rd \

⋃
i∈ΛSi is a

connected subset of Rd .

Exercise 5.9. Assuming that Λ is c-connected, show that a collection Γ′ =
{γ1, . . . ,γn} ⊂ ΓΛ is admissible if and only if its contours are pairwise disjoint:
γi ∩γ j =∅ for all i ̸= j . Why is this not necessarily true whenΛ is not c-connected?
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Therefore, provided thatΛ be c-connected,

Z+
Λ;β,0 = eβ|E

b
Λ |ΞLT

Λ;β,0 , (5.42)

where

ΞLT
Λ;β,0

def=
∑

Γ′⊂ΓΛ
admiss.

∏
γ∈Γ′

wβ(γ)

= 1+
∑

n≥1

1

n!

∑
γ1∈ΓΛ

· · ·
∑

γn∈ΓΛ

{ n∏
i=1

wβ(γi )
} ∏

1≤i< j≤n
δ(γi ,γ j ) ,

with interactions which are once again of hard-core type:

δ(γi ,γ j )
def=

{
1 if γi ∩γ j =∅ ,

0 otherwise.
(5.43)

The above representation of the Ising model is adapted to the low temperature
regime, since the weight wβ(γi ) = e−2β|γi | associated toγi , decays fast whenβ is large.
This observation was, of course, at the core of Peierls’ argument. ⋄

For the rest of the section, we will allow β to take complex values. We first verify

that (5.10) holds with a(γ)
def= |γ|.

Exercise 5.10. Prove that there exists x0 = x0(d) > 0 such that, for all β satisfying
Reβ> x0 and for each γ∗ ∈ ΓΛ,

∑
γ
|wβ(γ)|e |γ| |ζ(γ,γ∗)| ≤ |γ∗| . (5.44)

Hint: Use Lemma 3.38 to count the number of contours γ whose support contains a
fixed point.

Pressure

Observe that, when d = 2, the analyticity of β 7→ψβ(0) for large β can be deduced
directly from the analyticity at small values of β (Theorem 5.13 above), using the
duality transformation described in Section 3.10.1. However, there is no analogous
transformation in d ≥ 3.

We leave it as an exercise to provide the details of the proof of the following
result:

Theorem 5.15. (d ≥ 2). There exists x0 = x0(d) > 0 such that β 7→ψβ(0), is analytic
on

{
β ∈C : Reβ> x0

}
. Moreover,

ψβ(0) =βd +e−4dβ+de−4(2d−1)β+O(e−8dβ) .

Magnetization and decay of the truncated 2-point function

We now move on to the study of correlation functions at low temperature.
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Let Λ ⋐ Zd be c-connected, and A ⊂ Λ. Remembering that σA
def= ∏

i∈Aσi , we
will express the correlation function

〈σA〉+Λ;β,0 =
∑

ω∈Ω+
Λ

σA(ω)
e−HΛ;β,0(ω)

Z+
Λ;β,0

in a form suitable for an analysis based on the cluster expansion. The denominator,
Z+
Λ;β,0, can be expressed using (5.42). To do the same for the numerator, we start

with ∑
ω∈Ω+

Λ

σA(ω)e−HΛ;β,0(ω) = eβ|E
b
Λ |

∑
ω∈Ω+

Λ

σA(ω)
∏

γ∈Γ′(ω)

wβ(γ) .

Let ω ∈ Ω+
Λ and let γ ∈ Γ′(ω) be one of its contours. Consider the configuration

ωγ ∈Ω+
Λ which has γ as its unique contour: Γ′(ωγ) = {γ}. The interior of γ is defined

by (see Figure 5.2)

Intγ
def= {

i ∈Λ : ωγi =−1
}=Λ−(ωγ) .

Figure 5.2: The interior of a (here two-dimensional) contour: the interior is
the set of all black vertices.

The important observation is that, for any ω ∈Ω+
Λ,

ωi = (−1)#{γ∈Γ′(ω): i∈Intγ} ,

that is, the sign of the spin at the vertex i is equal to +1 if and only if there is an even
number of contours surrounding i (in the sense that i belongs to their interior). It
follows from this observation that

σA(ω) = (−1)
∑

i∈A #{γ∈Γ′(ω) : i∈Intγ} =
∏

γ∈Γ′(ω)

(−1)#{i∈A : i∈Intγ} .

We therefore get

σA(ω)
∏

γ∈Γ′(ω)

wβ(γ) =
∏

γ∈Γ′(ω)

wA
β (γ) ,

where

wA
β (γ)

def= (−1)#{i∈A : i∈Intγ}wβ(γ) .
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242 Chapter 5. Cluster Expansion

We conclude that

〈σA〉+Λ;β,0 =
∑
Γ′⊂ΓΛ,admiss.

∏
γ∈Γ′ wA

β
(γ)

∑
Γ′⊂ΓΛ,admiss.

∏
γ∈Γ′ wβ(γ)

≡
ΞLT,A
Λ;β,0

ΞLT
Λ;β,0

. (5.45)

Now, the polymer partition functions in the numerator and denominator in (5.45)
differ only in the weight associated to contours that surround vertices in A. When
Reβ > x0 (see Exercise 5.10), the cluster expansion for logΞLT

Λ;β,0 converges and,

since |wA
β

(γ)| = |wβ(γ)| for all γ, the same holds for logΞLT,A
Λ;β,0. We thus obtain

〈σA〉+Λ;β,0 = exp
{
logΞLT,A

Λ;β,0 − logΞLT
Λ;β,0

}

= exp
{ ∑

X : X⊂Λ
ΨA
β (X )−

∑

X : X⊂Λ
Ψβ(X )

}
,

where the sums in the rightmost expression are over clusters of contours in Λ and
Ψβ(X ) and ΨA

β
(X ) are defined as in (5.20) with weights w given by wβ and wA

β
re-

spectively, and the support X of a cluster X = {γ1, . . . ,γn} is defined as
⋃n

k=1γk (of

course, X ⊂Λ means that, as subsets of Rd , X ⊂⋃
i∈ΛSi ). In particular, the contri-

butions to both sums of all clusters containing no contour γ surrounding a vertex
of A cancel each other, and we are left with

〈σA〉+Λ;β,0 = exp
{ ∑

X∼A:
X⊂Λ

(ΨA
β (X )−Ψβ(X ))

}
,

where X ∼ A means that X contains at least one contour γ such that A ∩ Intγ ̸=∅.
We leave it as an exercise to show that one can letΛ ↑Zd in the above expression:

Exercise 5.11. (d ≥ 2) Prove that

〈σA〉+β,0 = exp
{ ∑

X∼A

(
ΨA
β (X )−Ψβ(X )

)}
, (5.46)

provided that Reβ is sufficiently large.

We now turn to two applications of this formula.

Magnetization at very low temperatures. In Section 3.7.2, we used Peierls’ argu-
ment to obtain a lower bound on 〈σ0〉+β,0 that tends to 1 as β→∞. We can use the

cluster expansion to obtain an explicit expansion in e−2β for 〈σ0〉+β,0, valid for large

enough values of β. Namely, an application of (5.46) with A = {0} yields

〈σ0〉+β,0 = exp
{ ∑

X∼{0}

(
Ψ{0}
β

(X )−Ψβ(X )
)}

, (5.47)

where the condition X ∼ {0} now reduces to the requirement that at least one of
the contours γ in X surrounds 0. It is then a simple exercise, proceeding as in the
previous sections, to obtain the desired expansion.

Exercise 5.12. (d ≥ 2) Prove that, for all sufficiently large values of β,

〈σ0〉+β,0 = 1−2e−4dβ−4de−(8d−4)β+O(e−8dβ) .
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Decay of the truncated 2-point function. As we saw in Exercises 3.23 and 3.24,
the correlations of the Ising model decay exponentially fast at sufficiently high tem-
perature (small β)

〈σiσ j 〉β,0 ≤ e−cHT (β)∥ j−i∥1 , ∀i , j ∈Zd .

In contrast, we know that at low temperature, β>βc, the correlations do not decay
anymore since, by the GKS inequalities, uniformly in i and j ,

〈σiσ j 〉+β,0 ≥ 〈σi 〉+β,0〈σ j 〉+β,0 = (〈σ0〉+β,0)2 > 0. (5.48)

Here, we will study the truncated 2-point function, which is the name usually given
in physics to the covariance between the random variables σi and σ j , in the Gibbs
state 〈·〉+

β,0:

〈σi ;σ j 〉+β,0
def= 〈σiσ j 〉+β,0 −〈σi 〉+β,0〈σ j 〉+β,0 .

Theorem 5.16. (d ≥ 2) There exist 0 < β0 <∞, c > 0 and C <∞ such that, for all
β≥β0,

0 ≤ 〈σi ;σ j 〉+β,0 ≤C e−cβ∥ j−i∥1 , ∀i , j ∈Zd . (5.49)

This result shows that, at least at low enough temperatures, the correlation length
of the Ising model on Zd , d ≥ 2, is finite (and actually tends to 0 as β ↑ ∞). In
particular, the spins are only weakly correlated, even though there is long-range
order.

Proof. The first inequality is just (5.48), so we only prove the second one. Let us

write Ψ̃A
β

(X )
def=ΨA

β
(X )−Ψβ(X ). On the one hand, by (5.47),

〈σi 〉+β,0〈σ j 〉+β,0 = exp
{ ∑

X∼{i }
Ψ̃{i }
β

(X )+
∑

X∼{ j }
Ψ̃

{ j }
β

(X )
}

.

On the other hand, by the general formula (5.46),

〈σiσ j 〉+β,0 = exp
{ ∑

X∼{i , j }
Ψ̃

{i , j }
β

(X )
}

.

Clusters X ∼ {i , j } can be split into three disjoint classes:

Ci
def= {

X : X ∼ {i } but X ̸∼ { j }
}
, C j

def= {
X : X ∼ { j } but X ̸∼ {i }

}
,

Ci , j
def= {

X : X ∼ {i } and X ∼ { j }
}

.

Observe now that Ψ{i , j }
β

(X ) =Ψ{i }
β

(X ) for all X ∈ Ci , and Ψ{i , j }
β

(X ) =Ψ{ j }
β

(X ) for all

X ∈C j . This implies that

〈σiσ j 〉+β,0 = exp
{ ∑

X∼{i }
Ψ̃{i }
β

(X )+
∑

X∼{ j }
Ψ̃

{ j }
β

(X )

+
∑

X∈Ci , j

(
Ψ̃

{i , j }
β

(X )− Ψ̃{i }
β

(X )− Ψ̃{ j }
β

(X )
)}

= 〈σi 〉+β,0〈σ j 〉+β,0 exp
{ ∑

X∈Ci , j

(
Ψ̃

{i , j }
β

(X )− Ψ̃{i }
β

(X )− Ψ̃{ j }
β

(X )
)}

.
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244 Chapter 5. Cluster Expansion

Now, for all A, |Ψ̃A
β

(X )| ≤ 2|Ψβ(X )|, and therefore

〈σiσ j 〉+β,0 ≤ 〈σi 〉+β,0〈σ j 〉+β,0 exp
{

6
∑

X∈Ci , j

|Ψβ(X )|
}

.

The conclusion will thus follow once we prove that
∑

X∈Ci , j

|Ψβ(X )| ≤C ′e−cβ∥ j−i∥1 , ∀i , j ∈Zd ,

for some constants c > 0 and C ′ <∞. To prove this claim, assumeβ≥ 2x0. By (5.29),
for any vertex v ∈Rd , since |X | ≤∑

γ∈X |γ|,
∑

X : X∋v

|Ψβ(X )|eβ|X | ≤
∑

X : X∋v

|Ψβ/2(X )| ≤ 1.

This implies that, for any R > 0,

∑
X :

X∋v, |X |≥R

|Ψβ(X )| ≤ e−βR
∑

X : X∋v

|Ψβ(X )|eβ|X | ≤ e−βR .

Therefore, since each X ∈Ci , j satisfies |X | ≥ ∥ j − i∥1,

∑
X∈Ci , j

|Ψβ(X )| ≤
∑

R≥∥ j−i∥1

Rd
∑
X :

X∋v, |X |=R

|Ψβ(X )|

≤
∑

R≥∥ j−i∥1

Rd e−βR ≤C ′e−cβ∥ j−i∥1 ,

uniformly in i , j ∈Zd , for some c = c(d) > 0 and all β large enough.

5.8 Bibliographical references

The cluster expansion is one of the oldest tools of statistical mechanics. As already
mentioned in Section 4.12.3, Mayer [236] started using it systematically in his anal-
ysis leading to the coefficients of the virial expansion of the pressure of a real gas.
Groeneveld [153] was one of the first to provide a rigorous proof of its convergence.

Nowadays, there exist various approaches to the problem of convergence of the
expansion, all leading more or less to the same conclusions. Adopting one is essen-
tially a matter of personal taste. The proof of convergence we gave in Section 5.4
was taken from Ueltschi [335], since it is pretty straightforward and keeps the com-
binatorics elementary.

Some standard references on the subject include the following papers. Polymer
models were introduced for the first time by Gruber and Kunz [155]. Kotecký and
Preiss [196] gave the first inductive proof of the convergence of the cluster expan-
sion, similar to the one used in Theorem 5.4. An interesting alternative approach,
where the expansion is obtained as the result of a multi-variable Taylor expansion,
was proposed by Dobrushin in [82]. A pedagagical description of the tree-graph ap-
proach that originated with the work of Penrose [269] can be found in Pfister [270];
see also the paper of Fernández and Procacci [103], where several of these methods
are compared.
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6 Infinite-Volume Gibbs Measures

In this chapter, we give an introduction to the theory of Gibbs measures, which
describes the properties of infinite systems at equilibrium. We will not cover all the
aspects of the theory, but instead present the most important ideas and results in
the simplest possible setting, the Ising model being a guiding example throughout
the chapter.

Remark 6.1. Due to the rather abstract nature of this theory, it will be necessary
to resort to some notions from measure theory that were not necessary in the pre-
vious chapters. From the probabilistic point of view, we will use extensively the
fundamental notion of conditional expectation, central in the description of Gibbs
measures. The reader familiar with these subjects (some parts of which are briefly
presented in Appendix B, Sections B.5 and B.8) will certainly feel more comfortable.
Certain topological notions will also be used, but will be presented from scratch
along the chapter. Nevertheless, we emphasize that although of great importance
in the understanding of the mathematical framework of statistical mechanics, a
detailed understanding of this chapter is not required for the rest of the book. ⋄

Some models to which the theory applies. The theory of Gibbs measures pre-
sented in this chapter is general and applies to a wide range of models. Although
the description of the equilibrium properties of these models will always follow
the standard prescription of Equilibrium Statistical Mechanics, what distinguishes
them is their microscopic specificities. That is, in our context: (i) the possible values
of a spin at a given vertex of Zd , and (ii) the interactions between spins contained
in a finite regionΛ⋐Zd .

A model is thus defined by first considering the set Ω0, called the single-spin
space, which describes all the possible states of one spin. The spin configurations
on a (possible infinite) subset S ⊂Zd are defined as in Chapter 3:

ΩS
def= ΩS

0 = {(ωi )i∈S : ωi ∈Ω0∀i ∈ S} .

When S = Zd , we simply write Ω ≡ ΩZd . Then, for each finite subset Λ⋐ Zd , the
energy of a configuration inΛ is determined by a Hamiltonian

HΛ :Ω→R .

245
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246 Chapter 6. Infinite-Volume Gibbs Measures

We list some of the examples that will be used as illustrations throughout the chap-
ter.

• For the Ising model,

Ω0 = {+1,−1} .

The nearest-neighbor version studied in Chapter 3 corresponds to

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

ωiω j −h
∑
i∈Λ

ωi ,

where we remind the reader that E b
Λ is the set of nearest-neighbor edges ofZd

with at least one endpoint in Λ, see (3.2). We will also consider a long-range
version of this model:

HΛ(ω) =−
∑

{i , j }∩Λ̸=∅
Ji jωiω j −h

∑
i∈Λ

ωi ,

where Ji j → 0 (sufficiently fast) when ∥ j − i∥1 →∞.

• For the q-state Potts model, where q ≥ 2 is an integer, we set

Ω0 = {0,1,2, . . . , q −1} ,

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

δωi ,ω j .

• For the Blume–Capel model,

Ω0 = {+1,0,−1} ,

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

(ωi −ω j )2 −h
∑
i∈Λ

ωi −λ
∑
i∈Λ

ω2
i .

• The X Y model is an example with an uncountable single-spin space,

Ω0 =
{

x ∈R2 : ∥x∥2 = 1
}

,

and Hamiltonian

HΛ(ω) =−β
∑

{i , j }∈E b
Λ

ωi ·ω j ,

where ωi ·ω j denotes the scalar product.

All the models above have a common property: their single-spin space is com-
pact (see below). Models with non-compact single-spin spaces present additional
interesting difficulties which will not be discussed in this chapter. One important
case, the Gaussian Free Field for which Ω0 =R, will be studied separately in Chap-
ter 8.
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6.1. The problem with infinite systems 247

About the point of view adopted in this chapter. Describing the above models
in infinite volume will require a fair amount of mathematical tools. For simplicity,
we will only expose the details of the theory for models whose spins take their values

in {±1}; the set of configurations is thus the same as in Chapter 3: Ω= {±1}Z
d

.
Even with this simplification, we will face most of the mathematical difficulties

that are unavoidable when attempting to describe infinite systems at equilibrium.
It will however allow us to provide elementary proofs, in several cases, and to some-
what reduce the overall amount of abstraction (and notation) required.

Let us stress that the set {±1} has been chosen for convenience, but that it could
be replaced by any finite set; our discussion (including the proofs) applies essen-
tially verbatim also in that setting. In fact, all the results presented here remain
valid, modulo some minor changes, for any model whose spins take their values in
a compact set. At the end of the chapter, in Section 6.10, we will mention the few
differences that appear in this more general situation.

So, from now on, and until the end of the chapter, unless explicitly stipulated
otherwise,Ω0 will be {±1}, and

ΩΛ = {±1}Λ , Ω= {±1}Z
d

.

Outline of the chapter

The probabilistic framework used to describe infinite systems on the lattice will be
presented in Section 6.2, together with a motivation for the notion of specification,
central to the definition of infinite-volume Gibbs measures. After introducing the
necessary topological notions, the existence of Gibbs measures will be proved in
Section 6.4. Several uniqueness criteria, among which Dobrushin’s condition of
weak dependence, will be described in Section 6.5. Gibbs measures enjoying sym-
metries will be described rapidly in Section 6.6; translation invariance, which plays
a special role, will be described in Section 6.7. In Section 6.8, the convex struc-
ture of the set of Gibbs measures will be described, as well as the decomposition
of any Gibbs measure into a convex combination of extremal elements and the lat-
ter’s remarkable properties. In Section 6.9, we will present the variational principle,
which provides an alternative description of translation-invariant Gibbs measures,
in more thermodynamical terms. In Section 6.10, we will sketch the changes neces-
sary in order to describe infinite systems whose spins take infinitely many values,
the latter being considered at several places in the rest of the book. In Section 6.11,
we give a criterion for non-uniqueness involving the non-differentiability of the
pressure, which will be used later in the book. The remaining sections are comple-
ments to the chapter.

6.1 The problem with infinite systems

Let us recall the approach used in Chapter 3. By considering for example the +
boundary condition, we started in a finite volume Λ⋐ Zd , and defined the Gibbs
distribution unambiguously by

µ+
Λ;β,h(ω) = e−HΛ;β,h (ω)

Z+
Λ;β,h

, ω ∈Ω+
Λ .
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248 Chapter 6. Infinite-Volume Gibbs Measures

Then, to describe the Ising model on the infinite lattice, we introduced the thermo-
dynamic limit. We considered a sequence of subsets Λn ↑Zd and showed, for each
local function f , existence of the limit

〈 f 〉+β,h = lim
n→∞〈 f 〉+Λn ;β,h .

This defined a linear functional 〈·〉+
β,h on local functions, which was called an infin-

ite-volume Gibbs state.
This procedure was sufficient for us to determine the phase diagram of the Ising

model (Section 3.7), but leaves several natural questions open. For instance, we
know that

lim
n→∞µ

+
Λn ;β,h(σ0 =−1) = lim

n→∞
1
2

(
1−〈σ0〉+Λn ;β,h

)= 1
2

(
1−〈σ0〉+β,h

)

exists. This raises the question whether this limit represents the probability that
σ0 =−1 under some infinite-volume probability measure µ+

β,h :

µ+
β,h(σ0 =−1) = 1

2

(
1−〈σ0〉+β,h

)
. (6.1)

In infinite volume, neither the Hamiltonian nor the partition function are well-
defined. Moreover, it is easy to check that each individual configuration would have
to have probability zero. Therefore, extending the definition of a Gibbs distribution
to the uncountable set of configurationsΩ requires a different approach, involving
the methods of measure theory.

6.2 Events and probability measures on Ω

As we said above, it is easy to construct a probability distribution on a finite set such
as ΩΛ, since this can be done by specifying the probability of each configuration.
Another convenient consequence of the finiteness ofΩΛ is that the set of events as-
sociated toΩΛ is naturally identified with the collection P(ΩΛ) of all subsets ofΩΛ.
The set of probability distributions on the finite measurable space (ΩΛ,P(ΩΛ)) is
denoted simply M1(ΩΛ).

Notation 6.2. In this chapter, it will often be convenient to add a subscript to con-
figurations to specify explicitly the domain in which they are defined. For example
elements of ΩΛ will usually be denoted ωΛ,ηΛ, etc.

Given S ⊂ Zd and a configuration ω defined on a set larger than S, we will also
write ωS to denote the restriction of ω to S, (ωi )i∈S . We will also often decompose a
configuration ωS ∈ΩS as a concatenation: ωS =ωΛωS\Λ (for some Λ⊂ S).

These notations should not to be confused with the notation in Chapter 3, where
σΛ was used to denote the product of all spins in Λ, while the restriction of ω to Λ
was written ω|Λ.

We first define the natural collection of events onΩ, based on the notion of cylinder.
The restriction of ω ∈Ω to S ⊂ Zd , ωS , can be expressed using the projection map
ΠS :Ω→ΩS :

ΠS (ω)
def= ωS .

In particular, with this notation, given A ∈ P(ΩΛ), the event that “A occurs in Λ”
can be writtenΠ−1

Λ (A) = {ω ∈Ω : ωΛ ∈ A}.
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6.2. Events and probability measures on Ω 249

For eachΛ⋐Zd , consider the set

C (Λ)
def= {

Π−1
Λ (A) : A ∈P(ΩΛ)

}

of all events on Ω that depend only on the spins located inside Λ. Each event
C ∈ C (Λ) is called a cylinder (with base Λ). For example, {ω0 = −1}, the event
containing all configurations ω for which ω0 =−1, is a cylinder with baseΛ= {0}.

Exercise 6.1. Show that C (Λ) has the structure of an algebra: (i) ∅ ∈C (Λ), (ii) A ∈
C (Λ) implies Ac ∈C (Λ), and (iii) A,B ∈C (Λ) implies A∪B ∈C (Λ).

For any S ⊂Zd (possibly infinite), consider the collection

CS
def=

⋃
Λ⋐S

C (Λ)

of all local events in S, that is, all events that depend on finitely many spins, all
located in S.

Exercise 6.2. Check that, for all S ⊂Zd , CS contains at most countably many events
and that it has the structure of an algebra. Hint: first, show that C (Λ) ⊂C (Λ′) when-
ever Λ⊂Λ′.

The σ-algebra generated by cylinders with base contained in S is denoted by

FS
def= σ(CS )

and consists of all the events that depend only on the spins inside S. When S =Zd ,
we simply write

C ≡CZd , F ≡σ(C ) .

The cylinders C should be considered as the algebra of local events. Although
generated from these local events, the σ-algebra F automatically contains macro-
scopic events, that is, events that depend on the system as a whole (a precise defi-
nition of macroscopic events will be given in Section 6.8.1). For example, the event

{
ω ∈Ω : limsup

n→∞
1

|B(n)|
∑

i∈B(n)

ωi > 0
}
=

⋃
k≥1

⋂
n≥1

⋃
m≥n

{ 1

|B(m)|
∑

i∈B(m)

ωi ≥ 1
k

}

belongs to F (and is obviously not local). The importance of macroscopic events
will be emphasized in Section 6.8.

The reader might wonder whether there are interesting events that do not be-
long to F . As a matter of fact, all events which we will need can be described ex-
plicitly in terms of the individual spins in S, using (possibly infinite) unions and
intersections. Those are all in F . ⋄

The set of probability measures on (Ω,F ) will be denoted M1(Ω,F ), or sim-
ply M1(Ω) when no ambiguity is possible. The elements of M1(Ω) will usually be
denoted µ or ν.

A function g :Ω→R is measurable with respect to FS (or simply FS -measur-
able) if g−1(I ) ∈FS for all Borel sets I ⊂ R. Intuitively, such a function should be a
function of the spins living in S:
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250 Chapter 6. Infinite-Volume Gibbs Measures

Lemma 6.3. A function g : Ω→ R is FS -measurable if and only if there exists ϕ :
ΩS →Rmeasurable such that

g (ω) =ϕ(ωS ) .

Proof. Let g be FS -measurable. OnΩS , consider the set of cylinder events C ′
S , and

F ′
S = σ(C ′

S ). If ΠS :Ω→ΩS denotes the projection map, we have Π−1
S (C ′) ∈FS for

all C ′ ∈C ′
S . This implies that FS is generated byΠS : FS =σ(ΠS ) (see Section B.5.2).

Therefore, by Lemma B.38, there existsϕ :Ω→ΩS such that g =ϕ◦ΠS . Conversely,
if g is of this form, then clearly g−1(I ) ∈ FS for each Borel set I ⊂ R so that g is
FS -measurable.

Remember that f :Ω→R is local if it only depends on a finite number of spins:
there exists Λ⋐Zd such that f (ω) = f (ω′) as soon as ωΛ =ω′

Λ. By Lemma 6.3, this
is equivalent to saying that f is FΛ-measurable. In fact, since the spins take finitely
many values, a local function can only take finitely many values and can therefore
be expressed as a finite linear combination of indicators of cylinders. Since, for
each of the latter, f −1(I ) ∈ C ⊂ F , local functions are always measurable. In the
sequel, all the functions f : Ω→ R which we will consider will be assumed to be
measurable.

Notation 6.4. In Chapter 3, we denoted the expectation of a function f under a prob-
ability measure µ by 〈 f 〉µ. For the rest of this chapter, it will be convenient to also use
the following equivalent notations:

∫
f dµ, or µ( f ).

States vs. probability measures

Remember from Section 3.4 that a state is a normalized positive linear functional
f 7→ 〈 f 〉 acting on local functions. Observe that a state can be associated to each
probability measure µ ∈M1(Ω) by setting, for all local functions f ,

〈 f 〉 def= µ( f ) .

It turns out that all states are of this form:

Theorem 6.5. For every state 〈·〉, there exists a unique probability measure µ ∈
M1(Ω) such that 〈 f 〉 =µ( f ) for every local function f :Ω→R.

This result is a particular case of the Riesz–Markov–Kakutani Representation Theo-
rem. Its proof requires a few tools that will be presented later, and can be found in
Section 6.12.

Two infinite-volume measures for the Ising model

Using Theorem 6.5, we can associate a probability measure to each Gibbs state of
the Ising model. In particular, let us denote by µ+

β,h (resp. µ−
β,h) the measure asso-

ciated to 〈·〉+
β,h (resp. 〈·〉−

β,h). For these measures, relations such as (6.1) hold. A lot

will be learned about these measures throughout the chapter.
For the time being, one should remember that the construction ofµ+

β,h andµ−
β,h

was based on the thermodynamic limit, which was used to define the states 〈·〉+
β,h

and 〈·〉−
β,h . Our aim, in the following sections, is to present a way of defining mea-

sures directly on the infinite lattice, without involving any limiting procedure. As
we will see, this alternative approach presents a number of substantial advantages.
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6.2. Events and probability measures on Ω 251

Why not simply use Kolmogorov’s Extension Theorem?

In probability theory, the standard approach to construct infinite collections of de-
pendent random variables relies on Kolmogorov’s Extension Theorem, in which the
strategy is to define a measure by requiring it to satisfy a set of local conditions. In
our case, these conditions should depend on the microscopic description of the
system under consideration, which is encoded in its Hamiltonian. We briefly out-
line this approach and explain why it does not solve the problem we are interested
in.

Given µ ∈M1(Ω) and Λ⋐Zd , the marginal distribution of µ on Λ is the prob-
ability distribution µ|Λ ∈M1(ΩΛ) defined by

µ|Λ def= µ◦Π−1
Λ . (6.2)

In other words, µ|Λ is the only distribution in M1(ΩΛ) such that, for all A ∈P(ΩΛ),
µ|Λ(A) =µ({ω ∈Ω : ωΛ ∈ A}). By construction, the marginals satisfy:

µ|∆ =µ|Λ ◦ (ΠΛ∆)−1 , ∀∆⊂Λ⋐Zd , (6.3)

whereΠΛ∆ :ΩΛ→Ω∆ is the canonical projection defined byΠΛ∆
def= Π∆ ◦Π−1

Λ .
It turns out that a measure µ ∈M1(Ω) is entirely characterized by its marginals

µ|Λ, Λ ⋐ Zd , but more is true: given any collection of probability distributions
{µΛ}Λ⋐Zd , with µΛ ∈ M1(ΩΛ) for all Λ, which satisfies a compatibility condition
of the type (6.3), there exists a unique probability measure µ ∈ M1(Ω) admitting
them as marginals. This is the content of the following famous

Theorem 6.6. [Kolmogorov’s Extension Theorem] Let {µΛ}Λ⋐Zd , µΛ ∈ M1(ΩΛ), be
consistent in the sense that

for all Λ⋐Zd : µ∆ =µΛ ◦ (ΠΛ∆)−1 , ∀∆⊂Λ . (6.4)

Then there exists a unique µ ∈M1(Ω) such that µ|Λ =µΛ for all Λ⋐Zd .

Proof. See Section 6.12.

Theorem 6.6 yields an efficient way of constructing a measure in M1(Ω), provided
that one can define the desired collection {µΛ}Λ⋐Zd of candidates for its marginals.
An important such application is the construction of the product measure, that is,
of an independent field; in our setting, this covers for example the case of the Ising
model at infinite temperature, β= 0.

Exercise 6.3. (Construction of a product measure on (Ω,F )) For each i ∈Zd , let ρi

be a probability distribution on {±1} and let, for all Λ⋐Zd ,

µΛ(ωΛ)
def=

∏
j∈Λ

ρ j (ω j ) , ωΛ ∈ΩΛ .

Check that {µΛ}Λ⋐Zd is consistent. The resulting measure on (Ω,F ) whose existence

is guaranteed by Theorem 6.6, is denoted ρZ
d

.

If one tries to use Theorem 6.6 to construct infinite-volume measures for the
Ising model on Zd , we face a difficulty. Namely, the Boltzmann weight allows one
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252 Chapter 6. Infinite-Volume Gibbs Measures

to define finite-volume Gibbs distributions in terms of the underlying Hamiltonian.
However, as we will explain now, in general, there is no way to express the marginals
associated to an infinite-volume Gibbs measure without making explicit reference to
the latter.

Indeed, let us consider the simplest case of the marginal distribution of the spin
at the origin, σ0, and let us assume that d ≥ 2 and h = 0. Of course, σ0 follows a
Bernoulli distribution (with values in {±1}) for some parameter p ∈ [0,1]. The only
thing that needs to be determined is the value of p. However, we already know from
the results in Chapter 3 that, for all large enough values ofβ, the average value ofσ0,
and thus the relevant value of p, depends on the chosen Gibbs state. However, all
these states correspond to the same Hamiltonian and the same values of the param-
eters β and h. This means that it is impossible to determine p from a knowledge of
the Hamiltonian and the parameters β and h: one needs to know the macroscopic
state the system is in, which is precisely what we are trying to construct. This shows
that Kolmogorov’s Extension Theorem is doomed to fail for the construction of the
Ising model in infinite volume. [1]

Exercise 6.4. Consider {µ∅
Λ

}Λ⋐Zd , where µ∅
Λ

is the Gibbs distribution associated to
the two-dimensional Ising model in Λ, with free boundary condition, at parameters
β> 0 and h = 0. Show that the family obtained is not consistent.

6.2.1 The DLR approach

A key observation, made by Dobrushin, Lanford and Ruelle is that if one considers
conditional probabilities rather than marginals, then one is led to a different con-
sistency condition, much better suited to our needs. Before stating this condition
precisely (see Lemma 6.7 below), we explain it at an elementary level, using the
Ising model and the notations of Chapter 3.

Consider ∆⊂Λ⋐Zd and a boundary condition η ∈Ω:

Λ
∆

ωΛ\∆η

The Ising model in Λ with boundary condition η is described by µη
Λ;β,h . Let f be a

local function depending only on the variables ω j , j ∈ ∆, and consider the expec-
tation of f under µη

Λ;β,h . Since f only depends on the spins located inside ∆, this

expectation can be computed by first fixing the values of the spins in Λ \∆. As we
already saw in Exercise 3.11, µη

Λ;β,h , conditioned onωΛ\∆, is equivalent to the Gibbs

distribution on ∆with boundary condition ωΛ\∆ηΛc outside ∆. Therefore,

〈 f 〉η
Λ;β,h =

∑
ωΛ\∆

〈
f 1{ωΛ\∆ outside ∆}

〉η
Λ;β,h

=
∑
ωΛ\∆

〈 f 〉ωΛ\∆ηΛc

∆;β,h µ
η

Λ;β,h(ωΛ\∆ outside ∆) . (6.5)

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

6.2. Events and probability measures on Ω 253

(Notice a slight abuse of notation in the last line.) A particular instance of (6.5) is
when f is the indicator of some event A occurring in ∆, in which case

µ
η

Λ;β,h(A) =
∑
ωΛ\∆

µ
ωΛ\∆ηΛc

∆;β,h (A)µη
Λ;β,h(ωΛ\∆ outside ∆) . (6.6)

The above discussion expresses the idea of Dobrushin, Lanford and Ruelle: the re-
lation (6.5), or its second equivalent version (6.6), can be interpreted as a consis-
tency relation between the Gibbs distributions in Λ and ∆. We can formulate (6.5)
in a more precise way:

Lemma 6.7. For all ∆⊂Λ⋐Zd and all bounded measurable f :Ω→R,

〈 f 〉η
Λ;β,h = 〈〈 f 〉·∆;β,h

〉η
Λ;β,h , ∀η ∈Ω . (6.7)

Proof of Lemma 6.7. To lighten the notations, we omit any mention of the depen-
dence on β and h. Each ω ∈Ωη

Λ
is of the form ω=ωΛηΛc , with ωΛ ∈ΩΛ. Therefore,

〈〈 f 〉·∆
〉η
Λ
=

∑
ωΛ

〈 f 〉ωΛηΛc

∆

e−HΛ(ωΛηΛc )

Zη
Λ

. (6.8)

In the same way,

〈 f 〉ωΛηΛc

∆
=

∑
ω′
∆

f (ω′
∆ωΛ\∆ηΛc )

e−H∆(ω′
∆
ω
Λ\∆

η
Λc )

ZωΛηΛc

∆

. (6.9)

In (6.8), we decompose ωΛ = ω∆ωΛ\∆, and sum separately over ωΛ\∆ and ω∆. Ob-
serve that

HΛ(ω∆ωΛ\∆ηΛc )−H∆(ω∆ωΛ\∆ηΛc ) =
HΛ(ω′

∆ωΛ\∆ηΛc )−H∆(ω′
∆ωΛ\∆ηΛc ) . (6.10)

Indeed, the difference on each side represents the interactions among the spins in-
sideΛ\∆, and between these spins and those outsideΛ, and so does not depend on
ω∆ or ω′

∆. Therefore, plugging (6.9) into (6.8), using (6.10), rearranging and calling
ω′
∆ωΛ\∆ ≡ω′

Λ, we get

〈〈 f 〉·∆
〉η
Λ
=

∑
ωΛ\∆

∑
ω′
∆

f (ω′
∆ωΛ\∆ηΛc )

e−HΛ(ω′
∆
ωΛ\∆ηΛc )

Zη
Λ

∑
ω∆ e−H∆(ω∆ωΛ\∆ηΛc )

ZωΛηΛc

∆︸ ︷︷ ︸
=1

=
∑
ω′
Λ

f (ω′
ΛηΛc )

e−HΛ(ω′
Λ
η
Λc )

Zη
Λ

= 〈 f 〉η
Λ

.

Remark 6.8. The proof given above does not depend on the details of the Ising
Hamiltonian, but rather on the property (6.10), which will be used again later. ⋄
We now explain why (6.7) leads to a natural characterization of infinite-volume
Gibbs states, more general than the one introduced in Chapter 3.

First observe that, since we are considering the Ising model in which the inter-
actions are only between nearest neighbors, the function ω 7→ 〈 f 〉ω

∆;β,h is local (it
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254 Chapter 6. Infinite-Volume Gibbs Measures

depends only on those ωi for which i ∈ ∂ex∆). So, if the distributions 〈·〉η
Λ;β,h con-

verge to a Gibbs state 〈·〉 when Λ ↑ Zd , in the sense of Definition 3.14, then we can
take the thermodynamic limit on both sides of (6.7), obtaining

〈 f 〉 = 〈〈 f 〉·∆;β,h

〉
, (6.11)

for all ∆ ⋐ Zd and all local functions f . We conclude that (6.11) must be satis-
fied by all states 〈·〉 obtained as limits. But this can also be used to characterize
states without reference to limits. Namely, we could extend the notion of infinite-
volume Gibbs state by saying that a state 〈·〉 (not necessarily obtained as a limit)
is an infinite-volume Gibbs state for the Ising model at (β,h) if (6.11) holds for ev-
ery ∆⋐ Zd and all local functions f . This new characterization has mathematical
advantages that will become clear later.

If one identifies a Gibbs state 〈·〉 with the corresponding measure µ given in
Theorem 6.5, then µ should satisfy the infinite-volume version of (6.6): by taking
f = 1A , for some local event A, (6.11) becomes

µ(A) =
∫
µω∆;β,h(A)µ(dω) . (6.12)

Once again, we can use (6.12) as a set of conditions that define those measures that
describe the Ising model in infinite volume. We will say that µ ∈ M1(Ω) is a Gibbs
measure for the parameters (β,h) if (6.12) holds for all ∆⋐ Zd and all local events
A. An important feature of this point of view is that it characterizes probability
measures directly on the infinite latticeZd , without assuming them being obtained
from a limiting procedure.

This characterization of probability measures for infinite statistical mechanical
systems, and the study of their properties, is often called the DLR formalism. In
Section 6.3, we establish the mathematical framework in which this formalism can
be conveniently developed.

6.3 Specifications and measures

We will formulate the DLR approach introduced in the previous section in a more
precise and more general way. The theory will apply to a large class of models,
containing the Ising model as a particular case. It will also include models with a
more complex structure, for example with long-range interactions or interactions
between larger collections of spins.

We will proceed in two steps. First, we will generalize the consistency rela-
tion (6.7) by introducing the notion of specification.

In our discussion of the Ising model, the starting ingredient was the family of
finite-volume Gibbs distributions {µ·

Λ;β,h(·)}Λ⋐Zd , whose main features we gather

as follows:

1. For a fixed boundary condition ω, µω
Λ;β,h(·) is a probability distribution on

(Ωω
Λ,P(Ωω

Λ)). It can however also be seen as a probability measure on (Ω,F )
by letting, for all A ∈F ,

µωΛ;β,h(A)
def=

∑
τΛ∈ΩΛ

µωΛ;β,h(τΛωΛc )1A(τΛωΛc ) . (6.13)
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In particular,
∀B ∈FΛc , µωΛ;β,h(B) = 1B (ω) . (6.14)

2. For a fixed A ∈ F , µω
Λ;β,h(A) is entirely determined by ωΛc (actually, even by

ω∂exΛ). In particular, ω 7→µω
Λ;β,h(A) is FΛc -measurable.

3. When considering regions ∆⊂Λ⋐Zd , the consistency condition (6.7) is sat-
isfied.

The maps µ·
Λ;β,h(·) depend of course on the specific form of the Hamiltonian of the

Ising model, but the three properties above can in fact be introduced without ref-
erence to any particular Hamiltonian. In a fixed volume, we start by incorporating
the first two features in a general definition:

Definition 6.9. Let Λ ⋐ Zd . A probability kernel from FΛc to F is a map πΛ :
F ×Ω→ [0,1] with the following properties:

• For each ω ∈Ω, πΛ(· |ω) is a probability measure on (Ω,F ).

• For each A ∈F , πΛ(A | ·) is FΛc -measurable.

If, moreover,
πΛ(B |ω) = 1B (ω) , ∀B ∈FΛc (6.15)

for all ω ∈Ω, πΛ is said to be proper.

Note that, if πΛ is a proper probability kernel from FΛc to F , then the probability
measure πΛ(· |ω) is concentrated on the setΩω

Λ. Indeed, for any ω ∈Ω,

πΛ(Ωω
Λ |ω) = 1Ωω

Λ
(ω) = 1, (6.16)

since Ωω
Λ ∈FΛc . For this reason, we will call ω the boundary condition of πΛ(· |ω).

Our first example of a proper probability kernel was thus (A,ω) 7→ µω
Λ;β,h(A), de-

fined in (6.13).

For a fixed boundary condition ω, a bounded measurable function f : Ω→ R

can be integrated with respect to πΛ(· |ω). We denote by πΛ f the FΛc -measurable
function defined by

πΛ f (ω)
def=

∫
f (η)πΛ(dη |ω) .

Although this integral notation is convenient, our assumption on the finiteness of
Ω0 implies that most of the integrals that will appear in this chapter are actually
finite sums. Indeed, we will always work with proper probability kernels and the
observation (6.16) implies that the measure πΛ(· |ω) is entirely characterized by the
probability it associates to the configurations in the finite set Ωω

Λ. In particular, we
can verify thatπΛ is proper if and only if it is of the form (6.13). Namely, using (6.16),
one can compute the probability of any event A ∈F by summing over the config-
urations inΩω

Λ:
πΛ(A |ω) =

∑
η∈Ωω

Λ

πΛ({η} |ω)1A(η) .

Since each η ∈Ωω
Λ is of the form η= ηΛωΛc , this sum can equivalently be expressed

as
πΛ(A |ω) =

∑
ηΛ∈ΩΛ

πΛ({ηΛωΛc } |ω)1A(ηΛωΛc ) .
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256 Chapter 6. Infinite-Volume Gibbs Measures

In the sequel, all kernels πΛ to be considered will be proper, which, by the above
discussion, means that πΛ is entirely defined by the numbers πΛ({ηΛωΛc }) |ω). To
lighten the notations, we will abbreviate

πΛ({ηΛωΛc } |ω) ≡πΛ(ηΛ |ω) .

These sums will be used constantly throughout the chapter. We summarize this
discussion in the following statement.

Lemma 6.10. If πΛ is proper, then, for all ω ∈Ω,

πΛ(A |ω) =
∑

ηΛ∈ΩΛ
πΛ(ηΛ |ω)1A(ηΛωΛc ) , ∀A ∈F , (6.17)

and, for any bounded measurable function f :Ω→R,

πΛ f (ω) =
∑

ηΛ∈ΩΛ
πΛ(ηΛ |ω) f (ηΛωΛc ) . (6.18)

In order to describe an infinite system on Zd , we will actually need a fam-
ily of proper probability kernels, {πΛ}Λ⋐Zd , satisfying consistency relations of the
type (6.6)–(6.7). These consistency relations are conveniently expressed in terms of
the composition of kernels: given πΛ and π∆, set

πΛπ∆(A |η)
def=

∫
π∆(A |ω)πΛ(dω |η) .

Exercise 6.5. Let ∆ ⊂Λ⋐ Zd . Show that πΛπ∆ is a proper probability kernel from
FΛc to F .

In these terms, the generalization of (6.6) can be stated as follows.

Definition 6.11. A specification is a family π= {πΛ}Λ⋐Zd of proper probability ker-
nels that is consistent, in the sense that

πΛπ∆ =πΛ ∀∆⊂Λ⋐Zd .

In order to formulate an analogue of (6.12) for probability kernels, it is natural
to define, for every kernel πΛ and every µ ∈M1(Ω), the probability measure µπΛ ∈
M1(Ω) via

µπΛ(A)
def=

∫
πΛ(A |ω)µ(dω) , A ∈F . (6.19)

Exercise 6.6. Show that, for every bounded measurable function f , every measure
µ ∈M1(Ω) and every kernel πΛ, µπΛ( f ) =µ(πΛ f ). Hint: start with f = 1A .

With a specification at hand, we can now introduce the central definition of this
chapter. Expression (6.20) below is the generalization of (6.12).

Definition 6.12. Let π = {πΛ}Λ⋐Zd be a specification. A measure µ ∈ M1(Ω) is said
to be compatible with (or specified by) π if

µ=µπΛ ∀Λ⋐Zd . (6.20)

The set of measures compatible with π (if any) is denoted by G (π).
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The above characterization raises several questions, which we shall investigate
in quite some generality in the rest of this chapter.

• Existence. Is there always at least one measure µ satisfying (6.20)? This prob-
lem will be tackled in Section 6.4.

• Uniqueness. Can there be several such measures? The uniqueness problem
will be considered in Section 6.5, where we will introduce a condition on a
specification π which guarantees that G (π) contains exactly one probability
measure: |G (π)| = 1.

• Comparison with the former approach. We will also consider the important
question of comparing the approach based on Definition 6.12 with the ap-
proach used in Chapter 3, in which infinite-volume states were obtained as
the thermodynamic limits of finite-volume ones. We will see that Defini-
tion 6.12 yields, in general, a strictly larger set of measures than those pro-
duced by the approach via the thermodynamic limit (proof of Theorem 6.26
and Example 6.64). Nevertheless, all the relevant (in a sense to be discussed
later) measures in G (π) can in fact be obtained using the latter approach
(Section 6.8).

When the specification does not involve interactions between the spins, these
questions can be answered easily:

Exercise 6.7. For each i ∈ Zd , let ρi be a probability distribution on {±1}. For each
Λ⋐Zd , define the product distribution ρΛ onΩΛ by

ρΛ(ωΛ)
def=

∏
i∈Λ

ρi (ωi ) .

For τΛ ∈ΩΛ and η ∈Ω, let

πΛ(τΛ |η)
def= ρΛ(τΛ) . (6.21)

1. Show that π= {πΛ}Λ⋐Zd is a specification.

2. Show that the product measure ρZ
d

(remember Exercise 6.3) is the unique

probability measure specified by π: G (π) = {ρZ
d

}.

In the previous exercise, establishing existence and uniqueness of a probability
measure compatible with the specification (6.21) is straightforward, thanks to the
independence of the spins. In the next sections, we will introduce a general proce-
dure for constructing specifications corresponding to systems of interacting spins
and we will see that existence/uniqueness can be derived for abstract specifica-
tions under fairly general assumptions. (Establishing non-uniqueness, on the other
hand, usually requires a case-by-case study.)

6.3.1 Kernels vs. conditional probabilities

Before continuing, we emphasize the important relation existing between a spec-
ification and the measures it specifies (if any). We first verify the following simple
property:
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Lemma 6.13. Assume that πΛ is proper. Then, for all A ∈F and all B ∈FΛc ,

πΛ(A∩B | ·) =πΛ(A | ·)1B (·) . (6.22)

Proof. Assume first that ω ∈ B . Then, since the kernel is proper, B has probability 1
under πΛ(· |ω): πΛ(B |ω) = 1B (ω) = 1. Therefore

πΛ(A∩B |ω) =πΛ(A |ω)−πΛ(A∩B c |ω) =πΛ(A |ω) =πΛ(A |ω)1B (ω) .

Similarly, if ω ̸∈ B , πΛ(B |ω) = 0 and thus

πΛ(A∩B |ω) = 0 =πΛ(A |ω)1B (ω) .

Now, observe that if µ ∈G (π), then (6.22) implies that, for all A ∈F and B ∈FΛc ,

∫

B
πΛ(A |ω)µ(dω) =

∫
πΛ(A∩B |ω)µ(dω) =µπΛ(A∩B) =µ(A∩B) .

But, by definition of the conditional probability,

µ(A∩B) =
∫

B
µ(A |FΛc )(ω)µ(dω) .

By the almost sure uniqueness of the conditional expectation (Lemma B.50), we
thus see that

µ(A |FΛc )(·) =πΛ(A | ·) , µ-almost surely. (6.23)

Since A 7→ πΛ(A |ω) is a measure for each ω, we thus see that πΛ provides a regular
conditional distribution for µ, when conditioned with respect to FΛc . On the other
hand, if (6.23) holds, then, for allΛ⋐Zd and all A ∈F ,

µπΛ(A) =
∫
πΛ(A |ω)µ(dω) =

∫
µ(A |FΛc )µ(dω) =µ(A) ,

and so µ ∈ G (π). We have thus shown that a measure µ is compatible with a spec-
ification π = {πΛ}Λ⋐Zd if and only if each kernel πΛ provides a regular version of
µ(· |FΛc ).

6.3.2 Gibbsian specifications

Before moving on to the existence problem, we introduce the class of specifications
representative of the models studied in this book.

The Ising Hamiltonian HΛ;β,h (see (3.1)) contains two sums: the first one is

over pairs of nearest-neighbors {i , j } ∈ E b
Λ , the second one is over single vertices i ∈

Λ. It thus contains interactions among pairs, and singletons. This structure can
be generalized, including interactions among spins on sets of larger (albeit finite)
cardinality. ⋄

We will define a Hamiltonian by defining the energy of a configuration on each
subset B ⋐Zd , via the notion of potential.
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Definition 6.14. If, for each finite B ⋐ Zd , ΦB : Ω→ R is FB -measurable, then the
collection Φ = {ΦB }B⋐Zd is called a potential. The Hamiltonian in the box Λ⋐ Zd

associated to the potential Φ is defined by

HΛ;Φ(ω)
def=

∑

B⋐Zd :
B∩Λ̸=∅

ΦB (ω) , ∀ω ∈Ω . (6.24)

Since the sum (6.24) can a priori contain infinitely many terms, we must guarantee
that it converges. Let

r (Φ)
def= inf

{
R > 0 : ΦB ≡ 0 for all B with diam(B) > R

}
.

If r (Φ) < ∞, Φ has finite range and HΛ;Φ is well defined. If r (Φ) = ∞, Φ has in-
finite range and, for the Hamiltonian to be well defined, we will assume that Φ is
absolutely summable in the sense that

∑

B⋐Zd

B∋i

∥ΦB∥∞ <∞ , ∀i ∈Zd , (6.25)

(remember that ∥ f ∥∞ def= supω | f (ω)|) which ensures that the interaction of a spin
with the rest of the system is always bounded, and therefore that ∥HΛ;Φ∥∞ <∞.

We now present a few examples of models discussed in this book with the cor-
responding potentials.

• The (nearest-neighbor) Ising model on Zd can be recovered from the poten-
tial

ΦB (ω) =





−βωiω j if B = {i , j } , i ∼ j ,

−hωi if B = {i } ,

0 otherwise.

(6.26)

Observe that the corresponding specification describes a model at specific
values of its parameters: in the present case, we get a different specification
for each choice of the parameters β and h.

One can introduce an infinite-range version of the Ising model, by introduc-
ing a collection {Ji j }i , j∈Zd of real numbers and setting

ΦB (ω) =





−Ji jωiω j if B = {i , j } ,

−hωi if B = {i } ,

0 otherwise.

(6.27)

• The (nearest-neighbor) q-state Potts model corresponds to the potential

ΦB (ω) =
{
−βδωi ,ω j if B = {i , j } , i ∼ j ,

0 otherwise.
(6.28)

• The (nearest-neighbor) Blume–Capel model is characterized by the potential

ΦB (ω) =





β(ωi −ω j )2 if B = {i , j } , i ∼ j ,

−hωi −λω2
i if B = {i } ,

0 otherwise.

(6.29)

This model will be studied in Chapter 7.
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Exercise 6.8. If Ji j = ∥ j − i∥−α∞ , determine the values of α > 0 (depending on the
dimension) for which (6.27) is absolutely summable.

In the above examples, the parameters of each model have been introduced ac-
cording to different sets B . Sometimes, one might want the inverse temperature
to be introduced separately, so as to appear as a multiplicative constant in front of
the Hamiltonian. This amounts to considering an absolutely summable potential
Φ= {ΦB }B⋐Zd , and to then multiply it by β: βΦ≡ {βΦB }B⋐Zd .

We now proceed to define a specificationπΦ = {πΦΛ}Λ⋐Zd such thatπΦΛ(· |ω) gives
to each configuration τΛωΛc a probability proportional to the Boltzmann weight
prescribed by equilibrium statistical mechanics:

πΦΛ(τΛ|ω)
def= 1

Zω
Λ;Φ

e−HΛ;Φ(τΛωΛc ) , (6.30)

where we have written explicitly the dependence on ωΛc , and where the partition
function ZωΛ;Φ is given by

ZωΛ;Φ
def=

∑
τΛ∈ΩΛ

exp(−HΛ;Φ(τΛωΛc )) . (6.31)

Lemma 6.15. πΦ = {πΦΛ}Λ⋐Zd is a specification.

Proof. To lighten the notations, let us omitΦ everywhere from the notations. It will
also help to change momentarily the way we denote partition functions, namely, in
this proof, we will write

ZΛ(ωΛc ) ≡ ZωΛ;Φ .

The fact that each πΛ defines a proper kernel follows by what was said earlier, so it
remains to verify consistency. We fix ∆ ⊂ Λ⋐ Zd , and show that πΛπ∆ = πΛ. The
proof follows the same steps as the one of Lemma 6.7. Using Lemma 6.10,

πΛπ∆(A |ω) =
∑
τΛ

πΛ(τΛ |ω)π∆(A |τΛωΛc )

=
∑
τΛ

∑
η∆

1A(η∆τΛ\∆ωΛc )πΛ(τΛ |ω)π∆(η∆ |τΛ\∆ωΛc ) .

We split the first sum in two, writing τΛ = τ′∆τ′′Λ\∆. Using the definition of the kernels
πΛ and π∆, the above becomes

∑
τ′′
Λ\∆

∑
η
∆

1A(η∆τ
′′
Λ\∆ωΛc )

e−H∆(η
∆
τ′′
Λ\∆

ω
Λc )

ZΛ(ω
Λc )Z∆(τ′′

Λ\∆ωΛc )

∑
τ′
∆

e−HΛ(τ′
∆
τ′′
Λ\∆

ω
Λc ) .

But, exactly as in (6.10),

HΛ(τ′∆τ
′′
Λ\∆ωΛc )−H∆(τ′∆τ

′′
Λ\∆ωΛc ) =HΛ(η∆τ

′′
Λ\∆ωΛc )−H∆(η∆τ

′′
Λ\∆ωΛc ) ,

which gives
∑
τ′
∆

e−HΛ(τ′
∆
τ′′
Λ\∆

ω
Λc ) = Z∆(τ′′Λ\∆ωΛc )e−HΛ(η

∆
τ′′
Λ\∆

ω
Λc )eH∆(η

∆
τ′′
Λ\∆

ω
Λc ) .

Inserting this in the above expression, and renaming η∆τ
′′
Λ\∆ ≡ η′Λ, we get

πΛπ∆(A |ω) =
∑
η′
Λ

1A(η′ΛωΛc )
e−HΛ(η′

Λ
ω
Λc )

ZΛ(ωΛc )
=πΛ(A |ω) .
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We can now state the general definition of a Gibbs measure.

Definition 6.16. The specification πΦ associated to a potential Φ is said to be Gibb-
sian. A probability measure µ compatible with the Gibbsian specification πΦ is said
to be an infinite-volume Gibbs measure (or simply a Gibbs measure) associated to
the potential Φ.

It is customary to use the abbreviation G (Φ) ≡ G (πΦ). Actually, when the potential
is parametrized by a few variables, we will write them rather than Φ. For example,
in the case of the (nearest-neighbor) Ising model, whose specification depends on
β and h, we will simply write G (β,h).

Remark 6.17. Notice that different potentials can lead to the same specification.
For example, in the case of the Ising model, one could as well have considered the
potential

Φ̃B (ω) =
{
−βωiω j − h

2d (ωi +ω j ) if B = {i , j } , i ∼ j ,

0 otherwise.

Since they give rise to the same Hamiltonian, up to a term depending only on ωΛc ,
these potentials also give rise to the same specification. They thus describe pre-
cisely the same physics. For this reason, they are said to be physically equivalent.

⋄
When introducing a model, it is often quite convenient, instead of giving the

corresponding potential {ΦB }B⋐Zd , to provide its formal Hamiltonian

H (ω)
def=

∑
B⋐Zd

ΦB (ω) .

Of course, this notation is purely formal and does not specify a well-defined func-
tion on Ω. It is however possible to read from H the corresponding potential (up
to physical equivalence).

As an example, the effective Hamiltonian of the Ising model on Zd may be de-
noted by

−β
∑

{i , j }∈E
Zd

σiσ j −h
∑

i∈Zd

σi .

In view of what we saw in Chapter 3, the following is a natural definition of
phase transition, in terms of non-uniqueness of the Gibbs measure:

Definition 6.18. If G (Φ) contains at least two distinct Gibbs measures, |G (Φ)| > 1,
we say that there is a first-order phase transition for the potential Φ.

6.4 Existence

Going back to the case of a general specification, we now turn to the problem of de-
termining conditions that ensure the existence of at least one measure compatible
with a given specification. As in many existence proofs in analysis and probability
theory, this will be based on a compactness argument, and thus requires that we in-
troduce a few topological notions. We will take advantage of the fact that the spins
take values in a finite set to provide elementary proofs.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

262 Chapter 6. Infinite-Volume Gibbs Measures

The approach is similar to the construction of Gibbs states in Chapter 3. We fix
an arbitrary boundary conditionω ∈Ω and consider the sequence (µn)n≥1 ⊂M1(Ω)
defined by

µn(·) def= πB(n)(· |ω) , (6.32)

where, as usual, B(n) = {−n, . . . ,n}d . To study this sequence, we will first introduce
a suitable notion of convergence for sequences of measures (Definition 6.23). This
will make M1(Ω) sequentially compact; in particular, there always exists µ ∈M1(Ω)
and a subsequence of (µn)n≥1, say (µnk )k≥1, such that (µnk )k≥1 converges toµ (The-
orem 6.24). To guarantee that µ ∈ G (π), we will impose a natural condition on π,
called quasilocality.

6.4.1 Convergence on Ω

We first introduce a topology on Ω, that is, a notion of convergence for sequences
of configurations.

Definition 6.19. A sequence ω(n) ∈Ω converges to ω ∈Ω if

lim
n→∞ω

(n)
j =ω j , ∀ j ∈Zd .

We then write ω(n) →ω.

Since {±1} is a finite set, this convergence can be reformulated as follows: ω(n) →ω

if and only if, for all N , there exists n0 such that

ω(n)
B(N )

=ω
B(N )

for all n ≥ n0 .

The notion of neighborhood in this topology should thus be understood as follows:
two configurations are close to each other if they coincide on a large region con-
taining the origin. The following exercise shows that this topology is metrizable.

Exercise 6.9. For ω,η ∈Ω, let

d(ω,η)
def=

∑
i∈Zd

2−∥i∥∞1{ωi ̸=ηi } . (6.33)

Show that d(·, ·) is a distance onΩ, and that ω(n) →ω∗ if and only if d(ω(n),ω∗) → 0.

Another consequence of the finiteness of the spin space is thatΩ is compact in the
topology just introduced:

Proposition 6.20 (Compactness of Ω). With the above notion of convergence, Ω is
sequentially compact: for every sequence (ω(n))n≥1 ⊂ Ω, there exists ω∗ ∈ Ω and a
subsequence (ω(nk ))k≥1 such that ω(nk ) →ω∗ when k →∞.

Proof. We use a standard diagonalization argument. Consider (ω(n))n≥1 ⊂ Ω and
let i1, i2, . . . be an arbitrary enumeration ofZd . Then (ω(n)

i1
)n≥1 is a sequence in {±1},

from which we can extract a subsequence (ω
(n1, j )
i1

) j≥1 which converges (in fact, it
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can be taken constant). We then consider (ω
(n1, j )
i2

) j≥1, from which we extract a con-

verging subsequence (ω
(n2, j )
i2

) j≥1, etc., until we have, for each k, a converging sub-

sequence (ω
(nk, j )

ik
) j≥1. Let ω∗ ∈Ω be defined by

ω∗
ik

def= lim
j→∞

ω
(nk, j )

ik
, ∀k ≥ 1.

Now, the diagonal subsequence (ω(n j , j )) j≥1 is a subsequence of (ω(n))n≥1 and satis-
fies ω(n j , j ) →ω∗ as j →∞.

We can now define a function f : Ω→ R to be continuous if ω(n) → ω implies
f (ω(n)) → f (ω). The set of continuous functions onΩ is denoted by C (Ω).

Exercise 6.10. Show that each f ∈ C (Ω) is measurable. Hint: first show that
C ⊂ {open sets} ⊂F , where the open sets are those associated to the topology defined
above.

We say that f is uniformly continuous (see Appendix B.4) if

∀ϵ> 0, there exists δ> 0 such that d(ω,η) ≤ δ implies | f (ω)− f (η)| ≤ ϵ.

Exercise 6.11. Using Proposition 6.20, give a direct proof of the following facts: if f
is continuous, it is also uniformly continuous, bounded, and it attains its supremum
and its infimum.

Local functions are clearly continuous (since they do not depend on remote spins);
they are in fact dense in C (Ω) [2]:

Lemma 6.21. f ∈C (Ω) if and only if it is quasilocal, that is, if and only if there exists
a sequence of local functions (gn)n≥1 such that ∥gn − f ∥∞ → 0.

Proof. Let f :Ω→ R be continuous. Fix some ϵ> 0. Since f is also uniformly con-
tinuous, there exists some Λ⋐ Zd such that | f (ω)− f (η)| ≤ ϵ for any pair η and ω

coinciding onΛ. Therefore, if one chooses some arbitrary ω̃ ∈Ω and introduces the

local function g (ω)
def= f (ωΛω̃Λc ), we have that | f (ω)− g (ω)| ≤ ϵ ∀ω ∈Ω. Conversely,

let (gn)n≥1 be a sequence of local functions such that ∥gn − f ∥∞ → 0. Fix ϵ> 0 and
let n be such that ∥gn − f ∥∞ ≤ ϵ. Since gn is uniformly continuous, let δ> 0 be such
that d(ω,η) ≤ δ implies |gn(ω)− gn(η)| ≤ ϵ. For each such pair ω,η we also have

| f (ω)− f (η)| ≤ | f (ω)− gn(ω)|+ |gn(ω)− gn(η)|+ |gn(η)− f (η)| ≤ 3ϵ .

Since this can be done for all ϵ> 0, we have shown that f ∈C (Ω).

We will often use the fact that probability measures on (Ω,F ) are uniquely de-
termined by their action on cylinders, or by the value they associate to the expecta-
tion of local or continuous functions.

Lemma 6.22. If µ,ν ∈M1(Ω), then the following are equivalent:

1. µ= ν

2. µ(C ) = ν(C ) for all cylinders C ∈C .

3. µ(g ) = ν(g ) for all local functions g .

4. µ( f ) = ν( f ) for all f ∈C (Ω).
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Proof. 1⇒2 is trivial, and 2⇒1 is a consequence of the Uniqueness Theorem for
measures (Corollary B.37). 2⇔3 is immediate, since the indicator of a cylinder is a
local function. 3⇒4: Let f ∈ C (Ω) and let (gn)n≥1 be a sequence of local functions
such that ∥gn − f ∥∞ → 0 (Lemma 6.21). This implies |µ(gn)−µ( f )| ≤ ∥gn − f ∥∞ → 0.
Similarly, |ν(gn)−ν( f )|→ 0. Therefore,

µ( f ) = lim
n→∞µ(gn) = lim

n→∞ν(gn) = ν( f ) .

Finally, 4⇒3 holds because local functions are continuous.

6.4.2 Convergence on M1(Ω)

The topology on M1(Ω) will be the following:

Definition 6.23. A sequence (µn)n≥1 ⊂M1(Ω) converges to µ ∈M1(Ω) if

lim
n→∞µn(C ) =µ(C ) , for all cylinders C ∈C .

We then write µn ⇒µ.

The fact that the convergence of a sequence of measures is tested on local events
(the cylinders) should remind the reader of the convergence encountered in Chap-
ter 3 (Definition 3.14), where a similar notion of convergence was introduced to
define Gibbs states.

Before pursuing, we let the reader check the following equivalent characteriza-
tions of convergence on M1(Ω).

Exercise 6.12. Show the equivalence between:

1. µn ⇒µ

2. µn( f ) →µ( f ) for all local functions f .

3. µn( f ) →µ( f ) for all f ∈C (Ω).

4. ρ(µn ,µ) → 0, where we defined, for all µ,ν ∈M1(Ω), the distance

ρ(µ,ν)
def= sup

k≥1

1

k
max

C∈C (B(k))
|µ(C )−ν(C )| .

Theorem 6.24 (Compactness of M1(Ω)). With the above notion of convergence,
M1(Ω) is sequentially compact: for every sequence (µn)n≥1 ⊂ M1(Ω), there exist
µ ∈M1(Ω) and a subsequence (µnk )k≥1 such that µnk ⇒µ when k →∞.

Since the proof of this result is similar, in spirit, to the one used in the proof of the
compactness ofΩ, we postpone it to Section 6.12.

6.4.3 Existence and quasilocality

We will see below that the following condition on a specification π guarantees that
G (π) ̸=∅.
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Definition 6.25. A specification π = {πΛ}Λ⋐Zd is quasilocal if each kernel πΛ is
continuous with respect to its boundary condition. That is, if for all C ∈ C , ω 7→
πΛ(C |ω) is continuous.

Λ

ω ̸= η
ω= η

D

Λ′

πΛ(A | ·) ωi

Figure 6.1: Understanding quasilocality: when D is large, πΛ(A |ω) depends
weakly on the values ofωi for all i at distance larger than D fromΛ (assuming
all closer spins are fixed). In other words, for all ϵ> 0, if ω and η coincide on
a sufficiently large regionΛ′ ⊃Λ, then |πΛ(A |ω)−πΛ(A |η)| ≤ ϵ.

The next exercise shows that quasilocal specifications map continuous (and, in par-
ticular, local) functions to continuous functions.

Exercise 6.13. Let π = {πΛ}Λ⋐Zd be quasilocal and fix some Λ ⋐ Zd . Show that
f ∈ C (Ω) implies πΛ f ∈ C (Ω). (This property is sometimes referred to as the Feller
property.)

We can now state the main existence theorem.

Theorem 6.26. If π= {πΛ}Λ⋐Zd is quasilocal, then G (π) ̸=∅.

Proof. Fix an arbitrary ω ∈Ω and let µn(·) def= πB(n)(· |ω). (One could also choose a
different ω for each n.) Observe that, by the consistency assumption of the kernels
forming π, we have that, once n is so large that B(n) ⊃Λ,

µnπΛ =πB(n)πΛ(· |ω) =πB(n)(· |ω) =µn . (6.34)

By Theorem 6.24, there exist µ ∈ M1(Ω) and a subsequence (µnk )k≥1 such that
µnk ⇒ µ as k → ∞. We prove that µ ∈ G (π). Fix f ∈ C (Ω), Λ ⋐ Zd . Since π is
quasilocal, Exercise 6.13 shows that πΛ f ∈C (Ω). Therefore,

µπΛ( f ) =µ(πΛ f ) = lim
k→∞

µnk (πΛ f ) = lim
k→∞

µnkπΛ( f ) = lim
k→∞

µnk ( f ) =µ( f ) .

We used Exercise 6.6 for the first and third identities. The fourth identity follows
from (6.34). By Lemma 6.22, we conclude that µπΛ = µ. Since this holds for all
Λ⋐Zd , this shows that µ ∈G (π).

Sinceω should be interpreted as a boundary condition, a Gibbs measure µ con-
structed as in the above proof,

πB(nk )(· |ω) ⇒µ ,
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266 Chapter 6. Infinite-Volume Gibbs Measures

is said to be prepared with the boundary condition ω. A priori, µ can depend on
the chosen boundary condition, and should therefore be denoted by µω. A funda-
mental question, of course, is to determine whether uniqueness holds, or whether
under certain conditions there exist distinct boundary conditions ω,ω′ for which
µω ̸=µω′

.

Adapting the proof of the above theorem allows to obtain the following topo-
logical property of G (π) (completing the proof is left as an exercise):

Lemma 6.27. Let π be a quasilocal specification. Then, G (π) is a closed subset of
M1(Ω).

A class of quasilocal specifications of central importance is provided by the
Gibbsian specifications:

Lemma 6.28. If Φ is absolutely summable, then πΦ is quasilocal.

Proof. Fix Λ ⋐ Zd . Let ω be fixed, and ω′ another configuration which coincides
with ω on a region ∆⊃Λ. Let τΛ ∈ΩΛ. We can write

∣∣πΦΛ(τΛ |ω)−πΦΛ(τΛ |ω′)
∣∣=

∣∣∣
∫ 1

0

{ d

dt

e−ht (τΛ)

zt

}
dt

∣∣∣ , (6.35)

where we have set, for 0 ≤ t ≤ 1, ht (τΛ)
def= tHΛ;Φ(τΛωΛc )+ (1− t )HΛ;Φ(τΛω

′
Λc ), and

zt
def= ∑

τΛ e−ht (τΛ). As can be easily verified,

∣∣∣ d

dt

e−ht (τΛ)

zt

∣∣∣≤ 2 max
ηΛ∈ΩΛ

∣∣HΛ;Φ(ηΛωΛc )−HΛ;Φ(ηΛω
′
Λc )

∣∣

≤ 4|Λ|max
i∈Λ

∑

B⋐Zd ,B∋i
diam(B)≥D

∥ΦB∥∞ ,

where D is the distance between Λ and ∆c. Due to the absolute summability of Φ,
this last series goes to 0 when D →∞. As a consequence, πΦΛ(τΛ | ·) is continuous at
ω. This implies that πΦΛ(C | ·) is continuous for all C ∈C .

Lemma 6.28 provides an efficient solution to the problem of constructing quasi-
local specifications. Coupled with Theorem 6.26, it provides a general approach to
the construction of Gibbs measures. [3]

In Chapter 3, we considered also other types of boundary conditions, namely
free and periodic. It is not difficult to show, arguing similarly as in the proof of
Theorem 6.26, that these also lead to Gibbs measures:

Exercise 6.14. Use the finite-volume Gibbs distributions of the Ising model with free
boundary condition, µ∅

Λ;β,h , and the thermodynamic limit, to construct a measure

µ∅
β,h . Show that µ∅

β,h ∈G (β,h).

The following exercise [4] shows that existence is not guaranteed in the absence of
quasilocality.
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Exercise 6.15. Let η− denote the configuration in which all spins are −1, and let η−,i

denote the configuration in which all spins are −1, except at the vertex i , at which it
is +1. For Λ⋐Zd , let

πΛ(A |ω)
def=

{
1
|Λ|

∑
i∈Λ1A(η−,i ) if ωΛc = η−Λc

1A(η−ΛωΛc ) otherwise.

Show that π= {πΛ}Λ⋐Zd is a specification and explain why it describes a system con-

sisting of a single + spin, located anywhere on Zd , in a sea of − spins. Show that π
is not quasilocal and that G (π) = ∅. Hint: Let N+(ω) denote the number of ver-
tices i ∈ Zd at which ωi = +1. Assume µ ∈ G (π), and show that µ({N+ = 0}∪ {N+ =
1}∪ {N+ ≥ 2}) = 0, which gives µ(Ω) = 0.

6.5 Uniqueness

Now that we have a way of ensuring that G (π) contains at least one measure, we de-
scribe further conditions onπwhich ensure that this measure is actually unique. As
will be seen later, the measure, when it is unique, inherits several useful properties.

Remark 6.29. We continue using Ising spins, but emphasize, however, that all state-
ments and proofs in this section remain valid for any finite single-spin space. This
matters, since, in contrast to most results in this chapter, some of the statements
below are not of a qualitative nature, but involve quantitative criteria. The point is,
then, that these criteria still apply verbatim to this more general setting. ⋄

6.5.1 Uniqueness vs. sensitivity to boundary conditions

The following result shows that when (and only when) there is a unique Gibbs mea-
sure, the system enjoys a very strong form of lack of sensitivity to boundary condi-
tion: any sequence of finite-volume Gibbs distributions converges.

Lemma 6.30. The following are equivalent.

1. Uniqueness holds: G (π) = {µ}.

2. For all ω, all Λn ↑Zd and all local functions f ,

πΛn f (ω) →µ( f ) . (6.36)

The convergence for all ω is essential here. We will see later, in Section 6.8.2, that
convergence can also be guaranteed to occur in other important situations, but
only for suitable sets of boundary conditions.

Proof. Fix some boundary conditionω. Remember from the proof of Theorem 6.26
that, from any sequence (πΛn (· |ω))n≥1, one can extract a subsequence converging
to some element of G (π). If G (π) = {µ}, all these subsequences must have the same
limit µ. Therefore, the sequence itself converges to µ.
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On the other hand, if µ,ν ∈G (π), then one can write, for all local functions f ,

|µ( f )−ν( f )| =
∣∣µπΛ( f )−νπΛ( f )

∣∣

=
∣∣∣
∫ {

πΛ f (ω)−πΛ f (η)
}
µ(dω)ν(dη)

∣∣∣

≤
∫ ∣∣πΛ f (ω)−πΛ f (η)

∣∣µ(dω)ν(dη) .

Since |πΛ f (·)| ≤ ∥ f ∥∞, we can use dominated convergence and (6.36) to conclude
that µ( f ) = ν( f ). Since this holds for all local functions, it follows that µ= ν.

6.5.2 Dobrushin’s Uniqueness Theorem

Our first uniqueness criterion will be formulated in terms of the one-vertex kernels
π{i }(· |ω), which for simplicity will be denoted by πi . Each πi (· |ω) should be con-
sidered as a distribution for the spin at vertex i , with boundary condition ω. We
will measure the dependence of πi (· |ω) on the value of the boundary condition ω

at other vertices. We will measure the proximity between two such distributions
using the total variation distance (see Section B.10)

∥πi (· |ω)−πi (· |ω′)∥T V
def=

∑
ηi=±1

∣∣πi (ηi |ω)−πi (ηi |ω′)
∣∣ .

We can then introduce

ci j (π)
def= sup

ω,ω′∈Ω:
ωk=ω′

k ∀k ̸= j

∥πi (· |ω)−πi (· |ω′)∥T V ,

and
c(π)

def= sup
i∈Zd

∑
j∈Zd

ci j (π) .

Theorem 6.31. Let π be a quasilocal specification satisfying Dobrushin’s Condition
of Weak Dependence:

c(π) < 1. (6.37)

Then the probability measure specified by π is unique: |G (π)| = 1.

Before starting the proof, we need to introduce a few notions. Define the oscillation
of f :Ω→R at i ∈Zd by

δi ( f )
def= sup

ω,η∈Ω
ωk=ηk ∀k ̸=i

| f (ω)− f (η)| . (6.38)

The oscillation enables us to quantify the variation of f (ω) when one changes ω
into another configuration by successive spin flips. Namely, if ωΛc = ηΛc , then

| f (ω)− f (η)| ≤
∑
i∈Λ

δi ( f ) . (6.39)

It is thus natural to define the total oscillation of f by

∆( f )
def=

∑
i∈Zd

δi ( f ) . (6.40)
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We denote the space of functions with finite total oscillation by O(Ω). All local func-
tions have finite total oscillation; by Lemma 6.21, this implies that O(Ω) is dense in
C (Ω). Nevertheless,

Exercise 6.16. Show that O(Ω) ̸⊂C (Ω) and O(Ω) ̸⊃C (Ω).

Intuitively, ∆( f ) measures how far f is from being a constant. This is made clear in

the following lemma. Letting CO(Ω)
def= C (Ω)∩O(Ω), we have:

Lemma 6.32. Let f ∈CO(Ω). Then ∆( f ) ≥ sup f − inf f .

Proof. Let f ∈CO(Ω). By Exercise 6.11, f attains its supremum and its infimum. In
particular there exist, for all ϵ > 0, two configurations ω1,ω2 such that ω1

Λc = ω2
Λc

for some sufficiently large box Λ, and such that sup f ≤ f (ω1)+ ϵ, inf f ≥ f (ω2)− ϵ.
Then, using (6.39),

sup f − inf f ≤ f (ω1)− f (ω2)+2ϵ≤
∑
i∈Λ

δi ( f )+2ϵ≤∆( f )+2ϵ .

Using Lemma 6.32, we can always write

|µ( f )−ν( f )| ≤∆( f ) , ∀ f ∈CO(Ω) . (6.41)

Proposition 6.33. Assume (6.37). Let µ,ν ∈G (π) be such that

|µ( f )−ν( f )| ≤α∆( f ) , ∀ f ∈CO(Ω) , (6.42)

for some constant α≤ 1. Then,

|µ( f )−ν( f )| ≤ c(π)α∆( f ) , ∀ f ∈CO(Ω) . (6.43)

Assuming, for the moment, the validity of this proposition, we can easily conclude
the proof of Theorem 6.31.

Proof of Theorem 6.31: Let µ,ν ∈ G (π) and let f be a local function. (6.41) shows
that (6.42) holds with α = 1. Since c(π) < 1, we can apply repeatedly Proposi-
tion 6.33:

|µ( f )−ν( f )| ≤∆( f ) =⇒ |µ( f )−ν( f )| ≤ c(π)∆( f )

=⇒ |µ( f )−ν( f )| ≤ c(π)2∆( f )

=⇒ |µ( f )−ν( f )| ≤ c(π)n∆( f ) , ∀n ≥ 0.

Since ∆( f ) <∞ and c(π) < 1, taking n →∞ leads to µ( f ) = ν( f ). By Lemma 6.22,
µ= ν.

The proof of Proposition 6.33 relies on a technical estimate:

Lemma 6.34. Let f ∈CO(Ω). Then, δ j (π j f ) = 0 for all j and, for any i ̸= j ,

δi (π j f ) ≤ δi ( f )+ c j i (π)δ j ( f ) . (6.44)
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270 Chapter 6. Infinite-Volume Gibbs Measures

The content of this lemma can be given an intuitive meaning, as follows. If f
is constant, then δi ( f ) = 0 for all i ∈Zd . If f is non-constant, each oscillation δi ( f )
can be seen as a quantity of dust present at i , measuring how far f is from being
constant: the less dust, the closer f is to a constant function. With this interpretation,
the map f 7→π j f can be interpreted as a dusting of f at vertex j . Namely, before the
dusting at j , the oscillation at any given point i is δi ( f ). After the dusting at j ,
Lemma 6.34 says that the amount of dust at j becomes zero (δ j (π j f ) = 0) and that
the total amount of dust every other point i ̸= j is incremented, at most, by a fraction
c j i (π) of the dust present at j before the dusting. For this reason, Lemma 6.34 is often
called the dusting lemma. ⋄

Proof of Lemma 6.34: If i = j , then δ j (π j f ) = 0 (remember that the function π j f is
F{ j }c -measurable). Let us thus assume that i ̸= j . Let ω,ω′ be two configurations
which agree everywhere outside i . We write

π j f (ω)−π j f (ω′) =
∑

η j =±1

{
π j (η j |ω) f (η jω{ j }c )−π j (η j |ω′) f (η jω

′
{ j }c )

}

=
∑

η j =±1

{
π j (η j |ω) f̃ (η jω{ j }c )−π j (η j |ω′) f̃ (ηω′

{ j }c )
}

,

where f̃ (·) def= f (·)−m, for some constant m to be chosen later. We add and subtract
π j (η j |ω) f̃ (η jω

′
{ j }c ) from each term of the last sum and use

| f̃ (η jω{ j }c )− f̃ (η jω
′
{ j }c )| = | f (η jω{ j }c )− f (η jω

′
{ j }c )| ≤ δi ( f ) ,

∑
η j =±1

|π j (η j |ω)−π j (η j |ω′)| = ∥π j (· |ω)−π j (· |ω′)∥T V ≤ c j i (π) .

Since
∑
η j
π j (η j |ω) = 1,

δi (π j f ) ≤ δi ( f )+ c j i (π)max
η j

| f̃ (η jω
′
{ j }c )| .

Choosing m = f ((+1)jω
′
{ j }c ), we have maxη j | f̃ (η jω

′
{ j }c )| ≤ δ j ( f ) and (6.44) follows.

Proof of Proposition 6.33: Fix an arbitrary total order on Zd , denoted ≻, in which
the smallest element is the origin. We first prove that, when (6.42) holds, one has,
for all i ∈Zd ,

|µ( f )−ν( f )| ≤ c(π)α
∑
k≺i

δk ( f )+α
∑
k⪰i

δk ( f ) , ∀ f ∈CO(Ω) . (6.45)

When i = 0, the first sum is empty and the claim reduces to our assumption (6.42).
Let us thus assume that (6.45) has been proved for i .

Observe that, for all k, πk f ∈CO(Ω). Indeed, on the one hand, πk f is continu-
ous since π is quasilocal. On the other hand, by (6.44),

∆(πk f ) =
∑

j
δ j (πk f ) ≤

∑
j
δ j ( f )+ c(π)δk ( f ) <∞ .

Using (6.45) with f replaced by πi f , and since δi (πi f ) = 0,

|µ( f )−ν( f )| = |µ(πi f )−ν(πi f )| ≤ c(π)α
∑
k≺i

δk (πi f )+α
∑
k≻i

δk (πi f ) .
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Using again (6.44),

|µ( f )−ν( f )| ≤ c(π)α
∑
k≺i

δk ( f )+α
∑
k≻i

δk ( f )

+αδi ( f )c(π)
∑
k≺i

ci k (π)+αδi ( f )
∑
k≻i

ci k (π) .

Now, observe that, since c(π) < 1,

c(π)
∑
k≺i

ci k (π)+
∑
k≻i

ci k (π) ≤
∑

k∈Zd

ci k (π) ≤ c(π) ,

which yields

|µ( f )−ν( f )| ≤ c(π)α
∑
k≺i

δk ( f )+α
∑
k≻i

δk ( f )+ c(π)αδi ( f )

= c(π)α
∑
k⪯i

δk ( f )+α
∑
k≻i

δk ( f ) .

This shows that (6.45) holds for all i ∈ Zd . Since
∑

k δk ( f ) = ∆( f ) <∞, (6.43) now
follows by letting i increase to infinity (with respect to ≻) in (6.42).

6.5.3 Application to Gibbsian specifications

Theorem 6.31 is very general. We will now apply it to several Gibbsian specifica-
tions. We will start with regimes in which the Gibbs measure is unique despite
possibly strong interactions between the spins.

Exercise 6.17. Consider the Ising model (d ≥ 1) with a magnetic field h > 0 and ar-
bitrary inverse temperature β. Use Theorem 6.31 to show that |G (β,h)| = 1 for all
large enough h. (Contrast this result with the corresponding one obtained in Theo-
rem 3.25, where it was shown that uniqueness holds for all h ̸= 0.)

Exercise 6.18. Consider the Blume–Capel model in d ≥ 1 (see (6.29)).

1. Consider first (λ,h) = (0,0), and give a range of values of β for which unique-
ness holds.

2. Then, fix (λ,h) = te, with t > 0. Show that if e ∈ S1 points in any direction
different from (1,0), (−1,1) or (−1,−1), then for all β> 0, the Gibbs measure is
unique as soon as t is sufficiently large. (See Figure 6.2.)

λ

h

e

Figure 6.2: The Blume–Capel with parameters (λ,h) = te has a unique Gibbs
measure when t > 0 is large enough, and when e points to any direction dis-
tinct from those indicated by the bold line.
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272 Chapter 6. Infinite-Volume Gibbs Measures

Exercise 6.19. The (nearest-neighbor) Potts antiferromagnet on Zd at inverse tem-

perature β≥ 0 has single spin space Ω0
def= {0, . . . , q −1} and is associated to the poten-

tial

ΦB (ω) =
{
+βδωi ,ω j if B = {i , j } , i ∼ j ,

0 otherwise.

Show that this model has a unique Gibbs measure for all β ∈ R≥0, provided that
q > 6d.

Let us now formulate the criterion of Theorem 6.31 in a form better suited to
the treatment of weak interactions. Let δ( f )

def= supη′,η′′ | f (η′)− f (η′′)|.

Theorem 6.35. Assume that Φ= {ΦB }B⋐Zd is absolutely summable and satisfies

sup
i∈Zd

∑
j ̸=i

∑
B⊃{i , j }

δ(ΦB ) < 1. (6.46)

Then Dobrushin’s condition of weak dependence is satisfied, and therefore there is a
unique Gibbs measure specified by πΦ.

Proof. Fix some i ∈Zd , and letω andω′ coincide everywhere except at some vertex
j ̸= i . Starting as in the proof of Lemma 6.28,

∥πΦi (· |ω)−πΦi (· |ω′)∥T V ≤
∫ 1

0

{∑
ηi

∣∣∣dνt (ηi )

dt

∣∣∣
}

dt

where, for 0 ≤ t ≤ 1, νt (ηi )
def= e−ht (ηi )

zt
, with

ht (ηi )
def= tH{i };Φ(ηiω{i }c )+ (1− t )H{i };Φ(ηiω

′
{i }c ) ,

and zt
def= ∑

ηi
e−ht (ηi ). A straightforward computation shows that

dνt (ηi )

dt
= {
∆Hi −Eνt [∆Hi ]

}
νt (ηi ) ,

where ∆Hi (ηi )
def= H{i };Φ(ηiω

′
{i }c )−H{i };Φ(ηiω{i }c ). We therefore have

∑
ηi

∣∣∣dνt (ηi )

dt

∣∣∣= Eνt

[∣∣∆Hi −Eνt [∆Hi ]
∣∣
]

≤ Eνt

[(
∆Hi −Eνt [∆Hi ]

)2
]1/2

≤ Eνt

[(
∆Hi −m

)2]1/2 ,

where the first inequality follows from the Cauchy-Schwartz Inequality, and we in-
troduced an arbitrary number m ∈ R (remember that m 7→ E [(X −m)2] is minimal
when m = E [X ]). Choosing m = (max∆Hi +min∆Hi )/2, we have

|∆Hi −m| ≤ 1
2 max
ηi ,η′i

∣∣∆Hi (ηi )−∆Hi (η′i )
∣∣ .
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6.5. Uniqueness 273

Each ∆Hi (·) contains a sum over sets B ∋ i , and notice that those sets B which do
not contain j do not contribute. We can thus restrict to those sets B ⊃ {i , j } and get

|∆Hi (ηi )−∆Hi (η′i )|
≤

∑
B⊃{i , j }

{|ΦB (ηiω
′
{i }c )−ΦB (η′iω

′
{i }c )|+ |ΦB (ηiω{i }c )−ΦB (η′iω{i }c )|}

≤2
∑

B⊃{i , j }
δ(ΦB ) .

This proves (6.37).

Let us give a simple example of application of the above criterion.

Example 6.36. Consider first the nearest-neighbor Ising model with h = 0 on
Zd , whose potential was given in (6.26). The only sets B that contribute to the
sum (6.46) are the nearest neighbors B = {i , j }, i ∼ j , for which δ(ΦB ) = 2β. (6.46)
therefore reads, since each i has 2d neighbors,

2β ·2d < 1.

In d = 1, this means that uniqueness holds when β< 1
4 , although we know from the

results of Chapter 3 that uniqueness holds at all temperatures. In d = 2, the above
guarantees uniqueness when β < 1

8 = 0.125, which should be compared with the
exact range, known to be β≤βc(2) = 0.4406.... ⋄

We will actually see in Corollary 6.41 that, for finite-range models, uniqueness
holds at all temperatures when d = 1.

More generally, the above criterion allows one to prove uniqueness at suffi-
ciently high temperature for a wide class of models. A slight rewriting of the condi-
tion makes the application more immediate. If one changes the order of summa-
tion in the double sum in (6.46), the latter becomes

∑
j ̸=i

∑
B⊃{i , j }

δ(ΦB ) =
∑
B∋i

(|B |−1)δ(ΦB ) . (6.47)

We can thus state a general, easily applicable high-temperature uniqueness re-
sult. Remember that the inverse temperature β can always be associated to a po-

tentialΦ
def= {ΦB }B⋐Zd , by multiplication: βΦ

def= {βΦB }B⋐Zd .

Corollary 6.37. Let Φ= {ΦB }B⋐Zd be an absolutely summable potential satisfying

b
def= sup

i∈Zd

∑
B∋i

(|B |−1)∥ΦB∥∞ <∞ , (6.48)

and let β0
def= 1

2b . Then, for all β<β0, there is a unique measure compatible withπβΦ.

Proof. It suffices to use (6.47) in Theorem 6.35, with δ(ΦB ) ≤ 2∥ΦB∥∞.

Exercise 6.20. Consider the long-range Ising model introduced in (6.27), with h = 0
and Ji j = ∥ j−i∥−α∞ . Find a range of values of α> 0 (depending on the dimension) for
which (6.48) holds, and deduce a range of values of 0 <β<∞ for which uniqueness
holds.

In dimension 1, the previous exercise guarantees that uniqueness holds at suffi-
ciently high temperature whenever α > 1. We will prove later that, when α > 2,
uniqueness actually holds for all positive temperatures; see Example 6.42.
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6.5.4 Uniqueness at high temperature via cluster expansion

In this section, we consider an alternative approach, relying on the cluster expan-
sion, to establish uniqueness of the Gibbs measure at sufficiently high temperature.
We have seen in Lemma 6.30 that G (βΦ) = {µ} if and only if

π
βΦ
Λn

f (ω) →µ( f ) , ∀ω ∈Ω , (6.49)

for every local function f . Here we provide a direct way of proving such a conver-
gence.

Theorem 6.38. Assume that Φ= {ΦB }B⋐Zd satisfies

sup
i∈Zd

∑
B∋i

∥ΦB∥∞e4|B | <∞ . (6.50)

Then, there exists 0 < β1 < ∞ such that, for all β ≤ β1, (6.49) holds. As a conse-
quence: G (βΦ) = {µ}. Moreover, whenΦ has finite range, the convergence in (6.49) is
exponential: for all sufficiently large Λ,

∣∣πβΦ
Λ

f (ω)−µ( f )
∣∣≤ D∥ f ∥∞e−C d(supp( f ),Λc) , ∀ω ∈Ω , (6.51)

where C > 0 and D depend onΦ.

Since µ( f ) = ∫
π
βΦ
Λ

( f |ω)µ(dω) for any µ ∈ G (βΦ), Theorem 6.38 is a conse-
quence of the following proposition, whose proof relies on the cluster expansion
and provides an explicit expression for µ( f ). In order not to delve here into the
technicalities of the cluster expansion, we postpone this proof to the end of Sec-
tion 6.12.

Proposition 6.39. If (6.50) holds, then there exists 0 < β1 < ∞ such that, for all
β≤ β1, the following holds. Fix some ω. For every local function f , there exists c( f )
(independent of ω) such that

lim
Λ↑Zd

π
βΦ
Λ

f (ω) = c( f ) . (6.52)

Moreover, if Φ has finite range,

∣∣πβΦ
Λ

f (ω)− c( f )
∣∣≤ D∥ f ∥∞e−C d(supp( f ),Λc) , (6.53)

where C and D depend onΦ.

6.5.5 Uniqueness in one dimension

In one dimension, the criterion (6.46) implies uniqueness for any model with abso-
lutely convergent potential, but only at sufficiently high temperatures (small values
of β).

We know that the nearest-neighbor Ising model on Z has a unique Gibbs mea-
sure at all temperatures, so the proof given above, relying on Dobrushin’s Condi-
tion of Weak Dependence, ignores some important features of one-dimensional
systems. We now establish another criterion, of less general applicability, but pro-
viding considerably stronger results when d = 1.
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Theorem 6.40. Let Φ be an absolutely summable potential such that

D
def= sup

n
sup
ωB(n)

η
B(n)c ,η′

B(n)c

∣∣HB(n);Φ(ωB(n)ηB(n)c )−HB(n);Φ(ωB(n)η
′
B(n)c )

∣∣<∞ . (6.54)

Then there is a unique Gibbs measure compatible with πΦ.

Since

∣∣HB(n);Φ(ωB(n)ηB(n)c )−HB(n);Φ(ωB(n)η
′
B(n)c )

∣∣≤ 2
∑

A∩B(n )̸=∅
A∩B(n)c ̸=∅

∥ΦA∥∞ , (6.55)

condition (6.54) will be satisfied for one-dimensional systems in which the inter-
action between the inside and the outside of any interval B(n) = {−n, . . . ,n} is uni-
formly bounded in n, meaning that boundary effects are negligible.

The sum in the right-hand side of (6.55) is of course finite when Φ has finite
range, which allows to state a general uniqueness result for one-dimensional sys-
tems:

Corollary 6.41. (d = 1) If Φ is any finite-range potential, then |G (Φ)| = 1.

However, the sum in the right-hand side of (6.55) can contain infinitely many terms,
as long as these decay sufficiently fast, as the next example shows.

Example 6.42. Consider the one-dimensional long-range Ising model (6.27), with

Ji j = | j − i |−(2+ϵ) ,

with ϵ> 0. Using (6.55),

∣∣HB(n);βΦ(ωB(n)ηB(n)c )−HB(n);βΦ(ωB(n)η
′
B(n)c )

∣∣≤ 2
∑

i∈B(n)

∑
j∈B(n)c

β

| j − i |2+ϵ

≤ 2β
∑
k≥1

∑
i∈B(n):

d(i ,B(n)c)=k

∑
r≥k

1

r 2+ϵ

≤ 2βcϵ
∑
k≥1

1

k1+ϵ <∞

Theorem 6.40 implies uniqueness for all finite values of β ≥ 0 whenever ϵ > 0. Re-
markably, this is a sharp result, as it can be shown that uniqueness fails at large
values of β whenever ϵ≤ 0 [5]. ⋄

Since we do not yet have all the necessary tools, we postpone the proof of Theo-
rem 6.40 to the end of Section 6.8.4 (p. 296). It will rely on the following ingredient:

Lemma 6.43. Let D be defined as in (6.54). Then, for all ω,η ∈Ω and all cylinders
C ∈C , for all large enough n,

e−2DπΦB(n)(C |η) ≤πΦB(n)(C |ω) ≤ e2DπΦB(n)(C |η) . (6.56)

Proof. Using (6.54) in the Boltzmann weight, we obtain

e−D e−HB(n);Φ(τB(n)ηB(n)c ) ≤ e−HB(n);Φ(τB(n)ωB(n)c ) ≤ eD e−HB(n);Φ(τB(n)ηB(n)c ) .
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This yields Zω
B(n);Φ

≤ Zη
B(n);Φ

eD . Thus, πΦ
B(n)

(τB(n) |ω) ≥ e−2DπΦ
B(n)

(τB(n) |η). Let C ∈
C . If n is large enough for B(n) to contain the base of C , then 1C (τB(n)ωB(n)c ) =
1C (τB(n)ηB(n)c ). Therefore,

πΦB(n)(C |ω) =
∑
τB(n)

πΦB(n)(τB(n) |ω)1C (τB(n)ωB(n)c )

≥ e−2D
∑
τB(n)

πΦB(n)(τB(n) |η)1C (τB(n)ηB(n)c ) = e−2DπΦB(n)(C |η) .

6.6 Symmetries

In this section, we study how the presence of symmetries in a specification π can
extend to the measures in G (π). We do not assume that the single-spin space Ω0 is
necessarily {±1}.

We will be interested in the action of a group (G, ·) on the set of configurations
Ω. That is, we consider a family (τg)g∈G of maps τg :Ω→Ω such that

1. (τg1 ◦τg2 )ω= τg1·g2ω for all g1,g2 ∈G, and

2. τeω=ω for all ω ∈Ω, where e is the neutral element of G.

Note that τ−1
g = τg−1 for all g ∈G. The action of the group can be extended to func-

tions and measures. For all g ∈ G, all functions f : Ω→ R and all µ ∈ M1(Ω), we
define

τg f (ω)
def= f (τ−1

g ω) , τgµ(A)
def= µ(τ−1

g A) ,

for all ω ∈Ω and all A ∈ F . Of course, we then have τgµ( f ) = µ(τ−1
g f ), for all inte-

grable functions f .

We will use τg to act on a specification π = {πΛ}Λ⋐Zd , and turn it into a new
specification τgπ= {τgπΛ}Λ⋐Zd . We will mainly consider two types of transforma-
tions, internal and spatial.

1. An internal transformation starts with a group G acting on the single-spin
space Ω0. The action of G is then extended to Ω by setting, for all g ∈ G and
all ω ∈Ω,

(τgω)i
def= τgωi ∀i ∈Zd .

(We use the same notation for the action on both Ω0 and Ω as this will never
lead to ambiguity.) The action of τg on a kernel πΛ is defined by

(τgπ)Λ(A |ω)
def= πΛ(τ−1

g A |τ−1
g ω) . (6.57)

2. In the case of a spatial transformation, we start with a group G acting on Zd

and we extend its action toΩ by setting, for all g ∈G and all ω ∈Ω,

(τgω)i
def= ωτ−1

g i ∀i ∈Zd .

Basic examples of spatial transformations are: translations, rotations and re-
flections. The action of τg on πΛ is defined by

(τgπ)Λ(A |ω)
def= πτ−1

g Λ(τ−1
g A |τ−1

g ω) . (6.58)
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A general transformation is then a composition of these two types of transfor-
mations. To simplify the exposition, for the rest of this section, we focus on internal
transformations. However, everything can be extended in a straightforward way to
the other cases. Invariance under translations will play an important role in the rest
of the book. For that reason, we will describe this type of spatial transformation in
more detail in Section 6.7, together with translation-invariant specifications and
Gibbs measures.

So, until the end of this section, we assume that the actions τg are associated to
an internal transformation group.

Definition 6.44. π is G-invariant if (τgπ)Λ =πΛ for all Λ⋐Zd and all g ∈G.

The most important example is that of a Gibbsian specification associated to
a potential that is invariant under the action of G. Namely, consider an absolutely
summable potentialΦ= {ΦA}A⋐Zd , and let us assume that τgΦA =ΦA for all A ⋐Zd

and all g ∈G. It then follows that, for allΛ⋐Zd and all g ∈G,

HΛ(ω) =HΛ(τgω) ∀ω ∈Ω .

As a consequence, the associated specification is G-invariant: τgπΦ = πΦ for all
g ∈G. Let us mention a few specific examples.

• The Ising model with h = 0. In this case, the internal symmetry group is
given by the cyclic group Z2, that is, the group with two elements: the neutral
element e and the spin flip f which acts on Ω0 via τfω0 = −ω0. As already
discussed in Chapter 3, the Hamiltonian is invariant under the global spin
flip,

HΛ;β,0(ω) =HΛ;β,0(τfω) .

and the specification of the Ising model with h = 0 is therefore invariant un-
der the action of Z2. When h ̸= 0, this is of course no longer true.

• The Potts model. In this case, the internal symmetry group is Sq , the group
of all permutations on the setΩ0 = {0, . . . , q −1}. It is immediate to check that
the potential defining the Potts model (see (6.28)) is Sq -invariant.

• The Blume–Capel model with h = 0. As in the Ising model, the potential is
invariant under the action of Z2, the spin flip acting again on Ω0 = {−1,0,1}
via τfω0 = −ω0. That is, the model is invariant under the interchange of +
and − spins (leaving the 0 spins unchanged).

At the end of the chapter, we will also consider models in which the spin-space is
not a finite set.

6.6.1 Measures compatible with a G-invariant specification

Theorem 6.45. Let G be an internal transformation group and π be a G-invariant
specification. Then, G (π) is preserved by G:

µ ∈G (π) ⇒ τgµ ∈G (π) ∀g ∈G .
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Proof. Let g ∈G,Λ⋐Zd , ω ∈Ω and A ∈F . Since (τgµ)( f ) =µ( f ◦τg),

(τgµ)πΛ(A) =
∫
πΛ(A |τgω)µ(dω)

=
∫
πΛ(τ−1

g A |ω)µ(dω) =µπΛ(τ−1
g A) =µ(τ−1

g A) = τgµ(A) .

It follows that τgµ ∈G (π).

The above result does not necessarily mean that τgµ=µ for all g ∈G, but this prop-
erty is of course verified when uniqueness holds: in this case, the unique Gibbs
measure inherits all the symmetries of the Hamiltonian.

Corollary 6.46. Assume that G (π) = {µ}. If π is G-invariant, then µ is G-invariant:
τgµ=µ for all g ∈G.

However, when there are multiple measures compatible with a given specification,
it can happen that some of these measures are not G-invariant.

Definition 6.47. Let π be G-invariant. If there exists µ ∈G (π) for which τgµ ̸=µ, the
associated symmetry is said to be spontaneously broken under µ.

“Spontaneous” is used here to distinguish this phenomenon from an explicit
symmetry breaking. The latter occurs, for example, when one introduces a nonzero
magnetic field h in the Ising model, thereby deliberately destroying the symmetry
present when h = 0. ⋄

Example 6.48. We have seen that, when h = 0, the interactions of the Ising model
treat + and − spins in a completely symmetric way: HΛ;β,0(τfω) =HΛ;β,0(ω), where
f denotes the global spin flip. Nevertheless, when d ≥ 2 andβ>βc(d), we know that
the associated Gibbs measures µ+

β,0 ̸=µ−
β,0 are not invariant under a global spin flip,

since 〈σ0〉+β,0 > 0 > 〈σ0〉−β,0: the symmetry is spontaneously broken. We nevertheless

have that τfµ
+
β;0 =µ−

β;0, in complete accordance with the claim of Theorem 6.45. ⋄

6.7 Translation invariant Gibbs measures

The theory of Gibbs measures often becomes simpler once restricted to translation-
invariant measures. We will see for instance in Section 6.9 that, in this framework,
Gibbs measures can be characterized in an alternative way, allowing us to establish
a close relation between the DLR formalism and thermostatics.

Translations on Zd are a particular type of spatial transformation group, as de-
scribed in the previous section. Remember from Chapter 3 (see (3.15)) that the
translation by j ∈Zd , denoted θ j :Zd →Zd , is defined by

θ j i
def= i + j ,

and can be seen as an action of Zd on itself. Notice that θ−1
j = θ− j .

Definition 6.49. µ ∈M1(Ω) is translation invariant if θ jµ=µ for all j ∈Zd .
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6.7. Translation invariant Gibbs measures 279

Example 6.50. The product measure ρZ
d

obtained with ρi ≡ ρ0 (some fixed distri-
bution onΩ0) is translation invariant. ⋄
Example 6.51. The Gibbs measures of the Ising model, µ+

β,h and µ−
β,h , are transla-

tion invariant. Namely, we saw in Theorem 3.17 that 〈·〉+
β,h is invariant under any

translation θ j . Therefore, for each cylinder C ∈C , since 1C is local,

θ jµ
+
β,h(C ) =µ+

β,h(θ−1
j C ) = 〈1C ◦θ j 〉+β,h = 〈1C 〉+β,h =µ+

β,h(C ) .

This implies that θ jµ
+
β,h and µ+

β,h coincide on cylinders. Since the cylinders gener-

ate F , Corollary B.37 implies θ jµ
+
β,h =µ+

β,h . The same can be done with µ−
β,h . ⋄

We will sometimes use the following notation:

M1,θ(Ω)
def= {

µ ∈M1(Ω) : µ is translation invariant
}

.

The study of translation-invariant measures is simplified thanks to the fact that
spatial averages of local observables,

lim
n→∞

1

|B(n)|
∑

j∈B(n)

θ j f ,

exist almost surely and can be related to their expectation. To formulate this pre-
cisely, let I denote the σ-algebra of translation-invariant events:

I
def= {

A ∈F : θ j A = A , ∀ j ∈Z}
.

The following result is called the multidimensional ergodic theorem. We state it
without proof. [6]

Theorem 6.52. Let µ ∈M1,θ(Ω). Then, for any f ∈ L1(µ),

1

|B(n)|
∑

j∈B(n)

θ j f →µ( f |I ) µ-a.s. and in L1(µ) . (6.59)

Note that the limit (6.59) remains random in general. However, it becomes deter-
ministic if one assumes that µ satisfies one further property.

Definition 6.53. µ ∈ M1,θ(Ω) is ergodic if each translation-invariant event A has
probability µ(A) = 0 or 1.

Theorem 6.54. If µ ∈M1,θ(Ω) is ergodic, then, for any f ∈ L1(µ),

1

|B(n)|
∑

j∈B(n)

θ j f →µ( f ) µ-a.s. and in L1(µ) .

Proof. By Theorem 6.52, we only need to show that µ( f |I ) = µ( f ) almost surely.

Notice that g
def= µ( f |I ) is I -measurable, and therefore {g ≤ α} ∈ I for all α ∈ R,

giving µ(g ≤ α) ∈ {0,1}. Since α 7→ µ(g ≤ α) is non-decreasing, there exists some
α∗ ∈R for which µ(g =α∗) = 1. But since µ(g ) =µ( f ), we have α∗ =µ( f ).
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6.7.1 Translation invariant specifications

The action of a translation θ j on a kernel πΛ takes the form (see (6.58))

(θ jπ)Λ(A |ω)
def= πθ−1

j Λ(θ−1
j A |θ−1

j ω) . (6.60)

Say thatπ= {πΛ}Λ⋐Zd is translation invariant if θ jπΛ =πΛ for allΛ and all j ∈Zd .

Theorem 6.45 and its corollary also hold in this situation:

Exercise 6.21. Show that if π is translation invariant and µ ∈G (π), then θ jµ ∈G (π)
for all j ∈Zd . In particular, if G (π) = {µ}, then µ is translation invariant.

For example, if Φ = {ΦB }B⋐Zd is a translation-invariant (for all B ⋐ Zd , Φθ j B (ω) =
ΦB (θ− jω)) absolutely summable potential, then πΦ is translation invariant, and
θ jµ ∈G (Φ) for each µ ∈G (Φ).

We will sometimes use the following notation:

Gθ(π)
def= {

µ ∈G (π) : µ translation invariant
}

.

We leave it as an exercise to check that translation-invariant measures compatible
with a translation-invariant quasilocal specification always exist:

Exercise 6.22. Show that if π is translation invariant and quasilocal, then Gθ(π) ̸=
∅. Hint: Take µ ∈G (π), and use µn

def= 1
|B(n)|

∑
j∈B(n)θ jµ.

Let us stress, as we did in the previous section in the case of internal transforma-
tions, that translation-invariant specifications do not necessarily yield translation-
invariant measures:

Example 6.55. The specification associated to the Ising antiferromagnet defined
in (3.76) is clearly translation invariant. Nevertheless, neither of the Gibbs mea-
sures µeven

β
and µodd

β
constructed in Exercise 3.33 is translation invariant. ⋄

6.8 Convexity and Extremal Gibbs measures

We now investigate general properties of G (π), without assuming either symmetry
or uniqueness, and derive fundamental properties of the measures µ ∈G (π).

Let ν1,ν2 ∈M1(Ω), and λ ∈ [0,1]. Then the convex combination λν1 + (1−λ)ν2

is defined as follows: for A ∈F ,
(
λν1 + (1−λ)ν2

)
(A)

def= λν1(A)+ (1−λ)ν2(A).

A set M ′ ⊂M1(Ω) is convex if it is stable under convex combination of its elements,
that is, if ν1,ν2 ∈M ′ and λ ∈ (0,1) imply λν1 + (1−λ)ν2 ∈M ′.

The following is a nice feature of the DLR approach, which the definition of
Gibbs states in Chapter 3 does not enjoy in general. Let π be any specification.

Theorem 6.56. G (π) is convex.

Proof. Let µ=λν1 + (1−λ)ν2, with ν1,ν2 ∈G (π). For allΛ⋐Zd ,

µπΛ =λν1πΛ+ (1−λ)ν2πΛ =λν1 + (1−λ)ν2 =µ ,

and so µ ∈G (π).
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Since G (π) is convex, it is natural to distinguish the measures that cannot be
expressed as a non-trivial convex combination of other measures of G (π).

Definition 6.57. µ ∈G (π) is extremal if any decomposition of the form µ=λν1+(1−
λ)ν2 (with λ ∈ (0,1) and ν1,ν2 ∈ G (π)) implies that µ= ν1 = ν2. The set of extremal
elements of G (π) is denoted by exG (π).

This in turn raises the following questions:

1. Is exG (π) non-empty?

2. Are there properties that distinguish the elements of exG (π) from the non-
extremal ones?

3. Do extremal measures have special physical significance?

We will first answer the last two questions.

6.8.1 Properties of extremal Gibbs measures

We will see that extremal Gibbs measures are characterized by the fact that they
possess deterministic macroscopic properties. The latter properties correspond to
the following family of events, called the tail-σ-algebra:

T∞
def=

⋂
Λ⋐Zd

FΛc ; (6.61)

its elements are called tail (or macroscopic) events. Remembering that FΛc is the
σ-algebra of events that only depend on spins located outside Λ, we see that tail
events are those whose occurrence is not altered by local changes: if A ∈T∞ and if ω
and ω′ coincide everywhere but on a finite set of vertices, then

1A(ω) = 1A(ω′) .

The σ-algebra T∞ contains many important events. For example, particularly
relevant in view of what we saw in Chapter 3, the event “the infinite-volume mag-
netization exists and is positive”,

{
ω ∈Ω : lim

n→∞
1

|B(n)|
∑

j∈B(n)

ω j exists and is positive
}

belongs to T∞. Indeed, neither the existence nor the sign of the limit are al-
tered if any finite number of spins are changed. The T∞-measurable functions
f : Ω→ R are also called macroscopic observables, since they are not altered by
local changes in a configuration. As the following exercise shows, their behavior
contrasts sharply with that of local functions.

Exercise 6.23. Show that non-constant T∞-measurable functions are everywhere
discontinuous.

We now present the main features that characterize the elements of exG (π).
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Theorem 6.58. Let π be a specification. Let µ ∈ G (π). The following conditions are
equivalent characterizations of extremality.

1. µ is extremal.

2. µ is trivial on T∞: if A ∈T∞, then µ(A) is either 1 or 0.

3. All T∞-measurable functions are µ-almost surely constant.

4. µ has short-range correlations: for all A ∈F (or, equivalently, for all A ∈C ),

lim
Λ↑Zd

sup
B∈FΛc

∣∣µ(A∩B)−µ(A)µ(B)
∣∣= 0. (6.62)

A few remarks need to be made:

• These characterizations all express the fact that, whenever a system is de-
scribed by an extremal Gibbs measure, its macroscopic properties are de-
terministic: every macroscopic event occurs with probability 0 or 1. This is
clearly a very desirable feature: as discussed at the beginning of Chapter 1,
all observables associated to a given phase of a macroscopic system in ther-
modynamic equilibrium are determined once the thermodynamic parame-
ters characterizing the macrostate (for example, (β,h) for an Ising ferromag-
net) are fixed. Note however that, as mentioned there, the macrostate does
not fully characterize the macroscopic state of the system when there is a
first-order phase transition. The reason for that is made clear in the present
context: all macroscopic observables are deterministic under each extremal
measure, but the macrostate does not specify which of these measures is re-
alized.

• The statement (6.62) implies that local events become asymptotically inde-
pendent as the distance separating their support diverges. In fact, it even
applies to non-local events, although the interpretation of the statement be-
comes more difficult.

• Notice also that condition 2 above provides a remarkable and far-reaching
generalization of a famous result in probability theory: Kolmogorov’s 0-1 law.
Indeed, combined with Exercise 6.7, Theorem 6.58 implies triviality of the
tail-σ-algebra associated to a collection of independent random variables in-
dexed by Zd .

To prove Theorem 6.58, we first need two preliminary propositions. Since it will
be convenient to specify the σ-algebra on which measures are defined, we tem-
porarily write M1(Ω,F ) instead of M1(Ω).

LetΛ⋐Zd . We define the restriction rΛ : M1(Ω,F ) →M1(Ω,FΛc ) by

rΛµ(B)
def= µ(B) , ∀B ∈FΛc .

Observe that if g :Ω→R is FΛc -measurable, then rΛµ(g ) =µ(g ). Using a specifica-
tion π, one can define for each Λ⋐Zd the extension tπΛ : M1(Ω,FΛc ) →M1(Ω,F )
by

tπΛν(A)
def= νπΛ(A) , ∀A ∈F .

Note that the composition of tπΛ with rΛ is such that tπΛrΛ : M1(Ω,F ) →M1(Ω,F ).
We will prove the following new characterization of G (π):
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Proposition 6.59. µ ∈G (π) if and only if µ= tπΛrΛµ for all Λ⋐Zd .

This characterization [7] of G (π) can be interpreted as follows. Given a mea-
sure µ on (Ω,F ), the restriction rΛ results in a loss of information: from the measure
rΛµ, nothing can be said about what happens inside Λ. However, when µ ∈ G (π),
that lost information can be recovered using tπΛ: tπΛrΛµ=µ. ⋄

Proof of Proposition 6.59: Composing tπΛ with rΛ gives, for all A ∈F ,

tπΛrΛµ(A) = (rΛµ)πΛ(A) =
∫
πΛ(A |ω)rΛµ(dω) =

∫
πΛ(A |ω)µ(dω) =µπΛ(A) .

In the third identity, we used the FΛc -measurability of πΛ(A | ·).

Let F̂ be a sub-σ-algebra of F and let µ ∈ M1(Ω,F̂ ). For a nonnegative F̂ -
measurable function f : Ω→ R that satisfies µ( f ) = 1, let f µ ∈ M1(Ω,F̂ ) denote
the probability measure whose density with respect to µ is f :

f µ(A)
def=

∫

A
f (ω)µ(dω) , ∀A ∈ F̂ .

Observe that f1µ= f2µ if and only if f1 = f2 µ-almost surely (Lemma B.42).

Lemma 6.60. Let Λ⋐Zd .

1. Let µ ∈ M1(Ω,F ) and let f : Ω → R≥0 be an F -measurable function such
that µ( f ) = 1. Then

rΛ( f µ) =µ( f |FΛc )rΛµ .

2. Let ν ∈M1(Ω,FΛc ) and let g :Ω→R≥0, be an FΛc -measurable function such
that ν(g ) = 1. Then

tπΛ(gν) = g · tπΛν .

Proof. For the first item, take B ∈FΛc and use the definition of conditional expec-
tation:

rΛ( f µ)(B) =
∫

B
f (ω)µ(dω) =

∫

B
µ( f |FΛc )(ω)µ(dω) =

∫

B
µ( f |FΛc )(ω)rΛµ(dω) .

For the second item, take A ∈F and compute:

tπΛ(gν)(A) = (gν)πΛ(A) = g (νπΛ)(A) = g · tπΛν(A) . (6.63)

Exercise 6.24. Justify the second identity in (6.63).

Proposition 6.61. Let π be a specification.

1. Let µ ∈ G (π). Let f : Ω → R≥0, F -measurable, such that µ( f ) = 1. Then
f µ ∈ G (π) if and only if f is equal µ-almost everywhere to a T∞-measurable
function.

2. Let µ,ν ∈ G (π) be two probability measures that coincide on T∞: µ(A) = ν(A)
for all A ∈T∞. Then µ= ν.
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We will need the following classical result, called the backward martingale conver-
gence theorem: for all measurable f :Ω→R, integrable with respect to µ,

µ( f |FB(n)c )
n→∞−→ µ( f |T∞) , µ-a.s. and in L1(µ) . (6.64)

See also Theorem B.52 in Appendix B.5.

Proof of Proposition 6.61: 1. If f µ ∈G (π), we use Lemma 6.60 and Proposition 6.59
to get, for allΛ⋐Zd ,

f µ= tπΛrΛ( f µ) = tπΛ
{
µ( f |FΛc )rΛµ

}=µ( f |FΛc ) · tπΛ{rΛµ} =µ( f |FΛc ) ·µ .

Therefore, again by Lemma B.42, this implies f = µ( f |FΛc ) µ-almost surely. Since
this holds in particular when Λ = B(n), and since µ( f |FB(n)c ) → µ( f |T∞) almost
surely as n → ∞ (see (6.64)), we have shown that f = µ( f |T∞) µ-almost surely.
The latter is T∞-measurable, which proves the claim. Inversely, if f coincides µ-
almost surely with a T∞-measurable function f̃ , then f µ= f̃ µ, and, since f̃ is FΛc -
measurable for allΛ⋐Zd ,

( f µ)πΛ(A) = ( f̃ µ)πΛ(A) = f̃ (µπΛ)(A) = f̃ µ(A) = f µ(A) ,

for all A ∈F (we used Exercise 6.24 for the second identity) and so f µ ∈G (π).

2. Define λ
def= 1

2 (µ+ν). Then, λ ∈G (π) and both µ and ν are absolutely continu-
ous with respect to λ. By the Radon–Nikodým Theorem (Theorem B.41), there exist
f , g ≥ 0, λ( f ) =λ(g ) = 1, such that µ= f λ, ν= gλ. For all A ∈T∞,

∫

A
( f − g )dλ=µ(A)−ν(A) = 0.

But, by item 1, there exist two T∞-measurable functions f̃ and g̃ , λ-almost surely
equal to f , respectively g . Since A = { f̃ > g̃ } ∈ T∞, we conclude that λ( f > g ) =
λ( f̃ > g̃ ) = 0. In the same way, λ( f < g ) = 0 and therefore f = g λ-almost surely,
which implies that µ= ν.

Proof of Theorem 6.58: 1 ⇒ 2: Assume there exists A ∈ T∞ such that α = µ(A) ∈
(0,1). By item 1 of Proposition 6.61, µ1

def= 1
α1Aµ and µ2

def= 1
1−α1Acµ are both in G (π).

But since µ=αµ1 + (1−α)µ2, µ cannot be extremal.
2 ⇒ 1: Let µ be trivial on T∞, and assume that µ=αµ1+(1−α)µ2, withα ∈ (0,1)

and µ1,µ2 ∈G (π). Then µ1 and µ2 are absolutely continuous with respect to µ. Let
now A ∈T∞. Then, since µ(A) can be either 0 or 1, µ1(A) and µ2(A) are either both
0, or both 1. By item 2 of Proposition 6.61, µ=µ1 =µ2.

2 ⇒ 3: If f is T∞-measurable, each { f ≤ c} ∈T∞ and thus µ( f ≤ c) ∈ {0,1} for all
c. Setting c∗ = inf{c :µ( f ≤ c) = 1}, we get µ( f = c∗) = 1.

3 ⇒ 2: If A ∈ T∞, then 1A is T∞-measurable. Since it must be µ-almost surely
constant, we necessarily have that µ(A) ∈ {0,1}.

2 ⇒ 4: Let A ∈ F , ϵ > 0. Using (6.64) with f = 1A , one can take n large enough
so that

∥µ(A |FB(n)c )−µ(A |T∞)∥1 ≤ ϵ . (6.65)

Since µ(A |T∞) is T∞-measurable, item 3 implies that it is µ-almost surely con-
stant. This constant can only be µ(A), since µ(µ(A |T∞)) = µ(A). Then, for all
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B ∈FB(n)c ,

∣∣µ(A∩B)−µ(A)µ(B)
∣∣=

∣∣∣
∫

B
{1A −µ(A)}dµ

∣∣∣

=
∣∣∣
∫

B
{µ(A |FB(n)c )−µ(A |T∞)}dµ

∣∣∣≤ ϵ .

4 ⇒ 2: Suppose that (6.62) holds for all A ∈C . Then, µ(A∩B) =µ(A)µ(B) for all
A ∈C and all B ∈T∞ (since B ∈FΛc for allΛ⋐Zd ). If this can be extended to

µ(A∩B) =µ(A)µ(B) , ∀A ∈F ,B ∈T∞ , (6.66)

then, taking A = B implies µ(B) = µ(B ∩B) = µ(B)2, which is only possible if µ(B) ∈
{0,1} for all B ∈T∞, that is, if µ is trivial on T∞.

To prove (6.66), fix B ∈T∞ and define

D
def= {

A ∈F : µ(A∩B) =µ(A)µ(B)
}

.

If A, A′ ∈D , with A ⊂ A′, then µ
(
(A′ \ A)∩B

)= µ(A′∩B)−µ(A∩B) = µ(A′ \ A)µ(B),
showing that A′ \ A ∈ D . Moreover, for any sequence (An)n≥1 ⊂ D such that An ↑
A, we have that µ(A ∩ B) = limn µ(An ∩ B) = limn µ(An)µ(B) = µ(A)µ(B), and so
A ∈ D . This implies that D is a Dynkin system (see Appendix B.5). Since C ⊂
D by assumption, and since C is an algebra, we conclude that, D = σ(C ) = F
(Theorem B.36), so (6.66) holds.

In the following exercise, we consider a non-extremal measure for the Ising
model, and we provide an example of events for which the property of short-range
correlations does not hold.

Exercise 6.25. Consider the two-dimensional Ising model with h = 0 and β>βc(2).
Take any λ ∈ (0,1) and consider the (non-extremal) Gibbs measure

µ=λµ+
β,0 + (1−λ)µ−

β,0 .

Show that µ does not satisfy (6.62), by taking A = {σ0 = 1}, Bi = {σi = 1} and verifying
that

liminf
∥i∥1→∞

∣∣µ(A∩Bi )−µ(A)µ(Bi )
∣∣> 0.

Hint: Use the symmetry between µ+
β,0 and µ−

β,0 and the FKG inequality.

To end this section, we mention that extremal measures of G (π) can be distin-
guished from each other by only considering tail events:

Lemma 6.62. Distinct extremal measures µ,ν ∈ exG (π) are singular: there exists a
tail event A ∈T∞ such that µ(A) = 0 and ν(A) = 1.

Proof. If µ,ν ∈ G (π) are distinct, then item 2 of Proposition 6.61 shows that there
must exist A ∈T∞ such that µ(A) ̸= ν(A). But if µ and ν are extremal, they are trivial
on T∞ (Theorem 6.58, item 2), so either µ(A) = 0 and ν(A) = 1, or µ(Ac) = 0 and
ν(Ac) = 1.
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6.8.2 Extremal Gibbs measures and the thermodynamic limit

Since real macroscopic systems are always finite (albeit very large), the most physi-
cally relevant Gibbs measures are those that can be approximated by finite-volume
Gibbs distributions, that is, those that can be obtained by a thermodynamic limit
with some fixed boundary condition. It turns out that all extremal Gibbs measures
enjoy this property:

Theorem 6.63. Let µ ∈ exG (π). Then, for µ-almost all ω,

πB(n)(· |ω) ⇒µ .

Proof. We need to prove that, for µ-almost all ω,

πB(n)(C |ω)
n→∞−→ µ(C ) ∀C ∈C . (6.67)

Let C ∈ C . On the one hand (see (6.23)), there exists Ωn,C , µ(Ωn,C ) = 1, such that
πB(n)(C |ω) = µ(C |FB(n)c )(ω) for all ω ∈ Ωn,C . On the other hand, the extremality
of µ (see item 3 of Theorem 6.58) guarantees that there exists ΩC , µ(ΩC ) = 1, such
that µ(C ) = µ(C |T∞)(ω) for all ω ∈ΩC . Using (6.64) with f = 1C , there also exists
Ω̃C , µ(Ω̃C ) = 1, such that

µ(C |FB(n)c )(ω) →µ(C |T∞)(ω) ∀ω ∈ Ω̃C .

Therefore, for all ω that belong to the countable intersection of all the sets ΩC , Ω̃C

andΩn,C , which has µ-measure 1, (6.67) holds.

The above theorem shows yet another reason that extremal Gibbs measures are
natural to consider: they can be prepared by taking limits of finite-volume systems.
However, we will see in Example 6.68 that the converse statement is not true: not
all limits of finite-volume systems lead to extremal states.

A more basic question at this stage is whether all Gibbs measures can be ob-
tained with the thermodynamic limit. The following example shows that this is not
the case: G (π) can contain measures that do not appear in the approach of Chap-
ter 3 relying on the thermodynamic limit.

Example 6.64. [8] Let us consider the 3-dimensional Ising model, with β > βc(3)
and h = 0, in the box B(n). We have seen in Section 3.10.7 that the sequence of
finite-volume Gibbs distributions with Dobrushin boundary condition admits a
converging subsequence, defining a Gibbs measure µDob

β,0 satisfying, for any ϵ> 0,

〈σ(0,0,0)σ(0,0,−1)〉Dob
β,0 ≤−1+ϵ , (6.68)

once β is large enough (see Theorem 3.60). Let us denote by µDob
β,0 the correspond-

ing Gibbs measure. Applying a global spin flip, we obtain another Gibbs measure,

µ−Dob
β,0

def= τfµ
Dob
β,0 , also satisfying (6.68). Since G (β,0) is convex, µ

def= 1
2µ

Dob
β,0 + 1

2µ
−Dob
β,0 ∈

G (β,0). We show that it cannot be obtained as a thermodynamic limit. Notice that
〈σi 〉µ = 0 for all i ∈Zd and that one has, for any ϵ> 0,

〈σ(0,0,0)σ(0,0,−1)〉µ ≤−1+ϵ , (6.69)

once β is large enough. Suppose there exists a sequence (µηk

B(nk );β,0
)k≥1 converging

to µ. By the FKG inequality, for all k ≥ 1,

〈σ(0,0,0)σ(0,0,−1)〉ηk

B(nk );β,0
≥ 〈σ(0,0,0)〉ηk

B(nk );β,0
〈σ(0,0,−1)〉ηk

B(nk );β,0
,
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and thus

〈σ(0,0,0)σ(0,0,−1)〉µ ≥ 〈σ(0,0,0)〉µ〈σ(0,0,−1)〉µ = 0.

This contradicts (6.69). ⋄
So far, we have described general properties of extremal Gibbs measures. We

still need to determine whether such measures exist in general, and what role they
play in the description of G (π). Before pursuing with the general description of the
theory, we illustrate some of the ideas presented so far on our favorite example.

6.8.3 More on µ+
β,h , µ

−
β,h and G (β,h)

In this section, using tools specific to the Ising model, we provide more informa-
tions about µ+

β,h and µ−
β,h .

Lemma 6.65. µ+
β,h ,µ−

β,h are extremal.

Proof. We consider µ+
β,h . We start by showing that, for any ν ∈G (β,h),

ν( f ) ≤µ+
β,h( f ) for every nondecreasing local function f . (6.70)

Remember that, for all Λ ⋐ Zd and all boundary condition η, the FKG inequal-
ity implies that µη

Λ;β,h( f ) ≤ µ+
Λ;β,h( f ) for every nondecreasing local function f (see

Lemma 3.23). Therefore,

ν( f ) =
∫
µ
η

Λ;β,h( f )ν(dη) ≤µ+
Λ;β,h( f ) .

Since limΛ↑Zd µ+
Λ;β,h( f ) = µ+

β,h( f ), this establishes (6.70). Now assume that µ+
β,h is

not extremal:

µ+
β,h =λν1 + (1−λ)ν2 ,

where λ ∈ (0,1) and ν1,ν2 ∈ G (β,h) are both distinct from µ+
β,h . We use (6.70) as

follows. First, since ν1 ̸=µ+
β,h , there must exist a local function f∗ such that ν1( f∗) ̸=

µ+
β,h( f∗). From Lemma 3.19, we can assume that f∗ is nondecreasing. Therefore,

(6.70) implies that ν1( f∗) <µ+
β,h( f∗) and ν2( f∗) ≤µ+

β,h( f∗). Consequently,

µ+
β,h( f∗) =λν1( f∗)+ (1−λ)ν2( f∗) <µ+

β,h( f∗) ,

a contradiction. We conclude that µ+
β,h is extremal.

Since µ+
β,h is extremal, it inherits all the properties described in Theorem 6.58. For

example, property (4) of that theorem implies that the truncated 2-point function,

〈σi ;σ j 〉+β,h
def= 〈σiσ j 〉+β,h −〈σi 〉+β,h〈σ j 〉+β,h ,

tends to zero when ∥ j − i∥∞ → ∞. (Note that this claim was already established,
by other means, in Exercise 3.15.) This can be used to obtain a Weak Law of Large
Numbers:
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Exercise 6.26. Consider

mB(n)
def= 1

|B(n)|
∑

j∈B(n)

σ j .

Show that mB(n) →µ+
β,h(σ0) in µ+

β,h-probability. That is, for all ϵ> 0,

µ+
β,h

(|mB(n) −µ+
β,h(σ0)| ≥ ϵ)→ 0 when n →∞ .

Hint: Show that the variance of mB(n) vanishes as n →∞.

One may wonder whether the convergence of mB(n) to µ+
β,h(σ0) proved in the

previous exercise also holds almost surely. Actually, we know that

m
def= limsup

n→∞
mB(n) (6.71)

is almost surely constant, since it is a macroscopic observable. To show that the
limsup in (6.71) is a true limit, we will use a further property of µ+

β,h .

Lemma 6.66. µ+
β,h and µ−

β,h are ergodic.

We start by proving the following general fact:

Lemma 6.67. Let µ ∈ M1(Ω,F ) be invariant under translations. Then, for all A ∈
I , there exists B ∈T∞ such that µ(A△B) = 0; in particular, µ(A) =µ(B).

Proof. By Lemma B.34, there exists a sequence (Cn)n≥1 ⊂ C such that µ(A△Cn) ≤
2−n . For each n, let Λ(n) ⋐ Zd be such that Cn ∈ C (Λ(n)). By a property already
used in Lemma 6.2, we can assume that Λ(n) ↑ Zd . For each n, let in ∈ Zd be such
thatΛ(n)∩θinΛ(n) =∅. Let C ′

n = θin Cn . Since A and µ are invariant,

µ(A△C ′
n) =µ(θin (θ−in A△Cn)) =µ(θin (A△Cn)) =µ(A△Cn) ≤ 2−n .

Since C ′
n ∈FΛ(n)c , we have B

def= ⋂
n

⋃
m≥n C ′

m ∈T∞. Moreover,

µ(A△B) ≤ lim
n→∞

∑
m≥n

µ(A△C ′
m) = 0.

Proof of Lemma 6.66: Since the measure µ+
β,h is invariant under translations, it fol-

lows from Lemma 6.67 that, for all A ∈ I , there exists B ∈ T∞ such that µ+
β,h(A) =

µ+
β,h(B). But µ+

β,h is extremal, therefore µ+
β,h(B) ∈ {0,1}.

Since µ+
β,h is ergodic, and since one can always write σ j =σ0 ◦θ− j , we deduce from

Theorem 6.54 that the infinite-volume magnetization

m = lim
n→∞

1

|B(n)|
∑

j∈B(n)

σ j

exists µ+
β,h-almost surely, and equals µ+

β,h(σ0). A similar statement holds for µ−
β,h .

Since µ+
β,0 ̸= µ−

β,0 when β > βc(d), we know from Lemma 6.62 that they are also

singular. The events {m > 0} and {m < 0} thus provide examples of two tail events
on which these measures differ.
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Digression: on the significance of non-extremal Gibbs measures

With the properties of extremal measures described in detail above, we can now
understand better the significance of non-extremal Gibbs measures. We continue
illustrating things on the Ising model, but this discussion applies to more general
situations.

Let λ ∈ (0,1) and consider the convex combination

µ
def= λµ+

β,0 + (1−λ)µ−
β,0 .

Assume that d ≥ 2 and β> βc(d), so that µ+
β,0 ̸= µ−

β,0. As explained below, a natural

interpretation of the coefficient λ (respectively 1−λ) is as the probability that a
configuration sampled fromµ is “typical” ofµ+

β,0 (respectivelyµ−
β,0). The only minor

difficulty is to give a reasonable meaning to the word “typical”. One possible way to
do that is to consider two tail-measurable events T + and T − such that

µ+
β,0(T +) =µ−

β,0(T −) = 1, µ+
β,0(T −) =µ−

β,0(T +) = 0.

In other words the event T + encodes macroscopic properties that are typically (that
is, almost surely) verified under µ+

β,0, and similarly for T −; moreover T + and T −

allow us to distinguish between these two measures. A configuration ω ∈ Ω will
then be said to be typical for µ+

β,0 (resp. µ−
β,0) if ω ∈ T + (resp. T −).

Since µ+
β,h and µ−

β,h are extremal and distinct, we know by Lemma 6.62 that

events like T + and T − always exist. In the case of the Ising model, we can be more
explicit. For example, since µ+

β,0 and µ−
β,0 are characterized by the probability they

associate to cylinders, one can take

T ± =
⋂

C∈C

{
lim
Λ↑Zd

1

|Λ|
∑
i∈Λ

1C ◦θi exists and equals µ±
β,0(C )

}
.

It is easy to verify that T + and T − enjoy all the desired properties. First, Theo-
rem 6.54 guarantees that µ±

β,0(T ±) = 1. Moreover, T +∩T − =∅, since for example

µ+
β,0(σ0) > 0 >µ−

β,0(σ0).

Let us then check that if we sample a configuration according to µ, then it will
be almost surely typical for either µ+

β,0 or µ−
β,0:

µ(T +∪T −) ≥λµ+
β,0(T +)+ (1−λ)µ−

β,0(T −) = 1.

Moreover, λ is the probability that the sampled configuration is typical for µ+
β,0:

µ(T +) =λµ+
β,0(T +) =λ ∈ (0,1) .

In the same way, 1−λ is the probability that the sampled configuration is typical
of µ−

β,0. Let us then ask the following question: If the configuration sampled (under

µ) was in T +, what else can be said about its properties? Since µ+
β,0(T +) = 1 and

µ−
β,0(T +) = 0, we have, for all B ∈F ,

µ(B ∩T +) =λµ+
β,0(B ∩T +) =λµ+

β,0(B) =µ(T +)µ+
β,0(B) .

Therefore,
µ(B |T +) =µ+

β,0(B) .
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290 Chapter 6. Infinite-Volume Gibbs Measures

In other words, conditionally on the fact that one observes a configuration typical
for µ+

β,0, the distribution is precisely given by µ+
β,0.

For example, taking T + = {m > 0}, T − = {m < 0},

µ(· |m > 0) =µ+
β,0 , µ(· |m < 0) =µ−

β,0 .

This discussion shows that non-extremal Gibbs measures do not bring any new
physics: everything that can be observed under such a measure is typical for one of
the extremal Gibbs measures that appears in its decomposition. In this sense, the
physically relevant elements of G (π) are the extremal ones. [9]

Digression: on the simplex structure for the Ising Model in d = 2

The nearest-neighbor Ising model on Z2 happens to be one of the very few models
of equilibrium statistical mechanics for which the exact structure G (π) is known.
We make a few comments on this fact, whose full description is beyond the scope
of this book, as it might help the reader to understand the following section on
the extreme decomposition. This is also very closely related to the discussion in
Section 3.10.8.

We continue with h = 0. The following can be proved for any β>βc(2):

1. µ+
β,0 and µ−

β,0 are the only extremal Gibbs states:

exG (β,0) = {µ−
β,0,µ+

β,0} .

This follows from the discussion in Section 3.10.8.

2. Any non-extremal Gibbs measure can be expressed in a unique manner as a
convex combination of those two extremal elements: if µ ∈ G (β,0), then there
exists λ ∈ [0,1] such that

∀B ∈F , µ(B) =λµ+
β,0(B)+ (1−λ)µ−

β,0(B) . (6.72)

This representation induces in fact a one-to-one correspondence between
measures in G (β) and the corresponding coefficient λ ∈ [0,1]. Indeed, taking
B = {σ0 = 1} in (6.72) shows that the coefficient λ associated to a measure
µ ∈G (β) can be expressed as

λ=
µ(σ0 =+1)−µ−

β,0(σ0 =+1)

µ+
β,0(σ0 =+1)−µ−

β,0(σ0 =+1)
.

In view of the discussion of the previous subsection, it is natural to interpret
the pair (λ,1−λ) as a probability distribution on exG (β,0).

All this can be compactly summarized by writing

G (β,0) = {
λµ+

β,0 + (1−λ)µ−
β,0, λ ∈ [0,1]

}
. (6.73)

This means that G (β,0) is a simplex: it is a closed (Lemma 6.27), convex subset of
M1(Ω), which is the convex hull of its extremal elements (that is, each of its ele-
ments can be written, in a unique way, as a convex combination of the extremal
elements). Schematically,
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M1(Ω)

µ+
β,0G (β,0)

µ−
β,0

Accepting (6.73), we can clarify a point raised after Theorem 6.63: the thermo-
dynamic limit does not always lead to an extremal state.

Example 6.68. Let µ∅
β,0 be the Gibbs measure of the nearest-neighbor Ising model

onZ2 prepared with free boundary condition, which is constructed in Exercise 6.14.
By (6.73), µ∅

β,0 must be a convex combination of µ+
β,0 and µ−

β,0. But by symmetry,

the only possibility is that µ∅
β,0 = 1

2µ
+
β,0 + 1

2µ
−
β,0. Therefore, µ∅

β,0 is not extremal as

soon as µ+
β,0 ̸= µ−

β,0 (that is, when β> βc(2)), although it was constructed using the

thermodynamic limit. ⋄

6.8.4 Extremal decomposition

There are unfortunately very few non-trivial specifications π for which G (π) can be
determined explicitly. However, as will explained now, one can show in great gener-
ality that something similar to what we just saw in the case of the two-dimensional
Ising model occurs: the set exG (π) ̸= ∅ and G (π) is always a simplex (although
often an infinite-dimensional one).

Heuristics

Throughout the section, we assume that π is a specification for which G (π) ̸= ∅.
(One can assume, for example, that π is quasilocal, but quasilocality itself is not
necessary for the forthcoming results.) Our aim is to show that exG (π) ̸= ∅, and
that any µ ∈ G (π) can be expressed in a unique way as a convex combination of
elements of exG (π). A priori, there can be uncountably many extremal Gibbs mea-
sures, so one can expect the combination to take the form of an integral:

∀B ∈F , µ(B) =
∫

exG (π)
ν(B)λµ(dν) . (6.74)

Here, λµ(·) is a probability distribution on exG (π) (the measurable structure on
sets of probability measures will be introduced later) that plays the role of the coef-
ficients (λ,1−λ) in (6.72); in particular,

λµ(exG (π)) = 1. (6.75)

The main steps leading to (6.74) will be as follows. To start, for each B ∈F , the
definition of the conditional expectation allows us to write

µ(B) =
∫
µ(B |T∞)(ω)µ(dω) .

The central ingredient will be to show that there exists a regular version of µ(· |T∞).
This means that one can associate to each ω a probability measure Qω ∈M1(Ω) in
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such a way that

µ(· |T∞)(ω′) =Qω′
(·) , for µ-almost every ω′.

When such a family of measures Qω exists,

µ(B) =
∫

Qω(B)µ(dω) , (6.76)

which is a first step towards the decomposition of µ(B) we are after.

The idea behind the construction of Q· given below can be illustrated as fol-
lows (although the true construction will be more involved). Consider the basic local
property characterizing the measures of G (π), written in its integral form: for all
Λ⋐Zd ,

µ(B) =
∫
πΛ(B |ω)µ(dω) .

Then, taking Λ ↑Zd formally in the previous display yields

µ(B) =
∫

lim
Λ↑Zd

πΛ(B |ω)

︸ ︷︷ ︸
Qω(B)

µ(dω) .

⋄

Let us give two arguments in favor of the fact that, under the mapω 7→Qω, most
of the configurations ω are mapped to a Qω ∈ exG (π), in the sense that

µ(Q· ∈ exG (π)) = 1.

1. We have already seen (remember (6.64)) that µ(· |T∞) can be expressed as a
limit:

µ(· |FB(n)c ) →µ(· |T∞) .

But since µ ∈ G (π), we have µ(· |FB(n)c )(ω) = πB(n)(· |ω) for µ-almost all ω
and for all n. We have also seen in Theorem 6.26 that the limits of sequences
πB(n)(· |ω), when they exist, belong to G (π). We therefore expect that

Qω(·) ∈G (π) , µ-a.a.ω . (6.77)

2. Moreover, if A ∈T∞, then 1A is T∞-measurable and so µ(A |T∞) = 1A almost
surely, which suggests that Qω(A) = 1A(ω); in other words, Qω(·) should be
trivial on T∞, which by Theorem 6.58 means that

Qω ∈ exG (π) , µ-a.a.ω .

The implementation of the above argument leads to a natural way of obtaining
extremal elements: first take any µ ∈G (π), then condition it with respect to T∞ and
get (almost surely): µ(· |T∞) ∈ exG (π). ⋄

One should thus consider ω 7→Qω, roughly, as a mapping fromΩ to exG (π):
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Ω

Qω

G (π)

µ λµ

exG (π)

M1(Ω)

pushforward

We would like to push µ forward onto G (π). Leaving aside the measurability
issues, we proceed by letting, for M ⊂G (π),

λµ(M)
def= µ(Q· ∈ M) . (6.78)

We then proceed as in elementary probability, and push the integration of µ overΩ
onto an integration of λµ over exG (π). Namely 1, for a function ϕ : M1(Ω) →R,

∫

Ω
ϕ(Qω)µ(dω) =

∫

exG (π)
ϕ(ν)λµ(dν) . (6.79)

If one defines, for all B ∈F , the evaluation map eB : M1(Ω) → [0,1] by

eB (ν)
def= ν(B) , (6.80)

then (6.79) with ϕ= eB and (6.76) give (6.74).

Implementing the idea exposed in the two arguments given above is not triv-
ial (albeit mostly technical); it will be rigorously established in Propositions 6.69
and 6.70 below.

Construction and properties of the kernel Q·

The family {Qω}ω∈Ω is nothing but a regular conditional distribution for µ(· |T∞); it
will be constructed using only the kernels of π. Q· will be defined by a probability
kernel from T∞ to F , which, similarly to the kernels introduced in Definition 6.9,
is a mapping F ×Ω→ [0,1], (B ,ω) 7→Qω(B) with the following properties:

• For each ω ∈Ω, B 7→Qω(B) is a probability measure on (Ω,F ).

• For each B ∈F , ω 7→Qω(B) is T∞-measurable.

Proposition 6.69. There exists, for each ω ∈ Ω, a probability kernel Qω from T∞
to F such that, for each µ ∈G (π),

1. For every bounded measurable f :Ω→R,

µ( f |T∞)(·) =Q·( f ) , µ-almost surely , (6.81)

2. {Q· ∈G (π)} ∈T∞, and µ(Q· ∈G (π)) = 1.
1What we are doing here is the exact analogue of the standard operation in probability theory.

There, one defines the distribution of a random variable X , λX (·) def= P (X ∈ ·), and uses it to express
the expectation of functions of X as integrations over R:∫

Ω
g (X (ω))P (dω) =

∫

R
g (x)λX (dx) .
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Proof. ▶ Construction of Qω. Let π= {πΛ}Λ⋐Zd and let

Ωπ
def=

⋂
C∈C

{
ω ∈Ω : lim

n→∞πB(n)(C |ω) exists
}

.

Clearly,Ωπ ∈T∞. Whenω ∈Ωc
π, we define Qω def= µ0, where µ0 is any fixed probabil-

ity measure onΩ. When ω ∈Ωπ, we define

Qω(C )
def= lim

n→∞πB(n)(C |ω) ,

for each C ∈ C . By construction, Qω is a probability measure on C . By Theo-
rem 6.96, it extends uniquely to F . To prove T∞-measurability, let

D
def= {

B ∈F : ω 7→Qω(B) is T∞-measurable
}

.

When C ∈ C , we have, for all α, {Q·(C ) ≤ α} = (
{Q·(C ) ≤ α}∩Ωπ

)∪ (
{Q·(C ) ≤ α}∩

Ωc
π

) ∈T∞. Therefore, C ⊂D . We verify that D is a Dynkin class (see Appendix B.5):
if B ,B ′ ∈D , with B ⊂ B ′, then Q·(B ′ \ B) =Q·(B ′)−Q·(B) is T∞-measurable, giving
B ′ \ B ∈ D . Then, if (Bn)n≥1 ⊂ D , Bn ⊂ Bn+1, Bn ↑ B , then Q·(B) = limn Q·(Bn), and
so B ∈D . Since C is stable under intersections, Theorem B.36 implies that D =F .

▶ Relating Qω to G (π). Let now µ ∈ G (π). We have already seen in the proof of
Theorem 6.63 that, on a set of µ-measure 1,

πB(n)(C | ·) =µ(C |FB(n)c )(·) n→∞−−−−→µ(C |T∞)(·) for all C ∈C .

In particular, µ(Ωπ) = 1 and µ(C |T∞) =Q·(C ) µ-almost surely, for all C ∈C . Again,
we can show that

D ′ def= {
B ∈F : µ(B |T∞) =Q·(B)µ-a.s.

}

is a Dynkin class containing C , giving D ′ =F . To show (6.81), one can assume that
f is non-negative, and take any sequence of simple functions fn ↑ f . Since each
fn is a finite sum of indicators and since µ(B |T∞) = Q·(B) µ-a.s. for all B ∈ F , it
follows that µ( fn |T∞) = Q·( fn) almost surely. The result follows by the monotone
convergence theorem.

To show that {Q· ∈G (π)} ∈T∞, we observe that

{Q· ∈G (π)} =
⋂

Λ⋐Zd

⋂
A∈F

{Q·πΛ(A) =Q·(A)}

=
⋂

Λ⋐Zd

⋂
C∈C

{Q·πΛ(C ) =Q·(C )} . (6.82)

We used Lemma 6.22 in the second equality to obtain a countable intersection (over
C ∈ C ). Since each Q·(C ) is T∞-measurable, Q·πΛ(C ) also is. Indeed, one can
consider a sequence of simple functions fn ↑πΛ(C | ·), giving Q·πΛ(C ) = limn Q·( fn).
Since each Q·( fn) is T∞-measurable, its limit also is. This implies that each set
{Q·πΛ(C ) =Q·(C )} ∈T∞ and, therefore, {Q· ∈G (π)} ∈T∞.

Now, if µ ∈ G (π), we will show that µ(Q·πΛ(C ) =Q·(C )) = 1 for all C ∈C , which
with (6.82) implies µ(Q· ∈ G (π)) = 1, thus completing the proof of the proposi-
tion. Using (6.81), FΛc ⊃ T∞ and the tower property of conditional expectation
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(the third to fifth inequalities below hold for µ-almost all ω),

QωπΛ(C ) =Qω
(
πΛ(C | ·))

=Qω
(
µ(C |FΛc )

)

=µ(
µ(C |FΛc ) |T∞

)
(ω)

=µ(C |T∞)(ω)

=Qω(C ) .

Proposition 6.70. If µ ∈G (π), then µ(Q· ∈ exG (π)) = 1.

Note that this result has the following immediate, but crucial, consequence:

Corollary 6.71. If G (π) ̸=∅, then exG (π) ̸=∅.

The proof of Proposition 6.70 will rely partly on the characterization of T∞ given in
Theorem 6.58: extremal measures of G (π) are those that are trivial on T∞. Further-
more, we have:

Exercise 6.27. Show that ν ∈ M1(Ω) is trivial on T∞ if and only if, for all B ∈ F ,
ν(B |T∞) = ν(B) ν-almost surely. Hint: half of the claim was already given in the
proof of Theorem 6.58.

Proof of Proposition 6.70: Using Exercise 6.27,

exG (π) = {
ν ∈G (π) : ν is trivial on T∞

}

= {
ν ∈G (π) : ∀A ∈F ,ν(A |T∞) = ν(A) ,ν-a.s.

}

= {
ν ∈G (π) : ∀C ∈C ,ν(C |T∞) = ν(C ) ,ν-a.s.

}

= {
ν ∈G (π) : ∀C ∈C ,Q·(C ) = ν(C ) ,ν-a.s.

}
. (6.83)

To prove the third identity, define D ′′ def= {
A ∈F : ν(A |T∞) = ν(A) ,ν-a.s.

}
. Since

D ′′ ⊃C and since D ′′ is a Dynkin class (as can be verified easily), we have D ′′ =F .
For all C ∈C , ν ∈M1(Ω), let VC (ν) denote the variance of Q·(C ) under ν:

VC (ν)
def= Eν

[
(Q·(C )−Eν[Q·(C )])2] .

If ν ∈G (π), then Eν[Q·(C )] = ν(C ) (because of (6.81)), and so

exG (π) =G (π)∩
⋂

C∈C

{
ν ∈M1(Ω) : VC (ν) = 0

}
.

Let µ ∈ G (π). Since µ(Q· ∈ G (π)) = 1 (Proposition 6.69), we need to show that
µ(VC (Q·) = 0) = 1 for each C ∈C . Since VC ≥ 0, it suffices to show thatµ(VC (Q·)) = 0:

µ(VC (Q·)) =
∫ {

EQω [Q·(C )2]−Qω(C )2}µ(dω)

=
∫ {

Eµ[Q·(C )2 |T∞](ω)−Qω(C )2}µ(dω) = 0,

where we used (6.81) for the second identity.
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Construction and uniqueness of the decomposition

Let µ ∈G (π). Since we are interested in having (6.79) valid for the evaluation maps
eB , we consider the smallestσ-algebra on M1(Ω) for which all the maps {eB , B ∈F }
are measurable. λµ in (6.78) then defines a probability measure on this σ-algebra,
and satisfies (6.75).

Theorem 6.72. For all µ ∈G (π),

∀B ∈F , µ(B) =
∫

exG (π)
ν(B)λµ(dν) . (6.84)

Moreover, λµ is the unique measure on M1(Ω) for which such a representation holds.

Proof. The construction of (6.79) is standard. The definition λµ(M)
def= µ(Q· ∈ M)

can be expressed in terms of indicators:
∫

Ω
1M (Qω)µ(dω) =

∫

exG (π)
1M (ν)λµ(dν).

An arbitrary bounded measurable functionϕ : M1(Ω) →R can be approximated by
a sequence of finite linear combinations of indicator functions 1M . Applying this
with ϕ= eB yields (6.84).

Assume now that there exists another measure λ′
µ such that (6.84) holds with

λ′
µ in place of λµ. Observe that any ν ∈ exG (π) satisfies ν(Q· = ν) = 1 (see (6.83)).

This implies that, for a measurable M ⊂M1(Ω), ν(Q· ∈ M) = 1M (ν). Therefore,

λ′
µ(M) =

∫

exG (π)
1M (ν)λ′

µ(dν)

=
∫

exG (π)
ν(Q· ∈ M)λ′

µ(dν) =µ(Q· ∈ M) =λµ(M) ,

where we used (6.84) for the third identity. This shows that λµ =λ′
µ.

The fact that any µ ∈ G (π) can be decomposed over the extremal elements of
G (π) is convenient when trying to establish uniqueness. Indeed, to show that G (π)
is a singleton, by Theorem 6.72, it suffices to show that it contains a unique extremal
element. Since the latter have distinguishing properties, proving that there is only
one is often simpler. This is seen in the following proof of our result on uniqueness
for one-dimensional systems, stated in Section 6.5.5.

Proof of Theorem 6.40: The proof consists in showing that G (Φ) has a unique ex-
tremal measure. By Theorem 6.72, this implies that G (Φ) is a singleton.

Let therefore µ,ν ∈ exG (Φ). By Theorem 6.63, µ and ν can be constructed as
thermodynamic limits. Let ω (respectively η) be such that πΦ

B(N )
(· |ω) ⇒ µ (respec-

tively πΦ
B(N )

(· |η) ⇒ ν) as N → ∞. By Lemma 6.43, we thus have, for all cylinders
C ∈C ,

µ(C ) = lim
N→∞

πΦB(N )(C |ω) ≥ e−2D lim
N→∞

πΦB(N )(C |η) = e−2Dν(C ) .

It is easy to verify that D = {
A ∈F : µ(A) ≥ e−2Dν(A)

}
is a monotone class. Since it

contains the algebra C , it also coincides with F , and so µ ≥ e−2Dν. In particular,
ν is absolutely continuous with respect to µ. Since two distinct extremal measures
are mutually singular (see Lemma 6.62), we conclude that µ= ν.
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6.9 The variational principle

The DLR formalism studied in the present chapter characterizes the Gibbs mea-
sures describing infinite systems through a collection of local conditions: µπΦΛ = µ
for all Λ⋐ Zd . In this section, we present an alternative, variational characteriza-
tion of translation-invariant Gibbs measures, that allows to establish a relationship
between the DLR formalism and the way equilibrium is described in thermostatics,
as had been presented in the introduction.

The idea behind the variational principle is of a different nature, and has a more
thermodynamical flavor. It will only apply to translation-invariant Gibbs measures,
and consists in defining an appropriate functional on the set of all translation-
invariant probability measures, W : M1,θ(Ω) →R, of the form

µ 7→W (µ) = Entropy(µ)−β×Energy(µ) . (6.85)

By analogy with (1.17) of Chapter 1, − 1
βW (µ) can be interpreted as the free en-

ergy. As seen at various places in Chapter 1, in particular in Section 1.3, equilib-
rium states are characterized as those that minimize the free energy; here, we will
see that translation-invariant Gibbs measures are the minimizers of − 1

βW (·).

Remark 6.73. Since the relation between the material presented in this chapter and
thermostatics is important from the physical point of view, we will again resort to
the physicists’ conventions regarding the inverse temperature and write, in partic-
ular, the potential as βΦ. To ease notations, the temperature will usually not be
explicitly indicated. ⋄

6.9.1 Formulation in the finite case

To illustrate the content of the variational principle, let us consider the simplest
case of a system living in a finite set Λ ⋐ Zd . Let M1(ΩΛ) denote the set of all
probability distributions on ΩΛ and let HΛ :ΩΛ→R be a Hamiltonian. Define, for
each µΛ ∈M1(ΩΛ),

WΛ(µΛ)
def= SΛ(µΛ)−β〈HΛ〉µΛ , (6.86)

where SΛ(µΛ) is the Shannon entropy ofµΛ, which was already considered in Chap-
ter 1. Here, we denote it by

SΛ(µΛ)
def= −

∑
ωΛ∈ΩΛ

µΛ(ωΛ) logµΛ(ωΛ) , (6.87)

and 〈HΛ〉µΛ represents the average energy underµΛ. Our goal is to maximize WΛ(·)
over all probability distributions µΛ ∈M1(ΩΛ).

Notice that, at high temperature (small β), the dominant term is the entropy
and WΛ is maximal for the uniform distribution (remember Lemma 1.9). On the
other hand, at low temperature (β large) the dominant term is the energy and WΛ is
maximal for distributions with a minimal energy. ⋄

As we have already seen in Chapter 1, when µΛ is the Gibbs distribution associ-

ated to the Hamiltonian HΛ, µGibbs
Λ

(ωΛ)
def= e−βHΛ(ωΛ)

ZΛ
, a simple computation shows

that W (µGibbs
Λ

) coincides with the pressure of the system:

WΛ(µGibbs
Λ ) = log ZΛ .
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Lemma 6.74 (Variational principle, finite version). For all µΛ ∈M1(ΩΛ),

WΛ(µΛ) ≤WΛ(µGibbs
Λ ) .

Moreover, µGibbs
Λ

is the unique maximizer of WΛ(·).

Proof. Since log(·) is concave, Jensen’s inequality gives, for all µΛ ∈M1(ΩΛ),

WΛ(µΛ) =
∑

ωΛ∈ΩΛ
µΛ(ωΛ) log

e−βHΛ(ωΛ)

µΛ(ωΛ)
≤ log

∑
ωΛ∈ΩΛ

e−βHΛ(ωΛ) = log ZΛ ,

and equality holds if and only if e−βHΛ(ωΛ)

µΛ(ωΛ) is constant, that is, if µΛ =µGibbs
Λ

.

The variational principle can be expressed in a slightly different form, useful
to understand what will be done later. Let us define the relative entropy of two
distributions µΛ,νΛ ∈M1(ΩΛ) by

HΛ(µΛ |νΛ)
def=

{∑
ωΛ∈ΩΛ µΛ(ωΛ) log µΛ(ωΛ)

νΛ(ωΛ) if µΛ≪ νΛ ,

+∞ otherwise.
(6.88)

(The interested reader can find a discussion of relative entropy and its basic prop-
erties in Appendix B.12.) First, HΛ can be related to SΛ by noting that, if λΛ denotes
the uniform measure onΩΛ,

HΛ(µΛ |λΛ) = log |ΩΛ|−SΛ(µΛ) . (6.89)

Observe also that
HΛ(µΛ |µGibbs

Λ ) =WΛ(µGibbs
Λ )−WΛ(µΛ) , (6.90)

so that the variational principle above can be reformulated as follows:

HΛ(µΛ |µGibbs
Λ ) ≥ 0, with equality if and only if µΛ =µGibbs

Λ . (6.91)

Exercise 6.28. Let H per

Vn ;β,h be the Hamiltonian of the Ising model in Vn
def=

{0, . . . ,n −1}d with periodic boundary condition. Show that, among all product
probability measures µVn = ⊗

i∈Vn ρi on {±1}Vn (where all ρi are equal), the unique
measure maximizing

WVn (µVn )
def= SVn (µVn )−β〈

H per

Vn ;β,h

〉
µVn

is the measure such that ρi = ν for all i ∈ Vn , where ν is the probability measure on
{±1} with mean m satisfying m = tanh(2dβm +h). In other words, the maximum is
achieved by the product measure obtained through the “naive mean-field approach”
of Section 2.5.1. In this sense, the latter is the best approximation of the original
model among all product measures.

The rest of this section consists in extending this point of view to infinite sys-
tems. To formulate the variational principle for infinite-volume Gibbs measures,
we will need to introduce notions playing the role of the entropy and average en-
ergy for infinite systems. This will be done by considering the corresponding den-
sities:

lim
Λ↑Zd

1

|Λ|SΛ(µΛ) , lim
Λ↑Zd

1

|Λ| 〈HΛ〉µΛ .
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The existence of these two limits will be established when µΛ is the marginal of a
translation-invariant measure, in Propositions 6.75 and 6.78.

Remember that G (βΦ) denotes the set of all probability measures compatible

with the Gibbsian specification πβΦ, and Gθ(βΦ)
def= G (βΦ)∩M1,θ(Ω).

In the following sections, we will define a functional W : M1,θ(Ω) 7→ R, using
the densities mentioned above, and characterize the Gibbs measures of Gθ(βΦ) as
maximizers of W (·). Notice that, since first-order phase transitions can occur on
the infinite lattice, we do not expect uniqueness of the maximizer to hold in general.

6.9.2 Specific entropy and energy density

Remember from the beginning of the chapter that the marginal of µ ∈ M1(Ω) on

Λ⋐ Zd is µ|Λ def= µ ◦Π−1
Λ ∈ M1(ΩΛ). Since no confusion will be possible below, we

will write µΛ instead of µ|Λ, to lighten the notations. One can then define the Shan-
non entropy ofµ inΛ by

SΛ(µ)
def= SΛ(µΛ) ,

where SΛ(µΛ) was defined in (6.87) (bearing in mind that µΛ is now the marginal of
µ inΛ).

Proposition 6.75 (Existence of the specific entropy). For all µ ∈M1,θ(Ω),

s(µ)
def= lim

n→∞
1

|B(n)|SB(n)(µ) (6.92)

exists and is called the specific entropy of µ. Moreover,

s(µ) = inf
Λ∈R

SΛ(µ)

|Λ| , (6.93)

and µ 7→ s(µ) is affine: for all µ,ν ∈M1,θ(Ω) and α ∈ (0,1),

s(αµ+ (1−α)ν) =αs(µ)+ (1−α)s(ν) .

Given µ,ν ∈ M1(Ω), let us use (6.88) to define the relative entropy of µ with
respect to ν (onΛ):

HΛ(µ |ν)
def= HΛ(µΛ |νΛ) .

Lemma 6.76. For all µ,ν ∈M1(Ω) and all Λ⋐Zd ,

1. HΛ(µ |ν) ≥ 0, with equality if and only if µΛ = νΛ,

2. (µ,ν) 7→HΛ(µ,ν) is convex, and

3. if ∆⊂Λ, then H∆(µ |ν) ≤HΛ(µ |ν).

Proof. The first and second items are proved in Proposition B.66, so let us consider
the third one. We can assume that µΛ≪ νΛ, otherwise the claim is trivial. Then,

HΛ(µ |ν) =
∑
ωΛ

φ
(µΛ(ωΛ)

νΛ(ωΛ)

)
νΛ(ωΛ) ,

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

300 Chapter 6. Infinite-Volume Gibbs Measures

where φ(x)
def= x log x (x ≥ 0) is convex. We then split ωΛ into ωΛ = τ∆ηΛ\∆, and

consider the summation over ηΛ\∆, for a fixed τ∆. Using Jensen’s inequality for the
distribution νΛ conditioned on τ∆, we get

HΛ(µ |ν) ≥
∑
τ∆

φ
(µ∆(τ∆)

ν∆(τ∆)

)
ν∆(τ∆) =H∆(µ |ν) .

Corollary 6.77. µ 7→ −SΛ(µ) is convex and, when Λ,Λ′ ⋐Zd are disjoint,

SΛ∪Λ′ (µ) ≤ SΛ(µ)+SΛ′ (µ) .

Proof. The first claim follows from (6.89) and Lemma 6.76. A straightforward com-

putation shows that, introducing ν
def= µΛ⊗λΛc with λΛc the uniform product mea-

sure onΩΛc , one gets

SΛ(µ)−SΛ∪Λ′ (µ) =HΛ∪Λ′ (µ|ν)− log |ΩΛ′ | ≥HΛ′ (µ|ν)− log |ΩΛ′ | = −SΛ′ (µ) .

We used again Lemma 6.76 in the inequality.

Proof of Proposition 6.75: By Corollary 6.77, the set function a(Λ)
def= SΛ(µ) is both

translation invariant and subadditive (see Section B.1.3): for all pairs of disjoint
paralellepipeds Λ,Λ′, a(Λ∪Λ′) ≤ a(Λ) + a(Λ′). The existence of the limit defin-
ing s(µ) is therefore guaranteed by Lemma B.6. By Corollary 6.77, SΛ(·) is concave,

which implies that s(·) is concave too. To verify that it is also convex, consider µ′ def=
αµ+(1−α)ν. Since logµ′

Λ(ωΛ) ≥ log(αµΛ(ωΛ)) and logµ′
Λ(ωΛ) ≥ log((1−α)νΛ(ωΛ)),

SΛ(µ′) ≤αSΛ(µ)+ (1−α)SΛ(ν)−α log(1−α)− (1−α) log(1−α) .

This implies that s(·) is also convex, proving the second claim of the proposition.

Exercise 6.29. Show that s(·) is upper semicontinuous, that is,

µk ⇒µ implies limsup
k→∞

s(µk ) ≤ s(µ) .

Let us now turn our attention to Gibbs measures and consider a potential
Φ = {ΦB }B⋐Zd . Until the end of the section, we will assume Φ to be absolutely
summable and translation invariant, like the potentials considered in Section 6.7.1.
Notice that translation invariance implies that Φ is in fact uniformly absolutely
summable:

sup
i∈Zd

∑

B⋐Zd :
B∋i

∥ΦB∥∞ =
∑

B⋐Zd :
B∋0

∥ΦB∥∞ <∞ .

Proposition 6.78 (Existence of the average energy density). For all µ ∈M1,θ(Ω),

lim
n→∞

1

|B(n)|
〈
HB(n);Φ

〉
µ = 〈uΦ〉µ , (6.94)

where

uΦ
def=

∑

B⋐Zd :
B∋0

1

|B |ΦB . (6.95)
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Proof. First,

∣∣HB(n);Φ−
∑

j∈B(n)

θ j uΦ
∣∣≤

∑
j∈B(n)

∑
B∋ j :

B ̸⊂B(n)

∥Φ∥∞
def= rB(n);Φ . (6.96)

The uniform absolute summability of Φ implies that rB(n);Φ = o(|B(n)|) (see Exer-
cise 6.30 below). By translation invariance, 〈θ j uΦ〉µ = 〈uΦ〉µ, which concludes the
proof.

Exercise 6.30. Show that, when Φ is absolutely summable and translation invari-
ant,

lim
n→∞

rB(n);Φ

|B(n)| = 0. (6.97)

The last object whose existence in the thermodynamic limit needs to be proved
is the pressure.

Theorem 6.79. When Φ is absolutely summable and translation invariant,

ψ(Φ)
def= lim

n→∞
1

β|B(n)| logZη
B(n);βΦ

exists and does not depend on the boundary condition η; it is called the pressure.
Moreover, Φ 7→ ψ(Φ) is convex on the space of absolutely summable, translation-
invariant potentials: if Φ1,Φ2 are two such potentials and t ∈ (0,1), then

ψ
(
tΦ1 + (1− t )Φ2)≤ tψ(Φ1)+ (1− t )ψ(Φ2) .

We will actually see, as a byproduct of the proof, that the pressure equals

βψ(Φ) = s(µ)−β〈uΦ〉µ , ∀µ ∈Gθ(βΦ) , (6.98)

which is the analogue of the Euler relation (1.9).
We will show existence of the pressure by using the convergence proved above

for the specific entropy and average energy. To start:

Lemma 6.80. Let µ ∈ M1,θ(Ω) and (νn)n≥1, (ν̃n)n≥1 be two arbitrary sequences in
M1(Ω). If either of the sequences

( 1

|B(n)|HB(n)(µ |νnπ
βΦ

B(n)
)
)

n≥1
,

( 1

|B(n)|HB(n)(µ | ν̃nπ
βΦ

B(n)
)
)

n≥1
(6.99)

has a limit as n →∞, then the other one also does, and the limits are equal.

Proof. By the absolute sommability of Φ, we have πβΦ
B(n)

(ωB(n) |η) > 0 for all n, uni-

formly in ωB(n) and η. This guarantees that µB(n) ≪ νnπ
βΦ

B(n)
and µB(n) ≪ ν̃nπ

βΦ

B(n)
.

Therefore,

HB(n)(µ |νnπ
βΦ

B(n)
)−HB(n)(µ | ν̃nπ

βΦ

B(n)
) =

∑
ωB(n)

µB(n)(ωB(n)) log
ν̃nπ

βΦ

B(n)
(ωB(n))

νnπ
βΦ

B(n)
(ωB(n))

.
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Since

sup
ωB(n),η,η̃

∣∣HB(n);Φ(ωB(n)ηB(n)c )−HB(n);Φ(ωB(n)η̃B(n)c )
∣∣≤ 2rB(n);Φ , (6.100)

where rB(n);Φ was defined in (6.96), we have,

e−4βrB(n);Φ ≤
ν̃nπ

βΦ

B(n)
(ωB(n))

νnπ
βΦ

B(n)
(ωB(n))

≤ e4βrB(n);Φ .

By Exercise 6.30, rB(n);Φ = o(|B(n)|), which proves the claim.

Proof of Proposition 6.79: We use Lemma 6.80 with µ ∈ Gθ(βΦ), νn = µ, and ν̃n =
δω, for some arbitrary fixed ω ∈Ω. Then νnπ

βΦ

B(n)
=µ, so the first sequence in (6.99)

is identically equal to zero. Therefore, the second sequence must converge to zero.
By writing it explicitly, the second sequence becomes

1

|B(n)|HB(n)
(
µ | ν̃nπ

βΦ

B(n)

)=
1

|B(n)| logZωB(n);βΦ− 1

|B(n)|
{
SB(n)(µ)−β〈

HB(n);Φ( ·ωB(n)c )
〉
µ

}
.

(6.101)

By Propositions 6.75 and 6.78, the second and third terms on the right-hand side are
known to have limits, and the limit of the third one does not depend on ω, since,
by (6.100), 〈

HB(n);Φ( ·ωB(n)c )
〉
µ =

〈
HB(n);Φ

〉
µ+O(rB(n);Φ) .

Since the whole sequence on the right-hand side of (6.101) must converge to zero,
this proves the existence of the pressure and justifies (6.98). As in the proof of
Lemma 3.5, convexity follows from Hölder’s inequality.

6.9.3 Variational principle for Gibbs measures

Proposition 6.81. Let Φ be absolutely convergent and translation invariant. Let
ν ∈Gθ(βΦ). Then, for all µ ∈M1,θ(Ω), the Gibbs free energy

h(µ |Φ)
def= lim

n→∞
1

|B(n)|HB(n)(µ |ν) (6.102)

exists and does not depend on ν (only on Φ). Moreover, h(µ |Φ) is non-negative and
satisfies

h(µ |Φ) =βψ(Φ)− {s(µ)−β〈uΦ〉µ} . (6.103)

Proof. If ν ∈ Gθ(βΦ), then HB(n)(µ |ν) = HB(n)(µ |νπβΦB(n)
). Therefore, to show the

existence of the limit (6.102), we can use Lemma 6.80 with νn = ν. As earlier, we
choose ν̃n = δω, for which we know that the limit of the second sequence in (6.99)
exists and equals βψ(Φ)− {s(µ)−β〈uΦ〉µ}, as seen after (6.101).

We can now formulate the infinite-volume version of (6.91).

Theorem 6.82 (Variational principle). Let µ ∈M1,θ(Ω). Then

µ ∈Gθ(βΦ) if and only if h(µ |Φ) = 0. (6.104)
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The variational principle stated above establishes the analogy between translation
invariant Gibbs measures and the basic principles of thermostatics, as announced
at the beginning of the section.

We already know from (6.98) that µ ∈ Gθ(βΦ) implies h(µ |Φ) = 0. The proof of
the converse statement is trickier; it will rely on the following lemma.

Lemma 6.83. Let µ,ν ∈M1,θ(Ω) be such that

lim
n→∞

1

|B(n)|HB(n)(µ |ν) = 0. (6.105)

Fix ∆ ⋐ Zd . Then, for all δ > 0 and for all k for which B(k) ⊃ ∆, there exists some
finite regionΛ⊃B(k) such that

0 ≤HΛ(µ |ν)−HΛ\∆(µ |ν) ≤ δ . (6.106)

We know from item 1 of Lemma 6.76 that, in a finite region, HΛ(µ |ν) = 0
implies µΛ = νΛ. Although (6.105) does not necessarily imply that µ= ν, (6.106) will
imply that µ and ν can be compared to each other on arbitrarily large regions Λ (see
the proof of Theorem 6.82 below). ⋄

Proof. We will use repeatedly the monotonicity of HΛ in Λ, proved in Lemma 6.76.
Fix δ> 0 and k so that B(k) ⊃∆, and let n be such that

1

|B(n)|HB(n)(µ |ν) ≤ δ

2|B(k)| .

If m = ⌊(2n +1)/(2k +1)⌋, then at least md adjacent disjoint translates of B(k) can
be arranged to fit in B(n); we denote them by B1(k), . . . ,Bmd (k). We assume for
simplicity that B1(k) = B(k). For each ℓ ∈ {2, . . . ,md }, let iℓ be such that Bℓ(k) =
iℓ+B(k). Define now ∆(ℓ)

def= iℓ+∆ and Λ(ℓ)
def= B1(k)∪·· ·∪Bℓ(k). For commodity,

let H∅(µ |ν)
def= 0. SinceΛ(ℓ) \Bℓ(k) ⊂Λ(ℓ) \∆(ℓ),

1

md

md∑
ℓ=1

{
HΛ(ℓ)(µ |ν)−HΛ(ℓ)\∆(ℓ)(µ |ν)

}≤ 1

md

md∑
ℓ=1

{
HΛ(ℓ)(µ |ν)−HΛ(ℓ)\Bℓ(k)(µ |ν)

}

= 1

md
HΛ(md )(µ |ν)

≤ 1

md
HB(n)(µ |ν)

≤ δ .

In the last line, we used the fact that md ≥ |B(n)|/(2|B(k)|). Since the first sum over
ℓ corresponds to the arithmetic mean of a collection of non-negative numbers, at
least one of them must satisfy

HΛ(ℓ)(µ |ν)−HΛ(ℓ)\∆(ℓ)(µ |ν) ≤ δ .

One can thus takeΛ
def= θ−1

iℓ
Λ(ℓ); translation invariance of µ and ν yields the desired

result.
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Proof of Theorem 6.82: Let µ ∈ M1,θ(Ω) be such that h(µ |Φ) = 0. We need to show
that, for any ∆⋐Zd and any local function f ,

µπ
βΦ
∆

( f ) =µ( f ) . (6.107)

By Proposition 6.81, h(µ |Φ) = 0 means that we can take any ν ∈Gθ(βΦ) and assume
that

lim
n→∞

1

|B(n)|HB(n)(µ |ν) = 0.

In particular, µΛ ≪ νΛ for all Λ ⋐ Zd ; we will denote the corresponding Radon–

Nikodým derivative by ρΛ
def= dµΛ

dνΛ
. Observe that ρΛ is FΛ-measurable and that, for

all FΛ-measurable functions g , µ(g ) = ν(ρΛg ).

Fix ϵ > 0. To start, µπβΦ
∆

( f ) = µ(πβΦ
∆

f ) and, since πβΦ
∆

f is quasilocal and F∆c -

measurable, we can find some F∆c -measurable local function g∗ such that ∥πβΦ
∆

f −
g∗∥∞ ≤ ϵ. Let then k be large enough to ensure that B(k) contains ∆, as well as the
supports of f and g∗. In this way, g∗ is FB(k)\∆-measurable.

Let δ
def= r ϵ

2 , and takeΛ⊃B(k), as in Lemma 6.83. We write

µπ
βΦ
∆

( f )−µ( f ) =µ(πβΦ
∆

f − g∗)

+ (
µ(g∗)−ν(ρΛ\∆g∗)

)

+ν(
ρΛ\∆(g∗−πβΦ∆ f )

)

+ν(
ρΛ\∆(πβΦ

∆
f − f )

)

+ν(
(ρΛ\∆−ρΛ) f

)

+ (
ν(ρΛ f )−µ( f )

)
.

We consider one by one the terms on the right-hand side of this last display. Since

∥πβΦ
∆

f − g∗∥∞ ≤ ϵ, the first and third terms are bounded by ϵ. The second term
is zero since g∗ is FΛ\∆-measurable, and the sixth term is zero since f is FΛ-
measurable. Now the fourth term is zero too, since ρΛ\∆ is F∆c -measurable and
since ν ∈Gθ(βΦ) implies that

ν
(
ρΛ\∆(πβΦ

∆
f )

)= ν(
π
βΦ
∆

(ρΛ\∆ f )
)= νπβΦ

∆
(ρΛ\∆ f ) = ν(ρΛ\∆ f ) .

Finally, consider the fifth term. First, notice that

δ≥HΛ(µ |ν)−HΛ\∆(µ |ν) =µ
(
log

ρΛ

ρΛ\∆

)
= ν

(
ρΛ log

ρΛ

ρΛ\∆

)
= ν(

ρΛ\∆φ(ρΛ/ρΛ\∆)
)

,

where φ(x)
def= 1−x +x log x. It can be verified that there exists r > 0 such that

φ(x) ≥ r (|x −1|−ϵ/2) ∀x ≥ 0. (6.108)

Using (6.108),

ν
(
ρΛ\∆φ(ρΛ/ρΛ\∆)

)≥ rν(|ρΛ−ρΛ\∆|)−
r ϵ

2
.

By definition of δ, this implies that ν(|ρΛ −ρΛ\∆|) ≤ ϵ. The fifth term is therefore

bounded by ϵ∥ f ∥∞. Altogether, |µπβΦ
∆

( f )−µ( f )| ≤ (2+∥ f ∥∞)ϵ, which proves (6.107)
since ϵ was arbitrary.
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We have completed the program described at the beginning of the section:

Theorem 6.84. Let Φ be an absolutely summable, translation-invariant potential.
Define the affine functional W : M1,θ(Ω) →R by

µ 7→W (µ)
def= s(µ)−β〈uΦ〉µ .

Then the maximizers of W (·) are the translation-invariant Gibbs measures compat-
ible with πβΦ.

6.10 Continuous spins

As we said at the beginning of the chapter, the DLR formalism can be developed for
much more general single-spin spaces. In this section, we briefly discuss some of
these extensions.

As long as the single-spin space remains compact, most of the results stated and
proved in the previous sections hold, although some definitions and some of the
proofs given forΩ0 = {±1} need to be slightly adapted. In contrast, when the single-
spin space is not compact, even the existence of Gibbs measures is not guaranteed
(even for very reasonable interactions, as will be discussed in Chapter 8).

We discuss these issues briefly; for details on more general settings in which the
DLR formalism can be developed, we refer the reader to [134].

6.10.1 General definitions

Let (Ω0,d) be a separable metric space. Two guiding examples that the reader
should keep in mind are S1 = {

x ∈R2 : ∥x∥2 = 1
}

equipped with the Euclidean dis-
tance, or Rwith the usual distance | · |.

The distance induces the Borelσ-algebra B0 onΩ0, generated by the open sets.
Let

ΩΛ
def= ΩΛ0 , Ω

def= ΩZ
d

0 .

The measurable structure onΩΛ is the product σ-algebra

BΛ
def=

⊗
i∈Λ

B0 ,

which is the smallest σ-algebra on ΩΛ generated by the rectangles, that is, the sets
of the form ×i∈ΛAi , Ai ∈B0 for all i ∈Λ. The projections ΠΛ :Ω→ΩΛ are defined
as before. For allΛ⋐Zd ,

C (Λ)
def= Π−1

Λ (BΛ)

denotes theσ-algebra of cylinders with base inΛ and, for S ⊂Zd (possibly infinite),

CS
def=

⋃
Λ⋐S

C (Λ)

is the algebra of cylinders with base in S, FS
def= σ(CS ). As we did earlier, we let C

def=
CZd , F

def= FZd , and denote the set of probability measures on (Ω,F ) by M1(Ω).

Rather than consider general specifications, we focus only on Gibbsian speci-
fications. Let therefore Φ = {ΦB }B⋐Zd be a collection of maps ΦB : Ω→ R, where
eachΦB is FB -measurable, and absolutely summable, as in (6.25). We present two
important examples.
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• The O(N ) model. This model has single-spin space Ω0 = {
x ∈RN : ∥x∥2 = 1

}

and its potential can be taken as

ΦB (ω) =
{
−βωi ·ω j if B = {i , j }, i ∼ j ,

0 otherwise,
(6.109)

where x · y denotes the scalar product of x, y ∈ RN . The case N = 2 corre-
sponds to the X Y model, N = 3 corresponds to the Heisenberg model. These
models, and their generalizations, will be discussed in Chapters 9 and 10.

• The Gaussian Free Field. Here, as already mentioned,Ω0 =R and

ΦB (ω) =





β(ωi −ω j )2 if B = {i , j } , i ∼ j ,

λω2
i if B = {i } ,

0 otherwise.

This model will be discussed in Chapter 8, and some generalizations in Chap-
ter 9.

Let HΛ;Φ denote the Hamiltonian associated to Φ, in a region Λ⋐ Zd , defined
as in (6.24). For spins taking values in {±1}, a Gibbsian specification associated to a
Hamiltonian was defined pointwise in (6.30) through the numbers πΦΛ(τΛ |ω). Due
to the a priori continuous nature of Ω0 (as in the case Ω0 = S1), the finite-volume
Gibbs distribution must be defined differently, since even configurations in a finite
volume will usually have zero probability.

Assume therefore we are given a measure λ0 on (Ω0,B0), called the reference
measure. λ0 need not necessarily be a probability measure. In the case of S1 and
R, the most natural choice for λ0 is the Lebesgue measure 2. The product measure
on (ΩΛ,BΛ), usually denoted

⊗
i∈Λλ0 but which we will here abbreviate by λΛ0 , is

defined by setting, for all rectangles ×i∈ΛAi ,

λΛ0 (×i∈ΛAi )
def=

∏
i∈Λ

λ0(Ai ) .

We then define the Gibbsian specification πΦ = {πΦΛ}Λ⋐Zd by setting, for all A ∈
F and all boundary conditions η ∈Ω (compare with (6.30)),

πΦΛ(A |η)
def= 1

Zη
Λ

∫

ΩΛ

1A(ωΛηΛc )e−HΛ;Φ(ωΛηΛc )λΛ0 (dωΛ) , (6.110)

where

Zη
Λ;Φ

def=
∫

ΩΛ

e−HΛ;Φ(ωΛηΛc )λΛ0 (dωΛ) .

For convenience, we will sometimes use the following abbreviation:

πΦΛ(dω |η) = e−HΛ;Φ(ω)

Zη
Λ;Φ

λΛ0 ⊗δη(dω) , (6.111)

2In the case Ω0 = {−1,1}, the (implicitly used) reference measure λ0 was simply the counting mea-
sure λ0 = δ−1 +δ1.
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in which δη denotes the Dirac mass on ΩΛc concentrated at ηΛc . The expectation
of a function f :Ω→ R with respect to πΦΛ(· |η) thus becomes, after integrating out
over δη,

πΦΛ f (η) =
∫

ΩΛ

e−HΛ;Φ(ωΛηΛc )

Zη
Λ;Φ

f (ωΛηΛc )λΛ0 (dωΛ) .

All the notions introduced earlier, in particular the notion of consistency of ker-
nels, of Gibbsian specificationπΦ and of the set of probability measures compatible
with a specification πΦ, G (Φ), extend immediately to this more general setting.

The topological notions related toΩhave immediate generalizations. Letω ∈Ω.
A sequence (ω(n))n≥1 ⊂Ω converges to ω if, for all j ∈Zd ,

d(ω(n)
j ,ω j ) → 0 as n →∞ .

In the present general context, a sequence µn ∈ M1(Ω) is said to converge to µ ∈
M1(Ω), which we write µn ⇒µ, if [2]

µn( f ) →µ( f ) for all bounded local functions f .

6.10.2 DLR formalism for compact spin space

WhenΩ0 is compact, most of the important results of this chapter have immediate
analogues. The starting point is that (as in the caseΩ0 = {±1}, see Proposition 6.20)
the notions of convergence for configurations and measures make Ω and M1(Ω)
sequentially compact. Proceeding exactly as in the proof of Theorem 6.26, the com-
pactness of M1(Ω) and the Feller property allow to show that there exists at least
one Gibbs measure compatible with πΦ: G (Φ) ̸=∅. Although some proofs need to
be slightly adapted, all the main results presented on the structure of G (Φ) when
Ω0 = {±1} remain true when Ω0 is a compact metric space. In particular, G (Φ) is
convex and its extremal elements enjoy the same properties as before:

Theorem 6.85. (Compact spin space) Let Φ be an absolutely summable potential.
Let µ ∈G (Φ). The following conditions are equivalent characterizations of extremal-
ity.

1. µ is extremal.

2. µ is trivial on T∞: if A ∈T∞, then µ(A) is either 1 or 0.

3. All T∞-measurable functions are µ-almost surely constant.

4. µ has short-range correlations: for all A ∈F (or, equivalently, for all A ∈C ),

lim
Λ↑Zd

sup
B∈FΛc

∣∣µ(A∩B)−µ(A)µ(B)
∣∣= 0. (6.112)

Extremal elements can also be constructed using limits:

Theorem 6.86. (Compact spin space) Let µ ∈ exG (Φ). Then, for µ-almost all ω,

πΦB(n)(· |ω) ⇒µ .
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As in the case of finite single-spin space, to each µ ∈G (Φ) corresponds a unique
probability distribution λµ on M1(Ω), concentrated on the extremal measures of
G (Φ), leading to the following extremal decomposition:

Theorem 6.87. (Compact spin space) For all µ ∈G (Φ),

∀B ∈F , µ(B) =
∫

exG (π)
ν(B)λµ(dν) . (6.113)

Moreover, λµ is the unique measure on M1(Ω) for which such a representation holds.

Finally, uniqueness results similar to Theorems 6.31 and 6.40 hold.

6.10.3 Symmetries

Let (G, ·) be a group acting on Ω0 (this action can then be extended to Ω in the
natural way as explained in Section 6.6). The notion of G-invariant potential is the
same as before, but, in order to state the main result about symmetries, we will need
to assume that the reference measure is also invariant under G, that is, τgλ0 = λ0

for all g ∈G.
To illustrate this, let us return to the two examples introduced above.

• For the O(N ) models, the potential is invariant under the action of the or-
thogonal group O(N ), which acts on Ω0 via its representation as the set of
all N × N orthogonal matrices. Observe that the reference measure is then
O(N )-invariant since the determinant of each such matrix is ±1.

• For the Gaussian Free Field, the potential is invariant under the action of the
group (R,+) (that is, under the addition of the same arbitrary real number to
all spins of the configuration). Since the reference measure is the Lebesgue
measure, its invariance is clear.

One then gets:

Theorem 6.88. Let G be an internal transformation group under which the reference
measure is invariant. Let π be a G-invariant specification. Then, G (π) is preserved
by G:

µ ∈G (π) ⇒ τgµ ∈G (π) ∀g ∈G .

6.11 A criterion for non-uniqueness

The results on uniqueness and on the extremal decomposition mentioned earlier
hold for of a very general class of specifications. Unfortunately, it is much harder to
establish non-uniqueness in a general setting and one usually has to resort to more
model-specific methods. Two such approaches will be presented in Chapters 7 (the
Pirogov–Sinai theory) and 10 (reflection positivity).

In the present section, we derive a criterion relating non-uniqueness to the
non-differentiability of a suitably-defined pressure [10]. This provides a vast gen-
eralization of the corresponding discussion in Section 3.2.2. This criterion will be
used in Chapter 10 to establish non-uniqueness in models with continuous spin.
For simplicity, we will restrict our attention to translation-invariant potentials of
finite range and assume thatΩ0 is compact.
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Let Φ be a translation invariant and finite-range potential, and g be any local

function. For each Λ⋐ Zd , let Λ(g )
def= {

i ∈Zd : supp(g ◦θi )∩Λ ̸=∅
}
. Then define,

for each ω ∈Ω,

ψω
Λ(λ)

def= 1

|Λ(g )| log
〈

exp
{
λ

∑
j∈Λ(g )

g ◦θ j

}〉ω
Λ;Φ

, (6.114)

where 〈·〉ωΛ;Φ denotes expectation with respect to the kernel πΦΛ(· |ω).

Lemma 6.89. For any sequence Λn ⇑ Zd and any sequence of boundary conditions
(ωn)n≥1, the limit

ψ(λ)
def= lim

n→∞ψ
ωn
Λn

(λ) (6.115)

exists and is independent of the choice of (Λn)n≥1 and (ωn)n≥1. Moreover, λ 7→ψ(λ)
is convex.

Although it could be adapted to the present situation, the existence of the pres-
sure proved in Theorem 6.79 does not apply since, here, we do not assume that Ω0

contains finitely many elements.

Proof. Notice that |Λn(g )|/|Λn | → 0. Using the fact that Φ has finite range and that
g is local, one can repeat the same steps as in the proof of Theorem 3.6. Using the
Hölder Inequality as we did in the proof of Lemma 3.5, we deduce that λ 7→ψω

Λ(λ)
is convex.

Exercise 6.31. Complete the details of the proof of Lemma 6.89.

Remark 6.90. In (6.114), the expectation with respect to πΦΛ(· |ω) can be substituted
by the expectation with respect to any Gibbs measure µ ∈G (Φ). Namely, let

ψ
µ

Λ
(λ)

def= 1

|Λ(g )| log
〈

exp
{
λ

∑
j∈Λ(g )

g ◦θ j

}〉
µ

. (6.116)

Observe that, since 〈 f 〉µ = 〈〈 f 〉·Λ;Φ〉µ, there exist ω′,ω′′ (depending on Λ, Φ, etc.)
such that

〈
exp

{
λ

∑
j∈Λ(g )

g ◦θ j

}〉ω′

Λ;Φ
≤

〈
exp

{
λ

∑
j∈Λ(g )

g ◦θ j

}〉
µ
≤

〈
exp

{
λ

∑
j∈Λ(g )

g ◦θ j

}〉ω′′

Λ;Φ
.

(The existence ofω′,ω′′ follows from the fact that, for any local function f , the func-
tion ω 7→ 〈 f 〉ωΛ;Φ is continuous and bounded and therefore attains its bounds.) Us-

ing Lemma 6.89, it follows that ψ(λ) = limn→∞ψ
µ

Λn
(λ). ⋄

Remember that convexity guarantees that ψ possesses one-sided derivatives
with respect to λ. As we did for the Ising model in Theorem 3.34 and Proposi-
tion 3.29, we can relate these derivatives to the expectation of g .

Proposition 6.91. For all µ ∈Gθ(Φ),

∂ψ

∂λ−

∣∣∣
λ=0

≤ 〈g 〉µ ≤
∂ψ

∂λ+

∣∣∣
λ=0

. (6.117)

Moreover, there exist µ+,µ− ∈Gθ(Φ), such that

∂ψ

∂λ+

∣∣∣
λ=0

= 〈g 〉µ+ ,
∂ψ

∂λ−

∣∣∣
λ=0

= 〈g 〉µ− . (6.118)
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In practice, this result is used to obtain non-uniqueness (namely, the existence of
distinct measures µ+,µ−) by finding a local function g for which ψ is not differen-
tiable at λ= 0. In the Ising model, that function was g =σ0.

Proof. We first use the fact that ψ= limn→∞ψ
µ

Λn
(λ) (see Remark 6.90). Since ψµ

Λ
is

convex, it follows from (B.9) that, for all λ> 0,

ψ
µ

Λ
(λ)−ψµ

Λ
(0)

λ
≥
∂ψ

µ

Λ

∂λ+

∣∣∣
λ=0

= 1

|Λ(g )|
〈 ∑

j∈Λ(g )
g ◦θ j

〉
µ
= 〈g 〉µ ,

where the last identity is a consequence of the translation invariance of µ. Taking
Λ ⇑ Zd followed by λ ↓ 0, we get the upper bound in (6.117). The lower bound is
obtained similarly.

Let us turn to the second claim. We now use the fact that ψ= limn→∞ψω
Λn

, for
any ω. We fix λ> 0, and use again convexity: for all small ϵ> 0,

ψω
Λ(λ)−ψω

Λ(λ−ϵ)

ϵ
≤
∂ψω

Λ

∂λ−

∣∣∣
λ
= 1

|Λ(g )|

〈(∑
i∈Λ(g ) g ◦θi

)
eλ

∑
i∈Λ(g ) g◦θi

〉ω
Λ;Φ〈

eλ
∑

i∈Λ(g ) g◦θi
〉ω
Λ;Φ

= 1

|Λ(g )|
〈 ∑

i∈Λ(g )
(g ◦θi )

〉ω
Λ;Φλ

, (6.119)

where the (translation-invariant) potentialΦλ = {ΦλB }B⋐Zd is defined by

ΦλB
def=

{
ΦB +λg ◦θi if B = θi (suppg ) ,

ΦB otherwise.

Let now µλ ∈G (Φλ) be translation invariant (this is always possible by adapting the
construction of Exercise 6.22). Integrating both sides of (6.119) with respect to µλ,

〈ψ·
Λ(λ)−ψ·

Λ(λ−ϵ)

ϵ

〉
µλ

≤ 1

|Λ(g )|
〈 ∑

i∈Λ(g )
g ◦θi

〉
µλ

= 〈g 〉µλ .

Notice that ∥ψ·
Λ(λ)∥∞ ≤ |λ|∥g∥∞ <∞. TakingΛ ⇑Zd , followed by ϵ ↓ 0, we get

〈g 〉µλ ≥
∂ψ

∂λ−

∣∣∣
λ
≥ ∂ψ

∂λ+

∣∣∣
λ=0

, ∀λ> 0.

In the last step, we used item 3 of Theorem B.12. Consider now any sequence
(λk )k≥1 decreasing to 0. By compactness (Theorem 6.24 applies here too), there
exists a subsequence (λkm )m≥1 and a probability measure µ+ such that µλkm ⇒ µ+

as m → ∞. Clearly, µ+ is also translation invariant and, by Exercise 6.32 below,
µ+ ∈ G (Φ). Since g is local, 〈g 〉

µλk → 〈g 〉µ+ . Applying (6.117) to µ+, we conclude

that 〈g 〉µ+ = ∂ψ
∂λ+

∣∣
λ=0.

Remark 6.92. It can be shown that the measures µ+,µ− in the second claim are in
fact ergodic with respect to lattice translations. ⋄

Exercise 6.32. Let (Φk )k≥1,Φ be translation-invariant potentials of range at most r
and such that ∥Φk

B −ΦB∥∞ → 0 when k →∞, for all B ⋐Zd . Let µk ∈G (Φk ) and µ be

a probability measure such that µk ⇒µ. Then µ ∈G (Φ). Hint: use a trick like (6.35).
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Exercise 6.33. Consider the Ising model on Zd . Prove that β 7→ ψIsing(β,h) is dif-
ferentiable whenever |G (β,h)| = 1. Hint: To prove differentiability at β0, combine
Theorem 3.25 and Proposition 6.91 with λ=β−β0 and g = 1

2d

∑
i∼0σ0σi .

Remark 6.93. As a matter of fact, it can be proved [11] that the pressure of the Ising
model onZd is differentiable with respect to β for any values of β≥ 0 and h ∈R, not
only in the uniqueness regime. ⋄

Exercise 6.34. Consider a one-dimensional model with a finite-range potential Φ,

and let ψ(λ) denote the pressure defined in (6.115), with g
def= σ0. Use Proposi-

tion 6.91, combined with Theorem 6.40, to show that ψ is differentiable at λ= 0.

Remark 6.94. It can be shown that in one-dimension, the pressure of a model with
finite-range interactions is always real-analytic in its parameters [12]. ⋄

6.12 Some proofs

6.12.1 Proofs related to the construction of probability measures

The existence results of this chapter rely on the sequential compactness of Ω. This
implies in particular the following property, actually equivalent to compactness:

Lemma 6.95. Let (Cn)n≥1 ⊂ C be a decreasing (Cn+1 ⊂ Cn) sequence of cylinders
such that

⋂
n Cn =∅. Then Cn =∅ for all large enough n.

Proof. Let each cylinder Cn be of the form Cn = Π−1
Λ(n)(An), where Λ(n) ⋐ Zd and

An ∈ P(ΩΛ(n)). With no loss of generality, we can assume that Λ(n) ⊂ Λ(n + 1)
(remember the hint of Exercise 6.2). Assume that Cn ̸=∅ for all n, and letω(n) ∈Cn .
Since Cm ⊂Cn for all m > n,

ΠΛ(n)(ω
(m)) ∈ An for all m > n .

By compactness ofΩ, there exists a configurationω∗ and a subsequence (ω(nk ))k≥1

such that ω(nk ) →ω∗. Of course,

ΠΛ(n)(ω
∗) ∈ An for all n ,

which implies ω∗ ∈Cn for all n. Therefore,
⋂

n Cn ̸=∅.

Theorem 6.96. A finitely additive set function µ : C → R≥0 with µ(Ω) <∞ always
has a unique extension to F .

Proof. To use Carathéodory’s Extension Theorem B.33, we must verify that if µ is
finitely additive on C , then it is also σ-additive on C , in the sense that if (Cn)n≥1 ⊂
C is a sequence of pairwise disjoint cylinders such that C = ⋃

n≥1 Cn ∈ C , then
µ(C ) = ∑

n≥1µ(Cn). For this, it suffices to write
⋃

n≥1 Cn = AN ∪BN , where AN =⋃N
n=1 Cn ∈ C , BN = ⋃

n>N Cn ∈ C . Notice that, as N → ∞, AN ↑ C , and BN ↓ ∅.
Since BN+1 ⊂ BN , Lemma 6.95 implies that there exists some N0 such that BN =∅
when N > N0. This also implies that Cn =∅ for all n > N0, and so µ(C ) = µ(AN0 ) =∑N0

n=1µ(Cn) =∑
n≥1µ(Cn).
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6.12.2 Proof of Theorem 6.5

We will prove Theorem 6.5 using the following classical result:

Theorem 6.97 (Riesz–Markov–Kakutani Representation Theorem on Ω = {±1}Z
d

).
Let L : C (Ω) →R be a positive normalized linear functional, that is:

1. If f ≥ 0, then L( f ) ≥ 0.

2. For all f , g ∈C (Ω), α,β ∈R, L(α f +βg ) =αL( f )+βL(g ).

3. L(1) = 1.

Then, there exists a unique measure µ ∈M1(Ω) such that

L( f ) =
∫

f dµ , for all f ∈C (Ω) .

This result holds in a much broader setting; its proof can be found in many text-
books. For the sake of concreteness, we give an elementary proof that makes use of

the simple structure ofΩ= {−1,1}Z
d

.

Proof of Theorem 6.97: We use some of the notions developed in Section 6.4. Since
−∥ f ∥∞ ≤ f ≤ ∥ f ∥∞, linearity and positivity of L yield |L( f )| ≤ ∥ f ∥∞. We have already
seen that, for each cylinder C ∈C , 1C ∈C (Ω). Let then

µ(C )
def= L(1C ) .

Observe that 0 ≤ µ(C ) ≤ 1, and that if C1,C2 ∈ C are disjoint, then µ(C1 ∪C2) =
µ(C1)+µ(C2). By Theorem 6.96, µ extends uniquely to a measure on (Ω,F ). To
show that µ( f ) = L( f ) for all f ∈C (Ω), let, for each n, fn be a finite linear combina-
tion of the form

∑
i ai 1Ci , Ci ∈ C , such that ∥ fn − f ∥∞ → 0. Then µ( fn) = L( fn) for

all n, and therefore

|µ( f )−L( f )| ≤ |µ( f )−µ( fn)|+ |L( fn)−L( f )| ≤ 2∥ fn − f ∥∞ → 0

as n →∞.

We can now prove Theorem 6.5. Since a state 〈·〉 is defined only on local func-
tions, we must first extend it to continuous functions. Let f ∈C (Ω) and let ( fn)n≥1

be a sequence of local functions converging to f : ∥ fn − f ∥∞ → 0. Define 〈 f 〉 def=
limn〈 fn〉. This definition does not depend on the choice of the sequence ( fn)n≥1.
Namely, if (gn)n≥1 is another such sequence, then |〈 fn〉−〈gn〉| ≤ ∥ fn −gn∥∞ ≤ ∥ fn −
f ∥∞+∥gn − f ∥∞ → 0. The linear map 〈·〉 : C (Ω) →R then satisfies all the hypotheses
of Theorem 6.97, which proves the result.

6.12.3 Proof of Theorem 6.6

We first define a probability measure on C and then extend it to F using Carathéo-
dory’s Extension Theorem (Theorem B.33). Consider a cylinder C ∈ C (Λ). Then C
can be written in the form C =Π−1

Λ (A) where A ∈P(ΩΛ). Let then

µ(C )
def= µΛ(A) .
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The consistency condition (6.4) guarantees that this number is well defined. Name-
ly, if C can also be written as C = π−1

Λ′ (A′), where A′ ∈ P(ΩΛ′ ), we must show that
µΛ(A) = µΛ′ (A′). But (remember Exercise 6.2), if ∆ is large enough to contain both
Λ andΛ′, one can write C =π−1

∆ (B), for some B ∈P(Ω∆). But then A =ΠΛ(Π−1
∆ (B)),

and so

µΛ(A) =µΛ
(
ΠΛ(Π−1

∆ (B))
)=µΛ(Π∆Λ(A)) =µ∆(B) .

The same with A′ gives µΛ(A) =µΛ′ (A′) =µ∆(B).
One then verifies that µ, defined as above, defines a probability measure on

cylinders. For instance, if C1,C2 ∈ C are disjoint, then one can find some ∆⋐ Zd

such that C1 = Π−1
∆ (A1), C2 = Π−1

∆ (A2), where A1, A2 ∈ P(Ω∆) are also disjoint.
Then,

µ(C1 ∪C2) =µ(Π−1
∆ (A1 ∪ A2)) =µ∆(A1 ∪ A2)

=µ∆(A1)+µ∆(A2)

=µ(Π−1
∆ (A1))+µ(Π−1

∆ (A2)) =µ(C1)+µ(C2) .

By Theorem 6.96, µ extends uniquely to a probability measure on F , and (6.4)
holds by construction.

Remark 6.98. Kolmogorov’s Extension Theorem holds in more general settings, in
particular for much more general single-spin spaces. ⋄

6.12.4 Proof of Theorem 6.24

Let {C1,C2, . . . } be an enumeration of all the cylinders of C (Exercise 6.2). First,
we can extract from the sequence (µn(C1))n≥1 ⊂ [0,1] a convergent subsequence
(µn1, j (C1)) j≥1 such that

µ(C1)
def= lim

j→∞
µn1, j (C1) exists.

Then, we extract from (µn1, j (C2)) j≥1 ∈ [0,1] a convergent subsequence (µn2, j (C2)) j≥1

such that

µ(C2)
def= lim

j→∞
µn2, j (C2) exists.

This process continues until we have, for each k ≥ 1, a subsequence (nk, j ) j≥1 such
that

µ(Ck )
def= lim

j→∞
µnk, j (Ck ) .

By considering the diagonal sequence (n j , j ) j≥1, we have that µn j , j (C ) → µ(C ) for
all C ∈ C . Proceeding as in the proof of Theorem 6.97, using Lemma 6.95, we can
verify that µ is a probability measure on C and use again Theorem 6.96 to extend it
to a measure µ on F . Obviously, µn j , j ⇒µ.

6.12.5 Proof of Proposition 6.39

To lighten the notations, we will omit βΦ most of the time. Let S∗ denote the sup-

port of f . Assume that Λ is sufficiently large to contain S∗, and let Λ′ def= Λ \ S∗.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

314 Chapter 6. Infinite-Volume Gibbs Measures

Writing ηΛ = ηS∗ηΛ′ , we have, by definition,

πΛ f (ω) = 1

Zω
Λ

∑
ηΛ

f (ηS∗ )e−βHΛ(ηΛωΛc )

= 1

Zω
Λ

∑
ηS∗

Fω
Λ (ηS∗ )

∑
ηΛ′

e−βHΛ′ (ηΛ′ηS∗ωΛc )

=
∑
ηS∗

Fω
Λ (ηS∗ )

Zω
′

Λ′

Zω
Λ

, (6.120)

where we have abbreviated ηS∗ωΛc by ω′, and defined

Fω
Λ (ηS∗ )

def= f (ηS∗ )exp
{
−β

∑
B∩S∗ ̸=∅
B∩Λ′=∅

ΦB (ηS∗ωΛc )
}

.

First, observe that

lim
Λ↑Zd

Fω
Λ (ηS∗ ) = f (ηS∗ )exp

{
−β

∑
B⊂S∗

ΦB (ηS∗ )
}

, (6.121)

the latter expression being independent of Λ and ω. Indeed, by the absolute
summability of the potentialΦ,

∀i , lim
r→∞

∑
B∋i

diam(B)>r

∥ΦB∥∞ = 0 so that lim
Λ↑Zd

∑
B∩S∗ ̸=∅
B∩Λc ̸=∅

∥ΦB∥∞ = 0.

Fω
Λ (η∗) thus becomes independent of ω in the limit Λ ↑ Zd . We will now prove

that the same is true of the ratio appearing in (6.120). In order to do this, we will
show that, when β is small, the ratio can be controlled using convergent cluster
expansions, leading to crucial cancellations. We discuss explicitly only the case of
ZωΛ, the analysis being the same for Zω

′
Λ′ .

An application of the “+1−1 trick” (see Exercise 3.22) yields

e−βHΛ =
∏

B∩Λ̸=∅
e−βΦB =

∑
B

∏
B∈B

(
e−βΦB −1

)
,

where the sum is over all finite collections B of finite sets B such that B ∩Λ ̸=∅.
Of course, we can assume that the only sets B used are those for whichΦB ̸≡ 0 (this
will be done implicitly from now on). We associate to each collection B a graph, as
follows. To each B ∈B is associated an abstract vertex x. We add an edge between
two vertices x, x ′ if and only if they are associated to sets B ,B ′ for which B ∩B ′ ̸=∅.
The resulting graph is then decomposed into maximal connected components. To
each such component, say with vertices {x1, . . . , xk }, corresponds a collection γ =
{B1, . . . ,Bk }, called a polymer. The support of γ is defined by γ

def= B1 ∪·· ·∪Bk . In
ZωΛ, one can interchange the summations over ωΛ ∈ΩΛ and B and obtain

ZωΛ = 2|Λ|
∑
Γ

∏
γ∈Γ

w(γ) ,

where the sum is over families Γ such that γ∩γ′ =∅ whenever γ= {B1, . . . ,Bk } and
γ′ = {B ′

1, . . . ,B ′
k ′ } are two distinct collections in Γ. The weight of γ is defined by

w(γ)
def= 2−|γ∩Λ|

∑
ηγ∩Λ

∏
B∈γ

(
e−βΦB (ηγ∩ΛωΛc ) −1

)
.
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To avoid too heavy notations, we have not indicated the possible dependence of
these weights on ω and Λ. Observe that, when γ ⊂Λ, w(γ) does not depend on ω.
The following bound always holds:

|w(γ)| ≤
∏
B∈γ

∥e−βΦB −1∥∞ . (6.122)

We now show that, when β is small, the polymers and their weights satisfy condi-
tion (5.10) that guarantees convergence of the cluster expansion for logZωΛ. We will

use the function a(γ)
def= |γ|.

Lemma 6.99. Let ϵ≥ 0. Assume that

α
def= sup

i∈Zd

∑
B∋i

∥e−βΦB −1∥∞e(3+ϵ)|B | ≤ 1. (6.123)

Then, for all γ0, uniformly in ω and Λ,

∑
γ:γ∩γ0 ̸=∅

|w(γ)|e(1+ϵ)|γ| ≤ |γ0| . (6.124)

Exercise 6.35. Show that, for any ϵ≥ 0, any potential Φ satisfying (6.50) also satis-
fies (6.123) once β is small enough.

Proof of Lemma 6.99: Let b(γ) denote the number of sets Bi contained in γ. Let, for
all n ≥ 1,

ξ(n)
def= max

i∈Λ

∑
γ:γ∋i

b(γ)≤n

|w(γ)|e(1+ϵ)|γ| . (6.125)

We will show that, when (6.123) is satisfied,

ξ(n) ≤α , ∀n ≥ 1, (6.126)

which of course implies (6.124) after letting n →∞.
Let us first consider the case n = 1. In this case, γ contains a single set B and so

|w(γ)| ≤ ∥e−βΦB −1∥∞. This gives

ξ(1) ≤ max
i∈Λ

∑
B∋i

∥e−βΦB (·) −1∥∞e(1+ϵ)|B | ≤α .

Let us then assume that (6.126) holds for n, and let us verify that it also holds for
n+1. Since γ ∋ i , each polymer γ appearing in the sum for n+1 can be decomposed
(not necessarily in a unique manner) as follows: γ = {B0}∪γ(1) ∪ ·· · ∪γ(k), where
B0 ∋ i and the γ( j )s are polymers with disjoint support such that b(γ( j )) ≤ n and
γ( j ) ∩B0 ̸=∅. Since the γ( j )s are disjoint,

|w(γ)| ≤ 2|B0|∥e−βΦB0 −1∥∞
k∏

j=1
|w(γ( j ))| .

We have |γ| ≤ |B0| +
∑k

j=1 |γ
( j )| and therefore, for a fixed B0, we can sum over the

polymers γ( j ) and use the induction hypothesis, obtaining a contribution bounded
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by

∑
k≥0

1

k !

∑

γ(1):

γ(1)∩B0 ̸=∅
b(γ(1))≤n

· · ·
∑

γ(k):

γ(k)∩B0 ̸=∅
b(γ(k))≤n

k∏
j=1

|w(γ( j ))|e(1+ϵ)|γ( j )| ≤
∑
k≥0

1

k !
(|B0|ξ(n))k ≤ eα|B0| ,

and we are left with

ξ(n +1) ≤
∑

B0∋0
2|B0|∥e−βΦB0 −1∥∞e(1+ϵ)|B0|eα|B0| ≤α .

In the last inequality, we used α≤ 1 and the definition of α.

Proof of Proposition 6.39: Let ϵ > 0 and let β1 be such that (6.123) holds for all β ≤
β1 (Exercise 6.35). We study the ratio in (6.120) by using convergent cluster expan-
sions for its numerator and denominator. We use the terminology of Section 5.6.
We denote by χΛ the set of clusters appearing in the expansion of logZωΛ; the latter
are made of polymers γ = {B1, . . . ,Bk } for which Bi ∩Λ ̸=∅ for all i . The weight of
X ∈χΛ is denotedΨΛ,ω(X ) (see (5.20)); it is built using the weights w(γ), which can
depend on ω if γ has a support that intersects Λc. Similarly, we denote by χΛ′ the
set of clusters appearing in the expansion of logZω

′
Λ′ ; the latter are made of polymers

γ = {B1, . . . ,Bk } for which Bi ∩Λ′ ̸=∅. The weight of X ∈ χΛ′ is denoted ΨΛ′,ω′ (X ).

Let us denote the support of X by X
def= ⋃

γ∈X γ. Taking β≤ β1 guarantees in partic-
ular that ∑

γ:γ∩γ0 ̸=∅
|w(γ)|e |γ| ≤ |γ0| ,

so we can expand that ratio using an absolutely convergent cluster expansion for
each partition function:

Zω
′

Λ′

Zω
Λ

= 2−|S∗|
exp

{∑
X∈χΛ′ ΨΛ′,ω′ (X )

}

exp
{∑

X∈χΛΨΛ,ω(X )
} = 2−|S∗|

exp
{∑

X∈χΛ′
X∩S∗ ̸=∅

ΨΛ′,ω′ (X )
}

exp
{∑

X∈χΛ
X∩S∗ ̸=∅

ΨΛ,ω(X )
} .

The second identity is due to the fact that each cluster X ∈ χΛ′ in the numerator
whose support does not intersect S∗ also appears, with the same weight, in the
denominator as a cluster X ∈ χΛ. Their contributions thus cancel out. Among the
remaining clusters, there are those that intersect Λc. These yield no contribution
in the thermodynamic limit. Indeed, considering the denominator for example,

∑
X∈χΛ:

X∩S∗ ̸=∅
X∩Λc ̸=∅

∣∣ΨΛ,ω(X )
∣∣≤ |S∗|max

i∈S∗

∑

X :X∋i
diam(X )≥d(S∗,Λc)

∣∣ΨΛ,ω(X )
∣∣ , (6.127)

and this last sum converges to zero whenΛ ↑Zd . Indeed, we know (see (5.29)) that
∑

X :X∋i

∣∣ΨΛ,ω(X )
∣∣=

∑
N≥1

∑

X :X∋i
diam(X )=N

∣∣ΨΛ,ω(X )
∣∣

is convergent. Therefore, the second sum above goes to zero when N →∞, allowing
us to conclude that the contribution of the clusters intersecting Λc vanishes when
Λ ↑Zd .
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We are thus left with the clusters X which are strictly contained in Λ and inter-
sect S∗. The weights of these do not depend on ωΛc anymore (for that reason, the
corresponding subscripts will be removed from their weights), but those which ap-
pear in the numerator have weights that still depend on ηS∗ and their weights will
be written, for simplicity, asΨηS∗ . We get

lim
Λ↑Zd

Zω
′

Λ′

Zω
Λ

= exp
{ ∑

X :X ̸⊂S∗
X∩S∗ ̸=∅

ΨηS∗ (X )−
∑

X :X∩S∗ ̸=∅
Ψ(X )

}
.

Combined with (6.120) and (6.121), this completes the proof of the first claim.
Let us then see what more can be done when Φ has finite range: r (Φ) <∞. In

this case, Fω
Λ (ηS∗ ) becomes equal to its limit as soon asΛ is large enough. Moreover,

each cluster X = {γ1, . . . ,γn} in the second sum of the right-hand side of (6.127)
satisfies

∑n
i=1 |γi | ≥ d(S∗,Λc)/r (Φ). We can therefore write

∣∣ΨΛ,ω(X )
∣∣≤ e−ϵd(S∗,Λc)/r (Φ)∣∣Ψϵ

Λ,ω(X )
∣∣ ,

where Ψϵ
Λ,ω(X ) is defined as ΨΛ,ω(X ), with w(γ) replaced by w(γ)eϵ|γ|. Since this

modified weight w(γ)eϵ|γ| also satisfies the condition ensuring the convergence of
the cluster expansion (see (6.124)),

∑

X :X∋i
diam(X )≥d(S∗,Λc)

∣∣ΨΛ,ω(X )
∣∣≤ e−ϵd(S∗,Λc)/r (Φ)

∑

X :X∋i

∣∣Ψϵ
Λ,ω(X )

∣∣ .

This last series is convergent as before. Gathering these bounds leads to (6.53).

6.13 Bibliographical references

The notion of Gibbs measure was introduced independently by Dobrushin [88] and
Lanford and Ruelle [204]. It has since then been firmly established as the proper
probabilistic description of large classical systems of particles in equilibrium.

The standard reference to this subject is the well-known book by Georgii [134].
Although our aim is to be more introductory, large parts of the present chapter have
benefited from that book, and the interested reader can consult the latter for ad-
ditional information and generalizations. We also strongly encourage the reader
to have a look at its section on Bibliographical Notes, the latter containing a large
amount of information, presented in a very readable fashion.

Texts containing some introductory material on Gibbs measures include, for
example, the books by Prum [282], Olivieri and Vares [258], Bovier [37] and Rassoul-
Agha and Seppäläinen [283], the monograph by Preston [278], the lecture notes
by Fernández [101] and by Le Ny [213]. The paper by van Enter, Fernández, and
Sokal [343] contains a very nice introduction, mostly without proofs, with a strong
emphasis on the physical motivations behind the relevant mathematical concepts.
The books by Israel [176] and Simon [308] also provide a general presentation of the
subject, but their point of view is more functional-analytic than probabilistic.

Uniqueness. Dobrushin’s uniqueness theorem, Theorem 6.31, was first proved
in [88], but our presentation follows [108]; note that additional information can be
extracted using the same strategy, such as exponential decay of correlations.
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It can be shown that Dobrushin’s condition of weak dependence cannot be im-
proved in general [309, 178].

The one-dimensional uniqueness criterion given in Theorem 6.40 was origi-
nally proved in [49].

The approach in the proof of Theorem 6.38 is folklore.

Extremal decomposition. The integral decomposition (6.74) is usually derived
from abstract functional-analytic arguments. Here, we follow the measure-theoretic
approach exposed in [134], itself based on an approach of Dynkin [97].

Variational principle. The exposition in Section 6.9 is inspired by [134, Chap-
ter 15]. For a more general version of the variational principle, see Pfister’s lecture
notes [274]. Israel’s book [176] develops the whole theory of Gibbs measures from
the point of view of the variational principle and is a beautiful example of the kind
of results that can be obtained within this framework.

6.14 Complements and further reading

6.14.1 The equivalence of ensembles

The variational principle allowed us to determine which translation-invariant infinite-
volume measures are Gibbs measures. In this section, we explain, at a heuristic
level, how the same approach might be used to prove a general version of the equiv-
alence of ensembles, which we already mentioned in Chapter 1 and in Section 4.7.1.

For simplicity, we avoid the use of boundary conditions. Consider a finite region
Λ⋐ Zd (for example a box), and let ΩΛ be as before. To stay simple, assume that
the Hamiltonian is just a function HΛ :ΩΛ→R.

In Chapter 1, we introduced several probability distributions on ΩΛ that were
good candidates for the description of a system at equilibrium. The first was the
microcanonical distribution νMic

Λ;U , defined as the uniform distribution on the en-

ergy shell ΩΛ;U
def= {

ω ∈ΩΛ : HΛ(ω) =U
}
. The second one was the canonical Gibbs

distribution at inverse temperature β defined as µΛ;β
def= e−βHΛ/ZΛ;β.

Obviously , these two distributions differ in finite volume. In view of the equiva-
lence between these different descriptions in thermodynamics, one might however
hope that these distributions yield similar predictions for large systems, or even be-
come “identical” in the thermodynamic limit, at least when U and β are related in
a suitable way. Properly stated, this is actually true and can be proved using the
theory of large deviations.

In this section, we give a hint as to how this can be shown, but since a full proof
lies beyond the scope of this book, we will only motivate the result by a heuristic
argument. The interested reader can find precise statements and detailed proofs in
the papers of Lewis, Pfister and Sullivan [222, 223], or Georgii [133] and Deuschel,
Stroock and Zessin [78]; a pedagogical account can be found in Pfister’s lecture
notes [274].

One way of trying to obtain the equivalence of νMic
Λ;U and µΛ;β in the thermo-

dynamic limit is to proceed as in Proposition 6.81 and Theorem 6.82, and to find
conditions under which

1

|Λ|HΛ(νMic
Λ;U |µΛ;β) → 0, whenΛ ↑Zd . (6.128)
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Although the setting is not the same as the one of Section 6.9.3 (in particular, the
distributions under consideration are defined in finite volume and are thus not
translation invariant), the variational principle at least makes it plausible that when
this limit is zero, the thermodynamic limit of νMic

Λ;U is an infinite-volume Gibbs mea-
sure. (Let us however emphasize that the proofs mentioned above do not proceed
via (6.128); their approach is however similar in spirit.)

Remember that, for a finite system, a close relation between νMic
Λ;U and µΛ;β

was established when it was shown, in Section 1.3, that if β is chosen properly as
β = β(U ), then 〈HΛ〉µβ = U and µΛ;β has a maximal Shannon Entropy among all
distributions with this property. A new look can be given at this relation, in the
light of the variational principle and the thermodynamic limit. Namely, observe
that

1

|Λ|HΛ(νMic
Λ;U |µΛ;β) =− 1

|Λ|SΛ(νMic
Λ;U )+β

〈HΛ

|Λ|
〉Mic

Λ;U
+ 1

|Λ| logZΛ;β

=− 1

|Λ| log |ΩΛ;U |+β U

|Λ| +
1

|Λ| logZΛ;β .

In view of this expression, it is clear how (6.128) can be guaranteed. As was done
for the variational principle in infinite volume, it is necessary to work with densi-
ties. So let us consider Λ ↑ Zd , and assume that U also grows with the system, in

such a way that U
|Λ| → u ∈ (hmin,hmax), where hmin

def= infΛ infωΛ
HΛ(ωΛ)

|Λ| , and hmax
def=

supΛ supωΛ
HΛ(ωΛ)

|Λ| .
As we explained in (1.37),

lim
1

V
logZΛ;β =− inf

ũ
{βũ − sBoltz(ũ)} ,

where sBoltz is the Boltzmann entropy density

sBoltz(u)
def= lim

1

|Λ| log |ΩΛ;U | .

This shows that

lim
1

|Λ|HΛ(νMic
Λ;U |µΛ;β) =βu − sBoltz(u)− inf

ũ
{βũ − sBoltz(ũ)} . (6.129)

Now, the infimum above is realized for a particular value ũ = ũ(β). If β is chosen
in such a way that ũ(β) = u, we see that the right-hand side of (6.129) vanishes as
desired. To see when this is possible, an analysis is required, along the same lines
as what was done in Chapter 4 to prove the equivalence of the canonical and grand
canonical ensembles at the level of thermodynamic potentials.

We thus conclude that if equivalence of ensembles holds at the level of the ther-
modynamic potentials, then it should also hold at the level of measures. As men-
tioned above, this conclusion can be made rigorous.

6.14.2 Pathologies of transformations and weaker notions of Gibbsianness.

The notion of Gibbs measure presented in this chapter, although efficient for the
description of infinite systems in equilibrium, is not as robust as one might expect:
the image of a Gibbs measure under natural transformations T :Ω→Ω can cease
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320 Chapter 6. Infinite-Volume Gibbs Measures

to be Gibbsian. An example of such a transformation has been mentioned in Sec-
tion 3.10.11, when motivating the renormalization group.

Consider for example the two-dimensional Ising model at low temperature. Let

L
def= {

(i ,0) ∈Z2 : i ∈Z}
and consider the projection ΠL : ω = (ωi )i∈Z2 7→ (ω j ) j∈L .

The image of µ+
β,0 under ΠL is a measure ν+

β
on {±1}Z. It was shown by Schon-

mann [295] that ν+
β

is not a Gibbs measure: there exists no absolutely summable

potential Φ so that ν+
β

is compatible with the Gibbsian specification associated to
Φ.

Before that, from a more general point of view, it had already been observed
by Griffiths and Pearce [147], and Israel [177], that the same kind of phenomenon
occurs when implementing rigorously certain renormalization group transforma-
tions. This is an important observation inasmuch as the renormalization group is
often presented in the physics literature as a map defined on the space of all inter-
actions (or Hamiltonians) (see the brief discussion in Section 3.10.11). What this
shows is that such a map, which can always be defined on the set of probability
measures, does not induce, in general, a map on the space of (physically reason-
able) interactions.

More recently, there has been interest in whether the evolution of a Gibbs mea-
sure at temperature T under a stochastic dynamics corresponding to another tem-
perature T ′ remains Gibbsian (which would again mean that one could follow the
dynamics on the space of interactions). The observation is that the Gibbsian char-
acter can be quickly lost, depending on the values of T and T ′, see [341] for exam-
ple.

A general discussion of this type of issues can be found in [343].
These so-called pathologies have led to the search for weaker notions of Gibbs

measures, which would encompass the one presented in this chapter but would re-
main stable under transformations such as the one described above. This research
had originally been initiated by Dobrushin, and is nowadays known as Dobrushin’s
restoration program. A summary of the latter can be found in the review of van En-
ter, Maes and Shlosman [342]. Other careful presentations of the subject are [101]
and [213].

6.14.3 Gibbs measures and the thermodynamic formalism.

The ideas and techniques of equilibrium statistical mechanics have been useful in
the theory of dynamical systems. For instance, Gibbs measures were introduced in
ergodic theory by Sinai [311]. Moreover, the characterization of Gibbs measures via
the variational principle of Section 6.9 is well suited for the definition of Gibbs mea-
sures in other settings. In symbolic dynamics, for instance, an invariant probability
measure is said to be an equilibrium measure if it satisfies the variational princi-
ple. The monograph [40] by Bowen is considered as a pioneering contributions to
this field. See also the books by Ruelle [291] or Keller [187], as well as Sarig’s lecture
notes [294].
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7 Pirogov–Sinai Theory

As we have already discussed several times in previous chapters, a central task of
equilibrium statistical physics is to characterize all possible macroscopic behaviors
of the system under consideration, given the values of the relevant thermodynamic
parameters. This includes, in particular, the determination of the phase diagram of
the model. This can be tackled in at least two ways, as was already seen in Chap-
ter 3. In the first approach, one determines the set of all infinite-volume Gibbs
measures as a function of the parameters of the model. In the second approach,
one considers instead the associated pressure and studies its analytic properties as
a function of its parameters; of particular interest is the determination of the set of
values of the latter at which the pressure fails to be differentiable.

Our goal in the present chapter is to introduce the reader to the Pirogov–Sinai
theory, in which these two approaches can be implemented, at sufficiently low tem-
peratures (or in other perturbative regimes), for a rather general class of models.
This theory is one of the few frameworks in which first-order phase transitions can
be established and phase diagrams constructed, under general assumptions.

To make the most out of this chapter, the reader should preferably be familiar
with the results derived for the Ising model in Chapter 3, as those provide useful
intuition for the more complex problems addressed here. He should also be famil-
iar with the cluster expansion technique exposed in Chapter 5, the latter being the
basic tool we will use in our analysis. However, although it might help, a thorough
understanding of the theory of Gibbs Measures, as exposed in Chapter 6, is not re-
quired.

Conventions. We know from Corollary 6.41 that one-dimensional models with
finite-range interactions do not exhibit phase transitions and thus possess a trivial
phase diagram at all temperatures. We will therefore always assume, throughout
the chapter, that d ≥ 2.

It will once more be convenient to adopt the physicists’ convention and let
the inverse temperature β appear as a multiplicative constant in the Boltzmann
weights and in the pressures. To lighten the notations, we will usually omit to men-
tion β and the external fields, especially for partition functions.

321
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322 Chapter 7. Pirogov–Sinai Theory

7.1 Introduction

Most of Chapter 3 was devoted to the study of the phase diagram of the Ising model
as a function of the inverse temperatureβ and magnetic field h. In particular, it was
shown there that, at low temperature, the features that distinguish the regimes h <
0, h = 0, h > 0 are closely related to the ground states of the Ising Hamiltonian, that
is, the configurations with lowest energy. These are given by η− if h < 0, η+ if h > 0
and both η+ and η− if h = 0 (we remind the reader that η+ and η− are the constant
configurations η±i =±1 for all i ∈Zd ). In dimension d ≥ 2, the main features of the
behavior of the model at low temperature can then be summarized as follows:

• When h < 0, resp. h > 0, there is a unique infinite-volume Gibbs measure:
G (β,h) = {µβ,h}. Moreover, the pressure h 7→ψβ(h) is differentiable (in fact:
analytic) on these regions.

• At h = 0, a first-order phase transition occurs, characterized by the non-dif-
ferentiability of the pressure:

∂ψβ

∂h−

∣∣∣
h=0

̸=
∂ψβ

∂h+

∣∣∣
h=0

.

When h = 0, the system becomes sensitive to the choice of boundary condi-
tion, in the sense that imposing+ or−boundary condition yields two distinct
Gibbs measures in the thermodynamic limit,

µ+
β,0 ̸=µ−

β,0 .

As seen when implementing Peierls’ argument, at low temperature the typi-
cal configurations under each of these measures are described by small local
deviations away from the ground state corresponding to the chosen bound-
ary condition. Later, we will refer to this phenomenon as the stability of the
two ground states (or of the two + and − boundary conditions) at the transi-
tion point.

These features can thus be summarized by the following picture:

h

ψβ(h)

|G (β,h)| > 1

|G (β,h)| = 1|G (β,h)| = 1

+ phase− phase

Figure 7.1: The phase diagram and pressure of the Ising model on Zd , d ≥ 2,
at low temperature.

We emphasize that the symmetry under the global spin flip enjoyed by the Ising
model when h = 0 was a crucial simplifying feature when proving these results, and
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especially when implementing Peierls’ argument (remember how spin flip symme-
try was used on page 113).

In view of the above results, it is natural to wonder whether phase diagrams can
be established rigorously for other models with more complicated interactions, in
particular for models which do not enjoy any particular symmetry.

This is precisely the purpose of the Pirogov–Sinai theory (abreviated PST be-
low). Even though the theory applies in more general frameworks, we will only dis-
cuss models with finite single-spin space and finite-range interactions. Let us just
mention two examples, the second of which will be the main subject of this chapter.
(Other fields of applications will be described in the bibliographical notes.)

7.1.1 A modified Ising model

Consider, for example, the following modification of the formal Hamiltonian of the
Ising model:

−
∑

{i , j }∈E
Zd

ωiω j +ϵ
∑

{i , j ,k}
ωiω jωk −h

∑
i∈Zd

ωi , (7.1)

where the second sum is over all triples {i , j ,k} having diameter bounded by 1, and
ϵ is a small, fixed parameter.

When ϵ= 0, this model coincides with the Ising model. But, as soon as ϵ ̸= 0, the
Hamiltonian is no longer invariant under a global spin flip when h = 0, and there
is no reason anymore for h = 0 to be the point of coexistence. Nevertheless, when
|ϵ| is small, η− and η+ are the only possible ground states (see Exercise 7.6), and
one might expect this model and the Ising model to have similar phase diagrams,
except that the former’s might not be symmetric in h when ϵ ̸= 0.

The above modification of the Ising model can be studied rigorously using the
methods of PST. It can be proved that, once β is sufficiently large, there exists for all
ϵ (not too large) a unique transition point ht = ht (β,ϵ) such that the pressure h 7→
ψmodif
β,ϵ (h) is differentiable when h < ht and when h > ht , but is not differentiable at

ht :
∂ψmodif

β,ϵ

∂h−

∣∣∣
h=ht

̸=
∂ψmodif

β,ϵ

∂h+

∣∣∣
h=ht

.

In fact, the theory also provides detailed information on the behavior of ht as a
function of β and ϵ and allows one to construct two distinct extremal Gibbs mea-
sures when h = ht .

We will not discuss the properties of this model in detail here [1], but after hav-
ing read the chapter, the reader should be able to provide rigorous proofs of the
above claims.

7.1.2 Models with three or more phases

The PST is however not restricted to models with only two equilibrium phases. In
this chapter, in order to remain as concrete as possible, a large part of the discussion
will be done for one particular model of interest: the Blume–Capel model [2]. In
the latter, spins take three values, ωi ∈ {+1,0,−1}, and the formal Hamiltonian is
defined by ∑

{i , j }∈E
Zd

(ωi −ω j )2 −h
∑

i∈Zd

ωi −λ
∑

i∈Zd

ω2
i . (7.2)

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

324 Chapter 7. Pirogov–Sinai Theory

Depending on the values of λ and h, this Hamiltonian has three possible ground
states, given by the constant configurations η+, η0 and η− (ignoring, for the mo-
ment, possible boundary effects). The set of pairs (λ,h) ∈ R2 then splits into three
regions U +,U 0,U − such that η# is the unique ground state when (λ,h) belongs
to the interior of U #. The picture represented on Figure 7.2a illustrates this, and is
called the zero-temperature phase diagram.

We will prove that, at low temperature, the phase diagram is a small deforma-
tion of the latter (in a sense which will be made precise later); see Figure 7.2b.

h

λ

U +

U −

U 0

a) T = 0

triple point

coexistence lines

λ

h

U 0
β

U −
β

U +
β

b) T > 0 (small)

Figure 7.2: The Blume–Capel model at T = 0 (β=∞) and small T > 0 (β<∞,
large). a) At zero temperature, the phase diagram is just a partition of the
(λ,h) plane into regions with different ground state(s): when (λ,h) ∈U #, η#

is a ground state. On the boundaries of these regions, several ground states
coexist. In particular, there are three ground states when (λ,h) = (0,0). b)
At low temperature, the phase diagram is a small and smooth deformation
of the zero-temperature one. When (λ,h) ∈U #

β
, an extremal Gibbs measure

µ#
β;λ,h can be constructed using the boundary condition #; typical configura-

tions under this measure are described by small deviations from the ground
state η#. There exists a triple point (λt ,0), at which these three distinct ex-
tremal Gibbs measures coexist. From the triple point emanate three coex-
istence lines. On each of the latter, exactly two of these measures coexist. .
The rest of the diagram consists of uniqueness regions. The symmetry by a
reflection across the λ-axis is due to the invariance of the Hamiltonian un-
der the interchange of + and − spins. This phase diagram will be rigorously
established in Section 7.4.

We will see in Theorem 7.36 that the pressure (λ,h) 7→ψβ(λ,h) is differentiable
everywhere, except on the coexistence lines, across which its derivatives are dis-
continuous.

A qualitative plot of ψβ can be found in Figure 7.3.

The analysis will also provide information on the structure of typical configura-
tions, in Corollary 7.44.

Remark 7.1. The principles underlying the Pirogov–Sinai theory are rather general,
robust and apply in many situations. Nevertheless, their current implementation
requires perturbative techniques. As a consequence, this theory can provide pre-
cise information regarding the dependence of a model on its parameters only for
regions of the parameters space which lie in a neighborhood of a regime that is
already well understood. In this chapter, the latter will be the zero-temperature
regime, and the results will thus only hold at sufficiently low temperatures (usually,
very low temperatures). ⋄
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h

λ

ψβ(λ,h)

Figure 7.3: A qualitative plot of the pressure of the Blume–Capel at low tem-
perature.

7.1.3 Overview of the chapter

We will first introduce the general notion of ground state in Section 7.2 and describe
the basic structure that a model with finite-range interactions should have in order
to enter the framework of the Pirogov–Sinai theory. Ultimately, this will lead to a
representation of its partition function as a polymer model in Section 7.3.

In a second step, we will study those polymer models at low temperature and
construct the phase diagram in Section 7.4. For the sake of concreteness, as in the
rest of the book, we will avoid adopting too general a point of view and implement
this construction only for the Blume–Capel model. The reason for this choice is that
the latter is representative of the class of models to which this approach can be ap-
plied: Its analysis is sufficiently complicated to require the use of all the main ideas
of PST, but simple enough to keep the discussion (and the notations) as elemen-
tary as possible. On the one hand, the absence of symmetry between the 0 and ±1
spins makes it impossible to implement a “naive” Peierls’ argument, as was done
for the Ising model (remember how the ratio of partition functions was bounded
on page 113). On the other hand, since this model includes two external fields (h
and λ), its phase diagram has already a nontrivial structure, containing coexistence
lines and a triple point, as shown on Figure 7.2.

We are confident that, once he has read carefully the construction of the phase
diagram of the Blume–Capel model, the reader should be able to adapt the ideas to
new situations.

7.1.4 Models with finite-range translation invariant interactions

The models to which PST applies are essentially those introduced in Section 6.3.2,
with a potential Φ satisfying a set of extra conditions that will be described in the
next section.
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The distance on Zd used throughout this chapter is the one associated to the

norm ∥i∥∞
def= max1≤k≤d |ik |. The diameter of a set B ⊂ Zd , in particular, is defined

by

diam(B)
def= sup

{
d∞(i , j ) : i , j ∈ B

}
,

where d∞(i , j )
def= ∥ j − i∥∞. We will use two notions of boundary: for A ⊂Zd ,

∂ex A
def= {

i ∈ Ac : d∞(i , A) ≤ 1
}

, (7.3)

∂in A
def= {

i ∈ A : d∞(i , Ac) ≤ 1
}

. (7.4)

As in Section 6.6, the translation by i ∈ Zd will be denoted by θi and can act on
configurations, events and measures.

We assume throughout that the single-spin space Ω0 is finite and set, as usual,

ΩΛ
def= ΩΛ0 , andΩ

def= ΩZ
d

0 .

All the potentials Φ = {ΦB }B⋐Zd considered in this chapter will be of finite
range,

r (Φ) = inf
{
R > 0 : ΦB ≡ 0 for all B with diam(B) > R

}<∞ ,

and invariant under translations, meaning that

Φθi B (θiω) =ΦB (ω) , ∀i ∈Zd , ∀ω ∈Ω .

The notations concerning Gibbs distributions associated to a potential Φ are
those used in Section 6.3.2. For instance, the Hamiltonian in a region Λ ⋐ Zd is
defined as usual by

HΛ;Φ(ω)
def=

∑

B⋐Zd :
B∩Λ̸=∅

ΦB (ω) , ω ∈Ω . (7.5)

The partition function (denoted previously by Zη
Λ;Φ, see (6.31)) will be denoted

slightly differently, in order to emphasize its dependence on the set Λ, for reasons
that will become clear later:

Zη
Φ

(Λ)
def=

∑

ω∈Ωη
Λ

exp
(−βHΛ;Φ(ω)

)
. (7.6)

We remind the reader thatΩη

Λ

def= {
ω ∈Ω : ωΛc = ηΛc

}
.

The pressure is obtained by considering the thermodynamic limit along a se-
quenceΛ ⇑Zd :

ψ(Φ)
def= lim

Λ⇑Zd

1

β|Λ| logZη
Φ

(Λ) . (7.7)

In Theorem 6.79, we showed the existence of this limit along the sequence of boxes
B(n), n → ∞, for absolutely summable potentials. When the range is finite, exis-
tence can also be obtained by a simpler method.

Exercise 7.1. Adapting the proof of Theorem 3.6, show that ψ(Φ) exists, depends
neither on η nor on the sequence Λ ⇑Zd and is convex.
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7.2 Ground states and Peierls’ Condition

Loosely speaking, the main outcome of the Pirogov–Sinai theory is the determi-
nation of sufficient conditions that guarantee that typical configurations at (suffi-
ciently low) positive temperatures are perturbations of those at zero temperature.
As we already saw in the discussion of Section 1.4.3, typical configurations at zero
temperature are those of minimal energy, that is, the ground states. Our first task is
to find a suitable extension of this notion to infinite systems.

Remark 7.2. Note that what we call ground states, below, are in fact configurations
(elements of Ω). This use of the word state should thus not be confused with that
of earlier chapters, in which a state was a suitable linear functional acting on local
functions. ⋄

Since HΛ;Φ is usually not defined when Λ = Zd , defining ground states as the
configurations minimizing the total energy (onZd ) raises the same difficulty we al-
ready encountered in Section 6.1. The resolution of this problem is based on the
same observation we made there: the difference of energy between two configura-
tions coinciding everywhere outside a finite set is always well defined. This leads to
characterizing a ground state as a configuration whose energy cannot be lowered
by changing its value at finitely many vertices. To make this idea precise, we start by
introducing the following notion: two configurations ω,ω̃ ∈Ω are equal at infinity
if they differ only at finitely many points, that is, if there exists a finite regionΛ⋐Zd

such that
ω̃Λc =ωΛc .

(As in Chapter 6, we use ωΛc to denote the restriction of ω to Λc.) When ω̃ and ω

are equal at infinity, we write ω̃
∞=ω; in such a case, ω̃ can be considered as a local

perturbation of ω (and vice versa). Then, the relative Hamiltonian is defined by

HΦ(ω̃ |ω)
def=

∑

B⋐Zd

{
ΦB (ω̃)−ΦB (ω)

}
.

When ω̃
∞=ω, the sum on the right-hand side is well defined, since it contains only

finitely many non-zero terms (remember that r (Φ) <∞).

Definition 7.3. η ∈Ω is called a ground state (for Φ) if

HΦ(ω |η) ≥ 0 for each ω
∞= η .

We denote the set of ground states for Φ by g (Φ).

Note that physically equivalent potentials (see Remark 6.17) yield the same relative
Hamiltonian, and thus define the same set of ground states.

We will be mostly interested in periodic ground states. A configuration ω ∈ Ω
is periodic if there exist positive integers l1, . . . , ld such that θlk ek

ω = ω for each
k = 1, . . . ,d (remember that {e1, . . . ,ed } is the canonical basis of Rd ). The unique d-
tuple (l1, . . . , ld ), in which each lk is the smallest integer for which that property is
satisfied, is called the period of ω. The set of periodic configurations is denoted by

Ωper ⊂Ω and the set of periodic ground states forΦ by g per(Φ)
def= g (Φ)∩Ωper.

We now provide a more global characterization of ground states. For ω ∈Ωper,
the limit

eΦ(ω)
def= lim

n→∞
1

|B(n)|HB(n);Φ(ω)
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clearly exists; it is called the energy density of ω.

Lemma 7.4. Let η ∈Ωper. Then η ∈ g per(Φ) if and only if its energy density is minimal:

eΦ(η) = eΦ
def= inf

ω∈Ωper
eΦ(ω) .

Proof. Let us introduce g̃ per(Φ)
def= {

ω ∈Ωper : eΦ(ω) = eΦ
}
.

We first assume that η ∈ g per(Φ). For all ω ∈Ωper, we write

eΦ(ω) = lim
n→∞

1

|B(n)|
{
HB(n);Φ(ω)−HB(n);Φ(η)

}+eΦ(η) .

For all large n, define ω(n) def= ωB(n)ηB(n)c . Then ω(n) ∞= η and, since Φ has finite
range,

HB(n);Φ(ω)−HB(n);Φ(η) =HΦ(ω(n) |η)+O(|∂exB(n)|) . (7.8)

Since HΦ(ω(n) |η) ≥ 0 and limn→∞
|∂exB(n)|
|B(n)| = 0, this proves that eΦ(ω) ≥ eΦ(η). We

conclude that η ∈ g̃ per(Φ).
Let us now assume that η ∈ g̃ per(Φ) and let ω be such that ω

∞= η. Since Φ has
finite range, we can find k such that all the sets B that yield a non-zero contribution
to HΦ(ω |η) satisfy B ⊂B(k), and such that ωB(k)c = ηB(k)c . Let ωper be the periodic
configuration obtained by tiling Zd with copies of ωB(k) on all adjacent translates
of B(k). Proceeding as above, we write

eΦ(ωper) = lim
n→∞

1

|B(n)|
{
HB(n);Φ(ωper)−HB(n);Φ(η)

}+eΦ(η)

= 1

|B(k)|
{
HB(k);Φ(ωper)−HB(k);Φ(η)

}+eΦ(η)

= 1

|B(k)|HΦ(ω |η)+eΦ(η) .

Since eΦ(η) ≤ eΦ(ωper), it follows that HΦ(ω |η) ≥ 0. We conclude thatη ∈ g per(Φ).

Let us apply the above criterion to some examples. For reasons that will become
clear later, we will temporarily denote the potential by Φ0 rather thanΦ.

Example 7.5. Let us consider the nearest-neighbor Ising model in the absence of
magnetic field. Remember that, in this case,Ω0 = {±1} and, for all B ⋐Zd ,

Φ0
B (ω)

def=
{
−ωiω j if B = {i , j }, i ∼ j ,

0 otherwise.
(7.9)

(We remind the reader that, in this chapter, the inverse temperature is kept outside
the Hamiltonian.) Consider the constant (and thus periodic) configurations η+ and
η−. Then, for all ω

∞= η±,

HΦ0 (ω |η±) =
∑

{i , j }∈E
Zd

(1−ωiω j ) ≥ 0, (7.10)

which shows that η+,η− ∈ g per(Φ0). The associated energy densities can be easily
computed explicitly: eΦ0 (η+) = eΦ0 (η−) =−d . Moreover, any periodic configuration
ω ̸= η± satisfies eΦ0 (ω) > eΦ0 (η±). Therefore, η± are the only periodic ground states:

g per(Φ0) = {η+,η−} .
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There are, however, infinitely many other (nonperiodic) ground states (see Exer-
cise 7.2). ⋄

Exercise 7.2. Consider the Ising model onZ2 (still with no magnetic field). Fix n ∈R2

and define η ∈Ω by ηi = 1 if and only if n · i ≥ 0. Show that η and all its translates
are ground states for the potential Φ0 defined in (7.9).

Example 7.6. Let us now consider the Blume–Capel model in the absence of ex-
ternal fields. Remember that, in this model,Ω0 = {−1,0,+1} and

Φ0
B (ω)

def=
{

(ωi −ω j )2 if B = {i , j }, i ∼ j ,

0 otherwise.

Let us consider again the constant configurations η+ ≡+1, η0 ≡ 0 and η− ≡−1. Let
# ∈ {+,−,0}. Then, for all ω

∞= η#,

HΦ0 (ω |η#) =
∑

{i , j }∈E
Zd

(ωi −ω j )2 ≥ 0,

so that each η# is a ground state. Since eΦ0 (η+) = eΦ0 (η−) = eΦ0 (η0) = 0 and any
periodic, non-constant configurationω has eΦ0 (ω) > 0, we conclude that g per(Φ0) =
{η+,η0,η−}. ⋄

Additional examples will be discussed in Section 7.2.2.

Exercise 7.3. Show that a model with a finite single-spin space and a finite-range
potential always has at least one ground state.

7.2.1 Boundaries of a configuration

From now on, we assume that the model under consideration has a finite number
of periodic ground states:

g per(Φ) = {η1, . . . ,ηm} .

We use the symbol # ∈ {1,2, . . . ,m} to denote an arbitrary index associated to the
ground states of the model. Since our goal is to establish the existence of phase
transitions, we assume thatΦ has at least two periodic ground states: m ≥ 2.

In view of what was proved for the Ising model, one might expect a typical con-
figuration of an infinite system (with potential Φ) at low temperature to consist of
large regions on each of which the configuration coincides with some ground state
η# ∈ g per(Φ). Fix an integer r > r (Φ).

Definition 7.7. Let ω ∈Ω. A vertex i ∈Zd is #-correct (inω) if

ω j = η#
j , ∀ j ∈ i +B(r ) .

The boundary of ω is defined by

B(ω)
def= {

i ∈Zd : i is not #-correct in ω for any # ∈ {1, . . . ,m}
}

.

Before pursuing, let us make a specific choice for r . Let (l #
1 , . . . , l #

d ) denote the period
of η#. Until the end of this section, we use r = r∗, where

r∗
def= least common multiple of

{
l #

k : 1 ≤ k ≤ d , 1 ≤ # ≤ m
}

larger or equal to r (Φ) .
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This choice implies that B(ω)∪⋃
#{#-correct vertices} forms a partition of Zd :

Lemma 7.8. A vertex can be #-correct for at most one index #, and regions of #-
correct and #′-correct vertices, #′ ̸= #, are separated by B(ω), in the sense that, if i
is #-correct and i ′ is #′-correct and if i1 = i , i2, . . . , in−1, in = i ′ is a path such that
d∞(ik , ik+1) ≤ 1, then there exists some 1 < k < n such that ik ∈B(ω).

Proof. Observe first that our choice of r∗ implies that any cube of sidelength r∗
contains at least one period of each ground state. The first claim follows immedi-
ately, since i +B(r∗) contains such a cube. For the second claim, note that if ik , ik+1

are two vertices at distance 1, then {ik +B(r∗)}∩ {ik+1 +B(r∗)} also contains a cube
of sidelength r∗ and thus ik and ik+1 can be #-correct only for the same label #.

Since the boundary of a configuration contains all vertices at which the energy is
higher than in the ground states, it is natural to try to bound the relative Hamilto-
nian with respect to a ground state in terms of the size of the boundary.

Lemma 7.9. Let η ∈ g per(Φ). Then there exists a constant C > 0 (depending on Φ)
such that, for any configuration ω such that ω

∞= η,

HΦ(ω |η) ≤C |B(ω)| . (7.11)

Observe that

HΛ;Φ =
∑

B⋐Zd :
B∩Λ̸=∅

ΦB =
∑
i∈Λ

∑

B⋐Zd :
B∋i

1

|B ∩Λ|ΦB .

Introducing the functions

ui ;Φ
def=

∑

B⋐Zd :
B∋i

1

|B |ΦB , i ∈Zd ,

we have ∣∣HΛ;Φ−
∑
i∈Λ

ui ;Φ
∣∣≤ c|∂exΛ| , (7.12)

for some constant c that depends onΦ. We also have

∥ui ;Φ∥∞ ≤ ∥Φ∥ def=
∑

B⋐Zd :
B∋0

1

|B | ∥ΦB∥∞ .

In the proof of the above lemma, but also in other arguments, it will be convenient
to use the partition P of Zd into adjacent cubic boxes of linear size r∗, of the form
bk = kr∗+ {0,1,2, . . . ,r∗−1}d , where k ∈ Zd . Since each of these boxes contains an
integer number of periods of each η# ∈ g per(Φ), one has in particular, for all k ∈Zd ,

1

|bk |
∑

i∈bk

ui ;Φ(η#) = eΦ(η#) = eΦ . (7.13)

Proof of Lemma 7.9: Let ω
∞= η, and let [B](ω) be the set of boxes b ∈ P whose

intersection with B(ω) is non-empty. Boxes b which are not part of [B](ω) contain
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only correct vertices, and these are all correct for the same index # by Lemma 7.8.
Then,

HΦ(ω |η) =
∑

i∈Zd

{ui ;Φ(ω)−ui ;Φ(η)}

=
∑

b∈[B](ω)

∑
i∈b

{ui ;Φ(ω)−ui ;Φ(η)}+
∑

b ̸∈[B](ω)

∑
i∈b

{ui ;Φ(ω)−ui ;Φ(η)} .

The first double sum is upper-bounded by 2∥Φ∥r d
∗ |B(ω)|. The second vanishes,

since to each b ̸∈ [B](ω) corresponds some # such that ωb = η#
b , giving

∑
i∈b

{ui ;Φ(ω)−ui ;Φ(η)} = |b|(eΦ(η#)−eΦ(η)) = 0.

For physical reasons, it is natural to expect that the energy of a configuration is
proportional to the size of the boundary that separates regions with different peri-
odic ground states, as happens in the Ising model. It is therefore natural to require
that HΦ(ω |η) should also grow proportionally to |B(ω)|. The notion that we will
actually need is that of thickened boundary, defined by

Γ(ω)
def=

⋃{
i +B(r∗) : i ∈B(ω)

}
. (7.14)

The upper bound (7.11) implies of course that HΦ(ω |η) ≤C |Γ(ω)| when ω
∞= η,

but a corresponding lower bound does not hold in general. This turns out to be the
main assumption of the Pirogov–Sinai theory:

Definition 7.10. Φ is said to satisfy Peierls’ condition if

1. g per(Φ) is finite, and

2. there exists a constant ρ > 0 such that, for each η ∈ g per(Φ),

HΦ(ω |η) ≥ ρ|Γ(ω)| , for all ω
∞= η .

We call ρ Peierls’ constant.

Peierls’ condition can be violated even in simple models. An example will be
given in Exercise 7.8.

Example 7.11. In Chapter 3, the contours of the Ising model on Z2 were defined as
connected components of line segments (actually, edges of the dual lattice) sepa-
rating + and − spins. Using the notations for contours adopted in Chapter 3, the
relative Hamiltonian (7.10) can be expressed as

HΦ0 (ω |η±) = 2
∣∣{{i , j } ∈ EZ2 : ωi ̸=ω j

}∣∣= 2
n∑

i=1
|γi | . (7.15)

Since the ground states η# are constant, we have r∗ = 1. The difference between the
corresponding set Γ(ω) and the contours γi is that Γ(ω) is a thick object, made of
vertices of Z2 rather than edges of the dual lattice; see Figure 7.4.

Note that, by construction, Γ(ω) is the union of translates of B(1) centered at
vertices i ∈ Z2 located at Euclidean distance at most

p
2/2 from a contour. Since
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B(ω)

Γ(ω)

Figure 7.4: A portion of a configuration of the Ising model on Z2. The thick
black line on the dual lattice, that separates + and − spins, is what was called
a contour in Chapter 3. The set B(ω) of vertices which are neither +- nor
−-correct is delimited by the dotted line, and finally the shaded region repre-
sents the thickened boundary Γ(ω) ⊃B(ω).

the total number of such vertices is at most twice the total length of the contours,
we have

|Γ(ω)| ≤ 2|B(1)|
n∑

i=1
|γi | .

We therefore see that Peierls’ condition is satisfied, HΦ0 (ω |η±) ≥ ρ|Γ(ω)|, with a
Peierls constant given by ρ = |B(1)|−1 = 1/9. ⋄
Example 7.12. For the Blume–Capel model on Zd , we also have r∗ = 1. First, since
(ωi −ω j )2 ≥ 1 when ωi ̸=ω j , we get that

HΦ0 (ω |η#) ≥
∣∣{{i , j } ∈ EZd : ωi ̸=ω j

}∣∣ , (7.16)

for each ground state η# ∈ {η+,η0,η−}. Then, since we clearly have

Γ(ω) ⊂
⋃

{i , j }∈E
Zd

ωi ̸=ω j

(i +B(1))∪ ( j +B(1)) ⊂
⋃

{i , j }∈E
Zd

ωi ̸=ω j

(i +B(2))

and thus

|Γ(ω)| ≤
∣∣{{i , j } ∈ EZd : ωi ̸=ω j

}∣∣ |B(2)| ,

it follows that Peierls’ condition also holds in this case, with ρ = |B(2)|−1 = 5−d . ⋄
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Exercise 7.4. 1. Show that

0 ≤ψ(Φ)− (−eΦ) ≤β−1 log |Ω0| .

In particular, limβ→∞ψ(Φ) =−eΦ. Hint: Choose η ∈ g per(Φ), and start by writ-
ing HΛ;Φ(ω) =HΛ;Φ(η)+{

HΛ;Φ(ω)−HΛ;Φ(η)
}
.

2. Assuming now that Φ satisfies Peierls’ condition (with constant ρ), show that

0 ≤ψ(Φ)− (−eΦ) ≤ |Ω0|β−1e−βρ .

7.2.2 m-potentials

Determining the set of ground states associated to a general potential Φ, as well
as checking the validity of Peierls’ condition, can be very difficult. [3] Ideally, one
would like to do that by checking a finite set of local conditions.

Let us define, for each B ⋐Zd ,

φB
def= min

ω
ΦB (ω)

and set
gm(Φ)

def= {
ω ∈Ω : ΦB (ω) =φB , ∀B ⋐Zd }

.

If gm(Φ) ̸=∅, that is, if there exists at least one configuration which minimizes lo-

cally eachΦB , thenΦ is called an m-potential. We also let g per
m (Φ)

def= gm(Φ)∩Ωper.

Lemma 7.13. 1. gm(Φ) ⊂ g (Φ).

2. If g per
m (Φ) ̸=∅, then g per

m (Φ) = g per(Φ).

3. If 0 < |gm(Φ)| < ∞, then gm(Φ) = g per
m (Φ) = g per(Φ), and Φ satisfies Peierls’

condition.

Proof. The first claim is immediate and the second one follows from Lemma 7.4.
For the third claim, observe that gm(Φ) is left invariant by any translation of the

lattice, in the sense that ω ∈ gm(Φ) implies θiω ∈ gm(Φ) for all i ∈ Zd . Therefore,
if gm(Φ) is finite, all its elements must be periodic. Using the second claim yields
gm(Φ) = g per

m (Φ) = g per(Φ).
Let us now verify that Peierls’ condition is satisfied when 0 < |gm(Φ)| < ∞. We

first claim that there exists r ∈ (0,∞) such that, for any configurationω for which the
vertex i ∈Zd is not correct, there exists B ⊂ i+B(r ) such thatΦB (ω) ̸=φB . Accepting
this claim for the moment, the conclusion immediately follows: indeed, one can

then set ϵ
def= min

{
ΦB (ω)−φB : ΦB (ω) > φB ,B ⊂ i +B(r ),ω ∈ Ω incorrect at i

} > 0.
Observe that, by translation invariance of Φ, ϵ does not depend on i . We can then
write, for any η ∈ g per(Φ) and any ω

∞= η,

HΦ(ω |η) =
∑

B⋐Zd

{ΦB (ω)−φB } ≥ ϵ(2r +1)−d |B(ω)| ,

which shows that Peierls’ condition is indeed satisfied.
We thus only need to establish the claim above. Let ω be some configuration

such that i is incorrect. We claim that there exists r ′ ∈ (0,∞) such that, for any
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configuration ω′ coinciding with ω on i +B(r∗), there exists B ⊂ i +B(r ′) such that
ΦB (ω) ̸=φB . (Note that this immediately implies the desired claim, since there are
only finitely many possible configurations on i+B(r∗).) Let us assume the contrary:
there exists a sequence of configurations ω(n), all coinciding with ω on i +B(r∗),
such that ΦB (ω(n)) = φB for all B ⊂ i +B(n). By sequential compactness of the set
Ω (see Proposition 6.20), we can extract a subsequence converging to some con-
figuration ω∗ still coinciding with ω on i +B(r∗) and such that ΦB (ω∗) = φB for all
B ⋐ Zd . But this would mean that ω∗ ∈ gm(Φ) = g per(Φ), which would contradict
the fact that i is incorrect.

Example 7.14. For the Ising model, Φ0 (defined in (7.9)) is an m-potential, since
the only sets involved are the pairs of nearest-neighbors, B = {i , j } ∈ EZd , and the
associated Φ0

B (ω) = −ωiω j is minimized by taking either ωi = ω j = +1, or ωi =
ω j =−1. Lemma 7.13 thus guarantees, as we already knew, that g per(Φ) = gm(Φ) =
{η+,η−}. ⋄

Exercise 7.5. Study the periodic ground states of the nearest-neighbor Ising anti-
ferromagnet, in whichΩ0 = {±1} and, for h ∈R,

Φ0
B (ω)

def=





−hωi if B = {i } ,

ωiω j if B = {i , j }, i ∼ j ,

0 otherwise.

Exercise 7.6. Consider the modification of the Ising model in (7.1), with ϵ sufficiently
small, fixed. Study the ground states of that model, as a function of h. In particular:
for which values of h are there two ground states?

The following exercise shows that it is sometimes possible to find an equivalent
potential which is an m-potential, when the original one is not. (However, this is
not always possible.)

Exercise 7.7. Let T denote the set of all nearest-neighbor edges of Z2, to which are

added all translates of the edge {0, ic }, where ic = (1,1). Let Ω0
def= {±1} and consider

the potential Φ = {ΦB } of the Ising antiferromagnet on the triangular lattice, de-
fined by

ΦB (ω)
def=

{
ωiω j if B = {i , j } ∈T ,

0 otherwise.

1. Check that Φ is not an m-potential.

2. Construct an m-potential Φ̃, physically equivalent to Φ. Hint: you can
choose it such that Φ̃T > 0 if and only if T is a triangle, T = {i , j ,k}, with
{i , j }, { j ,k}, {k, i } ∈T .

3. Deduce that Φ̃ (and thus Φ) has an infinite number of periodic ground states.
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Exercise 7.8. Consider the model onZ2 withΩ0
def= {±1} and in whichΦ0

B ̸≡ 0 only if
B = {i , j ,k, l } is a square plaquette (see figure below). If ω coincides, on the plaquette
B, with one of the following configurations,

then Φ0
B (ω) = α. Otherwise, Φ0

B (ω) = δ, with δ > α. Find the periodic ground
states of Φ0, and give some examples of non-periodic ground states. Then, show that
Peierls’ condition is not satisfied.

7.2.3 Lifting the degeneracy

Consider a system with interactions Φ0 and a finite set of periodic ground states
g per(Φ0), at very low temperature. Using one of the ground states η as a boundary
condition, one might wonder whether η is stable in the thermodynamic limit, in the
sense that typical configurations under the corresponding infinite volume Gibbs
measure coincide with η with only sparse, local deviations.

In the Ising model on Zd , d ≥ 2, this was the case for both η+ and η−. In more
general situations, in particular in the absence of a symmetry relating all the ele-
ments of g per(Φ0), this issue is much more subtle.

To analyze this problem, we will first introduce a family of external fields which
will be used to lift the degeneracy of the ground states, in the sense that, given any
subset g ⊂ g (Φ0), we can tune these external fields to obtain a potential whose set
of periodic ground states is given by g . Eventually, these external fields will allow us
to prepare the system in the desired Gibbs state and to drive the system from one
phase to the other.

To lift the degeneracy, we perturb Φ0 by considering a new potential Φ of the
form

Φ=Φ0 +W ,

where W = {WB }B⋐Zd is the perturbation potential. We first verify that the pertur-
bation, when small enough, does not lead to the appearance of new ground states.

Lemma 7.15. If Φ0 satisfies Peierls’ condition with Peierls’ constant ρ > 0 and if
∥W ∥ ≤ ρ/4, then g per(Φ0 +W ) ⊂ g per(Φ0).

Proof. Assume that g per(Φ0) = {η1, . . . ,ηm}. Let r∗ and P be as before. Fix some
ω ∈ Ωper, and let [Γ](ω) be the set of boxes b ∈ P whose intersection with Γ(ω) is
non-empty. Again, by Lemma 7.8, boxes b not contained in [Γ](ω) contain only
correct vertices, all of the same type. Let therefore [Π#](ω), # ∈ {1,2, . . . ,m}, be the
union of those boxes containing only #-correct vertices. Then, let

π#(ω)
def= lim

n→∞
|[Π#](ω)∩B(n)|

|B(n)| , γ(ω)
def= lim

n→∞
|[Γ](ω)∩B(n)|

|B(n)| .

Observe that γ(ω)+∑m
#=1π#(ω) = 1 and that ω ∈ g per(Φ0) if and only if γ(ω) = 0. We

will show below that, when ∥W ∥ is sufficiently small,

eΦ(ω)−eΦ(η) ≥
m∑

#=1
π#(ω)[eW (η#)−eW (η)]+ ρ

2γ(ω) , (7.17)
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for all η ∈ g per(Φ0). Assuming this is true, let us take some η ∈ g per(Φ0) for which
eW (η) = min# eW (η#). If ω ∈ g per(Φ), then in particular eΦ(ω) ≤ eΦ(η) by Lemma 7.4.
So (7.17) gives γ(ω) = 0, that is, ω ∈ g per(Φ0).

To show (7.17), we start by writing

HB(n);Φ(ω)−HB(n);Φ(η) ={
HB(n);Φ0 (ω)−HB(n);Φ0 (η)

}+{
HB(n);W (ω)−HB(n);W (η)

}
. (7.18)

On the one hand, proceeding as in (7.8),

HB(n);Φ0 (ω)−HB(n);Φ0 (η) =HΦ0 (ω(n)|η)+O(|∂exB(n)|)
≥ ρ|Γ(ω(n))|+O(|∂exB(n)|)
= ρ|Γ(ω)∩B(n)|+O(|∂exB(n)|) .

On the other hand, we can decompose

HB(n);W (ω) =
∑

i∈[Γ](ω)∩B(n)

ui ;W (ω)+
m∑

#=1

∑
i∈[Π#](ω)∩B(n)

ui ;W (ω)+O(|∂exB(n)|) .

The first sum can be bounded by

∣∣ ∑
i∈[Γ](ω)∩B(n)

ui ;W (ω)
∣∣≤

∣∣[Γ](ω)∩B(n)
∣∣∥W ∥ .

For the second one, using (7.13),

∑
i∈[Π#](ω)∩B(n)

ui ;W (ω) =
∑

i∈[Π#](ω)∩B(n)

ui ;W (η#)

=
∣∣[Π#](ω)∩B(n)

∣∣eW (η#)+O(|∂exB(n)|) .

The other Hamiltonian is decomposed as follows:

HB(n);W (η) = |B(n)|eW (η)+O(|∂exB(n)|)

≤ ∥W ∥
∣∣[Γ](ω)∩B(n)

∣∣+
m∑

#=1

∣∣[Π#](ω)∩B(n)
∣∣eW (η)+O(|∂exB(n)|) .

Inserting these estimates in (7.18), dividing by |B(n)|, bounding ∥W ∥ ≤ ρ/4 and
taking the limit n →∞ yields (7.17).

The perturbation of Φ0 will contain a certain number of parameters (which
will play a role analogous to that of the magnetic field in the Ising model), which
will allow us to lift the degeneracy of the ground states of Φ0. This means that, if
|g per(Φ0)| = m, we will need the perturbation W to contain m −1 parameters and
it should be possible to tune the latter in order for g per(Φ0 +W ) to be an arbitrary
subset of g per(Φ0). This will be best understood with some examples.

Example 7.16. The degeneracy of the potential Φ0 of the Ising model can be lifted
by introducing a magnetic field h and by considering the perturbation W = {WB }
defined by

WB (ω) =
{
−hωi if B = {i } ,

0 otherwise.
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Lemma 7.15 guarantees that g per(Φ) = g per(Φ0 +W ) ⊂ {η+,η−} when ∥W ∥ = |h| is
sufficiently small. But, since the energy densities are given, for all h, by

eΦ(η±) =−d ∓h ,

we get that eΦ(η+) < eΦ(η−) when h > 0, eΦ(η+) > eΦ(η−) when h < 0. Therefore, we
can describe g per(Φ0 +W ) for all h (not only when |h| is small):

g per(Φ0 +W ) =





{η+} if h > 0,

{η+,η−} if h = 0,

{η−} if h < 0.

⋄

Example 7.17. In the case of the Blume–Capel model, two parameters are neces-
sary to lift the degeneracy. We denote the latter by h and λ, and consider the per-
turbation W = {WB }B⋐Zd defined by

WB (ω)
def=

{
−hωi −λω2

i if B = {i } ,

0 otherwise.
(7.19)

By Lemma (7.15), we know that g per(Φ) ⊂ {η+,η0,η−} when ∥W ∥ = |h| + |λ| is suffi-
ciently small. The energy densities are given by

eΦ(η±) =∓h −λ , eΦ(η0) = 0, (7.20)

and the periodic ground states are obtained by studying min# eΦ(η#) as a function
of (λ,h). Let us thus define the regions U +,U 0,U −, by

U # def= {
(λ,h) : eΦ(η#) = min

#′
eΦ(η#′ )

}
. (7.21)

The interior of these regions determines the values of (λ,h) for which there is a
unique ground state. Except at (0,0), at which the three ground states coexist, two
periodic ground states coexist on the boundaries of these regions, which are unions
of lines,

L ##′ def= U # ∩U #′ .

These are given explicitly by

L +− def= {(λ,h) : h = 0,λ≥ 0} ,

L −0 def= {(λ,h) : h =λ,λ≤ 0} ,

L +0 def= {(λ,h) : h =−λ,λ≤ 0} .

Altogether, we recover the zero-temperature phase diagram already depicted on
the left of Figure 7.2. ⋄

In the following exercise, we see that it is always possible to lift the degeneracy.

Exercise 7.9. Suppose that g per(Φ0) = {η1, . . . ,ηm}. Provide a collection of poten-
tials W 1, . . . ,W m−1 such that, for all I ⊂ {1, . . . ,m}, there exist λ1, . . . ,λm−1 such that
g per(Φ0 +∑m−1

i=1 λi W i ) = {ηi , i ∈ I }.
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7.2.4 A glimpse of the rest of this chapter

Let us consider a model with potential Φλ
def= Φ0 +∑m−1

i=1 λi W i , where the W i are
potentials lifting the degeneracy of the periodic ground states η1, . . . ,ηm of Φ0, as

explained in the previous section, and λ
def= (λi )1≤i≤m−1 ∈ Rm−1. We can then con-

struct the zero-temperature phase diagram, by specifying g per(Φλ) for each values
of the parameters λ. This phase diagram thus consists of (m −1)-dimensional re-
gions with a single periodic ground state, (m − 2)-dimensional regions in which
there are exactly two periodic ground states, etc.

Alternatively, notice that the energy density λ 7→ eΦλ of the ground state is a
piecewise linear function of λ. The zero-temperature phase diagram characterizes
the points λ at which eΦλ fails to be differentiable.

Our goal in the rest of this chapter is to extend this construction to small positive
temperatures. More precisely, we will prove that, in the limit β → ∞, the set of
values at which λ 7→ψβ(λ) is non-differentiable converges to the corresponding set
at which eΦλ fails to be differentiable.

This will be achieved by constructing C 1 functions, ψ̂1
β

(λ), . . . ,ψ̂m
β

(λ), such that

the following holds:

1. ψβ(λ) = maxi ψ̂
i
β

(λ);

2. lim
β→∞

ψ̂i
β(λ) =−eΦλ (ηi ) for all i ∈ {1, . . . ,m};

3. lim
β→∞

∂ψ̂i
β

(λ)

∂λ j
=−∂eΦλ (ηi )

∂λ j
, for all i ∈ {1, . . . ,m}, j ∈ {1, . . . ,m −1}.

In addition, we will see that the only periodic extremal Gibbs measures atλ are pre-
cisely those obtained by taking the thermodynamic limit with boundary condition
ηi for values of i such that ψβ(λ) = ψ̂i

β
(λ).

Each ψ̂i
β

is called a truncated pressure. It is obtained from the partition function

with boundary condition ηi by adding the constraint that only “small” (in a sense
to be made precise below) excitations are allowed. For certain values of the pa-
rameters λ, the excitations turn out to be always small and the truncated pressure
coincides with the usual pressure; for others, however, the constraint artificially
stabilizes the boundary condition and yields a different, strictly smaller, truncated
pressure.

7.2.5 From finite-range interactions to interactions of range one

In Section 7.4, we will initiate the low-temperature analysis of systems with a finite
number of periodic ground states, which satisfy Peierls’ condition. This analysis
will rely on the contour description of these systems, which we expose in detail in
the next section.

It turns out that the contour description is considerably simplified if one as-
sumes that the potential Φ under consideration has range 1. Fortunately, any
model with a single-spin space Ω0 and a potential Φ of range r (Φ) > 1 can be
mapped onto another model with a potential Φ̂ of range 1, at the cost of introducing
a larger single-spin space Ω̂0, such that the two models have the same pressure.

Earlier, the nuisance of having ground states with different periods was miti-
gated by considering the boxes bk ∈ P with sidelength r∗, and this can be used
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further as follows. Assume that Φ = Φ0 +W has range r (Φ) and that Φ0 has a fi-

nite set of periodic ground states. There are N
def= |Ω0||B(r∗)| possible configurations

inside each of the boxes bk , and those configurations can be encoded into a new

spin variable ω̂k taking values in Ω̂0
def= {1,2, . . . , N }. Clearly, the set of configurations

ω = (ωi )i∈Zd ∈ Ω is in one-to-one correspondence with the set of configurations

ω̂= (ω̂k )k∈Zd ∈ Ω̂ def= Ω̂Z
d

0 .
By the choice of r∗, it is clear that a spin ω̂k only interacts with spins ω̂k ′ at

distance d∞(k,k ′) ≤ 1. Let us determine the corresponding potential. Denote by B̂ a
generic union of boxes bk of diameter at most 2r∗. For each set B ⋐Zd contributing
to the original Hamiltonian, let

NB
def=

∣∣{B̂ : B̂ ⊃ B
}∣∣ .

The terms of the formal Hamiltonian can be rearranged as follows:

∑
B
ΦB (ω) =

∑
B̂

{ ∑
B⊂B̂

1

NB
ΦB (ω)

}
.

We are led to defining the rescaled potential as

Φ̂B̂ (ω̂)
def=

∑
B⊂B̂

1

NB
ΦB (ω) .

Clearly, all the information about the original model can be recovered from the
rescaled model (with Ω̂ and Φ̂); in particular, they have the same pressure (up to
a multiplicative constant).

By construction, the rescaled measure Φ̂ has range r (Φ̂) = 1 (as measured on
the rescaled lattice r∗Zd ). Of course, analyzing the set of ground states and the
validity of Peierls’ condition forΦ is equivalent to accomplishing these tasks for the
rescaled model. Besides having interactions of range 1, this reformulation of the
model presents the advantage that, now, the ground states correspond to constant
configurations on Ω̂.

Exercise 7.10. Assume that the original potential Φ0 satisfies Peierls’ condition with
constant ρ > 0. Show that Peierls’ condition still holds for the rescaled model (ω 7→ ω̂,
Φ 7→ Φ̂) and estimate the corresponding constant.

Since the above construction can always be implemented, we assume, from
now on, that the model has been suitably formulated so as to have range 1 and
a finite set of constant ground states. In this way, the analysis will become substan-
tially simpler, without incurring any loss of generality.

7.2.6 Contours and their labels

Let us therefore consider a potential Φ =Φ0 +W with r (Φ0) = 1 and r (W ) ≤ 1 and
such that the ground states ofΦ0,

g per(Φ0) = {η1, . . . ,ηm} ,

are all constant. We also assume that the parameters contained in W completely lift
the degeneracy of the ground state. Since r (Φ) = 1, the set Γ(ω) in (7.14) is defined
using r∗ = 1.
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Since W does not introduce any new ground states (Lemma 7.15), we may ex-
pect, roughly, a typical configuration ω of the model associated to Φ to display, at
low temperature, only small local deviations away from one of the ground states η#.
We thus start an analysis of the perturbed model in terms of the decomposition of
Γ(ω) into contours, which separate regions on which the ground states {η1, . . . ,ηm}
are seen. This is very similar to what was done when studying the low-temperature
Ising model in Chapter 3.

Before pursuing, let us define the notion of connectedness used in the rest of
the chapter, based on the use of the distance d∞(·, ·): A ⊂ Zd is connected if for all
pair j , j ′ ∈ A there exists a sequence i1 = j , i2, . . . , in−1, in = j ′ such that ik ∈ A for all
k = 1, . . . ,n, and d∞(ik , ik+1) = 1. A connected component A′ ⊂ A is maximal if any
set B ̸= A′ such that A′ ⊂ B ⊂ A is necessarily disconnected.

When ω
∞= η for some η ∈ g per(Φ), the set Γ(ω) is bounded and can be decom-

posed into maximal connected components:

Γ(ω) = {γ1, . . . ,γn} .

For each component γ ∈ Γ(ω), let ωγ denote the restriction of ω to γ. The config-
uration ωγ should be considered as being part of the information contained in the
component:

Definition 7.18. Each pair γ
def= (γ,ωγ) is called a contour of ω; γ is the support

of γ.

The support of a contour γ splits Zd into a finite number of maximal connected
components (see Figure 7.5):

γc = {A0, A1, . . . , Ak } . (7.22)

Exactly one of the components of γc is unbounded; with no loss of generality we
can assume it to be A0. We call it the exterior of γ and denote it by extγ.

Let us say that a subset A ⊂Zd is c-connected if Ac is connected.

Exercise 7.11. Show that the subsets A0, . . . , Ak in the decomposition (7.22) are c-
connected.

Remember the boundaries ∂in A and ∂ex A introduced in (7.3). Although the content
of the following lemma might seem intuitively obvious to the reader (at least in low
dimensions), we provide a proof in Appendix B.15.

Lemma 7.19. Consider the decomposition (7.22). For each j = 0,1, . . . ,k, ∂ex A j and
∂in A j are connected. Moreover, there exists # ∈ {1,2, . . . ,m}, depending on j , such that
ωi = η#

i for all i ∈ ∂ex A j . We call # the label of A j , and denote it lab(A j ).

Consider the decomposition (7.22) of some contour γ = (γ,ωγ). If the exterior
has label lab(extγ) = #, we say that γ is of type #. The remaining components
in (7.22), A1, . . . , Ak , are all bounded and separated from extγ by γ. We group them
according to their type. The interior of type # of γ is defined by

int#γ
def=

⋃
i∈{1,...,k}:
lab(Ai )=#

Ai .
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Figure 7.5: A contour γ for which γc = {A0, A1, A2, A3}. The labels, whose
existence is guaranteed by Lemma 7.19, have been pictured using different
patterns. The components A1 and A2 have the same label. The label of A0 =
extγ represents the type of γ. This picture shows how the labels induce a
corresponding boundary condition on the interior components of γ (which
we use later when defining Z#

Φ
(Λ) in (7.24)).

We will also call intγ
def= ⋃m

#=1 int#γ the interior of γ.

The collection of all possible contours of type # is denoted by C #. Observe
that, for each contour γ = (γ,ωγ) ∈ C #, there exists a configuration that has γ as
its unique contour. Namely, extend ωγ = (ωi )i∈γ to a configuration on the whole

lattice by setting ωi = η#
i for i ∈ extγ and ωi = η#′

i for each i ∈ int#′γ. For notational
convenience, we also denote this new configuration by ωγ.

The type and labels associated to a contour will play an essential role in next
section.

7.3 Boundary conditions and contour models

Notice that if γ,γ′ are two contours in a same configuration, and if γ ⊂ intγ′, then
d∞(γ, (intγ′)c) > 1.

Let Λ ⋐ Zd . From now on, we always assume that Λ is c-connected. To de-
fine contour models in Λ, it will be convenient to slightly modify the way in which
boundary conditions are introduced: this will make it easier to consider the bound-
ary condition induced by a contour on its interior.

Let η# ∈ g per(Φ0), andω ∈Ωη#

Λ
. Since it is not guaranteed thatΓ(ω) ⊂Λ, we define

Ω#
Λ

def= {
ω ∈Ωη#

Λ
: d∞(Γ(ω),Λc) > 1

}
.

The additional restrictions imposed on the configurations inΩ#
Λ only affect vertices

located near the boundary ofΛ:
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Lemma 7.20. Let ω ∈Ωη#

Λ
. Then, ω ∈Ω#

Λ if and only if ωi = η#
i for every vertex i ∈Λ

satisfying d∞(i ,Λc) ≤ 3.

Proof. Let ω ∈Ωη#

Λ
and assume that there exists i ∈Λ, d∞(i ,Λc) ≤ 3, such that ωi ̸=

η#
i . This implies that there exists some j ∈ i +B(1) with d∞( j ,Λc) ≤ 2 which is not #-

correct, and so j ∈B(ω). Since d∞( j +B(1),Λc) ≤ 1, this implies that d∞(Γ(ω),Λc) ≤
1 and, thus, ω ̸∈Ω#

Λ.
Conversely, suppose thatωi = η#

i as soon as d∞(i ,Λc) ≤ 3. Then, any vertex i ∈Λ
with d∞(i ,Λc) ≤ 2 is #-correct. Therefore, vertices which are not correct must satisfy
d∞(i ,Λc) ≥ 3 and, thus, d∞(i +B(1),Λc) ≥ 2. This implies that d∞(Γ(ω),Λc) > 1.

In order to use contours and their weights for the description of finite systems,
it will be convenient to introduce boundary conditions as above, using Ω#

Λ instead

ofΩη#

Λ
. We therefore consider the following Gibbs distributions: for all ω ∈Ω#

Λ,

µ#
Λ;Φ(ω)

def= e−βHΛ;Φ(ω)

Z#
Φ

(Λ)
, (7.23)

where
Z#
Φ(Λ)

def=
∑

ω∈Ω#
Λ

e−βHΛ;Φ(ω) . (7.24)

It follows from Lemma 7.20 that (remember Exercise 7.1)

lim
Λ⇑Zd

1

β|Λ| logZ#
Φ(Λ) = lim

Λ⇑Zd

1

β|Λ| logZη
#

Φ
(Λ) =ψ(Φ) .

Let us say thatΛ is thin if d∞(i ,Λc) ≤ 3 for all i ∈Λ. It follows from Lemma 7.20 that,
wheneverΛ is thin,Ω#

Λ = {η#} and, thus,

Z#
Φ(Λ) = e−βHΛ;Φ(η#) . (7.25)

7.3.1 Extracting the contribution from the ground state

Let us fix a boundary condition # ∈ {1,2, . . . ,m} and relate the energy of each config-
uration ω ∈Ω#

Λ to the energy of η#:

HΛ;Φ(ω) =HΛ;Φ(η#)+{
HΛ;Φ(ω)−HΛ;Φ(η#)

}

=HΛ;Φ(η#)+HΦ(ω |η#) . (7.26)

One can thus write

Z#
Φ(Λ) = e−βHΛ;Φ(η#)

∑
ω∈Ω#

Λ

e−βHΦ(ω |η#) def= e−βHΛ;Φ(η#)Ξ#
Φ(Λ) . (7.27)

Notice that, since each ground state η# is constant andΦ has range 1,

HΛ;Φ(η#) = eΦ(η#)|Λ| .

Our next goal is to express Ξ#
Φ(Λ) as the partition function of a polymer model

having the same abstract structure as those of Section 5.2. To this end the contours
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7.3. Boundary conditions and contour models 343

introduced above will play the role of polymers. Remember, however, that the com-
patibility condition used in Section 5.2 was pairwise. Unfortunately, our contours
have labels, and this yields a more complex compatibility condition.

To determine whether a given family of contours is compatible, that is, whether
there exists a configuration yielding precisely this family of contours, we need to ver-
ify two conditions. The first one is that their supports are disjoint and sufficiently
far apart, in a suitable sense; this can of course be expressed as a pairwise condition.
However, we must also check that their labels match, and this condition cannot be
verified by only looking at pairs of contours. We illustrate this on Figure 7.6. ⋄
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Figure 7.6: Two contours γ1 and γ2 (left). γ2 is of type 1 and satisfies γ2 ⊂
int2γ1. These two contours can only be part of a configuration if there are
other contours correcting the mismatch between the type of γ2 and the label
of the component of γ1 it is located in. For example (right), there might be a
third contour γ3 of type 2 such that γ3 ⊂ int2γ1 and γ2 ⊂ int1γ3. This shows
that the compatibility of a family of contours is a global property, which can-
not be expressed pairwise.

To deal with this problem, we need to proceed with more care than in (7.27)
and express Ξ#

Φ(Λ) as a polymer model in which the polymers are contours all of
the same type #, for which the compatibility condition becomes purely geometrical,
namely having supports which are far apart, in the following sense.

Definition 7.21. Two contours of the same type, γ1 and γ2, are said to be compatible
if d∞(γ1,γ2) > 1.

By construction, all contours appearing in a same configuration ω are compatible.
The important distinction that must be made among the contours of a configura-
tion is the following:

Definition 7.22. Let ω ∈Ω#
Λ. A contour γ′ ∈ Γ(ω) is external if there exist no contour

γ ∈ Γ(ω) such that γ′ ⊂ intγ.

We will group the configurations that contribute to Z#
Φ(Λ) into families of configu-

rations that have the same set of external contours. If Γ(ω) ̸=∅, there exists at least
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one external contour, so let Γ′ ⊂ Γ(ω) denote the collection of external contours of
ω, which are pairwise compatible by construction. Let then

ext
def=

⋂
γ′∈Γ′

extγ′ , Λext def= Λ∩ext .

The important property shared by the external contours of a configuration is that
they all have the same type:

Lemma 7.23. For all ω ∈ Ω#
Λ, ext is connected and ωi = η#

i for each i ∈ ext. As a
consequence, all external contours of Γ(ω) are of type #.

Proof. Let i ′, i ′′ ∈ ext and consider an arbitrary path i ′ = i1, . . . , in = i ′′, d∞(ik , ik+1) =
1. If the path intersects the support of some external contour γ′ ∈ Γ(ω), we define

k−
def= min

{
k : ik ∈ γ′}−1 and k+

def= max
{
k : ik ∈ γ′}+1. Clearly, {ik− , ik+ } ⊂ ∂inextγ′.

By Lemma 7.19, ∂inextγ′ is connected. One can therefore modify the path, between
ik− and ik+ , so that it is completely contained in ∂inextγ′. Since this can be done for
each γ′, we obtain in the end a path which is contained in each ∂inextγ′, hence in
ext. This shows that ext is connected. The two other claims are immediate conse-
quences.

Remark 7.24. In this chapter, we always assume that the dimension is at least 2.
Nevertheless, we invite the reader to stop and ponder over the peculiarities of the
above-defined contours when d = 1. ⋄
Now, sinceΛ is assumed to be c-connected, it can be partitioned into

Λ=Λext ∪
⋃
γ′∈Γ′

{
γ′∪

⋃
#′

int#′γ
′} ,

and we can then rearrange the sum over the sets B ∩Λ ̸=∅, in the Hamiltonian, to
obtain:

HΛ;Φ(ω) =HΛext;Φ(ω)+
∑
γ′∈Γ′

{ ∑
B⊂γ′

ΦB (ω)+
∑
#′

Hint#′γ′;Φ(ω)
}

. (7.28)

We have used the fact that the contours are thick, which implies that the compo-
nents of their complement are at distance larger than the range of Φ (remember
Lemma 7.8). Observe that for each B ⊂ γ′,ΦB (ω) =ΦB (ωγ′ ).

Let us characterize all configurations ω ∈Ω#
Λ that have the same set of external

contours Γ′:

1. Since Λext does not contain any contours and since ωi = η#
i for all i ∈ ∂exΛext,

we must haveωi = η#
i for each i ∈Λext. In particular, HΛext;Φ(ω) =HΛext;Φ(η#).

2. Each component of each int#′γ
′ has a boundary condition specified by the

label of that component, namely #′, and the contours of the configuration on
that component must be at distance larger than 1 from γ′. The restrictions for
the allowed configurations on int#′γ

′ therefore coincide exactly with those of
Ω#′

int#′γ′
.

Using (7.28), we thus get, after resumming over the allowed configurations on each
component of int#′γ

′:

Z#
Φ(Λ) =

∑
Γ′

compatible
external

e−βHΛext;Φ(η#) ∏
γ′∈Γ′

{
exp

(−β
∑

B⊂γ′
ΦB (ωγ′ )

)∏
#′

Z#′
Φ (int#′γ

′)
}

. (7.29)
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Let us define, for each γ ∈C #, the surface energy

∥γ∥ def=
∑

B⊂γ

{
ΦB (ωγ)−ΦB (η#)

}
.

With this notation, (7.29) can be rewritten as

eβHΛ;Φ(η#)Z#
Φ(Λ) =

∑
Γ′

compatible
external

∏
γ′∈Γ′

{
e−β∥γ

′∥∏
#′

e
βHint#′ γ′ ;Φ

(η#)
Z#′
Φ (int#′γ

′)
}

. (7.30)

Our aim is then to go one step further and consider the external contours contained
in each partition function Z#′

Φ (int#′γ
′) appearing on the right-hand side. Unfortu-

nately, the external contours in Z#′
Φ (int#′γ

′) are of type #′, and one needs to remove
these from the analysis in order to avoid the global compatibility problem men-
tioned earlier.

In order to only deal with external contours of type #, we will use the follow-
ing trick [4]: we multiply and divide the product over #′, in (7.30), by the partition
functions that involve only the #-boundary condition. That is, we write

∏
#′

Z#′
Φ (int#′γ

′) =
{∏

#′

Z#′
Φ (int#′γ

′)

Z#
Φ

(int#′γ
′)

}∏
#′

Z#
Φ(int#′γ

′) . (7.31)

This introduces a non-trivial quotient that will be taken care of later, but it has the
advantage of making the partition functions Z#

Φ(int#′γ
′) appear, which all share the

same boundary condition #. This means that if one starts again summing over the
external contours in Z#

Φ(int#′γ
′), these will again be of type #, as in the first step.

Let us express (7.30) using only the partition functions Ξ#
Φ(·). Remembering

that e
βHint#′ γ′ ;Φ

(η#)
Z#
Φ(int#′γ

′) def= Ξ#
Φ(int#′γ

′), (7.30) becomes

Ξ#
Φ(Λ) =

∑
Γ′

compatible
external

∏
γ′∈Γ′

{
w#(γ′)

∏
#′
Ξ#
Φ(int#′γ

′)
}

, (7.32)

where we introduced, for each γ ∈C #, the weight

w#(γ)
def= e−β∥γ∥

∏
#′

Z#′
Φ (int#′γ)

Z#
Φ

(int#′γ)
. (7.33)

Looking at (7.32), it is clear that we can now repeat the procedure of fixing the
external contours for each factor Ξ#

Φ(int#′γ
′), these being all of type #. This process

can be iterated and will automatically stop when one reaches contours whose in-
terior is thin (remember the discussion on page 342), since the latter are too small
to contain other contours. In this way, we end up with the following contour repre-
sentation of the partition function:

Ξ#
Φ(Λ) =

∑
Γ

compatible

∏
γ∈Γ

w#(γ) , (7.34)

where the sum is over collections of contours of type #, in which the compatibility
(in the sense of Definition 7.21) is purely geometrical, and can be encoded into

δ(γ,γ′) def=
{

1 if d∞(γ,γ′) > 1,

0 otherwise.
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346 Chapter 7. Pirogov–Sinai Theory

This pairwise hard-core interaction is similar to the one encountered in Sec-
tion 5.7.1 (with a different distance). Notice, however, that the polymers considered
here are more complex objects, which contain more information: their support but
also the partial configuration ωγ (and the labels it induces).

Remark 7.25. It is important to emphasize that a compatible collection of contours
contributing to (7.34) is an abstract collection, which does not correspond, in gen-
eral, to the contours of any configuration ω ∈Ω#

Λ. ⋄
We have thus managed to express the partition function as a polymer model

with a purely geometrical, pairwise compatibility condition. The price we had to
pay for that was the introduction of the nontrivial weights w#(·). The very nature of
the latter suggests an inductive analysis. Namely, since w#(γ) can be written

w#(γ) = e−β∥γ∥
∏
#′

e−βHint#′ γ;Φ(η#′ )

e−βHint#′ γ;Φ(η#)

Ξ#′
Φ (int#′γ)

Ξ#
Φ

(int#′γ)
, (7.35)

we see that w#(γ) depends on the weights of the smaller contours that appear in
each Ξ#′

Φ (int#′γ) (which are of type #′ ̸= #) and in Ξ#
Φ(int#′γ).

7.3.2 Representing probabilities involving external contours

Before going further, let us see how the contour models presented above can be
used to represent probabilities involving external contours. Remember the defini-
tion of µ#

Λ;Φ in (7.23).

Lemma 7.26. Let Λ be c-connected and let {γ′1, . . . ,γ′k } be a collection of pairwise
compatible contours of type # such that each γ′i is contained in the exterior of the
others, and d∞(γ′i ,Λc) > 1. Then

µ#
Λ;Φ

(
Γ′ ⊃ {γ′1, . . . ,γ′k }

)≤
k∏

i=1
w#(γ′i ) . (7.36)

Proof. Follows the same steps that started with (7.29).

Exercise 7.12. Complete the proof of Lemma 7.26.

7.4 Phase diagram of the Blume–Capel model

From now on, for the sake of concreteness, we will stick to the Blume–Capel model.
As before, the three constant ground states are denoted by η#, with # ∈ {+,0,−}. We
lift the degeneracy using W defined in (7.19). We continue to omit the dependence
on β everywhere. We also drop Φ from the notations and only indicate the depen-
dence on (λ,h) when it is really needed, that is, we write Z#(Λ) rather than Z#

λ,h(Λ),

etc. We also write e# (or e#(λ,h) if necessary) instead of eΦ(η#). With these conven-
tions, (7.27) becomes

Z#(Λ) = e−βe
#|Λ|Ξ#(Λ) .

We denote the pressure of the model, defined as in (7.7), by ψ=ψ(λ,h).
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7.4. Phase diagram of the Blume–Capel model 347

7.4.1 Heuristics

We will construct the phase diagram by determining the stable phases of the system.
Loosely speaking, this will consist in the determination, for each choice of bound-
ary condition # ∈ {+,0,−}, of the set of pairs (λ,h) for which a Gibbs measure can
be constructed using the thermodynamic limit with boundary condition #, whose
typical configurations are small deviations from the ground state η#. Eventually,
this will be done in Theorem 7.41.

But we will first focus on the pressure, in particular the pressure in a finite vol-
ume with the boundary condition #:

1

β|Λ| logZ#(Λ) =−e# + 1

β|Λ| logΞ#(Λ) .

In a regime where (λ,h) is such that e# is minimal among all e#′ , which happens
when (λ,h) ∈ U #, we expect typical configurations to be described by sparse lo-
cal deviations away from η#; these configurations should also be the main contri-
butions to Z#(Λ), in the sense that −e# should be the leading contribution to the
pressure, the term 1

β|Λ| logΞ#(Λ) representing only corrections (for large values of
β).

Making this argument rigorous requires having a control over logΞ#(Λ); it will
involve a detailed analysis of the weights w#(·) and will eventually rely on a balance
between the fields and an isoperimetric ratio related to the volume and support of
the contours. Let us describe how the latter appear.

We know from Theorem 5.4 that logΞ#(Λ) admits a convergent cluster expan-
sion, in any finite region Λ, provided that one can find numbers a(γ) ≥ 0 such that
(the weights w#(·) being real and nonnegative, there is no need for absolute values
here and below)

∀γ∗ ∈C #,
∑
γ∈C #

w#(γ)ea(γ)|ζ(γ,γ∗)| ≤ a(γ∗) , (7.37)

where ζ(γ,γ∗)
def= δ(γ,γ∗)−1. As in Section 5.7.1, we observe that ζ(γ,γ∗) ̸= 0 if and

only if γ∩ [γ∗] ̸=∅, where [γ∗]
def= {

j ∈Zd : d∞( j ,γ∗) ≤ 1
}
. This gives

∑
γ∈C #

w#(γ)ea(γ)|ζ(γ,γ∗)| ≤ |[γ∗]| sup
i∈Zd

∑
γ∈C #:γ∋i

w#(γ)ea(γ) .

This shows that a(γ)
def= |[γ]| is a natural candidate. Since |[γ]| ≤ 3d |γ|, (7.37) is satis-

fied if ∑
γ∈C #:γ∋0

w#(γ)e3d |γ| ≤ 1. (7.38)

Clearly, (7.38) can hold only if w#(γ) decreases exponentially fast with the size of
the support of γ. We are thus naturally led to the following notion.

Definition 7.27. The weight w#(γ) is τ-stable if

w#(γ) ≤ e−τ|γ| .

Below, in Lemma 7.30, we will show that (7.38) is indeed verified provided that all
the weights w#(γ) are τ-stable (for a sufficiently large value of τ). Of course, this
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348 Chapter 7. Pirogov–Sinai Theory

will be true only for certain values of (λ,h). For the moment, let us make a few
comments about the difficulties encountered when trying to show that a weight is
τ-stable.

Consider w#(γ), defined in (7.33). First, the surface term, e−β∥γ∥, can always be
bounded using Peierls’ condition:

∥γ∥ =HΦ0 (ωγ |η#)+
∑

B⊂γ
{WB (ωγ)−WB (η#)} ≥ (ρ−2∥W ∥)|γ| .

Remember from Example 7.12 that, for this model, Peierls’ constant can be chosen
to be ρ = 5−d . Since ∥W ∥ ≤ |h|+|λ|, from now on we will always assume that (λ,h) ∈
U , where

U
def= {

(λ,h) ∈R2 : |λ| ≤ ρ/8, |h| ≤ ρ/8
}

, (7.39)

which gives ρ−2∥W ∥ ≥ ρ/2
def= ρ0, yielding

e−β∥γ∥ ≤ e−βρ0|γ| . (7.40)

Let us then turn to the ratio of partition functions in (7.33).

The first observation is that this ratio is always a boundary term: there exists a
constant c > 0 (depending onΦ) such that

e−cβ|∂exint#′γ| ≤ Z#′ (int#′γ)

Z#(int#′γ)
≤ e+cβ|∂exint#′γ| .

(To check this, the reader can use the same type of arguments that were applied to
prove, in Chapter 3, that the pressure of the Ising model does not depend on the
boundary condition used.) Using (7.40), this gives w#(γ) ≤ e−(ρ0−c)β|γ|. Unfortu-
nately, one can certainly not guarantee that ρ0 > c. This naive argument shows that
a more careful analysis is necessary to study those ratios, in order for the surface term
to always be dominant. ⋄

Let us then consider the weight w#(γ), but this time expressed as in (7.35). Since
the ratios of polymer partition functions in that expression induce an intricate de-
pendence of w#(γ) on (λ,h), let us ignore this ratio for a while and assume that

∏
#′

Ξ#′ (int#′γ)

Ξ#(int#′γ)
= 1. (7.41)

Of course, this is a serious over-simplification, since this ratio involves in general
volume terms. (Note, however, that (7.41) indeed holds when each maximal com-
ponent of each int#′γ is thin; remember (7.25).) Nevertheless, what remains of the
weight after this simplification still contains volume terms, and the discussion be-
low aims at showing how these will be handled.

Since Hint#γ;Φ(η#) = e#|int#γ|, assuming (7.41) leave us with

w#(γ) = e−β∥γ∥
∏
#′

eβ(−e#′+e#)|int#′γ| = e−β∥γ∥
∏
#′

eβ(ψ̂#′
0 −ψ̂#

0)|int#′γ| , (7.42)

where we have introduced, for later convenience,

ψ̂#
0

def= −e# . (7.43)
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Therefore, to guarantee that (7.42) decays exponentially fast with |γ|, the key issue

is to verify that the volume term,
∏

#′ eβ(ψ̂#′
0 −ψ̂#

0)|int#′γ|, is not too large to destroy the
exponential decay due to the surface term.

Of course, the simplest way to guarantee this is to assume that the exponents
satisfy ψ̂#′

0 − ψ̂#
0 ≤ 0 for each #′, which occurs exactly when (λ,h) ∈ U # (see (7.21)),

since we then have ∏
#′

eβ(ψ̂#′
0 −ψ̂#

0)|int#′γ| ≤ 1.

This implies that the weight of γ ∈C # is βρ0-stable uniformly on U #:

sup
(λ,h)∈U #

w#(γ) ≤ e−βρ0|γ| .

This bound is very natural, since Peierls’ condition ensures that the creation of any
contour represents a cost proportional to its support whenever η# is a ground state
for the pair (λ,h).

However, the construction of the phase diagram will require controlling the
weights w#(γ) in a neighborhood of the boundary of U #, that is, also for some val-
ues (λ,h) ̸∈ U #, for which ψ̂#′

0 − ψ̂#
0 > 0. In such a case, the volume term can be

allowed to become large, but always less than the surface term. One can, for exam-
ple, impose that ∏

#′
eβ(ψ̂#′

0 −ψ̂#
0)|int#′γ| ≤ e

1
2βρ0|γ| . (7.44)

To guarantee this, one will impose restrictions on (λ,h) that depend on the geomet-

rical properties of γ, namely on the ratios |γ|
|int#γ| . To make this dependence more

explicit, we will use the following classical inequality, whose proof can be found in
Section B.14 (see Corollary B.80).

Lemma 7.28 (Isoperimetric inequality, d ≥ 2). For all S ⋐Zd ,

|∂exS| ≥ |S| d−1
d . (7.45)

Although we will not use them later in this precise form, consider the sets

U #
γ

def= {
(λ,h) ∈U : (ψ̂#′

0 − ψ̂#
0)|int#′γ|1/d ≤ 1

2ρ0 for each #′
}

. (7.46)

Clearly, U #
γ ⊃ U #. Taking (λ,h) ∈ U #

γ , we can use the isoperimetric inequality as
follows:

∑
#′

(ψ̂#′
0 − ψ̂#

0)|int#′γ| =
∑
#′

(ψ̂#′
0 − ψ̂#

0)|int#′γ|1/d |int#′γ|(d−1)/d (7.47)

≤ 1
2ρ0

∑
#′
|∂exint#′γ|

= 1
2ρ0|∂exintγ|

≤ 1
2ρ0|γ| .

(We used the fact that the sets ∂exint#′γ are pairwise disjoint subsets of γ.) This
implies (7.44) and yields 1

2βρ0-stability uniformly on U #
γ :

sup
(λ,h)∈U #

γ

w#(γ) ≤ e−
1
2βρ0|γ| .
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λ

U +

U +
γ

U

h

Figure 7.7: The weight of a contour γ ∈ C + is 1
2βρ0-stable in a region U +

γ ⊃
U +, in particular in a neighborhood of the boundary of U #. On the strip
U +
γ \ U +, which is small when the components int−γ and int0γ are large,

(λ,h) has “the wrong sign” although w#(γ) remains stable.

Let’s be a little bit more explicit, for example in the case # = +. Since ψ̂±
0 = ±h +λ

and ψ̂0
0 = 0, the set U +

γ is given by

U +
γ =

{
(λ,h) ∈U : h ≥− ρ0

4|int−γ|1/d

}
∩

{
(λ,h) ∈U : h ≥−λ− ρ0

2|int0γ|1/d

}
,

and is illustrated on Figure 7.7.

At this stage, the reader might benefit from having a look at the discussion in
Section 3.10.10. ⋄

The above discussion provides a sketch of the method that will be used later:
controlling the balance between volume and surface terms by combining the isoperi-
metric inequality with relevant thermodynamic quantities depending on (λ,h). In
our simplified discussion, which occurred only at the level of ground states, the
thermodynamic quantities were represented by the differences ψ̂#′

0 − ψ̂#
0. In the

construction of the phase diagram, the inclusion of the ratios of partition functions
neglected above will represent a technical nuisance and will be treated by a proof
by induction, in which ψ̂#′

0 − ψ̂#
0 will be replaced by ψ̂#′

n − ψ̂#
n . The induction index

n will represent the size of the largest contour present in the system (in a sense to
be made precise). Starting from the ground states (n = 0, no contours present in
the system), we will progressively add contours of increasing size. At each step n,
three pressures ψ̂#

n will be introduced, constructed using contours of size smaller
or equal to n. The weights of the newly added contours of volume n will be studied
in detail; one will in particular determine the regions of parameters (λ,h) for which
these weights are stable.

7.4.2 Polymer models with τ-stable weights

During the induction argument below, we will use the cluster expansion to extract
the surface and volume contributions to the polymer partition functions due to the
quotients appearing in the weights w#(γ). Before pursuing, let us thus determine
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the conditions under which this procedure will be implemented and provide the
main estimates that will be used throughout. Since cluster expansions will also be
applied to auxiliary models that appear on the way, as well as to certain expressions
involving derivatives with respect to λ and h, we first state a more general result,
which will be applied in various situations.

Let C be a collection of contours, which we assume to be a subcollection of any
of the families C #, # ∈ {+,0,−}. For example, C can be the set of all contours of
type + whose interior has a size bounded by a constant. Assume that to each γ ∈C
corresponds a weight w(γ) ≥ 0, possibly different from w#(γ). We also assume that
C and the weights w(·) are translation invariant, in the sense that if γ ∈C and if γ′

is any translate of γ, then γ′ ∈ C and w(γ′) = w(γ). We will denote the size of the
support of the smallest contour of C by

ℓ0
def= min

{|γ| : γ ∈C
}

.

For allΛ⋐Zd , define

Ξ(Λ)
def=

∑
Γ⊂C

compatible

∏
γ∈Γ

w(γ) , (7.48)

where the sum is over all families of pairwise compatible (in the sense of Defini-
tion 7.21) families Γ, such that γ⊂Λ and d∞(γ,Λc) > 1 for all γ ∈ Γ.

Exercise 7.13. Show that the following limit exists:

g
def= lim

k→∞
1

|B(k)| logΞ(B(k)) . (7.49)

Hint: use a subadditivity argument.

The cluster expansion for logΞ(Λ), when it converges, is given by

logΞ(Λ) =
∑
X
Ψ(X ) , (7.50)

where the sum is over clusters X made of contours γ ∈ C such that γ ⊂ Λ and
d∞(γ,Λc) > 1, andΨ(X ) is defined as in (5.20):

Ψ(X )
def= α(X )

∏
γ∈X

w(γ) . (7.51)

Remember that a contour can appear more than once in a cluster (in which case its
weight appears more than once in the previous product), and that α(X ) is a purely
combinatorial factor.

Everywhere below, we will use the function

η(τ,ℓ)
def= 2e−τℓ/3 .
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Theorem 7.29. Assume that, for all γ ∈ C , the weight w(γ) is C 1 in a parameter
s ∈ (a,b), and that, uniformly on (a,b),

w(γ) ≤ e−τ|γ| ,
∣∣∣dw(γ)

ds

∣∣∣≤ D|γ|d/(d−1)e−τ|γ| , (7.52)

where D ≥ 1 is a constant. There exists τ1 = τ1(D,d) < ∞ such that the following
holds. If τ> τ1, then g defined in (7.49) is given by the following absolutely conver-
gent series,

g =
∑

X : X∋0

1

|X |
Ψ(X ) , (7.53)

where the sum is over clusters X made of contours γ ∈C and X
def= ⋃

γ∈X γ. Moreover,

|g | ≤ η(τ,ℓ0) ≤ 1,

and, for all Λ⋐Zd , g provides the volume contribution to logΞ(Λ), in the sense that

Ξ(Λ) = exp
(
g |Λ|+∆)

, (7.54)

where ∆ is a boundary term:

|∆| ≤ η(τ,ℓ0)|∂inΛ| .

Finally, g is also C 1 in s ∈ (a,b), its derivative equals

dg

ds
=

∑

X : X∋0

1

|X |
dΨ(X )

ds
(7.55)

and ∣∣∣dg

ds

∣∣∣≤ Dη(τ,ℓ0) .

We can express (7.54) in the following manner

1

|Λ| logΞ(Λ) = g +O
( |∂inΛ|

|Λ|
)

.

⋄

We have already seen in (7.38) that, when w(γ) ≤ e−τ|γ|, a sufficient condition
for the convergence of the cluster expansion is that

∑
γ∈C :γ∋0

e−τ|γ|e3d |γ| ≤ 1. (7.56)

We will actually choose τ so large that a stronger condition is satisfied, which will
be needed in the proofs of Theorem 7.29 and Lemma 7.31.

Lemma 7.30. There exists τ0 <∞ such that, when τ> τ0,

∑
γ∈C :γ∋0

|γ|d/(d−1)e−(τ/2−1)|γ|e3d |γ| ≤ η(τ,ℓ0) ≤ 1, (7.57)

uniformly in the collection C .
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Proof. First,

∑
γ∈C :
γ∋0

|γ|d/(d−1)e−(τ/2−1)|γ|e3d |γ| ≤
∑

k≥ℓ0

kd/(d−1)e−(τ/2−1−3d )k #
{
γ ∈C : γ ∋ 0, |γ| = k

}
.

Once the support γ is fixed, the number of possible configurations ωγ is bounded

above by |Ω0||γ| = 3|γ|. Therefore, proceeding as in Exercise 5.3, we can show that
there exists a constant c > 0 (depending on the dimension, different from the one
of Exercise 5.3) such that

#
{
γ ∈C : γ ∋ 0, |γ| = k

}≤ eck .

We assume that τ is so large that

τ′ def= τ/2−1−3d −d/(d −1)− c ≥ τ/3 (7.58)

and e−τ
′ < 1/2. Then, since kd/(d−1) < edk/(d−1),

∑
γ∈C :γ∋0

|γ|d/(d−1)e−(τ/2−1)|γ|e3d |γ| ≤
∑

k≥ℓ0

e−τ
′k = e−τ

′ℓ0

1−e−τ′
≤ 2e−τ

′ℓ0 ≤ η(τ,ℓ0) .

For each # ∈ {+,0,−}, let τ# be the smallest constant τ satisfying the above require-

ments when using C =C #. We can then take τ0
def= max#τ

#.

Everywhere below, τ0 will refer to the number that appeared in Lemma 7.30.

Proof of Theorem 7.29: Denote by τ1 the smallest τ > τ0 such that Dη(τ,ℓ0) ≤ 1.
Since (7.57) implies (7.56), Theorem 5.4 guarantees that the series on the right-
hand side of (7.50) converges absolutely. In fact, proceeding as in (5.29), using the

fact that a(γ)
def= |[γ]| ≤ 3d |γ|,

∑

X : X∋0

|Ψ(X )| ≤
∑

γ1∈C :γ1∋0

w(γ1)e3d |γ1| ≤ η(τ,ℓ0) . (7.59)

This yields the convergence of the series for g , as well as the upper bound |g | ≤
η(τ,ℓ0). The same computations as those preceding Remark 5.9 and translation
invariance give (7.54). The boundary term∆ is bounded in the same way. Since g is
defined by an absolutely convergent series, we can rearrange its terms as g =∑

n fn ,
where

fn
def=

∑
k≥1

∑
X={γ1,...,γk }:

X∋0∑ |γi |=n

1

|X |
Ψ(X ) .

Since only finitely many terms contribute to fn and since eachΨ(X ) is C 1, fn is also
C 1. Moreover, for a cluster X = {γ1, . . . ,γk }, (7.52) gives

∣∣∣dΨ(X )

ds

∣∣∣=
∣∣∣α(X )

k∑
j=1

dw(γ j )

ds

k∏
i=1

(i ̸= j )

w(γi )
∣∣∣

≤ |α(X )|
k∏

j=1

{
D|γ j |d/(d−1)e−(τ−1)|γ j |}= |Ψ(X )| ,
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where we used
∑k

j=1 1 ≤∏k
j=1 e |γ j |; Ψ(X ) is defined as Ψ(X ) in (7.51), but with w(γ)

replaced by

w(γ)
def= D|γ|d/(d−1)e−(τ−1)|γ| .

Again by Lemma 7.30, the analogue of (7.56) with w(γ) replaced by w(γ) is satisfied.
Therefore,

∑
n

∣∣d fn

ds

∣∣≤
∑

n≥1

∑
k≥1

∑
X={γ1,...,γk }:

X∋0∑ |γi |=n

1

|X |
|Ψ(X )|

≤
∑

X : X∋0

|Ψ(X )| ≤
∑

γ1∈C :γ1∋0

w(γ1)e3d |γ1| ≤ Dη(τ,ℓ0) .

Theorem B.7 thus guarantees that g is also C 1, and that its derivative is given by
dg
ds =∑

n
d fn
ds , which proves (7.55).

We will also need bounds on the sums of the weights of clusters that contain at
least one contour with a large support.

Lemma 7.31. Assume that w(γ) ≤ e−τ|γ| for each γ ∈ C and some τ > τ0. Then, for
all L ≥ ℓ0, ∑

X : X∋0
|X |≥L

|Ψ(X )| ≤ e−
1
2 τL . (7.60)

Proof. Proceeding as we did at the end of Section 5.7.4,

1 = e−τ|X |/2eτ|X |/2 ≤ e−τ|X |/2
∏
γ∈X

eτ|γ|/2 ,

which can be inserted into

∑

X : X∋0
|X |≥L

|Ψ(X )| ≤ e−τL/2
∑

X : X∋0

|Ψ(X )|
∏
γ∈X

e
τ
2 |γ|

= e−τL/2
∑

X : X∋0

|Ψ(X )| ≤ e−τL/2η(τ,ℓ0) ≤ e−τL/2 .

In the equality, we definedΨ(X ) asΨ(X ) in (7.51), but with w(γ) replaced by w(γ)
def=

e−
τ
2 |γ|. We then used again Lemma 7.30.

7.4.3 Truncated weights and pressures, upper bounds on partition functions

As explained above, we will construct the phase diagram by progressively adding
contours on top of the ground states η#. To this end, we need to order contours
according to their sizes.

Definition 7.32. A contour γ ∈C # is of class n if |intγ| = n. The collection of con-
tours of type # and class n is denoted by C #

n .
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Clearly, a component of the interior of a contour γ ∈C #
n can contain only contours

of class strictly smaller than n.

We know that the weight of a contour with a large interior might not be stable
for all values of the fields (λ,h). It will however turn out to be very useful to control
the weights on the whole region (λ,h) ∈ U . To deal with the problem of unstable
phases, we will truncate the weight of a contour as soon as its volume term becomes
too large.

Contours of class zero contain no volume term, so they need not to be trun-
cated. Contours of large class do however contain volume terms and we will sup-
press the latter as soon as they become too important. We therefore fix some choice
of cutoff function χ : R → [0,1], satisfying the following properties: (i) χ(s) = 1

if s ≤ ρ0/4, (ii) χ(s) = 0 if s ≥ ρ0/2, (iii) χ is C 1. Such a cutoff satisfies ∥χ′∥ def=
sups |χ′(s)| <∞.

s

χ(s)

ρ0/4 ρ0/2

We start by defining the truncated quantities associated to n = 0. First, the trun-
cated pressures (which we already encountered before) are defined by

ψ̂#
0

def= −e# .

We define

∀γ ∈C #
0 , ŵ#(γ)

def= w#(γ) = e−β∥γ∥ .

Everywhere below, we assume that (λ,h) ∈U so that we can use the bound (7.40).

Assume now that the truncated weights ŵ#(·) have been defined for all con-
tours of class ≤ n. For a c-connected Λ⋐Zd , let Ξ̂#

n(Λ) denote the polymer model
defined as in (7.34), but where the collections contain only contours of class ≤ n,
and with w#(γ) replaced by ŵ#(γ). Then, set

Ẑ#
n(Λ)

def= e−βe
#|Λ| Ξ̂#

n(Λ) .

For each # ∈ {+,0,−}, we use Exercise 7.13 to define the truncated pressure by

ψ̂#
n = ψ̂#

n(λ,h)
def= lim

k→∞
1

β|B(k)| log Ẑ#
n(B(k))

=−e# + lim
k→∞

1

β|B(k)| log Ξ̂#
n(B(k)) .

Notice that, since Ξ̂#
n(B(k)) ≥ 1, we have

ψ̂#
n ≥−e# . (7.61)
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Definition 7.33. The truncated weight of γ ∈C #
n+1 is defined by

ŵ#(γ)
def= e−β∥γ∥

∏
#′

{
χ
(
(ψ̂#′

n − ψ̂#
n)|int#′γ|1/d )Z#′ (int#′γ)

Z#(int#′γ)

}
.

Intuitively, the goal of the previous definition is to eliminate all contours that
could lead to instability. The reason we do not simply use a hard constraint of the
form 1

{(ψ̂#′
n −ψ̂#

n )|int#′γ|1/d≤ρ0/2}
, rather than a soft cutoff, is that the smoothness of the

latter will allow us to obtain useful information on the regularity of the pressure and
of the phase diagram. ⋄

Notice that since 0 ≤χ≤ 1, we have

ŵ#(γ) ≤w#(γ) , ∀γ ∈C # . (7.62)

Actually, unlike the true pressure ψ of the model, the truncated pressures do in
fact depend very much on the choice of the boundary condition, that is, ψ̂#

n ̸= ψ̂#′
n

in general. Moreover, the truncated weights and pressures depend on the specific
choice of the cutoff function. Of course, as we will see later in Remark 7.37, this has
no impact on the final construction of the phase diagram (but has an influence on
what information on the latter can be extracted from our construction).

Other useful quantities will be important in the sequel. The first is

ψ̂n
def= max

#
ψ̂#

n .

Then, the following will be handy to relate the original weights to their truncated
versions:

a#
n

def= max
#′

{ψ̂#′
n − ψ̂#

n} = ψ̂n − ψ̂#
n .

By definition, a#
n ≥ 0 and, for all γ ∈C #

n+1,

a#
n |intγ|1/d ≤ ρ0/4 =⇒ ŵ#(γ) =w#(γ) . (7.63)

The following proposition is the main technical result of this chapter. Remem-
ber that τ1 was defined in Theorem 7.29.
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Proposition 7.34. Let

τ
def= 1

2βρ0 −6. (7.64)

There exists 0 < β0 < ∞ such that the following holds. If β > β0, then τ > τ1 and
there exists an increasing sequence cn ↑ c∞ <∞ such that, for all # and all n ≥ 0, the
following statements hold.

1. (Bounds on the truncated weights.) For all k ≤ n, the weight of each γ ∈ C #
k

is τ-stable uniformly on U :

ŵ#(γ) ≤ e−τ|γ| , (7.65)

and

a#
n |intγ|1/d ≤ ρ0/8 implies ŵ#(γ) =w#(γ) . (7.66)

Moreover, λ 7→ ŵ#(γ) and h 7→ ŵ#(γ) are C 1 and, uniformly on U ,

∣∣∣∂ŵ
#(γ)

∂λ

∣∣∣≤ D|γ|d/(d−1)e−τ|γ| ,
∣∣∣∂ŵ

#(γ)

∂h

∣∣∣≤ D|γ|d/(d−1)e−τ|γ| , (7.67)

where D
def= 4(β+∥χ′∥).

2. (Bounds on the partition functions.) Assume that Λ⋐Zd is c-connected and
|Λ| ≤ n. Then

Z#(Λ) ≤ eβψ̂n |Λ|+cn |∂exΛ| , (7.68)
∣∣∣∂Z#(Λ)

∂λ

∣∣∣≤β|Λ|eβψ̂n |Λ|+cn |∂exΛ| . (7.69)

∣∣∣∂Z#(Λ)

∂h

∣∣∣≤β|Λ|eβψ̂n |Λ|+cn |∂exΛ| , (7.70)

uniformly in (λ,h) ∈U .

Notice that the way the proposition is formulated allows one to obtain asymptotic
bounds also in the limit n →∞.

Fixing the constants. Before turning to the proof, we fix the relevant constants.

Theorem 7.29 will be used repeatedly. Remember that η(τ,ℓ0)
def= 2e−τℓ0/3, where

ℓ0 ≥ |B(1)| is the size of the smallest support of a contour. We assume that β0 sat-
isfies β0 ≥ 1 and that it is large enough to ensure that, for all β > β0, we have both
τ> τ1 and

D3d η(τ,ℓ0) ≤ 1,

where D
def= 4(β+∥χ′∥). This will, in particular, always allow us to control the bound-

ary terms that appear when using the cluster expansion in a regionΛ:

|∆| ≤ η(τ,ℓ0)|∂inΛ| ≤ η(τ,ℓ0)3d |∂exΛ| ≤ |∂exΛ| . (7.71)

We will also assume that β0 is large enough to guarantee that

∀k ≥ 1, 2β−1k1/d e−τk(d−1)/d /2 ≤ ρ0/8. (7.72)
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Let c0
def= 2, and

cn+1
def= cn + (n +1)1/d e−τn(d−1)/d /2 .

We then have 2 ≤ cn ↑ c∞
def= 2+∑

n≥1(n +1)1/d e−τn(d−1)/d /2 and we can thus assume
that β0 is so large that c∞ ≤ 3. Finally, we assume β0 is such that

∀a > 0, β−1 exp
(−max

{
(ρ0/4a )d−1,ℓ0

}
τ/2

)≤ a

2
. (7.73)

Proof of Proposition 7.34: Let us first prove the proposition in the case n = 0. When
γ ∈ C #

0 , (7.66) is always true, ŵ#(γ) = e−β∥γ∥, and (see (7.40)) e−β∥γ∥ ≤ e−βρ0|γ| <
e−τ|γ| when (λ,h) ∈U . Since

∣∣∣∂∥γ∥
∂λ

∣∣∣=
∣∣∣
∑
i∈γ

{(η#
i )2 − (ωγ)2

i }
∣∣∣≤ 2|γ| , (7.74)

we have ∣∣∣∂ŵ
#(γ)

∂λ

∣∣∣≤ 2β|γ|e−β∥γ∥ < D|γ|d/(d−1)e−τ|γ| .

The bound on the derivative with respect to h is obtained in exactly the same
way. Finally, (7.68)–(7.70) are trivial when |Λ| = 0, since the corresponding partition
functions are all equal to 1.

We now assume that the claims of the proposition have been proved up to n,
and prove that they also hold for n +1.

▶Controlling the truncated pressures ψ̂#
n . Since the contours appearing in Ξ̂#

n(B(k))
are all of class at most n and since their weights are τ-stable on U by the induction
hypothesis, we can use Theorem 7.29 to express ψ̂#

n =−e#+ ĝ #
n , with ĝ #

n given by the
absolutely convergent series (notice that now, there appears a division by β)

ĝ #
n =

∑
X∈χ#

n :

X∋0

1

β|X |
Ψ̂#(X ) , (7.75)

where χ#
n is the collection of all clusters made of contours of type # and class at

most n, and where Ψ̂# are defined as in (7.51), but with the weights ŵ#. Moreover,
ĝ #

n is C 1 in λ and h on U and

∣∣∣∂ĝ #
n

∂λ

∣∣∣≤ Dβ−1η(τ,ℓ0) ≤ 1. (7.76)

The same upper bound holds for the derivative with respect to h.

▶ Studying the truncated weights of contours of class n+1. We first prove that (7.65)
holds when γ ∈ C #

n+1. Observe that ŵ#(γ) = 0 whenever there exists #′ such that

(ψ̂#′
n − ψ̂#

n)|int#′γ|1/d > 1
2ρ0. So we can assume that

(ψ̂#′
n − ψ̂#

n)|int#′γ|1/d ≤ 1
2ρ0 for all #′. (7.77)

Since |intγ| = n+1, all contours contributing to the partition functions appearing in
ŵ#(γ) are of type at most n. We can thus apply the induction hypothesis to deduce
that, for any #′,

Z#′ (int#′γ) ≤ eβψ̂n |int#′γ|+cn |∂exint#′γ| ≤ eβψ̂n |int#′γ|+3|∂exint#′γ| .
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(Remember that cn ↑ c∞ ≤ 3.) The truncated weight of each contour contributing
to Ẑ#

n(int#′γ) is τ-stable by the induction hypothesis. Therefore, after using (7.62),
(7.54) and (7.71),

Z#(int#′γ) ≥ Ẑ#
n(int#′γ) = e−βe

#|Λ|Ξ̂#(Λ) = eβψ̂
#
n |int#′γ|+∆ ≥ eβψ̂

#
n |int#′γ|−|∂exint#′γ| .

(7.78)
Combining these two bounds, using the isoperimetric inequality as in (7.47), we
obtain

Z#′ (int#′γ)

Z#(int#′γ)
≤ eβ(ψ̂n−ψ̂#

n )|int#′γ|+4|∂exint#′γ| ≤ e( 1
2βρ0+4)|∂exint#′γ| . (7.79)

Bounding the cutoff function by 1, using (7.40) and
∑

#′ |∂exint#′γ| ≤ |γ|, we conclude
that (7.65) indeed holds for γ:

ŵ#(γ) ≤ e−
1
2βρ0|γ|+4|γ| < e−τ|γ| . (7.80)

Let us turn to (7.67). The derivative with respect to λ equals

∂ŵ#(γ)

∂λ
=−β∂∥γ∥

∂λ
ŵ#(γ)+e−β∥γ∥

∑
#′

∂

∂λ

{
χ(·) Z#′ (int#′γ)

Z#(int#′γ)

} ∏
#′′ ̸=#′

{
χ(·) Z#′′ (int#′′γ)

Z#(int#′′γ)

}
.

(7.81)
The only term appearing in (7.81) that we have not yet estimated is

∣∣∣ ∂
∂λ

{
χ
(
(ψ̂#′

n − ψ̂#
n)|int#′γ|1/d )Z#′ (int#′γ)

Z#(int#′γ)

}∣∣∣ .

Using the chain rule together with (7.76), we see that the latter is bounded above by

4|int#′γ|1/d∥χ′∥Z#′ (int#′γ)

Z#(int#′γ)
+

∣∣∣ ∂
∂λ

Z#′ (int#′γ)

Z#(int#′γ)

∣∣∣ .

(In the second term, the cutoff was bounded by 1.) (7.79) already leads to a bound
on the first term, so we only have to consider the second one. Of course,

∣∣∣ ∂
∂λ

Z#′ (int#′γ)

Z#(int#′γ)

∣∣∣≤ |∂Z#′ (int#′γ)/∂λ|
Z#(int#′γ)

+ Z#′ (int#′γ)

Z#(int#′γ)

|∂Z#(int#′γ)/∂λ|
Z#(int#′γ)

. (7.82)

Observe that

∣∣∣∂Z#(int#′γ)

∂λ

∣∣∣=
∣∣∣

∑
ω∈Ωint#′ γ

e−βHint#′ γ;Φ(ω) ∂(−βHint#′γ;Φ(ω))

∂λ

∣∣∣

≤β|int#′γ|Z#(int#′γ) . (7.83)

This bounds the last ratio in (7.82). The remaining ratios can be estimated using
the induction hypothesis (7.69), and (7.79), yielding

∣∣∣ ∂
∂λ

Z#′ (int#′γ)

Z#(int#′γ)

∣∣∣≤ 2β|int#′γ|e( 1
2βρ0+4)|∂exint#′γ| . (7.84)

Using (7.40), (7.74), (7.79), (7.80) and (7.84) in (7.81) leads to

∣∣∣∂ŵ
#(γ)

∂λ

∣∣∣≤
{
2β|γ|+ (2β+4∥χ′∥)|intγ|}e−τ|γ| .
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(7.67) then follows after an application of the isoperimetric inequality. Once again,
the derivative with respect to h is treated in the same way.

▶ Estimating the differences |ψ̂#
n+1−ψ̂#

k |, k ≤ n. Notice that |ψ̂#
n+1−ψ̂#

k | = |ĝ #
n+1−ĝ #

k |.
By what was done above, all truncated weights of contours of class ≤ n + 1 are τ-
stable. We can therefore consider the expansions for each of the functions ĝ #

k , k ≤
n +1, as in (7.75). Then, observe that the clusters X ∈ χ#

n+1 \χ#
k that contribute to

ĝ #
n+1 − ĝ #

k contain at least one contour γ∗ with |intγ∗| > k. By the isoperimetric

inequality, |γ∗| ≥ k(d−1)/d . By Lemma 7.31,

∑

X : X∋0
|X |≥k(d−1)/d

|Ψ̂#(X )| ≤ e−
1
2 τk(d−1)/d

.

As a consequence,

|ψ̂#
n+1 − ψ̂#

k | ≤β−1e−
1
2 τk(d−1)/d

, |ψ̂n+1 − ψ̂k | ≤β−1e−
1
2 τk(d−1)/d

. (7.85)

▶ Showing that n, in (7.66), can be replaced byn + 1. For γ ∈ C #
n+1, (7.66) holds

by (7.63). Let us fix γ ∈C #
k , k ≤ n, and write

a#
k |intγ|1/d = a#

n+1|intγ|1/d + (a#
k −a#

n+1)|intγ|1/d

≤ a#
n+1|intγ|1/d +2β−1k1/d e−τk(d−1)/d /2

≤ a#
n+1|intγ|1/d +ρ0/8.

(We used (7.72) in the last inequality.) Therefore, a#
n+1|intγ|1/d ≤ ρ0/8 implies that

a#
k |intγ|1/d ≤ ρ0/4. According to how the cutoffs were defined, this implies ŵ#(γ) =

w#(γ).
We now move on to the most delicate part of the proof:

▶ Showing that (7.68) holds if |Λ| = n +1. Let Λ⋐ Zd be an arbitrary c-connected

set satisfying |Λ| = n + 1, fix (λ,h) ∈ U and consider Z#(Λ) = e−βe
#|Λ|Ξ#(Λ). Let

γ ∈C # be any contour appearing in the contour representation of Ξ#(Λ) (therefore
necessarily of class at most n). If

a#
n |intγ|1/d ≤ ρ0/4,

we say that γ is stable; otherwise, we say thatγ is unstable. By definition, a stable
contour satisfies w#(γ) = ŵ#(γ).

Whether a contour is stable or not depends on the point (λ,h) ∈U we are con-
sidering. Note that when a#

n = 0, all contours appearing in Z#(Λ) are stable; in such
a case, we can use Theorem 7.29 to conclude that

Z#(Λ) = Ẑ#(Λ) = e−βe
#|Λ|Ξ#(Λ) = eβψ̂n |Λ|+∆ ≤ eβψ̂n |Λ|+|∂exΛ| ≤ eβψ̂n |Λ|+cn |∂exΛ| .

We can thus assume that a#
n > 0. Note that the possible presence of unstable con-

tours prevents us now from using the representation Z#(Λ) = e−βe
#
Ξ#(Λ) to analyze

Z#(Λ).
Let us fix the set of external unstable contours. Once the latter are fixed, we can

resum over the configurations on their exteriorΛext, with the restriction of allowing
only stable contours. Observe that being stable is hereditary: if γ is stable, then any
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contour contained in its interior is also stable, so that we are guaranteed that none
of these contours will surround one of the fixed unstable contours.

Proceeding similarly to what we did in (7.29), this first step gives

Z#(Λ) =
∑
Γ′

compatible
external
unstable

Z#
stable(Λext)

∏
γ′∈Γ′

{
exp

(−β
∑

B⊂γ′
ΦB (ωγ′ )

)∏
#′

Z#′ (int#′γ
′)
}

,

where Z#
stable(Λext) denotes the partition function restricted to configurations in

which all contours are stable. Since w#(γ) = ŵ#(γ) when γ is stable and since the
truncated weights are τ-stable, we can use a convergent cluster expansion to study
Z#

stable(Λext):

Z#
stable(Λext) = e−βe

#|Λext|Ξ#
stable(Λext) ≤ e−β(e#−ĝ #

n,stable)|Λext|e |∂
exΛext| .

For the partition functions in the interior of unstable contours, we apply the induc-
tion hypothesis (7.68):

∏
#′

Z#′ (int#′γ
′) ≤

∏
#′

eβψ̂n |int#′γ
′|+cn |∂exint#′γ

′| ≤ eβψ̂n |intγ′|e3|γ′| .

Using |∂exΛext| ≤ |∂exΛ|+∑
γ′∈Γ′ |γ′| and extracting eβψ̂n |Λ| from the sum, we obtain

Z#(Λ) ≤ eβψ̂n |Λ|e |∂
exΛ|

×
∑
Γ′

compatible
external
unstable

e−β(ψ̂n+e#−ĝ #
n,stable)|Λext| ∏

γ′∈Γ′
exp

(−β
∑

B⊂γ′
ΦB (ωγ′ )

)
e(4−βψ̂n )|γ′| .

Observe now that ψ̂n |γ| ≥ ψ̂#
n |γ| ≥ −e#|γ| = −∑

B⊂γΦB (η#) (indeed, remem-
ber (7.61), and observe that all pairwise interactions, in a ground state, are zero).

Defining ψ̂#
n,stable

def= −e# + ĝ #
n,stable,

Z#(Λ) ≤ eβψ̂n |Λ|e |∂
exΛ| ∑

Γ′
compatible

external
unstable

e−β(ψ̂n−ψ̂#
n,stable)|Λext| ∏

γ′∈Γ′
e−β∥γ

′∥e4|γ′| . (7.86)

We will show that this last sum is bounded by e |∂
exΛ|, which will allow to conclude

that, indeed,
Z#(Λ) ≤ eβψ̂n |Λ|e2|∂exΛ| ≤ eβψ̂n |Λ|+cn |∂exΛ| . (7.87)

In order to do that, we will prove that ψ̂n −ψ̂#
n,stable is positive and sufficiently large

to strongly penalize families Γ′ for which |Λext| is large. First, let us write

ψ̂n − ψ̂#
n,stable = a#

n + (ĝ #
n − ĝ #

n,stable) .

The clusters that contribute to ĝ #
n−ĝ #

n,stable necessarily contain at least one unstable
contour. Therefore, since an unstable contour γ satisfies

|γ| ≥ |intγ|(d−1)/d ≥
( ρ0

4a#
n

)d−1
,
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we have

|ĝ #
n − ĝ #

n,stable| ≤β−1 exp
(−max

{
(ρ0/4a#

n)d−1,ℓ0
}
τ/2

)≤ 1
2 a#

n ,

where we used (7.73). We conclude that ψ̂n − ψ̂#
n,stable ≥ a#

n/2. Then, let us define

new weights as follows: for each γ ∈C #, set

w#
∗(γ)

def=
{

e−(βρ0−5)|γ| if γ is unstable,

0 otherwise.

We denote by Ξ#
∗(·) the associated polymer partition function, and let

ĝ #
∗

def= lim
n→∞

1

β|B(n)| logΞ#
∗(B(n)) .

Since βρ0 − 5 ≥ τ, ĝ #
∗ can be controlled by a convergent cluster expansion. Once

again, the clusters that contribute to ĝ #
∗ contain only unstable contours, and there-

fore, using again (7.73),

|ĝ #
∗| ≤β−1 exp

(−max
{
(ρ0/4a#

n)d−1,ℓ0
}
τ/2

)≤ 1
2 a#

n . (7.88)

One can thus guarantee that

ψ̂n − ψ̂#
n,stable ≥ ĝ #

∗ . (7.89)

We can now use this to show that the sum in (7.86) is bounded above by

∑
Γ′

compatible
external
unstable

e−βĝ #∗|Λext| ∏
γ′∈Γ′

e−(βρ0−4)|γ′| ≤ e−βĝ #∗|Λ|
∑
Γ′

compatible
external
unstable

∏
γ′∈Γ′

e−(βρ0−5)|γ′|eβĝ #∗|intγ′|

≤ e−βĝ #∗|Λ|
∑
Γ′

compatible
external
unstable

∏
γ′∈Γ′

e−(βρ0−6)|γ′|Ξ#
∗(intγ′)

= e−βĝ #∗|Λ|Ξ#
∗(Λ)

≤ e |∂
exΛ| .

In the first inequality, we used |ĝ #
∗| ≤ 1, which follows from the first inequality

in (7.88); in the second, we used again Theorem 7.29: Ξ#
∗(intγ) ≥ eβĝ #∗|intγ|−|γ|. This

proves the earlier claim.

▶ Showing that (7.69) and (7.70) hold for |Λ| = n+1. Proceeding as in (7.83), we see
that ∣∣∣∂Z#(Λ)

∂λ

∣∣∣≤β|Λ|Z#(Λ) , (7.90)

and, therefore, (7.69) follows from (7.87). The same argument yields (7.70)

▶ Showing that n, in the right-hand side of (7.68)–(7.70), can be replaced by n +1.
Using (7.85) and the isoperimetric inequality we get, for all |Λ| ≤ n +1,

βψ̂n |Λ|+ cn |∂exΛ| =βψ̂n+1|Λ|+ cn |∂exΛ|+β(ψ̂n − ψ̂n+1)|Λ|
≤βψ̂n+1|Λ|+ (cn + (n +1)1/d e−

1
2 τn(d−1)/d

)|∂exΛ|
=βψ̂n+1|Λ|+ cn+1|∂exΛ| .
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7.4.4 Construction of the phase diagram

Let us now exploit the consequences of Proposition 7.34. We assume throughout
this section that β>β0. Since it appears at several places, we define

ϵ= ϵ(β)
def= D3dη(τ,ℓ0) .

When needed,β can be taken larger to make ϵ smaller. We will assume, for instance,
that

ϵ< ρ/32.

Proposition 7.34 dealt with the truncated pressures ψ̂#
n , to which only contours

with an interior of size at most n contributed. Let us first see how the limit n →∞
restores the full model.

It follows from (7.85) that ĝ #
n is a Cauchy sequence, which guarantees the exis-

tence of
ĝ # def= lim

n→∞ ĝ #
n .

Moreover, ĝ # can be expressed as the convergent series

ĝ # =
∑

X∈χ#:

X∋0

1

β|X |
Ψ̂#(X ) , (7.91)

whereχ# is the collection of all clusters made of contours of type # using the weights
ŵ#. Namely, the difference between this series and the one in (7.75) is an infinite
sum over clusters X such that (i) their support contains 0 and (ii) they contain at
least one contour of class larger than n. By Lemma 7.31,

|ĝ # − ĝ #
n | ≤β−1e−

1
2 τn(d−1)/d

. (7.92)

We can thus also define
ψ̂# def= lim

n→∞ψ̂
#
n .

The series in (7.91) can be bounded as usual: |ĝ #| ≤ ϵ. This shows that ψ̂# is a small
perturbation of minus the energy density of the ground state η#:

∣∣ψ̂# − (−e#)
∣∣≤ ϵ ,

In order to compare the original weights and their truncated versions, we define

a# def= lim
n→∞a#

n = ψ̂− ψ̂# ,

where
ψ̂

def= max
#
ψ̂# .

Letting n →∞ in (7.66) implies that

∀γ ∈C # , a#|intγ|1/d ≤ ρ0/8 implies ŵ#(γ) =w#(γ) . (7.93)

Using this, we can define regions of parameters on which all contours of type # will
coincide with their truncated versions (we indicate the dependence on β, to distin-
guish these sets from those defined in (7.21), which were associated to the energy
densities of the ground states):

U #
β

def= {
(λ,h) ∈U : a#(λ,h) = 0

}= {
(λ,h) ∈U : ψ̂#(λ,h) = max

#′
ψ̂#′ (λ,h)

}
.
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Observe that at a given point (λ,h) ∈ U , there is always at least one # for which
a#(λ,h) = 0. This means that the regions U # cover U . By (7.93), we obtain the
following

Theorem 7.35. There exists 0 <β0 <∞ such that the following holds for all β>β0:

∀γ ∈C # , (λ,h) ∈U #
β implies ŵ#(γ) =w#(γ) .

In particular, when (λ,h) ∈U #
β

, the true pressure of the model equals

ψ(λ,h) = lim
n→∞

1

β|B(n)| logZ#(B(n))

= lim
n→∞

1

β|B(n)| log Ẑ#(B(n)) = ψ̂#(λ,h) .

In other words,

ψ(λ,h) =





ψ̂+(λ,h) if (λ,h) ∈U +
β

,

ψ̂0(λ,h) if (λ,h) ∈U 0
β

,

ψ̂−(λ,h) if (λ,h) ∈U −
β

.

(7.94)

In particular, we can extract properties of the (true) pressure by studying the trun-
cated pressures and determining the regions U #

β
.

Up to now, even though we restricted our discussion to the Blume–Capel model
for pedagogical reasons, the specific properties of this model were not used in any
important way. In order to obtain more precise information about this model how-
ever, it will be useful to exploit these properties from now on. For example, the
+↔− symmetry provides us immediately with useful information about the trun-
cated pressures.

Exercise 7.14. Check that the +↔− symmetry implies ψ̂+(λ,−h) = ψ̂−(λ,h).

Let us write the truncated pressures more explicitly, using the expressions for
the ground state energy densities e# given in (7.20):

ψ̂±(λ,h) =±h +λ+ ĝ±(λ,h) , ψ̂0(λ,h) = ĝ 0(λ,h) .

Since the weights ŵ#(γ) are C 1, Theorem 7.29 guarantees again that ĝ # is C 1 on U
and that, uniformly on U ,

∣∣∣∂ĝ #

∂λ

∣∣∣≤ ϵ ,
∣∣∣∂ĝ #

∂h

∣∣∣≤ ϵ . (7.95)

Therefore,

∣∣∂ψ̂
±

∂h
∓1

∣∣≤ ϵ ,
∣∣∂ψ̂

±

∂λ
−1

∣∣≤ ϵ ,
∣∣∂ψ̂

0

∂h

∣∣≤ ϵ ,
∣∣∂ψ̂

0

∂λ

∣∣≤ ϵ .

The regions U #
β

. Let us start with U +
β

, which can be written as

U +
β = {

(λ,h) ∈U : ψ̂+ ≥ ψ̂−}∩{
(λ,h) ∈U : ψ̂+ ≥ ψ̂0} .
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7.4. Phase diagram of the Blume–Capel model 365

Since the truncated pressures are continuous, the boundary of the set {ψ̂+ ≥ ψ̂−} is
given by {ψ̂+ = ψ̂−}. By the +↔− symmetry (Exercise 7.14),

ψ̂+(λ,0) = ψ̂−(λ,0) , ∀λ .

Since
∂ψ̂+
∂h > ∂ψ̂−

∂h , uniformly on U , this shows that {ψ̂+ = ψ̂−} = {h = 0} and that
{ψ̂+ ≥ ψ̂−} = {h ≥ 0}. In the same way, the boundary of {ψ̂+ ≥ ψ̂0} equals {ψ̂+ = ψ̂0}.
Since there is no symmetry between + and 0, we will fix λ, and search for the value
of h such that ψ̂+(λ,h) = ψ̂0(λ,h), which can also be written as

G(λ,h)
def= h +λ+ ĝ+(λ,h)− ĝ 0(λ,h) = 0. (7.96)

To guarantee that (7.96) has solutions in U , we restrict our attention to a slightly
smaller region. Remember that U is defined by |λ|, |h| < ρ/8. Let δ > 0 be any
number satisfying 2ϵ< δ< ρ/16. and set

Ǔ
def= {

(λ,h) : |λ| < ρ/8−δ, |h| < ρ/8
}

.

Take then λ ∈ (−ρ/8+δ,ρ/8−δ) and define h±
def= −λ±δ. We have (λ,h±) ∈U and

G(λ,h−) < 0 <G(λ,h+). Since ∂G
∂h > 0 uniformly on U , this implies that there exists

a unique h = h(λ) ∈ (h−,h+), such that G(λ,h) = 0. The implicit function theorem
guarantees that λ 7→ h(λ) is actually C 1, and differentiating G(λ,h(λ)) = 0 with re-
spect to λ leads to |h′(λ)+1| ≤ 2ϵ.

λ

h = h(λ)

h

h =−λ

δ

Figure 7.8: The construction of {ψ̂+ = ψ̂0}, which can be parametrized by
a smooth map λ 7→ h(λ), whose graph lies in the strip of width 2δ around
h =−λ.

One then has U +
β

= {
(λ,h) ∈ Ǔ : h ≥ max{h(λ),0}

}
. By symmetry,

U −
β = {

(λ,h) ∈ Ǔ : (λ,−h) ∈U +
β

}
,

and {ψ̂− = ψ̂0} can be parametrized by λ 7→ −h(λ). Finally, U 0
β

is the closure of

Ǔ \ (U +
β

∪U −
β

). The regions U #
β

are separated by coexistence lines,

L ##′
β

def= U #
β ∩U #′

β # ̸= #′ .
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λ

h

U 0
β

U −
β

U +
β

Figure 7.9: The phase diagram of the Blume–Capel model, which lies in a
neighborhood of size δ of the zero-temperature diagram (dashed lines). Ac-
tually, by the +/− symmetry of the model, we know that the line separating
U +
β

and U −
β

lies exactly on the line {h = 0}.

7.4.5 Results for the pressure

We summarize the results obtained so far about the pressure in the following theo-
rem (see also the qualitative picture on Figure 7.3).

Theorem 7.36 (The pressure of the Blume–Capel model at low temperature). Let
β0 be as in Proposition 7.34. For all β>β0,

ψ(λ,h) = max
#
ψ̂#(λ,h) =





ψ̂+(λ,h) if (λ,h) ∈U +
β

,

ψ̂0(λ,h) if (λ,h) ∈U 0
β

,

ψ̂−(λ,h) if (λ,h) ∈U −
β

.

(7.97)

As a consequence,

1. The pressure ψ(λ,h) is C 1 in λ and h, everywhere in the interior of each region
U #
β

, # ∈ {+,0,−}.

2. First-order phase transitions occur across each of the coexistence lines, in the
sense that

∂ψ

∂λ+ > ∂ψ

∂λ− , at each (λ,h) ∈L ±0
β

.

and, for all # ̸= #′,

∂ψ

∂h+ > ∂ψ

∂h− at each (λ,h) ∈L ##′
β .

Remark 7.37. Remember that the construction of the truncated pressures depends
on the choice of the cutoff χ(·) used in the definition of the truncated weights. The
latter choice of course only affects the truncated pressures. It has however an im-
pact on what we could extract from the analysis above. Namely, the assumption
that the cutoff was C 1 yields, ultimately, the corresponding regularity of the pres-
sure in the interior of the regions U #

β
, as well as the regularity of the boundary of

these regions. Choosing a cutoff with higher regularity would yield a correspond-
ing enhancement of these properties (but would require a control of higher-order
derivatives of the truncated pressures in Proposition 7.34). ⋄
Remark 7.38. The fact that the pressure coincides with the maximal truncated pres-
sure (see (7.97)) means that the truncated pressures provide natural continuations
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of the pressure through the coexistence lines. A similar conclusion had been drawn
for the Curie–Weiss model (see Figure 3.19 of page 158). Nevertheless, the contin-
uations of h 7→ψCW

β
(h) through the transition point were analytic, while those ob-

tained here are only C 1. In particular, there are infinitely-many possibilities to make
such a continuation, in contrast with the analytic case. For example, each choice of
a cut-off function yields an a priori different C 1 continuation. Nevertheless, ana-
lytic continuations through the coexistence lines do not exist, in the general, in the
framework of PST. This will be discussed in Section 7.6.6, ⋄
Remark 7.39. In this chapter, we started with the Blume–Capel model at param-
eters h = λ = 0 and considered perturbations around this point, constructing the
phase diagram in its vicinity. In the same way, we could have started with λ = λ0

and h = h0, and constructed the phase diagram around this point. This allows in
particular the description of coexistence lines outside the domain U . ⋄

7.4.6 The Gibbs measures at low temperature

So far, the phase diagram was constructed by studying partition functions and trun-
cated pressures. In this section, we consider the consequences of the previous
study at low temperature, from a probabilistic point of view.

Let us take β large, fix (λ,h) ∈ Ǔ , and denote by G (β,λ,h) the set of infinite-
volume Gibbs measures associated to the Blume–Capel model. As in Chapter 6,
the latter are defined as the probability measures compatible with the specification
associated to the potential βΦ=β(Φ0 +W ) (remember (7.19)). Let

Υ(β,λ,h)
def= {

# ∈ {+,0,−} : U #
β ∋ (λ,h)

}

denote the set of stable periodic ground-states at β,λ,h. We will show that, for each
# ∈ Υ(β,λ,h) a Gibbs measure µ#

β,λ,h ∈ G (β,λ,h) can be prepared using the bound-

ary condition η#, under which typical configurations are described by small local
perturbations away from η#. Moreover, these measures are extremal and ergodic.
As will be explained in Section 7.6.1, this construction yields the complete phase
diagram: any other translation-invariant Gibbs measure can be written as a convex
combination of the measures µ+

β,λ,h , µ0
β,λ,h and µ−

β,λ,h .

Remark 7.40. Notice that, using the boundary condition # and proceeding as we
did in the proof of Theorem 6.26, we can extract from any sequence Λn ↑Zd a sub-
sequence (Λnk )k≥1 such that the limit

lim
k→∞

µ
η#

Λnk
;β,λ,h( f )

exists for every local function f , thus defining a Gibbs measure. A priori, this mea-
sure depends on the subsequence (Λnk )k≥1. ⋄

Below, we show that, when the temperature is sufficiently low and # ∈Υ(β,λ,h),
the thermodynamic limit used to construct this measure does not depend on the
sequence (Λn)n≥1 and can be controlled in a much more precise way.

In order to use the earlier results that rely on the contour representations of con-
figurations, we will use the Gibbs distributions µ#

Λ;β,λ,h for the Blume–Capel model,

defined as µ#
Λ;Φ in Section 7.3, rather than those of Chapter 6.
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Theorem 7.41. There exists β0 such that, for all β≥β0 and all (λ,h) ∈ Ǔ , the follow-
ing holds.

1. Let # ∈Υ(β,λ,h). For all sequence of c-connected sets Λn ↑Zd and every local
function f , the following limit exists

µ#
β,λ,h( f )

def= lim
n→∞µ

#
Λn ;β,λ,h( f ) , (7.98)

and defines a Gibbs measure µ#
β,λ,h ∈G (β,λ,h).

2. The measures µ#
β,λ,h , # ∈ Υ(β,λ,h), are translation invariant, extremal and

ergodic. Moreover, they are distinct, since

µ#
β,λ,h(σ0 = #) ≥ 1−δ(β) , (7.99)

where δ(β) > 0 tends to zero as β→∞.

In particular, two (resp. three) distinct Gibbs measures can be constructed for each
pair (λ,h) living on a coexistence line (resp. at the triple point). (Note that a similar
statement could also be derived from Theorem 6.91 and the non-differentiability
of the pressure.) Geometric properties of the typical configurations under these
measures will be described in Theorem 7.44.

Proof of Theorem 7.41: Fix (β,λ,h) and let # ∈ Υ(β,λ,h). To lighten the notations,
we omit β, λ and h everywhere in the indices.

▶ Proof of (7.98): Let us fix some local function f . We will first show that, for all
n ≥ 1, ∣∣µ#

Λ( f )−µ#
∆( f )

∣∣≤ c∥ f ∥∞nd e−τ
′n , (7.100)

whenever Λ,∆ ⋐ Zd are c-connected and both contain B(2n). This implies that
(µ#
Λn

( f ))n≥1 is a Cauchy sequence, which proves the existence of the limit in (7.98).

We have already seen that this is sufficient to define the measure µ#; we leave it
as an exercise to verify that µ# ∈ G (β,λ,h) (adapt the proof of Theorem 6.26). Ob-
serve also that (7.100) shows that the limit does not depend on the chosen sequence
(Λn)n≥1.

We prove (7.100) using a coupling of µ#
Λ and µ#

∆. Let

ΩΛ×Ω∆ def= {
(ω,ω′) : ω ∈ΩΛ,ω′ ∈Ω∆

}
.

Let n be large enough to ensure that B(n) contains the support of f and assume Λ
and∆ are both c-connected and large enough to containB(2n). OnΩΛ×Ω∆, define

P#
Λ,∆

def= µ#
Λ⊗µ#

∆ .

We call D ⊂Zd #-surrounding if (i) D is connected, (ii) B(n) ⊂ D ⊂B(2n), (iii) ωi =
ω′

i = # for all i ∈ ∂exD .
Let us consider the event Cn,#,# ⊂ΩΛ×Ω∆ defined as follows: (ω,ω′) ∈ Cn,#,# if

and only if there exists at least one #-surrounding set. Observe that if D1 and D2

are #-surrounding, then D1 ∪D2 is also #-surrounding. When Cn,#,# occurs, we will
therefore denote the largest (with respect to inclusion) #-surrounding set by D#. We
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denote by [D#] the event that Cn;#,# occurs and D# is the largest #-surrounding set.

Letting F (ω,ω′) def= f (ω)− f (ω′),

∣∣µ#
Λ( f )−µ#

∆( f )
∣∣=

∣∣E#
Λ,∆[F ]

∣∣≤
∣∣E#
Λ,∆[F 1Cn,#,# ]

∣∣+2∥ f ∥∞P
#
Λ,∆(Cn,#,#

c) .

For the first term in the right-hand side, we can sum over the possible D# (for
simplicity, we denote the realization of each such set also by D#). Note that, by
construction, it is sufficient to look at the configuration outside D# to determine
whether the event [D#] occurs; in other words, [D#] ∈FDc

#
. Therefore,

E#
Λ,∆[F 1[D#]] = E#

Λ,∆

[
E#
Λ,∆[F |FDc

#
]1[D#]

]= 0,

since P#
Λ,∆

(
(ωD#

,ω′
D#

)
∣∣ FDc

#

)=µ#
D#

(ωD#
)µ#

D#
(ω′

D#
) on [D#]. This implies that

E#
Λ,∆[F 1Cn,#,# ] =

∑
D#

E#
Λ,∆[F 1[D#]] = 0.

We now show that, at low temperature, #-surrounding sets exist with probability
close to 1.

Lemma 7.42. When β is sufficiently large, there exists τ′ = τ′(β) > 0 such that

P#
Λ,∆(Cn,#,#

c) ≤ 2|B(n)|e−τ′n . (7.101)

Proof. Let Pn denote the family of all self-avoiding paths (i0, i1, . . . , ik ) inside
B(2n) \B(n), with i0 ∈ ∂exB(n), ik ∈ ∂inB(2n), i j ∼ i j+1. We say that i is (#, #)-correct
if it is #-correct both in ω and in ω′. We claim that

Cn,#,#
c ⊂ {∃(i0, . . . , ik ) ∈Pn such that each i j is not (#,#)-correct

}
. (7.102)

Indeed, assume that each π = (i0, . . . , ik ) ∈ Pn is such that i j is (#,#)-correct for at
least one index j ∈ {0,1, . . . ,k}, and let j (π) denote the smallest such index. Con-

sider the truncated path π̃
def= (i0, i1, . . . , i j (π)). Then, clearly, D

def= B(n)∪⋃
π∈Pn

π̃ is
#-surrounding.

Now, if each vertex of a path π ∈ Pn is not (#,#)-correct, then there must exist
two collections Γ′ = {γ′1, . . . ,γ′l } ⊂Λ and Γ′′ = {γ′′1 , . . . ,γ′′m} ⊂∆ of external contours of
type # such that

π⊂
l⋃

k=1
intγ′k ∪

m⋃
k=1

intγ′′k ,

where we introduced the notation intγ
def= γ∪ intγ.

• From the collection Γ′∪Γ′′, we can always extract an ordered subcollection
Y = (γ1, . . . ,γk ) ⊂ Γ′∪Γ′′ enjoying the following properties: (i) intγ1 ∩B(n) ̸=
∅; (ii) either all contours γi ∈ Y whose index i is odd belong to Γ′ and those
whose index i is even belong to Γ′′, or vice versa; (iii) Y is a chain in the sense
that each γi ∈ Y is compatible neither with γi−1 nor with γi+1, but is compat-

ible with all other γ j s; (iv) if Y
def= ⋃k

i=1γi then |Y | ≥ n (since π has diameter at
least n).
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• By construction, Y is made of contours belonging to subcollections Γ1 ⊂ Γ′
and Γ2 ⊂ Γ′′. Using Lemma 7.26 and the fact that all contours of type # are
τ-stable when (λ,h) ∈U #

β
, we get

µ#
Λ

(
each γ′ ∈ Γ1 is external

)≤
∏
γ′∈Γ1

w#(γ′) ≤
∏
γ′∈Γ1

e−τ|γ
′| .

A similar bound holds for µ#
∆

(
each γ′′ ∈ Γ2 is external

)
.

We can gather these informations into the following bound:

P#
Λ,∆(Cn,#,#

c) ≤ 2
∑
k≥1

∑
Y =(γ1,··· ,γk ):

intγ1∩B(n )̸=∅
|Y |≥n

k∏
i=1

e−τ|γi |

≤ 2e−τ
′n ∑

k≥1

∑
Y =(γ1,··· ,γk ):

intγ1∩B(n )̸=∅

k∏
i=1

e−τ
′|γi | , (7.103)

where τ′ def= τ/2. We sum over Y = (γ1, . . . ,γk ), starting with γk :

∑
γk :γk ̸∼γk−1

e−τ
′|γk | ≤ 3d |γk−1|

∑
γk :γk∋0

e−τ
′|γk | ≤ e3d |γk−1|

∑
γk :γk∋0

e−τ
′|γk | .

Then, for j = k −1,k −2, . . . ,2,

∑
γ j :γ j ̸∼γ j−1

e−(τ′−3d )|γ j | ≤ e3d |γ j−1| ∑
γ j :γ j ∋0

e−(τ′−3d )|γ j | .

In the end, we are left with j = 1:

∑

γ1:intγ1∩B(n )̸=∅
e−(τ′−3d )|γ j | ≤ |B(n)|

∑

γ1:intγ1∋0

e−(τ′−3d )|γ j | .

This last sum can be bounded as in Lemma 7.30 and shown to be smaller than
some η1 = η1(τ′,ℓ0) < 1/2 if τ is large enough. In particular,

∑
k≥1η

k
1 < 1 and the

conclusion follows.

We have proved (7.100).
▶ Proof of translation invariance: That µ# is translation invariant can be shown

exactly as in the proof of Theorem 3.17 (p. 102): for any translation θi and any local
function f (remember Figure 3.8),

|µ#
Λn

( f )−µ#
Λn

( f ◦θi )| = |µ#
Λn

( f )−µ#
θiΛn

( f )| ,

and by (7.100), the right-hand side converges to zero.
▶ Proof of extremality: We will use the characterization of extremality given in

item 4 of Theorem 6.58. Let A ∈C be any cylinder, and n be so large that A ∈FB(n).
Let also B ∈ FΛc , where Λ is large enough to contain B(4n). Consider the event
C2n,# ⊂Ω that there exists a largest connected set D# such that B(2n) ⊂ D# ⊂B(4n)
andωi = # for each i ∈ ∂exD#. Using a decomposition similar to the one used earlier,

µ#(A∩B) =
∑
D#

µ#(A∩B ∩ [D#])+µ#(A∩B ∩C2n,#
c) .
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Since C2n,# is local, µ#(C2n,#
c) = limN→∞µ#

ΛN
(C2n,#

c). Using Lemma 7.42, for all
N ≥ 4n,

µ#
ΛN

(C2n,#
c) ≤P#

ΛN ,ΛN
(C2n,#,#

c) ≤ 2|B(2n)|e−2τ′n . (7.104)

Therefore, µ#(A∩B ∩C2n,#
c) ≤ 2|B(2n)|e−2τ′n . Now, for a fixed D#, FΛc ⊂FDc

#
, and

so

µ#(A∩B ∩ [D#]) =µ#(µ#(A∩B |FDc
#
)1[D#]

)=µ#(µ#(A |FDc
#
)1B∩[D#]

)
.

Since µ# ∈ G (β,λ,h), we have, on [D#], µ#(A |FDc
#
) = µ

η#

D#
(A) almost surely. Adapt-

ing (7.106) below gives

µ
η#

D#
(A) =µ#(A)+O(nd e−τ

′n) .

Altogether, we get

µ#(A∩B) =µ#(A)µ#(B)+O(nd e−τ
′n) . (7.105)

This implies that µ# is extremal.

▶ Proof of ergodicity: Ergodicity follows from extremality and translation invari-
ance, exactly as in the proof of Lemma 6.66.

▶ Proof of (7.99): We reformulate Peierls’ argument. We fix some Λ⋐ Zd and
observe that, in any configuration ω ∈Ω#

Λ such that ω0 ̸= #, there exists an external

contour γ′ ⊂ Λ such that intγ′ ∋ 0. We can then use again Lemma 7.26 and the
stability of the weight of contours of type # when (λ,h) ∈ U #

β
to obtain, uniformly

inΛ, a bound involving the same sum as before:

µ#
Λ

(
σ0 ̸= #

)≤
∑

γ′: intγ′∋0

e−τ|γ
′| .

This sum can be made arbitrarily small when β (and hence τ) is large enough. This
concludes the proof of Theorem 7.41.

In the above proof, we have actually established more, namely exponential re-
laxation and exponential mixing at low temperature.

Corollary 7.43. Under the same hypotheses as Theorem 7.41, if # ∈Υ(β,λ,h), there
exists c <∞ such that, for any function f having its support inside B(n) and for all
c-connected Λ⊃B(2n),

∣∣µ#
Λ;β,λ,h( f )−µ#

β,λ,h( f )
∣∣≤ c∥ f ∥∞nd e−τ

′n . (7.106)

Moreover, for any FB(4n)c -measurable function g ,

∣∣µ#
β,λ,h( f g )−µ#

β,λ,h( f )µ#(g )β,λ,h
∣∣= c∥ f ∥∞∥g∥∞nd e−τ

′n .

Proof. The first claim follows by taking ∆ ↑ Zd in (7.100). The second follows from
the same argument that led to (7.105).
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A characterization of “the sea of # with small islands”. The bound (7.99) suggests
that a typical configuration under µ#

β,λ,h displays only small local deviations from

the ground state η#. Here, we will provide a more global characterization, by giving
a description of configurations on the whole lattice, that holds almost surely.

For instance, (7.104) implies that, for all # ∈Υ(β,λ,h),

∑
n
µ#
β,λ,h(Cn,#

c) <∞ .

Therefore, the Borel–Cantelli Lemma implies that, µ#
β,λ,h-almost surely, all but a

finite number of the events Cn,# occur simultaneously. This means that the origin is
always surrounded by an infinite number of #-surrounding sets, of arbitrarily large
sizes. But it does not yet rule out the presence of #′-surrounding sets, for other
labels #′.

To remedy this problem, let N > n and consider EN ,n,#
def= FN ,n,# ∩Cn,#, where

Cn,# was defined earlier and FN ,n,# is the event that there exists a self-avoiding path
π = (i0, i1, . . . , ik ) ⊂ B(N ) \B(n), with i0 ∈ ∂exB(n), ik ∈ ∂inB(N ), i j ∼ i j+1, such that
ωi j = # for all j . On the event

En,#
def=

⋂
N>n

EN ,n,# ,

there exists a #-surrounding B(n) ⊂ D# ⊂ B(2n), and there exists an infinite self-
avoiding path π (connecting D# to +∞) of vertices i with ωi = # (see Figure 7.10).

#

∞

#

B(2n)

B(n)

Figure 7.10: Almost surely under µ#
β,λ,h , the origin (as well as every other

vertex of the lattice) is surrounded by a circuit (in d = 2; otherwise, a closed
surface) of #-spins, and this circuit is itself connected to +∞ by a path of #-
spins.

Theorem 7.44. Let # ∈Υ(β,λ,h). Then,

µ#
β,λ,h

(∃M <∞ such that EM ,# occurs
)= 1.

Proof. Let us study FN ,n,# under µ#
Λ;β,λ,h . Observe that

FN ,n,#
c ⊂ {

there exists an external contour γ′ ⊂Λ such that intγ′ ⊃B(n)
}

.
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Now, if intγ′ ⊃ B(n), then |γ′| ≥ |∂exB(n)| ≥ nd−1. Therefore, we can proceed as
earlier to obtain, for all c-connectedΛ⊃B(N ),

µ#
Λ;β,λ,h(FN ,n,#

c) ≤
∑

γ′:intγ′∩B(n )̸=∅
|γ′|≥nd−1

e−τ|γ
′|

≤ |B(n)|
∑

γ′:intγ′∋0 ̸=∅
|γ′|≥nd−1

e−τ|γ
′| ≤ |B(n)|e−τ′′nd−1

,

uniformly in N and Λ, for some τ′′ > 0 depending on β. Since EN ,n,# is decreasing
in N ,

µ#
β,λ,h(En,#) = lim

N→∞
µ#
β,λ,h(EN ,n,#) ≥ 1−ϵn ,

where ϵn
def= |B(n)|(2e−τ

′n +e−τ
′′nd−1

). Since ϵn is summable, we can again apply the
Borel-Cantelli lemma to conclude that all but a finite number of events En,# occur
µ#
β,λ,h-almost surely.

Combining the previous result with translation invariance, we summarize the
almost-sure properties of typical configurations in a theorem:

Theorem 7.45. Let β be large enough and (λ,h) ∈ U #
β

. For all # ∈ Υ(β,λ,h), un-

der µ#
β,λ,h , a typical configuration consists in a sea of # (the ground state η#) with

local bounded deformations, in the following sense: every vertex i ∈ Zd is either
connected to +∞ by a self-avoiding path along which all spins are #, or there exists a
finite external contour γ such that intγ ∋ i .

The study of the largest contours in a box can be done as for the Ising model:

Exercise 7.15. Let β be large, as above. Fix # ∈Υ(β,λ,h), and consider the Blume–
Capel in B(n). Adapting the method of Exercise 3.18, show that under µ#

B(n);β,λ,h
, the

largest contours in B(n) have a support of size of order logn.

7.5 Bibliographical references

Although it is sometimes unfairly referred to as a “generalization of Peierls’ argu-
ment”, the Pirogov–Sinai theory (PST) actually uses several important concepts of
equilibrium statistical mechanics and introduces important new ideas. The origi-
nal method introduced by Pirogov and Sinai (English translations of their original
papers can be found in [313]) was based on the use of contours and of a Hamil-
tonian satisfying Peierls’ condition, but the phase diagram was constructed by us-
ing an abstract approach involving a fixed-point argument. Later, Zahradník [354]
contributed substantially to the theory by introducing fundamental new ideas. In
particular, he introduced the notion of truncated pressure, which eventually su-
perseded the original fixed-point argument and became the core of the current un-
derstanding of the theory. For that reason, it would be more correct to call it the
Pirogov–Sinai–Zahradník theory.

Pedagogical texts on PST include the paper [34] by Borgs and Imbrie, and the
lecture notes by Fernández [104]. The review paper of Slawny [316], although based
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on the fixed-point method of Pirogov and Sinai, is clear and applies the theory to
various models.

Our Section 7.2, devoted to ground states, is inspired by the presentation in
Chapter 2 of Sinai’s book [312]. Other notions of ground states exist in the literature
(see [85]). The method to determine the set of periodic ground states based on m-
potentials, as presented in Section 7.2.2, is due to [164]. An interesting account of
the main ideas of PST as well as a description of more general notions of ground
state can be found in [343].

The model considered in Example 7.8 is due to Pechersky in [265]. Prior to that
counter-example, it had been conjectured [312] that a finite-range potential with a
finite number of periodic ground states would always satisfy Peierls’ condition.

Our analysis of the phase diagram is based on the ideas introduced by Zahrad-
ník and followers. In particular, the C 1-truncation used when defining the trun-
cated weights is a simpler version of the C k -truncations used by Borgs and Kotecký
in [35].

Although the details were only implemented for the Blume–Capel model, the
methods used are general and can be applied in many other situations. As an ex-
ercise, the interested reader can use them to provide a full description of the low-
temperature phase diagram of the modified Ising model described early in Sec-
tion 7.1.1.

7.6 Complements and further reading

7.6.1 Completeness of the phase diagram

One of the main results in this chapter was the construction of low-temperature
translation-invariant extremal Gibbs measures for the Blume–Capel model using
stable periodic (actually constant) ground states as boundary conditions: µ#

β,λ,h ,

# ∈Υ(β,λ,h).
At this stage, it is very natural to wonder whether there are other Gibbs mea-

sures, in addition to those constructed here. By the general theory of Chapter 6, the
set of infinite-volume Gibbs measures is a simplex, so we can restrict our discus-
sion to extremal measures. The following remarkable result shows that the Gibbs
measure we constructed exhaust the set of translation-invariant Gibbs measures:
at sufficiently low temperature, any translation-invariant measure in Gθ(β,λ,h) can
be represented as a convex combination of µ#

β,λ,h , # ∈Υ(β,λ,h).

Theorem 7.46. There exists β0 such that, for all β ≥ β0, the following holds. For
all (λ,h) ∈ Ǔ and all µ ∈Gθ(β,λ,h), there exist coefficients (α#)#∈Υ(β,λ,h) ⊂ [0,1] such
that

µ=
∑

#∈Υ(β,λ,h)
α#µ

#
β,λ,h .

In particular, in the regions where only one of the boundary conditions +,−,0 is
stable (the interior of the regions U #

β
on Figure 7.2), there is a unique translation-

invariant Gibbs measure.

The same statement holds for the general class of models to which the theory
applies; see the original paper of Zahradník [354], where a proof can be found. This
kind of statement is usually referred to as the completeness of the phase diagram.
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We therefore see that, while the Pirogov–Sinai Theory is limited to perturba-
tive regimes (here, very low temperature), it provides in such regimes a complete
description of the set of all translation-invariant Gibbs measures. Of course, there
are, in general, other non-translation-invariant Gibbs measures, such as Dobrushin
states in the Ising model in dimensions d ≥ 3 (see the discussion in Section 3.10.7).
Extensions of PST dealing with such states have been developed; the reader can
consult, for instance, [162].

7.6.2 Generalizations

PST has been extended in various directions, for instance to systems with continu-
ous spins [87, 48], quasiperiodic interactions [199], or long-range interactions [262,
263].

One important application of PST was in the seminal work of Lebowitz, Mazel
and Presutti [214], in which a first-order phase transition is proved for a model of
particles in the continuum with Kac interactions (of finite range), similar to those
we considered in Section 4.10. At the core of their technique lies a non-trivial defi-
nition of contour associated to configurations of point particles in the continuum,
and the use of the main ideas of PST.

7.6.3 Large-β asymptotics of the phase diagram

The analysis of this chapter showed that the low-temperature phase diagram of the
Blume–Capel model is a small perturbation of the corresponding one at zero tem-
perature. A more delicate analysis is required if one wants to derive more quantita-
tive information on this diagram as a function of β.

For instance, (λ,h) = (0,0) is the triple point of the phase diagram at zero tem-
perature, at which η+,η0 and η− are ground states. The following question is natu-
ral: in which direction does the triple point move when the inverse temperature is
finite? In other words: which are the stable phases at (0,0) when β<∞?

In principle, this question can be answered by determining which truncated
pressure ψ̂#(0,0) = ĝ #(0,0) (remember that e#(0,0) = 0), # ∈ {+,0,−}, is maximal.
But, each ĝ #(0,0) is a series made of products of τ-stable weights, where τ can be
made large when β is large. Computing the first terms of these expansions should
allow to determine which one dominates. Unfortunately, the structure of the trun-
cated weights makes extracting such information difficult. We briefly describe an
alternative approach, informally, providing references for the interested reader.

Let us describe the contributions from the smallest perturbations of the ground
state η#, which provide the main contribution to ĝ #. We do this at a heuristic level.

Consider first the case # = +. Among the configurations that coincide with η+

everywhere except on a finite set, the configurations with lowest energy are those
which have a single 0 spin. The energy associated to such an excitation is 2d . It
therefore seems plausible that the leading term in the expansion of ĝ+(0,0) is due
to the cluster made of exactly one such excitation, that is

βψ̂+(0,0) = e−2dβ+ . . . ,

where the dots stand for higher order terms in e−β.
Now, among the configurations that coincide with η0 everywhere except on a

finite set, the configurations with lowest energy are those which have either a single
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+ spin or a single − spin. Both these excitations have an energy equal to 2d , as
before, which leads to

βψ̂0(0,0) = 2e−2dβ+ . . . .

Provided the higher order terms yield significantly smaller contributions, this gives,
at large β,

ψ̂0(0,0)− ψ̂+(0,0) = 1

β
e−2dβ+·· · ≥ 1

2β
e−2dβ > 0,

implying that only the 0 phase is stable at (0,0). In other words: the triple point
shifts to the right at positive temperatures, as depicted in Figure 7.9.

In fact, this argument can be repeated when (λ,h) lies in a neighborhood of
(0,0), allowing to construct the coexistence line L 0±

β
. Namely, fix β large and take

λ,h such that βλ≪ 1 and βh ≪ 1. Arguing as above, considering the excitations of
smallest energy, we get (remember that e+(λ,h) =λ+h)

βψ̂0(λ,h) = e−2dβ+βλ+βh +e−2dβ+βλ−βh + . . . ,

βψ̂+(λ,h) =βλ+βh +e−2dβ−βλ−βh + . . . ,

Therefore, for very large β, the smooth map describing L 0+
β

(see Figure 7.8) can be

obtained, in first approximation, by equating these two expressions, yielding

λ 7→ h(λ) =β−1e−2dβ−λ(
1−4e−2dβ)+O(λ2) .

In particular, the position of the triple point (λ∗(β),0), is obtaining by solving h(λ) =
0, which yields

λ∗(β) = e−2dβ

β
(1+O(e−2dβ)) .

These computations are purely formal, but their conclusions can be made rigorous.
The idea is to replace the notion of ground state by the notion of restricted ensem-
ble. In the context described above, the restricted ensemble R0 is defined as the
set of all configurations ω such that ωi ̸= 0 =⇒ ω j = 0 for all j ∼ i . That is, they
correspond to the ground state η0 on top of which only the smallest possible exci-
tations are allowed. Starting from a general configuration, one then erases all such
smallest energy excitations and construct contours for the resulting configuration.
Of course, this is more delicate than before, since, in contrast to the ground state
η0, the restricted phase R0 has a nontrivial pressure that, in particular, depends on
the volume. Nevertheless, the analysis can be done along similar lines. We refer
to the lecture notes [50] by Bricmont and Slawny for a pedagogical introduction to
this problem (and a proof that the triple point of the Blume–Capel model is indeed
shifted to the right) and to their paper [51] for a more detailed account.

7.6.4 Other regimes.

Generically, the methods of PST can be used to study models whose partition func-
tion can be written as a system of contours, with some equivalent of Peierls’ condi-
tion. The perturbation parameter need not be the temperature, and the param-
eter driving the transition need not be related to some external field as we saw
in the Blume–Capel model. Consider, for example, the Potts model with spins
ωi ∈ {0,1,2, . . . , q −1}, at inverse temperature β, and denote its pressure by ψq (β).
It turns out that, when q is large, q−1 can be used as a perturbation parameter

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

7.6. Complements and further reading 377

to study β 7→ ψq (β). Using the methods of PST, it was shown in [48, 233, 203]
that a first-order phase transition in β occurs when q is large enough: there exists
βc = βc(q) such that the pressure is differentiable when β< βc and β> βc, and that
it is non-differentiable at βc. (This result was first proved, using reflection positiv-
ity, in [197]. In two dimensions, the simplest proof, relying on a variation of Peierls’
argument, can be found in [93].)

In addition to perturbations of a finite collection of ground states, PST can also
be applied successfully to analyze perturbations of other well-understood regimes,
usually involving constraints of a certain type. This appears for instance in the
study of Kac potentials in the neighborhood of mean-field [214], or the use of re-
stricted phases as in [48, 50, 113].

7.6.5 Finite-size scaling.

In [35], Borgs and Kotecký used the ideas of PST to initiate a theory of finite-size
scaling, that is, a thorough analysis of the rate at which certain thermodynamic
quantities (the magnetization, for example) converge to their asymptotic values in
the thermodynamic limit. In addition to its obvious theoretical interest, such an
analysis also plays an essential role when extrapolating to infinite systems the in-
formation obtained from the observation of the relatively small systems that can be
analyzed using numerical simulations.

7.6.6 Complex parameters, Lee–Yang zeroes and singularities.

With minor changes, most of the material presented in this chapter can be ex-
tended to include complex fields; see [34], for example.

As an interesting application, it has been shown in [20] and [21] that the Lee–
Yang theory, exposed for the Ising model in Section 3.7.3, can be extended to other
models, allowing to determine the locus of the zeros of their partition function.
Of course, since they rely on the main results of PST, these results hold only in a
perturbative regime.

Furthermore, the techniques of PST can be used to obtain finer analytic prop-
erties of the pressure. Consider for instance the Ising model in a complex magnetic
field h ∈C. For simplicity, let us consider the contours defined in Section 5.7.4. The
magnetic field leads one to introduce contours of two types: + and −. Then, using
the trick (7.31), one is led to two types of weights: w+(γ) and w−(γ). When h = 0,
these coincide with those defined in (5.41), but otherwise they contain ratios of
partition functions. The weight of a contour of type +, for example, takes the form

w+(γ) = e−2β|γ| Z−(int−γ)

Z+(int−γ)
= e−2β|γ| e−βh|int−γ|Ξ−(int−γ)

e+βh|int−γ|Ξ+(int−γ)
.

The analysis can then be done following the main induction used earlier for the
Blume–Capel model. When the field is real, the symmetry between + and − implies
that all weights are stable at h = 0. For general complex values of h, the symmetry
implies that all weights are stable on the imaginary axis {Reh = 0}. The weights are
then shown to be well defined and analytic in regions of the complex plane anal-
ogous to the stability regions defined earlier; if γ is of type +, its weight is analytic
in

U +
γ

def=
{
Reh >− θ

|int−γ|1/d

}
,

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

378 Chapter 7. Pirogov–Sinai Theory

for a suitable constant θ. Implementing this analysis allows one to obtain a more
quantitative version of the Lee–Yang Theorem (restricted to low temperature).

Then, in a second step, Isakov’s analysis [174] provides estimate of high-order
derivatives of the pressure (see Sections 3.10.9 and 4.12.3), showing that the func-
tion h 7→ψβ(h) cannot be analytically continued through h = 0, along either of the
real paths h ↓ 0, h ↑ 0. This analysis was generalized by Friedli and Pfister [114]
to all two-phase models to which PST applies, which implies in particular that the
pressure of the Blume–Capel model has no analytic continuation accross the lines
of coexistence of its phase diagram, at least for low temperatures, away from the
triple point.
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8 The Gaussian Free Field on Zd

The model studied in this chapter, the Gaussian Free Field (GFF), is the only one we
will consider whose single-spin space, R, is non-compact. Its sets of configurations
in finite and infinite volume are therefore, respectively,

ΩΛ
def= RΛ and Ω

def= RZd
.

Although most of the general structure of the DLR formalism developed in Chap-
ter 6 applies, the existence of infinite-volume Gibbs measures is not guaranteed
anymore under the most general hypotheses, and requires more care.

One possible physical interpretation of this model is as follows. In d = 1, the
spin at vertex i ∈Λ, ωi ∈R, can be interpreted as the height of a random line above
the x-axis:

i

ωi

Λ

Figure 8.1: A configuration of the Gaussian Free Field in a one-dimensional
boxΛ, with boundary condition η≡ 0.

The behavior of the model in large volumes is therefore intimately related to
the fluctuations of the line away from the x-axis. Similarly, in d = 2, ωi can be
interpreted as the height of a surface above the (x, y)-plane:

Figure 8.2: A configuration of the Gaussian Free Field in d = 2, in a 30× 30
box with boundary condition η ≡ 0, which can be interpreted as a random
surface.

379
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380 Chapter 8. The Gaussian Free Field on Zd

The techniques we will use to study the GFF will be very different from those
used in the previous chapters. In particular, Gaussian vectors and random walks
will play a central role in the analysis of the model. The basic results required about
these two topics are collected in Appendices B.9 and B.13.

8.1 Definition of the model

We consider a configuration ω ∈Ω of the GFF, in which a variable ωi ∈ R is associ-
ated to each vertex i ∈Zd ; as usual, we will refer toωi as the spin at i . We define the
interactions between the spins located inside a region Λ⋐ Zd , and between these
spins and those located outside Λ. We motivate the definition of the Hamiltonian
of the GFF by a few natural assumptions.

1. We first assume that only spins located at nearest-neighbors vertices of Zd

interact.

2. Our second requirement is that the interaction favors agreement of neighbor-
ing spins. This is achieved by assuming that the contribution to the energy
due to two neighboring spins ωi and ω j is given by

βV (ωi −ω j ) , (8.1)

for some V : R→ R≥0, which is assumed to be even, V (−x) = V (x). Mod-
els with this type of interaction, depending only on the difference between
neighboring spins, are often called gradient models. In the case of the GFF,
the function V is chosen to be

V (x)
def= x2 .

An interaction of the type (8.1) has the following property: the interaction
between two neighboring spins, ωi and ω j , does not change if the spins are
shifted by the same value a: ωi 7→ ωi + a, ω j 7→ ω j + a. As will be explained
later in Section 9.3, this invariance is at the origin of the mechanism that pre-
vents the existence of infinite-volume Gibbs measures in low dimensions.
The point is that local agreement between neighboring spins (that is, hav-
ing |ω j −ωi | small whenever i ∼ j ) does not prevent the spins from taking
very large values. This is of course a consequence of the unboundedness of
R. One way to avoid this problem is to introduce some external parameter
that penalizes large values of the spins.

3. To favor localization of the spinωi near zero, we introduce an additional term
to the Hamiltonian, of the form

λω2
i , λ≥ 0.

This guarantees that when λ> 0, large values of |ωi | represent large energies,
and are therefore penalized.

We are thus led to consider a formal Hamiltonian of the following form:

β
∑

{i , j }∈E
Zd

(ωi −ω j )2 +λ
∑

i∈Zd

ω2
i .

For convenience, we will replace β and λ by coefficients better suited to the manip-
ulations that will come later.
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8.1. Definition of the model 381

Definition 8.1. The Hamiltonian of the GFF inΛ⋐Zd is defined by

HΛ;β,m(ω)
def= β

4d

∑

{i , j }∈E b
Λ

(ωi −ω j )2 + m2

2

∑
i∈Λ

ω2
i , ω ∈Ω , (8.2)

whereβ≥ 0 is the inverse temperature and m ≥ 0 is the mass 1. The model is massive
when m > 0, massless if m = 0.

Once we have a Hamiltonian, finite-volume Gibbs measures are defined in the
usual way. The measurable structures on ΩΛ and Ω were defined in Section 6.10;
we use the Borel sets BΛ onΩΛ, and the σ-algebra F generated by cylinders onΩ.
Since the spins are real-valued, a natural reference measure for the spin at site i is
the Lebesgue measure, which we shall simply denote dωi . We remind the reader
that ωΛηΛc ∈Ω is the configuration that agrees with ωΛ onΛ, and with η onΛc.

So, givenΛ⋐Zd and η ∈Ω, the Gibbs distribution for the GFF inΛwith bound-
ary condition η, at inverse temperature β ≥ 0 and mass m ≥ 0, is the probability
measure µη

Λ;β,m on (Ω,F ) defined by

∀A ∈F , µ
η

Λ;β,m(A) =
∫

e−HΛ;β,m (ωΛηΛc )

Zη
Λ;β,m

1A(ωΛηΛc )
∏
i∈Λ

dωi . (8.3)

The partition function is of course

Zη
Λ;β,m

def=
∫

e−HΛ;β,m (ωΛηΛc )
∏
i∈Λ

dωi .

Exercise 8.1. Show that Zη
Λ;β,m is well-defined, for all η ∈Ω, β> 0, m ≥ 0.

Remark 8.2. In the previous chapters, we also considered other types of boundary
conditions, namely free and periodic. As shown in the next exercise, this cannot
be done for the massless GFF. Sometimes (in particular when using reflection pos-
itivity, see Chapter 10), it is nevertheless necessary to use periodic boundary con-
ditions. In such situations, a common way of dealing with this problem is to take
first the thermodynamic limit with a positive mass and then send the mass to zero:
limm↓0 limn→∞µ

per

Vn ;m , remember Definition 3.2. ⋄

Exercise 8.2. Check that, for all nonempty Λ⋐Zd and all β> 0,

Z∅
Λ;β,0 = Zper

Λ;β,0 =∞ .

In particular, it is not possible to define the massless GFF with free or periodic bound-
ary conditions.

Before pursuing, observe that the scaling properties of the Gibbs measure imply
that one of the parameters, β or m, plays an irrelevant role when studying the GFF.

Indeed, the change of variables ω′
i

def= β1/2ωi , i ∈Λ, leads to

Zη
Λ;β,m =β−|Λ|/2Zη

′

Λ;1,m′ ,

1 The terminology “mass” is inherited from quantum field theory, where the corresponding
quadratic terms in the Lagrangian indeed give rise to the mass of the associated particles.
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382 Chapter 8. The Gaussian Free Field on Zd

where m′ def= β−1/2m and η′ def= β1/2η, and, similarly,

µ
η

Λ;β,m(A) =µη
′

Λ;1,m′ (β
1/2 A), ∀A ∈F .

This shows that there is no loss of generality in assuming that β= 1, which we will
do from now on; of course, we will then also omit β from the notations.

The next step is to define infinite-volume Gibbs measures. We shall do so by
using the approach described in detail in Chapter 6. Readers not comfortable with
this material can skip to the next subsection. We emphasize that, although we will
from time to time resort to this abstract setting in the sequel, most of our estimates
actually pertain to finite-volume Gibbs measures, and therefore do not require this
level of abstraction.

We proceed as in Section 6.10. First, the specification π= {πm
Λ }Λ⋐Zd of the GFF

is defined by the kernels

πm
Λ (· |η)

def= µ
η

Λ;m(·) .

Then, one defines the set of Gibbs measures compatible with π, by

G (m)
def= {

µ ∈M1(Ω) : µπm
Λ =µ for allΛ⋐Zd }

.

We remind the reader (see Remark 6.3.1) of the following equivalent characteriza-
tion: µ ∈G (m) if and only if, for allΛ⋐Zd and all A ∈F ,

µ(A |FΛc )(ω) =πm
Λ (A |ω) for µ-almost all ω. (8.4)

Usually, a Gibbs measure in G (m) will be denoted µm , or µηm when constructed via
a limiting procedure using a boundary condition η. Expectation of a function f
with respect to µηm will be denoted µηm( f ) or Eη

m[ f ].

8.1.1 Overview

The techniques used to study the GFF are very different from those used in previous
chapters. Let us first introduce the random variables ϕi :Ω→R, defined by

ϕi (ω)
def= ωi , i ∈Zd .

Similarly to what was done in Chapter 3, we will consider first the distribution of
ϕΛ = (ϕi )i∈Λ in a finite region Λ⊂B(n) ⋐Zd , under µη

B(n);m
(·). We will then deter-

mine under which conditions the random vector ϕΛ possesses a limiting distribu-
tion when n →∞. The first step will be to observe that, under µη

B(n);m
, ϕB(n) is ac-

tually distributed as a Gaussian vector. This will give us access to various tools from
the theory of Gaussian processes, in particular when studying the thermodynamic
limit. Namely, as explained in Appendix B.9, the limit of a Gaussian vector, when
it exists, is also Gaussian. This will lead to the construction, in the limit n → ∞,
of a Gaussian field ϕ = (ϕi )i∈Zd . The distribution of this field, denoted µ

η
m , will be

shown to be a Gibbs measure in G (m). But µηm is entirely determined by its mean
Eη

m[ϕi ] and by its covariance matrix, which measures the correlations between the
variables ϕi :

Covηm(ϕi ,ϕ j )
def= Eη

m
[
(ϕi −Eη

m[ϕi ])(ϕ j −Eη
m[ϕ j ])

]
.

It turns out that the mean and covariance matrix will take on a particularly nice
form, with a probabilistic interpretation in terms of the symmetric simple random
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8.2. Parenthesis: Gaussian vectors and fields 383

walk on Zd . This will make it possible to compute explicitly various quantities of
interest. More precise statements will be given later, but the behavior established
for the Gaussian Free Field will roughly be the following:

• Massless case (m = 0), low dimensions: In dimensions d = 1 and 2, the ran-
dom variables ϕi , when considered in a large box B(n) = {−n, . . . ,n}d with an
arbitrary fixed boundary condition, present large fluctuations, unbounded
as n →∞. For example, the variance of the spin located at the center of the
box is of order

Varη
B(n);0

(ϕ0) ≈
{

n when d = 1,

logn when d = 2.

In such a situation, the field is said to delocalize. As we will see, delocal-
ization implies that there are no infinite-volume Gibbs measures in this case:
G (0) =∅.

• Massless case (m = 0), high dimensions: In d ≥ 3, the presence of a larger
number of neighbors renders the field sufficiently more rigid to remain lo-
calized, in the sense that it has fluctuations of bounded variance. In particu-
lar, there exist (infinitely many extremal) infinite-volume Gibbs measures in
this case. We will also show that the correlations under these measures are
nonnegative and decay slowly with the distance:

Covη0(ϕi ,ϕ j ) ≈ ∥ j − i∥−(d−2)
2 .

In particular, the susceptibility is infinite:
∑

j∈Zd

Covη0(ϕi ,ϕ j ) =+∞ .

• Massive case (m > 0), all dimensions: The presence of a mass term in the
Hamiltonian prevents the delocalization observed in dimensions 1 and 2 in
the massless case. However, we will show that, even in this case, there are
infinitely many infinite-volume Gibbs measures. As we will see, the presence
of a mass term also makes the correlations decay exponentially fast: there
exist c+ = c+(m) > 0, c− = c−(m) <∞, C+ = C+(m) <∞ and C− = C−(m) > 0
such that

C−e−c−∥ j−i∥2 ≤ Covηm(ϕi ,ϕ j ) ≤C+e−c+∥ j−i∥2 ∀i , j ∈Zd .

Moreover, c±(m) = O(m) as m ↓ 0. This shows that the correlation length of
the model is of the order of the inverse of the mass, m−1, when the mass is
small.

As seen from this short description, the GFF has no uniqueness regime (except in
the trivial case β= 0,m > 0).

8.2 Parenthesis: Gaussian vectors and fields

Before pursuing, we recall a few generalities about Gaussian vectors, which in our
case will be a family (ϕi )i∈Λ of random variables, indexed by the vertices of a fi-
nite region Λ⋐ Zd . A more detailed account of Gaussian vectors can be found in
Appendix B.9.
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384 Chapter 8. The Gaussian Free Field on Zd

8.2.1 Gaussian vectors

Let ϕΛ = (ϕi )i∈Λ ∈ΩΛ be a random vector, defined on some probability space. We
do not yet assume that the distribution of this vector is Gibbsian. We consider the
following scalar product onΩΛ: for tΛ = (ti )i∈Λ, ϕΛ = (ϕi )i∈Λ,

tΛ ·ϕΛ def=
∑
i∈Λ

tiϕi .

Definition 8.3. The random vector ϕΛ is Gaussian if, for all fixed tΛ, tΛ ·ϕΛ is a
Gaussian variable (possibly degenerate, that is, with zero variance).

The distribution of a Gaussian variable X is determined entirely by its mean and
variance, and its characteristic function is given by

E [e it X ] = exp
(
i tE [X ]− 1

2 t 2 Var(X )
)

.

Let us assume that ϕΛ = (ϕi )i∈Λ is Gaussian, and let us denote its distribution by
µΛ. Expectation (resp. variance, covariance) with respect to µΛ will be denoted EΛ
(resp. VarΛ, CovΛ). The mean and variance of tΛ ·ϕΛ depend on tΛ as follows:

EΛ[tΛ ·ϕΛ] =
∑
i∈Λ

ti EΛ[ϕi ] = tΛ ·aΛ , (8.5)

where aΛ = (ai )i∈Λ, ai
def= EΛ[ϕi ], is the average (or mean) of ϕΛ. Moreover,

VarΛ(tΛ ·ϕΛ) = EΛ
[
(tΛ ·ϕΛ−EΛ[tΛ ·ϕΛ])2]=

∑
i , j∈Λ

ΣΛ(i , j )ti t j = tΛ ·ΣΛtΛ , (8.6)

where ΣΛ = (ΣΛ(i , j ))i , j∈Λ is the covariance matrix of ϕΛ, defined by

ΣΛ(i , j )
def= CovΛ(ϕi ,ϕ j ) . (8.7)

Therefore, for each tΛ, the characteristic function of tΛ ·ϕΛ is given by

EΛ[e itΛ·ϕΛ ] = exp
(
itΛ ·aΛ− 1

2 tΛ ·ΣΛtΛ
)

(8.8)

and the moment generating function by

EΛ[e tΛ·ϕΛ ] = exp
(
tΛ ·aΛ+ 1

2 tΛ ·ΣΛtΛ
)

. (8.9)

The distribution of a Gaussian vector ϕΛ is thus entirely determined by the pair
(aΛ,ΣΛ); it is traditionally denoted by N (aΛ,ΣΛ). We say that ϕΛ is centered if
aΛ ≡ 0.

Clearly, ΣΛ is symmetric: ΣΛ(i , j ) = ΣΛ( j , i ). Moreover, since VarΛ(tΛ ·ϕΛ) ≥
0, we see from (8.6) that ΣΛ is nonnegative definite. In fact, to any aΛ ∈ ΩΛ and
any symmetric nonnegative definite matrixΣΛ corresponds a (possibly degenerate)
Gaussian vector ϕΛ having aΛ as mean and ΣΛ as covariance matrix. Moreover,
whenΣΛ is positive definite, the density with respect to the Lebesgue measure takes
the following well-known form:
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8.2. Parenthesis: Gaussian vectors and fields 385

Theorem 8.4. Assume that ϕΛ ∼ N (aΛ,ΣΛ), with a covariance matrix ΣΛ which
is positive definite (and, therefore, invertible). Then, the distribution of ϕΛ is abso-
lutely continuous with respect to the Lebesgue measure dxΛ (on ΩΛ), with a density
given by

1

(2π)|Λ|/2
√

|detΣΛ|
exp

(− 1
2 (xΛ−aΛ) ·Σ−1

Λ (xΛ−aΛ)
)

, xΛ ∈ΩΛ . (8.10)

Conversely, if ϕΛ is a random vector whose distribution is absolutely continuous
with respect to the Lebesgue measure on ΩΛ with a density of the form (8.10), then
ϕΛ is Gaussian, with mean aΛ and covariance matrix ΣΛ.

We emphasize that, once a vector is Gaussian, ϕΛ ∼N (aΛ,ΣΛ), various quantities
of interest have immediate expressions in terms of the mean and covariance matrix.
For example, to study the random variable ϕi0 (which is, of course, Gaussian) at
some given vertex i0 ∈ Λ, one can consider the vector tΛ = (δi0 j ) j∈Λ, write ϕi0 as
ϕi0 = tΛ ·ϕΛ and conclude that the mean and variance of ϕi0 are given by

EΛ[ϕi0 ] = ai0 , VarΛ(ϕi0 ) =ΣΛ(i0, i0) .

Although it will not be used in the sequel, the following exercise shows that cor-
relation functions of Gaussian vectors enjoy a remarkable factorization property,
known as Wick’s formula or Isserlis’ theorem.

Exercise 8.3. Let ϕΛ be a centered Gaussian vector. Show that, for any n ∈N:

1. the 2n + 1-point correlation functions all vanish: for any collection of (not
necessarily distinct) vertices i1, . . . , i2n+1 ∈Λ,

EΛ[ϕi1 . . .ϕi2n+1 ] = 0; (8.11)

2. the 2n-point correlation function can always be expressed in terms of the 2-
point correlation functions: for any collection of (not necessarily distinct) ver-
tices i1, . . . , i2n ∈Λ,

EΛ[ϕi1 . . .ϕi2n ] =
∑
P

∏
{ℓ,ℓ′}∈P

EΛ[ϕiℓϕiℓ′ ] , (8.12)

where the sum is over all pairings P of {1, . . . ,2n}, that is, all families of n
pairs {ℓ,ℓ′} ⊂ {1, . . . ,2n} whose union equals {1, . . . ,2n}. Hint: Use (8.9). Ex-
panding the exponential in the right-hand side of that expression, determine
the coefficient of t i1 · · · t im .

In fact, this factorization property characterizes Gaussian vectors.

Exercise 8.4. Consider a random vector ϕΛ satisfying (8.11) and (8.12). Show that
ϕΛ is centered Gaussian.

8.2.2 Gaussian fields and the thermodynamic limit.

Gaussian fields are infinite collections of random variables whose local behavior is
Gaussian:
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Definition 8.5. An infinite collection of random variablesϕ= (ϕi )i∈Zd is a Gaussian
field if, for eachΛ⋐Zd , the restriction ϕΛ = (ϕi )i∈Λ is Gaussian. The distribution of
a Gaussian field is called a Gaussian measure.

Consider now the sequence of boxes B(n), n ≥ 0, and assume that, for each
n, a Gaussian vector ϕB(n) is given, ϕB(n) ∼N (aB(n),ΣB(n)), whose distribution we
denote byµB(n). A meaning can be given to the thermodynamic limit as follows. We
fix Λ⋐Zd . If n is large, then B(n) ⊃Λ. Notice that the distribution of ϕΛ = (ϕi )i∈Λ,
seen as a collection of variables indexed by vertices of B(n), can be computed by
taking a vector tB(n) = (ti )i∈B(n) for which ti = 0 for all i ∈B(n) \Λ. In this way,

EB(n)[e
itΛ·ϕΛ ] = EB(n)[e

itB(n)·ϕB(n) ] = e itB(n)·aB(n)− 1
2 tB(n)·ΣB(n)tB(n) .

Remembering that only a fixed number of components of tB(n) are non-zero, we
see that the limiting distribution of ϕΛ can be controlled if aB(n) and ΣB(n) have
limits as n →∞.

Theorem 8.6. Let, for all n, ϕB(n) = (ϕi )i∈B(n) be a Gaussian vector, ϕB(n) ∼
N (aB(n),ΣB(n)). Assume that, for all i , j ∈Zd , the limits

ai
def= lim

n→∞(aB(n))i and Σ(i , j )
def= lim

n→∞ΣB(n)(i , j )

exist and are finite. Then the following holds.

1. For all Λ ⋐ Zd , the distribution of ϕΛ = (ϕi )i∈Λ converges, when n → ∞, to
that of a Gaussian vector N (aΛ,ΣΛ), with mean and covariance given by the
restrictions

aΛ
def= (ai )i∈Λ and ΣΛ

def= (Σ(i , j ))i , j∈Λ .

2. There exists a Gaussian field ϕ̃ whose restriction ϕ̃Λ to each Λ⋐Zd is a Gaus-
sian vector with distribution N (aΛ,ΣΛ).

Proof. The first claim is a consequence of Proposition B.56. For the second one,
fix any Λ ⋐ Zd , and let µΛ denote the limiting distribution of ϕΛ. By construc-
tion, the collection {µΛ}Λ⋐Zd is consistent in the sense of Kolmogorov’s Extension
Theorem (Theorem 6.6 and Remark 6.98). This guarantees the existence of a prob-
ability measure µ on (Ω,F ) whose marginal on each Λ⋐ Zd is exactly µΛ. Under

µ, the random variables ϕ̃i (ω)
def= ωi then form a Gaussian field such that, for each

Λ, ϕ̃Λ = (ϕ̃i )i∈Λ has distribution µΛ.

Consider now the GFF in Λ, defined by the measure µη
Λ;m in (8.3). Although

the latter is a probability measure on (Ω,F ), it acts in a trivial way on the spins
outside Λ (for each j ̸∈Λ, ϕ j = η j almost surely). We will therefore, without loss of
generality, consider it as a distribution on (ΩΛ,FΛ).

By definition, µη
Λ;m is absolutely continuous with respect to the Lebesgue mea-

sure on ΩΛ. We will show that it can be put in the form (8.10), which will prove
that (ϕi )i∈Λ is a non-degenerate Gaussian vector. We thus need to reformulate the
Hamiltonian HΛ;m in such a way that it takes the form of the exponent that appears
in the density (8.10). We do this following a step-by-step procedure that will take us
on a detour.
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8.3. Harmonic functions and Green Identities 387

8.3 Harmonic functions and the Discrete Green Identities

Given a collection f = ( fi )i∈Zd of real numbers, we define, for each pair {i , j } ∈ EZd ,
the discrete gradient

(∇ f )i j
def= f j − fi ,

and, for all i ∈Zd , the discrete Laplacian

(∆ f )i
def=

∑
j : j∼i

(∇ f )i j . (8.13)

Lemma 8.7 (Discrete Green Identities). Let Λ⋐Zd . Then, for all collections of real
numbers f = ( fi )i∈Zd , g = (gi )i∈Zd ,

∑

{i , j }∈E b
Λ

(∇ f )i j (∇g )i j =−
∑
i∈Λ

gi (∆ f )i +
∑
i∈Λ

j∈Λc, j∼i

g j (∇ f )i j , (8.14)

∑
i∈Λ

{ fi (∆g )i − gi (∆ f )i } =
∑
i∈Λ

j∈Λc, j∼i

{ f j (∇g )i j − g j (∇ f )i j } . (8.15)

Remark 8.8. The continuous analogues of (8.14) and (8.15) are the classical Green
identities, which, on a smooth domain U ⊂ Rn , provide a higher-dimensional ver-
sion of the classical integration by parts formula. That is, for all smooth functions
f and g ,

∫

U
∇ f ·∇g dV =−

∫

U
g∆ f dV +

∮

∂U
g (∇ f ·n)dS ,

∫

U

{
f ∆g − g∆ f }dV =

∮

∂U

{
f ∇g ·n − g∇ f ·n

}
dS .

where n is the outward normal unit-vector and dV and dS denote respectively the
volume and surface elements. ⋄

Proof of Lemma 8.7: Using the symmetry between i and j (in all the sums below, j
is always assumed to be a nearest-neighbor of i ):

∑
{i , j }⊂Λ

(∇ f )i j (∇g )i j =
∑

{i , j }⊂Λ
g j ( f j − fi )−

∑
{i , j }⊂Λ

gi ( f j − fi )

=−
∑
i∈Λ

gi
∑
j∈Λ

( f j − fi )

=−
∑
i∈Λ

gi (∆ f )i +
∑
i∈Λ

gi
∑

j∈Λc
( f j − fi ) .

Therefore,

∑

{i , j }∈E b
Λ

(∇ f )i j (∇g )i j =
∑

{i , j }⊂Λ
(∇ f )i j (∇g )i j +

∑
i∈Λ, j∈Λc

(∇ f )i j (∇g )i j

=−
∑
i∈Λ

gi (∆ f )i +
∑

i∈Λ, j∈Λc
g j ( f j − fi ) .

The second identity (8.15) is obtained using the first one twice, interchanging the
roles of f and g .
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We can write the action of the Laplacian on f = ( fi )i∈Zd as:

(∆ f )i =
∑

j∈Zd

∆i j f j , i ∈Zd ,

where the matrix elements (∆i j )i , j∈Zd are defined by

∆i j =





−2d if i = j ,

1 if i ∼ j ,

0 otherwise.

(8.16)

To obtain a representation of HΛ;m in terms of the scalar product in Λ, we intro-

duce the restriction of ∆ toΛ, defined by ∆Λ
def= (∆i j )i , j∈Λ.

Remark 8.9. Let i ∈Λ. In what follows, it will be important to distinguish between
(∆ f )i , defined in (8.13) and which may depend on some of the variables f j located
outside Λ, and (∆Λ f )i , which is a shorthand notation for

∑
j∈Λ∆i j f j (and thus in-

volves only variables f j insideΛ). In particular, we will use the notation

f ·∆Λg
def=

∑
i , j∈Λ

∆i j fi g j ,

which clearly satisfies
f ·∆Λg = (∆Λ f ) · g . (8.17)

⋄
From now on, we assume that f coincides with η outside Λ and denote by BΛ

any boundary term, that is, any quantity (possibly changing from place to place)
depending only on the values η j , j ∈Λc.

Let us see how the quadratic term in the Hamiltonian will be handled. Apply-
ing (8.14) with f = g and rearranging terms, we get

∑

{i , j }∈E b
Λ

( f j − fi )2 =
∑

{i , j }∈E b
Λ

(∇ f )2
i j

=− f ·∆Λ f −2
∑
i∈Λ

∑
j∈Λc, j∼i

fi f j +BΛ . (8.18)

One can then introduce u = (ui )i∈Zd , to be determined later, depending on η and
Λ, and playing the role of the mean of f . Our aim is to rewrite (8.18) in the form
−( f −u) ·∆Λ( f −u), up to boundary terms. We can, in particular, include in BΛ any
expression that depends only on the values of u. We have, using (8.17),

( f −u) ·∆Λ( f −u) = f ·∆Λ f −2 f ·∆Λu +u ·∆Λu

= f ·∆Λ f −2
∑
i∈Λ

fi (∆u)i +2
∑
i∈Λ

∑
j∈Λc, j∼i

fi u j +BΛ .

Comparing with (8.18), we deduce that

∑

{i , j }∈E b
Λ

( f j − fi )2 =− ( f −u) ·∆Λ( f −u)

−2
∑
i∈Λ

fi (∆u)i︸ ︷︷ ︸
(i)

+2
∑
i∈Λ

∑
j∈Λc, j∼i

fi (u j − f j )︸ ︷︷ ︸
(ii)

+BΛ . (8.19)
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A look at the second line in this last display indicates exactly the restrictions one
should impose on u in order for −( f −u) ·∆Λ( f −u) to be the one and only contri-
bution to the Hamiltonian (up to boundary terms). To cancel the non-trivial terms
that depend on the values of f inside Λ, we need to ensure that: (i) u is harmonic
inΛ:

(∆u)i = 0 ∀i ∈Λ .

(ii) u coincides with f (hence with η) outsideΛ. We have thus proved:

Lemma 8.10. Let f coincide with η outside Λ. Assume that u solves the Dirichlet
problem inΛwith boundary condition η:

{
u harmonic inΛ ,

u j = η j for all j ∈Λc .
(8.20)

Then, ∑

{i , j }∈E b
Λ

( f j − fi )2 =−( f −u) ·∆Λ( f −u)+BΛ . (8.21)

Existence of a solution to the Dirichlet problem will be proved in Lemma 8.15.
Uniqueness can be verified easily:

Lemma 8.11. (8.20) has at most one solution.

Proof. We first consider the boundary condition η ≡ 0, and show that u ≡ 0 is the
unique solution. Namely, assume v is any solution, and let i∗ ∈ Λ be such that
|vi∗ | = max j∈Λ |v j |. With no loss of generality, assume vi∗ ≥ 0. Since (∆v)i∗ = 0
implies vi∗ = 1

2d

∑
j∼i∗ v j , and v j ≤ vi∗ for all j ∼ i∗, we conclude that v j = vi∗ for

all j ∼ i∗. Repeating this procedure until the boundary of Λ is reached, we deduce
that v must be constant, and this constant can only be 0. Let now u and v be two
solutions of (8.20). Then, h = u − v is a solution to the Dirichlet problem in Λ with
boundary condition η′ ≡ 0. By the previous argument, h ≡ 0 and thus u = v .

Exercise 8.5. Show that, when d = 1, the solution of the Dirichlet problem on an
interval Λ = {a, . . . ,b} is of the form ui = ai + c, for some a,c ∈ R determined by the
boundary condition.

8.4 The massless case

Let us consider the massless Hamiltonian HΛ;0, expressed in terms of the vari-
ables ϕ = (ϕi )i∈Zd , which are assumed to satisfy ϕi = ηi for all i ̸∈ Λ. We apply
Lemma 8.10 with f = ϕ, assuming for the moment that one can find a solution u
to the Dirichlet problem (in Λ, with boundary condition η). Since it does not alter
the Gibbs distribution, the constant BΛ in (8.21) can always be subtracted from the
Hamiltonian. We get

HΛ;0 = 1
2 (ϕ−u) · (− 1

2d∆Λ)(ϕ−u) . (8.22)

Our next tasks are, first, to invert the matrix − 1
2d∆Λ, in order to obtain an explicit

expression for the covariance matrix, and, second, to find an explicit expression for
the solution u to the Dirichlet problem.
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8.4.1 The random walk representation

We need to determine whether there exists some positive-definite covariance ma-
trix ΣΛ such that − 1

2d∆Λ =Σ−1
Λ . Observe first that

− 1
2d∆Λ = IΛ−PΛ ,

where IΛ = (δi j )i , j∈Λ is the identity matrix and PΛ = (P (i , j ))i , j∈Λ is the matrix with
elements

P (i , j )
def=

{
1

2d if j ∼ i ,

0 otherwise.

The numbers (P (i , j ))i , j∈Zd are the transition probabilities of the symmetric sim-

ple random walk X = (Xk )k≥0 on Zd , which at each time step jumps to any one of
its 2d nearest-neighbors with probability 1

2d :

1
2

1
2

Z

Figure 8.3: The one-dimensional symmetric simple random walk.

We denote by Pi the distribution of the walk starting at i ∈Zd . That is, we have
Pi (X0 = i ) = 1 and, for n ≥ 0,

Pi (Xn+1 = k |Xn = j ) = P ( j ,k) ∀ j ,k ∈Zd .

(Information on the simple random walk on Zd can be found in Appendix B.13.)
We will need to know that the walk almost surely exits a finite region in a finite

time:

Lemma 8.12. For Λ⋐ Zd , let τΛc
def= inf

{
k ≥ 0 : Xk ∈Λc

}
be the first exit time from

Λ. Then Pi (τΛc < ∞) = 1. More precisely, there exists c = c(Λ) > 0 such that, for
all i ∈Λ,

Pi (τΛc > n) ≤ e−cn . (8.23)

Proof. If we let R = supl∈Λ infk∈Λc ∥k − l∥1, then, starting from i , one can find a
nearest-neighbor path of length at most R which exits Λ. This means that during
any time-interval of length R, there is a probability at least (2d)−R that the random
walk exitsΛ (just force it to follow the path). In particular,

Pi (τΛc > n) ≤ (1− (2d)−R )[n/R] .

The next lemma shows that the matrix IΛ−PΛ is invertible, and provides a proba-
bilistic interpretation for its inverse:

Lemma 8.13. The |Λ|× |Λ| matrix IΛ−PΛ is invertible. Moreover, its inverse GΛ
def=

(IΛ −PΛ)−1 is given by GΛ = (GΛ(i , j ))i , j∈Λ, the Green function in Λ of the simple
random walk on Zd , defined by

GΛ(i , j )
def= Ei

[τΛc−1∑
n=0

1{Xn= j }

]
. (8.24)
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The Green function GΛ(i , j ) represents the average number of visits at j made by a
walk started at i , before it leavesΛ.

Proof. To start, observe that (below, P n
Λ denotes the nth power of PΛ)

(IΛ−PΛ)(IΛ+PΛ+P 2
Λ+·· ·+P n

Λ) = IΛ−P n+1
Λ . (8.25)

We claim that there exists c = c(Λ) such that, for all i , j ∈Λ and all n ≥ 1,

P n
Λ(i , j ) ≤ e−cn . (8.26)

Indeed, for each n ≥ 1,

P n
Λ(i , j ) =

∑
i1,...,in−1∈Λ

P (i , i1)P (i1, i2) · · ·P (in−1, j ) =Pi (Xn = j ,τΛc > n).

Since Pi (Xn = j ,τΛc > n) ≤Pi (τΛc > n), (8.26) follows from (8.23). This implies that
the matrix GΛ = (GΛ)i , j∈Λ, defined by

GΛ(i , j ) = (IΛ+PΛ+P 2
Λ+·· · )(i , j ) =

∑
n≥0

Pi (Xn = j ,τΛc > n) , (8.27)

is well defined and, by (8.25), that it satisfies (IΛ−PΛ)GΛ = IΛ. Of course, by sym-
metry, we also have GΛ(IΛ−PΛ) = IΛ. The conclusion follows, since the right-hand
side of (8.27) can be rewritten in the form given (8.24).

Remark 8.14. The key ingredient in the above proof that IΛ−PΛ is invertible is the
fact that PΛ is substochastic:

∑
j∈ΛP (i , j ) < 1 for those vertices i which lie along the

inner boundary ofΛ. This property was crucial in establishing (8.26). ⋄
Let us now prove the existence of a solution to the Dirichlet problem (unique-

ness was shown in Lemma 8.11), also expressed in terms of the simple random
walk. Let XτΛc denote the position of the walk at the time of first exit fromΛ.

Lemma 8.15. The solution to the Dirichlet problem (8.20) is given by the function
u = (ui )i∈Zd defined by

ui
def= Ei [ηXτΛc

] ∀i ∈Zd . (8.28)

Proof. When j ∈ Λc, P j (τΛc = 0) = 1 and, thus, u j = E j [ηX0 ] = η j . When i ∈ Λ, by
conditioning on the first step of the walk,

ui = Ei [ηXτΛc
] =

∑
j∼i
Ei [ηXτΛc

, X1 = j ]

=
∑
j∼i
Pi (X1 = j )Ei [ηXτΛc

|X1 = j ]

=
∑
j∼i

1
2d E j [ηXτΛc

] = 1
2d

∑
j∼i

u j ,

which implies (∆u)i = 0.

Remark 8.16. Observe that if η= (ηi )i∈Zd is itself harmonic, then u ≡ η is the solu-
tion to the Dirichlet problem inΛwith boundary condition η. ⋄

Theorem 8.17. Under µη
Λ;0, ϕΛ = (ϕi )i∈Λ is Gaussian, with mean uΛ = (ui )i∈Λ de-

fined in (8.28), and positive definite covariance matrix GΛ = (GΛ(i , j ))i , j∈Λ given by
the Green function (8.24).
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Proof. The claim follows from the representation (8.22) of the Hamiltonian, the ex-
pression (8.28) for the solution to the Dirichlet problem, the expression (8.24) for
the inverse of IΛ−PΛ and Theorem 8.4.

The reader should note the remarkable fact that the distribution of ϕΛ under
µ
η

Λ;0 depends on the boundary condition η only through its mean: the covariance
matrix is only sensitive to the choice ofΛ.

Example 8.18. Consider the GFF in dimension d = 1. Let η be any boundary con-
dition, fixed outside an interval Λ = {a, . . . ,b} ⋐ Z. As we saw in Exercise 8.5, the
solution to the Dirichlet problem is the affine interpolation between (a,ηa) and
(b,ηb). A typical configuration under µη

Λ;0 should therefore be thought of as de-
scribing fluctuations around this line (however, these fluctuations can be large on
the microscopic scale, as will be seen below):

a b

ηb

ηa
u

ϕ

Figure 8.4: A configuration of the one-dimensional GFF under µ
η
Λ;0, whose

mean uΛ is the harmonic function given by the linear interpolation between
the values of η on the boundary.

⋄

Before we start with our analysis of the thermodynamic limit, let us exploit the
representation derived in Theorem 8.17 in order to study the fluctuations of ϕB(n)

in a large box B(n).
For the sake of concreteness, consider the spin at the origin, ϕ0. The latter is a

Gaussian random variable with variance given by

Varη
B(n);0

(ϕ0) =GB(n)(0,0) .

Notice first that the time τB(n)c it takes for the random walk, starting at 0, to leave
the box B(n) is increasing in n and is always larger than n. Therefore, by monotone
convergence,

lim
n→∞GB(n)(0,0) = E0

[∑
k≥0

1{Xk=0}

]
(8.29)

is just the expected number of visits of the walk at the origin. In particular, the
variance ofϕ0 diverges in the limit n →∞, whenever the symmetric simple random
walk is recurrent, that is, in dimensions 1 and 2 (see Appendix B.13.4). When this
happens, the field is said to delocalize. A closer analysis of the Green function (see
Theorem B.76) yields the following more precise information:

GB(n)(0,0) ≈
{

n if d = 1,

logn if d = 2.
(8.30)

In contrast, in dimensions d ≥ 3, the variance remains bounded, and therefore the
field remains localized close to its mean value even in the limit n →∞.
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8.4. The massless case 393

In the next section, we will relate these properties with the problem of existence
of infinite-volume Gibbs measures for the massless GFF.

Exercise 8.6. Consider the one-dimensional GFF in B(n) with 0 boundary condition
(see Figure 8.1). Interpreting the values of the field, ϕ−n , . . . ,ϕn , as the successive
positions of a random walk on R with Gaussian increments, starting at ϕ−n−1 = 0
and conditioned on {ϕn+1 = 0}, prove directly (that is, without using the random
walk representation of G(0,0)) that ϕ0 ∼N (0,n +1).

8.4.2 The thermodynamic limit

We explained, before Theorem 8.6, how the thermodynamic limit n → ∞ can be
expressed in terms of the limits of the means uB(n) and of the covariance matrices
GB(n), when the latter exist:

lim
n→∞Ei [ηXτB(n)c

] , lim
n→∞GB(n)(i , j ) , (8.31)

for all fixed pairs i , j ∈Zd .

Low dimensions. We have seen that, when d = 1 or d = 2, limn→∞GB(n)(0,0) =∞.
This has the following consequence:

Theorem 8.19. When d = 1 or d = 2, the massless Gaussian Free Field has no
infinite-volume Gibbs measures: G (0) =∅.

Proof. Assume there exists a probability measure µ ∈ G (0). Since µ= µπ0
B(n)

for all
n, we have

µ(ϕ0 ∈ [a,b]) =µπ0
B(n)(ϕ0 ∈ [a,b]) =

∫
µ
η

B(n);0
(ϕ0 ∈ [a,b])µ(dη) ,

for any interval [a,b] ⊂R. But, uniformly in η,

µ
η

B(n);0
(ϕ0 ∈ [a,b]) = 1√

2πGB(n)(0,0)

∫ b

a
exp

{
−

(
x −µη

B(n);0
(ϕ0)

)2

2GB(n)(0,0)

}
dx

≤ b −a√
2πGB(n)(0,0)

. (8.32)

In dimensions 1 and 2, the right-hand side tends to 0 as n →∞. We conclude that
µ(ϕ0 ∈ [a,b]) = 0, for all a < b, and thus µ(ϕ0 ∈ R) = 0, which contradicts the as-
sumption that µ is a probability measure.

Remark 8.20. The lack of infinite-volume Gibbs measures for the massless GFF
ϕ = (ϕi )i∈Zd in dimensions 1 and 2, as seen above, is due to the fact that the fluc-
tuations of each spin ϕi become unbounded when B(n) ↑ Zd . This is not incom-
patible, nevertheless, with the fact that some random translation of the field does
have a well-defined thermodynamic limit. Namely, define the random variables
ϕ̃= (ϕ̃i )i∈Zd by

ϕ̃i
def= ϕi −ϕ0 . (8.33)

Then, as shown in the next exercise, these random variables have a well-defined
thermodynamic limit, even when d = 1,2. ⋄
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Exercise 8.7. Consider the variables ϕ̃i defined in (8.33). Show that under µ0
Λ;0 (zero

boundary condition), (ϕ̃i )i∈Λ is Gaussian, centered, with covariance matrix given by

G̃Λ(i , j )
def= GΛ(i , j )−GΛ(i ,0)−GΛ(0, j )+GΛ(0,0) . (8.34)

It can be shown that the matrix elements G̃Λ(i , j ) in (8.34) have a finite limit when
Λ ↑Zd ; see the comments in Section 8.7.2.

Higher dimensions. When d ≥ 3, transience of the symmetric simple random
walk implies that

G(i , j )
def= lim

n→∞GB(n)(i , j ) = Ei
(∑

k≥0
1{Xk= j }

)
(8.35)

is finite. This will allow us to construct infinite-volume Gibbs measures. We say
that η= (ηi )i∈Zd is harmonic (inZd ) if

(∆η)i = 0 ∀i ∈Zd .

Theorem 8.21. In dimensions d ≥ 3, the massless Gaussian Free Field possesses in-
finitely many infinite-volume Gibbs measures: |G (0)| =∞. More precisely, given any
harmonic function η on Zd , there exists a Gaussian Gibbs measure µη0 with mean η

and covariance matrix G = (G(i , j ))i , j∈Zd given in (8.35).

Remark 8.22. It can be shown that the Gibbs measures µη0 of Theorem 8.21 are pre-
cisely the extremal elements of G (0): exG (0) = {

µ
η
0 : η harmonic

}
. ⋄

Clearly, there exist infinitely many harmonic functions. For example, any con-
stant function is harmonic, or, more generally, any function of the form

ηi
def= α1i1 +·· ·+αd id + c , ∀i = (i1, . . . , id ) ∈Zd , (8.36)

with α= (α1, . . . ,αd ) ∈ Rd . But, in d ≥ 2, the variety of harmonic functions is much
larger:

Exercise 8.8. Show that all harmonic functions u :Zd →R can be obtained by fixing
arbitrary values of ui at all vertices i belonging to the strip

{
i = (i1, i2, . . . , id ) ∈Zd : id ∈ {0,1}

}

and extending u to the whole of Zd using ∆u = 0.

An analysis of the Green function G(i , j ) as ∥ j − i∥1 → ∞ (see Theorem B.76)
yields the following information on the asymptotic behavior of the covariance.

Proposition 8.23. Assume that d ≥ 3 and m = 0. Then, the infinite-volume Gibbs
measures µη0 of Theorem 8.21 satisfy, as ∥i − j∥2 →∞,

Covη0(ϕi ,ϕ j ) = r (d)

∥ j − i∥d−2
2

(1+o(1)) (8.37)

for some constant r (d) > 0.
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Proof of Theorem 8.21: Fix some harmonic function η. The restriction of η to any fi-
nite box B(n) obviously solves the Dirichlet problem on B(n) (with boundary con-
dition η). Since the limits limn→∞GB(n)(i , j ) exist when d ≥ 3, we can use Theo-
rem 8.6 to construct a Gaussian field ϕ = (ϕi )i∈Zd whose restriction to any finite
region Λ is a Gaussian vector (ϕi )i∈Λ with mean (ηi )i∈Λ and covariance matrix
GΛ = (G(i , j ))i , j∈Λ. If we let µη0 denote the distribution of ϕ, then µη0(ϕi ) = ηi and

Covη0(ϕi ,ϕ j ) =G(i , j ) . (8.38)

It remains to show that µη0 ∈ G (0). This could be done following the same steps
used to prove Theorem 6.26. For pedagogical reasons, we will give a different proof
relying on the Gaussian properties of ϕ.

We use the criterion (8.4), and show that, for allΛ⋐Zd and all A ∈F ,

µ
η
0(A |FΛc )(ω) =µωΛ;0(A) for µη0-almost all ω.

For that, we will verify that the field ϕ = (ϕi )i∈Zd , when conditioned on FΛc , re-
mains Gaussian (Lemma 8.24 below), and that, for all tΛ,

Eη
0

[
e itΛ·ϕΛ ∣∣ FΛc

]
(ω) = e itΛ·aΛ(ω)− 1

2 tΛ·GΛtΛ , (8.39)

where ai (ω) = Ei [ωXτΛc
] is the solution of the Dirichlet problem inΛwith boundary

condition ω.

Lemma 8.24. Let ϕ be the Gaussian field constructed above. Let, for all i ∈Λ,

ai (ω)
def= Eη

0 [ϕi |FΛc ](ω) .

Then, µ-almost surely, ai (ω) = Ei [ωXτΛc
]. In particular, each ai (ω) is a finite linear

combination of the variables ω j and (ai )i∈Zd is a Gaussian field.

Proof. When i ∈Λ, we use the characterization of the conditional expectation given
in Lemma B.50: up to equivalence, Eη

0 [ϕi |FΛc ] is the unique FΛc -measurable ran-
dom variable ψ for which

Eη
0

[
(ϕi −ψ)ϕ j

]= 0 for all j ∈Λc. (8.40)

We verify that this condition is indeed satisfied when ψ(ω) = Ei [ωXτΛc
]. By (8.38),

Eη
0

[
(ϕi −Ei [ϕXτΛc

])ϕ j
]= Eη

0 [ϕiϕ j ]−Eη
0

[
Ei [ϕXτΛc

]ϕ j
]

=G(i , j )+ηiη j −Eη
0

[
Ei [ϕXτΛc

]ϕ j
]

.

Using again (8.38),

Eη
0

[
Ei [ϕXτΛc

]ϕ j
]=

∑
k∈∂exΛ

Eη
0 [ϕkϕ j ]Pi [XτΛc = k]

= Ei
[
Eη

0 [ϕXτΛc
ϕ j ]

]

= Ei
[
G(XτΛc , j )

]+Ei
[
Eη

0 [ϕXτΛc
]Eη

0 [ϕ j ]
]

. (8.41)

On the one hand, since i ∈Λ and j ∈Λc, any trajectory of the random walk that con-
tributes to G(i , j ) must intersect ∂exΛ at least once, so the strong Markov Property
gives

G(i , j ) =
∑

k∈∂exΛ

Pi (XτΛc = k)G(k, j ) = Ei [G(XτΛc , j )] .
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396 Chapter 8. The Gaussian Free Field on Zd

On the other hand, sinceϕ has mean η and since η is solution of the Dirichlet prob-
lem inΛwith boundary condition η, we have

Ei
[
Eη

0 [ϕXτΛc
]Eη

0 [ϕ j ]
]= Ei [ηXτΛc

η j ] = Ei [ηXτΛc
]η j = ηiη j .

This shows that ai (ω) = Ei [ωXτΛc
]. In particular, the latter is a linear combination

of the ω j s:

ai (ω) =
∑

k∈∂exΛ

ωkPi (XτΛc = k) ,

which implies that (ai )i∈Zd is also a Gaussian field.

Corollary 8.25. Under µη0 , the random vector (ϕi −ai )i∈Λ is independent of FΛc .

Proof. We know that the variables ϕi − ai , i ∈ Λ, and ϕ j , j ∈ Λc, form a Gaus-
sian field. Therefore, a classical result (Proposition (B.58)) implies that (ϕi −ai )i∈Λ,
which is centered, is independent of FΛc if and only if each pair ϕi −ai (i ∈Λ) and
ϕ j ( j ∈Λc) is uncorrelated. But this follows from (8.40).

Let aΛ = (ai )i∈Λ. By Corollary 8.25 and since aΛ is FΛc -measurable,

Eη
0

[
e i tΛ·ϕΛ ∣∣ FΛc

]= e itΛ·aΛEη
0

[
e i tΛ·(ϕΛ−aΛ) ∣∣ FΛc

]= e itΛ·aΛEη
0

[
e i tΛ·(ϕΛ−aΛ)] .

We know that the variables ϕi −ai , i ∈Λ, form a Gaussian vector under µη0 . Since it
is centered, we need only compute its covariance. For i , j ∈Λ, write

(ϕi −ai )(ϕ j −a j ) =ϕiϕ j − (ϕi −ai )a j − (ϕ j −a j )ai −ai a j .

Using Corollary 8.25 again, we see that Eη
0

[
(ϕi −ai )a j

]= 0 and Eη
0

(
(ϕ j −a j )ai

)= 0
(since ai and a j are FΛc -measurable). Therefore,

Covη0
(
(ϕi −ai ), (ϕ j −a j )

)= Eη
0 [ϕiϕ j ]−Eη

0 (ai a j )

=G(i , j )+ηiη j −Eη
0 [ai a j ] .

Proceeding as in (8.41),

Eη
0 [ai a j ] = Ei , j

[
G(XτΛc , X ′

τΛc )
]+Ei , j

[
Eη

0 [ϕXτΛc
]Eη

0 [ϕX ′
τ′Λc

]
]

, (8.42)

where X and X ′ are two independent symmetric simple random walks, starting
respectively at i and j , Pi , j denotes their joint distribution, and τ′Λc is the first exit
time of X ′ fromΛ. As was done earlier,

Ei , j
[
Eη

0 [ϕXτΛc
]Eη

0 [ϕX ′
τ′Λc

]
]= Ei , j [ηXτΛc

ηX ′
τ′Λc

] = Ei [ηXτΛc
]E j [ηXτΛc

] = ηiη j .

Let us then define the modified Green function

KΛ(i , j )
def= Ei

[ ∑
n≥τΛc

1{Xn= j }

]
=G(i , j )−GΛ(i , j ) .
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8.5. The massive case 397

Observe that KΛ(i , j ) = KΛ( j , i ), since G and GΛ are both symmetric; moreover,
KΛ(i , j ) =G(i , j ) if i ∈Λc. We can thus write

Ei , j
[
G(XτΛc , X ′

τ′Λc )
]=

∑
k,l∈∂extΛ

Pi (XτΛc = k)P j (XτΛc = l )G(k, l )

=
∑

l∈∂extΛ

P j (XτΛc = l )KΛ(i , l )

=
∑

l∈∂extΛ

P j (XτΛc = l )KΛ(l , i )

=
∑

l∈∂extΛ

P j (XτΛc = l )G(l , i )

= KΛ( j , i ) =G(i , j )−GΛ(i , j ) .

We have thus shown that Covη0
(
(ϕi −ai ), (ϕ j −a j )

)=GΛ(i , j ), which implies that

Eη
0

[
e i tΛ·ϕΛ |FΛc

]= e itΛ·aΛe−
1
2 tΛ·GΛtΛ .

This shows that, under µη0(· |FΛc ),ϕΛ is Gaussian with distribution given by µη
Λ;0(·).

We have thereby proved (8.39) and Theorem 8.21.

The proof given above that the limiting Gaussian field belongs to G (0) only de-
pends on having a convergent expression for the Green function of the associated
random walk; it will be used again in the massive case.

8.5 The massive case

A similar analysis, based on a Gaussian description of the finite-volume Gibbs dis-
tribution, holds in the massive case m > 0. Nevertheless, the presence of a mass
term in the Hamiltonian leads to a change in the probabilistic interpretation, which
eventually leads to a completely different behavior.

Consider the Hamiltonian HΛ;m , which contains the term m2

2

∑
i∈Λϕ2

i . To ex-
press HΛ;m as a scalar product involving the inverse of a covariance matrix, we
use (8.19), but this time including the mass term. After rearrangement, this yields

HΛ;m = 1
2 (ϕ−u) · (− 1

2d∆Λ+m2)(ϕ−u)

+
∑
i∈Λ

ϕi
(
(− 1

2d∆+m2)u
)

i︸ ︷︷ ︸
(i)

+ 1
2d

∑
i∈Λ

∑
j∈Λc, j∼i

ϕi (u j −ϕ j )︸ ︷︷ ︸
(ii)

+BΛ . (8.43)

As before, we choose u so as to cancel the extra terms on the second line. The mean
u = (ui )i∈Zd we are after must solve a modified Dirichlet problem. Let us say that u
is m-harmonic onΛ (resp. Zd ) if

(
(− 1

2d∆+m2)u
)

i = 0, ∀i ∈Λ (resp. i ∈Zd ) .

We say that u solves the massive Dirichlet problem inΛ if
{

u is m-harmonic onΛ ,

u j = η j for all j ∈Λc .
(8.44)

We will give a probabilistic solution of the massive Dirichlet problem, by again rep-
resenting the scalar product in the Hamiltonian, using a different random walk.
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398 Chapter 8. The Gaussian Free Field on Zd

Exercise 8.9. Verify that the solution to (8.44) (whose existence will be proved below)
is unique.

When d = 1, one can determine all m-harmonic functions explicitly:

Exercise 8.10. Show that all m-harmonic functions on Z are of the following type:

uk = Aeαk +Be−αk , where α
def= log(1+m2 +

p
2m2 +m4).

8.5.1 Random walk representation

Consider a random walker on Zd which, as before, only jumps to nearest neigh-

bors but which, at each step, has a probability m2

1+m2 > 0 of dying. That is, as-
sume that, before taking each new step, the walker flips a coin with probability

P (head) = 1
1+m2 , P (tail) = m2

1+m2 . If the outcome is head, the walker survives and

jumps to a nearest neighbor on Zd uniformly, with probability 1
2d . If the outcome

is tail, the walker dies (and remains dead for all subsequent times).
This process can be defined by considering

Zd
⋆

def= Zd ∪ {⋆} ,

where ⋆ ̸∈Zd is a new vertex which we call the graveyard. We define the following
transition probabilities on Zd

⋆:

Pm(i , j )
def=





1
1+m2

1
2d if i , j ∈Zd , i ∼ j ,

1− 1
1+m2 if i ∈Zd and j =⋆,

1 if i = j =⋆,

0 otherwise.

Let Z = (Zk )k≥0 denote the killed random walk, that is the Markov chain on Zd
⋆

associated to the transition matrix Pm .

Z

1
1+m2

1
2

1

1
1+m2

1
2

⋆

Figure 8.5: The one-dimensional symmetric simple random walk which has

a probability m2

1+m2 of dying at each step.

We denote by Pm
i the distribution of the process Z starting at i ∈Zd . By definition,

⋆ is an absorbing state for Z :

∀n ≥ 0, Pm
i (Zn+1 =⋆ |Zn =⋆) = 1.

Moreover, when m > 0, at all time n ≥ 0 (up to which the walk has not yet entered
the graveyard), the walk has a positive probability of dying:

∀k ∈Zd , Pm
i (Zn+1 =⋆ |Zn = k) = m2

1+m2 > 0.
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8.5. The massive case 399

Let
τ⋆

def= inf
{
n ≥ 0 : Zn =⋆}

be the time at which the walker dies. Since Pm
i (τ⋆ > n) = (1+m2)−n , τ⋆ is Pm

i -
almost surely finite.

Notice that, when m = 0, Z reduces to the symmetric simple walk considered in
the previous section. The processes X and Z are in fact related by

Pm
i (Zn = j ) =Pm

i (τ⋆ > n)Pi (Xn = j ) = (1+m2)−nPi (Xn = j ) , (8.45)

for all i , j ∈Zd .
The process Z underlies the probabilistic representation of the mean and co-

variance of the finite-volume Gibbs distribution of the massive GFF:

Theorem 8.26. Let Λ⋐Zd , d ≥ 1, and η be any boundary condition. Define η⋆
def= 0.

Then, under µη
Λ;m , ϕΛ = (ϕi )i∈Λ is Gaussian, with mean um

Λ = (um
i )i∈Λ given by

um
i

def= Em
i [ηZτΛc

] , ∀i ∈Λ , (8.46)

where τΛc
def= inf{k ≥ 0 : Zk ̸∈Λ}, and covariance matrix Gm;Λ = (Gm;Λ(i , j ))i , j∈Λ

given by

Gm;Λ(i , j ) = 1

1+m2 E
m
i

[τΛc−1∑
n=0

1{Zn= j }

]
. (8.47)

Exercise 8.11. Returning to the original Hamiltonian (8.2) with β not necessarily
equal to 1, check that the mean and covariance matrix are given by

uβ,m
i =β−1/2 umβ−1/2

i , Gβ,m;Λ(i , j ) =β−1 Gmβ−1/2;Λ(i , j ) .

Observe that there are now two ways for the process Z to reach the exit-time τΛc :
either by stepping on a vertex j ̸∈Λ or by dying.

Proof. We proceed as in the massless case. First, it is easy to verify that um
i de-

fined in (8.46) provides a solution to the massive Dirichlet problem (8.44). Then,
we use (8.43), in which only the term involving − 1

2d∆Λ+m2 remains. By introduc-
ing the restriction Pm;Λ = (Pm(i , j ))i , j∈Λ, we write

− 1
2d∆Λ+m2 = (1+m2)IΛ−PΛ = (1+m2)

{
IΛ−Pm;Λ

}
.

Since P k
m;Λ(i , j ) =Pm

i (Zk = j ,τΛc > k) and, by (8.45),

Pm
i (Zk = j ) ≤ (1+m2)−k , (8.48)

we conclude, as before, that the matrix IΛ−Pm;Λ is invertible and that its inverse is
given by the convergent series

Gm;Λ = 1

1+m2

(
IΛ+Pm;Λ+P 2

m;Λ+·· ·) .

Clearly, the entries of Gm;Λ are exactly those given in (8.47).
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400 Chapter 8. The Gaussian Free Field on Zd

Example 8.27. Consider the one-dimensional massive GFF in {−n, . . . ,n}, with a
boundary condition η. Using Exercises 8.9 and 8.10, we easily check that the so-
lution to the Dirichlet problem with boundary condition η is given by um

k = Aeαk +
Be−αk , where α= log(1+m2 +

p
2m2 +m4) and

A = ηn+1eα(n+1) −η−n−1e−α(n+1)

e2α(n+1) −e−2α(n+1)
, B = η−n−1eα(n+1) −ηn+1e−α(n+1)

e2α(n+1) −e−2α(n+1)
. ⋄

Exercise 8.12. Let (p(i ))i∈Zd be nonnegative real numbers such that
∑

i p(i ) = 1.
Consider the generalization of the GFF in which the Hamiltonian is given by

β

2

∑

{i , j }⊂Zd

{i , j }∩Λ̸=∅

p( j − i )(ωi −ω j )2 + m2

2

∑
i∈Λ

ω2
i , ω ∈Ω .

Show that the random walk representation derived above extends to this more gen-
eral situation, provided that one replaces the simple random walk on Zd by the ran-
dom walk on Zd with transition probabilities p(·).

8.5.2 The thermodynamic limit

We can easily show that the massive GFF always has at least one infinite-volume
Gibbs measure, in any dimension d ≥ 1. Namely, the boundary condition η ≡ 0 is
m-harmonic, so u ≡ 0 is the solution of the corresponding massive Dirichlet prob-
lem (8.44). Moreover,

Gm(i , j )
def= lim

n→∞Gm;B(n)(i , j ) = 1

1+m2

∑
n≥0

Pm
i (Zn = j ) . (8.49)

In view of (8.48), this series always converges when m > 0. By Theorem 8.6, this
yields the existence of the Gaussian field with mean zero and covariance matrix
Gm , whose distribution we denote by µ0

m . As in the proof of Theorem 8.21, one
then shows that its distribution µ0

m belongs to G (m). Of course, the same argu-
ment can be used starting with any m-harmonic function η on Zd ; observe that
Exercise 8.8 extends readily to the massive case, providing a description of all m-
harmonic functions. We have therefore proved the following result:

Theorem 8.28. In any dimension d ≥ 1, the massive Gaussian Free Field possesses
infinitely many infinite-volume Gibbs measures: |G (m)| =∞. More precisely, given
any m-harmonic function η on Zd , there exists a Gaussian Gibbs measure µηm with
mean η and covariance matrix Gm = (Gm(i , j ))i , j∈Zd given in (8.49).

Remark 8.29. As in the massless case, it can be shown that m-harmonic functions
parametrize extremal Gibbs measures: exG (m) = {

µ
η
m : η is m-harmonic

}
. ⋄

In contrast to the massless case in dimension d ≥ 3, in which G(0, i ) decreases
algebraically when ∥i∥2 →∞, we will now see that the decay in the massive case is
always exponential. Let us thus define the rate

ξm(i )
def= lim

ℓ→∞
−1

ℓ
logGm(0,ℓi ).
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Proposition 8.30. Let d ≥ 1. For any i ∈Zd , ξm(i ) exists and

Gm(0, i ) ≤Gm(0,0)e−ξm (i ) .

Moreover,

log(1+m2) ≤ ξm(i )

∥i∥1

≤ log(2d)+ log(1+m2) . (8.50)

Proof. Let, for all j ∈Zd , τ j
def= min

{
n ≥ 0 : Zn = j

}
. Observe that

Gm(0,ℓi ) =Pm
0 (τℓi < τ⋆)Gm(ℓi ,ℓi ) .

Therefore, since Gm(ℓi ,ℓi ) =Gm(0,0) <∞ for any m > 0,

lim
ℓ→∞

−1

ℓ
logGm(0,ℓi ) = lim

ℓ→∞
−1

ℓ
logPm

0 (τℓi < τ⋆) .

Now, for all ℓ1,ℓ2 ∈N, it follows from the strong Markov property that

Pm
0 (τ(ℓ1+ℓ2)i < τ⋆) ≥Pm

0 (τℓ1i < τ(ℓ1+ℓ2)i < τ⋆) =Pm
0 (τℓ1i < τ⋆)Pm

0 (τℓ2i < τ⋆) .

This implies that the sequence
(− logPm

0 (τℓi < τ⋆)
)
ℓ≥1 is subadditive; Lemma B.5

then guarantees the existence of ξm(i ), and provides the desired upper bound on
Gm(0, i ), after taking ℓ= 1.

Let us now turn to the bounds on ξm(i )/∥i∥1. For the lower bound, we use (8.48):

(1+m2)Gm(i , j ) =
∑

n≥0
Pm

i (Zn = j )

≤
∑

n≥∥ j−i∥1

(1+m2)−n ≤ 1+m2

m2 (1+m2)−∥ j−i∥1 .

For the upper bound, we can use

(1+m2)Gm(i , j ) ≥Pm
i (τ j < τ⋆) ≥ (2d(1+m2))−∥ j−i∥1 ,

where the second inequality is obtained by fixing an arbitrary shortest path from i
to j and then forcing the walk to follow it.

Using m-harmonic functions as a boundary condition allows one to construct in-
finitely many distinct Gibbs measures. It turns out, however, that if we only con-
sider boundary conditions growing not too fast, then the corresponding Gaussian
field is unique:

Theorem 8.31. Let d ≥ 1. For any boundary condition η satisfying

limsup
k→∞

max
i :∥i∥1=k

log |ηi |
k

< log(1+m2) , (8.51)

the Gaussian Gibbs measure µηm constructed in Theorem 8.28 is the same as the one
obtained with the boundary condition η≡ 0: µηm =µ0

m .

Since each m-harmonic function leads to a distinct infinite-volume Gibbs mea-
sure, Theorem 8.31 shows that the only m-harmonic function with subexponential
growth is η≡ 0. This is in sharp contrast with the massless case, for which distinct
Gibbs measures can be constructed using boundary conditions of the form (8.36),
in which ηi diverges linearly in ∥i∥1.
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Proof of Theorem 8.31: It suffices to prove that limn→∞Em
i [ηZτB(n)c

] = 0 whenever η

satisfies (8.51). Let ϵ > 0 be such that eϵ/(1+m2) < 1 and, for all n large enough,
|ηi | ≤ eϵn for all i ∈ ∂extB(n). Then, for all such n,

∣∣Em
i

[
ηZτB(n)c

]∣∣≤ eϵnPm
i

(
τB(n)c > d1(i ,B(n)c)

)≤ eϵn(1+m2)−n+∥i∥1 .

which tends to 0 as n →∞.

8.5.3 The limit m ↓ 0

We have seen that, when d = 1 or d = 2, the large fluctuations of the field prevent
the existence of any infinite-volume Gibbs measure for the massless GFF. It is thus
natural to study how these large fluctuations build up as m ↓ 0. One way to quantify
the change in behavior as m ↓ 0 (in dimensions 1 and 2) is to consider how fast the
variance Varm(ϕ0) diverges and how the rate of exponential decay of the covariance
Covm(ϕi ,ϕ j ) decays to zero.

Divergence of the variance in d = 1,2

We first study the variance of the field in the limit m ↓ 0, when d = 1 or 2.

Proposition 8.32. Let ϕ be any massive Gaussian Free Field on Zd . Then, as m ↓ 0,

Varm(ϕ0) ≃
{

1p
2m

in d = 1,
2
π | logm| in d = 2.

(8.52)

Proof. Let eλ = 1+m2, and remember that

Varm(ϕ0) =Gm(0,0) = (1+m2)−1
∑

n≥0
e−λnP0(Xn = 0) .

We first consider the case d = 1. From the local limit theorem (Theorem B.70), for
all ϵ> 0, there exists K0 such that

1−ϵp
πk

≤P0(X2k = 0) ≤ 1+ϵp
πk

, ∀k ≥ K0 . (8.53)

This leads to the lower bound

∑
n≥0

e−λnP0(Xn = 0) ≥ 1−ϵp
π

∑
k≥K0

e−2λk

p
k

≥ 1−ϵp
π

∫ ∞

K0

e−2λx

p
x

dx = 1−ϵp
2λ

(
1−O(

p
λ)

)
,

where we used the change of variable 2λx ≡ y2/2. For the upper bound, we bound
the first K0 terms of the series by 1, and obtain

∑
k≥0

e−2λkP0(X2k = 0) ≤ K0 +1+ 1+ϵp
π

∞∑
k=K0+1

e−2λk

p
k

≤ K0 +1+ 1+ϵp
π

∫ ∞

K0

e−2λx

p
x

dx .

The case d = 2 is similar and is left as an exercise; the main difference is that the
integral obtained cannot be computed explicitly.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

8.5. The massive case 403

m

ξ(m)

Figure 8.6: The rate of exponential decay ξm of the massive Green function
in dimension 1.

The rate of decay for small masses

Proposition 8.30 shows that, as m →∞,

Gm(i , j ) = e−2logm (1+o(1))∥ j−i∥1 ∀i ̸= j ∈Zd .

It turns out that the rate of decay for small values of m has a very different behavior.
We first consider the one-dimensional case, in which an exact computation can be
made, valid for all m > 0:

Theorem 8.33. Let d = 1 and m > 0. For all i , j ∈Zd ,

Gm(i , j ) = Am exp
(−ξm | j − i |) , (8.54)

where Am ,ξm > 0 are given in (8.55). In particular, limm↓0
ξm
m =

p
2.

Proof. Since Gm(i , j ) = Gm(0, j − i ), it suffices to consider i = 0. Let λ > 0 be such
that eλ = 1+m2 and use (8.45) to write

(1+m2)Gm(0, j ) =
∑

n≥0
e−λnP0(Xn = j ) = E0

[ ∑
n≥0

e−λn 1{Xn= j }

]
.

We then use a Fourier representation for the indicator: for all j ∈Z,

1{Xn= j } =
1

2π

∫ π

−π
e ik(Xn− j ) dk .

The position of the symmetric simple random walk after n steps, Xn , can be ex-
pressed as a sum of independent identically distributed increments: Xn = ξ1 +·· ·+
ξn , with P0(ξ1 = ±1) = 1

2 . Let φ(k)
def= E0[e ikξ1 ] = cos(k) denote the characteristic

function of the increment. Since the increments are independent, E [e ik Xn ] =φ(k)n .
Since λ> 0, we can interchange the sum and the integral and get

(1+m2)Gm(0, j ) = 1

2π

∫ π

−π
e−ik j

∑
n≥0

(e−λφ(k))n dk

= 1

2π

∫ π

−π
e−ik j

1−e−λφ(k)
dk .
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404 Chapter 8. The Gaussian Free Field on Zd

We will study the behavior of this last integral using the residue theorem. To start,

we look for the singularities of z 7→ e−iz j

1−e−λ cos z
in the complex plane. Solving cos z =

eλ, we find z± = it±, with t± = t±(λ) =− log(eλ∓
√

e2λ−1). Observe that t−(λ) < 0 <
t+(λ). Let γ denote the closed clockwise-oriented path in C depicted on the figure
below:

z+

π− iR

π−π

γ z−

We decompose ∮

γ
=

∫ π

−π
+

∫ π−iR

π
+

∫ −π−iR

π−iR
+

∫ −π

−π−iR
.

Uniformly for all z on the path of integration from π− iR to −π− iR, when R is large
enough, |1−e−λ cos(z)| ≥ eR−λ/3. Therefore, as R →∞,

∣∣∣
∫ −π−iR

π−iR

e−iz j

1−e−λφ(z)
dz

∣∣∣→ 0.

On the other hand, since the integrand is periodic, the integrals
∫ π−iR
π and

∫ −π
−π−iR

cancel each other. By the residue theorem (since the path is oriented clockwise),

−
∮

γ

e−iz j

1−e−λ cos(z)
dz = 2πi Res

( e−iz j

1−e−λ cos(z)
; z−

)

= 2πi lim
z→z−

(z − z−)
e−iz j

1−e−λ cos(z)
.

This yields

Gm(0, j ) = e t−(λ) j

sinh |t−(λ)| ≡ Ame−ξm j , (8.55)

with ξm = log(1+m2 +
p

2m2 +m4).

The previous result shows in particular that the rate of decay ξm(i )/∥i∥2 behaves
linearly in m as m ↓ 0. We now extend this to all dimensions, using a more prob-
abilistic approach, which has the additional benefit of shedding more light on the
underlying mechanism.

Theorem 8.34. There exist m0 > 0 and constants 0 <α≤ δ such that, for all 0 < m <
m0 and all i ∈Zd ,

αm∥i∥2 ≤ ξm(i ) ≤ δm∥i∥2 . (8.56)
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8.5. The massive case 405

Let us explain why this behavior should be expected. Let j ∈ Zd (with ∥ j∥2

large) and let τ j (resp. τ⋆) be the time at which the walk first reaches j (resp. dies).
As we already observed earlier,

Gm(0, j ) =Pm
0 (τ j < τ⋆)Gm( j , j ) =Pm

0 (τ j < τ⋆)Gm(0,0) . (8.57)

On the one hand, it is unlikely that the walker survives for a time much larger than
1/m2. Indeed, for all r > 0 for which r /m2 is an integer,

Pm
0 (τ⋆ > r /m2) = (1+m2)−r /m2 ≤ e−r /2 , (8.58)

for all sufficiently small m. On the other hand, in a time at most r /m2, the walker
typically cannot get to a distance further than r /m:

Pm
0 (∥Zr /m2∥2 ≥ r /m) ≤P0(∥Xr /m2∥2 ≥ r /m)

≤ E0[∥Xr /m2∥2
2 ]

r 2/m2 = r /m2

r 2/m2 = 1

r
. (8.59)

However, in order for a random walk started at 0 to reach j , such an event has to
occur at least ∥ j∥2/(r /m) times. Therefore, the probability that the random walk
reaches j should decay exponentially with ∥ j∥2/(r /m) = (m/r )∥ j∥2. The proof below
makes this argument precise. ⋄

Proof. Lower bound. Let r ≥ 8 be such that r /m2 is a positive integer and m/r < 1.

Set M
def= ⌊m

r ∥ j∥2⌋. Let us introduce the following sequence of random times: T0
def= 0

and, for k > 0,
Tk

def= inf
{
n > Tk−1 : ∥Zn −ZTk−1∥2 ≥ r /m

}
.

Note that, by definition, TM ≤ τ j . Applying the strong Markov Property at times
T1,T2, . . . ,TM−1,

Pm
0 (τ j < τ⋆) ≤

M−1∏
k=0

Pm
0 (T1 < τ⋆) =Pm

0 (T1 < τ⋆)M .

Following the heuristics described before the proof, we use the decomposition

Pm
0 (T1 < τ⋆) =Pm

0 (T1 < τ⋆,T1 ≤ r /m2)+Pm
0 (T1 < τ⋆,T1 > r /m2)

≤Pm
0 (T1 ≤ r /m2)+Pm

0 (τ∗ > r /m2) .

Now, on the one hand, it follows from (8.58) that Pm
0 (τ∗ > r /m2) ≤ e−r /2, which is

smaller than 1
4 by our choice of r . On the other hand,

Pm
0

(∥Zr /m2∥2 ≥ r /m
)≥Pm

0

(∥Zr /m2∥2 ≥ r /m
∣∣ T1 ≤ r /m2)Pm

0

(
T1 ≤ r /m2)

≥ 1
2P

m
0

(
T1 ≤ r /m2) ,

since, by symmetry,

Pm
0

(∥Zℓ∥2 ≥ r /m
∣∣ ∥Zk∥2 ≥ r /m

)≥ 1
2 ,

for all ℓ≥ k. Therefore, it follows from (8.59) that

Pm
0

(
T1 ≤ r /m2)≤ 2Pm

0

(∥Zr /m2∥2 ≥ r /m
)≤ 2

r
≤ 1

4
,
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406 Chapter 8. The Gaussian Free Field on Zd

again by our choice of r . We conclude that

Gm(0, j ) ≤ 2Gm(0,0)e−(log2/r )m∥ j∥2 .

Upper bound. In (8.57), we write

Pm
0 (τ j < τ∗) ≥P0(X[∥ j∥2/m] = j )Pm

0 (τ∗ > ∥ j∥2/m) ,

where we assume [∥ j∥2/m] to be either ⌊∥ j∥2/m⌋ or ⌊∥ j∥2/m⌋+1 in such a way that
{Z[∥ j∥2/m] = j } ̸= ∅. The first factor in the right-hand side can then be estimated
using the local limit theorem, Theorem B.70. Namely, provided that m sufficiently
small, Theorem B.70 implies the existence of constants c1,c2 such that

P0(X[∥ j∥2/m] = j ) ≥ e−c1m∥ j∥2

c1(∥ j∥2/m)d/2
,

for all j ∈Zd with ∥ j∥2 > c2. Since

Pm
0 (τ∗ > ∥ j∥2/m) = (1+m2)−⌊∥ j∥2/m⌋ ≥ e−m∥ j∥2 ,

the conclusion follows easily.

8.6 Bibliographical references

The study of the Gaussian Free Field (often also called harmonic crystal in the litera-
ture) was initiated in the 1970s. More details can be found in Chapter 13 of Georgii’s
book [134], in particular proofs of the facts mentioned in Remarks 8.22 and 8.29, as
well as an extensive bibliography. Some parts of Section 8.4.2 were inspired by the
lecture notes of Spitzer [320].

8.7 Complements and further reading

8.7.1 Random walk representations

The random walk representation presented in this chapter (Theorems 8.17 and 8.26
and Exercise 8.12) can be extended in (at least) two directions.

In the first generalization, one replaces ϕ2
i in the mass term by a more general

smooth function Ui (ϕi ) with a sufficiently fast growth. Building on earlier work by
Symanzik [324], a generalization of the random walk representation to this context
was first derived by Brydges, Fröhlich and Spencer in [56], which is still a nice place
to learn about this material. Another source we recommend is the book [102] by
Fernández, Fröhlich and Sokal, which also contains several important applications
of this representation. In fact, as explained in these references, the spins ϕi them-
selves can be allowed to take values in Rν, ν ≥ 1. Considering suitable sequences
of functions U (n)

i , this makes it possible to obtain random walk representations for
the types of continuous spin models discussed in Chapters 9 and 10.

In the second generalization, it is the quadratic interaction (ϕi −ϕ j )2 that is
replaced by a more general function V (ϕi −ϕ j ) of the gradients. (Models of this
type will be briefly considered in Section 9.3.) In this case, a generalization of the
random walk representation was obtained by Helffer and Sjöstrand [158]. A good
account can be found in Section 2 of the article [76] by Deuschel, Giacomin and
Ioffe.
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8.7. Complements and further reading 407

8.7.2 Gradient Gibbs states

As discussed in this chapter, the massless GFF delocalizes in dimensions 1 and 2,
which leads to the absence of any Gibbs measure in the thermodynamic limit in
those two cases.

Nevertheless, we have seen in Exercise 8.7 that, under µ0
Λ;0, the random vector

(ϕ̃i )i∈Λ, where ϕ̃i
def= ϕi −ϕ0, is centered Gaussian with covariance matrix given by

G̃Λ(i , j )
def= GΛ(i , j )−GΛ(i ,0)−GΛ(0, j )+GΛ(0,0) .

It can be shown [209] that, as Λ ↑ Zd , the limit of this quantity is given by the con-
vergent series

G̃(i , j )
def=

∑
n≥0

Pi (Xn = j ,τ0 > n) , (8.60)

where τ0
def= min{n ≥ 0 : Xn = 0}. In particular, the limiting Gaussian field is always

well defined.
More generally, the joint distribution of the gradients ϕi −ϕ j , {i , j } ∈ EZd , re-

mains well defined in all dimensions. It is thus possible to define Gibbs measures
for this collection of random variables, instead of the original random variables
ϕi , i ∈ Zd . This approach was pursued in a systematic way by Funaki and Spohn
in [124], where the reader can find much more information. Other good source are
Funaki’s lecture notes [125] and Sheffield’s thesis [302].

8.7.3 Effective interface models

As mentioned in the text, the Gaussian Free Field onZd , as well as the more general
class of gradient models, are often used as caricatures of the interfaces in more
realistic lattice systems, such as the 3-dimensional Ising model. Such caricatures
are known as effective interface models. They are much simpler to analyze than
the objects they approximate and their analysis yields valuable insights into the
properties of the latter. In particular, they are used to study the effect of various
external potentials or constraints on interfaces. More information on these topics
can be found in the review article [46] by Bricmont, El Mellouki and Fröhlich, and
in the lecture notes by Giacomin [136], Funaki [125] and Velenik [347]. In addition,
the reader would probably also enjoy the older, but classical, review paper [107] by
Fisher, although it only covers one-dimensional effective interface models.

8.7.4 Continuum GFF

In this chapter, we only considered the Gaussian Free Field on the lattice Zd . It
turns out that it is possible to define an analogous model on Rd . The latter ob-
ject plays a crucial role in the analysis of the scaling limit of critical systems in two
dimensions. Good introductions to this topic can be found in the review [303] by
Sheffield and the lecture notes [348] by Werner.

8.7.5 A link to discrete spin systems

We saw in Section 2.5.2 how the Hubbard–Stratonovich transformation can be used
to compute the pressure of the Curie–Weiss model. Let us use the same idea and
explain how discrete spin systems can sometimes be expressed in terms of the GFF.
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408 Chapter 8. The Gaussian Free Field on Zd

The approach is very general but, for simplicity, we only consider an Ising fer-
romagnet with periodic boundary conditions. That is, we work on the torus Tn ,
whose set of vertices is denoted Vn , as in Chapter 3.

Let us thus consider the Ising ferromagnet on Tn , with the following Hamilto-
nian:

HVn ;J,h
def= − 1

2β
∑

i , j∈Vn

Ji jσiσ j −h
∑

i∈Vn

σi .

We will see that an interesting link can be made between the partition function
Zper

Vn ;β,J,h and the GFF, provided that the coupling constants J = (Ji j )i , j∈Vn are well

chosen.

The starting point is the following generalization of (2.20): for any positive def-
inite matrix Σ= (Σ(i , j ))1≤i , j≤N and any vector x = (x1, . . . , xN ) ∈RN ,

exp
[ 1

2

N∑
i , j=1

Σ(i , j )xi x j
]= (

(2π)N detΣ
)−1/2

×
∫ ∞

−∞
dy1 · · ·

∫ ∞

−∞
dyN exp

[− 1
2

N∑
i , j=1

Σ−1(i , j )yi y j
]

exp
[ N∑

i=1
xi yi

]
. (8.61)

(See Exercise B.22.) We will apply this identity to the quadratic part of the Boltz-

mann weight of the ferromagnet introduced above, with xi
def=

√
βσi , Σ(i , j )

def= Ji j .
To establish a correspondence with the GFF, we choose J so that the inverseΣ−1 can
be related to the GFF. Let us therefore take

Ji j
def= Gm;Tn (i , j ) ,

where Gm;Tn (i , j ) denotes is the massive Green function of the symmetric simple
random walk (Xn)n≥0 on Tn , given by

Gm;Tn (i , j )
def=

∑
n≥0

(1+m2)−n−1Pi (Xn = j ) . (8.62)

A straightforward adaptation of the proof of Theorem 8.26 shows that

(Gm;Tn )−1 =− 1
2d∆+m2 .

where ∆= (∆i j )i , j∈Tn denotes the discrete Laplacian on Tn , defined as in (8.16).
Notice that, even though the coupling constants Ji j defined above depend on n

and involve long-range interactions, they converge as n →∞ and decay exponen-
tially fast in ∥ j − i∥1, uniformly in n, as can be seen from (8.62).

With this choice of coupling constants, (8.61) can be written as

exp
[ 1

2β
∑

i , j∈Vn

Ji jσiσ j
]= (

(2π)|Vn | detGm;Tn

)−1/2×

×
∫

exp
[− 1

2

∑
i , j∈Vn

yi (− 1
2d∆i j +m2)y j

]
exp

[
β1/2

∑
i∈Vn

yiσi
] ∏

i∈Vn

dyi ,

where each yi , i ∈ Vn , is integrated over R. Since we recognize the Boltzmann
weight of the massive centered GFF on Tn , we get

exp
[ 1

2β
∑

i , j∈Vn

Ji jσiσ j
]=

〈
exp

[
β1/2

∑
i∈Vn

ϕiσi
]〉GFF,per

Vn ;β,m
.
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We can now perform the summation over configurations in the partition function
of the ferromagnet, which yields

Zper

Vn ;β,J,h = 2|Vn |
〈 ∏

i∈Vn

cosh
(
β1/2ϕi +h

)〉GFF,per

Vn ;m
.

Note that the numerator in the right-hand side corresponds to a massless GFF with
an additional term

∑
i∈Vn W (ϕi ) in the Hamiltonian, where W (·) is an external po-

tential defined by (see Figure 8.7)

W (x)
def= m2

2 x2 − logcosh
(
β1/2x +h

)
. (8.63)

x

W

x

W

Figure 8.7: The external potential W with m = 1 and h = 0. Left: β = 0.5.
Right: β= 2.

More generally, the same argument leads to a similar representation for any
correlation function:

〈σA〉per

Vn ;β,h =
〈∏

i∈A
tanh

(
β1/2ϕi +h

)〉GFF,per

Vn ;W
,

where the latter measure is that of the massless GFF in the external potential W .

In a sense, the above transformation (sometimes called the sine-Gordon trans-
formation) allows us to replace the discrete ±1 spins of the Ising model by the con-
tinuous (and unbounded) spins of a Gaussian Free Field. A trace of the two values
can still be seen in the resulting double-well potential (8.63) to which this field is
submitted whenβ is sufficiently large; see Figure 8.7. Even though we will not make
use of this in the present book, this continuous settings turns out to be very con-
venient when implementing rigorously the renormalization group approach. We
refer to [57] for more information.
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9 Models with Continuous Symmetry

In Chapter 3, we have analyzed the phase transition occurring in the Ising model.
We have seen, in particular, that the change of behavior observed (when h = 0 and
d ≥ 2) as the inverse temperature β crosses the critical value βc = βc(d) was asso-
ciated to the spontaneous breaking of a discrete symmetry: when β < βc, there is
a unique infinite-volume Gibbs measure, invariant under a global spin flip (that
is, interchange of all + and − spins); on the contrary, when β > βc, uniqueness
fails, and we proved the existence of two distinct infinite-volume Gibbs measures
µ+
β,0 and µ−

β,0, which are not invariant under a global spin flip (since 〈σ0〉+β,0 > 0 >
〈σ0〉−β,0).

Our goal in the present chapter is to analyze the effect of the existence of a con-
tinuous symmetry (that is, corresponding to a Lie group) on phase transitions. We
will see that, in one- and two-dimensional models, a global continuous symmetry
is in general never spontaneously broken. In this sense, continuous symmetries are
more robust.

9.1 O(N )-symmetric models

The systems we consider in this chapter are models for which the spins are N -
dimensional unit vectors, living at the vertices of Zd .

Let us thus fix some N ∈N, and define the single-spin space

Ω0
def= {

v ∈RN : ∥v∥2 = 1
}≡SN−1 .

Correspondingly, the set of configurations in a finite setΛ⋐Zd (resp. inZd ) is given
by

ΩΛ
def= ΩΛ0 (resp.Ω=ΩZd

0 ) .

To each vertex i ∈Zd , we associate the random variable Si = (S1
i ,S2

i , . . . ,SN
i ) defined

by

Si (ω)
def= ωi ,

which we call, as usual, the spin at i . We assume that spins interact only with their
nearest-neighbors and, most importantly, that the interaction is invariant under

411
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412 Chapter 9. Models with Continuous Symmetry

simultaneous rotations of all the spins. We can therefore assume that the interac-
tion between two spins located at nearest-neighbor vertices i and j contribute an
amount to the total energy which is a function of their scalar product Si ·S j .

Definition 9.1. Let W : [−1,1] →R. The Hamiltonian of anO(N )-symmetric model
in Λ⋐Zd is defined by

HΛ;β
def= β

∑

{i , j }∈E b
Λ

W (Si ·S j ) . (9.1)

A particularly important class of models is given by the O(N ) models, for which
W (x) =−x:

HΛ;β =−β
∑

{i , j }∈E b
Λ

Si ·S j . (9.2)

With this choice, different values of N then lead to different models, some of which
have their own names. When N = 1, Ω0 = {±e1} can be identified with {±1}, so
that the O(1)-model reduces to the Ising model. The case N = 2 corresponds to the
X Y model, and N = 3 corresponds to the (classical) Heisenberg model.

Given the Hamiltonian (9.1), we can define finite-volume Gibbs distributions
and Gibbs measures in the usual way. We use the measurable structures on ΩΛ
and Ω, denoted respectively FΛ and F , introduced in Section 6.10. The reference
measure for the spin at vertex i is the Lebesgue measure on SN−1, denoted simply
dωi .

Given Λ⋐Zd and η ∈Ω, the Gibbs distribution of the O(N )-symmetric models
in Λ with boundary condition η is the probability measure µη

Λ;β on (Ω,F ) defined

by

∀A ∈F , µ
η

Λ;β(A)
def=

∫

ΩΛ

e−HΛ;β(ωΛηΛc )

Zη
Λ;β

1A(ωΛηΛc )
∏
i∈Λ

dωi ,

where the partition function is given by

Zη
Λ;β

def=
∫

ΩΛ

e−HΛ;β(ωΛηΛc )
∏
i∈Λ

dωi .

As in Chapter 6, we can consider the specification associated to the kernels (A,η) 7→
πΛ(A |η)

def= µ
η

Λ;β(A),Λ⋐Zd , and then denote by G (N ) the set of associated infinite-

volume Gibbs measures. (To lighten the notations, we do not indicate the depen-
dence of G (N ) on the choice of W and β.) Notice that Ω0, and hence Ω, are com-
pact, and so the results of Section 6.10.2 guarantee that the model has at least one
infinite-volume Gibbs measure: G (N ) ̸=∅.

Even though our results below are stated in terms of infinite-volume Gibbs mea-
sures, the estimates in the proofs are actually valid for large finite systems. There-
fore, readers not comfortable with the DLR formalism of Chapter 6 should be able
to understand most of the content of this chapter.

9.1.1 Overview

Inspired by what was done for the Ising model, one of our goals in this chapter will
be to determine whether suitable boundary conditions can lead to orientational
long-range order, that is, whether spins align macroscopically along a preferred
direction, giving rise to a non-zero spontaneous magnetization. For the sake of
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9.1. O(N )-symmetric models 413

Figure 9.1: A configuration of the two-dimensional X Y model with e1 bound-
ary conditions, at high temperature: β= 0.7.

concreteness, one can think of those Gibbs measures obtained by fixing a boundary
condition η and taking the thermodynamic limit:

µ
η

B(n);β
⇒µ .

• Dimensions 1 and 2; N ≥ 2. We will see that, when d = 1 or d = 2, under
any measure µ ∈ G (N ), the distribution µ(Si ∈ ·) of each individual spin Si is
uniform on SN−1; in particular,

〈Si 〉µ = 0 .

Therefore, even in dimension 2 at very low temperature, orientational order
does not occur in O(N )-symmetric models. This is due, as will be seen, to the
existence of order-destroying excitations of arbitrarily low energy (Proposi-
tion 9.7 below). The above will actually be a consequence of a more general
result, the celebrated Mermin–Wagner Theorem (Theorem 9.2).

• Dimension 2; N = 2. Even though there is no orientational long-range or-
der when d = 2, we will see (but not prove) that there is quasi-long-range
order at low temperatures: the 2-point correlation function decays only al-
gebraically with the distance:

〈Si ·S j 〉µ ≈ ∥ j − i∥−C /β
2 ,
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414 Chapter 9. Models with Continuous Symmetry

Figure 9.2: A configuration of the two-dimensional X Y model with e1 bound-
ary conditions, at low temperature: β = 5. In spite of the apparent ordering
of the spins, we shall prove that, in large enough systems, there is no orienta-
tional long-range order at any temperature.

for some C > 0. This is in sharp contrast with d = 1 (for all β≥ 0), or with d ≥
2 at sufficiently high temperatures, where the 2-point correlation functions
decay exponentially.

• Dimensions d ≥ 3; N ≥ 2. It turns out that spontaneous breaking of the
continuous symmetry does indeed occur at low enough temperatures in the
O(N ) models, in dimensions d ≥ 3, as will be discussed in Remark 9.5, and
proved later in Chapter 10 (Theorem 10.25).

Additional information, including some outstanding open problems, can be found
in the complements.

9.2 Absence of continuous symmetry breaking

Symmetries in the study of Gibbs measures were described in Section 6.6. Let
R ∈ SO(N ) be any rotation on SN−1; R can of course be represented as an N × N
orthogonal matrix of determinant 1. We can use R to define a global rotation r on a
configuration ω ∈Ω by

(rω)i
def= Rωi , ∀i ∈Zd .
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9.2. Absence of continuous symmetry breaking 415

A global rotation can also be defined on events A ∈F , by letting rA
def= {rω : ω ∈ A},

as well as on functions and probability measures:

r f (ω)
def= f (r−1ω) , r(µ)(A)

def= µ(r−1 A) .

We shall often write r ∈ SO(N ), meaning that r is a global rotation associated to
some element of SO(N ).

By construction, the Hamiltonian (9.1) is invariant under global rotations of the
spins: for all r ∈ SO(N ),

HΛ;β(rω) =HΛ;β(ω) ∀ω ∈Ω . (9.3)

Therefore, as a consequence of Theorem 6.45, G (N ) is invariant under r: if µ ∈
G (N ), then r(µ) ∈G (N ). What Theorem 6.45 does not say is whether r(µ) coincides
with µ. A remarkable fact is that this is necessarily the case when d = 1,2.

Theorem 9.2 (Mermin–Wagner Theorem). Assume that N ≥ 2, and that W is twice
continuously differentiable. Then, when d = 1 or 2, all infinite-volume Gibbs mea-
sures are invariant under the action of SO(N ): for all µ ∈G (N ),

r(µ) =µ, ∀r ∈ SO(N ) .

Of course, the claim is wrong when N = 1, since in this case the global spin flip
symmetry can be broken at low temperature in d = 2. Let us make a few important
comments.

Theorem 9.2 implies that, in an infinite system whose equilibrium properties
are described by a Gibbs measureµ ∈G (N ), the distribution of each individual spin
Si is uniform on SN−1. Namely, let I ⊂SN−1; for any r ∈ SO(N ),

µ(Si ∈ I ) = r(µ)(Si ∈ I ) =µ(Si ∈ r−1(I )) .

As a consequence, spontaneous magnetization (that is, some global orientation ob-
served at the macroscopic level) cannot be observed in low-dimensional systems
with continuous symmetries, even at very low temperature:

〈S0〉µ = 0 , (d = 1,2) . (9.4)

The above is in sharp contrast with the symmetry breaking observed in the two-
dimensional Ising model at low temperature. There, when h = 0, the Hamiltonian
was invariant under the discrete global spin flip, τg.s.f., but τg.s.f.(µ+

β,0) = µ−
β,0 ̸= µ+

β,0
when β>βc(d).

Although this was not stated explicitly above, the SO(N )-invariance of the infin-
ite-volume Gibbs measures also implies absence of orientational long-range order.
Namely, let k ∈Zd be fixed, far from the origin. Let n be large, but small enough to
have k ∈B(n)c (for example: n = ∥k∥∞−1). If µ ∈G (N ), then the DLR compatibility
conditions µ=µπΛ, ∀Λ⋐Zd , imply that

〈S0 ·Sk〉µ =
∫
〈S0 ·Sk〉ηB(n);β

µ(dη) =
∫
〈S0〉ηB(n);β

·Sk (η)µ(dη) . (9.5)

We shall actually obtain a quantitative version of (9.4) in Proposition 9.7, a con-
sequence of which will be that limn→∞〈S0〉ηB(n);β

= 0, uniformly in the boundary

condition η (see Exercise 9.5). Therefore, by dominated convergence,

〈S0 ·Sk〉µ→ 0 when ∥k∥∞ →∞ .
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416 Chapter 9. Models with Continuous Symmetry

Exercise 9.1. Prove that this also implies that

lim
n→∞〈∥mB(n)∥2

2 〉µ = 0,

where mB(n)
def= |B(n)|−1 ∑

i∈B(n) Si is the magnetization density in B(n).

Remark 9.3. As explained above, Theorem 9.2 implies the absence of spontaneous
magnetization and long-range order. Nevertheless, this theorem does not imply
that there is a unique infinite-volume Gibbs measure [1]. ⋄
Remark 9.4. It is interesting to see what happens if one considers perturbations
of the above models in which the continuous symmetry is explicitly broken. As
an example, consider the anisotropic X Y model, which has the same single-spin
space as the X Y model, but a more general Hamiltonian

HΛ;β,α =−β
∑

{i , j }∈E b
Λ

{
S1

i S1
j +αS2

i S2
j

}

depending on an anisotropy parameterα ∈ [0,1]. Observe that this Hamiltonian is
SO(2)-invariant only when α= 1, in which case one recovers the usual X Y model.

It turns out that there is always orientational long-range order at sufficiently low
temperatures when α ∈ [0,1) and d ≥ 2 (in d = 1, uniqueness always holds thanks
to a suitable generalization of Theorem 6.40). Indeed, using reflection positivity, we
will prove in Theorem 10.18 that, for any α ∈ [0,1) and all β sufficiently large, there
exist at least two infinite-volume Gibbs measures µ+ and µ− such that

〈S0 ·e1〉µ+ > 0 > 〈S0 ·e1〉µ− .

This shows that having continuous spins is not sufficient to prevent orientational
long-range order in low dimensions: the presence of a continuous symmetry is es-
sential. ⋄
Remark 9.5. Theorem 9.2 is restricted to dimensions 1 and 2. Let us briefly mention
what happens in higher dimensions, restricting the discussion to the X Y model: as
soon as d ≥ 3, for all β sufficiently large, there exist a number m(β) > 0 and a family
of extremal infinite-volume Gibbs measures (µψ

β
)−π<ψ≤π such that

〈S0〉ψβ = m(β) (cosψ, sinψ) .

The proof of this claim (actually, for all values of N ) will be given in Chapter 10.
Additional information on the role of the dimension, as well as on the cor-

responding results for O(N ) models with more general (not necessarily nearest-
neighbor) interactions will be provided in Section 9.6.2. ⋄
Remark 9.6. Both the proof of Theorem 9.2 and the heuristic argument below rely
in a seemingly crucial way on the smoothness of the interaction W . The reader
might thus wonder whether the latter is a necessary condition. It turns out that
Theorem 9.2 can be extended to all piecewise continuous interactions W ; see Sec-
tion 9.6.2. ⋄

9.2.1 Heuristic argument

Before turning to the proof of Theorem 9.2, let us emphasize a crucial difference
between continuous and discrete spin systems. For this heuristic discussion, W
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9.2. Absence of continuous symmetry breaking 417

Figure 9.3: The spin wave ωSW (see (9.6)), which flips the spin at the center of
B(n), at a cost that can be made arbitrarily small by taking n large enough.

can be any twice continuously differentiable function, but we only consider the
case N = 2 and, mostly, d = 2.

Let us therefore consider a two-dimensional O(2)-symmetric model in the box
B(n), with boundary condition ηi = e1 = (1,0) for all i ∈B(n)c. If we assume that W
is decreasing on [−1,1], then the ground state (that is, the configuration with the
lowest energy) is the one that agrees everywhere with the boundary condition. We
denote it by ωe1 : ωe1

i = e1 for all i . We would like to determine the energetic cost of
flipping the spin in the middle of the box. More precisely: among all configurations
ω that agree with the boundary condition outside B(n) but in which the spin at the
origin is flipped, ω0 =−e1, which one minimizes the Hamiltonian, and what is the
corresponding value of the energy?

Remember that for the two-dimensional Ising model (O(N ) with N = 1), the en-
ergetic cost required to flip the spin at the center of the box, with + boundary con-
dition, is at least 8β (since the shortest Peierls contour surrounding the origin has
length 4), uniformly in the size of the box. Due to the presence of a continuous sym-
metry, the situation is radically different for the two-dimensional O(2)-symmetric
model: by slowly rotating the spins between the boundary and the center of the
box, the spin at the origin can be flipped at an arbitrarily low cost (see Figure 9.3).

To understand this quantitatively, let us describe each configuration by the fam-
ily (ϑi )i∈Z2 , where ϑi ∈ (−π,π] is the angle such that Si = (cosϑi , sinϑi ). Let us also
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418 Chapter 9. Models with Continuous Symmetry

write V (θ) =W (cos(θ)), so that

HB(n);β =β
∑

{i , j }∈E b
B(n)

W (Si ·S j ) =β
∑

{i , j }∈E b
B(n)

V (ϑ j −ϑi ) .

Let us consider the configuration ωSW
i = (cosθSW

i , sinθSW
i ), where

θSW
i

def=
(
1− log(1+∥i∥∞)

log(1+n)

)
π, i ∈B(n) , (9.6)

and θSW
i = 0 for i ̸∈ B(n) (see Figure 9.3). Clearly, the only nonzero contributions

to HB(n);β(ωSW) are those due to pairs of neighboring vertices i and j such that
∥i∥∞ = ∥ j∥∞−1. For each such pair,

θSW
i −θSW

j =π
log(1+ 1

∥ j∥∞ )

log(1+n)
≤ π

log(1+n)

1

∥ j∥∞
.

Therefore, if n is large, each term V (θSW
i −θSW

j ) can be estimated using a Taylor ex-

pansion of V at θ = 0. Moreover, since V is twice continuously differentiable, there
exists a constant C such that

sup
θ∈(−π,π]

V ′′(θ) ≤C , (9.7)

and we have, since V ′(0) = 0,

V (θSW
i −θSW

j ) ≤V (0)+ 1
2C (θSW

i −θSW
j )2 ≤V (0)+ Cπ2

2
(
log(1+n)

)2

1

∥ j∥2
∞

.

Summing over the contributing pairs of neighboring vertices i and j ,

0 ≤HB(n)(ω
SW)−HB(n)(ω

e1 ) ≤ Cβπ2

2
(
log(1+n)

)2

n+1∑
r=1

4(2r −1)
1

r 2 ≤ 8Cβπ2

log(1+n)
,

which indeed tends to 0 when n →∞.

It is the existence of configurations like ωSW, representing collective excitations
of arbitrarily low energy, called spin waves, which renders impossible the appli-
cation of a naive Peierls-type argument. We shall see that spin waves are the key
ingredient in the proof of the Mermin–Wagner Theorem, given in Section 9.2.2.

In the above argument, we only flipped the spin located at the center of the box.
It is easy to check that similar spin waves can also be constructed if one wants to
flip all the spins in an extended region.

Exercise 9.2. (d = 2) Adapt the previous computation to show that the lowest energy
required to flip all the spins in a smaller box B(ℓ) ⊂B(n) goes to zero when n →∞.

Let us now briefly discuss what happens in dimensions d ̸= 2. First, in the next
exercise, the reader is encouraged to check that one can also construct a spin wave
as above in dimension 1 (actually, one can take a much simpler one in that case).

Exercise 9.3. Construct a suitable spin wave for the one-dimensional O(2)-
symmetric model.
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9.2. Absence of continuous symmetry breaking 419

In higher dimensions, d ≥ 3, it is not possible anymore to repeat the argument given
above. In the following exercise (see also Lemma 9.8), the reader is asked to show
that the second-order term in the Taylor expansion remains bounded away from
zero as n →∞.

Exercise 9.4. Let f :Z≥0 →R be such that f (r ) = 1 if 0 ≤ r ≤ ℓ and f (r ) = 0 if r ≥ n.
Show that ∑

{i , j }∈E b
B(n)

(
f (∥i∥∞)− f (∥ j∥∞)

)2 ≥
{ ∑

k≥ℓ
k−(d−1)

}−1
.

Conclude that, in contrast to the case d = 2 (Exercise 9.2), the minimal energy re-
quired to flip all spins in the box B(ℓ) does not tend to zero when n →∞ when d ≥ 3
(it is not even bounded in ℓ). Hint: To derive the inequality, use the Cauchy–Schwarz
inequality for functions g : {0, . . . ,n} →R.

9.2.2 Proof of the Mermin–Wagner Theorem for N = 2

We first give a proof of the result in the case N = 2, and then use it to address the

general case in Section 9.2.3. We write Si = (cosϑi , sinϑi ) and set V (θ)
def= W (cos(θ)),

as in the heuristic argument above.

Let µ ∈G (2) and let rψ ∈ SO(2) denote the rotation of angleψ ∈ (−π,π]. To show
that rψ(µ) =µ, we shall show that 〈 f 〉µ = 〈rψ f 〉µ for each local bounded measurable
function f . But, by the DLR compatibility conditions, we can write, for anyΛ⋐Zd ,

|〈 f 〉µ−〈rψ f 〉µ| =
∣∣∣
∫ {〈 f 〉η

Λ;β−〈rψ f 〉η
Λ;β

}
µ(dη)

∣∣∣≤
∫ ∣∣〈 f 〉η

Λ;β−〈rψ f 〉η
Λ;β

∣∣µ(dη) . (9.8)

We study the differences |〈 f 〉η
Λ;β−〈rψ f 〉η

Λ;β| quantitatively in the following proposi-

tion. In view of (9.8), Theorem 9.2 is a direct consequence of the following proposi-
tion:

Proposition 9.7. Assume that d = 1 or d = 2 and fix N = 2. Under the hypotheses of
Theorem 9.2, there exist constants c1,c2 such that, for any boundary condition η ∈Ω,
any inverse temperature β<∞, any angle ψ ∈ (−π,π] and any ℓ ∈Z≥0,

∣∣〈 f 〉η
B(n);β

−〈rψ f 〉η
B(n);β

∣∣≤β1/2|ψ|∥ f ∥∞×




c1p
n−ℓ if d = 1,

c2
p
ℓp

log(n−ℓ)
if d = 2,

(9.9)

for all n > ℓ and all bounded functions f such that supp( f ) ⊂B(ℓ).

In the sequel, we will use the notation Tn(1)
def= p

n, Tn(2)
def=

√
logn when we want

to treat the cases d = 1 and d = 2 simultaneously.

Exercise 9.5. Deduce from (9.9) that, under µη
B(n);β

, the distribution of ϑ0 converges

to the uniform distribution on (−π,π]. In particular, for any η,

lim
n→∞

∥∥〈S0〉ηB(n);β

∥∥
2 = 0.

Most of the proof of the bounds (9.9) does not depend on the shape of the sys-
tem considered. So, let us first consider an arbitrary connected Λ, which will later
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420 Chapter 9. Models with Continuous Symmetry

be taken to be the box B(n). Our starting point is to express

〈rψ f 〉η
Λ;β = (Zη

Λ;β)−1
∫

f (r−ψω)e−HΛ;β(ωΛηΛc )
∏
i∈Λ

dωi

as the expectation of f under a modified distribution.
We letΛ and ℓ be large enough so thatΛ⊃B(ℓ) ⊃ supp( f ):

Λ

B(ℓ)

f

Let Ψ : Zd → (−π,π] satisfy Ψi =ψ for all i ∈ B(ℓ), and Ψi = 0 for all i ̸∈ Λ. An
explicit choice for Ψ will be made later. Let tΨ :Ω→Ω denote the transformation
under which

ϑi (tΨω) =ϑi (ω)+Ψi , ∀ω ∈Ω .

That is, tΨ acts as the identity on spins located outside Λ and as the rotation rψ
on spins located inside B(ℓ). Observe that t−Ψ = t−1

Ψ . Now, since t−Ψω and r−ψω
coincide on supp( f ) ⊂B(ℓ),

∫
f (r−ψω)e−HΛ;β(ωΛηΛc )

∏
i∈Λ

dωi =
∫

f (t−Ψω)e−HΛ;β(ωΛηΛc )
∏
i∈Λ

dωi

=
∫

f (ω)e−HΛ;β(tΨ(ωΛηΛc ))
∏
i∈Λ

dωi .

In the second equality, we used the fact that the mapping ωΛ 7→ (t−Ψω)Λ has a Ja-

cobian equal to 1. Let 〈·〉η,Ψ
Λ;β denote the expectation under the probability measure

µ
η;Ψ
Λ;β(A)

def= (Zη;Ψ
Λ;β)−1

∫

ΩΛ

e−HΛ;β(tΨ(ωΛηΛc )) 1A(ωΛηΛc )
∏
i∈Λ

dωi , A ∈F .

Observe that, for the same reasons as above (the Jacobian being equal to 1 and the
boundary condition being preserved by tΨ), the partition function is actually left
unchanged:

Zη;Ψ
Λ;β = Zη

Λ;β . (9.10)

We can then write 〈rψ f 〉η
Λ;β = 〈 f 〉η,Ψ

Λ;β , and therefore

∣∣〈 f 〉η
Λ;β−〈rψ f 〉η

Λ;β

∣∣=
∣∣〈 f 〉η

Λ;β−〈 f 〉η;Ψ
Λ;β

∣∣ ,

which reduces the problem to comparing the expectation of f under the measures

µ
η

Λ;β and µη;Ψ
Λ;β .
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9.2. Absence of continuous symmetry breaking 421

The measures µη
Λ;β and µ

η;Ψ
Λ;β only differ by the “addition” of the spin wave Ψ.

However, we saw in the Section 9.2.1 that the latter can be chosen such that its ener-
getic cost is arbitrarily small. One would thus expect such excitations to proliferate
in the system, and thus the two Gibbs distributions to be “very close” to each other. ⋄

One convenient way of measuring the “closeness” of two measures µ,ν is the
relative entropy

h(µ |ν)
def=

{
〈dµ

dν log dµ
dν 〉ν, if µ≪ ν,

∞ otherwise,

where dµ
dν is the Radon–Nikodym derivative of µ with respect to ν. The relevant

properties of the relative entropy can be found in Appendix B.12. Particularly well-
suited to our needs, Pinsker’s inequality, see Lemma B.67, states that, for any mea-
surable function f with ∥ f ∥∞ ≤ 1,

|〈 f 〉µ−〈 f 〉ν| ≤
√

2h(µ |ν) .

In our case, thanks to (9.10),

dµη
Λ;β

dµη,Ψ
Λ;β

(ω) = eHΛ;β(tΨω)−HΛ;β(ω) .

Using Pinsker’s inequality,

|〈 f 〉η
Λ;β−〈 f 〉η,Ψ

Λ;β| ≤ ∥ f ∥∞

√
2h(µη

Λ;β |µ
η;Ψ
Λ;β) (9.11)

= ∥ f ∥∞

√
2
〈
HΛ;β ◦ tΨ−HΛ;β

〉η
Λ;β .

A second-order Taylor expansion yields, using again (9.7),

〈
HΛ;β ◦ tΨ−HΛ;β

〉η
Λ;β =β

∑

{i , j }∈E b
Λ

〈
V

(
ϑ j −ϑi +Ψ j −Ψi

)−V
(
ϑ j −ϑi

)〉η
Λ;β

≤β
∑

{i , j }∈E b
Λ

{〈
V ′(ϑ j −ϑi

)〉η
Λ;β(Ψ j −Ψi )+ C

2 (Ψ j −Ψi )2
}

.

Note the parallel with the heuristic discussion of Section 9.2.1. There, however, the
first-order terms trivially vanished. We need an alternative way to see that the same
occurs here, since the contribution of these terms would be too large to prove our
claim. In order to get rid of them, we use the following trick: since the relative
entropy is always nonnegative (Lemma B.65), we can write

h(µη
Λ;β |µ

η;Ψ
Λ;β) ≤ h(µη

Λ;β |µ
η;Ψ
Λ;β)+h(µη

Λ;β |µ
η;−Ψ
Λ;β ). (9.12)

The second term in the right-hand side of the latter expression can be treated as
above, and gives rise to the same first-order terms but with the opposite sign. These

thus cancel, and we are left with (remember the notation (∇Ψ)i j
def=Ψ j −Ψi )

h(µη
Λ;β |µ

η;Ψ
Λ;β) ≤Cβ

∑

{i , j }∈E b
Λ

(∇Ψ)2
i j . (9.13)
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422 Chapter 9. Models with Continuous Symmetry

Figure 9.4: The minimizer of the Dirichlet energy given by (9.14). In this pic-
ture,Λ=B(30) and ℓ= 3.

We will now choose the values Ψi , i ∈ Λ \ B(ℓ). One possible choice is to take
Λ=B(n), n > ℓ, and to take for Ψ the spin wave introduced in Exercise 9.2. Never-
theless, since it is instructive, we shall provide a more detailed study of the problem
of minimizing the above sum under constraints. This will also shed some light on
the role played by the dimension d .

Define the Dirichlet energy (inΛ\B(ℓ)) of a functionΨ :Zd →R by

E (Ψ)
def= 1

2

∑

{i , j }∈E b
Λ\B(ℓ)

(∇Ψ)2
i j .

We will determine the minimizer of E (Ψ) among all functions Ψ such that Ψ ≡ ψ

on B(ℓ) and Ψ ≡ 0 on Λc. As we shall see, in dimensions 1 and 2, the minimum
value of that minimizer tends to zero whenΛ ↑Zd .

Lemma 9.8. The Dirichlet energy possesses a unique minimizer among all functions
u : Zd → R satisfying ui = 0 for all i ̸∈Λ, and ui = 1 for all i ∈B(ℓ). This minimizer
is given by (see Figure 9.4)

u∗
i

def= Pi
(
X enters B(ℓ) before exitingΛ

)
, (9.14)

where X = (Xk )k≥0 is the symmetric simple random walk on Zd and Pi (X0 = i ) = 1.
Moreover,

E (u∗) = d
∑

j∈∂intB(ℓ)

P j
(
X exitsΛ before returning to B(ℓ)

)
. (9.15)

Proof of Lemma 9.8: Let us first characterize the critical points of E . Namely, as-
sume u is a critical point of E , satisfying the constraints. Then we must have

d

ds
E (u + sδ)

∣∣∣
s=0

= 0, (9.16)

for all perturbations δ :Zd →R such that δi = 0 for all i ̸∈Λ\B(ℓ). However, a simple
computation yields

d

ds
E (u + sδ)

∣∣∣
s=0

=
∑

{i , j }∈E b
Λ\B(ℓ)

(∇u)i j (∇δ)i j ,
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and, by the Discrete Green Identity (8.14),
∑

{i , j }∈E b
Λ\B(ℓ)

(∇u)i j (∇δ)i j =−
∑

i∈Λ\B(ℓ)

δi (∆u)i +
∑

i∈Λ\B(ℓ)
j ̸∈Λ\B(ℓ), j∼i

δ j (∇u)i j . (9.17)

The second sum in the right-hand side vanishes since δ j = 0 outside Λ \B(ℓ). In
order for the first sum to be equal to zero for all δ, ∆u must vanish everywhere on
Λ \B(ℓ). This shows that the minimizer we are after is harmonic on Λ \B(ℓ). We
know from Lemma 8.15 that the solution to the Dirichlet problem on Λ \B(ℓ) with
boundary condition η is unique and given by

u∗
i

def= Ei [ηXτ(Λ\B(ℓ))c
] , (9.18)

where Pi is the law of the simple random walk on Zd with initial condition X0 = i .
Using our boundary condition (ηi = 1 on B(ℓ), ηi = 0 on Λc), we easily write u∗

i as
in (9.14).

We still have to check that u∗ is actually a minimizer of the Dirichlet energy. But
this follows from (9.17), since, for all δ as above, the latter implies that E (u∗+δ) =
E (u∗)+E (δ) ≥ E (u∗).

Finally, using now (9.17) with u = δ= u∗,

E (u∗) = 1
2

∑
i∈Λ\B(ℓ)

∑
j∈B(ℓ), j∼i

(u∗
j −u∗

i )

= 1
2

∑
j∈B(ℓ)

∑
i∈∂extB(ℓ)

i∼ j

Pi
(
X exitsΛ before hitting B(ℓ)

)

= 1
2

∑
j∈B(ℓ)

∑
i∼ j

Pi
(
X exitsΛ before hitting B(ℓ)

)

= d
∑

j∈∂intB(ℓ)

P j
(
X exitsΛ before returning to B(ℓ)

)
,

where we used the Markov property for the fourth equality.

We can now complete the proof of the Mermin–Wagner Theorem for N = 2:

Proof of Proposition 9.7: TakeΛ=B(n). Let u∗ be the minimizer (9.18) and setΨ=
ψu∗. Observe that this choice of Ψ has all the required properties and that E (Ψ) =
ψ2E (u∗). Using (9.11) and (9.13), we thus have

∣∣〈 f 〉η
B(n);β

−〈rψ f 〉η
B(n);β

∣∣≤ ∥ f ∥∞

√
4Cβψ2E (u∗) .

Since

P j
(
X exits B(n) before returning to B(ℓ)

)

≤P j
(
X exits B(n −ℓ)+ j before returning to j

)

=P0
(
X exits B(n −ℓ) before returning to 0

)
,

we finally get

∣∣〈 f 〉η
B(n);β

−〈rψ f 〉η
B(n);β

∣∣≤ ∥ f ∥∞
√

4C dβψ2 |∂intB(ℓ)|

×P0
(
X exits B(n −ℓ) before returning to 0

)1/2 .

In dimensions d = 1 and d = 2, recurrence of the symmetric simple random walk
implies that the latter probability goes to zero as n → ∞. The rate at which this
occurs is given in Theorem B.74.
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9.2.3 Proof of the Mermin–Wagner theorem for N ≥ 3

To prove Theorem 9.2 when N ≥ 3, we essentially reduce the problem to the case
N = 2. The main observation is that, given an arbitrary rotation R ∈ SO(N ), there
exists an orthonormal basis, an integer n ≤ N /2 and n numbers ψi ∈ (−π,π], such
that R can be represented as a block diagonal matrix of the following form [2]:




M(ψ1)
M(ψ2)

. . .
M(ψn)

I N−2n




,

where I N−2n is the identity matrix of dimension N − 2n, and the matrix M(ψ) is
given by

M(ψ) =
(

cosψ −sinψ
sinψ cosψ

)
.

In particular, R is the composition of n two-dimensional rotations. Therefore, it
suffices to prove that any infinite-volume Gibbs measure µ is invariant under such
a rotation. This can be achieved almost exactly as was done in the case N = 2, as
we briefly explain now.

In view of the above, we can assume without loss of generality that R has the
following block diagonal matrix representation

(
M(ψ) 0

0 I N−2

)
,

for some−π<ψ≤π. Let r be the global rotation associated to R. Since r only affects
non-trivially the first two components S1

i and S2
i of the spins Si , we introduce the

random variables ri and ϑi , i ∈Zd , such that

S1
i = ri cosϑi , S2

i = ri sinϑi .

(Notice that ri > 0 almost surely, so that ϑi is almost surely well defined.)
As in the case N = 2, we consider an applicationΨ :Zd → (−π,π] such thatΨi =

ψ for all i ∈B(ℓ), andΨi = 0 for all i ̸∈B(n), and let tΨ :Ω→Ωbe the transformation
such that ϑi (tΨω) =ϑi (ω)+Ψi for all configurations ω ∈Ω.

From this point on, the proof is identical to the one given in Section 9.2.2. The
only thing to check is that the relative entropy estimate still works in the same way.
But W (Si · S j ) is actually a function of ϑ j −ϑi , ri , r j , and the components Sl

i ,Sl
j

with l ≥ 3. Since all these quantities except the first one remain constant under
the action of tΨ, and since the first one becomes ϑ j −ϑi +Ψ j −Ψi , the conclusion
follows exactly as before.

9.3 Digression on gradient models

Before turning to the study of correlations in O(N )-symmetric models, we take ad-
vantage of the technique developed in the previous section, to take a new look at
the gradient models of Chapter 8.

We proved in Theorem 8.19 that the massless GFF possesses no infinite-volume
Gibbs measures in dimensions 1 and 2, a consequence of the divergence of the
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9.3. Digression on gradient models 425

variance of the field in the thermodynamic limit. Our aim here is to explain how
this divergence can actually be seen as resulting from the presence of a continuous
symmetry at the level of the Hamiltonian. As a by-product, this will allow us to ex-
tend the proof of non-existence of infinite-volume Gibbs measures in dimensions
1 and 2 to a rather large class of models. So, only for this section, we switch to the
models and notations of Chapter 8. In particular, spins take their values in R, and

Ω now represents RZ
d

.

Remember that gradient models have Hamiltonians of the form

HΛ =
∑

{i , j }∈E b
Λ

V (ϕ j −ϕi ),

where the inverse temperature has been included in V :R→R≥0. One must assume
that V increases fast enough at infinity to make the finite-volume Gibbs measure
well defined (that is, to make the partition function finite). The massless GFF cor-
responds to taking V (x) = 1

4d x2.
Let t ∈R, and consider the transformation vt :Ω→Ω defined by

(vtω)i
def= ωi − t .

Since the interaction, by definition, depends only on the gradients ω j −ωi ,

HΛ(vtω) =HΛ(ω), ∀t ∈R.

Of course, the setting here differs from the one we studied earlier in this chap-
ter, in particular because the transformation group now is non-compact (it is ac-
tually isomorphic to (R,+)). Let us assume for a moment that an analogue of the
Mermin–Wagner theorem still applies in the present setting. Suppose also that µ is
an infinite-volume Gibbs measure. We would then conclude that the distribution of
ϕ0 under µ should be uniform over R, but then it would not be a probability distribu-
tion. This contradiction would show that such an infinite-volume Gibbs measure µ
cannot exist! ⋄

We will now show how the above can be turned into a rigorous argument. In
fact, we will obtain (rather good) lower bounds on fluctuations for finite-volume
Gibbs distributions:

Theorem 9.9. (d = 1,2) Consider the gradient model introduced above, with V :
R→ R≥0 even, twice differentiable, satisfying V (0) = 0 and supx∈RV ′′(x) < C < ∞.
Then there exists a constant c > 0 such that, for any boundary condition η, the fol-
lowing holds: for all K > 0, when n is large enough,

µ
η

B(n)

(|ϕ0| > K
)≥

{
1
c exp{−c C K 2/n} if d = 1,
1
c exp{−c C K 2/logn} if d = 2.

Exercise 9.6. Using Theorem 9.9, show that there exist no Gibbs measures for such
gradient models in d = 1,2. Hint: Argue as in the proof of Theorem 8.19.

Proof of Theorem 9.9: We assume that µη
B(n)

(ϕ0 > 0) ≥ 1
2 (if this fails, then consider

the boundary condition −η). Let Tn(d) be defined as in Exercise 9.5. To study
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µ
η

B(n)
(|ϕ0| > K ), we changeµη

B(n)
into a new measure under which the event is likely

to occur. Namely, let Ψ : Zd → R be such that Ψ0 = K , and Ψi = 0 when i ̸∈ B(n).

Let then vΨ :Ω→Ω be defined by (vΨω)i
def= ωi −Ψi . Let us consider the following

deformed probability measure:

µ
η;Ψ
B(n)

(A)
def= µ

η

B(n)
(vΨA), ∀A ∈F .

Under this new measure, the event we are considering has probability

µ
η;Ψ
B(n)

(|ϕ0| > K
)≥µη;Ψ

B(n)

(
ϕ0 > K

)=µη
B(n)

(
ϕ0 > 0

)≥ 1
2 . (9.19)

Then, the probability of the same event under the original measure can be esti-
mated by using the relative entropy inequality of Lemma B.68. The latter allows to
compare the probability of an event A under two different (non-singular) probabil-
ity measures µ,ν:

µ(A) ≥ ν(A)exp

(
−h(ν |µ)+e−1

ν(A)

)
.

Together with (9.19), this gives in our case:

µ
η

B(n)

(|ϕ0| > K
)≥ 1

2 exp
{−2

(
h(µη;Ψ

B(n)
|µη

B(n)
)+e−1)} .

To conclude, we must now choose Ψ so as to bound h(µη;Ψ
B(n)

|µη
B(n)

) uniformly in n.
Proceeding as in the proof of Theorem 9.7, we obtain

h(µη;Ψ
B(n)

|µη
B(n)

) ≤C
∑

{i , j }∈E b
B(n)

(∇Ψ)2
i j = 2CE (Ψ) .

Lemma 9.8 thus implies that the choice ofΨ that minimizes E is

Ψi = K Pi (X hits 0 before exiting B(n)) .

Moreover, for this choice ofΨ, it follows from (9.15) that

E (Ψ) = 1
2 K 2

∑
i∼0
Pi (X exits B(n) before hitting 0)

= dK 2P0(X exits B(n) before returning to 0) .

Since the latter probability is of order Tn(d)−2 (Theorem B.74), this concludes the
proof.

9.4 Decay of correlations

We have already seen the following consequence of Theorem 9.2: for any µ ∈ G (2),
there is no orientational long-range order in dimensions 1 and 2:

〈Si ·S j 〉µ→ 0, ∥ j − i∥2 →∞ .

The estimates in the proof of Proposition 9.7 can be used to provide some informa-
tion on the speed at which these correlations decay to zero. Namely, using (9.5) and
Exercise 9.5 with n = ∥ j − i∥∞−1, one obtains the upper bound

∣∣〈Si ·S j 〉µ
∣∣≤





Cp
∥ j−i∥∞

in d = 1,

Cp
log∥ j−i∥∞

in d = 2.

Unfortunately, these bounds are far from being optimal. In the next sections, we
discuss various improvements.
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9.4. Decay of correlations 427

9.4.1 One-dimensional models

For one-dimensional models, it can actually be proved that the 2-point function
decays exponentially fast in ∥ j − i∥∞ for all β<∞. In this section, we will prove this
result for O(N ) models.

There are several ways of obtaining this result; we will proceed by comparison
with the Ising model, for which this issue has already been considered in Chapter 3.
The main result we will use is the following simple inequality between 2-point func-
tions in the O(N ) and the Ising models.

Theorem 9.10. For any d ≥ 1, any N ≥ 1, any β≥ 0, any Gibbs measureµ of theO(N )
model at inverse temperature β on Zd ,

|〈S0 ·Si 〉µ| ≤ N 〈σ0σi 〉+,Ising
β,0 ,

where the expectation in the right-hand side is with respect to the Gibbs measure µ+
β,0

of the Ising model on Zd at inverse temperature β and h = 0.

Proof. Let n be such that {0, i } ⊂B(n). By the DLR compatibility conditions,

〈S0 ·Si 〉µ =
〈〈S0 ·Si 〉·B(n)

〉
µ =

N∑
ℓ=1

〈〈Sℓ0Sℓi 〉·B(n)

〉
µ .

It is thus sufficient to prove that

|〈S1
0S1

i 〉
η

B(n)
| ≤ 〈σ0σi 〉+,Ising

β,0 ,

for any boundary condition η.

Let σ j
def= S1

j /|S1
j | ∈ {±1} (of course, S1

j ̸= 0, for all j ∈B(n), almost surely). Since

S1
j = |S1

j |σ j =
{

1−
N∑
ℓ=2

(Sℓj )2
}1/2

σ j ,

conditionally on the values of S2
j , . . . ,SN

j , all the randomness in S1
j is contained in

the sign σ j . Introducing the σ-algebra F ̸=1
B(n)

def= σ
{
Sℓj : j ∈B(n),ℓ ̸= 1

}
, we can thus

write

〈S1
0S1

i 〉
η

B(n)
= 〈〈

S1
0S1

i

∣∣ F ̸=1
B(n)

〉η
B(n)

〉η
B(n)

= 〈|S1
0| |S1

i |
〈
σ0σi

∣∣ F ̸=1
B(n)

〉η
B(n)

〉η
B(n)

.

Observe now that the joint distribution of the random variables (σ j ) j∈B(n) is given
by an inhomogeneous Ising model in B(n), with Hamiltonian

HB(n);J
def= −

∑

{u,v}∈E b
B(n)

Juvσuσv ,

where the coupling constants are given by Juv
def= β|S1

u | |S1
v | and the boundary con-

dition by η̂ = (η1
j /|η1

j |) j∈Zd . Since 0 ≤ Juv ≤ β, it follows from Exercise 3.31 that,

almost surely,
〈
σ0σi

∣∣F ̸=1
B(n)

〉η
B(n)

= 〈σ0σi 〉η̂,Ising
B(n);J

≤ 〈σ0σi 〉+,Ising
B(n);β,0

.

For the lower bound, set J̃0 j =−J0 j for all j ∼ 0 and J̃uv = Juv for all other pairs and

use 〈σ0σi 〉η̂,Ising
B(n);J

=−〈σ0σi 〉η̂,Ising
B(n);J̃

,≥−〈σ0σi 〉+,Ising
B(n);β,0

as before.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

428 Chapter 9. Models with Continuous Symmetry

Applying this lemma in dimension 1, we immediately deduce the desired estimate
from Exercise 3.25.

Corollary 9.11. Let µ be the unique Gibbs measure of the O(N ) model on Z. Then,
for any 0 ≤β<∞,

|〈S0 ·Si 〉µ| ≤ N (tanhβ)|i | .

Alternatively, one can compute explicitly the 2-point function, by integrating
one spin at a time.

Exercise 9.7. Consider the one-dimensional X Y model at inverse temperatureβ. Let
µ be its unique Gibbs measure. Compute the pressure and the correlation function
〈S0 ·Si 〉µ in terms of the modified Bessel functions of the first kind:

In(x)
def= 1

π

∫ π

0
ex cos t cos(nt )dt .

Hint: Use free boundary conditions.

9.4.2 Two-dimensional models

We investigate now whether it is also possible to improve the estimate in dimen-
sion 2. To keep the matter as simple as possible, we only consider the X Y model,
although similar arguments apply for a much larger class of two-dimensional mod-
els, as described in Section 9.6.2.

Heuristic argument

Let us start with some heuristic considerations, which lead to a conjecture on the
rate at which 〈Si ·S j 〉µ should decrease to 0 at low temperature.

As before, we write the spin at i as Si = (cosϑi , sinϑi ). We are interested in the
asymptotic behavior of

〈Si ·S j 〉e1
Λ;β = 〈cos(ϑ j −ϑi )〉e1

Λ;β = 〈e i(ϑ j −ϑi )〉e1
Λ;β ,

where the expectation is taken with boundary condition η ≡ e1; the last identity
relies on the symmetry, which makes the imaginary part vanish.

At very low temperatures, most neighboring spins are typically nearly aligned,
|ϑi −ϑ j |≪ 1. In this regime, it makes sense to approximate the interaction term in
the Hamiltonian using a Taylor expansion to second order:

−β
∑

{i , j }∈E b
Λ

Si ·S j =−β
∑

{i , j }∈E b
Λ

cos(ϑ j −ϑi ) ∼=−β|E b
Λ |+ 1

2β
∑

{i , j }∈E b
Λ

(ϑ j −ϑi )2 .

We may also assume that, when β is very large, the behavior of the field is not much
affected by replacing the angles ϑi , which take their values in (−π,π], by variables
ϕi taking values in R, especially since we are interested in the expectation value
of the 2π-periodic function e i(ϕ j −ϕi ). This discussion leads us to conclude that the
very-low temperature properties of the X Y model should be closely approximated
by those of the GFF at inverse temperature 4β.
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In particular, if we temporarily denote the expectations of the X Y model with
boundary condition ηi ≡ e1 by 〈·〉X Y

Λ;β, and the expectation of the corresponding GFF

with boundary condition ηi ≡ 0 by 〈·〉GF F
Λ,4β, we conclude that

〈Si ·S j 〉X Y
Λ;β = 〈e i(ϑ j −ϑi )〉X Y

Λ;β
∼= 〈e i(ϕ j −ϕi )〉GF F

Λ;4β .

Now, since (ϕi )i∈Λ is Gaussian, (8.8) gives

〈e i(ϕ j −ϕi )〉GF F
Λ;4β = e−

1
8β (GΛ(i ,i )+GΛ( j , j )−2GΛ(i , j )) , (9.20)

where GΛ(i , j ) is the Green function of the simple random walk in Λ (see Sec-
tion 8.4.1). We will see at the end of the section that, as ∥ j − i∥2 →∞,

1
2 lim
Λ↑Z2

(GΛ(i , i )+GΛ( j , j )−2GΛ(i , j )) ≃ 2

π
log∥ j − i∥2 ,

which leads to the following conjectural behavior for correlations at low tempera-
tures:

〈Si ·S j 〉X Y
Λ;β

∼= e−
1

2πβ log∥ j−i∥2 = ∥ j − i∥−1/(2πβ)
2 . (9.21)

Algebraic decay at low temperature

The following theorem provides, for large β, an essentially optimal upper bound of
the type (9.21). The lower bound will be discussed (but not proved) in Section 9.6.1.

Theorem 9.12. Let µ be an infinite-volume Gibbs measure associated to the two-
dimensional X Y model at inverse temperature β. For all ϵ> 0, there exists β0(ϵ) <∞
such that, for all β>β0(ϵ) and all i ̸= j ∈Z2,

|〈Si ·S j 〉µ| ≤ ∥ j − i∥−(1−ϵ)/(2πβ)
2 .

Before turning to the proof, let us try to motivate the approach that will be used,
which might otherwise seem rather uncanny. To do this, let us return to (9.20). To
actually compute the expectation 〈e i(ϕ j −ϕi )〉GF F

Λ;4β, one should remember thatϕ j −ϕi

has a normal distribution N (0,σ2), with (see (8.6))

σ2 = 1

4β
(GΛ(i , i )+GΛ( j , j )−2GΛ(i , j )) .

Its characteristic function can be computed by first completing the square:

〈e i(ϕ j −ϕi )〉GF F
Λ;4β =

1p
2πσ2

∫

R
e

ix− 1
2σ2 x2

dx = 1p
2πσ2

e−
σ2

2

∫

R
e
− 1

2σ2 (x−iσ2)2

dx .

Once the leading term e−
σ2

2 is extracted, the remaining integral can be computed
by translating the path of integration from R to R+ iσ2, an operation vindicated,
through Cauchy’s integral theorem, by the analyticity and rapid decay at infinity of
the integrand:

∫

R
e
− 1

2σ2 (x−iσ2)2

dx =
∫

R+iσ2
e
− 1

2σ2 (z−iσ2)2

dz =
∫

R
e
− 1

2σ2 x2

dx =
√

2πσ2 .

The proof below follows a similar scheme, but applied directly to the X Y spins in-
stead of the GFF approximation.
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Proof of Theorem 9.12: Without loss of generality, we consider i = 0, j = k. Similarly
to what was done in (9.5), we first rely on the DLR property: for all n such that
B(n) ∋ k,

〈
S0 ·Sk

〉
µ =

∫ 〈
S0 ·Sk

〉η
B(n);β

µ(dη) . (9.22)

We will estimate the expectation in the right-hand side, uniformly in the boundary
condition η. Observe first that

∣∣〈S0 ·Sk〉ηB(n);β

∣∣=
∣∣〈cos(ϑk −ϑ0)〉η

B(n);β

∣∣≤
∣∣〈e i(ϑk−ϑ0)〉η

B(n);β

∣∣ ,

since |Rez| ≤ |z| for all z ∈ C. We will write the expectation 〈·〉η
B(n);β

using explicit

integrals over the angle variables ϑi ∈ (−π,π], i ∈B(n). As a shorthand, we use the
notation

∫ π

−π
· · ·

∫ π

−π

∏
i∈B(n)

dθi ≡
∫

dθB(n) .

Therefore,

〈
e i(ϑk−ϑ0)〉η

B(n);β
= 1

Zη
B(n);β

∫
dθB(n) exp

{
i(θk −θ0)+β

∑

{i , j }∈E b
B(n)

cos(θi −θ j )
}

,

where we have set θi = ϑi (η) for each i ̸∈ B(n). Following the approach sketched
before the proof, we add an imaginary part to the variables θ j , j ∈ B(n). Since the
integrand is clearly analytic, we can easily deform the integration path associated
to the variable θ j away from the real axis: we shift the integration interval from
[−π,π] to [−π,π]+ ir j , where r j will be chosen later (also as a function of β and n):

π−π

π+ ir j−π+ ir j

R

Figure 9.5: Shifting the integration path of θ j . The shift depends on the vertex
j , on n and on β.

Notice that the periodicity of the integrand guarantees that the contributions
coming from the two segments connecting these two intervals cancel each other.
We extend the ri s to a function r :Z2 → R, with ri = 0 for all i ̸∈B(n). Observe now
that

|e i(θk+irk−θ0−ir0)| = e−(rk−r0),

|ecos(θi+iri−θ j −ir j )| = ecosh(ri−r j )cos(θi−θ j ).
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We thus have, letting ωθ denote the spin configuration associated to the angles θi ,

∣∣〈S0 ·Sk〉ηB(n);β

∣∣≤ e−(rk−r0)

Zη
B(n);β

∫
dθB(n) exp

{
β

∑

{i , j }∈E b
B(n)

cosh(ri − r j )cos(θi −θ j )
}

= e−(rk−r0)
∫

dθB(n) exp
{
β

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)
cos(θi −θ j )

}e−HB(n);β(ωθ)

Zη
B(n);β

= e−(rk−r0)
〈

exp
{
β

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)
cos(ϑi −ϑ j )

}〉η
B(n);β

≤ e−(rk−r0) exp
{
β

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)}
. (9.23)

In the last inequality, we used the fact that cosh(ri − r j ) ≥ 1 and cos(ϑi −ϑ j ) ≤ 1.
Assume that r can be chosen in such a way that

|ri − r j | ≤C /β , ∀{i , j } ∈ E b
B(n) , (9.24)

for some constant C . This allows us to replace the cosh term by a simpler quadratic
term: given ϵ > 0, we can assume that β0 is large enough to ensure that β ≥ β0

implies cosh(ri − r j )−1 ≤ 1
2 (1+ϵ)(ri − r j )2 for all {i , j } ∈ E b

B(n)
. In particular, we can

write

∑

{i , j }∈E b
B(n)

(
cosh(ri − r j )−1

)≤ 1
2 (1+ϵ)

∑

{i , j }∈E b
B(n)

(ri − r j )2 = (1+ϵ)E (r ) , (9.25)

where E (·) is the Dirichlet energy functional defined on maps r :Z2 →R that vanish
outside B(n). We thus have

∣∣〈S0 ·Sk〉ηB(n);β

∣∣≤ exp{−D(r )} , (9.26)

with D(·) the functional defined by

D(r )
def= rk − r0 −β′E (r ) ,

where we have set β′ def= (1+ϵ)β. We now search for a maximizer of D .

Lemma 9.13. For a fixed 0 ̸= k ∈ B(n), the functional D possesses a unique maxi-
mizer r∗ among the functions r that satisfy ri = 0 for all i ̸∈B(n). That maximizer is
the unique such function that satisfies

(∆r )i = (1{i=0} −1{i=k})/β′, i ∈B(n) . (9.27)

It can be expressed explicitly as (see Figure 9.6)

r∗
i = (

GB(n)(i ,k)−GB(n)(i ,0)
)
/(4β′), i ∈B(n) , (9.28)

where GB(n)(·, ·) is the Green function of the symmetric simple random walk in B(n).
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432 Chapter 9. Models with Continuous Symmetry

Figure 9.6: The maximizer (9.28) of the functional D . In this picture, Λ =
B(30) and k = (12,12).

Proof. As in the proof of Lemma 9.8, we start by observing that a critical point r

of D must be such that d
ds D(r + sδ)

∣∣∣
s=0

= 0 for all perturbations δ : Zd → R which

vanish outside B(n). But, as a straightforward computation shows,

d

ds
D(r + sδ)

∣∣∣
s=0

= δk −δ0 +β′∑
i∈B(n)

δi (∆r )i

= δk
(
1+β′(∆r )k

)−δ0
(
1−β′(∆r )0

)+β′∑
i∈B(n)\{0,k}

δi (∆r )i .

Since this sum of three terms must vanish for all δ, we see that r must satisfy (9.27).
Since ri = 0 outside B(n), we have (∆r )i = (∆B(n)r )i (remember Remark 8.9), so
that (9.27) can be written

(∆B(n)r )i = (1{i=0} −1{i=k})/β′ .

In Lemma 8.13, we saw that GB(n) is precisely the inverse of − 1
4∆B(n). Therefore,

multiplying by GB(n)( j , i ) on both sides of the previous display and summing over
i gives (9.28). To prove that r∗ actually maximizes D(·), let δ be such that δi = 0
outside B(n). Proceeding as we have already done several times before,

D(r∗+δ) =D(r∗)−β′E (δ)+δk −δ0 −β′ ∑

{i , j }∈E b
B(n)

(∇δ)i j (∇r∗)i j

=D(r∗)−β′E (δ)+δk −δ0 +β′ ∑
i∈B(n)

δi (∆r∗)i︸ ︷︷ ︸
use (9.27)

=D(r∗)−β′E (δ) .

Since E (δ) ≥ 0, we conclude that D(r∗+δ) ≤D(r∗).

It follows from Theorem B.77 that there exists a constant C such that |GB(n)(i , v)−
GB(n)( j , v)| ≤ 2C , uniformly in n, in v ∈ B(n) and in {i , j } ∈ E b

B(n)
. In particular,

|r∗
i − r∗

j | ≤ C /β, meaning that (9.24) is satisfied. We now use (9.26) with r∗. First,

one easily verifies that

D(r∗) = 1
2 (r∗

k − r∗
0 ) = 1

8β′
{
(GB(n)(k,k)−GB(n)(k,0))+ (GB(n)(0,0)−GB(n)(0,k))

}
.

We then let n →∞; using Exercise B.24,

lim
n→∞(GB(n)(k,k)−GB(n)(k,0)) = lim

n→∞(GB(n)(0,0)−GB(n)(0,k)) = a(k) , (9.29)
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where a(k) is called the potential kernel of the symmetric simple random walk on
Z2, defined by

a(k)
def=

∑
m≥0

{
P0(Xm = 0)−Pk (Xm = 0)

}
.

Therefore, ∣∣〈S0 ·Sk〉µ
∣∣≤ e−a(k)/4β′

.

The conclusion now follows since, by Theorem B.76,

a(k) = 2

π
log∥k∥2 +O(1) as ∥k∥2 →∞ .

9.5 Bibliographical references

The problems treated in this chapter find their origin in a celebrated work by Mer-
min and Wagner [242, 241]. The latter triggered a long series of subsequent inves-
tigations, leading to stronger claims under weaker assumptions: [83, 237, 317, 179,
273, 193, 32, 243, 240, 252, 169, 126] to mention just a few.

Mermin–Wagner theorem. The proof of Theorem 9.2 follows the approach of
Pfister [273], with some improvements from [169]. Being really classical mate-
rial, alternative presentations of this material can be found in many books, such
as [312, 282, 134, 308].

Effective interface models in d = 1 and 2. That the same type of arguments can
be used to prove the absence of any Gibbs state in models with unbounded spins, as
in our Theorem 9.9, was first realized by Dobrushin and Shlosman [84] and by Fröh-
lich and Pfister [119], although they did not derive quantitative lower bounds. Gen-
eralizations of Theorem 9.9 to more general potentials can be found in [169, 246].
Let us also mention that results of this type can also be derived by a very different
method. Namely, relying on an inequality derived by Brascamp and Lieb in [42],
it is possible to compare, under suitable assumptions, the variance of an effective
interface models with that of the GFF; this alternative approach is described in [41].

Comparison with the Ising model. Our proof of Theorem 9.10 is original, as far as
we know. However, a similar claim can be found in [250], with a proof based on cor-
relation inequalities. Arguments similar to those used in the proof of Theorem 9.10
have already been used, for example, in [69].

Algebraic decay of correlation in two dimensions. The proof of Theorem 9.12 is
originally due to McBryan and Spencer [237]; the argument presented in the chap-
ter is directly based on their work. Again, alternative presentations can be found in
many places, such as [140, 308].

9.6 Complements and further reading

9.6.1 The Berezinskĭı–Kosterlitz–Thouless phase transition

Theorem 9.12 provides an algebraically decaying upper bound on the 2-point func-
tion of the two-dimensional X Y model at low temperatures, which improves sub-
stantially on the bound that can be extracted from Proposition 9.7. Nevertheless,
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434 Chapter 9. Models with Continuous Symmetry

one might wonder whether this bound could be further improved, an issue which
we briefly discuss now.

Consider again the two-dimensional X Y model. Theorem 9.2 shows that all
Gibbs measures are SO(2)-invariant, but, as already mentioned, it does not imply
uniqueness [1]. It is however possible to prove, using suitable correlation inequali-
ties, that absence of spontaneous magnetization for the X Y model entails the exis-
tence of a unique translation-invariant infinite-volume Gibbs measure [47]. Con-
sequently, the Mermin–Wagner theorem implies that there is a unique translation-
invariant infinite-volume Gibbs measure, at all β ≥ 0, for the X Y model on Z2.
Moreover, this Gibbs measure is extremal. It is in fact expected that uniqueness
holds for this model, but this has not yet been proved.

The following remarkable result proves that a phase transition of a more subtle
kind nevertheless occurs in this model.

Theorem 9.14. Consider the unique translation-invariant Gibbs measure of the
two-dimensional X Y model. There exist 0 <β1 <β2 <∞ such that

• for all β<β1, there exist C (β) and m(β) > 0 such that

|〈S0 ·Sk〉β| ≤C (β) exp(−m(β)∥k∥2),

for all k ∈Z2;

• for all β>β2, there exist c(β) > 0 and D > 0 such that

〈S0 ·Sk〉β ≥ c(β)∥k∥−D/β
2 ,

for all k ∈Z2.

Proof. The first claim follows immediately from Theorem 9.10 and Exercise 3.24.
The proof of the second part, which is due to Fröhlich and Spencer [122], is however
quite involved and goes beyond the scope of this book.

Note that, combined with the upper bound of Theorem 9.12, this shows that the 2-
point function of the two-dimensional X Y model really decays algebraically at low
temperature.

It is expected that there is a sharp transition between the two regimes (exponen-
tial vs. algebraic decay) described in Theorem 9.14, at a value βBKT of the inverse
temperature. This so-called Berezinskĭı–Kosterlitz–Thouless phase transition,
named after the physicists who studied this problem in the early 1970s [19, 195],
exhibits several remarkable properties, among which the fact that the pressure re-
mains infinitely differentiable (but not analytic) at the transition. One should point
out, however, that the analytic properties at this phase transition are not universal,
and other O(2)-symmetric models display very different behavior, such as a first-
order phase transition [344].

To conclude this discussion, let us mention an outstanding open problem in
this area. As explained in Section 9.6.2, the proof of Theorem 9.12 can be adapted
to obtain similar upper bounds for a general class of O(N )-symmetric models, and
in particular for all O(N ) models with N > 2. However, it is conjectured that this
upper bound is very poor when N > 2. Namely, it is expected that the 2-point func-
tion then decays exponentially at all temperatures. Interestingly, it is the fact that
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SO(2) is abelian while the groups SO(N ), N ≥ 3, are not, which is deemed to be
responsible for the difference of behavior [307].

9.6.2 Generalizations.

For pedagogical reasons, we have restricted our discussion to the simplest setup.
The results presented here can however be extended in various directions. We
briefly describe one possible such framework and provide some relevant refer-
ences.

We assume that the spins Si take values in some topological space S , on which
a compact, connected Lie group G acts continuously (we simply denote the action
of g ∈G on x ∈S by gx). We replace the Hamiltonian in (9.1) by

∑

{i , j }⊂Zd :
{i , j }∩Λ̸=∅

J j−i W̃ (Si ,S j ) ,

where (Ji )i∈Zd is a collection of real numbers such that
∑

i∈Zd |Ji | = 1 and W̃ : S ×
S → R is continuous and G-invariant, in the sense that W̃ (gx,gy) = W̃ (x, y) for all
x, y ∈S and all g ∈G.

Theorem 9.2 (and the more quantitative Proposition 9.7) can then be extended
to this more general setup, under the assumption that the random walk on Zd ,
which jumps from i to j with probability |J j−i |, is recurrent. This result was proved
by Ioffe, Shlosman and Velenik [169], building on earlier works by Dobrushin and
Shlosman [83] and Pfister [273]. We emphasize that the recurrence assumption
cannot be improved in general, as there are examples of models for which sponta-
neous symmetry breaking at low temperatures occurs as soon as the corresponding
random walk is transient [201, 32], see also [134, Theorem 20.15].

Using a similar approach and building on the earlier works of McBryan and
Spencer [237] and of Messager, Miracle-Solé and Ruiz [243], Theorem 9.12 has been
extended by Gagnebin and Velenik [126] to O(N )-symmetric models with a Hamil-
tonian as above, provided that |Ji | ≤ J∥i∥−α1 for some J <∞ and α> 4.
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10 Reflection Positivity

In this chapter, we study models whose Gibbs distribution possesses a remarkable
property: reflection positivity. Two consequences of this property, the chessboard
estimate and the infrared bound, will be described in a general setting.

Before that, in order to motivate this approach, we describe the two main appli-
cations that will be discussed in this chapter. Of course, there are many other such
applications, reflection positivity playing a crucial role in a large numbers of proofs
in this field.

10.1 Motivation: some new results for O(N )-type models

We remind the reader that in O(N ) models, which were already discussed in Sec-
tion 9.1, the spins take their values in the N -dimensional sphere (N ≥ 2),

Ω0
def= SN−1 ⊂RN ,

and have the formal Hamiltonian

−β
∑

{i , j }∈E
Zd

Si ·S j ,

where Si (ω)
def= ωi denotes the spin at i ∈ Zd and the symbol · denotes the scalar

product in RN . We denote by G (β) the set of Gibbs measures for this model at
inverse temperature β. In Chapter 9, we proved that, on Z2, the invariance of Φ
under a global rotation of the spins leads to the absence of orientational long-range
order at any positive temperature. In particular, we showed that the distribution of
the spin at the origin is uniform on SN−1: for all µ ∈G (β), 〈S0〉µ = 0.

In contrast, in Section 10.5.2, we will prove that, in larger dimensions, the global
symmetry under rotations is spontaneously broken at low temperature.

Theorem 10.1. Assume that N ≥ 2 and d ≥ 3. There exists 0 < β0 < ∞ and m∗ =
m∗(β) > 0 such that, whenever β> β0, for each direction e ∈SN−1, there exists µe ∈
G (β) such that

〈S0〉µe = m∗e .

437
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438 Chapter 10. Reflection Positivity

In our second application, in Section 10.4.3, we will consider the anisotropic
X Y model on Z2 (although the argument applies as well to higher values of d and
N ). This model was introduced in Remark 9.4; its spins take values in S1 and the
formal Hamiltonian is given by

−β
∑

{i , j }∈E
Zd

{
S1

i S1
j +αS2

i S2
j

}
,

where 0 ≤α≤ 1 is the anisotropy parameter and we have written Si = (S1
i ,S2

i ). We
denote the set of Gibbs measures at inverse temperature β and anisotropy α by
G (β,α).

When α = 1, this model reduces to the X Y model and we have seen in Sec-
tion 9.2 that there is no spontaneous magnetization in this case. The next theorem
shows that, in the presence of an arbitrary weak anisotropy, there are Gibbs mea-
sures displaying spontaneous magnetization at low temperature.

Theorem 10.2. Assume that N = 2 and d = 2. For any 0 ≤ α < 1, there exists β0 =
β0(α) such that, for all β>β0, there exist µ+,µ− ∈G (β,α) such that

〈S0 ·e1〉µ+ > 0 > 〈S0 ·e1〉µ− .

Remark 10.3. Whenever α ∈ [0,1), the system possesses exactly two configurations
with minimal energy: those in which the spins are either all equal to +e1 or all equal
to −e1 (see Exercise 10.5). This makes it reasonable to implement a suitable version
of the Peierls argument. Note, however, that the continuous nature of the spins
does not allow us to apply directly the results of Pirogov–Sinai theory developed in
Chapter 7, although extensions covering such situations exist [1]. ⋄

10.2 Models defined on the torus.

Positivity under reflections is naturally formulated for measures which are invari-
ant under reflections through planes perpendicular to some coordinate axis of Zd .
Since most of the finite systems considered previously in the book are only left in-
variant by a few, if any, such reflections, it turns out to be much more convenient,
in this chapter, to consider finite-volume Gibbs measures with periodic boundary
conditions.

Let us therefore denote by TL the d -dimensional torus of linear size L > 0,
which is obtained by identifying the opposite sides of the box {0,1, . . . ,L}d (remem-
ber the one- and two-dimensional tori depicted on Figure 3.1). Equivalently, we

can set TL
def= (Z/LZ)d . Note that, to lighten the notation, we will only indicate ex-

plicitly the dimensionality of the torus when the latter might not be clear from the
context.

We will transfer various notions from Zd to the torus. For example, we will con-
tinue using the translation by i , denoted θi . We denote by EL the set of all edges
between nearest-neighbor vertices of TL . (The models that fit in the framework of
this chapter are not restricted to nearest-neighbor interactions, but we introduce
this set for later convenience.)

As always, the single-spin space is denotedΩ0 and the set of spin configurations
on the torus is

ΩL
def= Ω

TL
0 = {

ω= (ωi )i∈TL : ωi ∈Ω0
}

.
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10.3. Reflections 439

Figure 10.1: The one-dimensional torus T12, with a reflection through ver-
tices (on the left) and through edges (on the right).

Even though the models to which we later apply the theory will have either Ω0 =
SN−1 or Ω0 =RN , the theory has no such limitations. In fact, one of the arguments
used below will require allowingΩ0 to be far more general. Let us thus assume that
Ω0 is some topological space, on which one can define the usual Borel σ-algebra
B0, generated by the open sets. (These notions are introduced in Section 6.10.1
and Appendix B.5.) The product σ-algebra of events onΩL is denoted simply FL =⊗

i∈TL B0. The set of measures on (ΩL ,FL) is denoted M (ΩL ,FL).

Remark 10.4. In the sequel, we will always assume L to be even. Moreover, since all
the models considered in this chapter will be defined on TL , we will substantially
lighten the notations by using everywhere a subscript L instead ofTL . For example,
a Gibbs distribution onΩL will be denoted µL instead of µTL . ⋄

10.3 Reflections

We shall consider transformations on the torus,

Θ :TL →TL ,

associated to reflections through planes that split the torus in two. (This Θ is not to
be mistaken with the translation θi .) Before moving on to the precise definitions,
the reader is invited to take a look at Figures 10.1 and 10.2, where the meaning of
these reflections is made transparent.

▶ Reflection through vertices : Let k ∈ {1, . . . ,d} denote one among the d possible
directions parallel to the coordinate axes and n ∈ {0, . . . , 1

2 L − 1}. The reflection
through vertices Θ : TL → TL (associated to k and n), which maps i = (i1, . . . , id )
toΘ(i ) = (Θ(i )1, . . . ,Θ(i )d ), is defined by

Θ(i )ℓ
def=

{
(2n − ik ) mod L if ℓ= k,

iℓ if ℓ ̸= k.
(10.1)

Θ is a reflection of the torus through a planeΠwhich is orthogonal to the direction
ek . The intersection between the plane and the torus is given by

Π∩TL = {i ∈TL : ik = n or ik = n +L/2} .
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440 Chapter 10. Reflection Positivity

Figure 10.2: In d = 2, a reflection through the vertices of T32. The sets T32,+
and T32,− are drawn in white and gray, respectively, and the intersection of
the reflection plane and the torus is represented by the two thick lines. Left:
planar representation. Right: Spatial representation.

This also leads to a natural decomposition of the torus into two overlapping halves:
TL =TL,+∪TL,−, where

TL,+ =TL,+(Θ)
def= {

i ∈TL : n ≤ ik ≤ n +L/2
}
,

TL,− =TL,−(Θ)
def= {

i ∈TL : 0 ≤ ik ≤ n or n +L/2 ≤ ik ≤ L−1
}

.

▶ Reflection through edges : The reflection through edges Θ :TL →TL (associated
to k and n) is defined exactly as in (10.1), but with n ∈ { 1

2 , 3
2 , . . . , L−1

2 }. Now,Θ should
be seen as a reflection of the torus through a plane Π with Π∩TL =∅, so that the
corresponding decomposition of the torus, TL = TL,+ ∪TL,−, is into two disjoint
halves.

By definition, each transformation Θ is an involution: Θ−1 = Θ. Below, it will
always be clear from the context whether the Θ under consideration is a reflection
through vertices or edges.

10.3.1 Reflection positive measures

A reflectionΘ can be made to act on spin configurations,Θ :ΩL →ΩL , by setting

(Θ(ω))i
def= ωΘ(i ) , ∀i ∈TL .

Similarly, its action on functions f :ΩL →R is defined by

Θ( f )(ω)
def= f (Θ−1(ω)) .

We denote by A+(Θ), respectively A−(Θ), the algebra of all bounded measurable
functions f onΩL with support inside TL,+(Θ), respectively TL,−(Θ). The following
properties will be used constantly in the sequel.
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Exercise 10.1. Check that, for any f , g ∈A+(Θ) and λ ∈R,

Θ2( f ) = f , Θ(λ f ) =λΘ( f ), Θ( f + g ) =Θ( f )+Θ(g ),

Θ( f g ) =Θ( f )Θ(g ), Θ(e f ) = eΘ( f ) .

Note that, in particular, the transformation Θ can be seen as an isomorphism be-
tween the algebras A+(Θ) and A−(Θ).

Since Θ :ΩL →ΩL is clearly measurable, one can also define the action of Θ on
a measure µ ∈M (ΩL ,FL) by

Θ(µ)(A)
def= µ(Θ−1 A) , A ∈FL .

Of course, this implies that, for every bounded measurable function f (remember

that 〈 f 〉µ def= ∫
f dµ),

〈 f 〉Θ(µ) = 〈Θ( f )〉µ .

Definition 10.5. Let Θ be a reflection. A measure µ ∈M (ΩL ,FL) is reflection posi-
tive with respect toΘ if

1. 〈 f Θ(g )〉µ = 〈g Θ( f )〉µ, for all f , g ∈A+(Θ);

2. 〈 f Θ( f )〉µ ≥ 0, for all f ∈A+(Θ).

The set of measures which are reflection positive with respect to Θ is denoted by
MRP(Θ).

In other words, µ is reflection positive if and only if the bilinear form ( f , g ) 7→
〈 f Θ(g )〉µ on A+(Θ) is symmetric and positive semi-definite. This immediately im-
plies the validity of a Cauchy–Schwarz-type inequality, which will be the basis of
the properties to be derived later:

Lemma 10.6. Let µ ∈MRP(Θ). Then, for all f , g ∈A+(Θ),

〈 f Θ(g )〉2
µ ≤ 〈 f Θ( f )〉µ〈gΘ(g )〉µ .

Proof. Let µ ∈MRP(Θ). We have, for all λ ∈R,

0 ≤ 〈(λ f + g )Θ(λ f + g )〉µ = 〈 f Θ( f )〉µλ2 +2〈 f Θ(g )〉µλ+〈g Θ(g )〉µ .

This implies that the latter quadratic polynomial in λ has at most one root and,
therefore, the associated discriminant cannot be positive. The claim follows.

As seen in the following exercise, the first condition in Definition 10.5 is equivalent
to saying that µ is invariant under Θ; it is thus both natural and rather mild. It will
always be trivially satisfied in the cases considered later.

Exercise 10.2. Show that the first condition in Definition 10.5 holds if and only if

Θ(µ) =µ . (10.2)
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10.3.2 Examples of reflection positive measures

As a starting point, we consider product measures. Let ρ be a measure on (Ω0,F0),
which we will refer to as the reference measure, and let

µ0
def=

⊗
i∈TL

ρ . (10.3)

Lemma 10.7. µ0 is reflection positive with respect to all reflections Θ.

Proof. Notice that
Θ(µ0) =µ0 (10.4)

for each reflectionΘ. Indeed, the measure of any rectangle×|TL |
k=1 Bk (Bk ∈F0) is the

same under µ0 or Θ(µ0), since µ0 is invariant under any relabeling of the vertices
of TL . By Exercise 10.2, this implies that µ0 satisfies the first condition of Defini-
tion 10.5; let us check the second one.

We first consider a reflection Θ through edges. Let f ∈A+(Θ). Since TL,+(Θ)∩
TL,−(Θ) =∅, f andΘ( f ) have disjoint supports and (10.4) yields

〈 f Θ( f )〉µ0 = 〈 f 〉µ0〈Θ( f )〉µ0 = (〈 f 〉µ0 )2 ≥ 0,

thus showing that µ0 ∈MRP(Θ).
Let us now assume that Θ is a reflection through vertices and, again, let us take

f ∈A+(Θ). In this case, the supports of f and Θ( f ) may intersect. Let therefore P
be the set of all vertices of TL belonging to the reflection plane and remember that
FP denotes the sigma-algebra generated by the spins attached to vertices in P . We
then have

〈 f Θ( f )〉µ0 =
〈
µ0( f Θ( f ) |FP )

〉
µ0

= 〈
µ0( f |FP )µ0(Θ( f ) |FP )

〉
µ0

= 〈
µ0( f |FP )2〉

µ0
≥ 0,

and reflection positivity follows again. (In the second equality, we used the fact that
µ0(·|FP ) is again a product measure.)

From now on, we let ρ denote some reference measure on (Ω0,F0), which we as-
sume to be compactly supported, with ρ(Ω0) < ∞. We define µ0 as in (10.3). We
can then define the Gibbs distribution on (ΩL ,FL), associated to a Hamiltonian
HL :ΩL →R, by

∀A ∈FL , µL(A)
def=

∫

ΩL

e−HL (ω)

ZL
1A(ω)µ0(dω) , (10.5)

where

ZL =
∫

ΩL

e−HL (ω)µ0(dω) = 〈e−HL 〉µ0 .

(Of course, for this definition to make sense, we must have ZL <∞. This will always
be the case below.)

Lemma 10.8. Let µL be as above. Let Θ be a reflection on TL and assume that the
Hamiltonian can be written as

−HL = A+Θ(A)+
∑
α

CαΘ(Cα) , (10.6)

for some functions A,Cα ∈A+(Θ). Then µL ∈MRP(Θ).
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Proof. Using a Taylor expansion for the factor exp
(∑

αCαΘ(Cα)
)
,

〈 f Θ(g )〉µL = 1

ZL

〈
f Θ(g )e A+Θ(A)+∑

αCαΘ(Cα)〉
µ0

= 1

ZL

∑
n≥0

1

n!

∑
α1,...,αn

〈
f e ACα1 · · ·Cαn Θ(g e ACα1 · · ·Cαn )

〉
µ0

.

The result now follows from Lemma 10.7, since µ0 ∈MRP(Θ).

As usual, the Hamiltonian can be constructed from a potentialΦ= {ΦB }:

HL
def=

∑
B⊂TL

ΦB ,

whereΦB is a measurable function with support in B . To ensure that HL can be put
in the form (10.6), some symmetry assumptions will be made about the functions
ΦB .

Example 10.9. Consider a translation-invariant potential {ΦB }B⊂TL involving inter-
actions only between pairs (that is, satisfying ΦB = 0 whenever |B | ̸= 2) and such
that Φ{i , j } = 0 whenever ∥ j − i∥∞ > 1. Assume Θ is a reflection through the vertices
of TL satisfying

Φ{i , j }(ω) =Φ{Θ(i ),Θ( j )}(Θ(ω)) , ∀ω , (10.7)

for all {i , j } ⊂ TL . This holds, for example, if Φ{i , j } depends only on the distance
∥ j − i∥1.

Let us show that µL ∈ MRP(Θ). Namely, let again P denote the set of vertices of
TL lying in the reflection plane ofΘ. Notice that, since the only pairs e = {i , j } to be
considered involve points with ∥ j − i∥∞ ≤ 1, the Hamiltonian can be written as

HL =
∑

e⊂TL

Φe =
∑

e⊂P
Φe +

∑
e⊂TL,+

e ̸⊂P

Φe +
∑

e⊂TL,−
e ̸⊂P

Φe .

Each pair e = {i , j } ⊂TL,− can be paired with its reflectionΘ(e) = {Θ(i ),Θ( j )} ⊂TL,+.
Therefore, a change of variables yields, using (10.7),

∑
e⊂TL,−

e ̸⊂P

Φe (ω) =
∑

e⊂TL,+
e ̸⊂P

ΦΘ(e)(ω) =
∑

e⊂TL,+
e ̸⊂P

Φe (Θ(ω)) .

This means that −HL = A+Θ(A), with A ∈A+(Θ) given by

A
def= − 1

2

∑
e⊂P

Φe −
∑

e⊂TL,+
e ̸⊂P

Φe ,

Lemma 10.8 now implies that µL ∈MRP(Θ). ⋄
Example 10.10. Let Ω0 = Rν and ρ be compactly supported. We assume that, for
each 1 ≤ m ≤ ν and each 1 ≤ k ≤ d , J m

k is a fixed nonnegative number. We consider
a Hamiltonian of the form

HL
def= −

∑
{i , j }∈EL

ν∑
m=1

J m
i , j Sm

i Sm
j , (10.8)
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444 Chapter 10. Reflection Positivity

where J m
i , j = J m

k when i and j differ in their kth component and Sm
i is the mth

component of Si . This Hamiltonian actually covers all the applications we are going
to consider in this chapter.

Let Θ be a reflection through edges of the torus. Proceeding similarly to what
we did in Example 10.9, it is easy to check that

−HL = A+Θ(A)+
ν∑

m=1

∑
i∈TL,+:

{i ,Θ(i )}∈EL

C m
i Θ(C m

i ) ,

where the functions A,C m
i ∈A+(Θ) are given by

A
def=

ν∑
m=1

∑
{i , j }∈EL :
i , j∈TL,+

J m
i , j Sm

i Sm
j and C m

i
def=

√
J m

i ,Θ(i ) Sm
i .

Lemma 10.8 implies again that µL ∈MRP(Θ). ⋄

Exercise 10.3. Give an example of a translation invariant measure µ ∈M (ΩL ,FL)
which is not reflection positive.

10.4 The chessboard estimate

In this section, we establish a first major consequence of reflection positivity, the
chessboard estimate and provide two applications.

10.4.1 Proof of the estimate

To simplify the exposition, we shall focus on the case of reflections through edges;
however, both the statement and the proof can be adapted straightforwardly to the
case of reflections through vertices.

Let B < L be two positive integers such that 2B divides L and let us defineΛB
def=

{0, . . . ,B −1}d ⊂ TL . We decompose the torus into a disjoint union of translates of
ΛB , called blocks. These can be indexed by t ∈TL/B :

TL =
⋃

t∈TL/B

(ΛB +B t ) .

A function f with support inside ΛB is said to be ΛB -local. Given a ΛB -local func-
tion f and t ∈ TL/B , we define a (ΛB + tB)-local function f [t ] by successive re-
flections: Let t0 = 0, t1, . . . , tk = t be a self-avoiding nearest-neighbor path in TL/B

and let Θi be the reflection through the plane going through the edges connecting
ΛB + ti−1B andΛB + ti B ; we set

f [t ] def= Θk ◦Θk−1 ◦ · · · ◦Θ1( f ) .

A glance at Figure 10.3 shows that the definition of f [t ] does not depend on the
chosen path (observe that this relies on L/B being even).
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∣∣∣∣
〈

f(0,0)

f(0,2)

f(2,0)

f(2,2)

f(1,0)

f(1,2)

f(3,0)

f(3,2)

f(0,1)

f(0,3)

f(2,1)

f(2,3)

f(1,1)

f(1,3)

f(3,1)

f(3,3)

〉∣∣∣∣≤
∏

t∈TL/B

〈

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

ft

〉1/|TL/B |

µ

Figure 10.4: In d = 2, a graphical evocation of the claim of the chessboard
estimate.

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

f

Figure 10.3: A graphical evocation of the definition of f [t ]; it is obtained by
applying reflections to the original function f (located in the bottom left
block ΛB ), until reaching the block indexed by t (top right on the picture).
The definition of f [t ] is independent of the chosen path (shaded cells).

Let us say that µ ∈M (ΩL ,FL) is B -periodic if it is invariant under translations
by B along any coordinate axis: µ=µ◦θBek for all k ∈ {1, . . . ,d}.

Theorem 10.11 (Chessboard estimate). Let µ ∈M (ΩL ,FL) be B-periodic and such
that µ ∈MRP(Θ) for all reflectionsΘ between neighboring blocks (that is, pairsΛB+tB,
ΛB + t ′B, where t and t ′ are nearest neighbors of TL/B ). Then (see Figure 10.4), for
any family ( ft )t∈TL/B ΛB -local functions, which are either all bounded or all nonneg-
ative, ∣∣∣

〈 ∏
t∈TL/B

f [t ]
t

〉
µ

∣∣∣≤
∏

t∈TL/B

[〈 ∏
s∈TL/B

f [s]
t

〉
µ

]1/|TL/B |
. (10.9)

Proof of Theorem 10.11: We can assume that the functions ft are bounded. Indeed,
if they are unbounded (but nonnegative), we can apply the result to the bounded
functions ft ∧K (K ∈N) and use monotone convergence to take the limit K ↑∞.

The proof is done by induction on the dimension.
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446 Chapter 10. Reflection Positivity

The case d = 1: In the one-dimensional case, the boxes are simply intervals in-
dexed by t ∈ {0,1, . . . ,2N − 1}, where N = L/(2B) ∈ N. Observe that, in this case,
given a ΛB -local function f , each function f [t ] coincides either with a translate of
f or with a translate of theΛB -local function defined by

f̄ (ω0,ω1, . . . ,ωB−1,ωB , . . . ,ωL−1)
def= f (ωB−1,ωB−2, . . . ,ω0,ωL−1, . . . ,ωB ) .

Consider the following multilinear functional on the 2N -tuples of ΛB -local func-
tions:

F ( f0, . . . , f2N−1)
def=

〈2N−1∏
t=0

f [t ]
t

〉
µ

.

Reformulated in terms of F , the chessboard estimate (10.9) that we want to estab-
lish can be expressed as

∣∣F ( f0, . . . , f2N−1)
∣∣≤

2N−1∏
t=0

F ( ft , . . . , ft )1/2N . (10.10)

Observe that each of the expectations in the right-hand side of (10.10) is nonnega-
tive. Indeed, we can write

F ( ft , . . . , ft ) =
〈(N−1∏

t=0
f [t ]

t

)
Θ

(N−1∏
t=0

f [t ]
t

)〉
µ

,

where Θ is the reflection through the edge between the blocks N − 1 and N (and
2N − 1 and 0). This implies, in particular, that (10.10) trivially holds whenever
F ( f0, . . . , f2N−1) = 0. We will thus assume from now on that ( f0, . . . , f2N−1) is fixed
and that

F ( f0, . . . , f2N−1) ̸= 0. (10.11)

We start with two fundamental properties of F .

Lemma 10.12. For all ΛB -local functions f0, . . . , f2N−1,

F ( f0, f1, . . . , f2N−1) = F ( f̄2N−1, f̄0, f̄1, . . . , f̄2N−2) (10.12)

and

F ( f0, . . . , fN−1, fN , . . . , f2N−1)2

≤ F ( f0, . . . , fN−1, fN−1, . . . , f0)F ( f2N−1, . . . , fN , fN , . . . , f2N−1) . (10.13)

Exercise 10.4. Show that, in general, F ( f0, . . . , f2N−1) ̸= F ( f̄0, . . . , f̄2N−1).

Proof. The first identity is a simple consequence of the B-periodicity ofµ and of the
definition of F . To prove the second one, let again Θ denote the reflection through
the edge between the blocks N −1 and N (and 2N −1 and 0). Observe that, for each

N ≤ t ≤ 2N −1, f [t ]
t =Θ( f [t ′]

2N−1−t ′ ), where t ′ = 2N −1− t ∈ {0, . . . , N −1}. Therefore, by
Lemma 10.6,

F ( f0, . . . , fN−1, fN , . . . , f2N−1)2 =
〈(N−1∏

t=0
f [t ]

t

)
Θ

(N−1∏
t=0

f [t ]
2N−1−t

)〉2

µ

≤ F ( f0, . . . , fN−1, fN−1, . . . , f0)F ( f2N−1, . . . , fN , fN , . . . , f2N−1) .
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When 2N is a power of 2, repeated use of the above lemma leads directly
to (10.10). For simplicity, assume first that 2N = 4. In this case, (10.13) yields

F ( f0, f1, f2, f3)4 ≤ F ( f0, f1, f1, f0)2F ( f3, f2, f2, f3)2 .

Now, by (10.12), F ( f0, f1, f1, f0) = F ( f̄0, f̄0, f̄1, f̄1), F ( f3, f2, f2, f3) = F ( f̄2, f̄2, f̄3, f̄3).
But, using again (10.13) twice,

F ( f̄0, f̄0, f̄1, f̄1)2F ( f̄2, f̄2, f̄3, f̄3)2 ≤
3∏

t=0
F ( f̄t , f̄t , f̄t , f̄t ) .

This implies (10.10), since F ( f̄t , f̄t , f̄t , f̄t ) = F ( ft , ft , ft , ft ) by (10.12). Clearly, if 2N =
2M , the same argument can be used repeatedly. The proof of (10.10) for general val-
ues of N relies on a variant of this argument, as we explain below. ⋄

Let us consider the auxiliary functional

G( f0, . . . , f2N−1)
def= |F ( f0, . . . , f2N−1)|

∏2N−1
t=0 F ( ft , . . . , ft )1/2N

,

which is well defined thanks to the following property.

Lemma 10.13. For each t ∈ {0,1, . . . ,2N −1}, F ( ft , . . . , ft ) > 0.

Proof. For the sake of readability, we treat explicitly only the case 2N = 6. The ex-

tension to general values of 2N is straightforward, as explained below. Let KN
def=

(maxt ∥ ft∥∞)2N . Applying (10.13), we get

|F ( f0, f1, f2, f3, f4, f5)| ≤ F ( f0, f1, f2, f2, f1, f0)1/2F ( f5, f4, f3, f3, f4, f5)1/2

≤ K 1/2
3 F ( f0, f1, f2, f2, f1, f0)1/2 .

We now apply (10.12) in order to push the two copies of f0 in the first two slots:

K 1/2
3 F ( f0, f1, f2, f2, f1, f0)1/2 = K 1/2

3 F ( f̄0, f̄0, f̄1, f̄2, f̄2, f̄1)1/2 .

Using (10.13) once more, we obtain

K 1/2
3 F ( f̄0, f̄0, f̄1, f̄2, f̄2, f̄1)1/2 ≤ K 3/4

3 F ( f̄0, f̄0, f̄1, f̄1, f̄0, f̄0)1/4 .

Again, (10.12) allows us to push the four copies of f̄0 in the first four slots:

K 3/4
3 F ( f̄0, f̄0, f̄1, f̄1, f̄0, f̄0)1/4 = K 3/4

3 F ( f̄0, f̄0, f̄0, f̄0, f̄1, f̄1)1/4 .

Applying (10.13) one last time yields

K 3/4
3 F ( f̄0, f̄0, f̄0, f̄0, f̄1, f̄1)1/4 ≤ K 7/8

3 F ( f̄0, f̄0, f̄0, f̄0, f̄0, f̄0)1/8

and thus, since F ( f0, f0, f0, f0, f0, f0) = F ( f̄0, f̄0, f̄0, f̄0, f̄0, f̄0) by (10.12),

F ( f0, f0, f0, f0, f0, f0) ≥ K −7
3 |F ( f0, f1, f2, f3, f4, f5)|8 > 0.

(We used our assumption (10.11).) General values of 2N are treated in exactly the
same way, applying (10.12) and (10.13) alternatively until all 2N slots of F are filled
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448 Chapter 10. Reflection Positivity

by copies of f0. Since the number of such copies doubles at each stage, the number
of required iterations is given by the smallest integer M such that 2M ≥ 2N , which
yields

F ( f0, . . . , f0) ≥ K 1−2M

N |F ( f0, . . . , f2N−1)|2M > 0.

The same argument applies to other values of t using (10.12).

By construction, G verifies the same properties as those satisfied by F in (10.12)
and (10.13). Moreover, G( ft , . . . , ft ) = 1 for all t . In terms of G , we will obtain (10.10)
by showing that G( f0, . . . , f2N−1) ≤ 1, which is equivalent to saying that G reaches its
maximum value on 2N -tuples of functions (from the collection { f0, f1, . . . , f2N−1})
which are composed of a single function ft .

Let (g0, . . . , g2N−1) be such that

(i) gi ∈ { f0, . . . , f2N−1} for each i ∈ {0, . . . ,2N −1};

(ii) (g0, . . . , g2N−1) maximizes G ;

(iii) (g0, . . . , g2N−1) is minimal, in the sense that it contains the longest contiguous
substring of the form fi , . . . , fi for some i ∈ {0, . . . ,2N −1}. Here g2N−1 and g0

are considered contiguous (because of property 10.12).

Let k be the length of the substring in (iii). Thanks to (10.12), we can assume that
the latter occurs at the beginning of the string (g0, . . . , g2N−1), that is, that g0 = g1 =
·· · = gk−1 = fi (or f̄i , with bars on each of the 2N entries). We shall now check that
k = 2N , which will conclude the proof of the one-dimensional case.

Suppose that k < 2N . We have

G(g0, . . . , g2N−1)2 ≤G(g0, . . . , gN−1, gN−1, . . . , g0)G(g2N−1, . . . , gN , gN , . . . , g2N−1)

≤G(g0, . . . , gN−1, gN−1, . . . , g0)G(g0, . . . , g2N−1) ,

since (g0, . . . , g2N−1) maximizes G . Therefore (G(g0, . . . , g2N−1) > 0 by (10.11)),

G(g0, . . . , g2N−1) ≤G(g0, . . . , gN−1, gN−1, . . . , g0) ,

which means that (g0, . . . , gN−1, gN−1, . . . , g0) is also a maximizer of G . But this is im-
possible, since the string (g0, . . . , gN−1, gN−1, . . . , g0) possesses a substring fi , . . . , fi

of length min{2N ,2k} > k, which would violate our minimality assumption (iii).

The case d ≥ 2: We now assume that the chessboard estimate (10.9) has been es-
tablished for all dimensions d ′ ∈ {1, . . . ,d} and show that it also holds in dimension
d +1. Although this induction step is rather straightforward, it involves a few sub-
tleties which we discuss after the proof, in Remark 10.14.

We temporarily denote the d-dimensional torus by Td
L and consider Td+1

L as L

adjacent copies of Td
L :

Td+1
L =T1

L ×Td
L .
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We can thus write u ∈ Td+1
L/B as u = (i , t ), with i ∈ T1

L/B and t ∈ Td
L/B , and use the

shorthand notation f [u] = f [(i ,t )] ≡ f [i ,t ]. Therefore, applying (10.9) with d ′ = 1,
∣∣∣
〈 ∏

u∈Td+1
L/B

f [u]
u

〉
µ

∣∣∣=
∣∣∣
〈 ∏

i∈T1
L/B

{ ∏

t∈Td
L/B

f [t ]
(i ,t )

}[i ]
〉
µ

∣∣∣

≤
∏

i∈T1
L/B

[〈 ∏
j∈T1

L/B

{ ∏

t∈Td
L/B

f [t ]
(i ,t )

}[ j ]
〉
µ

]1/|T1
L/B | (10.14)

=
∏

i∈T1
L/B

[〈 ∏

t∈Td
L/B

{ ∏
j∈T1

L/B

f [ j ]
(i ,t )

}[t ]
〉
µ

]1/|T1
L/B | . (10.15)

The expectation in the right-hand side can be bounded using (10.9) once more, this
time with d ′ = d : for each i ∈T1

L/B ,

〈 ∏

t∈Td
L/B

{ ∏
j∈T1

L/B

f [ j ]
(i ,t )

}[t ]
〉
µ
≤

∏

t∈Td
L/B

[〈 ∏

s∈Td
L/B

{ ∏
j∈T1

L/B

f [ j ]
(i ,t )

}[s]
〉
µ

]1/|Td
L/B | (10.16)

=
∏

t∈Td
L/B

[〈 ∏

v∈Td+1
L/B

f [v]
(i ,t )

〉
µ

]1/|Td
L/B | .

Inserting the latter bound into (10.15),

∣∣∣
〈 ∏

u∈Td
L/B

f [u]
u

〉
µ

∣∣∣≤
∏

i∈T1
L/B

∏

t∈Td
L/B

[〈 ∏

v∈Td+1
L/B

f [v]
(i ,t )

〉
µ

]1/|Td+1
L/B |

=
∏

u∈Td+1
L/B

[〈 ∏

v∈Td+1
L/B

f [v]
u

〉
µ

]1/|Td+1
L/B |

.

This completes the proof of Theorem 10.11.

Remark 10.14. Let us make a comment about what was done in the last part of the
proof. The verification of certain claims made below is left as an exercise to the
reader.

With Td+1
L = T1

L ×Td
L , we are naturally led to identify ΩL , the set of configura-

tions on Td+1
L , with the set of configurations on T1

L defined by

Ω̃L
def= {

ω̃= (ω̃i )i∈T1
L

: ω̃i ∈ Ω̃0
}

,

where we introduced the new single-spin space

Ω̃0
def= ×

j∈Td
L

Ω0 .

Let us denote this identification by φ :ΩL → Ω̃L . Each f :ΩL → R can be identified

with f̃ : Ω̃L → R, by f̃ (ω̃)
def= f (φ−1(ω̃)). The single-spin space Ω̃0 can of course be

equipped with its natural σ-algebra of Borel sets, leading to the product σ-algebra
F̃L on Ω̃L . The measure µ on (ΩL ,FL) can be identified with the measure µ̃ on

(Ω̃L ,F̃L) defined by µ̃
def= µ◦φ−1. We then have

〈 f 〉µ = 〈 f̃ 〉µ̃ ,
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450 Chapter 10. Reflection Positivity

for every bounded measurable function f and, clearly, µ̃ is reflection positive with
respect to all reflections of T1

L . This is what guarantees that the one-dimensional
chessboard estimate can be used to prove (10.14). A similar argument justifies the
second use of the chessboard estimate in (10.16). ⋄
Remark 10.15. We will actually make use of a version of Theorem 10.11 in which the
cubic block ΛB (and its translates) is replaced by a rectangular box ×d

i=1{0, . . . ,Bi }
(and its translates) such that 2Bi divides L for all i . Of course, the conditions of
periodicity and reflection positivity have to be correspondingly modified, but the
proof applies essentially verbatim. ⋄

10.4.2 Application: the Ising model in a large magnetic field

In this section, we show a use of the chessboard estimate in the simplest possible
setting. A more involved application is described in the following sections.

We have studied the Ising model in a large magnetic field in Section 5.7.1. In
particular, we obtained in (5.34) a convergent cluster expansion for the pressure of

the model, in terms of z = e−2βh . When h > 0,
∂ψβ
∂h = 〈σ0〉+β,h and, therefore,

µ+
β,h(σ0 =−1) = 1

2

(
1− ∂ψβ

∂h

)
.

The expansion (5.34) thus implies that µ+
β,h(σ0 =−1) = e−2h−4dβ+O(e−4h) for h > 0

large enough. Here, we show how a simple application of the chessboard estimate
leads to an upper bound for this probability (on the torus) valid for all h,β≥ 0.

For convenience, we write the Hamiltonian of the d-dimensional Ising model
on TL as

HL;β,h(ω)
def= −β

∑
{i , j }∈EL

(ωiω j −1)−h
∑

i∈TL

ωi . (10.17)

Let µL;β,h be the corresponding Gibbs distribution.

Proposition 10.16. For all h ≥ 0, uniformly in L (even) and β≥ 0,

µL;β,h(σ0 =−1) ≤ e−2h . (10.18)

Proof. The first observation is that HL;β,h can be put in the form (10.8) (up to an
irrelevant constant), from which we conclude that µL;β,h is reflection positive with
respect to all reflections through edges.

Using 1×1 blocks (which we naturally identify with the vertices of TL) and set-

ting f0
def= 1{σ0=−1} and ft

def= 1 for all t ∈TL \ {0}, the chessboard estimates yields

〈1{σ0=−1}〉L;β,h ≤
〈 ∏

s∈TL

1{σs=−1}

〉1/|TL |
L;β,h

. (10.19)

(Just observe that all the factors corresponding to t ̸= 0 in the product in (10.9) are
equal to 1.) This can be rewritten as

µL;β,h(σ0 =−1) ≤µL;β,h(η−)1/|TL | =
{e−HL;β,h (η−)

ZL;β,h

}1/|TL |
,

where η−j = −1 for all j ∈ TL . On the one hand, HL;β,h(η−) = h|TL |. On the other

hand, we obtain a lower bound on the partition function by keeping only the con-
figuration η+ ≡ 1: ZL;β,h ≥ e−HL;β,h (η+) = e+h|TL |. This proves (10.18).
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10.4. The chessboard estimate 451

In probabilistic terms, (10.19) shows how the chessboard estimate allows us to
bound the probability of a local event, namely {σ0 = −1}, by the probability of the
same event, but “spread out throughout the system”:

⋂
s∈TL {σs = −1}. This global

event is much easier to estimate. ⋄

10.4.3 Application: the two-dimensional anisotropic X Y model

We now consider the two-dimensional anisotropic X Y model, in which the spins
take values inΩ0 =S1 and whose Hamiltonian on TL is defined by

HL;β,α
def= −β

∑
{i , j }∈EL

{
S1

i S1
j +αS2

i S2
j

}
, (10.20)

where 0 ≤ α ≤ 1 is the anisotropy parameter and we have written Si = (S1
i ,S2

i ) for
the spin at i . We denote by µL;β,α the corresponding Gibbs distribution on ΩL

(see (10.5)), with reference measure ρ on Ω0 given by the normalized Lebesgue
measure (that is, such that ρ(Ω0) = 1).

To quantify global ordering, we will again use the magnetization density :

mL
def= 1

|TL |
∑

i∈TL

Si ,

which now takes values in the unit disk
{
u ∈R2 : ∥u∥2 ≤ 1

}
. By translation invari-

ance and symmetry,

〈mL〉L;β,α = 〈S0〉L;β,α = 0 .

Nevertheless, we will see that, the distribution of mL is far from uniform at low
temperatures, when α< 1. This, in turn, will lead to the proof of Theorem 10.2.

First, as the following exercise shows, when α< 1, this model possesses exactly
two ground states: one in which all spins take the value e1 and one in which this
value is −e1.

Exercise 10.5. Let Si = (S1
i ,S2

i ) and S j = (S1
j ,S2

j ) be two unit vectors inR2. Show that,

when 0 ≤α< 1, the function

f (Si ,S j )
def= −S1

i S1
j −αS2

i S2
j ,

is minimal when either Si = S j = e1 or Si = S j =−e1.

In view of this, it is reasonable to expect that, at sufficiently low temperature, typical
configurations should be given by local perturbations of these two ground states,
even in the thermodynamic limit. This is confirmed by the following result.

Theorem 10.17. For each 0 ≤ α < 1 and each ϵ > 0, there exists β0 = β0(α,ϵ) such
that, for all β>β0,

〈
(mL ·e1)2〉

L;β,α ≥ 1−ϵ , and therefore
〈

(mL ·e2)2〉
L;β,α ≤ ϵ ,

uniformly in L (multiple of 4).
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452 Chapter 10. Reflection Positivity

This result is in sharp contrast with the case α = 1 (see Exercise 9.1); it will be a
consequence of the orientational long-range order that occurs at low enough tem-
peratures. Observe that

〈
(mL ·e1)2〉

L;β,α = 1

|TL |2
∑

i , j∈TL

〈S1
i S1

j 〉L;β,α .

We will use reflection positivity to prove the following result, of which Theo-
rem 10.17 is a direct consequence.

Proposition 10.18. For each 0 ≤α< 1 and each ϵ> 0, there exists β0 =β0(α,ϵ) such
that, for all β>β0,

〈S1
i S1

j 〉L;β,α ≥ 1−ϵ , ∀i , j ∈TL , (10.21)

uniformly in L (multiple of 4).

Proof. First, we easily check that HL;β,α can be put in the form (10.8), from which
we conclude that µL;β,α is reflection positive with respect to all reflections through
edges of the torus.

Second, sinceµL;β,α is invariant under all translations of the torus, we only need
to prove that

〈S1
0S1

j 〉L;β,α ≥ 1−ϵ(β) , (10.22)

uniformly in L and in j ∈T2
L , with ϵ(β) → 0 when β→∞.

Now, in view of the discussion before Theorem 10.17, we expect that |S1
i | should

be close to 1 for most spins in the torus and that the sign of S1
i should be the same

at most vertices. To quantify this, let us fix some δ ∈ (0,1). If (i) |S1
0| ≥ δ, (ii) |S1

j | ≥ δ
and (iii) S1

0S1
j > 0, then S1

0S1
j ≥ δ2. Therefore, we can write

〈S1
0S1

j 〉L;β,α ≥ δ2 −µL;β,α(|S1
0| < δ)−µL;β,α(|S1

j | < δ)−µL;β,α(S1
0S1

j ≤ 0) . (10.23)

Since µL;β,α(|S1
j | < δ) = µL;β,α(|S1

0| < δ) by translation invariance, the claim of

Proposition 10.18 follows immediately from Lemmas 10.19 and 10.20 below:
choose δ2 = 1− 1

4ϵ and let β be sufficiently large to ensure that the last three terms
in (10.23) are smaller than ϵ/4.

Lemma 10.19. For any 0 ≤ α < 1, 0 < δ < 1 and ϵ > 0, there exists β′
0 = β′

0(ϵ,α,δ)
such that, for all β>β′

0,
µL;β,α(|S1

0| < δ) ≤ ϵ ,

uniformly in L (even).

Lemma 10.20. For any 0 ≤α< 1, 0 < δ< 1 and ϵ> 0, there exists β′′
0 = β′′

0 (ϵ,α) such
that, for all β>β′′

0 ,
µL;β,α(S1

0S1
j ≤ 0) ≤ ϵ ,

uniformly in j ∈TL and L (multiple of 4).

Proof of Lemma 10.19. We proceed as in the proof of Proposition 10.16. Applying

the chessboard estimate, Theorem 10.11, with d = 2, B = 1, f0
def= 1{|S1

0|<δ} and ft
def= 1

for t ∈TL \ {0}, we obtain

µL;β,α(|S1
0| < δ) ≤µL;β,α(|S1

i | < δ, ∀i ∈TL)1/|TL | . (10.24)
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We write

µL;β,α(|S1
i | < δ, ∀i ∈TL) =

〈
e−HL;β,α1{|S1

i |<δ, ∀i∈TL }

〉
µ0

〈e−HL;β,α〉µ0

, (10.25)

where we remind the reader that µ0(dω) =⊗
i∈TL ρ(dωi ), with ρ the uniform prob-

ability measure on S1.
We first bound the numerator in (10.25) from above. When |S1

i | < δ for all i ∈TL ,
a simple computation shows that

HL;β,α ≥−β
∑

{i , j }∈EL

(
δ2 +α(1−δ2)

)=−2β
(
δ2 +α(1−δ2)

) |TL | .

(We used the fact that |EL | = 2|TL | in d = 2.) Consequently, since µ0 is normalized
by assumption,

〈
e−HL;β,α1{|S1

i |<δ, ∀i∈TL }

〉
µ0

≤ e2β(δ2+α(1−δ2)) |TL | . (10.26)

To obtain a lower bound on the denominator, let 0 < δ̃< 1 and write

〈e−HL;β,α〉µ0 ≥
〈

e−HL;β,α1{S1
i ≥δ̃, ∀i∈TL }

〉
µ0

= 〈
e−HL;β,α

∣∣ S1
i ≥ δ̃, ∀i ∈TL

〉
µ0
µ0(S1

i ≥ δ̃, ∀i ∈TL)

= 〈
e−HL;β,α

〉
µ̃0
µ0(S1

i ≥ δ̃, ∀i ∈TL) , (10.27)

where we have introduced the probability measure µ̃0(·) def= µ(· |S1
i ≥ δ̃, ∀i ∈TL). On

the one hand, observe that 〈S2
i 〉µ̃0 = 0, by symmetry, and 〈S1

i 〉µ̃0 ≥ δ̃. Therefore,

〈HL;β,α〉µ̃0 =−β
∑

{i , j }∈EL

〈S1
i 〉µ̃0〈S1

j 〉µ̃0 ≤−2βδ̃2 |TL | .

So, an application of Jensen’s inequality yields

〈e−HL;β,α〉µ̃0 ≥ e−〈HL;β,α〉µ̃0 ≥ e2βδ̃2 |TL | . (10.28)

On the other hand,

µ0(S1
i ≥ δ̃, ∀i ∈TL) = ( 1

π arccos(δ̃)
)|TL | = e−b(δ̃)|TL | ,

where b(δ̃)
def= − log( 1

π arccos(δ̃)) > 0. Inserting this and (10.28) into (10.27) yields

〈e−HL;β,α〉µ0 ≥ exp
{(

2βδ̃2 −b(δ̃)
) |TL |

}
. (10.29)

Let us then choose δ̃ such that δ̃2 = 1
2 (1 + δ2 +α(1 − δ2)) ∈ (0,1). By (10.26)

and (10.29),

µL;β,α(|S1
i | < δ, ∀i ∈TL) ≤ exp

[−β{
(1−δ2)(1−α)−b(δ̃)/β

}|TL |
]

≤ exp
[− 1

2 (1−δ2)(1−α)β|TL |
]

,

for all β ≥ β1(α,δ)
def= b(δ̃)/((1− δ)2(1−α)). By (10.24), this ensures that, for any

α,δ< 1 and any β≥β1(α,δ),

µL;β,α(|S1
0| < δ) ≤ exp

[− 1
2 (1−δ2)(1−α)β

]
.

The right-hand side can be made as small as desired by taking β large enough.
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454 Chapter 10. Reflection Positivity

Figure 10.5: The three types of contours on a torus, separating the vertices 0
and j (indicated by the two dots). The mesh corresponds to the dual lattice
here, with the vertices in the middle of the faces.

Proof of Lemma 10.20. This proof relies on a variant of Peierls’ argument, as ex-
posed in Section 3.7.2. We assume that the reader is familiar with this material.

Let, for each i ∈TL , I+i
def= 1{S1

i ≥0} and I−i
def= 1{S1

i ≤0}. We have, by symmetry,

µL;β,α(S1
0S1

j ≤ 0) = 2〈I+0 I−j 〉L;β,α .

Since, almost surely, I+i + I−i = 1 for all i ∈ TL (namely, {S1
i = 0} has measure zero

under the reference measure and therefore also under µL;β,α), we can write

〈I+0 I−j 〉L;β,α =
〈

I+0 I−j
∏

i∈TL \{0, j }
(I+i + I−i )

〉
L;β,α

=
∑

η∈{−1,1}TL

η0=1,η j =−1

〈 ∏
i∈TL

Iηi
i

〉
L;β,α

.

To each configuration η appearing in the sum, we associate the corresponding set
of contours Γ(η), exactly as in Section 3.7.2 (including the deformation rule). Note,
however, that it would not be possible to reconstruct a configuration ω only from
the geometry of its contours: the latter only determine the configuration up to a
global spin flip. In order to avoid this problem, we consider contours that are not
purely geometrical objects, but also include the information of the values of the
spins on both “sides”. When u, v denote neighbors separated by γ, we will make
the convention that ηu =+1 and ηv =−1.

The configurations η appearing in the sum above are such that η0 ̸= η j . There-
fore, there exists (at least) one contour γ separating 0 and j , in the sense that it
satisfies one of the three following conditions (see Figure 10.5): (i) γ surrounds 0
but not j , (ii) γ surrounds j but not 0, (iii) γ is winding around the torus (of course,
in this case, there must be at least one other such contour). We can thus write

〈
I+0 I−j

〉
L;β,α ≤

∑
γ

∑
η:Γ(η)∋γ

〈 ∏
i∈TL

Iηi
i

〉
L;β,α

, (10.30)

where the first sum is taken over all contours separating 0 and j .
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10.4. The chessboard estimate 455

γ

Figure 10.6: The partition of TL (here, L = 12) in 2×1 blocks, using translates

of {(0,0), (1,0)} (represented by the two dots). For a contour γ, the set E h,0
γ

(whose corresponding blocks were highlighted) represents the blocks of that
partition which are crossed by γ in their middle.

Given a contour γ, we denote by Eγ the set of all edges of EL which are crossed
by γ. Notice that

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α = 〈 ∏
{u,v}∈Eγ

I+u I−v
∏

k∈TL

(I+k + I−k )
〉

L;β,α

≥
∑

η:Γ(η)∋γ

〈 ∏
i∈TL

Iηi
i

〉
L;β,α . (10.31)

The last inequality is due to the fact that forcing ηu ̸= ηv for each {u, v} ∈ Eγ is not
sufficient to guarantee that γ ∈ Γ(η) (remember, in particular, the deformation rule
used in the definition of contours). Putting all this together,

µL;β,α(S1
0S1

j ≤ 0) ≤ 2
∑
γ

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α . (10.32)

The chessboard estimate will be used to show that the presence of a contour is
strongly suppressed when α< 1 and β is taken sufficiently large:

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α ≤ e−c(α)β|γ| , (10.33)

where c(α)
def= (1−α)/16 > 0.

In order to use the chessboard estimate, we consider four distinct partitions of
the torus into blocks. Consider first the partition of TL into blocks of sizes 2× 1,
translates of {(0,0), (1,0)} by all vectors of the form 2me1 +ne2 (m,n are integers)
(see Figure 10.6). This partition can be identified with the set E h,0

L ⊂ EL of horizontal
nearest-neighbor edges with both endpoints in the same block of the partition. We
will use {u, v} ∈ E h,0

L to index the |TL |/2 blocks of this partition.
Similarly, one defines the partition made of 2× 1 blocks that are translates of

{(1,0), (2,0)}; the corresponding set of horizontal edges is written E h,1
L ⊂ EL .
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456 Chapter 10. Reflection Positivity

Figure 10.7: The configuration ηh,0 (on the same torus as in Figure 10.6). The
shaded block, containing the origin, is the support of φ+−, which is then
spread out throughout the torus, by successive reflections through the edges
separating the blocks.

Finally, we define two partitions made of 1×2 blocks, which are, respectively,
translates of the block {(0,0), (0,1)} or of the block {(0,1), (0,2)}. The corresponding
sets of vertical edges are denoted E v,0

L and E v,1
L respectively.

This leads us to split the edges crossing γ into four families, according to the
element of the partition to which they belong: Eγ = E h,0

γ ∪E h,1
γ ∪E v,0

γ ∪E v,1
γ . Applying

twice the Cauchy–Schwarz inequality,

〈 ∏
{u,v}∈Eγ

I+u I−v
〉

L;β,α ≤
∏

a∈{h,v}
#∈{0,1}

(〈 ∏

{u,v}∈E a,#
γ

I+u I−v
〉

L;β,α

)1/4
. (10.34)

The four factors in the right-hand side can be treated in the same way. To be spe-
cific, we consider the factor with a = h and # = 0. Notice that, for each {u, v} ∈ E h,0

γ ,
the function I+u I−v can be obtained by successive reflections through edges (be-

tween the blocks of E h,0
L ) of one of the two following {(0,0), (1,0)}-local functions:

φ+− def= I+(0,0)I−(1,0) and φ−+ def= I−(0,0)I+(1,0); we denote the corresponding function f{u,v}.

For each {u, v} ∈ E h,0
L \E h,0

γ , we take f{u,v}
def= 1. The chessboard estimate (which we

use for non-square blocks here, see Remark 10.15) yields

〈 ∏

{u,v}∈E h,0
γ

I+u I−v
〉

L;β,α ≤
∏

{u,v}∈E h,0
γ

〈 ∏

{u′,v ′}∈E h,0
γ

f{u,v}
[{u′,v ′}]〉1/(|TL |/2) . (10.35)

Now, by translation invariance, for all {u, v} ∈ E h,0
γ ,

〈 ∏

{u′,v ′}∈E h,0
γ

f{u,v}
[{u′,v ′}]〉= 〈 ∏

{u′,v ′}∈E h,0
γ

(φ+−)[{u′,v ′}]〉
L;β,α = 〈 ∏

i∈TL

I
ηh,0

i
i

〉
L;β,α , (10.36)

where ηh,0 ∈ {±1}TL is depicted in Figure 10.7.
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To evaluate the last expectation in (10.36), we proceed similarly to what we did
in the proof of Lemma 10.19:

〈 ∏
i∈TL

I
ηh,0

i
i

〉
µ0

=
〈

e−HL;β,α
∏

i∈TL I
ηh,0

i
i

〉
µ0〈

e−HL;β,α
〉
µ0

.

Let us bound from below the energy of any configuration for which
∏

i∈TL I
ηh,0

i
i = 1.

Each edge between two vertices at which ηh,0 takes the same value contributes at
least −β to the energy and those edges account for 3

4 of all the edges of the torus.
However, it is easy to check that, for spins located at the endpoints of the remain-
ing edges, the minimal energy is obtained when both their first components van-
ish; this yields a minimal contribution of −βα. We conclude that the energy of the
relevant configurations is always at least −2( 3

4 + 1
4α)β|TL | and, therefore,

〈
e−HL;β,α

∏
i∈TL

I
ηh,0

i
i

〉
µ0

≤ exp
{ 1

2β(3+α)|TL |
}

.

Combining this with the lower bound (10.29), we obtain, choosing δ̃2 = (7+α)/8,

〈 ∏
i∈TL

I
ηh,0

i
i

〉
L;β,α ≤ exp

{
−2β

(
δ̃2 − b(δ̃)

2β
− 1

4 (3+α)
)|TL |

}

= exp
{
− 1

4β
(
1−α− 4b(δ̃)

β

)|TL |
}

≤ exp
{− 1

8 (1−α)β |TL |
}

,

for all β≥ 8b(δ̃)/(1−α). Inserting this into (10.35), we obtain

〈 ∏

{u,v}∈E h,0
γ

I+u I−v
〉

L;β,α ≤ exp
{− 1

4 (1−α)β |E h,0
γ |} .

Doing this for the other three partitions and using (10.34) and the fact that |E h,0
γ |+

|E h,1
γ |+ |E v,0

γ |+ |E v,1
γ | = |γ|, (10.33) follows. Using this estimate, (10.32) becomes

µL;β,α(S1
0S1

j ≤ 0) ≤ 2
∑
γ

e−c(α)β|γ| .

We can now conclude the proof following the energy-entropy argument used when
implementing Peierls’ argument in Section 3.7.2. There is only one minor differ-
ence: in the sum over γ, there are also contours that wind around the torus, a situ-
ation we did not have to consider in Chapter 3. However, since such contours have
length at least L,

∑
γ, winding

e−c(α)β|γ| =
∑

k≥L
e−c(α)βk #

{
γ : winding, |γ| = k

}≤
∑

k≥L
e−c(α)βk (L28k ) .

Takingβ sufficiently large, this last sum is bounded uniformly in L and can be made
as small as desired. The conclusion thus follows exactly as in Chapter 3.
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Remark 10.21. As the reader can check, the arguments above apply more generally.
In particular, they extend readily to the anisotropic O(N ) model, in which the spins
Si = (S1

i , . . . ,SN
i ) ∈SN−1 and the Hamiltonian is given by

HL;β,α =−β
∑

{i , j }∈EL

{
S1

i S1
j +α

(
S2

i S2
j +·· ·+SN

i SN
j

)}
.

Also, the extension to d ≥ 3 is rather straightforward (only the implementation of
Peierls’ argument is affected and can be dealt with as in Exercise 3.20). ⋄

We can finally conclude the proof of Theorem 10.2. We will rely on the main
result of Section 6.11.

Proof of Theorem 10.2. Let m1
L

def= mL ·e1 and

ψ(h)
def= lim

L→∞
1

|TL |
log

〈
exp

{
h

∑
j∈TL

S1
j

}〉
L;β,α

= lim
L→∞

1

|TL |
log

〈
ehm1

L |TL |〉
L;β,α .

Existence of this limit and its convexity in h follow from Lemma 6.89 (used with

g
def= S1

0 and with periodic boundary conditions, for which that result also holds).
We have seen that m1

L remains bounded away from zero with high probability, uni-
formly in L, when β is large. We are going to show that this implies that ψ is not
differentiable at h = 0.

Let 0 ≤ α < 1, ϵ > 0 and β > β0(α,ϵ), where β0(α,ϵ) was introduced in Theo-
rem 10.17. Let also 0 < δ < 1 be such that δ2 < 1− ϵ. To start, observe that, for any
h ≥ 0,

〈
ehm1

L |TL |〉
L;β,α ≥ 〈

ehm1
L |TL |1{m1

L≥δ}

〉
L;β,α ≥ eδh|TL |µL;β,α(m1

L ≥ δ) . (10.37)

But Theorem 10.17 implies that, uniformly in L (multiple of 4),

1−ϵ≤ 〈
(m1

L)2〉
L;β,α ≤ δ2 +µL;β,α

(
(m1

L)2 ≥ δ2) .

Therefore, again uniformly in L (multiple of 4),

µL;β,α(m1
L ≥ δ) = 1

2µL;β,α
(
(m1

L)2 ≥ δ2)≥ 1
2 (1−ϵ−δ2) > 0.

Inserting this estimate in (10.37), we conclude that (ψ(h)−ψ(0))/h = ψ(h)/h ≥ δ,
for all h > 0. Letting h ↓ 0 yields

∂ψ

∂h+

∣∣∣
h=0

≥ δ> 0.

Since ψ(−h) = ψ(h), this implies that ψ is not differentiable at h = 0. Proposi-
tion 6.91 then guarantees the existence of two Gibbs measures µ+ ̸=µ− such that

〈S1
0〉µ+ = ∂ψ

∂h+

∣∣∣
h=0

> 0 > ∂ψ

∂h−

∣∣∣
h=0

= 〈S1
0〉µ− ,

thereby completing the proof of Theorem 10.2.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

10.5. The infrared bound 459

10.5 The infrared bound

We now turn to the second major consequence of reflection positivity, the in-
frared bound, which provides one of the few known approaches to proving spon-
taneous breaking of a continuous symmetry. In this section we go back to the d-
dimensional torus TL , d ≥ 1.

In order to motivate the infrared bound, we start by showing how it appears as
the central tool to prove Theorem 10.1, in Section 10.5.2. The proof of the infrared
bound and of the related Gaussian domination is provided in Section 10.5.3.

10.5.1 Models to be considered

The infrared bound holds for a wide class of models, but still requires a little more
structure than just reflection positivity. Namely, we will assume that the spins are
ν-dimensional vectors,

Ω0
def= Rν ,

and that the Hamiltonian is given by

HL;β
def= β

∑
{i , j }∈EL

∥Si −S j ∥2
2 , (10.38)

with β ≥ 0. As before, we assume that the reference measure ρ on Ω0 (equipped
with the Borel subsets of Rν) is supported on a compact subset of Rν and write

µ0
def= ⊗

i∈TL ρ. The Gibbs distribution µL;β on (ΩL ,FL), associated to HL;β, is then
defined exactly as in (10.5).

The choice of the reference measure ρ leads to various interesting models en-
countered in previous chapters.

Example 10.22. Choose ν = N and let ρ be the Lebesgue measure on the sphere
SN−1 ⊂ RN . Since ∥Si∥2 = 1 for all i ∈ TL , almost surely, the Hamiltonian can be
rewritten as

HL;β = 2β|EL |−2β
∑

{i , j }∈EL

Si ·S j .

We recognize (up to an irrelevant constant 2β|EL |) the Hamiltonian of the O(N )
model. ⋄
Example 10.23. Choose ν = q − 1 and let ρ be the uniform distribution concen-
trated on the vertices of the regular ν-simplex (see Figure 10.8). The vertices of this
simplex lie onSν−1 and the scalar product of any two vectors from the origin to two
distinct vertices of the simplex is always the same. Note that this is just the q-state
Potts model in disguise. Indeed, a configuration can almost surely be identified
with a configuration ω′ ∈ {1, . . . , q}TL , where 1, . . . , q is a numbering of the vertices
of the simplex. Then, up to an irrelevant constant, we see that the Hamiltonian
becomes −βν

∑
{i , j }∈EL

δω′
i ,ω′

j
, for some βν ≥ 0 proportional to β. ⋄

10.5.2 Application: Orientational long-range order in the O(N ) model

In order to motivate the infrared bound, we start with one of its major applications:
the proof that, when d ≥ 3, there is orientational long-range order at low tempera-
tures for models with continuous spins of the type described above.
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Figure 10.8: The simplex representation for the 2-, 3- and 4-state Potts model.

We have seen, when proving the Mermin–Wagner Theorem in Chapter 9, that
the absence of orientational long-range order in the two-dimensional O(N ) model
was due to the fact that spin waves, by which we meant spin configurations varying
slowly over macroscopic regions, were created in the system, at arbitrarily low cost
(remember Figure 9.3). If we want to establish orientational long-range order, we
have to exclude the existence of such excitations. In order to do that, it is very con-
venient to consider the Fourier representation of the variables (S j ) j∈TL .

Consider the reciprocal torus, defined by

T⋆L
def=

{
2π

L
(n1, . . . ,nd ) : 0 ≤ ni < L

}
.

Note that |T⋆L | = |TL |. The Fourier transform of (S j ) j∈TL is (Ŝp )p∈T⋆L , defined by

Ŝp
def= 1

|TL |1/2

∑
j∈TL

e ip· j S j , p ∈T⋆L .

Let us recall two important properties,

1. First, the original variables can be reconstructed from their Fourier trans-
form, by the inversion formula:

S j =
1

|T⋆L |1/2

∑
p∈T⋆L

e−ip· j Ŝp , j ∈TL .

Each index p is called a mode and corresponds to an oscillatory term e−ip· j .
This sum should be interpreted as the contributions of the different Fourier
modes to the field variable S j . The importance of mode p is measured by
∥Ŝp∥2. On the one hand, modes with small values of p describe slow varia-
tions of S j , meaning variations detectable only on macroscopic regions, at
the scale of the torus. In particular, the mode p = 0 corresponds to the non-
oscillating (“infinite wavelength”) component of S j and is proportional to the
magnetization of the system (see below). On the other hand, modes with
large p represent rapid oscillations present in S j .

2. Second, Plancherel’s Theorem states that

∑
p∈T⋆L

∥Ŝp∥2
2 =

∑
j∈TL

∥S j ∥2
2 . (10.39)

Exercise 10.6. Prove the above two properties.
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As mentioned above, the magnetization density mL = 1
|TL |

∑
i∈TL Si is simply related

to the p = 0 mode by

mL = 1

|TL |1/2
Ŝ0 .

Therefore, the importance of the p = 0 mode characterizes the presence or absence
of orientational long-range order in the system. For example, we have seen in Exer-
cise 9.1 that the contribution of the p = 0 mode becomes negligible in the thermo-
dynamic limit for the two-dimensional X Y model; this was due to the appearance
of spin waves. Therefore, to prove that orientational long-range order does occur,
one must show that the p = 0 mode has a non-zero contribution even in the ther-
modynamic limit.

In order to do this, we add a new restriction to the class of models we consider.
Namely, we will assume in the rest of this section that the reference measure ρ is
such that, almost surely,

∥S j ∥2 = 1 ∀ j ∈TL .

This is of course the case in the O(N ) and Potts models. With this assumption,
(10.39) implies that

∑
p∈T⋆L ∥Ŝp∥2

2 = |TL |, which yields

∥Ŝ0∥2
2 = |TL |−

∑
p∈T⋆L
p ̸=0

∥Ŝp∥2
2 .

Moreover, by translation invariance,

〈∥Ŝp∥2
2 〉L;β =

1

|TL |
∑

i , j∈TL

e ip·( j−i ) 〈Si ·S j 〉L;β =
∑

j∈TL

e ip· j 〈S0 ·S j 〉L;β .

Gathering these identities, we conclude that

〈∥mL∥2
2 〉L;β =

1

|TL |
〈∥Ŝ0∥2

2 〉L;β = 1−
{ 1

|TL |
∑

p∈T⋆L
p ̸=0

∑
j∈TL

e ip· j 〈S0 ·S j 〉L;β

}
. (10.40)

To obtain a lower bound on 〈∥mL∥2
2 〉L;β, we thus need to find an upper bound on

the double sum appearing on the right-hand side of the previous display. This is
precisely at this stage that the infrared bound becomes crucial; its proof will be
provided in Section 10.5.3.

Theorem 10.24 (Infrared bound). Let µL;β be the Gibbs distribution associated to a
Hamiltonian of the form (10.38). Then, for any p ∈T⋆L \ {0},

∑
j∈TL

e i p· j 〈S0 ·S j 〉L;β ≤
ν

4βd

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

.

Using the infrared bound in (10.40), we get

〈∥mL∥2
2

〉
L;β ≥ 1− ν

4βd

1

|TL |
∑

p∈T⋆L
p ̸=0

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik

www.unige.ch/math/folks/velenik/smbook

462 Chapter 10. Reflection Positivity

The reader can recognize a Riemann sum in the right-hand side, which implies that

β0
def= ν

4d(2π)d
lim

L→∞
(2π)d

|TL |
∑

p∈T⋆L
p ̸=0

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

= ν

4d(2π)d

∫

[−π,π]d

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

dp . (10.41)

Notice that this integral is improper, precisely because of the singularity of the in-
tegrand at p = 0. Therefore,

liminf
L→∞

〈∥mL∥2
2 〉L;β ≥ 1− β0

β
.

This proves that there is orientational long-range order for all β > β0. The only
remaining task is to make sure that β0 is indeed finite.

It turns out (see Theorem B.72) that β0 is finite if and only if the symmetric
simple random walk on Zd is transient. As shown in Corollary B.73 (by directly
studying the integral above), this occurs if and only if d ≥ 3.

We have thus proved the following result.

Theorem 10.25. Assume that d ≥ 3. Let µL,β be defined with respect to a reference
measure µ0 under which ∥Si∥2 = 1, almost surely, for all i ∈TL . Let

β0
def= ν

4d(2π)d

∫

[−π,π]d

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1dp .

Then β0 <∞ and, for any β>β0,

liminf
L→∞

〈∥mL∥2
2

〉
L;β ≥ 1− β0

β
. (10.42)

Remark 10.26. Theorem 10.25 implies the existence of orientational long-range or-
der for the q-state Potts model on Zd , d ≥ 3. The latter, however, displays orienta-
tional long-range order also in dimension 2, even though this cannot be inferred
from the infrared bound. (This can be proved, for example, via a Peierls argument
as in Section 3.7.2 or using the chessboard estimate, using a variant of the proof
of Lemma 10.19.) The crucial difference, of course, is that the symmetry group is
discrete in this case. ⋄

With the help of Theorem 10.25, we can now prove existence of a continuum of
distinct Gibbs states in such models, as stated in Theorem 10.1.

Proof of Theorem 10.1. First, fix some unit vector e ∈SN−1. For simplicity and with
no loss of generality, we can take e = e1 (indeed, µL;β is invariant under any global
rotation of the spins). Then, define

ψ(h)
def= lim

L→∞
1

|TL |
log

〈
exp

{
h

∑
j∈TL

S j ·e1

}〉
L;β

.

We again use Theorem 10.25 to show that ψ is not differentiable at h = 0, follow-
ing the pattern used to prove Theorem 10.2, and conclude using Proposition 6.91.
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The only difference here is when showing that µL;β(mL · e1 ≥ δ) is bounded away
from zero. To use the lower bound we have on 〈∥mL∥2〉L;β, we can use the following
comparisons:

µL;β(mL ·e1 ≥ δ) ≥ 1
2d µL;β(∥mL∥∞ ≥ δ) ≥ 1

2d µL;β(∥mL∥2 ≥ δ
p

d)

When δ is sufficiently small, a lower bound on the latter, uniform in L, can be ob-
tained as before.

10.5.3 Gaussian domination and the infrared bound

The infrared bound relies on the following proposition, whose proof will use reflec-
tion positivity. Let h = (hi )i∈TL ∈ (Rν)TL and

ZL;β(h)
def=

〈
exp

{
−β

∑
{i , j }∈EL

∥Si −S j +hi −h j ∥2
2

}〉
µ0

.

Notice that ZL;β(h) is well defined (since we are assuming ρ to have compact sup-
port) and that ZL;β(0) coincides with the partition function ZL;β associated to HL;β.

Proposition 10.27 (Gaussian domination). For all h = (hi )i∈TL ,

ZL;β(h) ≤ ZL;β(0) . (10.43)

Proposition 10.27 will be a consequence of the following lemma, which is a ver-
sion of the Cauchy–Schwarz-type inequality of Lemma 10.6.

Lemma 10.28. Let µ ∈MRP(Θ) and A,B ,Cα,Dα ∈A+(Θ). Then

{〈
e A+Θ(B)+∑

αCαΘ(Dα)〉
µ

}2 ≤ 〈
e A+Θ(A)+∑

αCαΘ(Cα)〉
µ

〈
eB+Θ(B)+∑

αDαΘ(Dα)〉
µ .

Proof. Expanding the exponential,

〈
e A+Θ(B)+∑

αCαΘ(Dα)〉
µ =

∑
n≥0

1

n!

∑
α1,...,αn

〈
e ACα1 · · ·CαnΘ(eB Dα1 · · ·Dαn )

〉
µ . (10.44)

By Lemma 10.6,

〈
e ACα1 · · ·CαnΘ(eB Dα1 · · ·Dαn )

〉
µ

≤ 〈
e ACα1 · · ·CαnΘ(e ACα1 · · ·Cαn )

〉1/2
µ

×〈
eB Dα1 · · ·DαnΘ(eB Dα1 · · ·Dαn )

〉1/2
µ .

The classical Cauchy–Schwarz inequality,
∑

k |ak bk | ≤ (
∑

k a2
k )1/2(

∑
k b2

k )1/2, yields

∑
α1,...,αn

〈e ACα1 · · ·CαnΘ(eB Dα1 · · ·Dαn )〉µ

≤
[ ∑
α1,...,αn

〈
e ACα1 · · ·CαnΘ(e ACα1 · · ·Cαn )

〉
µ

]1/2

×
[ ∑
α1,...,αn

[〈
eB Dα1 · · ·DαnΘ(eB Dα1 · · ·Dαn )

〉
µ

]1/2
.
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Inserting this in (10.44), using again the Cauchy–Schwarz inequality (this time, to
the sum over n) and resumming the series, we get

〈
e A+Θ(B)+∑

αCαΘ(Dα)〉
µ

≤ [ ∑
n≥0

1

n!

∑
α1,...,αn

〈
e ACα1 · · ·CαnΘ(e ACα1 · · ·Cαn )

〉
µ

]1/2

× [ ∑
n≥0

1

n!

∑
α1,...,αn

〈
eB Dα1 · · ·DαnΘ(eB Dα1 · · ·Dαn )

〉
µ

]1/2

= [〈
e A+Θ(A)+∑

αCαΘ(Cα)〉
µ

〈
eB+Θ(B)+∑

αDαΘ(Dα)〉
µ

]1/2 .

Proof of Proposition 10.27. First, notice that ZL;β(h) = ZL;β(h′) whenever there ex-
ists c ∈ R such that hi −h′

i = c for all i ∈ TL . There is thus no loss of generality in
assuming that h0 = 0, which we do from now on. Next, observe that ZL;β(h) tends
to 0 as any ∥hi∥2 →∞, i ̸= 0. In particular, there exists C such that

∑
i ∥hi∥2

2 ≤C for
all h that maximize ZL;β(h). Among the latter, let us denote by h⋆ a maximizer that

minimizes the quantity N (h)
def= #

{
{i , j } ∈ EL : hi ̸= h j

}
. We claim that N (h⋆) = 0.

Since h⋆0 = 0, this will then imply that h⋆i = 0 for all i ∈TL , which will conclude the
proof.

Let us therefore suppose to the contrary that N (h⋆) > 0. In that case, we can
find {i , j } ∈ EL such that h⋆i ̸= h⋆j . Let Π be the reflection plane going through the

middle of the edge {i , j } and let Θ denote the reflection through Π. Below, we use
{i ′, j ′} to denote the edges that cross Π, with i ′ ∈ TL,+ and j ′ = Θ(i ′) ∈ TL,−. Since
∥ωi ′ −ω j ′ +hi ′ −h j ′∥2

2 = ∥ωi ′ +hi ′∥2
2 +∥ω j ′ +h j ′∥2

2 −2(ωi ′ +hi ′ ) · (ω j ′ +h j ′ ), we can
write

−β
∑

{i , j }∈EL

∥ωi −ω j +hi −h j ∥2
2 = A+Θ(B)+

∑
i ′

Ci ′ ·Θ(Di ′ ) ,

where A,B ,Ci ,Di ∈A+(Θ), and

A
def= −β

∑
{i , j }∈EL :

i , j∈TL,+(Θ)

∥ωi −ω j +hi −h j ∥2
2 −β

∑
i ′
∥ωi ′ +hi ′∥2

2 ,

Θ(B)
def= −β

∑
{i , j }∈EL :

i , j∈TL,−(Θ)

∥ωi −ω j +hi −h j ∥2
2 −β

∑
j ′
∥ω j ′ +h j ′∥2

2 ,

Ci ′
def=

√
2β(ωi ′ +hi ′ ) , Θ(Di ′ )

def=
√

2β(ω j ′ +h j ′ ) .

(Remember thatΘ acts on ω, not on h; this implies that in general, A ̸= B and Ci ′ ̸=
Di ′ .) One can thus use Lemma 10.28 to obtain

ZL;β(h⋆)2 ≤ ZL;β(h⋆,+)ZL;β(h⋆,−) ,

where

h⋆,+
i =

{
h⋆i ∀i ∈TL,+(Θ) ,

h⋆
Θ(i ) ∀i ∈TL,−(Θ) ,

h⋆,−
i =

{
h⋆i ∀i ∈TL,−(Θ) ,

h⋆
Θ(i ) ∀i ∈TL,+(Θ) .

Our choice ofΘ guarantees that min
{

N (h⋆,+), N (h⋆,−)
}< N (h⋆). To be specific, let

us assume that N (h⋆,+) < N (h⋆). Then, since h⋆ is a maximizer,

ZL;β(h⋆)2 ≤ ZL;β(h⋆,+)ZL;β(h⋆,−) ≤ ZL;β(h⋆,+)ZL;β(h⋆) ,
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10.5. The infrared bound 465

that is, ZL;β(h⋆,+) ≥ ZL;β(h⋆). This implies that h⋆,+ is also a maximizer which satis-
fies N (h⋆,+) < N (h⋆). This contradicts our choice of h⋆, and therefore implies that
N (h⋆) = 0.

The following exercise provides some motivation for the terminology “Gaussian
domination”. One can define the discrete Laplacian of h = (hi )i∈TL , ∆h, by

(∆h)i
def=

∑
j∼i

(h j −hi ) , i ∈Zd .

The Discrete Green identities of Lemma 8.7 can also be used here; they take slightly
simpler forms due to the absence of boundary terms on the torus.

Exercise 10.7. Show that (10.43) can be rewritten as
〈

exp
{

2β
∑

i∈TL

(∆h)i · (Si −S0)
}〉

L;β
≤ exp

{
−β

∑
i∈TL

(∆h)i ·hi

}
. (10.45)

Let νL;β be the Gibbs distribution corresponding to the reference measure given by
the Lebesgue measure: ρ(dωi ) = dωi . Show that

〈
exp

{
2β

∑
i∈TL

(∆h)i · (Si −S0)
}〉

νL;β
= exp

{
−β

∑
i∈TL

(∆h)i ·hi

}
,

so that the bound (10.45) is saturated by the Gaussian measure νL;β.

We can now turn to the proof of the infrared bound.

Proof of Theorem 10.24: We know from Proposition 10.27 that ZL;β(h) is maximal at
h ≡ 0. Consequently, at fixed h,

∂

∂λ
ZL;β(λh)

∣∣
λ=0 = 0 and

∂2

∂λ2 ZL;β(λh)
∣∣
λ=0 ≤ 0. (10.46)

The first claim in (10.46) does not provide any nontrivial information, but the sec-
ond one is instrumental in the proof. Elementary computations show that

∂2

∂λ2 ZL;β(λh)
∣∣
λ=0

= 4β2
〈∣∣ ∑

{i , j }∈EL

(Si −S j ) · (hi −h j )
∣∣2 exp

{−β
∑

{i , j }∈EL

∥Si −S j ∥2
2

}〉
µ0

−2β
∑

{i , j }∈EL

∥hi −h j ∥2
2

〈
exp

{−β
∑

{i , j }∈EL

∥Si −S j ∥2
2

}〉
µ0

.

The inequality in (10.46) is thus equivalent to

〈∣∣ ∑
{i , j }∈EL

(Si −S j ) · (hi −h j )
∣∣2

〉
L;β

≤ 1

2β

∑
{i , j }∈EL

∥hi −h j ∥2
2 . (10.47)

The latter holds for any h ∈ (Rν)TL , but it is easily seen that it also extends to any
h ∈ (Cν)TL (just treat separately the real and imaginary parts). Let us fix p ∈T⋆L \ {0},
ℓ ∈ {1, . . . ,ν} and make the following specific choice:

∀ j ∈TL , α j
def= e i p· j , h j

def= α j eℓ .
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466 Chapter 10. Reflection Positivity

The Green identity (8.14) yields (ᾱ denoting the complex conjugate of α)

∑
{i , j }∈EL

∥hi −h j ∥2
2 =

∑
{i , j }∈EL

(∇ᾱ)i j (∇α)i j =
∑

i∈TL

ᾱi (−∆α)i

= 2d |TL |
{

1− 1

2d

∑
j∼0

cos(p · j )
}

,

since, for any i ∈TL ,

(−∆α)i =
∑
j∼i

(αi −α j ) = e ip·i ∑
j∼i

(1−e i p·( j−i )) = 2de ip·i
{

1− 1

2d

∑
j∼0

cos(p · j )
}

.

Similarly, denoting by Sℓi
def= Si ·eℓ the ℓth component of Si ,

∑
{i , j }∈EL

(Si −S j ) · (hi −h j ) =
∑

{i , j }∈EL

(∇Sℓ)i j (∇α)i j =
∑

i∈TL

Sℓi (−∆α)i

= 2d
{

1− 1

2d

∑
j∼0

cos(p · j )
} ∑

i∈TL

Sℓi e i p·i ,

and therefore

〈∣∣ ∑
{i , j }∈EL

(Si −S j ) · (hi −h j )
∣∣2

〉
L;β

= 4d 2
∣∣∣1− 1

2d

∑
j∼0

cos(p · j )
∣∣∣
2〈∣∣ ∑

i∈TL

Sℓi e i p·i ∣∣2
〉

L;β
.

The inequality (10.47) thus implies that

〈∣∣ ∑
i∈TL

Sℓj e i p·i ∣∣2
〉

L;β
≤ |TL |

4dβ

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

.

Since, by translation invariance of µL;β,

〈∣∣ ∑
i∈TL

Sℓj e i p·i ∣∣2
〉

L;β
=

∑
i , j∈TL

e i p·( j−i )〈Sℓi Sℓj 〉L;β = |TL |
∑

j∈TL

e i p· j 〈Sℓ0Sℓj 〉L;β ,

the conclusion follows by summing over ℓ ∈ {1, . . . ,ν} to recover the inner product.

10.6 Bibliographical remarks

There exist several nice reviews on reflection positivity, which can serve as com-
plements to what is discussed in this chapter and provide additional examples of
applications. These include the reviews by Shosman [305] and Biskup [22] and the
books by Sinai [312, Chapter 3], Prum [282, Chapter 7] and Georgii [134, Part IV].
The present chapter was largely inspired by the presentation in [22].

Reflection positivity. Reflection positivity was first introduced in the context of
constructive quantum field theory, where it plays a fundamental role. Its use in
equilibrium statistical mechanics started in the late 1970s, see [118, 98, 157, 115,
116].
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Infrared bound and long-range order inO(N ) models. The infrared bound, The-
orem 10.24, was first proved by Fröhlich, Simon and Spencer in [118]. In this pa-
per, among other applications, they use this bound to establish existence of spon-
taneous magnetization in O(N ) models on Zd , d ≥ 3, at low temperature (Theo-
rem 10.1 in this chapter).

Chessboard estimate and the anisotropic X Y model. The chessboard estimate,
in the form stated in Theorem 10.11, was first proved by Fröhlich and Lieb [117].
There were however earlier versions of it, see [134, Notes on Chapter 17]. The ap-
plication to the anisotropic X Y model, Theorem 10.2, was first established using
other methods in [226] and [202]. The first proof relying on the chessboard esti-
mate appeared in [117] and served as a basis for Section 10.2.
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A Notes

Chapter 1

[1] (p. 3) The property described in (1.1) is usually referred to as additivity rather
than extensivity. Extensivity of the energy is usually valid and equivalent to ad-
ditivity in the thermodynamic limit, at least for systems with finite-range interac-
tions, as usually considered in this book. For systems with long-range interactions,
extensivity does not always hold.
[2] (p. 19) This terminology was introduced by Gibbs [137], but the statistical en-
sembles were first introduced by Boltzmann under a different name (ergode for the
microcanonical ensemble and holode for the canonical).
[3] (p. 19) We adopt here the following point of view explained by Jaynes in [181]:

This problem of specification of probabilities in cases where little or no
information is available, is as old as the theory of probability. Laplace’s
“Principle of Insufficient Reason” was an attempt to supply a criterion
of choice, in which one said that two events are to be assigned equal
probabilities if there is no reason to think otherwise.

Of course, some readers might not consider such a point of view to be fully satisfac-
tory. In particular, one might dislike the interpretation of a probability distribution
as a description of a state of knowledge, rather than as a quantity intrinsic to the
system. After all, there is a more fundamental theory and it would be satisfactory to
derive this probability distribution from the latter. Many attempts have been done,
but no fully satisfactory derivation has been obtained. We will not discuss such is-
sues further here, but refer the interested reader to the extensive literature on this
topic; see for example [130].
[4] (p. 21) Historically, the entropy of a probability density had already been intro-
duced by Gibbs in [137].
[5] (p. 35) In our brief description of a ferromagnet and its basic properties, we are
neglecting many physically important aspects of the corresponding phenomena.
Our goal is not to provide a faithful account, but rather to provide the uninitiated
reader with an idea of what ferromagnetic and paramagnetic behaviors correspond
to. We refer readers who would prefer a more thorough description to any of the
many books on condensed matter physics, such as [356, 14, 1, 65].

469
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470 Appendix A. Notes

[6] (p. 37). Let us briefly recall a famous anecdote originally reported by Uhlenbeck
(see [260]). In November 1937, during the Van der Waals Centenary Conference, a
morning-long debate took place about the following question: does the partition
function contain the information necessary to describe a sharp phase transition?
As the debate turned out to be inconclusive, Kramers, who was the chairman, put
the question to a vote, the result of which was nearly a tie (the “yes” winning by a
small margin).
[7] (p. 37) The importance of Peierls’ contribution was not immediately recognized.
Rather, it was the groundbreaking mathematical analysis by Lars Onsager in 1944
that convinced the physics community. In particular, Onsager’s formula for the
pressure of the two-dimensional Ising model in the thermodynamic limit showed
explicitly the existence of a singularity of this function. Moreover, and perhaps even
more importantly, it showed that the behavior at the transition was completely dif-
ferent from what all of the former approximation schemes were predicting. The
ensuing necessity of developing more refined approximation methods triggered
the development of the modern theory of critical phenomena, in which the Ising
model played a central role.
[8] (p. 37). In this book, we only provide brief and very qualitative physical motiva-
tions and background information for the Ising model. Much more can be found
in many statistical physics textbooks aimed at physicists, such as [298, 264, 165,
299, 331]; see also the (old) review by Fisher [105]. An interesting and detailed de-
scription of the major role played by this model in the development of statistical
mechanics in the 20th century is given in the series of papers [255, 256, 257], while
a shorter one can be found in [55].
[9] (p. 45). The determination of the explicit expression for the spontaneous mag-
netization of the two-dimensional Ising model given in (1.51) is due to Onsager and
Kaufman and was announced by Onsager in 1949. However, they did not publish
their result since they still had to work out “how to fill out the holes in the math-
ematics and show the epsilons and the deltas and all of that” [159]. The first pub-
lished proof appeared in 1952 and is due to Yang [352]. See [15, 16] for more infor-
mation.
[10] (p. 48) As an example, let us cite this passage from Peierls’ famous paper [266]:

In the meantime it was shown by Heisenberg that the forces leading
to ferromagnetism are due to electron exchange. Therefore the energy
function is of a more complicated nature than was assumed by Ising;
it depends not only on the arrangement of the elementary magnets,
but also on the speed with which they exchange their places. The Ising
model is therefore now only of mathematical interest [emphasis added].

[11] (p. 48) In the words of Fisher [105]:

[I]t is appropriate to ask what the main aim of theory should be.
This is sometimes held (implicitly or explicitly) to be the calculation
of the observable properties of a system from first principles using the
full microscopic quantum-mechanical description of the constituent
electrons, protons and neutrons. Such a calculation, however, even if
feasible for a many-particle system which undergoes a phase transition
need not and, in all probability, would not increase one’s understand-
ing of the observed behaviour of the system. Rather, the aim of the
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theory of a complex phenomenon should be to elucidate which gen-
eral features of the Hamiltonian of the system lead to the most charac-
teristic and typical observed properties. Initially one should aim at a
broad qualitative understanding, successively refining one’s quantita-
tive grasp of the problem when it becomes clear that the main features
have been found.

Chapter 3

[1] (p. 87). It is known that subadditivity is not sufficient to prove convergence along
arbitrary sequencesΛn ⇑Zd and that it has to be replaced by strong subbadditivity,
see [148]. Subadditivity is however sufficient to prove convergence in the sense of
Fisher, that is, for sequences Λn ↑Zd such that, for all n ≥ 1, there exists a cube Kn

such thatΛn ⊂ Kn and supn |Kn |/|Λn | <∞.
[2] (p. 104). The statement of Theorem 3.25 does not indicate what happens at the
critical point (β,h) = (βc(d),0). In that case, one can prove that, in all dimensions
d ≥ 2, uniqueness holds. In dimension 2, this can be proved in many ways; see, for
example, [350]. In dimension d ≥ 4, the proof is due to Aizenman and Fernández
[7]. The case of dimension 3 was treated recently by Aizenman, Duminil-Copin and
Sidoravicius [8]. Both are based on the random-current representation, a geometric
representation of the Ising model which we briefly present in Section 3.10.6.
[3] (p. 108). Much is known about the decay of correlations in the Ising model. In
two dimensions, explicit computations show that 〈σ0σx〉β,0 decays exponentially
in ∥x∥2 for all β ̸=βc(2) (with a rate that can be determined) and that 〈σ0σx〉βc(2),0 ≈
∥x∥−1/4

2 ; see, for instance, [239, 261].
In any dimension, Aizenman, Barsky and Fernández have proved that there is

exponential decay of the 2-point function 〈σ0σx〉β,0 for allβ<βc(d) [5]. In the same
regime, it is actually possible to prove [60] that the 2-point function has Ornstein–
Zernike behavior: 〈σ0σx〉β,0 ≃Ψβ(x/∥x∥2)∥x∥−(d−1)/2

2 e−ξβ(x/∥x∥2)∥x∥2 , as ∥x∥2 →∞,
whereΨβ and ξβ are positive, analytic functions.

Sakai proved [292] that 〈σ0σx〉βc(d),0 ∼ cd∥x∥2−d
2 , for some constant cd , in large

enough dimensions d .
In the remaining cases, the 2-point function remains uniformly bounded away

from 0 (by the FKG inequality), and the relevant quantity is the truncated 2-point

function 〈σi ;σ j 〉+β,h
def= 〈σiσ j 〉+β,h −〈σi 〉+β,h〈σ j 〉+β,h .

It is known that 〈σi ;σ j 〉+β,0 decays exponentially for all β > βc(d) in dimen-

sion 2 [67]. A proof for sufficiently low temperatures is given in Section 5.7.4.
Finally, 〈σi ;σ j 〉+β,h decays exponentially for all h ̸= 0 [95]; a simple geometric

proof relying on the random-current representation can be found in [172].
[4] (p. 121). Even this statement should be qualified, since procedures allowing an
experimental observation of the effect of complex values of physical parameters
have recently been proposed and implemented. We refer the interested readers
to [268] for more information.
[5] (p. 151). These two conjectures are supported by proofs of a similar behavior for
a simplified model of the interface, known as the SOS (or Solid-On-Solid) model.
For the latter, the analogue of the first claim above is already highly nontrivial, and
was proved in [122], while the second claim was proved in [52].
[6] (p. 151). In sufficiently large dimensions (conjecturally: for all dimensions d ≥
3), there exists βp(d) > βc(d) such that the − spins percolate under µ+

β,0 for all
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472 Appendix A. Notes

β ∈ (βc(d),βp(d)) [6]. As a consequence, Peierls contours, and in particular the in-
terface as defined in Section 3.10.7, are not very relevant anymore. One should then
consider analogous objects defined on a coarser scale. For example, one might par-
tition Zd into blocks of R ×R spins, with R ↑∞ as β ↓ βc(d). A block would then be
said to be of type + if the corresponding portion of configuration is “typical of the
+ phase”, of type − if it is “typical of the − phase”, and of type 0 otherwise. Provided
one defines these notions in a suitable way, then + and − blocks are necessarily
separated by 0 blocks, and one can define contours as connected components of 0
blocks. If R diverges fast enough as β ↓ βc(d), then this notion of contours makes
sense for all β>βc(d). We refer to [276] for an explicit example of such a construc-
tion.
[7] (p. 159) It can be shown, nevertheless, that the series (3.98) provides an asymp-
totic expansion for ψβ at h = 0:

∣∣ψβ(h)−
n∑

k=0
ak hk ∣∣= o(hn) , ∀n ≥ 1.

Chapter 4

[1] (p. 168) These were made in Van der Waals’ thesis [339].
[2] (p. 184) In Section 6.14.1, we give a sketch of one way by which equivalence
can be approached for systems with interactions. We refer to the papers of Lan-
ford [205] and of Lewis, Pfister and Sullivan [222, 223] for a much more complete
and general treatment.

Chapter 6

[1] (p. 252). This statement should be qualified. Indeed, there are very specific
cases in which such an approach allows one to construct infinite-volume Gibbs
measures. The main example concerns models on trees (instead of lattices such as
Zd , d ≥ 2). In such a case, the absence of loops in the graph makes it possible to
compute explicitly the marginal of the field in a finite subset. Roughly speaking,
it yields explicit (finite) sets of equations, each of whose solutions correspond to
one possible compatible family of marginals. In this way, it is possible to have mul-
tiple infinite-volume measures, even though one is still relying on Kolmogorov’s
extension theorem. A general reference for Gibbs measures on trees is [288]; see
also [134, Chapter 12].
[2] (p. 263). The equivalence in Lemma 6.21 does not always hold if the single-
spin space is not finite. When working on more general spaces, it turns out that
quasilocal, rather than continuous, functions are the natural objects to consider.
Note that the equivalences stated in Exercise 6.12 also fail to hold in general.
[3] (p. 266). In fact, the class of specifications that can constructed in this way is very
general. A specification π is non-null if, for all Λ⋐ Zd and ω ∈Ω, π(ηΛ |ω) > 0 for
all ηΛ ∈ ΩΛ. (An alternative terminology, often used in the context of percolation
models, is that the specification π has finite energy.) It can then be shown [134,
Section 2.3] that, if π is quasilocal and non-null, then there exists an absolutely
summable potentialΦ such thatπΦ =π. This result is known as the Kozlov–Sullivan
theorem.
[4] (p. 266) This counter-example was taken from [134].
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[5] (p. 275) The fact that a phase transition occurs in this model was proved by
Dyson [99] when −1 < ϵ< 0 and by Fröhlich and Spencer [123] when ϵ= 0.
[6] (p. 279). A proof can be found, for example, in [134, Section 14.A].
[7] (p. 283) The use of the operations rΛ and tπΛ is taken from [278].
[8] (p. 286). The argument in Example 6.64 is due to Miyamoto and first appeared
in his book [249] (in Japanese). The argument was rediscovered independently by
Coquille [72].
[9] (p. 290). This statement should be slightly nuanced. For concreteness, let us
consider the two-dimensional Ising model with β > βc(2) and h = 0. On the one
hand, when the free boundary condition is chosen, typical configurations show the
box B(n) to be entirely filled with either the + phase or the − phase, both occurring
with equal probability:

On the other hand, when Dobrushin boundary condition is applied (see the
discussion in Section 3.10.7), typical configurations display coexistence of both +
and − phases, separated by an interface:

Nevertheless, letting n →∞, both these sequences of finite-volume Gibbs dis-
tributions converge to the same Gibbs measure 1

2µ
+
β,0 + 1

2µ
−
β,0. So, even though

all the physics in the latter measure is already present in the two extremal mea-
suresµ+

β,0 andµ−
β,0, the physical mechanism leading to this particular non-extremal

Gibbs state are very different. In this sense, there can be hidden physics behind the
coefficients of the extremal decomposition.
[10] (p. 308) The non-uniqueness criterion presented in Section 6.11 was inspired
by [22].
[11] (p. 311) In dimension 2, this follows, for example, from the explicit expres-
sion (3.14) for the pressure at h = 0. For general dimensions, the claim follows
from the fact that continuity of the magnetization implies differentiability of the
pressure with respect to β [218] and the results on continuity of the magnetiza-
tion [352, 7, 27, 8].
[12] (p. 311) This result can be found in [289, Theorem 5.6.2].

Chapter 7

[1] (p. 323) A detailed analysis of this model can be found in [35].
[2] (p. 323) This model was first studied by Blume [25] and Capel [61].
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[3] (p. 333) More specifically, the problem of determining the ground states of a
lattice model can be shown to fall, in general, in the class of NP-hard problems. For
a discussion of this notion in the context of statistical mechanics, we recommend
the book [245].
[4] (p. 345) This trick is known as the “Minlos–Sinai trick”, and seems to have ap-
peared first in [248].

Chapter 9

[1] (p. 416). The first example of a two-dimensional O(N )-symmetric model with
several infinite-volume Gibbs measures at low temperature was provided by Shlos-
man [304]. His model has N = 2 and formal Hamiltonian

−β
∑

i , j∈Z2

∥ j−i∥2=
p

2

cos(ϑi −ϑ j )+βJ
∑

i , j∈Z2

∥ j−i∥2=1

cos(2(ϑi −ϑ j )) ,

where J is nonnegative, and we have written Si = (cosϑi , sinϑi ) for the spin at
i ∈Z2. The crucial feature of this model is that, in addition to the SO(2)-invariance
of the Hamiltonian, the latter is also preserved under the simultaneous transfor-
mation

ϑi 7→ϑi , ϑ j 7→ϑ j +π ,

for all i ∈ Z2
even

def= {
i = (i1, i2) ∈Z2 : i1 + i2 is even

}
and j ∈ Z2

odd

def= Z2 \Z2
even. It is

this discrete symmetry that is spontaneously broken at low temperatures, yielding
two Gibbs measures under which, in typical configurations, either most nearest-
neighbor spins differ by approximately π/2, or most differ by approximately −π/2;
see Figure A.1.
[2] (p. 424), A proof can be found, for example, in [111].

Chapter 10

[1] (p. 438) Extensions of Pirogov–Sinai theory covering some models with contin-
uous spins can be found, for example, in [168], [87] and [355].
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Figure A.1: A typical low-temperature configuration of the model in Note 1 of
Chapter 9.
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In this appendix, the reader can find a number of basic definitions and results
concerning some of the mathematical tools that are used throughout the book.
Given their wide range, it is not possible to discuss these tools in a self-contained
manner in this appendix. Nevertheless, we believe that gathering a coherent set of
notions and notations could be useful to the reader.

Although most of the proofs can be found in the literature (we provide refer-
ences for most of them), often in a much more general form, we have occasionally
provided explicit elementary derivations tailored for the particular use made in the
book. The results are not always stated in their most general form, in order to avoid
introducing too many concepts and notations.

Since the elementary notions borrowed from topology are used only in the case
of metric spaces and are always presented and developed from scratch, they are
not exposed in a systematic way.
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B.1 Real analysis

B.1.1 Elementary Inequalities

Lemma B.1 (Comparing arithmetic and geometric means). For any collection
x1, . . . , xn of nonnegative real numbers,

1

n

n∑
i=1

xi ≥
{ n∏

i=1
xi

}1/n
, (B.1)

with equality if and only if x1 = x2 = ·· · = xn .

Lemma B.2 (Hölder’s inequality, finite form). For all (x1, . . . , xn), (y1, . . . , yn) ∈ Rn

and all p, q > 1 such that 1
p + 1

q = 1,

n∑
k=1

|xk yk | ≤
( n∑

k=1
|xk |p

)1/p( n∑
k=1

|xk |q
)1/q

.

Lemma B.3 (Stirling’s Formula). For all n ≥ 1,

e
1

12n+1
p

2πnnne−n ≤ n! ≤ e
1

12n
p

2πnnne−n . (B.2)

A proof of this version of Stirling’s Formula can be found in [285].

B.1.2 Double sequences

We say that a double sequence (am,n)m,n≥1 is nondecreasing if

m ≤ m′,n ≤ n′ =⇒ am,n ≤ am′,n′ ,

and nonincreasing if (−am,n)m,n≥1 is nondecreasing. It is bounded above (resp.
below) if there exists C <∞ such that am,n ≤C (resp. am,n ≥−C ), for all m,n ≥ 1.

Lemma B.4. Let (am,n)m,n≥1 be a nondecreasing double sequence bounded above.
Then,

lim
m→∞ lim

n→∞am,n = lim
n→∞ lim

m→∞am,n = lim
m,n→∞am,n = sup

{
am,n : m,n ≥ 1

}
. (B.3)

Proof. (am,n)m,n≥1 being bounded, s
def= supm,n am,n is finite. Let ϵ > 0, and take

m0,n0 such that am0,n0 ≥ s −ϵ. (am,n) being nondecreasing, we deduce that

s ≥ am,n ≥ s −ϵ, ∀m ≥ m0,n ≥ n0.

Consequently, limm,n→∞ am,n = s. For all fixed m ≥ 1, the sequence (am,n)n≥1 is
nondecreasing and bounded, and thus converges to some limit sm . For a fixed ϵ> 0,
let m1,n1 be such that

|am,n − s| ≤ ϵ
2 , ∀m ≥ m1,n ≥ n1.

For fixed m, we can also find n2(m) such that

|am,n − sm | ≤ ϵ
2 , ∀n ≥ n2(m).

Consequently,
|sm − s| ≤ ϵ, ∀m ≥ m1,

which implies that limm→∞ sm = s. We have thus proved (B.3).
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B.1.3 Subadditive sequences

A sequence (an)n≥1 ⊂R is called subadditive if

an+m ≤ an +am ∀m,n .

Lemma B.5. If (an)n≥1 is subadditive, then

lim
n→∞

an

n
= inf

n

an

n
.

Proof. Let α
def= infn

an
n , and fix α′ > α. Let ℓ be such that aℓ

ℓ ≤ α′. For all n, there
exists k and 0 ≤ j < ℓ such that n = kℓ+ j . We can then use the definition of α, and
k times the subadditivity of an to write

αn ≤ an = akℓ+ j ≤ kaℓ+a j .

Dividing by n,

α≤ liminf
n→∞

an

n
≤ limsup

n→∞
an

n
≤ aℓ

ℓ
≤α′ .

The desired result follows by letting α′ ↓α.

On the lattice Zd , a similar property holds. Let us denote by R the set of all
parallelepipeds of Zd , that is sets of the form Λ= [a1,b1]× [a2,b2]×·· ·× [ad ,bd ]∩
Zd . A set function a : R →R is subadditive if R1,R2 ∈R, R1 ∪R2 ∈R implies

a(R1 ∪R2) ≤ a(R1)+a(R2) .

Let, as usual, B(n) = {−n, . . . ,n}d .

Lemma B.6. Let a : R →R be subadditive and such that a(Λ+i ) = a(Λ) for allΛ ∈R
and all i ∈Zd . Then

lim
n→∞

a(B(n))

|B(n)| = inf
Λ∈R

a(Λ)

|Λ| .

The proof is a d-dimensional adaptation of the one given above for sequences
(an)n≥1; we leave it as an exercise (a proof can be found in [134]).

B.1.4 Functions defined by series

Theorem B.7. Let I ⊂R be an open interval. For each k ≥ 1, let φk : I →R be C 1. As-
sume that there exists a summable sequence (ϵk )k≥1 ⊂R≥0 such that supx∈I |φk (x)| ≤
ϵk , supx∈I |φ′

k (x)| ≤ ϵk . Then f (x)
def= ∑

k≥1φk (x) is well defined and C 1 on I . More-
over, f ′(x) =∑

k≥1φ
′
k (x).

Proof. Since
∑

k ϵk < ∞,
∑

k φk (x) is an absolutely convergent series for all x ∈ I ,
defining a function f : I →R. Then, fix x ∈ I and take some small h > 0:

f (x +h)− f (x)

h
=

∑
k

φk (x +h)−φk (x)

h
.

By the mean-value theorem, there exists x̃ ∈ [x, x +h] such that |φk (x+h)−φk (x)
h | =

|φ′
k (x̃)| ≤ ϵk . Using Exercise B.15, we can therefore interchange h ↓ 0 with

∑
k . The

same argument with h ↑ 0 then gives f ′(x) =∑
k φ

′
k (x). A similar argument guaran-

tees that f is C 1.
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B.2 Convex functions

In this section, we gather a few elementary results about convex functions of one
real variable. Rockafellar’s book [287] is a standard reference on the subject; an-
other nice and accessible reference is the book [286] by Roberts and Varberg.

We will use I to denote an (not necessarily bounded) open interval in R, that is,
I = (a,b) with −∞≤ a < b ≤+∞.

Definition B.8. A function f : I →R is convex if

f
(
αx + (1−α)y

)≤α f (x)+ (1−α) f (y), ∀x, y ∈ I ,∀α ∈ [0,1]. (B.4)

When the inequality is strict for all x ̸= y and all α ∈ (0,1), f is strictly convex. If − f
is (strictly) convex, then f is said to be (strictly) concave.

For the cases considered in the book, f always has a continuous extension to
the boundary of I (when I is finite). Sometimes, we need to extend the domain of f

from a finite I to the whole ofR; in such cases, one can do that by setting f (x)
def= +∞

for all x ̸∈ I . The definition of convexity can then be extended, allowing f to take
infinite values in B.4.

The following exercise is elementary, but emphasizes a property of convex func-
tions that will be used repeatedly in the sequel; it is illustrated on Figure B.1.

Exercise B.1. Show that f : I →R is convex if and only if, for any x < y < z in I ,

f (y) ≤ z − y

z −x
f (x)+ y −x

z −x
f (z). (B.5)

From this, deduce that if f is finite, then, for any x < y < z in I ,

f (y)− f (x)

y −x
≤ f (z)− f (x)

z −x
≤ f (z)− f (y)

z − y
. (B.6)

A

x

B

y

C

z

f

Figure B.1: The geometrical meaning of (B.6): for any triple of points on the
graph of a convex function, slope(AB) ≤ slope(AC ) ≤ slope(BC ).

Exercise B.2. Show that f : I → R is convex if and only if, for all α1, . . . ,αn ∈ [0,1]
such that α1 +·· ·+αn = 1 and all x1, . . . , xn ∈ I ,

f
( n∑

k=1
αk xk

)
≤

n∑
k=1

αk f (xk ) .
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An important property is that limits of convex functions are convex:

Exercise B.3. Show that if ( fn)n≥1 is a sequence of convex functions from I to R,

then x 7→ limsupn→∞ fn(x) is convex. In particular, if f (x)
def= limn→∞ fn(x) exists

(in R∪ {+∞}) for all x ∈ I , then it is also convex.

B.2.1 Convexity vs. continuity

Proposition B.9. Let f : I →R be convex. Then f is locally Lipschitz: for all compact
K ⊂ I , there exists CK < ∞ such that | f (x)− f (y)| ≤ CK |x − y | for all x, y ∈ K . In
particular, f is continuous.

Proof. Let K ⊂ I be compact, and let ϵ > 0 be small enough to ensure that Kϵ
def=

{z : d(z,K ) ≤ ϵ} ⊂ I . Let also M
def= supz∈Kϵ

f (z), m
def= infz∈Kϵ f (z). Observe that both

m and M are finite. (Otherwise, there would exist an interior point x∗ ∈ I and a
sequence xn → x∗, f (xn) ↑ +∞. Then, for all pair z < x∗ < z ′ one would get, for all
sufficiently large n, f (xn) > max{ f (z), f (z ′)}, a contradiction with the convexity of

f .) Let x, y ∈ K , and set z
def= y + ϵ y−x

|y−x| ∈ Kϵ. Then y = (1−λ)x +λz with λ= |y−x|
ϵ+|y−x| ,

and therefore f (y) ≤ (1−λ) f (x)+λ f (z), which gives after rearrangement

f (y)− f (x) ≤λ( f (z)− f (x)) ≤λ(M −m) ≤ M −m

ϵ
|y −x| .

Lemma B.10. Let ( fn)n≥1 be a sequence of convex functions on I converging point-
wise to f : I →R. Then fn → f uniformly on all compacts K ⊂ I .

Proof. Fix some compact K ⊂ I , and let a′ < a < b < b′ in I such that [a,b] ⊃ K .
It follows from (B.6) that, for all n and all distinct x, y ∈ [a,b],

fn(a)− fn(a′)
a −a′ ≤ fn(y)− fn(x)

y −x
≤ fn(b′)− fn(b)

b′−b
.

By pointwise convergence, the leftmost and rightmost ratios converge to finite val-
ues as n →∞. Therefore, there exists C , independent of n, such that

| fn(y)− fn(x)| ≤C |y −x| ∀x, y ∈ [a,b] .

Letting n →∞ in the last display shows that the same is also true for the limiting
function f .

Fix ϵ > 0. Let N ∈ N and define δ = (b − a)/N and xk = a + kδ, k = 0, . . . , N .
Pointwise convergence implies that there exists n0 such that, for all n ≥ n0,

| fn(xk )− f (xk )| < 1
3ϵ , ∀k ∈ {0, . . . , N } .

Let z ∈ [a,b] and let k ∈ {0, . . . , N } be such that |xk − z| < δ. Then, for all n ≥ n0,

| fn(z)− f (z)| ≤ | fn(z)− fn(xk )|︸ ︷︷ ︸
≤Cδ

+| fn(xk )− f (xk )|︸ ︷︷ ︸
≤ϵ/3

+| f (xk )− f (z)|︸ ︷︷ ︸
≤Cδ

≤ ϵ ,

provided we choose N such that Cδ≤ ϵ/3.
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A function f : I →R is said to be midpoint-convex if

f
( x + y

2

)
≤ f (x)+ f (y)

2
, ∀x, y ∈ I . (B.7)

Clearly, a convex function is also midpoint-convex.

Lemma B.11. If f is midpoint-convex and continuous, then it is convex.

Proof. Using the continuity of f , it suffices to show that (B.4) holds in the case

where α ∈ D
def= ⋃

m≥1 Dm , with Dm
def= { k

2m : 0 ≤ k < 2m
}
. Observe first that (B.7)

means that (B.4) holds for all x, y ∈ I and for α ∈D1.
We can now proceed by induction. Assume that (B.4) holds for all α ∈ Dm . Let

z =αx+(1−α)y , withα ∈Dm+1 \Dm ; with no loss of generality, we can assume that

α> 1/2. Let z ′ def= 2z−x =α′x+(1−α′)y where α′ def= 2α−1 ∈Dm . Applying (B.7) and
the induction assumption, we get

f (z) = f ( 1
2 x + 1

2 z ′) ≤ 1
2 f (x)+ 1

2 f (z ′)

≤ 1
2 f (x)+ 1

2

{
α′ f (x)+ (1−α′) f (y)

}=α f (x)+ (1−α) f (y) ,

so (B.4) also holds for all α ∈Dm+1.

B.2.2 Convexity vs. differentiability

The one-sided derivatives of a function f at a point x are defined by

∂+ f (x) = ∂ f

∂x+
def= lim

z↓x

f (z)− f (x)

z −x
,

∂− f (x) = ∂ f

∂x−
def= lim

z↑x

f (z)− f (x)

z −x
.

These quantities are always well defined for a convex function, and enjoy several
useful properties:

Theorem B.12. Let f : I →R be convex. The following properties hold.

1. ∂+ f (x) and ∂− f (x) exist at all points x ∈ I .

2. ∂− f (x) ≤ ∂+ f (x), for all x ∈ I .

3. ∂+ f (x) ≤ ∂− f (y) for all x < y in I .

4. ∂+ f and ∂− f are nondecreasing.

5. ∂+ f is right-continuous, ∂− f is left-continuous.

6.
{

x : ∂+ f (x) ̸= ∂− f (x)
}

is at most countable.

7. Let (gn)n≥1 be a sequence of convex functions from I to R converging point-
wise to a function g . If g is differentiable at x, then limn→∞∂+gn(x) =
limn→∞∂−gn(x) = g ′(x).

Note that Item 6 shows that a convex function f : I →R is differentiable everywhere
outside an at most countable set.
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Proof. From (B.6), we see that

x 7→ f (y)− f (x)

y −x
and y 7→ f (y)− f (x)

y −x
are nondecreasing. (B.8)

1. In I , consider x < y and a decreasing sequence (zk )k≥1 with zk > y , for all k,
and zk ↓ y . From (B.8), the sequence

((
f (zk )− f (y)

)
/(zk − y)

)
k≥1 is nonincreasing,

and (B.6) implies that it is bounded below by
(

f (y)− f (x)
)
/(y−x). It follows that the

sequence converges, which establishes the existence of ∂+ f (y). A similar argument
proves the existence of ∂− f (y).

2. Taking x ↑ y in the left-hand side, followed by z ↓ y in the right-hand side of (B.6)
gives ∂− f (y) ≤ ∂+ f (y).

3. Let x < y in I . It follows from (B.8) that

∂+ f (x) ≤ f (y)− f (x)

y −x
≤ ∂− f (y) . (B.9)

4. This is a consequence of the second and third points.

5. We prove the claim for ∂+ f ; the other one is treated in the same way. On the
one hand, it follows from the monotonicity of ∂+ f that limy↓x ∂

+ f (y) exists and
limy↓x ∂

+ f (y) ≥ ∂+ f (x). On the other hand, we know from Proposition B.9 that f is
continuous. It thus follows from (B.9) that, for each z > x,

f (z)− f (x)

z −x
= lim

y↓x

f (z)− f (y)

z − y
≥ lim

y↓x
∂+ f (y) .

Letting z ↓ x, we obtain that ∂+ f (x) ≥ limy↓x ∂
+ f (y) and the claim follows.

6. Since I can be written as the union of countably many closed intervals and
since a countable union of countable sets is countable, it is enough to prove the
statement for an arbitrary closed interval [a,b] contained in I . Let ϵ > 0 such that

[a−ϵ,b+ϵ] ⊂ I . Since f is continuous, M
def= supx∈[a−ϵ,b+ϵ] | f (x)| <∞. It thus follows

from (B.9) that

∂+ f (b) ≤ f (b +ϵ)− f (b)

ϵ
≤ 2M

ϵ

and

∂− f (a) ≥ f (a)− f (a −ϵ)

ϵ
≥−2M

ϵ
.

By what we saw above, ∂− f (a) ≤ ∂± f (x) ≤ ∂+ f (b) for all x ∈ [a,b], we deduce that
supx∈[a,b] |∂± f (x)| ≤ 2M/ϵ. For r ∈N, let

Ar =
{

x ∈ [a,b] : ∂+ f (x)−∂− f (x) ≥ 1
r

}
.

Since {
x ∈ [a,b] : ∂+ f (x) > ∂− f (x)

}=
⋃
r≥1

Ar ,

it suffices to prove that each Ar is finite. Consider n distinct points x1 < x2 < . . . < xn

from Ar . Then,

∂+ f (xn)−∂− f (x1) =
n∑

k=1

(
∂+ f (xk )−∂− f (xk )

)≥ n

r
,
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which implies n ≤ r
(
∂+ f (xn)−∂− f (x1)

)≤ 4Mr /ϵ; Ar is therefore finite.

7. Using again (B.9), for any h > 0,

limsup
n→∞

∂+gn(x) ≤ limsup
n→∞

gn(x +h)− gn(x)

h
= g (x +h)− g (x)

h
.

Letting h ↓ 0 gives ∂+g (x) ≥ limsupn→∞∂+gn(x). A similar argument yields
∂−g (x) ≤ liminfn→∞∂−gn(x). Therefore,

∂−g (x) ≤ liminf
n→∞ ∂−gn(x) ≤ limsup

n→∞
∂+gn(x) ≤ ∂+g (x) ,

and the differentiability of g at x indeed implies that

g ′(x) = lim
n→∞∂

−gn(x) = lim
n→∞∂

+gn(x).

We say that f : I 7→R has a supporting line of slope m at x0 if

f (x) ≥ m(x −x0)+ f (x0) , ∀x ∈ I . (B.10)

Theorem B.13. A function f : I →R is convex if and only if f has a supporting line
at each point x ∈ I . Moreover, in that case, there is a supporting line at x of slope m
for all m ∈ [∂− f (x),∂+ f (x)] .

Proof. Suppose first that f has a supporting line at each point of I . Let x < y be two
points of I , α ∈ [0,1] and z =αx + (1−α)y . By assumption, there exists m such that
f (u) ≥ f (z)+m(u − z) for all u ∈ I . Applying this at x and y , we deduce that

α f (x)+ (1−α) f (y) ≥ f (z)+m
(
α(x − z)+ (1−α)(y − z)︸ ︷︷ ︸

=0

)
,

which implies that α f (x)+ (1−α) f (y) ≥ f (αx + (1−α)y) as desired.
Assume now that f is convex and let x0 ∈ I . Let m ∈ [∂− f (x0),∂+ f (x0)]. By (B.9),

f (x)− f (x0)
x−x0

≥ ∂+ f (x0) ≥ m for all x > x0, and f (x)− f (x0)
x−x0

≤ ∂− f (x0) ≤ m for all x < x0,
which implies f (x) ≥ m(x −x0)+ f (x0) for all x.

We also remind the reader of a well-known property that relates convexity to
the positivity of the second derivative of a twice-differentiable function:

Exercise B.4. Let f be twice-differentiable at each point of I . Show that f is convex
if and only if f ′′(x) ≥ 0 for all x ∈ I .

Note that a sequence of strictly convex functions ( fn)n≥1 converging pointwise can
have a limit that is not strictly convex; consider, for example, fn(x) = |x|1+1/n . A
twice-differentiable function f for which one can find c > 0 such that f ′′(x) > c for
all x is said to be strongly convex. Note that a function can be strictly convex and
fail to be strongly convex, for example x 7→ x4.

Exercise B.5. Let ( fn)n≥1 be a sequence of twice-differentiable uniformly strongly
convex functions such that f = limn fn(x) exists and is finite everywhere. Show that
f is strictly convex.
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B.2.3 The Legendre transform

Definition B.14. Let f : I →R∪{+∞}. The Legendre–Fenchel Transform (or simply
Legendre transform 1) of f is defined by

f ∗(y)
def= sup

x∈I

{
y x − f (x)

}
, y ∈R . (B.11)

We will always suppose, from now on, that there exists at least one point at which
f is finite, which guarantees that f ∗(y) >−∞ for all y ∈R.

f

slope: y

f ∗(y)
x

Figure B.2: Visualizing the Legendre transform: for a given y ∈R, f ∗(y) is the
largest difference between the straight line x 7→ y x and the graph of f .

Exercise B.6. Show that any Legendre transform is convex.

Exercise B.7. Compute the Legendre transform f ∗
i of each of the following functions:

f1(x) = 1
2 x2 , f2(x) = x4 , f3(x) =

{
0 if x ∈ (−1,1) ,

+∞ if x ̸∈ (−1,1) .

Compute also f ∗∗
i

def= ( f ∗
i )∗ in each case. What do you observe?

As can be seen by solving the previous exercise, f ∗∗ is not always equal to f .
Nevertheless,

Exercise B.8. Show that, for all f :R→R∪ {+∞}, f ∗∗ ≤ f .

Let us see two more examples in which the geometrical effect of applying two
successive Legendre transforms is made transparent:

Exercise B.9. If f (x) =
∣∣|x|−1

∣∣, show that

f ∗∗(x) =





−x −1 if x <−1,

0 if |x| ≤ 1,

+x −1 if x >+1.

Exercise B.10. Let f (x) = x4 −x2. Using the geometrical picture of Figure B.2, study
qualitatively f ∗ and f ∗∗.

1Actually, the latter form is usually reserved for a particular case; nevertheless, we use the term
Legendre transform everywhere in this book.
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With the above examples in mind, we now impose restrictions on f to guarantee
that f ∗∗ = f .

We call f lower semi-continuous at x if, for any sequence xn → x,

liminf
n→∞ f (xn) ≥ f (x) .

Exercise B.11. Show that any Legendre transform is lower semi-continuous.

Lemma B.15. Let f :R→R∪{+∞} be convex and lower semi-continuous. For all x0,
if α ∈R is such that α< f (x0), then there exists an affine function h(x) = ax+b such
that h ≤ f and h(x0) ≥α.

Proof. For simplicity, we assume that f (x0) < +∞ (the case f (x0) = +∞ is treated
similarly). If either ∂+ f (x0), or ∂− f (x0), is finite, then Theorem B.13 implies the
result. If ∂− f (x0) = +∞, convexity implies that f (x) < f (x0) for all x ∈ (x0 −δ, x0)
(with δ> 0 sufficiently small), and f (x) =+∞ for all x > x0. Let

a
def= inf

{
m ≥ 0 : m(x −x0)+α≤ f (x), ∀x ∈ I

}
.

We claim that a < ∞. Indeed, assume that a = ∞. Then, there would exist a se-
quence xn < x0, xn ↑ x0, with f (xn) ≤α< f (x0), giving liminfn f (xn) < f (x0), which
would contradict the lower semi-continuity of f . When a <∞, the affine function
h(x) = a(x − x0) +α satisfies the requirements. The remaining cases are treated
similarly.

Exercise B.12. Show that if f has a supporting line of slope m at x0, then f ∗ has a
supporting line of slope x0 at m.

The epigraph of an arbitrary function f :R→R∪ {+∞} is defined by

epi( f )
def= {

(x, y) ∈R2 : y ≥ f (x)
}

.

Exercise B.13. Let f : I →R∪ {+∞}.

1. Show that f is convex if and only if epi( f ) is convex 2.

2. Show that f is lower semi-continuous if and only if epi( f ) is closed.

Definition B.16. The convex envelope (or convex hull) of f , denoted CE f , is de-
fined as the unique convex function g whose epigraph is

C
def=

⋂{
F ⊂R2 : F closed, convex, F ⊃ epi( f )

}
. (B.12)

That is,
CE f (x)

def= inf
{

y : (x, y) ∈C
}

.

2 A ⊂R2 is convex if z1, z2 ∈ A, λ ∈ [0,1] implies λz1 + (1−λ)z2 ∈ A.
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Clearly, if f is convex and lower semi-continuous, then CE f = f .
Observe that, since C is closed, (x,CE f (x)) ∈C for all x. Moreover, C is convex,

which implies that x 7→ CE f (x) is convex. In fact, epi(CE f ) =C . Since C is closed,
this implies (Exercise B.13) that CE f is lower semi-continuous.

In words, as will be seen in the next exercise, CE f is the largest convex function
g such that g ≤ f :

CE f

f

Exercise B.14. If g is convex, lower semi-continuous and g ≤ f , then g ≤ CE f .

Theorem B.17. If f :R→R is lower semi-continuous,

f ∗∗ = CE f .

Proof. We have already seen that f ∗∗ ≤ f . Since f ∗∗ is convex and lower semi-
continuous, this implies f ∗∗ ≤ CE f (Exercise B.14). To establish the reverse in-
equality at a point x0, f ∗∗(x0) ≥ CE f (x0), we must show that, for allα ∈R satisfying
α< CE f (x0),

there exists y ∈R such that x0 y − f ∗(y) ≥α . (B.13)

Since CE f is also lower semi-continuous, there exists, by Lemma B.15, an affine
function h such that (i) h ≤ f and (ii) α≤ h(x0) ≤ f (x0). If h(x) = ax +b, (i) means
that ax + b ≤ f (x) for all x, which gives f ∗(a) ≤ −b. Then, (ii) implies that α ≤
ax0 +b. Combining these bounds gives ax0 − f ∗(a) ≥α, which implies (B.13).

Corollary B.18. If f :R→R∪ {+∞} is lower semi-continuous, then

(CE f )∗ = f ∗ .

Proof. By Theorem B.17, CE f = f ∗∗, and so (CE f )∗ = f ∗∗∗. Since f ∗ is lower semi-
continuous, we have again by Theorem B.17 that f ∗∗∗ = ( f ∗)∗∗ = CE f ∗. But f ∗ is
convex, which implies that CE f ∗ = f ∗.

In particular, we proved:

Theorem B.19. If f :R→R∪ {+∞} is lower-semicontinuous and convex,

f ∗∗ = f .

B.2.4 Legendre transform of non-differentiable functions

We have seen that the right and left derivatives of a convex function f at a point
x∗, ∂+ f (x∗) and ∂− f (x∗), are well defined (Theorem B.12). If f is not differentiable
at x∗, then ∂− f (x∗) < ∂+ f (x∗), so f can have more than one supporting line at x∗,
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which has an important consequence on the qualitative behavior of the Legendre
Transform.

y

f ∗

∂+ f (x∗)∂− f (x∗)x∗
x

f

∂+ f (x∗)∂− f (x∗)

Theorem B.20. Let f be a convex function. Then:

1. If f is not differentiable at x∗, then f ∗ is affine on the interval
[∂− f (x∗),∂+ f (x∗)].

2. If f is affine on some interval [a,b], with a slope m, then f ∗ is non-
differentiable at m and ∂+ f ∗(m) ≥ b > a ≥ ∂− f ∗(m).

Note that if a continuous function f is not convex on an interval contining x, then
CE f must be affine on that interval. In that case, the above theorem, combined
with Corollary B.18, shows that f ∗ cannot be differentiable.

Proof. By Theorem B.13, for each value m ∈ [∂− f (x∗),∂+ f (x∗)], the line x 7→ m(x −
x∗)+ f (x∗) is a supporting line for f at x∗. By Exercise B.12, this implies that f ∗

admits, at each m ∈ [∂− f (x∗),∂+ f (x∗)], a supporting line with the same slope x∗.
Since f ∗ is convex, all these supporting lines actually coincide, which implies that
f ∗ is affine on the interval.

If CE f is affine on [a,b], with slope m, one has in particular that f ∗(m) =
(CE f )∗(m) = ma − f (a) = mb − f (b). Then, for all ϵ> 0,

f ∗(m +ϵ)− f ∗(m) ≥ {
(m +ϵ)b − f (b)

}− f ∗(m) = ϵb ,

and therefore ∂+ f ∗(m) ≥ b. Similarly, ∂− f ∗(m) ≤ a.

B.3 Complex analysis

Let D ⊂ C be a domain (that is, open and connected). Remember that a function
f : D →C is holomorphic if

f ′(z)
def= lim

w→z

f (w)− f (z)

w − z

exists and is finite at each z ∈ D . It is well known that holomorphic functions have
derivatives of all orders, and that f is holomorphic if and only if it is analytic, that
is, if and only if it can be represented at each point z0 ∈ D by a convergent Taylor
series:

f (z) =
∑

n≥0
an(z − z0)n ,

where an = 1
n! f (n)(z0) and z belongs to a small disk around z0. Therefore, holomor-

phic and analytic should be considered as synonyms in this section.
We start with the following fundamental result of complex analysis.
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Theorem B.21 (Cauchy’s integral theorem). Let D ⊂ C be open and simply con-
nected, and let f be holomorphic on D. Then

∮

γ
f (ξ)dξ= 0,

for all closed paths γ⊂ D.

Proof. See, for example, [336, Theorem 4.14].

Corollary B.22. Let D ⊂C be open and simply connected, and let f be holomorphic
on D. Then, there exists a function F , holomorphic on D, such that F ′ = f .

Proof. We fix some point z0 ∈ D . Since D is open and connected, any other z ∈ D
can be joined from z0 by a continuous path γz ⊂ D . Let

F (z)
def=

∫

γz

f (ξ)dξ.

By Theorem B.21, this definition does not depend on the choice of the path γz .

Choose r > 0 small enough to ensure that the disc B(z,r )
def= {w ∈C : |w − z| ≤ r } ⊂

D . Then,

F (w) = F (z)+
∫

[z,w]
f (ξ)dξ, ∀w ∈ B(z,r ),

where [z, w] is the straight line segment connecting z to w . But f being holomor-
phic implies in particular that f (ξ) = f (z)+O(|ξ− z|) for all ξ ∈ B(z,r ), and so

lim
w→z

F (w)−F (z)

w − z
= lim

w→z

1

w − z

∫

[z,w]
f (ξ)dξ= f (z) .

This implies that F is holomorphic and that F ′ = f .

Theorem B.23. Let f be a holomorphic function on a simply connected open set
D ⊂ C, which has no zeroes on D. Then, there exists a function g analytic on D,
called a branch of the logarithm of f on D , such that f = eg .

Proof. Our assumptions imply that f ′/ f is holomorphic on D . Corollary B.22 thus
implies the existence of a function F , holomorphic on D , such that F ′ = f ′/ f . In
particular,

( f e−F )′ = f ′e−F − f F ′e−F ≡ 0.

Therefore, there exists c ∈C such that f e−F = ec , or equivalently f = eF+c .

Remark B.24. 1. Let g be a branch of the logarithm of f on D . Then Reg =
log | f |. Indeed,

| f | = |eg | = |eReg e iImg | = eReg .

2. Let g1 and g2 be two branches of the logarithm of f on D . Since, for each
z ∈ D ,

eg2(z)−g1(z) = eg2(z)

eg1(z)
= f (z)

f (z)
= 1,

we conclude that g2(z) = g1(z)+ 2ik(z)π for some k(z) ∈ Z. However, z 7→
k(z) = (g2(z) − g1(z))/2iπ is continuous and integer-valued; it is therefore
constant on D . This implies that g2 = g1 +2ikπ for some k ∈Z.
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3. Assume that the domain D in Theorem B.23 is such that D ∩R is connected.
Suppose also that f (z) ∈ R>0 for z ∈ D ∩R. Then there is a branch g of the
logarithm of f on D such that g (z) ∈ R for all z ∈ D ∩R; in particular, g coin-
cides with the usual logarithm of f (seen as a real function) on D∩R. Indeed,
it suffices to observe that the function F in the proof can be constructed by
starting from a point z0 ∈ D ∩R at which one can fix g (z0) = log | f (z0)| and
use the fact that F (z) = ∫ z

z0
f ′(x)/ f (x)dx for z ∈ D ∩R. ⋄

It is well known that the limit of a sequence of analytic functions need not be
analytic. Let us see how additional conditions can be imposed to guarantee that
the limiting function is also analytic.

Remember that a family A of functions on C is locally uniformly bounded on
a set D ⊂ C if, for each z ∈ D , there exists a real number M and a neighborhood U
of z such that | f (w)| ≤ M for all w ∈U and all f ∈A .

Theorem B.25 (Vitali Convergence Theorem). Let D be an open, connected subset
of C and ( fn)n≥1 be a sequence of analytic functions on D, which are locally uni-
formly bounded and converge on a set having a cluster point in D. Then the sequence
( fn)n≥1 converges locally uniformly on D to an analytic function.

Proof. See [71, p. 154].

Theorem B.26 (Hurwitz Theorem). Let D be an open subset of C and ( fn)n≥1 be
a sequence of analytic functions, which converge, locally uniformly, on D to an an-
alytic function f . If fn(z) ̸= 0, for all z ∈ D and for all n, then either f vanishes
identically, or f is never zero on D.

Proof. See [71, Corollary 2.6].

The following theorem is the complex counterpart to Theorem B.7. (Notice that,
in the complex case, no control is needed on the series of the derivatives.)

Theorem B.27 (Weierstrass’ Theorem on uniformly convergent series of analytic
functions). Let D ⊂ C be a domain. For each k, let fk : D → C be an analytic func-
tion. If the series

f (z)
def=

∑
k

fk (z)

is uniformly convergent on every compact subset K ⊂ D, then it defines an analytic
function on D. Moreover, for each n ∈N,

∑
k f (n)

k converges uniformly on every com-
pact K ⊂ D and

f (n)(z) =
∑
k

f (n)
k (z) , ∀z ∈ D .

Proof. See [228, Volume 1, Theorem 15.6].

Let U ,V ⊂C. A continuous function F : U×V →C is said to be analytic on U×V
if F (·, z) is analytic on U for any fixed z ∈V and F (z, ·) is analytic on V for any fixed
z ∈U .
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Theorem B.28 (Implicit function theorem). Let (ω, z) 7→ F (ω, z) be an analytic func-
tion on an open domain U ×V ⊂ C2. Let (ω0, z0) ∈U ×V be such that F (ω0, z0) = 0
and ∂F

∂z (ω0, z0) ̸= 0. Then there exists an open subset U0 ⊂U containing ω0 and an
analytic map ϕ : U0 →V such that ϕ(ω0) = z0 and

F (ω,ϕ(ω)) = 0 for all ω ∈U0 .

Proof. See [228, Volume 2, Theorem 3.11].

B.4 Metric spaces

All topological notions used in the book (in particular those of Chapter 6) concern
topologies induced by a metric. Let χ be an arbitrary set. A map d : χ×χ→ R≥0

is a metric (on χ) (or distance) if it satisfies: (i) d(x, y) = 0 if and only if x = y ,
(ii) d(x, y) = d(y, x) for all x, y ∈χ, (iii) d(x, y) ≤ d(x, z)+d(z, y) for all x, y, z ∈χ. The
pair (χ,d) is then called a metric space.

The open ball centered at x ∈ χ of radius ϵ > 0 is Bϵ(x)
def= {

y ∈χ : d(y, x) < ϵ}.
A set A ⊂ χ is open if, for each x ∈ A, there exists ϵ > 0 such that Bϵ(r ) ⊂ A. A set

A is closed if Ac def= χ \ A is open. Arbitrary unions and finite intersections of open
sets are open. A sequence (xn)n≥1 ⊂ χ converges to x∗ ∈ χ (denoted xn → x∗) if, for
all ϵ > 0, there exists n0 such that xn ∈ Bϵ(x∗) for all n ≥ n0. A set F ⊂ χ is closed if
and only if (xn)n≥1 ⊂ F , xn → x∗ implies x∗ ∈ F . A set D ⊂ χ is dense if, for all x ∈ χ
and all ϵ> 0, D ∩Bϵ(x) ̸=∅. χ is separable if there exists a countable dense subset
D ⊂χ.

On χ= Rn , one usually uses the Euclidean metric inherited from the Euclidean

norm: d(x, y)
def= ∥x − y∥2; on χ=C, one uses the modulus: d(w, z)

def= |w − z|.
A function f : χ→ χ′ is continuous if f (xn) → f (x∗) whenever xn → x∗. Equiv-

alently, f is continuous if and only if f −1(A′) ⊂χ is open for each open set A′ ⊂χ′.
A metric space (χ,d) is sequentially compact (or simply compact) if there ex-

ists, for each sequence (xn)n≥1 ⊂ χ, a subsequence (xnk )k≥1 and some x∗ ∈ χ such
that xnk → x∗ when k →∞. A compact metric space is always separable.

An introduction to metric spaces can be found in [284, Chapter 1].

B.5 Measure Theory

This section and the two following ones contain several definitions and results con-
cerning measure theory and integration. Many detailed books exist on the subject,
among which the one by Bogachev [30].

B.5.1 Measures and probability measures

Throughout this section, Ω denotes an arbitrary set and P(Ω) the collection of all

subsets ofΩ. The complement of a set A ⊂Ωwill be denoted Ac def= Ω\ A.

Definition B.29. A collection A ⊂ P(Ω) is an algebra if (i) ∅ ∈ A , (ii) A ∈ A im-
plies Ac ∈A , and (iii) A,B ∈A implies A∪B ∈A .

Definition B.30. A collection F ⊂ P(Ω) is a σ-algebra if (i) ∅ ∈ A , (ii) A ∈ A
implies Ac ∈F , and (iii) (An)n≥1 ⊂F implies

⋃
n≥1 An ∈F .
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Given an arbitrary collection S ⊂P(Ω) of subsets of Ω, there exists a smallest
σ-algebra containing S , called theσ-algebra generated by S , denoted σ(S ) and
given by

σ(S )
def=

⋂{
F : F a σ-algebra containing S

}
.

(Note that the intersection of an arbitrary collection of σ-algebras is a σ-algebra.)

Example B.31. If (χ,d) is a metric space whose collection of open sets is denoted

by O , then B
def= σ(O) is called the σ-algebra of Borel sets on χ. When (χ,d) is the

Euclidean spaceRn (equipped with the Euclidean metric), thisσ-algebra is denoted
B(Rn). ⋄

A pair (Ω,F ), where F is a σ-algebra of subsets of Ω, is called a measurable
space and the sets A ∈F are called measurable.

Definition B.32. On a measurable space (Ω,F ), a set function µ : F → [0,+∞] is
called a measure if the following holds:

1. µ(∅) = 0.

2. (σ-additivity) If (An)n≥1 ⊂ F is a sequence of pairwise disjoint sets, then
µ(

⋃
n An) =∑

n µ(An).

The measure µ is finite if µ(Ω) <∞; µ is a probability measure if µ(Ω) = 1. If there
exists a sequence (An)n≥1 ⊂ F such that

⋃
n≥1 An = Ω and µ(An) <∞ for each n,

then µ is σ-finite.
Let us remind the reader of two straightforward consequences of the above def-

inition. First, by the σ-additivity of item 2 above,

µ
(⋃

n
An

)
≤

∑
n
µ(An) ,

for any sequence An ∈F . In particular, if µ(An) = 0 for all n, then

µ
(⋃

n
An

)
= 0.

A property A, defined for each element ω ∈Ω, occurs µ-almost everywhere (or for
µ-almost all ω) if there exists B ∈ F such that {ω ∈Ω : A does not hold for ω} ⊂ B
and µ(B) = 0. When µ is a probability measure, one usually says µ-almost surely.

Measures are usually constructed by defining a finitely additive set function on
an algebra A and by extending it to the σ-algebra generated by A .

Let A be an algebra. A set function µ0 : A → [0,+∞] is said to be finitely ad-
ditive if µ0(A ∪ B) = µ0(A) +µ0(B) for all pairs of disjoint measurable sets; µ0 is
a measure if µ0(∅) = 0 and if µ0(

⋃
n≥1 An) = ∑

n≥1µ0(An) holds for all sequences
(An)n≥1 ⊂A of pairwise disjoint sets for which

⋃
n≥1 An ∈A .

Theorem B.33 (Carathéodory’s Extension Theorem). Let µ0 : A → [0,+∞] be a σ-

finite measure on an algebra A and let F
def= σ(A ). Then there exists a unique mea-

sure µ : F → [0,+∞], called the extension of µ0, which coincides with µ0 on A :
µ(A) =µ0(A) for all A ∈A .

The σ-algebra F =σ(A ) is in general a much larger collection of sets than A ;
nevertheless, each set B ∈ F can be approximated arbitrary well by sets in A ∈ A
in the sense of measure theory:
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Lemma B.34. Let µ be a probability measure on (Ω,F ), where F is generated by an
algebra A : F = σ(A ). Then, for all B ∈ F and all ϵ > 0, there exists A ∈ A such
that µ(B△A) ≤ ϵ.

Proof. Let G
def= {

B ∈F : ∀ϵ> 0,∃A ∈A s.t. µ(B△A) ≤ ϵ}. Since, obviously, G ⊃A ,
it suffices to show that G is a σ-algebra. Since µ(B△A) = µ(B c△Ac), we see that G
is stable under taking complements. Let (Bn)n≥1 ⊂G and set B =⋃

n≥1 Bn . Fix ϵ> 0.
For each n, let An ∈A be such that µ(Bn△An) ≤ ϵ/2n . Then, let A = ⋃N

n=1 An ∈A .
If N is large enough,

µ(B△A) ≤
∑

n≥1
µ(Bn△An) ≤ ϵ .

Therefore, B ∈G . This shows that G is a σ-algebra.

In measure theory, it is often useful to determine whether some property is ver-
ified by each measurable set of aσ-algebra F . If F is generated by an algebra, then
this can be done by checking conditions which are easier to verify than testing each
B ∈F .

A collection M ⊂P(Ω) is a monotone class if (i) Ω ∈M , (ii) for any sequence
(An)n≥1 ⊂M such that An ↑ A, one has A ∈M , and (iii) for any sequence (An)n≥1 ⊂
M such that An ↓ A, one has A ∈M . As before, there always exists a smallest mono-
tone class generated by a collection S , denoted M (S ).

Theorem B.35. If A is an algebra, then M (A ) =σ(A ).

A similar result holds for a slightly different notion of class. A collection D ⊂
P(Ω) is a Dynkin system if (i) ∅ ∈ D , (ii) A,B ∈ D with A ⊂ B implies B \ A ∈ D ,
and (iii) for any sequence (An)n≥1 ⊂ D such that An ↑ A, one has A ∈ D . Again,
there always exists a smallest Dynkin system generated by a collection S , denoted
δ(S ). A collection C ⊂P(Ω) is ∩-stable if A,B ∈C implies A∩B ∈C .

Theorem B.36. If C is ∩-stable (in particular, if C is an algebra), then δ(C ) =σ(C ).

This result can be used to determine when two measures are identical.

Corollary B.37. Let (Ω,F ) be a measurable space. Let C be a collection of sets which
is ∩-stable and which generates F : F =σ(C ). If µ and ν are two probability mea-
sures on (Ω,F ) which coincide on C (µ(C ) = ν(C ) for all C ∈C ), then µ= ν.

B.5.2 Measurable functions

Let (Ω,F ) and (Ω′,F ′) be two measurable spaces. A map f : Ω→ Ω′ is F /F ′-
measurable if f −1(B ′) ∈F for each B ′ ∈F ′.

Let (Ω′,F ′) be a measurable space. For any set Ω, given an arbitrary map h :
Ω→Ω′, we denote by σ(h) the smallest σ-algebra on Ω with respect to which h is

F /F ′-measurable: σ(h)
def= {

h−1(B ′) : B ′ ∈F ′}. σ(h) is called the σ-algebra gener-
ated by h.

Lemma B.38 (Doob–Dynkin lemma). Let (Ω,F ), (Ω′,F ′) be measurable spaces,
where F =σ(h) for some h :Ω→Ω′. For any F /B(R)-measurable map g :Ω→ R,
there exists an F ′/B(R)-measurable map ϕ :Ω′ →R such that g =ϕ◦h.

Proof. See [186, Lemma 1.13].
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(Ω,F ) (Ω′,F ′)

(R,B(R))

g =ϕ◦h

h

ϕ

Figure B.3: The setting of Lemma B.38.

B.6 Integration

Let F ⊂ P(Ω) be a σ-algebra. When integrating real-valued functions, it is con-

venient to include the possibility of these taking the values ±∞. Let therefore R
def=

R∪{±∞}, together with theσ-algebra B(R) containing sets of the form B , B∪{+∞},
B ∪ {−∞}, or B ∪ {+∞}∪ {−∞}, where B ∈B(R). An F /B(R)-measurable function
f : Ω → R will simply be called measurable: f −1(I ) ∈ F for all I ∈ B(R). To be
measurable, f needs only satisfy f −1({±∞}) ∈F and f −1((−∞, x]) ∈F for all x ∈R.

Integration is first defined for non-negative functions. A measurable function
ϕ :Ω→R∪{+∞} is simple if it takes a finite set of values; it can therefore be written
as a finite linear combination

ϕ=
n∑

k=1
ak 1Ek ,

where Ek = {
ω ∈Ω : ϕ(ω) = ak

} ∈F , where ϕ(R) = {a1, . . . , an} ⊂ R∪ {+∞} . A mea-
surable map f : Ω→ [0,+∞] can always be written as a limit of an increasing se-
quence of simple functions ϕn ↑ f . The integral ofϕwith respect toµ is

∫
ϕdµ

def=
n∑

k=1
akµ(Ek ) .

In this definition, we make the convention that 0 ·∞ = 0. If f : Ω→ R∪ {+∞} is
measurable and nonnegative, its integral with respect toµ is

∫
f dµ

def= sup
{∫

ϕdµ : ϕ simple, 0 ≤ϕ≤ f
}

.

For an arbitrary measurable function f , let f + def= f 1{ f ≥0}, f − def= (− f )+. We say
that f is integrable if

∫
f + dµ < ∞ and

∫
f − dµ < ∞. The set of integrable func-

tion is denoted by L1(µ) (we sometimes omit the measure when it is clear from the
context). The integral of f ∈ L1(µ) is

∫
f dµ

def=
∫

f + dµ−
∫

f − dµ .

In this book, we also use alternative notations for
∫

f dµ, such as µ( f ) or 〈 f 〉µ. We
list below a few properties of the integral.

• If f ≥ 0 and
∫

f dµ<∞, then f is µ-almost everywhere finite.

• If f ≥ 0 and
∫

f dµ= 0, then f = 0 µ-almost everywhere.

• If f , g ∈ L1(µ),
∫

( f + g )dµ= ∫
f dµ+∫

g dµ.
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• f ∈ L1(µ) if and only if
∫ | f |dµ<∞, and when this occurs, |∫ f dµ| ≤ ∫ | f |dµ.

• If 0 ≤ f ≤ g µ-almost everywhere, then
∫

f dµ≤ ∫
g dµ.

• If f , g ∈ L1(µ), f = g µ-almost everywhere, then
∫

f dµ= ∫
g dµ.

Theorem B.39 (Monotone Convergence Theorem). Let ( fn)n≥1 be a sequence of
nonnegative measurable functions such that fn ≤ fn+1 µ-almost everywhere. Then

∫
lim

n→∞ fn dµ= lim
n→∞

∫
fn dµ .

Theorem B.40 (Dominated Convergence Theorem). Let ( fn)n≥1 ⊂ L1(µ). Assume
there exists g ∈ L1(µ) such that | fn | ≤ g µ-almost everywhere, for all n ≥ 1. If fn → f
µ-almost everywhere, then f ∈ L1(µ) and

∫
f dµ= lim

n→∞

∫
fn dµ .

Exercise B.15. Let (ξk )k≥1 be a sequence of real functions defined on some open in-
terval I ⊂ R and x0 ∈ I . Let that sequence be such that, for each k, limx→x0 ξk (x)
exists. Assuming there exists a summable sequence (ϵk )k≥1 ⊂ R≥0 such that
supx∈I |ξk (x)| ≤ ϵk , show that

lim
x→x0

∑
k
ξk (x) =

∑
k

lim
x→x0

ξk (x) . (B.14)

Let µ,ν be two finite measures. ν is absolutely continuous with respect toµ if,
for all A ∈ F , µ(A) = 0 implies ν(A) = 0; we then write ν≪ µ. When both µ≪ ν

and ν≪ µ, the measures are said to be equivalent. If there exists A ∈F such that
µ(A) = 0, ν(Ac) = 0, then µ and ν are singular.

Theorem B.41 (Radon–Nikodým’s theorem). Let µ and ν be two finite measures
such that ν≪µ. There exists a measurable function f ≥ 0 such that

∀B ∈F , ν(B) =
∫

B
f dµ .

f is called the Radon–Nikodým derivative of ν with respect to µ and is often de-
noted dν

dµ .

Any two versions of the Radon–Nikodým derivative coincide µ-almost everywhere;
this is a consequence of the following lemma.

Lemma B.42. Let f , g ∈ L1(µ) be such that
∫

B f dµ = ∫
B g dµ for all B ∈ F . Then

f = g almost everywhere.

The Radon–Nikodým derivative enjoys properties similar to that of the ordinary
derivative. First, if ν1,ν2 ≪µ, then ν1 +ν2 ≪µ and

d(ν1 +ν2)

dµ
= dν1

dµ
+ dν2

dµ
. (B.15)

Then, a property similar to the chain rule holds: if ν,µ,ρ satisfy ν≪µ≪ ρ, then

dν

dρ
= dν

dµ

dµ

dρ
. (B.16)
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B.6.1 Product spaces

Given two measurable spaces (Ω,F ), (Ω′,F ′), we can consider the product

Ω×Ω′ def= {
(ω,ω′) : ω ∈Ω,ω′ ∈Ω′} ,

equipped with the product σ-algebra F ⊗F ′, generated by the algebra of finite
unions of rectangles, that is, sets of the form A×A′ with A ∈F and A ∈F ′. If µ is a
measure on (Ω,F ) and µ′ is a measure on (Ω′,F ′), we can define, for a rectangle,

(µ⊗µ′)(A× A′) def= µ(A)µ′(A′) .

Using Theorem B.33, it can be shown that, when µ and ν are σ-finite, µ⊗µ′ has a
unique extension to F ⊗F ′; we call it the product measure.

Theorem B.43 (Theorem of Fubini–Tonelli). If µ and µ′ are σ-finite and if F :Ω×
Ω′ →R≥0 is F ⊗F ′-measurable, then the functions

ω 7→
∫

Ω′
F (ω,ω′)µ′(dω′) and ω′ 7→

∫

Ω
F (ω,ω′)µ(dω)

are F - and F ′-measurable, respectively. Moreover,

∫

Ω×Ω′
F d(µ⊗µ′) =

∫

Ω

{∫

Ω′
F (ω,ω′)µ′(dω′)

}
µ(dω)

=
∫

Ω′

{∫

Ω
F (ω,ω′)µ(dω)

}
µ′(dω′)

The above construction extends to the product of an arbitrary finite number of σ-
finite measurable spaces: (Ω1,F1), . . . , (Ωn ,Fn).

B.7 Lebesgue measure

The Lebesgue measure is first constructed on the real line, by extending to all Borel
sets the basic notion of length of bounded intervals:

ℓ([a,b))
def= b −a .

(Unbounded intervals are defined to have measure +∞.) This allows to define a
natural measure on the algebra of finite unions of such intervals, that can be ex-
tended to all Borel sets B(R) using Theorem B.33. The resulting σ-finite measure ℓ
on (R,B(R)) is called the Lebesgue measure.

OnRn =R×·· ·×R, equipped with the Borelσ-algebra B(Rn), the Lebesgue mea-
sure is defined as the product measure, that is, it is first defined on parallelepipeds

ℓn(
[a1,b1)× [a2,b2)×·· ·× [an ,bn)

) def=
n∏

i=1
(bi −ai ) ,

and then extended. The Lebesgue measure is translation invariant, ℓn(B + x) =
ℓn(B) for all B ∈B(Rn), x ∈Rn , and enjoys the following scaling property: ℓn(αB) =
αnℓn(B) for all B ∈B(Rn) and all scaling factor α> 0.

One usually writes dx instead of ℓn(dx). For instance, the integration of a func-
tion f :Rn →Rwith respect to ℓn is written

∫
f (x)dx.
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B.8 Probability

We remind the reader of some basic elements from Probability Theory. The books
by Kallenberg [186] or Grimmett and Stirzaker [152] provide good references.

In probability theory, a probability space is a triple (Ω,F ,P ), where (Ω,F ) is
a measurable space and P : F → [0,1] is a probability measure. Each ω ∈ Ω is to
be interpreted as the outcome of a random experiment and each measurable set
A ∈F is interpreted as an event, with P (A) measuring the a priori likeliness of the
occurence of A when sampling some ω ∈Ω.

B.8.1 Random variables and vectors

A measurable map X : Ω → R is called a random variable. The distribution of

X : Ω→ R is the probability measure PX on R defined by PX (I )
def= P (X ∈ I ), for all

I ∈B(R). The cumulative distribution function of X :Ω→ R is FX (x)
def= P (X ≤ x),

x ∈ R. X has a density (with respect to the Lebesgue measure) if there exists a
measurable function fX :R→R≥0 such that

P (X ∈ B) =
∫

B
fX (x)dx , ∀B ∈B(R) .

The integral of a random variable X ∈ L1(P ) is denoted

E [X ]
def=

∫
X dP ,

and is called the expectation of X with respect to P . The variance of X is then
defined by

Var(X )
def= E

[
(X −E [X ])2] .

We list here a few inequalities that are used frequently:

• Jensen’s inequality: If X ∈ L1(P ) and if φ : R → R is convex and such that
φ(X ) ∈ L1(P ), then φ(E [X ]) ≤ E [φ(X )]. When φ is strictly convex, equality
holds if and only if X is almost surely constant.

• Markov’s inequality: for all non-negative X ∈ L1(P ) and all λ> 0,

P (X ≥λ) ≤ E [X ]

λ
. (B.17)

• Chebyshev’s inequality: for all X and all λ> 0,

P (|X −E [X ]| ≥λ) ≤ Var(X )

λ2 . (B.18)

• Chernov’s inequality: for all X and all λ> 0,

P (X ≥λ) ≤ inf
t>0

E [e t X ]

e tλ
. (B.19)

There are various ways by which a sequence of random variables (Xn)n≥1 can con-
verge to a limiting random variable X .
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• (Xn )n≥1 converges to X almost surely if there exists C ∈ F , P (C ) = 1, such
that Xn(ω) → X (ω) for all ω ∈C .

• (Xn )n≥1 converges to X in probability if, for all ϵ > 0, P (|Xn − X | ≥ ϵ) → 0 as
n →∞.

• Let p ≥ 1. (Xn )n≥1 converges to X in Lp if E [|X |p ] <∞, E [|X p
n |] <∞, for all n,

and E [|Xn −X |p ] → 0 when n →∞.

• (Xn )n≥1 converges to X in distribution if FXn (x) → FX (x) when n →∞, for
all x at which FX is continuous.

Almost sure convergence and convergence in Lp both imply convergence in prob-
ability, which in turn implies convergence in distribution. The remaining implica-
tions do not hold in general.

B.8.2 Independence

Two events A,B ∈F are independent if P (A∩B) = P (A)P (B). A collection of events
(Ai )i∈I is independent if P (

⋂
j∈J A j ) =∏

j∈J P (A j ) for all J ⊂ I finite.
A collection of random variables (Xi )i∈I is independent if the collection of

events ({Xi ≤αi })i∈I is independent for all (αi )i∈I ⊂R. If, moreover, all the variables
Xi have the same distribution, we say that (Xi )i∈I is i.i.d. (independent, identically
distributed).

We now state two central results of Probability Theory.

Theorem B.44 (Law of Large Numbers). Let (Xn)n≥1 ⊂ L1(P ) be an i.i.d. sequence.
Then, as n →∞,

X1 +·· ·+Xn

n
→ E [X1] P-almost surely. .

Remember that X is a standard normal random variable, X ∼N (0,1), if it has

a density with respect to the Lebesgue measure dt , given by 1p
2π

e−
t2
2 ; in particular,

its cumulative distribution function is

FX (x) = 1p
2π

∫ x

−∞
e−

t2
2 dt , ∀x ∈R.

Theorem B.45 (Central Limit Theorem). Let (Xn)n≥1 be an i.i.d. sequence with m
def=

E [X1] <∞ and σ2 def= Var(X1) <∞. Then, as n →∞,

(X1 −m)+·· ·+ (Xn −m)

σ
p

n
→N (0,1) in distribution.

In particular, for all a < b,

P
(
a ≤ (X1 −m)+·· ·+ (Xn −m)

σ
p

n
≤ b

)
→ 1p

2π

∫ b

a
e−

t2
2 dt .
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B.8.3 Moments and cumulants of random variables

Let X be a random variable. If r ∈N, the r th moment of X is defined by

mr (X )
def= E [X r ] ,

provided the expectation exists. The moment generating function associated to X
is the function

t 7→ MX (t )
def= E [e t X ] , t ∈R .

If MX (t ) possesses a convergent MacLaurin expansion, then all its moments exist
and can be recovered from the formula

mr (X ) = dr

dt r MX (t )|t=0 .

Under suitable conditions, the moments (mr (X ))r≥1 completely characterize the
distribution of X .

Theorem B.46. Assume that all moments mr (X ), r ≥ 1, exist. If there exists
some ϵ > 0 such that

∑
r≥1

1
r ! mr (X )t r converges for all t ∈ (−ϵ,ϵ), then MX (t ) =∑

r≥1
1
r ! mr (X )t r on that interval and any random variable Y with mr (Y ) = mr (X ),

for all r ≥ 1, has the same distribution as X .

Proof. See [186, Exercise 10, Chapter 5].

Let us now consider the cumulant generating function (also known as the log-
moment generating function) CX (t ) = log MX (t ). The coefficients of its MacLaurin
expansion (if it has one) are called the cumulants of the random variable X : for
r ∈N, the r th cumulant of X is defined by

cr (X )
def= dr

dt r CX (t )|t=0 .

Cumulants possess a variety of other names, depending on the context. When
r ≥ 2, they are also called semi-invariants, thanks to the following remarkable
property: for any a,b ∈R,

cr (aX +b) = ar cr (X ) . (B.20)

(This of course doesn’t hold for r = 1, since c1(aX +b) = ac1(X )+b.) In statistical
mechanics, cumulants are often called Ursell functions, truncated correlation
functions or connected correlation functions.

Exercise B.16. Show that cumulants can be expressed in terms of moments using
the following recursion formula:

cr = mr −
r−1∑
m=1

(
r −1

m −1

)
cmmr−m .

In particular,

c1 = m1 , c2 = m2 −m 2
1 , c3 = m3 −3m2m1 +2m 3

1 , . . .
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Cumulants of a random variable X characterize the distribution of X whenever its
moments do. The advantage of cumulants compared to moments, in addition to
their satisfying (B.20), is the way they act on sums of independent random vari-
ables: if X and Y are independent random variables, then

cr (X +Y ) = cr (X )+ cr (Y ) .

This follows immediately from the identity CX+Y =CX +CY .

B.8.4 Characteristic function

The characteristic function of a random variable X is defined by

ϕX (t )
def= E [e it X ]

def= E [cos(t X )]+ iE [sin(t X )] .

Note that, since
E [|e it X |] = 1,

the characteristic function is well defined for all random variables. If there exists
ϵ > 0 such that the moment generating function MX (t ) is finite for all |t | < ϵ, then
ϕX (−it ) = MX (t ).

Characteristic functions owe their name to the fact that they characterize the
distribution of a random variable: ϕX = ϕY if and only if X and Y have the same
distribution.

If X1, . . . , Xn are independent random variables, then

ϕX1+···+Xn (s) =ϕX1 (s) · · ·ϕXn (s) .

Theorem B.47 (Lévy’s continuity theorem). Let Xn be a sequence of random vari-

ables. Assume that ϕ(t )
def= limn→∞ϕXn (t ) exists, for all t ∈ R, and that ϕ is con-

tinuous at t = 0. Then there exists a random variable X such that ϕX = ϕ and Xn

converges to X in distribution.

B.8.5 Conditional Expectation

Conditional expectation is a fundamental concept in probability theory and plays
a central role in our study of infinite-volume Gibbs measures in Chapter 6. Before
giving its formal definition, we motivate it starting from the simplest possible case.

In elementary probability, the conditional probability of an event A with respect
to an event B with P (B) > 0 is defined by

P (A |B)
def= P (A∩B)

P (B)
.

This defines a new probability measure P (· |B) under which random variables can
be integrated, yielding a conditional expectation given B : for X ∈ L1(P ),

E [X |B ]
def=

∫
X (ω)P (dω |B) .

Often, one is more interested in considering the conditional expectation with re-
spect to a collection of events, associated to some partial information in a random
experiment.
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Example B.48. Consider an experiment in which two dice are rolled, modeled by
two independent random variables X1, X2 on a probability space Ω, taking values
in {1,2, . . . ,6}. Assume that some partial information is given about the outcome of
the sum S = X1 +X2, namely whether S > 5 or S ≤ 5. Given this partial information,
the expectation of X1 is E [X1 |S > 5] if {S > 5} occurred and E [X1 |S ≤ 5] if {S ≤ 5}
occurred. It thus appears natural to encode this information in a random variable

ω 7→ E [X1 |S > 5]1{S>5}(ω)+E [X1 |S ≤ 5]1{S≤5}(ω) . ⋄
This example leads to a first generalization of conditional expectation, as fol-

lows. Let (Bk )k ⊂ F be a countable partition of Ω: Bk ∩ Bk ′ = ∅ if k ̸= k ′ and⋃
k Bk = Ω. This means that, for each outcome ω of the experiment, exactly one

event Bk occurs. For convenience, let B ⊂F denote the sub-σ-algebra containing
the events which are unions of sets Bk . The occurrence of some B ∈ B provides
some information on the occurrence of some events Bk .

Now if we also assume that P (Bk ) > 0 for all k, we can define, for X ∈ L1(P ),

E [X |B](ω)
def=

∑
k

E [X |Bk ]1Bk (ω) .

Exercise B.17. Show that, as a random variable onΩ, E [X |B] satisfies the following
properties:

ω 7→ E [X |B](ω) is B-measurable, (B.21)

E
[
E [X |B]1B

]= E [X 1B ] for all B ∈B . (B.22)

In particular,
E

[
E [X |B]

]= E [X ] .

The above definition, although natural, is not yet suited to our needs, its main de-
fect being the necessity to assume that P (Bk ) > 0. Indeed, the theory of infinite-
volume Gibbs measures, exposed in Chapter 6, requires conditioning on a fixed
configuration outside a finite region, an event that always has zero probability. We
therefore need a definition of conditional expectation which allows to condition
with respect to events of zero probability.

It turns out that (B.21)-(B.22) characterize E [X |B] in an essentially unique
manner. This can be used to define conditional expectation in much greater gen-
erality:

Lemma B.49. Let (Ω,F ,P ) be a probability space. Consider X ∈ L1(P ) and a sub-
σ-algebra G ⊂F . There exists a random variable Y ∈ L1(P ) for which the following
conditions hold:

1. Y is G -measurable.

2. For all G ∈G , E [Y 1G ] = E [X 1G ].

If Y ′ is another variable satisfying these properties, then P (Y ̸= Y ′) = 0. Any of them
is called a version of the conditional expectation of X with respect to G and is
denoted by E [X |G ].

We list the main properties of conditional expectation. In view of the almost-sure
uniqueness, all the properties are to be understood as holding almost surely. All the
random variables below are assumed to be integrable.
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1. E [a1X1 +a2X2 |G ] = a1E [X1 |G ]+a2E [X2 |G ].

2. If X ≤ X ′, then E [X |G ] ≤ E [X ′ |G ].

3. |E [X |G ]| ≤ E [|X | |G ].

4. (Tower property) If G ⊂H , then

E
[
E [X |G ]

∣∣H ]= E [X |G ] = E
[
E [X |H ]

∣∣G ]
.

5. If Z is G -measurable, then E [X Z |G ] = Z E [X |G ].

Conditional expectation can be characterized equivalently in the following way:

Lemma B.50. Let X ∈ L1(P ), G ⊂ F a sub-σ-algebra. Then E [X |G ] is the (almost
sure) unique G -measurable random variable with the property that

E
[
(X −E [X |G ])Z

]= 0 for all G -measurable Z ∈ L1(P ). (B.23)

Remark B.51. The above definition provides a nice geometrical interpretation of
the conditional expectation of a random variable with finite variance. Let us denote
by L2(P ) the (real) vector space of all random variables such that E [X 2] < ∞ (or,
equivalently, with finite variance). The space L2(P ) is a Hilbert space for the inner
product (X ,Y ) 7→ E [X Y ]. (B.23) can then be interpreted as stating that the vector
X −E [X |G ] is orthogonal to the linear subspace

{
Z ∈ L2(P ) : Z is G -measurable

}
.

This implies that E [X |G ] coincides with the orthogonal projection of X on this
subspace; see Figure B.4. ⋄

G

X

E(X |G )

Figure B.4: Restricted to random variables with finite variance, the condi-
tional expectation E(X |G ) corresponds to the orthogonal projection of X
onto the linear subspace of all G -measurable random variables.

Finally, we will occasionally need the following classical result whose proof can
be found in [351].

Theorem B.52 (Backward martingale convergence). Let X ∈ L1 and let Gn be a de-

creasing sequence of σ-algebras, Gn ⊃Gn+1, and set G∞
def= ⋂

n Gn . Then,

E [X |Gn] → E [X |G∞] in L1 and almost surely.

B.8.6 Conditional probability

Let G ⊂ F . The conditional probability of A ∈ F with respect to G is defined by
the (almost surely unique) random variable

P (A |G )(ω)
def= E [1A |G ](ω) .
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By definition, P (A |G ) inherits many of the properties of the conditional expecta-
tion. In particular it is, up to almost-sure equivalence, the unique G -measurable
random variable for which

P (A∩G) =
∫

G
P (A |G )dP , ∀G ∈G .

Remember that, by linearity of the conditional expectation, one has, for disjoint
events A,B ∈F , P (A∪B |G )(ω) = P (A |G )(ω)+P (B |G )(ω) . It is important to notice
that even though this equality holds for P-almost all ω, the set of such ωs depends
in general on A and B . Since there are usually uncountably many events in F ,
one should therefore not expect, for a fixed ω, for P (· |G )(ω) to define a probability
measure on (Ω,F ). This leads to the following definition. A map P̂ (· |G )(·) : F ×
Ω → [0,1] is called a regular conditional probability with respect to G if (i) for
each ω ∈ Ω, P̂ (· |G )(ω) is a probability distribution on (Ω,F ), (ii) for each A ∈ F ,
P̂ (A |G )(·) is a version of P (A |G ).

Regular conditional probabilities exist under fairly general assumptions, which
can be found for example in [186].

The Gibbs measures constructed and studied in Chapter 6 are examples of
regular conditional probabilities. Indeed, when µ ∈G (π) is conditioned with respect
to the values taken by the spins outside a finite region Λ, the kernel πΛ(· |ω) is a
version of µ(· |FΛc )(ω). But by definition, πΛ(· |ω) is a probability measure for each
ω ∈Ω. See the comments of Section 6.3.1. ⋄

B.8.7 Random vectors

Most of what was said for random variables can be adapted to the case of measur-
able functions taking values in a space of larger dimension: X : Ω→ Rn is a ran-
dom vector if it is F /B(Rn)-measurable. The distribution of X is the probability

measure PX on (Rn ,B(Rn)) defined by PX(B)
def= P (X ∈ B), B ∈ B(Rn). The expec-

tation E [X] is to be understood as coordinate-wise integration. A random vector
has a density (with respect to the Lebesgue measure) if there exists a measurable
fX :Rn →R≥0 such that

P (X ∈ B) =
∫

B
fX(x)dx ∀B ∈B(Rn) .

Random variables X1, . . . , Xn with density f(X1,...,Xn ) are independent if and only if

f(X1,...,Xn )(x1, . . . , xn) = fX1 (x1) · · · fXn (xn) .

The different types of convergence defined earlier for random variables have
direct analogues for random vectors. Moreover, an equivalent version of Theo-
rem B.47 holds.

B.9 Gaussian vectors and fields

In this section, we recall some basic definitions and properties related to Gaussian
fields. A good reference is the first chapter of Le Gall’s book [212].
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B.9.1 Basic definitions and properties

We already defined a normal N (0,1) earlier. More generally, given m ∈ R and σ2 ∈
R≥0, a random variable X is called a Gaussian with mean m and variance σ2, X ∼
N (m,σ2), if it admits the density

fX (x) = 1p
2πσ2

e−(x−m)2/2σ2
.

As is easily verified, E [X ] = m and Var(X ) =σ2.

Exercise B.18. Show that X ∼ N (m,σ2) if and only if its characteristic function is
given by

E [e it X ] = exp
(− 1

2σ
2t 2 + imt

)
.

Exercise B.19. Let X1, . . . , Xn be independent Gaussian random variables with Xi ∼
N (mi ,σ2

i ) and let t1, . . . , tn ∈R. Show that

n∑
i=1

ti Xi ∼N (t1m1 +·· ·+ tnmn , t 2
1σ

2
1 +·· ·+ t 2

nσ
2
n) .

Let us now introduce Rn-valued Gaussian vectors. As before, elements of Rn will be
denoted using bold letters: x,y, . . . and the scalar product will be denoted x ·y.

Definition B.53. A random vector X :Ω→Rn is Gaussian if the random variable t·X
is Gaussian for each t ∈Rn .

By Exercise B.18, this is equivalent to requiring that, for all t ∈Rn ,

E [e it·X] = exp
(− 1

2 Var(t ·X)+ iE [t ·X]
)= exp

(− 1
2 t ·Σt+ im · t

)
,

where m = (m1, . . . ,mn) with mi = E [Xi ] and Σ is the n ×n matrix with elements
Σ(i , j ) = Cov(Xi , X j ). m and Σ are called the mean and covariance matrix of X. We
write in this case X ∼N (m,Σ).

Since 1 ≥ |E [e it·X]| = exp(− 1
2 t ·Σt), we have t ·Σt ≥ 0: the covariance matrix is

nonnegative-definite.

Lemma B.54. Let Σ be an n×n nonnegative-definite symmetric matrix. Then there
exists an n ×n matrix A such that Σ = A A⊺ (where A⊺ denotes the transpose of A).
Moreover, if Σ is invertible, then so is A.

Proof. Let us denote by λ1, . . . ,λn the eigenvalues of Σ; observe that λi ≥ 0, i =
1, . . . ,n, since Σ is nonnegative-definite. Symmetry of Σ implies the existence of an

orthogonal matrix O such that Σ = O⊺DO, where D = diag(λ1, . . . ,λn). Let D1/2 def=
diag(

√
λ1, . . . ,

√
λn) and A = O⊺D1/2. It then follows that A A⊺ = O⊺D1/2D1/2O =

O⊺DO =Σ, as required.
If Σ is invertible, then λi > 0, i = 1, . . . ,n. This implies that D1/2 is invertible.

Since O is also invertible, it follows that so is A.

Exercise B.20. Show that the components of a Gaussian vector X ∼ N (m,Σ) are
independent if and only if Σ is diagonal.
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Exercise B.21. Show that X ∼ N (m,Σ) if and only if X = AY + m with Y a ran-
dom vector with independent N (0,1) components and A an n×n matrix such that
A A⊺ =Σ.

Proposition B.55. Let Σ be a positive-definite symmetric n ×n matrix and m ∈ Rn .
Then X ∼N (m,Σ) if and only if it possesses the following density with respect to the
Lebesgue measure dx:

x 7→ 1

(2π)n/2
√
|detΣ|

exp
(− 1

2 (x−m) ·Σ−1(x−m)
)

.

Proof. Using Exercise B.21, X ∼N (m,Σ) if and only X = AY+m, with Σ= A A⊺ and
Y a Gaussian random vector with i.i.d. N (0,1) components. The density of Y is
given by

fY(y) = 1

(2π)n/2
exp

(− 1
2∥y∥2

2

)
.

Note that, by Lemma B.54, A is invertible. The claim therefore follows from the
change of variable formula, fX(x) = fY(A−1(x−m)) |detΣ|−1/2, where we have used
the fact that the absolute value of the Jacobian of the transformation is equal to
|det(A−1)| = |det A|−1 = |detΣ|−1/2.

Exercise B.22. Use the method exposed in the previous proof to prove (8.61).

B.9.2 Convergence of Gaussian vectors

The following result shows that limits of convergent sequences of Gaussian random
vectors are themselves Gaussian.

Proposition B.56. Let (X(k))k≥1 be a sequence of Gaussian random vectors, with
mean m(k) and covariance matrix Σ(k). Then X(k) converges to a random vector X
in distribution if and only if the limits m = limk→∞ m(k) and Σ = limk→∞Σ(k) both
exist. In that case, X is also a Gaussian vector, with mean m and covariance matrix Σ.

Proof. Assume that m = limk→∞ m(k) and Σ= limk→∞Σ(k) exist. Then,

lim
k→∞

E [e it·X(k)
] = lim

k→∞
exp

(− 1
2 t ·Σ(k)t+ im(k) · t

)= exp
(− 1

2 t ·Σt+ im · t
)

exists and is continuous at t = 0. It thus follows from Levy’s continuity theorem
(n-dimensional version of Theorem B.47) that the sequence (X(k))k≥1 converges in
distribution and that the limit is a Gaussian random vector with mean m and co-
variance matrix Σ.

Assume now that X(k) → X in distribution. The characteristic function of X sat-
isfies, for any t ∈Rn ,

E [e it·X] = lim
k→∞

E [e it·X(k)
] = lim

k→∞
exp

(− 1
2 t ·Σ(k)t+ im(k) · t

)
.

In particular, choosing t = tei , this yields

lim
k→∞

exp
(− 1

2 t 2Σ(k)(i , i )
)= |E [e itX·ei ]| ≤ 1.
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This implies that the limits limk→∞Σ(k)(i , i ) (i = 1, . . . ,n) exist in [0,∞]; moreover,
the value +∞ can be excluded, since it would contradict the continuity at t = 0 of
the characteristic function of X.

Similarly, letting t = t (ei +e j ), we obtain the existence of limk→∞Σ(k)(i , j ) for all
i ̸= j . This in turn implies the existence and continuity of

lim
k→∞

exp
(
im(k) · t

)= exp
(− 1

2 t ·Σt
)
E [e it·X] .

Consequently, limk→∞ m(k) also exists. This proves the claim.

Definition B.57. A collection of random variables ϕ = (ϕi )i∈S indexed by a count-
able set S is a Gaussian random field (or simply Gaussian field) if all its finite-
dimensional distributions are Gaussian, that is, if

E [e i
∑

i∈S tiϕi ] = exp
(
− 1

2

∑
i , j∈S

ti t j Cov(ϕi ,ϕ j )+ i
∑
i∈S

ti E [ϕi ]
)

,

for all (ti )i∈S taking only finitely many nonzero values.

As follows from the definition, Proposition B.56 and the Kolmogorov extension the-
orem, a sequence of Gaussian random fields ϕ(k) on S converges to a random field
ϕ on S if and only if the limits

lim
k→∞

E [ϕ(k)
i ], lim

k→∞
Cov(ϕ(k)

i ,ϕ(k)
j )

exist for all i , j ∈ S. Moreover, in that case, (ϕi )i∈S is Gaussian with

E [ϕi ] = lim
k→∞

E [ϕ(k)
i ], Cov(ϕi ,ϕ j ) = lim

k→∞
Cov(ϕ(k)

i ,ϕ(k)
j ) ,

for all i , j ∈ S.

B.9.3 Gaussian fields and independence

For T ⊂ S, let FT
def= σ(ϕ j , j ∈ T ) (defined as the smallest σ-algebra on Ω such that

each ϕ j , j ∈ T , is measurable).

Proposition B.58. Let ϕ = (ϕi )i∈S be a Gaussian field and T ⊂ S. Then FT and
FS\T are independent if and only if Cov(ϕi ,ϕ j ) = 0 for all i ∈ T , j ∈ S \ T .

Proof. See [212, Section 1.3].

B.10 The total variation distance

There are various ways by which one can measure the similarity of two probability
measures. The simplest is the total variation distance.

Definition B.59. The total variation distance between two probability measures µ
and ν on (Ω,F ) is defined by

∥µ−ν∥T V
def= 2 sup

A∈F
|µ(A)−ν(A)| .
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We warn the reader that some authors define ∥µ−ν∥T V without the factor 2.

Lemma B.60. Let µ and ν be two probability measures on (Ω,F ), withµ≪ ν. Then,

∥µ−ν∥T V =
〈∣∣∣1− dµ

dν

∣∣∣
〉
ν
= sup

f :∥ f ∥∞≤1

∣∣〈 f 〉µ−〈 f 〉ν
∣∣ .

Proof. If ρ = dµ/dν, then

µ(A)−ν(A) =
∫

A
(ρ−1)dν≤

∫
(ρ−1)+dν .

Since the inequality is saturated for A = {ρ ≥ 1}, we get

sup
A∈F

{µ(A)−ν(A)} =
∫

(ρ−1)+dν .

In the same way,

sup
A∈F

{ν(A)−µ(A)} =
∫

(ρ−1)−dν .

But since
∫

(ρ−1)+dν−∫
(ρ−1)−dν= ∫

(ρ−1)dν= 0, this gives

sup
A∈F

{µ(A)−ν(A)} = sup
A∈F

{ν(A)−µ(A)} = sup
A∈F

|µ(A)−ν(A)| .

We conclude that
∫

|ρ−1|dν=
∫

(ρ−1)+dν+
∫

(ρ−1)−dν= 2 sup
A∈F

|µ(A)−ν(A)| ,

which proves the first identity. The second is a consequence of the first:

sup
f :∥ f ∥∞≤1

∣∣∣
∫

f dµ−
∫

f dν
∣∣∣= sup

f :∥ f ∥∞≤1

∣∣∣
∫

f (ρ−1)dν
∣∣∣=

∫
|ρ−1|dν= ∥µ−ν∥T V ,

the supremum being achieved by the function 1{ρ≥1} −1{ρ<1}.

B.11 Shannon’s Entropy

Shannon’s Entropy SSh(·) is the central object for the implementation of the Max-
imum Entropy Principle, which was used in Chapter 1 to motivate the Gibbs dis-
tribution. In this section, we show that SSh(·) is unique, up to a multiplicative con-
stant, among a class of functions S : M1(Ω) → R satisfying a certain set of condi-
tions, one of which being to be maximal for the uniform distribution. We follow the
approach of Khinchin [191].

Consider a random experiment modeled by some probability space (Ω,F ,P ).
Consider a partition A ofΩ into a finite number of events, called atoms. When A is
a partition with k atoms, we will write A = {A1, . . . , Ak }. For convenience, we allow
some atoms to be empty.

We should consider such a partition as corresponding to some partial informa-
tion about the outcome ω ∈ Ω of the experiment. For example, when throwing a
dice, A= {A1, A2}, where A1 = {the outcome is even} A2 = {the outcome is odd}.
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Our aim is to define the unpredictability of the outcome of the measurement,
corresponding to a partition A. Since the probability P is fixed, the unpredictabil-
ity associated to the partition A = {A1, . . . , Ak } will be defined through a function
S(P (A1), . . . ,P (Ak )), usually denoted simply S(A) or S(A1, . . . , Ak ) and called a func-
tion of the partition A. Notice that, since k is arbitrary, we are actually looking for a
collection of functions.

Below, we define four conditions, most of which will be natural in terms of un-
predictability, and then show that the only function that satisfies these conditions
is, up to a positive multiplicative constant, the Shannon Entropy.

The first three assumptions are natural. First, for all partitions A= {A1, · · · , Ak },

S(A1, · · · , Ak ) is continuous in (P (A1), . . . ,P (Ak )) . (U1)

Second, we assume that unpredictability is not sensitive to the presence of atoms
that have zero probability; for a partition A= {A1, . . . , Ak },

P (Ak ) = 0 implies S(A1, · · · , Ak−1, Ak ) = S(A1, . . . , Ak−2, Ak−1 ∪ Ak ) . (U2)

Third, as discussed in Section 1.2.2, we want the unpredictability to be maximal
for partitions whose atoms have equal probabilities. Namely, call a partition U =
{U1, . . . ,Um} uniform if P (Ui ) = P (U j ) = 1

m for all i , j .

Among partitions with m atoms, S is maximal for the uniform partitions. (U3)

To motivate the fourth assumption, we introduce some more terminology. A parti-
tion A is finer than a partition B if each atom of B is a union of atoms of A. When
realizing the random experiment, if A is finer than B, information about the out-
come ω ∈Ω can be revealed in two stages: first, by revealing the atom B j such that
B j ∋ω, and then, given B j , one reveals the atom Ai such that B j ⊃ Ai ∋ω.

The unpredictability associated to the first stage is measured by S(B). After ob-
serving the result of the first stage, one should update our probability measure:
assuming that the atom B j occurred in the first stage, the relevant probability mea-
sure is P (· |B j ). The unpredictability of the second stage is thus measured by

S(A |B j )
def= S

(
P (A1 |B j ), . . . ,P (An |B j )

)
.

Averaging over the possible outcomes B j of the first stage, we are led to define the
entropy of the second stage by

S(A |B)
def=

∑
j

P (B j )S(A |B j ) .

Now, the unpredictability of the complete experience should not depend on the
way the experiment was conducted (in one stage or in two stages). It is therefore
natural to assume that

S(A) = S(B)+S(A |B) . (U4)

Lemma B.61. The Shannon entropy, defined by

SSh(B)
def= −

k∑
j=1

P (B j ) logP (B j ) (B.24)

for all partitions B= {B1, . . . ,Bk }, satisfies (U1)-(U4).
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Proof. (U1) and (U2) are clearly satisfied, (U3) has been shown in Lemma 1.9,
and (U4) can be verified by a straightforward computation.

Theorem B.62. Let S(·) be a function on finite partitions satisfying (U1)–(U4). Then
there exists a constant λ> 0 such that

S(·) =λSSh(·) .

We express (U4) in a slightly different way, better suited for the computations to
come. For two arbitrary partitions A,B, consider the composite partition

A∨B
def= {A∩B : A ∈A,B ∈B} .

Then, (U2) implies that S(A∨B |B) = S(A |B) and (U4) can be used in the following
form:

S(A∨B) = S(B)+S(A |B) . (U4)

Notice that if P (A ∩B) = P (A)P (B) for all A ∈ A and all B ∈ B, then S(A |B) = S(A)
and (U4) implies

S(A∨B) = S(A)+S(B) . (B.25)

We will first start by proving a version of Theorem B.62 for uniform partitions U.
Below, |U| denotes the number of atoms in U.

Proposition B.63. Let S(·) be a function defined on uniform partitions, which is
monotone increasing in |U| and which is additive in the sense that if P (U ∩U ′) =
P (U )P (U ′) for all U ∈U and all U ′ ∈U′. Then,

S(U∨U′) = S(U)+S(U′) . (B.26)

Then there exists λ> 0 such that S(U) =λ log |U| for all uniform partitions U.

Proof. Since S(·) is constant on partitions with the same number of atoms, we de-

fine L(k)
def= S(U) if |U| = k. By the assumption, L(k) is increasing in k. Let then

U1, . . . ,Un be independent partitions, each containing k atoms. On the one hand,
U1 ∨ ·· · ∨Un is also a uniform partition that contains kn atoms and, therefore,
S(U1 ∨·· ·∨Un) = L(kn). On the other hand, by (B.26),

S(U1 ∨·· ·∨Un) =
n∑

j=1
S(U j ) = n L(k) ,

and so L(kn) = nL(k). We verify that L(·) is necessarily of the form L(k) =λ logk, for
some λ > 0. Namely, fix two arbitrary integers k,ℓ ≥ 2. Choose some large integer
m ≥ 1 and find some integer n so that kn ≤ ℓm < kn+1. On the one hand, n logk ≤
m logℓ < (n + 1)logk. On the other hand, the monotonicity of L(·) implies that
nL(k) = L(kn) ≤ L(ℓm) = mL(ℓ) and, similarly, mL(ℓ) ≤ (n +1)L(k), which with the
previous set of inequalities gives

∣∣∣ L(ℓ)

L(k)
− logℓ

logk

∣∣∣≤ 1

m
.

Since m was arbitrary, this shows that L(k)/ logk does not depend on k and must
be equal to a constant.
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Proof of Theorem B.62: Assume S(·) satisfies (U1)–(U4). Let us temporarily denote
by Sk (·) the function S(·) when restricted to partitions with k atoms. Using (U2),
followed by (U3),

Sk
( 1

k , . . . , 1
k

)= Sk+1
( 1

k , . . . , 1
k ,0

)≤ Sk+1
( 1

k+1 , . . . , 1
k+1

)
.

Note that (B.25) guarantees (B.26). This shows that, when restricted to uniform
partitions, S(·) satisfies the hypotheses of Proposition B.63, yielding the existence
of a constant λ> 0 such that S(U) =λ log |U| for all uniform partitions U.

Let us now consider an arbitrary partition B = {B1, . . . ,Bk }. By (U1), we can
safely assume that the probabilities P (B j ) ∈ Q. If we consider a collection of in-

tegers w1, . . . , wk such that P (B j ) = w j

Z , where Z = w1 +·· ·+wk , the partition B can
be reinterpreted as follows. Consider a collection of Z labeled balls, each of a spe-
cific color, among k different colors. Assume that there are exactly w j balls of color
j , j = 1, . . . ,k. A ball is sampled at random, uniformly. Then clearly, the color of the
ball sampled has color j with probability

w j

Z = P (B j ). We therefore reinterpret B j

as the event “the sampled ball has color j ” and use this to compute S(B).
In this same experiment, consider now the partition A= {A1, . . . , AZ } defined by

Ai = {the ball i was sampled}.
Since A is finer than B we have A∨B = A and, since A is uniform, S(B∨A) =

S(A) =λ log Z .
Now, observe that

P (Ai |B j ) =
{

1
w j

if i ∈ B j ,

0 otherwise.

Therefore, using (U2), S(A |B j ) =λ log w j =λ logP (B j )+λ log Z , and so

S(A |B) =λ
k∑

j=1
P (B j ) logP (B j )+λ log Z .

This proves the claim, since assumption (U4) implies

S(B) = S(A)−S(A |B) =−λ
k∑

j=1
P (B j ) logP (B j ) .

B.12 Relative entropy

B.12.1 Definition, basic properties

We have seen that, when µ,ν are two probability measures such that µ ≪ ν,
then there exists a nonnegative measurable function dµ/dν, the Radon–Nikodým

derivative of µ with respect to ν, such that µ(A) = ∫
A

dµ
dνdν for all A ∈F .

Definition B.64. The relative entropy h(µ |ν) of µ with respect to ν is defined as

h(µ |ν)
def=

{〈 dµ
dν log dµ

dν

〉
ν, if µ≪ ν,

∞ otherwise.

Since x log x ≥−e−1 on R>0, h(µ |ν) is always well defined (but can be equal to +∞).
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Lemma B.65. h(µ |ν) ≥ 0, with equality if and only if µ= ν.

Proof. We can assume that h(µ |ν) < ∞. Since Ψ(x) = x log x is strictly convex on
(0,∞), Jensen’s inequality implies that

h(µ |ν) = 〈
Ψ( dµ

dν )
〉
ν ≥Ψ

(〈dµ
dν 〉ν

)=Ψ(1) = 0.

Moreover, Jensen’s inequality is an equality if and only if dµ
dν is almost surely a con-

stant, and the latter can only be 1.

Proposition B.66. 1. (µ,ν) 7→ h(µ |ν) is convex.

2. µ 7→ h(µ |ν) is strictly convex.

To prove this proposition, we will need the following elementary inequality.

Exercise B.23. Let ai ,bi , i = 1, . . . ,n, be nonnegative real numbers. Set A
def= ∑n

i=1 ai

and B
def= ∑n

i=1 bi . Then,
n∑

i=1
ai log

ai

bi
≥ A log

A

B
,

with equality if and only if there exists λ such that ai = λbi for all 1 ≤ i ≤ n. Hint:
use Lemma B.65.

Proof of Proposition B.66. 1. Let α ∈ (0,1) and take four probability measures µ1,

µ2, ν1, ν2. Set µ
def= αµ1 + (1−α)µ2 and ν

def= αν1 + (1−α)ν2. We need to prove that

h(µ |ν) ≤αh(µ1 |ν1)+ (1−α)h(µ2 |ν2) . (B.27)

We can assume that µi ≪ νi , i = 1,2, so that the right-hand side is finite and the
following Radon–Nikodým derivatives are well defined: for i = 1,2,

fi
def= dµi

dν
, gi

def= dνi

dν
, hi

def= dµi

dνi
, φ

def= dµ

dν
.

With these notations, (B.27) can be rewritten, thanks to (B.16),

〈φ logφ〉ν ≤α〈h1 logh1〉ν1 + (1−α)〈h2 logh2〉ν2

=
〈
α f1 log

f1

g1
+ (1−α) f2 log

f2

g2

〉
ν

. (B.28)

By (B.15), we haveα f1+(1−α) f2 =φ andαg1+(1−α)g2 = 1, so Exercise B.23 implies
that

α f1 log
f1

g1
+ (1−α) f2 log

f2

g2
=α f1 log

α f1

αg1
+ (1−α) f2 log

(1−α) f2

(1−α)g2
≥φ logφ ,

pointwise inΩ. Integrating this inequality with respect to ν yields (B.28).
2. This claim follows immediately from the corresponding properties of the

function x 7→ x log x.
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B.12.2 Two useful inequalities

Pinsker’s inequality

The relative entropy is a measure of the similarity of two measures µ and ν. How-
ever, it is not a metric, as it is not even symmetric in its two arguments. Actually,
even its symmetrized version h(ν |µ)+h(µ |ν) fails to be a metric, as it violates the
triangle inequality. Nevertheless, smallness of the relative entropy between two
measures allows one to control their total variation distance (see Section B.10).

Lemma B.67 (Pinsker’s inequality). Let µ and ν be two probability measures on the
same measurable space, with µ≪ ν. Then

∥µ−ν∥T V ≤
√

2h(µ |ν) . (B.29)

Proof. Notice that, by applying Jensen’s inequality,

(1+x) log(1+x)−x = x2
∫ 1

0
dt

∫ t

0
ds

1

1+xs

≥ 1
2 x2 1

1+x
∫ 1

0 dt
∫ t

0 ds 2s
= x2

2(1+ x
3 )

. (B.30)

Let m
def= dµ

dν −1. Then 〈m〉ν = 0 and, using (B.30),

h(µ |ν) = 〈(1+m) log(1+m)〉ν = 〈(1+m) log(1+m)−m〉ν ≥
〈 m2

2(1+ m
3 )

〉
ν

.

But, using Lemma B.60 and the Cauchy-Schwartz inequality,

(∥µ−ν∥T V

)2 = 〈|m|〉2
ν =

〈 |m|
(1+ m

3 )1/2

(
1+ m

3

)1/2
〉2

ν
≤

〈 m2

1+ m
3

〉
ν

〈
1+ m

3

〉
ν .

Since
〈

1+ m
3

〉
ν = 1, this proves (B.29).

An exponential inequality

Pinsker’s inequality (Lemma B.67) allows one to control the differences |µ(A)−ν(A)|
uniformly in A ∈ F in terms of the relative entropy between the two measures.
Sometimes, however, we need to control ratio of such probabilities. The following
result can then be useful.

Lemma B.68. Let µ and ν be two equivalent probability measures on some measur-
able space (Ω,F ). If ν(A) > 0, then

µ(A)

ν(A)
≥ exp

(
−h(ν |µ)+e−1

ν(A)

)
.
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Proof. From Jensen’s inequality and the inequality x log x ≥ −e−1, which holds for
all x > 0, we can write

log
µ(A)

ν(A)
= log

〈dµ
dν1A〉ν
〈1A〉ν

= log〈dµ
dν | A〉ν

≥ 〈log dµ
dν | A〉ν =−

〈 dν
dµ log dν

dµ 1A〉µ
ν(A)

≥−
〈 dν

dµ log dν
dµ 〉µ+e−1

ν(A)
.

B.13 The symmetric simple random walk on Zd

Good references for these topics are the books by Spitzer [319], Lawler [209] and
Lawler and Limic [211].

Let (ξn)n≥1 be an i.i.d. sequence of random vectors uniformly distributed in the
set

{
j ∈Zd : j ∼ 0

}
. The simple random walk onZd started at i ∈Zd is the random

process (Xn)n≥0 with X0 = i and defined by

Xn
def= i +

n∑
k=1

ξk .

We denote the distribution of this process by Pi .

B.13.1 Stopping times and the strong Markov property

For each n ≥ 0, we consider the σ-algebra Fn
def= σ(X0, . . . , Xn). A random variable

T with values in Z≥0 ∪ {+∞} is a stopping time if {T ≤ n} ∈ Fn for all n, that is, if
the occurrence of the event {T ≤ n} can be decided by considering only the first n
steps of the walk. Given a stopping time T , let FT denote the σ-algebra containing
all events A such that A∩ {T ≤ n} ∈Fn for all n. That is, FT contains all events that
depend only on the part of the trajectory of the random walk up to time T .

We then have the following result.

Theorem B.69 (Strong Markov property). Let T be a stopping time. Then, on the
event {T < ∞}, the random process (XT+n − XT )n≥0 has the same distribution as a
simple random walk started at 0 and is independent of FT .

B.13.2 Local Limit Theorem

Theorem B.70. There exists ρ > 0 such that, for any i = (i1, . . . , id ) ∈ Zd such that∑d
k=1 ik and n have the same parity and ∥i∥2 < ρn,

P0(Xn = i ) = 2(2πn/d)−d/2 exp
(
−d∥i∥2

2

2n
+O

(
n−1)+O

(∥i∥4
2 n−3)) . (B.31)

Proof. See, for example, [211, Theorem 2.3.11], using the fact that the random walk
(X2n)n≥0 is aperiodic (see [211, Theorem 2.1.3] for a similar argument).
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B.13.3 Recurrence and transience

Given A ⊂ Zd , we consider the first entrance times in A, τA
def= inf{n ≥ 0 : Xn ∈ A}

and τ+A
def= inf{n ≥ 1 : Xn ∈ A}, with the usual convention that inf∅ = +∞. When

A = {k}, we write simply τk ,τ+k .

Definition B.71. The random walk is recurrent if P0(τ+0 <∞) = 1. Otherwise, it is
transient.

Theorem B.72. The simple random walk on Zd is transient if and only if

∫

[−π,π]d

{
1− 1

2d

∑
j∼0

cos(p · j )
}−1

dp <∞ . (B.32)

Proof. Let (Xn)n≥0 be the walk starting at 0 and let p
def= P0(τ+0 <∞). First observe

that, by the strong Markov property, the number N0 of returns of the walk to 0 sat-
isfies, for all k ≥ 0, P0(N0 = k) = pk (1−p). In particular,

∑
n≥1

P0(Xn = 0) = E0
[ ∑

n≥1
1{Xn=0}

]= E0[N0]

if finite if and only if p < 1, that is, if and only if X is transient. We show that the
convergence of this series is equivalent to (B.32).

Using the identity (2π)−d
∫

[−π,π]d e ip· j dp = 1{ j=0}, for all j ∈ Zd , we can rewrite

P0(Xn = 0) = (2π)−d
∫

[−π,π]d E0
[
e ip·Xn

]
dp. Now observe that,

E0
[
e ip·Xn

]= E[e ip·(ξ1+···+ξn )]= ( 1
2d

∑
j∼0

cos(p · j )
)n def= (

φξ(p)
)n .

Therefore, for any λ ∈ (0,1),

∑
n≥1

λnP0(Xn = 0) =
∫

[−π,π]d

∑
n≥1

(
λφξ(p)

)n dp

(2π)d
=

∫

[−π,π]d

λφξ(p)

1−λφξ(p)

dp

(2π)d
.

Clearly, limλ↑1
∑

n≥1λ
nP0(Xn = 0) = ∑

n≥1P0(Xn = 0). It thus only remains for us to
show that the limit can be taken inside the integral in the right-hand side. To do
that, first observe that φξ(p) is positive for all p ∈ [−δ,δ]d , as soon as 0 < δ < π

2 .
Therefore, by monotone convergence,

lim
λ↑1

∫

[−δ,δ]d

λφξ(p)

1−λφξ(p)

dp

(2π)d
=

∫

[−δ,δ]d

φξ(p)

1−φξ(p)

dp

(2π)d
.

To deal with the integral over [−π,π]d \ [−δ,δ]d , observe that, on this domain, the
sequence of functions

(
λφξ(p)/

(
1−λφξ(p)

))
0<λ<1 converges pointwise as λ ↑ 1 and

is uniformly bounded. Thus, by dominated convergence,

lim
λ↑1

∫

[−π,π]d \[−δ,δ]d

λφξ(p)

1−λφξ(p)

dp

(2π)d
=

∫

[−π,π]d \[−δ,δ]d

φξ(p)

1−φξ(p)

dp

(2π)d

and we are done.

The following corollary, a result originally due to Pólya, shows that the simple ran-
dom walk behaves very differently in low dimensions (d = 1,2) and in high dimen-
sions (d ≥ 3).
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Corollary B.73. The simple random walk X is transient if and only if d ≥ 3.

Proof. A Taylor expansion yields cos(x) = 1− 1
2 x2 + 1

24 x4
0 for some 0 ≤ x0 ≤ x. It

follows that, for any x ∈ [−1,1], 1− 1
2 x2 ≤ cos(x) ≤ 1− 11

24 x2. Therefore, changing
variables to spherical coordinates, we see that the integral in (B.32) is convergent if
and only if ∫ 1

0
r−2r d−1 dr =

∫ 1

0
r d−3 dr <∞ ,

which is true if and only if d > 2.

By definition, a recurrent random walk returns to its starting point with prob-
ability one. The next result quantifies the probability that it manages to travel far
away before the first return.

Theorem B.74. For all n ≥ 1,

P0
(
τB(n)c < τ+0

)=
{

1
n+1 in d = 1,

O
( 1

logn

)
in d = 2.

Proof. The first statement is a particular instance of the gambler’s ruin estimate;
it is discussed, for example, in [209, equation (1.20)]. The second estimate can be
found in [209, Proposition 1.6.7].

The next result shows that, while a recurrent random walk visits a.s. all vertices,
a transient one will a.s. miss arbitrarily large regions on its way to infinity.

Theorem B.75. For any r ≥ 0 and any i ∈Zd \B(r −1),

lim
n→∞Pi

(
τB(n)c > τ+B(r )

)= 1,

if and only if X is recurrent.

Proof. See, for example, [209, Chapter 2].

B.13.4 Discrete potential theory

The n-step Green function is defined by

Gn(i , j )
def= Ei

[ n∑
k=0

1{Xk= j }

]
, i , j ∈Zd .

Let A be a nonempty, proper subset of Zd . The Green function in A is defined by

G A(i , j )
def= Ei

[τAc−1∑
k=0

1{Xk= j }

]
, i , j ∈Zd .

In the transient case, d ≥ 3, the Green function is defined by

G(i , j )
def= Ei

[ ∞∑
n=0

1{Xn= j }

]
, i , j ∈Zd .
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In the recurrent case, d ≤ 2, the potential kernel is defined by

a(i , j )
def= lim

n→∞
{
Gn(i , j )−Gn(i , i )

}
, i , j ∈Zd .

We will also use the shorter notations Gn(i ) ≡ Gn(0, i ), G A(i ) ≡ G A(0, i ), G(i ) ≡
G(0, i ), a(i ) ≡ a(0, i ).

Theorem B.76. 1. In d = 1,

GB(n)(0) = a(n +1) = n +1, ∀n ≥ 1.

2. In d = 2,

GB(n)(0) = 2

π
logn +O(1) , a(i ) = 2

π
log∥i∥2 +O(1) .

3. In d ≥ 3,

GB(n)(0) =G(0)+O(n2−d ) , G(i ) = ad∥i∥2−d
2 +O(∥i∥−d

2 ) ,

where ad
def= d

2 Γ( d
2 −1)π−d/2 (Γ denotes here the gamma function).

Proof. The claim in d = 1 is proved in [209, Theorem 1.6.4]. Those in d = 2 can
be found in [209, Theorems 1.6.2 and 1.6.6], and those in higher dimensions are
established in [209, Theorem 1.5.4 and Proposition 1.5.8]

Exercise B.24. Show that, in d = 1,2,

lim
n→∞

(
GB(n)(i )−GB(n)(0)

)= a(i ) .

Finally, we will need the following estimate on the spatial variation of the Green
function.

Theorem B.77. There exists C < ∞ such that, for any A ⋐ Z2 and any neighbors
i , j ∈Zd ,

G A(i )−G A( j ) ≤C .

Proof. This follows from [209, Proposition 1.6.3] and the asymptotic behavior of
the potential kernel.

B.14 The isoperimetric inequality on Zd

In this section, we provide a version of the isoperimetric inequality in Zd . Given

S ⊂Zd , we denote by ∂e S
def= {

{i , j } ∈ EZd : i ∈ S, j ̸∈ S
}

the edge boundary of S.

Theorem B.78. For any S ⋐Zd ,

|∂e S| ≥ 2d |S|(d−1)/d . (B.33)
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Notice that (B.33) is saturated for cubes, for example S =B(n).

For simplicity, let |D| def= ℓd (D) denote the Lebesgue measure of D ⊂ Rd . The
scaling property of the Lebesgue measure then reads |λD| = λd |D| for all λ > 0. If

A,B ⊂Rd , let A+B
def= {

x + y : x ∈ A, y ∈ B
}
.

The following is a weak version of the Brunn–Minkowski inequality, adapted
from [131, Theorem 4.1]. Let P denote the collection of all parallelepipeds of Rd

whose faces are perpendicular to the coordinate axes.

Proposition B.79. If A,B ⊂Rd are finite unions of elements of P , then

|A+B |1/d ≥ |A|1/d +|B |1/d . (B.34)

Proof. First observe that, for all x ∈Rd , |A+B | = |A+B+x| = |A+(B+x)|. Therefore,
one can always translate A or B in an arbitrary way. In particular, one can always
assume A and B to be disjoint.

Now if A and B are arbitrary unions of parallelepipeds, we can express A ∪B
as a union

⋃n
k=1 Ck , where Ck ∈ P , and the interior of the Ck s are nonoverlapping

(they can, however, share points on their boundaries). We will prove the statement
by induction on n.

To prove the claim for n = 2, assume that A ∈ P has volume
∏d

i=1 ai and that

B ∈P is disjoint from A and of volume
∏d

i=1 bi . Then, |A +B | =∏d
i=1(ai +bi ) and,

since (
∏d

i=1 xi )1/d ≤ 1
d

∑d
i=1 xi , see (B.1), we have

( d∏
i=1

ai

ai +bi

)1/d
+

( d∏
i=1

bi

ai +bi

)1/d
≤ 1

d

d∑
i=1

ai

ai +bi
+ 1

d

d∑
i=1

bi

ai +bi
= 1,

which proves (B.34) for those particular sets.
Let us then suppose that the claim has been proved up to n and assume that

A and B are such that their union can be expressed as a union of n + 1 non-
overlapping parallelepipeds: A ∪B = ⋃n+1

i=1 Ci . Since A and B can be assumed to
be far apart, A and B can each be expressed using a subset of {C1, . . . ,Cn+1}. For
simplicity, assume that A =⋃l

i=1 Ci , l ≥ 2 and B =⋃n+1
i=l+1 Ci .

Observe that C1 and C2 can always be separated by some plane π, perpendicu-
lar to one of the coordinate axes. Denoting byΠ+ andΠ− the two closed half spaces

delimited by π, let A± def= A ∩Π± and B± def= B ∩Π±. Again using the fact that B can
be translated in an arbitrary manner, we can assume that

|B±|
|B | = |A±|

|A| .

Now, observe that A+∪B+ and A−∪B− can each be expressed as unions of at most
n parallelepipeds. We can therefore use the induction hypothesis as follows:

|A∪B | = |A+∪B+|+ |A−∪B−|
≥ (|A+|1/d +|B+|1/d )d + (|A−|1/d +|B−|1/d )d

= |A+|
{

1+
( |B+|
|A+|

)1/d }d
+|A−|

{
1+

( |B−|
|A−|

)1/d }d

= |A|
{

1+
( |B |
|A|

)1/d }d

= (|A|1/d +|B |1/d )d .
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Proof of Theorem B.78. Remember the notation S0 = [− 1
2 , 1

2 ]d used for the closed

unit cube of Rd . We can always identify S ⋐ Zd with AS
def= ⋃

i∈S {i +S0} ⊂ Rd . Note
that the (Euclidean) boundary of AS is made of (d − 1)-dimensional unit cubes
which are crossed in their middle by the edges of ∂e S. Notice also that, for all small
ϵ> 0, (AS +ϵS0)\ AS is a thin layer wrapping AS , of thickness ϵ/2. We can therefore
count the number of edges in ∂e S by computing the following limit:

|∂e S| = lim
ϵ↓0

|AS +ϵS0|− |AS |
ϵ/2

. (B.35)

For a fixed ϵ> 0, we use (B.34) as follows:

|AS +ϵS0| =
(|AS +ϵS0|1/d )d ≥ |AS |+ϵd |AS |(d−1)/d .

In the last step, we used (a +b)n ≥ an +nan−1b for a,b ≥ 0, the scaling property
of the Lebesgue measure and |S0| = 1. Using this in (B.35), we get (B.33) since
|AS | = |S|.

Let us finally state an immediate consequence, that is used in Chapter 7.

Corollary B.80. Let S ⋐Zd and write ∂exS
def= {

i ∈ Sc : d∞(i ,S) ≤ 1
}
. Then,

|∂exS| ≥ |S| d−1
d .

Proof. Since there can be at most 2d edges of ∂e S incident at a given vertex of ∂exS,
we have |∂e S| ≤ 2d |∂exS|. The conclusion thus follows from (B.33).

B.15 A result on the boundary of subsets of Zd

In this section, we provide the tools needed to prove Lemma 7.19.
Consider the set of ⋆-edges of Zd , defined by

E ⋆
Zd

def= {
{i , j } ∈Zd ×Zd : ∥ j − i∥∞ = 1

}
.

That is, E ⋆
Zd contains all edges between pairs of vertices which are corners of the

same unit cube in Zd .
Given E ⊂ E ⋆

Zd and a vertex i ∈ Zd , we denote by I (i ;E) the number of ⋆-edges

of E having i as an endpoint. The boundary of E is then defined as the set ∂E
def={

i ∈Zd : I (i ;E) is odd
}
.

A ⋆-path between two vertices i , j ∈ Zd is a set E ⊂ E ⋆
Zd with ∂E = {i , j }. A ⋆-

cycle is a non-empty set E ⊂ E ⋆
Zd with ∂E =∅.

Two vertices i , j ∈ Zd are ⋆-connected in A ⊂ Zd if there exists a ⋆-path be-
tween i to j , all of whose⋆-edges are made of two vertices of A. (A vertex i is always
considered to be ⋆-connected to itself.) A set A ⊂ Zd is ⋆-connected if all pairs of

vertices i , j ∈ A are ⋆-connected in A. A set A ⊂Zd is c-connected if Ac def= Zd \ A is
⋆-connected.

For a set A ⊂Zd , the⋆-interior-boundary is ∂in
⋆ A

def= {
i ∈ A : ∃ j ̸∈ A, {i , j } ∈ E ⋆

Zd

}
,

the ⋆-exterior-boundary is ∂ex
⋆ A

def= {
i ̸∈ A : ∃ j ∈ A, {i , j } ∈ E ⋆

Zd

}
and the ⋆-edge-

boundary is ∂⋆A
def= {

{i , j } ∈ E ⋆
Zd : i ∈ A, j ̸∈ A

}
.
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Let the set of ⋆-triangles be defined by

T
def= {

[i , j ,k]
def= {

{i , j }, { j ,k}, {k, i }
}⊂ E ⋆

Zd

}
.

That is, a ⋆-triangle is a cycle built out of three distinct ⋆-edges whose endpoints
all belong to the vertices of a common unit cube in Zd .

In the sequel, it will be convenient to identify a subset E ⊂ E ⋆
Zd with the element

of {0,1}
E ⋆

Zd equal to 1 at each ⋆-edge e ∈ E and 0 everywhere else. The set {0,1}
E ⋆

Zd

can be seen as a group for the coordinate-wise addition modulo 2, which we denote
by ⊕. With this identification, the symmetric difference between two sets E and F
can be expressed as E △F = E ⊕F . In particular, E ⊕E =∅.

The following is a discrete version of (a special case of) the Poincaré Lemma of
differential topology. Informally, it states that any ⋆-cycle can be realized as the
boundary of a surface built out of ⋆-triangles.

Lemma B.81. Let C be a bounded ⋆-cycle. There exists a finite collection of ⋆-
triangles T ′ ⊂T such that

C =
⊕

T∈T ′
T .

The constructive proof given below uses the following elementary property: if C is
a cycle and T is a triangle, then C ⊕T is again a cycle or is empty.

Proof of Lemma B.81: We construct T ′ using the following algorithm.

Step 0. Set T ′ =∅.

Step 1. If C is empty, then stop. Otherwise, go to Step 2.

Step 2. If there exist two ⋆-edges e = {i , j },e ′ = { j ,k} in C with ∥k − i∥∞ = 1, then:

– T = [i , j ,k] is a ⋆-triangle;

– replace T ′ by T ′∪ {T };

– replace C by C ⊕T . Note that the number of ⋆-edges in C decreases at
least by 1 in this operation.

– Go to Step 1.

Otherwise go to Step 3.

Step 3. Let us denote by [C ] the smallest (with respect to inclusion) parallelepiped
{a1, . . . ,b1}× ·· · × {ad , . . . ,bd } ⊂ Zd , am ≤ bm , such that C is a ⋆-cycle in [C ].
Let ℓ = min{1 ≤ m ≤ d : am < bm}. Let e = {i , j },e ′ = { j ,k} be two ⋆-edges in
C such that j ∈ ∂in

⋆ [C ] and the ℓth component of j is equal to bℓ. Note that,
necessarily, ∥k−i∥∞ = 2. Let j ′ ∈ [C ]\∂in

⋆ [C ] such that ∥ j ′−i∥∞ = ∥ j ′−k∥∞ = 1.
We add to T ′ the two triangles T1 = [i , j , j ′] and T2 = [ j ,k, j ′] and replace C
by C ⊕T1 ⊕T2. Note that during this operation, the number of ⋆-edges in C
does not increase and either (i) [C ] decreases (with respect to inclusion), or
(ii) the number of vertices in C ∩∂in

⋆ [C ] decreases. Go to Step 1.

The algorithm terminates after finitely many steps, yielding a finite set of triangles
T ′ such that C =⊕

T∈T ′ T .
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Proposition B.82. Let A ⊂Zd be⋆-connected and c-connected. Then ∂in
⋆ A and ∂ex

⋆ A
are ⋆-connected.

The idea used in the proof is due to [333]. It is based on

Lemma B.83. Let ∂⋆A = E1 ∪E2 be an arbitrary partition of ∂⋆A. Then there exists
a ⋆-triangle containing at least one ⋆-edge from both E1 and E2.

Proof of Proposition B.82: To prove that ∂in
⋆ A is ⋆-connected, consider an arbitrary

partition ∂in
⋆ A = B1 ∪B2. This partition induces a natural partition of ∂⋆A: Ek , k =

1,2, is the set of all ⋆-edges of ∂⋆A with one endpoint in Bk . By Lemma B.83, there
exists a ⋆-triangle containing at least one ⋆-edge of both E1 and E2. This implies
that there exist u ∈ B1 and v ∈ B2 with {u, v} ∈ E ⋆

Zd . Since the partition was arbitrary,
the conclusion follows. The same argument can be made for ∂ex

⋆ A.

Proof of Lemma B.83: Consider two arbitrary vertices i ∈ A, j ̸∈ A. Let π1 be a ⋆-
path between i and j which does not cross E2 and π2 a ⋆-path between i and j
which does not cross E1. The existence of such ⋆-paths follows from our assump-
tions: given any ⋆-edge {u, v} ∈ ∂⋆A with u ∈ A and v ̸∈ A, i is ⋆-connected to u
in A (since A is ⋆-connected), while v is ⋆-connected to j in Ac (since Ac is ⋆-
connected).

Since every vertex has an even number of incident⋆-edges in π1⊕π2, the latter
set is a ⋆-cycle. Therefore, by Lemma B.81, there exists Tπ1,π2 ⊂T such that

π1 ⊕π2 =
⊕

T∈Tπ1,π2

T . (B.36)

Let us denote by T ′ the subset of Tπ1,π2 composed of all ⋆-triangles containing

at least one ⋆-edge of E1 and set T ′′ def= Tπ1,π2 \ T ′. Identity (B.36) can then be
rewritten as

π1 ⊕
⊕

T∈T ′
T =π2 ⊕

⊕
T∈T ′′

T
def= F . (B.37)

Since i and j are the only vertices with an odd number of incident⋆-edges, F must
contain a path π̃ between i and j . Removing the latter’s ⋆-edges from F , one is left
with a cycle C̃ , which can be decomposed as C̃ =⊕

T∈T̃ T .
By construction, neither π2, nor any ⋆-triangle in T ′′ contains a ⋆-edge of E1.

This implies that π̃ must contain an odd number of ⋆-edges of E2 (since each such
⋆-edge connects a vertex of A and a vertex of Ac), while each of the⋆-triangles in T̃
must contain either 0 or 2. We conclude that F contains an odd number of⋆-edges
of E2 and therefore F ∩E2 ̸=∅.

Returning to (B.37), this implies that at least one of the ⋆-triangles in T ′ con-
tains a ⋆-edge of E2, since π1 does not contain any ⋆-edge of E2. However, by
definition, every triangle of T ′ contain at least one ⋆-edge of E1. This proves the
claim.
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C Solutions to Exercises

In this appendix are regrouped the solutions to many of the exercises stated in the main body of the
book. Some solutions are given with full details, while others are only sketched. In all cases, we rec-
ommend that the reader at least spends some time thinking about these problems before reading the
solutions.

Solutions of Chapter 1
Exercise 1.1: Fix n ∈ Z>0 and observe first that our system Σ, with parameters U ,V , N can be seen as a
system Σ′ composed of two subsystems Σ1,Σ2 with parameters 1

n U , 1
n V , 1

n N and n−1
n U , n−1

n V , n−1
n N .

Then, by additivity,

SΣ(U ,V , N ) = SΣ
′
( 1

n U , 1
n V , 1

n N , n−1
n U , n−1

n V , n−1
n N ) = SΣ( 1

n U , 1
n V , 1

n N )+SΣ( n−1
n U , n−1

n V , n−1
n N ) ,

where we used the fact that each of the two subsystems is of the same type as the original system and is
therefore associated to the same entropy function. Iterating this, we get

SΣ(U ,V , N ) = nSΣ( 1
n U , 1

n V , 1
n N ) .

Using this relation twice, we conclude that, for any m,n ∈Z>0,

SΣ( m
n U , m

n V , m
n N ) = mSΣ( 1

n U , 1
n V , 1

n N ) = m
n SΣ(U ,V , N ) .

This proves (1.7) for λ ∈ Q. Since SΣ is assumed to be differentiable, it is also continuous. We can
therefore approximate any real λ> 0 by a sequence (λn )n≥1 ⊂Q, λn →λ, and get

SΣ(λU ,λV ,λN ) = lim
n→∞SΣ(λnU ,λnV ,λn N ) = lim

n→∞λn SΣ(U ,V , N ) =λSΣ(U ,V , N ) .

Exercise 1.2: Decompose the system into two subsystems Σ1,Σ2. By the postulate, SΣ(U ,V , N ) maxi-
mizes SΣ(Ũ1,Ṽ1, Ñ1)+SΣ(Ũ2,Ṽ2, Ñ2) over all possible ways of partitioning U ,V , N into Ũ1 +Ũ2, Ṽ1 + Ṽ2
and Ñ1 + Ñ2. This implies in particular that

SΣ(U ,V , N ) ≥ SΣ
(
αU1,αV1,αN1

)+SΣ
(
(1−α)U2, (1−α)V2, (1−α)N2

)

=αSΣ(U1,V1, N1)+ (1−α)SΣ(U2,V2, N2) ,

where the equality is a consequence of (1.7).

Exercise 1.3: Fix V , N ,β1,β2 and α ∈ [0,1]. For all U ,

{αβ1 + (1−α)β2}U −S(U ,V , N ) =α{β1U −S(U ,V , N )︸ ︷︷ ︸
≥F̂ (β1 ,V ,N )

}+ (1−α){β2U −S(U ,V , N )︸ ︷︷ ︸
≥F̂ (β2 ,V ,N )

} .

Taking the infimum over U on the left-hand side,

F̂ (αβ1 + (1−α)β2,V , N ) ≥αF̂ (β1,V , N )+ (1−α)F̂ (β2,V , N ) ,

so F̂ is concave in β. A similar argument, exploiting the concavity of S, shows that F̂ is convex in V , N .
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Exercise 1.4: The extremum principle follows from the one postulated for S. Indeed, suppose that we
keep our system isolated, with a total energy U (and the subsystems can exchange energy, which can
always be assumed in the present setting, since they can do that through the reservoir). Then, the equi-
librium values are those maximizing

S(U 1,V 1, N 1)+S(U 2,V 2, N 2),

among all values satisfying the constraints on V 1, N 1,V 2, N 2 as well as U 1 +U 2 = U . Therefore, the
same values minimize

βU − (
S(U 1,V 1, N 1)+S(U 2,V 2, N 2)

)= (
βU 1 −S(U 1,V 1, N 1)

)+ (
βU 2 −S(U 2,V 2, N 2)

)
,

under the same conditions. Taking now the infimum over U yields the desired result, since this removes
the constraint U 1 +U 2 =U .

Exercise 1.5: The critical points of the function v 7→ p(v) are given by the solutions of the equation
RT v3 = 2a(v −b)2, which is of the form f (v) = g (v). When v > b, this equation has zero, one or two
solutions depending on the value of T . The critical case corresponds to when there is exactly one solu-
tion (at which f (v) = g (v) and f ′(v) = g ′(v)). This happens when T = 8a

27Rb .

Exercise 1.6: Writing SSh(µ) =∑
ω∈Ωψ(µ(ω)), where ψ(x)

def= −x log x, we see that SSh is concave.

Exercise 1.8: The desired probabilities are given by µ(i ) = e−βi /Zβ, where Zβ = ∑6
i=1 e−βi and β must

be chosen such that
∑

i iµ(i ) = 4. Numerically, one finds that

µ(1) ∼= 0.10,µ(2) ∼= 0.12,µ(3) ∼= 0.15,µ(4) ∼= 0.17,µ(5) ∼= 0.21,µ(6) ∼= 0.25.

Exercise 1.9: Letting V ′ =V − N
2 and writing N1 = N

2 +m, N2 = N
2 −m, we need to show that

m 7→ ( N
2 +m)!( N

2 −m)!(V ′+m)!(V ′−m)!

is minimal when m = 0. But this follows by simple termwise comparison. For the second part, expressing
the desired probability using Stirling’s formula (Lemma B.3) shows that there exist constants c− < c+
such that if V and N are both large, with N

2V bounded away from 0 and 1, then

c−p
N

≤

( V
N
2

)( V
N
2

)

(2V
N

) ≤ c+p
N

.

Exercise 1.10: Note that the second derivative of logQΛ;β,N with respect to β yields the variance of H
under the canonical distribution and is thus nonnegative. We conclude thatβ 7→ − logQΛ;β,N is concave.
Moreover, since the limit of a sequence of concave functions is concave (see Exercise B.3), this implies
that f̂ is concave in β.

Exercise 1.12: Plugging µΛ;β(U ),N in the definition of SSh(·) gives

SSh(µΛ;β(U ),N ) =β(U )〈H 〉µΛ;β(U ),N + log ZΛ;β(U ),N =β(U )U + log ZΛ;β(U ),N . (C.1)

By the Implicit Function theorem, U 7→β(U ) is differentiable. So, differentiating with respect to U ,

∂SSh(µΛ;β(U ),N )

∂U
= ∂β(U )

∂U
U +β(U )+ ∂

∂β
log ZΛ;β,N

∣∣∣
β=β(U )︸ ︷︷ ︸

=−U

∂β(U )

∂U
=β(U ) ,

as one expects from the definition of the inverse temperature in (1.3). Then,

U −TUSSh(µΛ;β(U ),N ) =U −TU {β(U )U + logZΛ;β(U ),N } =− 1
β(U ) logZΛ;β(U ),N ,

in accordance with the definition of free energy given earlier.

Exercise 1.13: Since MΛ(−ω) =−MΛ(ω),

〈MΛ〉Λ;β,0 =
∑

ω∈ΩΛ
MΛ(ω)µΛ;β,0(ω) = 1

2

∑
ω∈ΩΛ

MΛ(ω)
{
µΛ;β,0(ω)−µΛ;β,0(−ω)
︸ ︷︷ ︸

=0

}= 0.

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik
www.unige.ch/math/folks/velenik/smbook

523

Solutions of Chapter 2

Exercise 2.2: If one writes H̃N ;β,0 = H CW
N ;β(N ),0

, where β(N )
def= Nβ/ζ(N ), then either β(N ) ↑ +∞ or

β(N ) ↓ 0. The conclusion now follows from our previous analysis.

Exercise 2.3: The analyticity of h 7→ mCW
β

(h) follows from the implicit function theorem (Theorem B.28).

Exercise 2.6: Let us writeϕ(y) ≡ϕβ,h (y). Notice that, since β> 0,ϕ(y) ↑ +∞ as y →±∞, sufficiently fast

to ensure that
∫ +∞
−∞ e−cϕ(y) dy <∞ for all c > 0. Depending on β,ϕ has either one or two global minima.

For simplicity, consider the case in which there is a unique global minimum y∗. Let ϕ̃(y)
def= ϕ(y)−ϕ(y∗),

Bϵ(y∗)
def= [y∗−ϵ, y∗+ϵ] and write

∫ ∞

−∞
e−N (ϕβ,h (y)−miny ϕβ,h (y)) dy ≥

∫

Bϵ(y∗)
e−N ϕ̃(y) dy .

Let c > 0 be such that ϕ̃(y) ≤ c(y − y∗)2 for all y ∈ Bϵ(y∗). Then

p
N

∫

Bϵ(y∗)
e−N ϕ̃(y) dy ≥

p
N

∫

Bϵ(y∗)
e−cN (y−y∗)2

dy = 1p
2c

∫ +ϵ
p

2cN

−ϵ
p

2cN
e−x2/2 dx ,

and this last expression converges to
p
π/c when N →∞.

Solutions of Chapter 3

Exercise 3.1: Notice that |B(n)| = (2n +1)d and that

|∂inB(n)| = |B(n) \B(n −1)| = (2n +1)d − (2n −1)d ≤ d(2n +1)d−1 ,

which shows that |∂inB(n)|
|B(n)| → 0. Any sequence Λn ↑ Zd whose boundary grows as fast as its volume,

such asΛn =B(n)∪{
(i ,0, . . . ,0) ∈Zd : 0 ≤ i ≤ en}

, will not converge in the sense of van Hove.

Exercise 3.5: By a straightforward computation, mβ(h) = sinh(h)/
√

sinh2(h)+e−4β.

Exercise 3.6: 1. The partition function with free boundary condition can be expressed as

Z∅
B(n);β,h

=
∑

ωi =±1
i∈B(n)

n−1∏
i=−n

eβωiωi+1 = e2βn ∑
ωi =±1
i∈B(n)

n−1∏
i=−n

eβ(ωiωi+1−1) .

Each factor in the last product is either equal to 1 (if ωi =ωi+1) or to e−2β. Therefore,

Z∅
B(n);β,h

= 2e2βn
2n∑

k=0

(
2n

k

)
(e−2β)k = 2e2βn (1+e−2β)2n .

This yields ψ(β) = logcosh(β)+ log2, which of course coincides with (3.10).

2. In terms of the variables τi ,

Z∅
B(n);β,h

=
∑

ω−n=±1

∑
τi =±1

i=−n+1,...,n

n∏
i=−n+1

eβτi = 2
(
eβ+e−β

)2n .

Exercise 3.8: Notice that any local function can be expressed as a finite linear combination of cylinder
functions, which are of the following form: f (ω) = 1 if ω coincides, on a finite region Λ, with some
configuration τ, and zero otherwise. Since each spin ωi takes only two values, there are countably
many cylinder functions, we denote them by f1, f2, . . .. Since, for each j , the sequence (〈 f j 〉ηn

Λn ;β,h
)n≥1 is

bounded, a standard diagonalization argument (this type of argument will be explained in more detail
later, for instance in the proof of Proposition 6.20) allows one to extract a subsequence (nk )k≥1 such

that limk→∞〈 f j 〉
ηnk
Λnk ;β,h

exists for all j . The existence of 〈 f 〉 def= limk→∞〈 f 〉ηnk
Λnk ;β,h

for all local functions

f follows by linearity and defines a Gibbs state.

Exercise 3.9: Simply differentiate 〈σA〉+Λ;J,h with respect to Ji j or hi and use (3.22).

www.unige.ch/math/folks/velenik/smbook


Revised version, August 22 2017
To be published by Cambridge University Press (2017)

© S. Friedli and Y. Velenik
www.unige.ch/math/folks/velenik/smbook
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Exercise 3.10: Observe that, to show that f is nondecreasing, it suffices to show that f (ω) ≤ f (ω′) when-
ever there exists i ∈Zd such that ωi =−1, ω′

i = 1 and ω j =ω′
j for all j ̸= i . The exercise is then straight-

forward.

Exercise 3.11: We will come back to this important property in Chapter 6 and prove it in a more general
setting (see Lemma 6.7). For simplicity, assume h = 0. The numerator appearing in µ

η

Λ;β,h

(
ω | σi =

ω′
i , ∀i ∈Λ\∆

)
contains the term

exp
(
β

∑

{i , j }∈E b
Λ

ωiω j
)= exp

(
β

∑

{i , j }∈E b
∆

ωiω j
)

exp
(
β

∑

{i , j }∈E b
Λ

{i , j }∩∆=∅

ωiω j
)

.

The first term, containing the sum over {i , j } ∈ E b
∆

, is used to form µω
′

∆;β,h (ω). The same decomposition

can be used for the partition functions; the second factor then cancels out.

Exercise 3.12: Let D ⊂ EΛ2 be the set of edges {i , j } with i ∈ Λ2 \Λ1, j ∈ Λ1. Consider, for s ∈ [0,1], the
Hamiltonian

H s
Λ2 ;β,h

def= −β
∑

{i , j }∈EΛ2
{i , j } ̸∈D

σiσ j − sβ
∑

{i , j }∈D
σiσ j −h

∑
i∈Λ2

σi .

Let 〈·〉s
Λ2 ;β,h denote the corresponding Gibbs distribution. Observe that, when A ⊂ Λ1, 〈σA〉∅Λ2 ;β,h

=
〈σA〉s=1

Λ2 ;β,h and 〈σA〉∅Λ1 ;β,h
= 〈σA〉s=0

Λ2 ;β,h . The conclusion follows since, by Exercise 3.9, 〈σA〉s=0
Λ2 ;β,h ≤

〈σA〉s=1
Λ2 ;β,h .

For the other claim, add a magnetic field h′ acting on the spins inΛ2 \Λ1 and let h′ →∞.

Exercise 3.15: First, the FKG inequality and translation invariance yield, for any i ,

〈nA nB+i 〉+β,h ≥ 〈nA〉+β,h〈nB 〉+β,h .

Fix L large enough to ensure that A,B ⊂ B(L). Taking ∥i∥1 sufficiently large, we can guarantee that
B(L + 1)∩ (i +B(L)) = ∅. Fixing all the spins on ∂exB(L)∪∂ex(i +B(L)) to +1, it follows from the FKG
inequality that

〈nA nB+i 〉+β,h ≤ 〈nA〉+B(L);β,h〈nB+i 〉+i+B(L);β,h = 〈nA〉+B(L);β,h〈nB 〉+B(L);β,h .

We conclude that

〈nA〉+β,h〈nB 〉+β,h ≤ liminf
∥i∥1→∞

〈nA nB+i 〉+β,h

≤ limsup
∥i∥1→∞

〈nA nB+i 〉+β,h ≤ 〈nA〉+B(L);β,h〈nB 〉+B(L);β,h .

The desired conclusion follows by letting L →∞ in the right-hand side. The case of general local func-
tions f and g follows from Lemma 3.19.

Exercise 3.16: Follow the steps of the proof of Theorem 3.17, using Exercise 3.12 for the existence of the
thermodynamic limit (use 〈σA〉∅Λn ;β,h

= (−1)|A|〈σA〉∅Λn ;β,−h
when dealing with h < 0).

Exercise 3.17: Proceed as in the proof of Lemma 3.31, using the monotonicity results established in Ex-
ercises 3.9 and 3.12.

Exercise 3.18: 1. This is a consequence of (3.34). Indeed, let us denote by Aℓ the set of all contours γ (in
B(n)) with length ℓ. Then,

µ+B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≤

∑
ℓ≥K logn

|Aℓ|e−2βℓ .

Now, the number of contours of length ℓ passing through a given point is bounded above by 4ℓ and
the number of translates of such a contour entirely contained inside B(n) is bounded above by 4n2.
Therefore, the probability we are interested in is bounded above by

4n2 ∑
ℓ≥K logn

(4e−2β)ℓ ≤ 8n2−K (2β−log4) ,
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for all β ≥ log3, say. This bound can be made smaller than n−c , for any fixed c > 0, by taking K suffi-
ciently large (uniformly in β≥ log3).

2. Partition each row of B(n) into intervals of length K logn (and, possibly, a remaining shorter interval
that we ignore). We denote by Ik , k = 1, . . . , N , these intervals and consider the event

Ik = {σi =−1 ∀i ∈ Ik } .

Of course, there exists C =C (β) such that µ+Ik ;β,0(Ik ) ≥ e−C K logn = n−C K . Now,

µ+B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≥µ+B(n);β,0

( N⋃
k=1

Ik
)= 1−µ+B(n);β,0

( N⋂
k=1

I c
k

)
.

Notice that

µ+B(n);β,0

( N⋂
k=1

I c
k

)=
N∏

m=1
µ+B(n);β,0

(
I c

m |
m−1⋂
k=1

I c
k

)=
N∏

m=1

{
1−µ+B(n);β,0

(
Im |

m−1⋂
k=1

I c
k

)}
.

By the FKG inequality,

µ+B(n);β,0

(
Im |

m−1⋂
k=1

I c
k

)≥µ+Im ;β,0(Im ) ≥ n−C K ,

so that

µ+B(n);β,0

(∃γ ∈ Γwith |γ| ≥ K logn
)≥ 1− (1−n−C K )N ≥ 1−e−n−C K N .

The conclusion follows since N = (2n + 1)⌊(2n + 1)/K logn⌋ ≥ n2−c/2/K for n > n0(c) and n−C K /K ≥
n−c/2 if K ≤ K1(β,c).

Exercise 3.20: In higher dimensions, the deformation operation leading to contours is less convenient,
so we will avoid it. For the sake of concreteness, we consider the case d = 3. The bounds we give below
are very rough and can be improved. The 3-dimensional analogue of the contours described above are
sets of plaquettes, which are the squares that form the boundary of the cubic cells of Z3. For a given
configurationω, the set ∂M (ω) can be defined as before and decomposed into maximal connected sets
of plaquettes: ∂M (ω) = γ̂1 ∪·· ·∪ γ̂n . The analogue of (3.38) then becomes

µ+B(n);β,0(σ0 =−1) ≤
∑

k≥6
e−2βk #

{
γ̂∗ : dist(γ̂∗,0) ≤ k, |γ̂∗| = k

}
.

To each γ̂∗ in the latter set, we associate a connected graph G∗ whose set of vertices V ∗ is formed by
all the centers of the plaquettes of γ̂∗ and in which two vertices u, v ∈ V ∗ are connected by an edge if
the corresponding plaquettes share a common edge. The above sum is then bounded by (observe that
a vertex of V ∗ has at most 12 neighbors and that each edge is shared by two vertices, so that |E∗| ≤ 6k)

∑
k≥6

e−2βk #
{
G∗ : |V ∗| = k

}≤
∑

k≥6
e−2βk ·k3 ·126k .

This last inequality was obtained using Lemma 3.38. As in the two-dimensional case, the series is smaller
than 1

2 once β is large enough.

Exercise 3.21: Define τ by e−τ def= 3e−2β. Notice that (3.40) can be written (4e−4τ−3e−5τ)/(1−e−τ)2 < 3
4 .

The first point follows by verifying that this holds once β> 0.88.

Let us turn to the second point. Write µ±
B(n);β,0

(A) =
Z±
B(n);β,0

[A]

Z±
B(n);β,0

[Ω±
B(n)

]
, where

Z±
B(n);β,0[A]

def=
∑

ω∈Ω±
B(n)

1A (ω)
∏

γ∈Γ(ω)
e−2β|γ| .

Let A± def= {σi =±1∀i ∈B(R)}. Under µ+
B(n);β,0

, the occurrence of A− forces the presence of at least one

self-avoiding closed path π∗ ⊂ ∂M surrounding B(R). Therefore, by flipping all the spins located inside
the region delimited by π∗, one gets

Z+
B(n);β,0[A−] ≤

∑
π∗

Z+
B(n);β,0[π∗ ⊂ ∂M , A−] ≤

∑
π∗

e−2β|π∗| Z+
B(n);β,0[A+] .

But ∑
π∗

e−2β|π∗| ≤
∑

k≥8R
ke−2βkCk .
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Now, for all ϵ> 0, Ck ≤ (µ+ϵ)k for all large enough k. Therefore,

µ+
B(n);β,0

(σi =−1∀i ∈B(R))

µ−
B(n);β,0

(σi =−1∀i ∈B(R))
=

Z+
B(n);β,0

[A−]

Z−
B(n);β,0

[A−]
=

Z+
B(n);β,0

[A−]

Z+
B(n);β,0

[A+]
≤

∑
k≥8R

ke−2βk (µ+ϵ)k .

If e−2βµ < 1, ϵ can be chosen such that the last series converges. Taking R sufficiently large allows to
make the whole sum < 1.

Exercise 3.23: We only provide the answer for the free boundary condition.

Let Eeven
Λ

def= {
E ⊂ EΛ : I (i ,E) is even for all i ∈Λ}

. Then,

Z∅
Λ;β,0

= 2|Λ| cosh(β)|EΛ|
∑

E∈Eeven
Λ

tanh(β)|E | .

Moreover,

〈σiσ j 〉∅Λ;β,0
=

∑

E0∈Ei , j
Λ

connected,E0∋i

tanh(β)|E0|
∑

E ′∈Eeven
Λ

:E ′⊂∆(E0) tanh(β)|E
′|

∑
E∈Eeven

Λ
tanh(β)|E | ,

where

E
i , j
Λ

def= {
E ⊂ EΛ : I (k,E) is even for all k ∈B(n) \ {i , j }, but I (i ,E) and I ( j ,E) are odd

}
.

Exercise 3.24: Since the Gibbs state is unique, we can consider the free boundary condition. Proceeding
as we did for the representation of 〈σ0〉+Λ;β,h in terms of a sum over graphs in (3.47), we get for i , j ∈B(n),

〈σiσ j 〉∅B(n);β,0
≤

∑

E∈Ei , j
B(n)

connected,E0∋i

tanh(β)|E | .

All graphs E ∈Ei , j
B(n)

have at least ∥i− j∥1 edges. Proceeding as in (3.49), we derive the exponential decay

once β is sufficiently small.

Exercise 3.25: Fix a shortest path π = (i = i1, i2, . . . , im = j ) from i to j and introduce Eπ
def= {

{ik , ik+1} :
1 ≤ k < m

}
. For s ∈ [0,1], set

Juv =
{
β if {u, v} ∈ Eπ,

sβ otherwise.

Denote by µ∅,s
B(n);β,h

the distribution of the Ising model in B(n) ⊂Zd with these coupling constants and

free boundary condition. Check that

〈σiσ j 〉∅,s=1
B(n);β,0

= 〈σiσ j 〉∅B(n);β,0
and 〈σiσ j 〉∅,s=0

B(n);β,0
= 〈σ0σ∥ j−i∥1 〉

d=1
Λi j ;β,0 .

Conclude, using the fact that, by GKS inequalities, 〈σiσ j 〉∅,s=1
B(n);β,0

≥ 〈σiσ j 〉∅,s=0
B(n);β,0

.

Exercise 3.26:

Z+
B(n);β,0 = 22n+1(coshβ)2n+2(

1+ (tanhβ)2n+2)
,

Z∅
B(n);β,0

= 22n+1(coshβ)2n ,

Zper
B(n);β,0

= 22n+1(coshβ)2n+1(
1+ (tanhβ)2n+1)

.

Exercise 3.27: Notice that, by a straightforward computation,

|αz +1|2 −|α+ z|2 = (1−|z|2)(1−α2) .

Since 1−α2 > 0, all the claims can be deduced from this identity. For example, |z| < 1 implies 1−|z|2 > 0
and, therefore, |αz +1|2 −|α+ z|2 > 0, that is, |ϕ(z)| = |(αz +1)/(α+ z)| > 1.
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Exercise 3.28: Since the argument of the logarithm in (3.10) is always larger than 1, only the square root
can be responsible for the singularities of the pressure. But the square root vanishes at the values h ∈C
at which eβ cosh(h) = 2sinh(2β). Since we know that all singularities lie on the imaginary axis, they can

be expressed as h = i(±t + k2π), where t = arcos
√

1−e−4β, k ∈ Z. Observe that, as β → ∞, the two
singularities at ±it converge from above and from below to h = 0. This is compatible with the fact that,
in that limit, a singularity appears at h = 0. Namely, using (3.10),

lim
β→∞

ψβ(βh)

β
= |h|+1,

which is non-analytic at h = 0.

Exercise 3.29: Duplicating the system, we can write

|Z∅
Λ;β,h

|2 =
∑
ω,ω′

e
β

∑
{i , j }∈EΛ

(ωiω j +ω′
iω

′
j )+∑

i∈Λ(hωi +h̄ω′
i )

.

Define the variables θi ∈ {0,π/2,π,3π/2}, i ∈Λ, by cosθi = 1
2 (ωi +ω′

i ) and sinθi = 1
2 (ωi −ω′

i ). It is easy
to check that

ωiω j +ω′
iω

′
j = 2cos(θi −θ j ) = ei(θi −θ j ) +e−i(θi −θ j ),

hωi + h̄ω′
i = 2Reh cos(θi )+2iImh sin(θi ) = (Reh +Imh)eiθi + (Reh −Imh)e−iθi .

Substituting these expressions yields

|Z∅
Λ;β,h

|2 =
∑

(θi )i∈Λ
exp

{ ∑
m=(mi )i∈Λ
mi ∈{0,1,2,3}

αmei
∑

i∈Λmi θi
}

,

for some nonnegative coefficients αm which are nondecreasing both in Reh +Imh and Reh −Imh.
Consequently, expanding the exponential gives

|Z∅
Λ;β,h

|2 =
∑

(θi )i∈Λ

∑
m=(mi )i∈Λ
mi ∈{0,1,2,3}

α̂mei
∑

i∈Λmi θi ,

where the coefficients α̂m are still nonnegative and nondecreasing both in Reh+Imh and Reh−Imh.
Now, observe that

∑
(θi )i∈Λ

ei
∑

i∈Λmi θi =
∏

i∈Λ

∑
θi

eimi θi =
{

4|Λ| if mi = 0, ∀i ∈Λ,

0 otherwise.

We deduce that |Z∅
Λ;β,h

|2 = 4|Λ| α̂(0,0,...,0) and, thus, that |Z∅
Λ;β,h

|2 is nondecreasing in both Reh +Imh

and Reh −Imh. Since Reh −|Imh| = min(Reh +Imh,Reh −Imh), this proves that

|Z∅
Λ;β,h

| ≥ Z∅
Λ;β,Reh−|Imh| > 0.

Exercise 3.31: We write

(ZΛ;KZΛ;K′ )〈σA −σ′
A〉νΛ;K⊗νΛ;K′ =

∑
ω,ω′

(ωA −ω′
A )

∏
C⊂Λ

eKCωC +K ′
Cω

′
C

=
∑
ω′′

(1−ω′′
A )

∑
ω
ωA

∏
C⊂Λ

e(KC +K ′
Cω

′′
C )ωC ,

and we can conclude as in the proof of (3.55), since KC +K ′
Cω

′′
C ≥ 0 by assumption.

Exercise 3.35: The only delicate part is showing that, for all E ,E ′ ⊂ E b
Λ

,

N w
Λ(E)+N w

Λ(E ′) ≤ N w
Λ(E ∪E ′)+N w

Λ(E ∩E ′) . (C.2)

In order to establish (C.2), it is sufficient to prove that

E ′ 7→ N w
Λ(E ∪E ′)−N w

Λ(E ′) is nondecreasing. (C.3)

Indeed, (C.3) implies that

N w
Λ(E ∪E ′)−N w

Λ(E ′) ≥ N w
Λ(E ∪ (E ′∩E))−N w

Λ(E ′∩E) = N w
Λ(E)−N w

Λ(E ′∩E),
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which is equivalent to (C.2). Let E = {e1, . . . ,en } ⊂ E b
Λ

. Since

N w
Λ(E ∪E ′)−N w

Λ(E ′) =
n∑

k=1

{
N w
Λ({e1, . . . ,ek }∪E ′)−N w

Λ({e1, . . . ,ek−1}∪E ′)
}

,

it is sufficient to show that each summand in the right-hand side verifies (C.3). But this is immediate,
since, if ek = {i , j },

N w
Λ({e1, . . . ,ek }∪E ′)−N w

Λ({e1, . . . ,ek−1}∪E ′) =
{

0 if i ↔ j in {e1, . . . ,ek−1}∪E ′,
−1 otherwise.

Exercise 3.37: Since lim
Λ↑Zd 〈σ0〉+Λ;β,0 = 〈σ0〉+β,0, it follows from Exercise 3.34 that

lim
Λ↑Zd

νFK,w
Λ;pβ ,2(0 ↔ ∂exΛ) = lim

Λ↑Zd
〈σ0〉+Λ;β,0 = 〈σ0〉+β,0 .

Therefore, we only have to check that

lim
Λ↑Zd

νFK,w
Λ;pβ ,2(0 ↔ ∂exΛ) = νFK,w

pβ ,2(0 ↔∞) .

Observe that, for all 0 ∈∆⊂Λ⋐Zd ,

νFK,w
pβ ,2(0 ↔ ∂exΛ) ≤ νFK,w

Λ;pβ ,2(0 ↔ ∂exΛ) ≤ νFK,w
Λ;pβ ,2(0 ↔ ∂ex∆) ,

the first inequality resulting from the FKG inequality (as can be checked by the reader) and the second
one from the inclusion {0 ↔ ∂exΛ} ⊂ {0 ↔ ∂ex∆}. The desired result follows by taking the limitΛ ↑Zd and
then the limit ∆ ↑Zd .

Solutions of Chapter 4
Exercise 4.2: Let ϵ > 0 and let ℓ be such that

∑
j ̸∈B(ℓ) K (0, j ) ≤ ϵ. Let Λ∗ ⊂ Λ be a parallelepiped, large

enough to contain ⌈ρ|Λ|⌉ particles, but such that if either of its sides is reduced by 1, then it becomes
too small to contain those ⌈ρ|Λ|⌉ particles. Then |Λ∗| = ρ|Λ|+O(|∂inΛ|). If η∗ denotes the configuration
obtained by filling denselyΛ∗ with particles (except possibly along its boundary), we get

−HΛ;K (η∗) = 1
2

∑
i∈Λ∗

∑
j∈Λ∗
j ̸=i

K (i , j )+O(|∂inΛ|) .

Let then Λ−∗ denote the set of vertices i ∈ Λ∗ for which B(ℓ)+ i ⊂ Λ∗. Note that, whenever i ∈ Λ−∗ , we
have |∑ j∈Λ∗

j ̸=i
K (i , j )−κ| ≤ ϵ and thus, since |Λ∗ \Λ−∗ | ≤ ℓ|∂inΛ|,

|HΛ;K (η∗)− (− 1
2κρ|Λ|

)| ≤ ϵ|Λ|+O(|∂inΛ|) .

We conclude that lim
Λ↑Zd |HΛ;K (η∗)− (− 1

2κρ|Λ|
)| / |Λ| ≤ ϵ. Since ϵ is arbitrary, the claim follows.

Exercise 4.4: The proof is similar to the one for the free energy: if Λ1 and Λ2 are two adjacent paral-
lelepipeds, ignoring the interactions between pairs composed of one particle inΛ1 and one inΛ2 gives

ΘΛ1∪Λ2 ;β,µ ≥ΘΛ1 ;β,µΘΛ2 ;β,µ .

We conclude, as before, that the thermodynamic limit exists along any increasing sequence of paral-
lelepipeds.

Exercise 4.5: Let us denote by η1 (resp. η0) the configuration in which η j = m j for each j ̸= i and ηi = 1
(resp. ηi = 0). The difference

{HΛ;K (η1)−µNΛ(η1)}− {HΛ;K (η0)−µNΛ(η0)} =−
∑

j∈Λ, j ̸=i
K (i , j )m j −µ

belongs to the interval (−κ−µ,−µ). Therefore, νΛ;β,µ
(
ηi = 1 |η j = m j ,∀ j ∈Λ\{i }

)
belongs to the interval(

1/(1+e−βµ),1/(1+e−β(κ+µ))
)
.
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Exercise 4.6: Since

1 ≤ΘΛ;β,µ ≤
|Λ|∑

N=0

(
|Λ|
N

)
eβ( κ2 +µ)N = (

1+eβ( κ2 +µ))|Λ| ,

we have 0 ≤ pβ(µ) ≤β−1 log(1+eβ( κ2 +µ)). To bound ΘΛ;β,µ from below, we keep only the configuration

in which ηi = 1 for each i ∈ Λ. This leads to pβ(µ) ≥ κ
2 +µ. The first two claims follow. The last two

claims about ρβ follow from the convexity of pβ.

Exercise 4.7: As we did earlier, let ϵ> 0 and take ℓ such that
∑

j ̸∈B(ℓ) K (i , j ) ≤ ϵ . Then

∑

i∈Λ′ :
i+B(ℓ)⊂Λ′

∑
j∈Λ′′

K (i , j ) ≤ ϵ|Λ′|

and, since ∑

i∈Λ′ :
i+B(ℓ)̸⊂Λ′

∑
j∈Λ′′

K (i , j ) ≤ κℓ|∂inΛ′| ,

the conclusion follows easily.

Exercise 4.9: Consider the gas branch: ρ < ρg . By the strict convexity of the pressure and the equiva-
lence of ensembles, there exists a unique µ(ρ) such that

fβ(ρ) =µ(ρ)ρ−pβ(µ(ρ)) .

Since ρ < ρg , we have µ(ρ) < µ∗ and µ(ρ) is solution of ρ = ∂pβ
∂µ

. Then, we use (i) the analyticity of the

pressure, which implies in particular that its first and second derivatives exist, outside µ∗, (ii) the fact,

proved in Theorem 4.12, that
∂2pΛ;β

∂µ2 ≥ βc2 > 0, which implies that
∂2pβ
∂µ2 > 0 whenever it exists, (iii) the

implicit function theorem (Section B.28), to conclude that µ(·) is also analytic in a neighborhood of ρ.
Since the composition of analytic maps is also analytic, this shows that fβ(·) is analytic in a neighbor-
hood of ρ.

Exercise 4.13: We only consider the case d = 1; the general case can be treated in the same way. Let us
identify each Λ(α) ⊂Z with the interval J (α) = {

x ∈ R : dist(x,Λ(α)) ≤ 1
2

}
, whose length equals |J (α)| = ℓ,

and let J (α)
γ

def= {
γx : x ∈ J (α)}. We have (up to terms that vanish in the van der Waals limit)

∑
α′>1

|J (α′)
γ | inf

x∈J (α′)
γ

ϕ(x) ≤ |Λ(1)|
∑
α′>1

K γ(1,α′) ≤ |Λ(1)|
∑
α′>1

K γ(1,α′) ≤
∑
α′>1

|J (α′)
γ | sup

x∈J (α′)
γ

ϕ(x) . (C.4)

The conclusion follows, since the first and last sums of this last display are Darboux sums that converge

to
∫
ϕ(x)dx as |J (α′)

γ | = γℓ ↓ 0.

Exercise 4.14: Let N = ⌈ρ|Λ|⌉. Since N (N ; M) counts the number of ways N identical balls can be dis-
tributed in M boxes, with at most |Λ(1)| balls per box, this number is obviously smaller than the number
of ways of putting N identical balls in M boxes, without restrictions on the number of balls per box. The
latter equals (

N +M −1

M −1

)
.

Since

M = |Λ|
|Λ(1)|

def= δΛ,ℓN ,

and lim
Λ⇑Zd δΛ,ℓ = 1

ρ|Λ(1)|
def= δℓ, Stirling’s formula gives

lim
ℓ→∞

lim
N→∞

1

N
log

(
N +M −1

M −1

)
= lim
ℓ→∞

{
(1+δℓ) log(1+δℓ)+δℓ logδℓ

}= 0.

Exercise 4.15: Let ϵ> 0 and n be large enough to ensure that f (x)− ϵ≤ fn (x) ≤ f (x)+ ϵ for all x ∈ [a,b].
Since CE g ≤ CEh whenever g ≤ h, this implies CE f (x)−ϵ≤ CE fn (x) ≤ CE f (x)+ϵ for all x ∈ [a,b], which
gives the result.
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Exercise 4.16: Let an
def= e−β2dn(d−1)/d

. For all compact K ⊂ H+,

sup
h∈K

∣∣∣
∑

n≥1
an e−hn −

N∑
n=1

an e−hn
∣∣∣≤ sup

h∈K

∑
n>N

an e−Rehn ≤
∑

n>N
an e−x0n ,

where x0
def= inf{Reh : h ∈ K } > 0, and this last series goes to zero when N →∞. This implies that the

series defining ψβ converges uniformly on compacts. Since h 7→ e−hn is analytic on H+, Theorem B.27

implies that ψβ is analytic on H+. Moreover, it can be differentiated term by term an arbitrary number
of times, yielding, when h ∈R>0,

∣∣∣lim
h↓0

dkψβ

dhk

∣∣∣=
∣∣∣(−1)k lim

h↓0

∑
n≥1

nk an e−hn
∣∣∣=

∑
n≥1

nk an .

A lower bound on the sum is obtained by keeping only its largest term. Notice that x 7→ xk e−2dβx(d−1)/d

is maximal at

x∗ = x∗(k,β,d)
def=

( k

2(d −1)β

)d/(d−1)
.

Keeping the term n∗
def= ⌊x∗⌋, reorganizing the terms and using Stirling’s formula, we get

∑
n≥1

nk an ≥ nk∗an∗ ≥C k−k !d/(d−1) ,

for some C− =C−(β,d) > 0. The reader may check that an upper bound of the same kind holds, with a
constant C+ <∞.

Solutions of Chapter 5
Exercise 5.1: In (5.9), just distinguish the case k = 1 from k ≥ 2.

Exercise 5.2: We proceed by induction. The case n = 1 is trivial. Now if the claim holds for n, it can be
shown to hold for n +1 too, by writing

(n+1∏
k=1

(1+αk )
)
−1 = (1+αn+1)

( n∏
k=1

(1+αk )−1
)
+αn+1 .

Exercise 5.5: When using more general boundary conditions, the same sets Si can be used, but the sur-
face term e−2β|∂e Si | in their weights might have to be modified if Si ∩∂inΛ ̸=∅. The condition (5.26) can
nevertheless be seen to hold since the surface term was ignored in our analysis. Then, the contributions
to logΞLF

Λ;β,h coming from clusters containing sets Si that intersect ∂inΛ is a surface contribution that

vanishes in the thermodynamic limit, yielding the same expression for the pressure.

Exercise 5.6: First,

φ(φ−1(z)) =
∑

n≥1
ãn

( ∑
k≥1

ck zk
)n =

∑
n≥1

ãn
∑

k1 ,...,kn≥1

n∏
i=1

cki
zki =

∑
n≥1

ãn
∑

m≥n
zm ∑

k1 ,...,kn≥1
k1+···+kn=m

n∏
i=1

cki

=
∑

m≥1

{ m∑
n=1

ãn
∑

k1 ,...,kn≥1
k1+···+kn=m

n∏
i=1

cki

}
zm .

However, since φ(φ−1(z)) = z by definition, we conclude that the coefficient of z in the last sum, which
is ã1c1, must be equal to 1, while the coefficient of zm , m ≥ 2 must vanish. The claim follows.

Exercise 5.7: The procedure is identical to that used in the proof of Lemma 5.10. The expansion, up to
the second nontrivial order, is given by

ψβ(0)−d log(coshβ)− log2 = 1
2 d(d −1)(tanhβ)4 + 1

3 d(d −1)(8d −13)(tanhβ)6 +O(tanhβ)8 . (C.5)

These two terms correspond, respectively, to sets of 4 and 6 edges. In the terminology used in the proof
of Lemma 5.10, one has: A = 4,B = 1,C = 1 for the first term and A = 6,B = 1,C = 1 for the second.
Therefore, the only thing left to do in order to derive (C.5) is to determine the number of such sets
containing the origin, which is a purely combinatorial task left to the reader.
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Exercise 5.8: First, the high-temperature representation (5.38) needs to be adapted to the presence of a
magnetic field. Indeed, (3.44) must be replaced by

∑
ωi =±1

ω
I (i ,E)
i ehωi =

{
2cosh(h) if I (i ,E) is even,

2sinh(h) if I (i ,E) is odd.

Then, the class of sets E that contribute to the partition function is larger (the incidence numbers I (i ,E)
are allowed to be odd), giving

Z∅
Λ;β,0

= (2coshh)|Λ|(coshβ)|EΛ|
∑

E⊂EΛ

(tanhβ)|E |(tanhh)|∂E | ,

where ∂E
def= {

i ∈ Zd : I (i ,E) is odd
}
. Notice that | tanhh| ≤ 1 when |h| is small enough. Then, the

weights of the components are bounded by the same weight as the one used above, (tanhβ)|E |, and the
rest of the analysis is essentially the same (keeping in mind that the class of objects is larger).

Exercise 5.9: It is convenient to use the notion of interior of a contour depicted in Figure 5.2. Then, given
a collection Γ′ = {γ1, . . . ,γn } ⊂ ΓΛ of pairwise disjoint contours inΛ, consider the configuration

ωi = (−1)#
{
γ∈Γ′ : i∈Intγ

}
.

Since Λc ∩⋃
γ∈Γ′ Intγ = ∅ when Λ is c-connected, it follows that ω ∈ Ω+

Λ
. It is also easy to verify that

Γ′(ω) = Γ′. This shows that the collection is admissible.
WhenΛ is not c-connected, this implication is not true anymore. For example, consider the setΛ=

B(2n) \B(n). Because of the + boundary condition outside B(2n) and inside B(n), in any configuration
ω ∈Ω+

Λ
, the number of contours γ ∈ Γ′(ω) such that B(n) ⊂ Intγ has to be even. Observe that the latter is

a global constraint on the family of contours.

Exercise 5.10: See Exercise 3.20.

Exercise 5.11: As was done earlier, one can write for example
∑

X∼A:
X⊂Λ

ΨA
β (X ) =

∑
X∼A

ΨA
β (X )−

∑
X∼A:
X ̸⊂Λ

ΨA
β (X ) .

The clusters that satisfy at the same time X ∼ A and X ̸⊂ Λ have a support of size at least d(A,Λc). As
before, one can show that their contribution vanishes whenΛ ↑Zd .

Solutions of Chapter 6

Exercise 6.2: Clearly, the family of subsets Λ⋐ Zd is at most countable. Since each C (Λ) is finite and
since a countable union of finite sets is countable, CS is countable. To show that CS is an algebra,
observe that, whenever A ∈ CS , there exists some Λ⋐ S and some B ∈ΩΛ such that A = Π−1

Λ
(B). But,

since Ac =Π−1
Λ

(Bc), we also have Ac ∈CS . Moreover, if A, A′ ∈CS , of the form A =Π−1
Λ

(B), A′ =Π−1
Λ′ (B ′),

then one can find some Λ′′ ⋐ S containing Λ and Λ′ (for example Λ′′ =Λ∪Λ′), use the hint to express
A =Π−1

Λ′′ (B1), A′ =Π−1
Λ′′ (B2), and write A∪ A′ =Π−1

Λ′′ (B1 ∪B2). This implies A∪ A′ ∈CS .

Exercise 6.4: For example, consider ∆= {0,1}× {0} and Λ= {0,1}2. It then immediately follows from the
high-temperature representation that

〈σ(0,0)σ(1,0)〉∅∆ = tanhβ ,

while
〈σ(0,0)σ(1,0)〉∅Λ = (tanhβ+ tanh3β)/(1+ tanh4β) .

Since these two expressions do not coincide when β> 0, it follows that µ∅
Λ
◦ (ΠΛ

∆
)−1 ̸=µ∅

∆
.

Exercise 6.5: By definition,

πΛπ∆(A |η) =
∑

ωΛ∈ΩΛ
πΛ(ωΛ |η)π∆(A |ωΛηΛc ) ,

which only depends on ηΛc . This also immediately implies that πΛπ∆ is proper.
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Exercise 6.6: If f = 1A ,

µπΛ(1A ) =
∫
πΛ(A |ω)µ(dω) =

∫
πΛ1A (ω)µ(dω) =µ(πΛ1A ) .

For the general case, just approximate f by a sequence of simple functions of the form
∑

i ai 1Ai
.

Exercise 6.7: The proof of the first claim is left to the reader. For the second, observe that, for any A ∈F ,

ρπΛ(A) =
∫
πΛ(A |ω)ρ(dω) =

∫
1A (τΛωΛc )ρΛ(dτΛ)ρ(dωΛc ) = ρ(A) ,

so that ρ ∈ G (π). To prove uniqueness, let µ ∈ G (π) and consider an arbitrary cylinder C =Π−1
Λ

(E) with
baseΛ. Then, one must have

µ(C ) =µπΛ(C ) =
∫
πΛ(Π−1

Λ (E) |ω)µ(dω) =
∫
ρΛ(E)µ(dω) = ρΛ(E) = ρ(C ) ,

and therefore µ must coincide with ρ on all cylinders, which implies that µ= ρ.

Exercise 6.8: To show absolute summability, it suffices to prove that
∑

i∈Zd \{0}

J0i =
∑

r≥1
|∂inB(r )|r−α

is bounded. Since |∂inB(r )| is of order r d−1, the potential is absolutely summable if and only if α> d .

Exercise 6.9: Clearly, d(ω,η) ≥ 0 with equality if and only ifω= η. Since 1{ωi ̸=ηi } ≤ 1{ωi ̸=τi }+1{τi ̸=ηi } for

all i ∈Zd , we have d(ω,η) ≤ d(ω,τ)+d(τ,η), so d(·, ·) is a distance.

Notice that if ωB(r ) = ηB(r ), then d(ω,η) ≤ 2d
∑

k>r (2k +1)d−12−k def= ϵ(r ), with ϵ(r ) → 0 as r →∞.

Suppose that ω(n) → ω∗. In this case, for any r ≥ 1, there exists n0 such that ω(n)
B(r )

= ω∗
B(r )

for all

n ≥ n0. This implies that d(ω(n),ω∗) → 0 as n →∞.
Assume now that d(ω(n),ω∗) → 0. In that case, for any k ≥ 1, one can find n1 such that d(ω(n),ω∗) <

2−k for all n ≥ n1. But this implies that 1
{ω(n)

i ̸=ω∗
i }

= 0 each time ∥i∥∞ ≤ k. This implies that ω(n)
B(k)

=

ω∗
B(k)

for all n ≥ n1. Therefore, ω(n) →ω∗.

Exercise 6.10: Let C =Π−1
Λ

(A) be a cylinder. If ω ∈C , then any configuration ω′ which coincides with ω
on Λc is also in C , which implies that C is open. Now let G ⊂Ω be open. For each ω ∈G , one can find a
cylinder Cω such that G ⊃Cω ∋ω. Therefore, G =⋃

ω∈G Cω. But, since C is countable (Exercise 6.2), that
union is countable. This shows that G ∈F .

Exercise 6.11: Assume f : Ω→ R is continuous but not uniformly continuous. There exist some ϵ > 0
and two sequences (ω(n))n≥1, (η(n))n≥1 ⊂ Ω such that d(ω(n),η(n)) → 0 and | f (ω(n))− f (η(n))| ≥ ϵ for
all n. By Proposition 6.20, there exists a subsequence (ω(nk ))k≥1 and some ω∗ such that ω(nk ) → ω∗.
This implies also d(η(nk ),ω∗) ≤ d(η(nk ),ω(nk ))+d(ω(nk ),ω∗) → 0. But, since ϵ ≤ | f (ω(nk ))− f (ω∗)| +
| f (η(nk ))− f (ω∗)|, at least one of the sequences (| f (ω(nk ))− f (ω∗)|)k≥1, (| f (η(nk ))− f (ω∗)|)k≥1 cannot
converge to zero. This implies that f is not continuous at ω∗, a contradiction. The other two facts are
proved in a similar way.

Exercise 6.12: 1⇒2 is immediate since local functions can be expressed as finite linear combinations of
indicators of cylinders.
2⇒3: Let f ∈C (Ω). Fix ϵ> 0, and let g be a local function such that ∥g − f ∥∞ ≤ ϵ. Then |µn ( f )−µ( f )| ≤
|µn (g )−µ(g )|+2ϵ, and thus limsupn |µn ( f )−µ( f )| ≤ 2ϵ. This implies that µn ( f ) →µ( f ).
3⇒1 is immediate, since for each C ∈C , f = 1C is continuous.

1⇒4: Let mn (k)
def= maxC∈C (B(k)) |µn (C )−µ(C )|. Notice that mn (k) ≤ 1. Fix ϵ> 0. Let k0

def= ϵ−1, Clearly,
as n →∞,

max
1≤k≤k0

mn (k) → 0.

On the other hand, if k > k0, then mn (k)
k ≤ 1

k < ϵ. Therefore,

limsup
n→∞

ρ(µn ,µ) = limsup
n→∞

sup
k≥1

mn (k)

k
≤ ϵ .

4⇒1: Let C ∈ C and fix some ϵ > 0. Let k be large enough so that C ∈ C (B(k)), and let n0 be such that
ρ(µn ,µ) ≤ ϵ

k for all n ≥ n0. For those values of n, we also have

|µn (C )−µ(C )| ≤ max
C ′∈C (B(k))

|µn (C ′)−µ(C ′)| ≤ ϵ .
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Exercise 6.13: Writing πΛ f (ω) =∑
τΛ f (τΛωΛc )πΛ(τΛ |ω) makes the statement obvious.

Exercise 6.14: The construction of µ∅
β,h

, using Exercise 3.16 and Theorem 6.5, is straightforward. We

check that µ∅
β,h

∈G (β,h). Let f be some local function and take ∆⋐Zd sufficiently large to contain the

support of f . Lemma 6.7 (whose proof extends verbatim to the case of free boundary condition) implies
that, for anyΛ⋐Zd containing∆, 〈 f 〉∅

Λ;β,h
= 〈〈 f 〉·

∆;β,h〉
∅
Λ;β,h

. Again, sinceω 7→ 〈 f 〉ω
∆;β,h is local, one can

letΛ ↑Zd , and obtain 〈 f 〉∅
β,h

= 〈〈 f 〉·
∆;β,h〉

∅
β,h

, from which the claim follows.

Exercise 6.15: Assume there exists µ ∈G (π). Notice that

µ(N+ = 0) =µ({η−}) =µπΛ({η−}) =
∫
πΛ({η−} |ω)µ(dω) = 0.

Then, µ(N+ = 1) =∑
i∈Zd µ({η−,i }). However, for allΛ⋐Zd containing i ,

µ({η−,i }) =µπΛ({η−,i }) ≤ 1

|Λ| ,

so that µ({η−,i }) = 0. We conclude that µ(N+ = 1) = 0. Finally, µ(N+ ≥ 2) ≤ ∑
i ̸= j µ({ωi =ω j = +1}) = 0,

since µ({ωi = ω j = +1}) = µπ{i , j }({ωi = ω j = +1}) = 0 for all i ̸= j . All this implies that µ(Ω) = 0, which
contradicts the assumption that µ is a probability measure.

Exercise 6.16: For example,

f (ω) = limsup
n→∞

1

|B(n)|
∑

i∈B(n)
ωi

has∆( f ) = 0, but it is not continuous (see Exercise 6.23). In dimension d = 2, take ϵ> 0 and consider, for
example,

g (ω) =
∑

k≥1

1

k1+ϵ
(

max
j∈B(k)

ω j − min
j∈B(k)

ω j
)

.

Then g ∈C (Ω), but ∆(g ) =∞.

Exercise 6.17: By the FKG inequality, for any ω ∈Ω,

1 ≥µω{i };β,h (σi = 1) ≥µ−{i };β,h (σi = 1) = {
1+e−2h+4dβ}−1 .

Therefore, ∑
ωi =±1

|πi (ωi |ω)−πi (ωi |ω′)| ≤ 2

1+e2h−4dβ
.

Since the expression in the left-hand side is actually equal to 0 when ω j =ω′
j for all j ∼ i , we obtain

c(π) ≤ 4d

1+e2h−4dβ
,

which is indeed smaller than 1 as soon as h > 2dβ+ 1
2 log(4d −1).

Exercise 6.19: Clearly, ci j (π) = 0 whenever j ̸∼ i . Let j ∼ i and consider two configurations ω,η such
that ωk = ηk for all k ̸= j . When s ∈ {0, . . . , q −1} \ {ω j ,η j }, πi (σi = s |η) = πi (σi = s |ω). Let us therefore
assume that ω j = s ̸= η j . In this case,

πi (σi = s |η)−πi (σi = s |ω) = e−β#
{
k∼i :ηk=s

}

Z
η
{i }

{
1−

Z
η
{i }

Zω{i }
e−β

}
.

Now, observe that
Z
η
{i }

Zω{i }
e−β =

〈
e
−β(δσi ,η j −δσi ,ω j +1)〉ω

{i }
∈ [e−2β,1] .

Therefore, |πi (σi = s |η)−πi (σi = s |ω)| ≤ 1/Z
η
{i } ≤ 1/(q −2d). This yields ci j (π) ≤ 2/(q −2d) and thus

c(π) ≤ 4d/(q −2d), which is indeed smaller than 1 as soon as q > 6d .

Exercise 6.20: We have seen in Exercise 6.8 that α > d is necessary for the potential to be absolutely
summable. Then,

b = sup
i∈Zd

∑
B∋i

(|B |−1)∥ΦB ∥∞ =
∑

k≥1

1

kα
#
{

j ∈Zd : j ̸= 0, ∥ j∥∞ = k
}≤ 2d

∑
k≥1

1

k1+(α−d)
def= b0(α,d) .

For all α> d , we have uniqueness as soon as β<β0
def= 1

2b0
. Observe that β0 ↓ 0 when α ↓ d .
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Exercise 6.21: Using the invariance of πΛ in the second equality,

(θ jµ)πΛ(A) =
∫
πΛ(A |θ jω)µ(dω) =

∫
π
θ−1

j Λ
(θ−1

j A |ω)µ(dω) =µπ
θ−1

j Λ
(θ−1

j A) =µ(θ−1
j A) = θ jµ(A) .

Exercise 6.22: Let µ ∈ G (π) (which is not empty by Theorem 6.26) By Theorem 6.24, we can consider a
subsequence along which µn converges: µnk ⇒ µ∗. To see that µ∗ is translation invariant, θiµ∗ = µ∗
for all i ∈Zd , it suffices to observe that, for any local function f ,

∣∣∣
∑

j∈B(nk )
θ j+iµ( f )−

∑
j∈B(nk )

θ jµ( f )
∣∣∣≤C∥ f ∥∞∥i∥d

∞ |∂exB(nk )| .

Then, µ ∈G (π) and Exercise 6.21 imply that µnk ∈G (π) for all k. Since G (π) is closed (Lemma 6.27), this
implies that µ∗ ∈G (π).

Exercise 6.23: Let ω ∈ Ω. Since f is non-constant, there exists ω′ such that f (ω) ̸= f (ω′). Let ω(n) =
ω
B(n)

ω′
B(n)c . Then ω(n) →ω. However, f (ω(n)) = f (ω′) for all n and therefore f (ω(n)) ̸→ f (ω).

Exercise 6.24: Let g be FΛc -measurable. We first assume that g is a finite linear combination
∑

j α j 1A j
,

with A j ∈FΛc . On the one hand,

(gν)πΛ(A) =
∫
πΛ(A |ω)g (ω)ν(dω) =

∑
j
α j

∫

A j

πΛ(A |ω)ν(dω) .

On the other hand,

g (νπΛ)(A) =
∫

A
g (ω′)νπΛ(dω′) =

∑
j
α jνπΛ(A∩ A j ) =

∑
j
α j

∫
πΛ(A∩ A j |ω)ν(dω) .

By Lemma 6.13, we have πΛ(A ∩ A j |ω) = πΛ(A |ω)1A j
(ω). This implies that (gν)πΛ = g (νπΛ). In the

general case, it suffices to consider a sequence of approximations gn (each being a finite linear combi-
nation of the above type) with ∥gn − g∥∞ → 0, and use twice dominated convergence to compute

(gν)πΛ(A) = lim
n→∞(gnν)πΛ(A) = lim

n→∞gn (νπΛ)(A) = g (νπΛ)(A) .

The reader can find counterexamples that show that (6.63) does not hold in general when g is not FΛc -
measurable.

Exercise 6.25: Since 1A = (1+σ0)/2 and 1Bi
= (1+σi )/2,µ(A∩Bi )−µ(A)µ(Bi ) = 1

4

(
µ(σ0σi )−µ(σ0)µ(σi )

)
.

By symmetry, µ+
β,0(σ0σi ) = µ−

β,0(σ0σi ) and µ(σ0) = (2λ− 1)µ+
β,0(σ0), µ(σi ) = (2λ− 1)µ+

β,0(σi ). By the

FKG inequality, µ+
β,0(σ0σi ) ≥ µ+

β,0(σ0)µ+
β,0(σi ). We therefore conclude that µ(σ0σi ) −µ(σ0)µ(σi ) ≥

(
1− (2λ−1)2)(

µ+
β,0(σ0)

)2, which is positive for all β>βc(2) and all λ ∈ (0,1).

Exercise 6.26: Extremality of µ+
β,h implies that, for any ϵ > 0, there exists r such that 0 ≤ 〈σi ;σ j 〉+β,h ≤ ϵ

for all j ̸∈ i +B(r ). Therefore,

Varµ+
β,h

(mB(n)) = |B(n)|−2 ∑
i , j∈B(n)

〈σi ;σ j 〉+β,h

≤ |B(n)|−2 ∑
i∈B(n)

{ ∑
j∈i+B(r )

〈σi ;σ j 〉+β,h︸ ︷︷ ︸
≤1

+
∑

j∈B(n)
j ̸∈i+B(r )

〈σi ;σ j 〉+β,h︸ ︷︷ ︸
≤ϵ

}
≤ |B(r )|

|B(n)| +ϵ .

Letting n → ∞ and then ϵ→ 0 shows that limn→∞ Varµ+
β,h

(mB(n)) = 0. The conclusion follows from

Chebyshev’s inequality (B.18).

Exercise 6.27: On the one hand, if ν is trivial on T∞, then
∫

A
ν(B)ν(dω) = ν(B)ν(A) = ν(A∩B) ,

for all B ∈F and all A ∈T∞, since ν(A) is either 1 or 0. This shows that ν(B) = ν(B |T∞) ν-almost surely.
On the other hand, if the latter condition holds, then, for any A ∈T∞,

ν(A) =
∫

A
1A dν=

∫

A
ν(A |T∞)dν=

∫

A
ν(A)dν= ν(A)2 ,

which implies that ν(A) ∈ {0,1}.
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Exercise 6.28: A simple computation yields

WVn (µVn ) = |Vn |
{

dβm2 +hm − 1+m

2
log

1+m

2
− 1−m

2
log

1−m

2

}
,

where we have introduced m
def= 〈σi 〉ρi . It is now a matter of straightforward calculus to show that the

unique maximum is attained when m satisfies m = tanh(2dβm +h).

Exercise 6.29: By (6.93), we have, for any n ≥ 0,

limsup
k→∞

s(µk ) = limsup
k→∞

inf
Λ∈R

SΛ(µk )

|Λ| ≤ limsup
k→∞

SB(n)(µk )

|B(n)| =
SB(n)(µ)

|B(n)| .

Letting n →∞ yields the desired result.

Exercise 6.32: We show that µπΦ
Λ
=µ for allΛ⋐Zd . For each local function f , we write

µπΦΛ( f ) = {
µπΦΛ( f )−µkπΦΛ( f )

}+{
µkπΦΛ( f )−µkπΦ

k

Λ ( f )
}+µkπΦ

k

Λ ( f ) .

Since Φ has finite range, ω 7→ πΦ
Λ

( f |ω) is local. Therefore, µk ⇒ µ implies that µkπΦ
Λ

( f ) → µπΦ
Λ

( f ) as
k →∞. For the second term, proceeding as in (6.32) gives

|µkπΦΛ( f )−µkπΦ
k

Λ ( f )| ≤
∫
|πΦΛ( f |ω)−πΦk

Λ ( f |ω)|µk (dω) ≤ 2|Λ|∥ f ∥∞
∑

B∋0
∥ΦB −Φk

B ∥∞ ,

which tends to zero when k →∞. Finally, since µk ∈G (Φk ), µkπΦ
k

Λ
( f ) =µk ( f ), and µk ( f ) →µ( f ).

Exercise 6.33: Assume that there is a unique Gibbs measure at (β0,h0). Observe that, setting g = 1
2d

∑
i∼0σ0σi

and λ=β−β0, we have

ψ(λ)
def= lim

Λ⇑Zd

1

|Λ(g )| log
〈

exp
{
λ

∑
j∈Λ(g )

g ◦θ j

}〉+
Λ;β0 ,h0

=ψIsing(β,h0)−ψIsing(β0,h0) .

We deduce that

∂ψ

∂λ−
∣∣∣
λ=0

= ∂ψIsing(β,h0)

∂β−
∣∣∣
β=β0

,
∂ψ

∂λ+
∣∣∣
λ=0

= ∂ψIsing(β,h0)

∂β+
∣∣∣
β=β0

.

Therefore, if ψIsing(β,h0) was not differentiable at β0, then the same would be true of ψ and Proposi-
tion 6.91 would imply the existence of multiple Gibbs measures at (β0,h0), which would contradict our
assumption.

Solutions of Chapter 7
Exercise 7.2: It suffices to show that η enjoys the following property. For each k ≥ 1, η is a minimizer
(possibly not unique) of HB(k);Φ0 among all configurations of Ω

η

B(k)
. To prove this, observe that the

configuration η possesses a unique Peierls contour γ and check that the length of γ∩{
x ∈R2 : ∥x∥∞ ≤ k

}

cannot be decreased by flipping spins in B(k −1).

Exercise 7.3: The following construction relies on a diagonalization argument, as already done earlier in
the book. Fix some arbitrary configuration η ∈Ω. For each n ≥ 0, let ω(n) be a configuration coinciding
with η outside B(n) and minimizing HB(n);Φ. Order the vertices of Zd : i1, i2, . . .. Let (n1,k )k≥1 be a

sequence such that ω
(n1,k )
i1

converges as k →∞. Let then (n2,k )k≥2 be a subsequence of (n1,k )k≥1 such

that ω
(n2,k )
i2

converges. We proceed in the same way for all vertices of Zd : for each m ≥ 1, the sequences

(ω
(nm,k )
im

)k≥1 converges as k →∞. We claim that the configuration ω defined by

ωi
def= lim

m→∞ω
(nm,m )
i , ∀i ∈Zd ,

is a ground state. Indeed, letω′ ∞=ω and choose n so large thatω andω′ coincide outside B(n). Let N be
so large that ω coincides with ω(N ) on B(n + r (Φ)). Then, by our choice of ω(N ),

HΦ(ω′ |ω) =
∑

B∩B(n )̸=∅

{
ΦB (ω′)−ΦB (ω)

}

=
∑

B∩B(n )̸=∅

{
ΦB (ω′

B(N )ηB(N )c )−ΦB (ω(N ))
}=HΦ(ω′

B(N )ηB(N )c |ω(N )) ≥ 0.
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Exercise 7.4: 1. Consider the pressure constructed using a boundary condition η ∈ g per(Φ). On the one

hand, Z
η
Φ

(Λ) ≥ e−βHΛ;Φ(η), which gives ψ(Φ) ≥−eΦ(η). On the other hand, for any ω ∈Ωη
Λ

,

HΛ;Φ(ω) =HΛ;Φ(η)+{
HΛ;Φ(ω)−HΛ;Φ(η)

}=HΛ;Φ(η)+HΦ(ω |η) ≥HΛ;Φ(η) .

This gives

Z
η
Φ

(Λ) ≤ e−βHΛ;Φ(η)|Ωη
Λ
| .

Since |Ωη
Λ
| = |Ω0||Λ|, this yields ψ(Φ) ≤−eΦ(η)+β−1 log |Ω0|.

2. Observe that a configurationω ∈Ωη
Λ

is completely characterized by its restriction to B(ω). Therefore,

Z
η
Φ

(Λ) =
∑

ω∈Ωη
Λ

e−βHΛ;Φ(ω) ≤ e−βHΛ;Φ(η) ∑

ω∈Ωη
Λ

e−βρ|B(ω)| = e−βHΛ;Φ(η) ∑
B⊂Λ

∑

ω∈Ωη
Λ

:
B(ω)∩Λ=B

e−βρ|B |

≤ e−βHΛ;Φ(η)
|Λ|∑

n=0

(
|Λ|
n

)
(|Ω0|e−βρ

)n = e−βHΛ;Φ(η)(1+|Ω0|e−βρ
)|Λ| .

This gives ψ(Φ) ≤−eΦ+β−1 log
(
1+|Ω0|e−βρ

)≤−eΦ+β−1|Ω0|e−βρ .

Exercise 7.5: It is convenient to work with the following equivalent potential:

Φ̃B (ω)
def=

{
ωiω j − h

2d (ωi +ω j ) if B = {i , j }, i ∼ j ,

0 otherwise.

We are going to determine gm (Φ). For any pair i ∼ j ,

φ{i , j } = min
ω
Φ̃{i , j }(ω) =





1− (h/d) if h ≥+2d ,

−1 if |h| ≤ 2d ,

1+ (h/d) if h ≤−2d .

(The three cases correspond to ωi =ω j = 1, ωi =ω j =−1 and ωi ̸=ω j respectively.) The cases h =±2d
are discussed below; for all other cases:

gm (Φ) =





{η+} if h >+2d ,

{η±,η∓} if |h| < 2d ,

{η−} if h <−2d ,

where η±,η∓ are the two chessboard configurations defined by η±i
def= (−1)

∑d
k=1

ik and η∓ def= −η±. When
h =±2d , gm (Φ) contains infinitely many ground states. For example, if h =+2d ,

gm (Φ) = {
ω ∈Ω : ∄i , j ∈Zd , i ∼ j , such that ωi =ω j =−1

}
.

Exercise 7.7: For all {i , j } ∈T , ωiω j is minimal if and only if ωi ̸=ω j , and this cannot be realized simul-
taneously for all three pairs of spins living at the vertices of any given triangle. This implies thatΦ is not
an m-potential.

For the triangle T = {(0,0), (0,1), (1,1)}, let

Φ̃T (ω) =ω(0,0)ω(0,1) +ω(0,1)ω(1,1) +ω(0,0)ω(1,1) .

Define Φ̃ similarly on all translates of T . Then Φ̃ is clearly equivalent to Φ, and can be easily seen to be
an m-potential; each Φ̃T being minimized if the configuration on T contains at least one spin of each
sign. This allows to construct infinitely many periodic ground states for Φ̃. For example, any configu-
ration obtained by alternating the spin values along every column necessarily belongs to gm (Φ̃). Since
this yields two possible configurations for each column, one can alternate them in order to construct
configurations on Z2 of arbitrarily large period.

Exercise 7.8: Clearly, the constant configurations η+ and η− are periodic ground states, and their energy
density equals eΦ =α. Then, any other periodic configuration will necessarily contain (infinitely many)
plaquettes whose energy is δ > α. By Lemma 7.13, this implies that g per(Φ) = {η+,η−}. Examples of
non-periodic ground states are obtained easily, by patching plaquettes with minimal energy.

To see that Peierls’ condition is not satisfied, consider a configuration ω
∞= η−, which coincides

everywhere with η− except on a triangular region of the following type, with L large:
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L

L

Notice that all points along the boundary of the triangle are incorrect, which implies that |B(ω)|
(and therefore |Γ(ω)|) grows linearly with L. Nevertheless, for each L, there are exactly three plaquettes
with a non-zero contribution to HΦ(ω |η), indicated at the three corners of the triangle. This means that
HΦ(ω |η) is bounded, uniformly in L: Peierls’ condition is not satisfied.

Exercise 7.9: Let

W i
B (ω)

def=
{|B(r∗)|−11

{ωB=ηi
B }

if B is a translate of B(r∗),

0 otherwise.

Suppose first that m ∈ I . In that case, setting λi = 0 for all i ∈ I and λ j = λ> 0 for all j ∈ {1, . . . ,m} \ I , we
obtain, for each k ∈ {1,2, . . . ,m},

e
Φ0+∑m−1

i=1 λi W i (ηk ) =
{
eΦ0 +λ if k ∈ {1, . . . ,m} \ I ,

eΦ0 if k ∈ I .

When m ̸∈ I , we proceed similarly by setting λi = 0 for all i ∈ {1, . . . ,m} \ I and λ j =λ< 0 for all j ∈ I .
The reader can check that these potentials do not create new ground states.

Exercise 7.10: By construction,

HΦ̂(ω̂ | η̂) =HΦ(ω |η) ≥ ρ|Γ(ω)| ≥ ρ|B(ω)| ,

where we used Peierls’ condition for Φ. Now, observe that if a vertex î of the renormalized lattice is not
#̂-correct, there must exist a vertex of the original lattice such that j ∈ î r∗+B(3r∗) and j is not #-correct.
Therefore, |B(ω̂)| ≥ |B(3r∗)|−1|B(ω)| ≥ 3−d |B(r∗)|−1|B(ω)|. Thus, since |Γ(ω̂)| ≤ 3d |B(ω̂)|,

ρ|B(ω)| ≥ ρ3−d |B(r∗)|−1|B(ω̂)| ≥ ρ3−2d |B(r∗)|−1|Γ(ω̂)| .
We conclude that Peierls’ condition holds for Φ̂with a constant ρ3−2d |B(r∗)|−1.

Exercise 7.11: Let i , j ∈ Ac
ℓ

and consider a path π = (i1 = i , i2, . . . , in−1, in = j ), with d∞(ik , ik+1) = 1. If

π exits Ac
ℓ

, let s1
def= min

{
k : ik ∈ Aℓ

}− 1 and s2
def= max

{
k : ik ∈ Aℓ

}+ 1. By construction, is1 , is2 ∈ γ.
Since γ is connected, there exists a path from is1 to is2 entirely contained inside γ. But this allows us to
deform π so that it is entirely contained in Ac

ℓ
.

Exercise 7.12: For ease of notation, we treat the case of a single contour; the same argument applies in
the general situation. Proceeding exactly as we did to arrive at (7.34), treating separately the numerator
and the denominator, we arrive at the following representation:

µ#
Λ;Φ

(
Γ′ ∋ γ′)=

∑
Γ∈A1

∏
γ∈Γw#(γ)

∑
Γ∈A0

∏
γ∈Γw#(γ)

=w#(γ′)
∑
Γ∈A2

∏
γ∈Γw#(γ)

∑
Γ∈A0

∏
γ∈Γw#(γ)

≤w#(γ′) ,
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where we have introduced the following families of contours:

A0
def= {Γ compatible} , A1

def= {
Γ ∈A0 : γ′ is an external contour of Γ

}
,

while A2 is the set of all Γ ∈A0 such that each γ ∈ Γ is compatible with γ′ and there does not exist γ ∈ Γ
such that γ′ ⊂ intγ.

Exercise 7.13: Notice that if R1,R2 are two parallelepipeds such that R1∪R2 is also a parallelepiped, then
Ξ(R1∪R2) ≥Ξ(R1)Ξ(R2). Namely, the union of two compatible families contributing toΞ(R1) andΞ(R2)
is always a family contributing to Ξ(R1 ∪R2). One can then use Lemma B.6.

Solutions of Chapter 8
Exercise 8.1: One could use a Gaussian integration formula, but we prefer to provide an argument that
also works for more general gradient models. We can assume that Λ is connected. Consider a spanning
tree 1 T of the graph (Λ,EΛ) and denote by T0 the tree obtained by adding to T one vertex i0 ∈ ∂exΛ

and an edge of E b
Λ

between i0 and one of the vertices of T ; we consider i0 to be the root of the tree
T0 = (V0,E0). Clearly,

HΛ;β,m (ω) ≥ β

4d

∑
{i , j }∈E0

(ωi −ω j )2 def= H̃T0 ;β(ω) .

Of course,

Z
η

Λ;β,m
≤

∫
e
−H̃T0;β(ωV0ηi0

) ∏
i∈Λ

dωi .

Let i ∈Λ be a leaf 2 of the tree T0. Then, denoting by j the unique neighbor of i in T0,
∫ ∞

−∞
e
− β

4d

(
ωi −ω j

)2

dωi =
∫ ∞

−∞
e−

β
4d x2

dx =
√

4πd/β .

We can thus integrate over each variable in Λ, removing one leaf at a time. The end result is the upper
bound

Z
η

Λ;β,m
≤ {

4πd/β
}|Λ|/2 .

Exercise 8.2: The problem arises from the fact that, when no spins are fixed on the boundary, all spins
inside Λ can be shifted by the same amount without changing the energy. This can already be seen in
the simple case whereΛ= {0,1} ⊂Z, with free boundary condition:

Z∅
Λ;β,0

=
∫ {∫

e−
β

4d (ω0−ω1)2
dω1

}
dω0 =

√
4dπ

β

∫
dω0 =+∞ .

Exercise 8.3: The first claim follows from the fact ϕi1 · · ·ϕi2n+1 is an odd function, so its integral with
respect to the density (8.10) (with aΛ = 0) vanishes.

Let us turn to the second claim. First, observe that one can assume that all vertices i1, . . . , i2n are
distinct; otherwise for each vertex j appearing r j > 1 times, introduce r j − 1 new random variables,
perfectly correlated with ϕ j .

The desired expectation can be obtained from the moment generating function by differentiation:

EΛ[ϕi1 . . .ϕi2n ] = ∂2n

∂ti1 · · ·∂ti2n

EΛ
[
e tΛ·ϕΛ ]∣∣∣

tΛ≡0
.

The identity (8.9) allows one to perform this computation in another way. First,

exp
{ 1

2 tΛ ·ΣΛtΛ
}=

∑
n≥0

1
n! 2−n{ ∑

j ,k∈Λ
ΣΛ( j ,k)t j tk

}n .

Therefore,

∂2n

∂ti1 · · ·∂ti2n

exp
{ 1

2 tΛ ·ΣΛtΛ
}∣∣∣

tΛ≡0
= 1

n!

∑
{ j1 ,k1},...,{ jn ,kn }⊂Λ⋃n

m=1{ jm ,km }={i1 ,...,i2n }

n∏
m=1

ΣΛ( jm ,km ) ,

where the factor 2−n was canceled by the factor 2n accounting for the possible interchange of jm and
km for each m = 1, . . . ,n. Now, we can rewrite the latter sum in terms of pairings as in the claim. Note
that, doing so, we lose the ordering of the n pairs { jm ,km }, so that we have to introduce an additional
factor of n!, canceling the factor 1/n!. The claim follows.

1A spanning tree of a graph G = (V ,E) is a connected subgraph of G which is a tree and contains all
vertices of G .

2A leaf of a tree if a vertex of degree 1 distinct from the root.
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Exercise 8.4: The procedure is very similar to the one used in the previous exercise. We write Ci j =
E(ϕiϕ j ). Then, using (8.11) and (8.12),

E
[
e tΛ·ϕΛ ]=

∑
n≥0

∑
(ri )i∈Λ⊂Z≥0 :∑

i ri =2n

E
[∏

i
ϕ

ri
i

] ∏
i

t
ri
i

=
∑

n≥0

∑
(ri )i∈Λ⊂Z≥0 :∑

i ri =2n

{∑
P

∏
{ℓ,ℓ′}∈P

Cℓℓ′
} ∏

i
t

ri
i

=
∑

n≥0

∑
(ri )i∈Λ⊂Z≥0 :∑

i ri =2n

1
n! 2−n

{ ∑
{ j1 ,k1},...,{ jn ,kn }⊂Λ∑n

m=1(1{ jm=i }+1{km=i })=ri ,∀i∈Λ

n∏
m=1

Cim jm

} ∏
i

t
ri
i

=
∑

n≥0

1
n! 2−n

{ ∑
{ j1 ,k1},...,{ jn ,kn }⊂Λ

n∏
m=1

Cim jm tim t jm

}

=
∑

n≥0

1
n! 2−n

{ ∑
i , j∈Λ

Ci j ti t j

}n = exp
{ ∑

i , j∈Λ
1
2 Ci j ti t j

}
.

Exercise 8.6: Let (ξi )i=−n−1,...,n be i.i.d. random variables with distribution ξi ∼ N (0,2). Let Ln
def=

ξ−n−1 + ·· · + ξ−1 and Rn
def= ξ0 + ·· · + ξn . The density of ϕ0 coincides with the conditional probability

density of Ln given that Ln +Rn = 0, which is equal to

fLn (x) fRn (−x)

fLn+Rn (0)
=

{ 1p
4π(n+1)

e
− 1

2
x2

2(n+1)
}2

1p
8π(n+1)

= 1p
2π(n+1)

e
− 1

2
x2

(n+1) ,

so that ϕ0 ∼N (0,n +1).

Exercise 8.7: Since ϕ is centered, ϕ̃ also is. Then, observe that

E0
Λ;0

[
eitΛ·ϕ̃Λ ]= E0

Λ;0

[
eit̃Λ·ϕΛ ]

,

where t̃i
def= ti for all i ̸= 0 and t̃0 =−∑

j∈Λ\{0} t j . From (8.8), we get

E0
Λ;0

[
eit̃Λ·ϕΛ ]= exp

{− 1
2

∑
i , j∈Λ

GΛ(i , j )t̃i t̃ j
}= exp

{− 1
2

∑
i , j∈Λ\{0}

G̃Λ(i , j )ti t j
}

,

with G̃Λ(i , j ) given in (8.34).

Exercise 8.10: When d = 1, (− 1
2d ∆+m2)u = 0 becomes

uk+1 = 2(1+m2)uk −uk−1 .

For any pair of initial values u0,u1 ∈R, we can then easily verify that uk , k ≥ 2, is of the form

uk = Azk++B zk− ,

where z± = 1+m2 ±
√

2m2 +m4 and A,B are functions of u0,u1. The conclusion follows, since z− =
1/z+.

Solutions of Chapter 9
Exercise 9.1: Since 〈Si ·S j 〉µ→ 0 uniformly as ∥ j − i∥2 →∞, we can find, for any ϵ> 0, a number R such
that 〈Si ·S j 〉µ ≤ ϵ for all i , j such that ∥ j − i∥2 > R. Consequently, for any i ∈B(n),

∑
j∈B(n)

〈Si ·S j 〉µ ≤ |B(R)|+ϵ|B(n)| .

It follows that

limsup
n→∞

〈∥mB(n)∥2
2 〉µ = limsup

n→∞
|B(n)|−2 ∑

i , j∈B(n)
〈Si ·S j 〉µ ≤ limsup

n→∞
|B(n)|−1 max

i∈B(n)

∑
j∈B(n)

〈Si ·S j 〉µ ≤ ϵ.

Since ϵ was arbitrary, the conclusion follows.
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Exercise 9.3: Simply take θSW
i = (

1− (∥i∥∞/n)
)
π.

Exercise 9.4: First, observe that

∑

{i , j }∈E b
B(n)

(
f (∥i∥∞)− f (∥ j∥∞)

)2 ≥
n−1∑
k=ℓ

kd−1(
f (k)− f (k +1)

)2 .

By the Cauchy–Schwarz inequality,

{n−1∑
k=ℓ

(
f (k)− f (k +1)

)}2 ≤
{n−1∑

k=ℓ
kd−1(

f (k)− f (k +1)
)2

}{n−1∑
k=ℓ

k−(d−1)
}

.

Therefore,

∑

{i , j }∈E b
B(n)

(
f (∥i∥∞)− f (∥ j∥∞)

)2 ≥
{n−1∑

k=ℓ

(
f (k)− f (k +1)

)}2{n−1∑
k=ℓ

k−(d−1)
}−1

≥ (
f (ℓ)− f (n)

)2
{ ∑

k≥ℓ
k−(d−1)

}−1 =
{ ∑

k≥ℓ
k−(d−1)

}−1
.

Exercise 9.5: Fix M ≥ 2 and partition (−π,π] into intervals I1, . . . , IM of length 2π/M . Write νr
def=

µ
η

B(n);β
(ϑ0 ∈ Ir ). Then, (9.9) implies that |νr −νs | ≤ c/Tn (d) for all 1 ≤ r, s ≤ M and thus |νr − 1

M | =
1

M |∑M
s=1(νr −νs )| ≤ c/Tn (d). The first claim follows. The second claim is an immediate consequence of

the first one.

Exercise 9.7: Writing Si = (cosϑi , sinϑi ) gives Si ·S j = cos(ϑi −ϑ j ), so the partition function with free
boundary condition can be written as

Z∅
B(n);β

=
∫ π

−π
dθ−n · · ·

∫ π

−π
dθn

n∏
i=−n+1

eβcos(θi −θi−1) .

Now, observe that ∫ π

−π
dθn eβcos(θn−θn−1) =

∫ π

−π
dτeβcosτ = 2πI0(β) .

One can then continue integrating successively over θn−1, . . . ,θ−n+1, getting each time a factor 2πI0(β),
with a final factor 2π for the last integration (over θ−n ). Therefore,

Z∅
B(n);β

= (2π)|B(n)|I0(β)|B(n)|−1 ,

and, thus, ψ(β) = limn→∞ |B(n)|−1 logZ∅
B(n);β

= log(2π)+ log I0(β). The computation of the numerator

of the correlation function 〈S0 ·Si 〉∅B(n);β
is similar. We assume that i > 0. Integration over θn , . . . ,θi+1 is

carried out as before and yields I0(β)n−i . The integration over θi yields, using the identity cos(s + t ) =
cos s cos t + sin s sin t ,

∫ π

−π
dθi eβcos(θi −θi−1) cos(θi −θ0) =

∫ π

−π
dτeβcosτ cos(τ+θi−1 −θ0)

= cos(θi−1 −θ0)
∫ π

−π
dτeβcosτ cos(τ) = 2πI1(β)cos(θi−1 −θ0) .

The integration over θi−1, . . . ,θ1 is performed identically. Then, the integration over θ0, . . . ,θ−n is done
as for the partition function. We thus get, after simplification,

〈S0 ·Si 〉∅B(n);β
= 2π

(
2πI0(β)

)n(
2πI1(β)

)i (2πI0(β)
)n−i

2π
(
2πI0(β)

)2n
=

( I1(β)

I0(β)

)|i |
.

Letting n →∞ yields 〈S0 ·Si 〉µ = (I1(β)/I0(β))i .
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Solutions of Chapter 10
Exercise 10.2: Suppose first thatΘ(µ) =µ. In this case, for any f , g ∈A+(Θ),

〈 f Θ(g )〉µ = 〈Θ( f Θ(g ))〉µ = 〈Θ( f )g 〉µ .

Conversely, suppose that 〈 f Θ(g )〉µ = 〈g Θ( f )〉µ, for all f , g ∈A+(Θ). Let A ⊂ΩTL,+(Θ)
0 , B ⊂ΩTL,−(Θ)

0 be

arbitrary measurable sets and set Ā
def= A ×ΩTL,−(Θ)

0 , B̄
def= Ω

TL,+(Θ)
0 ×B , f = 1Ā and g = 1Θ(B̄). We then

have
µ(Ā∩ B̄) = 〈 f Θ(g )〉µ = 〈Θ( f )g 〉µ =µ(Θ(Ā∩ B̄)) .

Since events of the form Ā∩ B̄ generate the product σ-algebra, we have shown that µ=Θ(µ).

Exercise 10.3: Consider Ω0 = {±1}. Let ω′,ω′′ ∈ ΩL be defined as follows: ω′
i = (−1)

∑d
k=1

ik , ω′′
i = −ω′′

i .

Let µ
def= 1

2 (δω′ + δω′′ ). Then µ is translation invariant but not reflection positive. Namely, let Θ be

any reflection through the edges and let e = {i , j } ∈ EL be such that j = Θ(i ). Let f (ω)
def= ωi . Then

〈 f Θ( f )〉µ =−1 < 0.

Exercise 10.4: As a counterexample to such an identity, one can consider, for example, the Ising model
on T8 with blocks of length B = 2 and the four Λ2-local functions given by f0 = 1++, f1 = 1+−, f2 =
1−−, f3 = 1−+, where 1ss′

def= 1{σ0=s,σ1=s′}.

Exercise 10.5: Write f (Si ,S j ) = −αSi ·S j − (1−α)S1
i S1

j . The first term is minimal if and only if Si = S j .

The second term is minimal if and only if S1
i = S1

j =±1. The claim follows.

Exercise 10.6: This is immediate using the following elementary identities:

|T⋆L |−1 ∑

p∈T⋆L
ei( j−k)·p = δ j ,k for all j ,k ∈TL , and |TL |−1 ∑

j∈TL

ei(p−p′)· j = δp,p′ for all p, p ′ ∈T⋆L .

Exercise 10.7: We will use twice an adaptation of the discrete Green identity (8.14) on the torus. First,
since (using

∑
i∈TL

(∆h)i = 0 for the last identity)

ZL;β(h)

ZL;β(0)
=

〈
exp

{
−2β

∑
{i , j }∈EL

(Si −S j ) · (hi −h j )−β
∑

{i , j }∈EL

∥hi −h j ∥2
2

}〉
L;β

=
〈

exp
{

2β
∑

i∈TL

Si · (∆h)i −β
∑

{i , j }∈EL

∥hi −h j ∥2
2

}〉
L;β

=
〈

exp
{

2β
∑

i∈TL

(Si −S0) · (∆h)i −β
∑

{i , j }∈EL

∥hi −h j ∥2
2

}〉
L;β

,

the equivalence of (10.43) and (10.45) follows.
Now, observe that the Boltzmann weight appearing in νL;β can be written as a product:

exp
(
−β

∑
{i , j }∈EL

∥Si −S j ∥2
2

)
=

ν∏
k=1

exp
(
− 1

4d

∑
{i , j }∈EL

(ϕk
i −ϕk

j )2
)

,

where we defined the collections ϕk
i

def=
√

4dβSk
i . Therefore, the families (ϕk

i )i∈TL
and (ϕℓi )i∈TL

are
independent of each other if k ̸= ℓ and each is distributed as a massless Gaussian Free Field on TL .
Of course, the latter is ill-defined on the torus. However, notice that the expectation we are interested

in only involves the field ϕ̃k
i

def= ϕk
i −ϕk

0 . Adapting the arguments of Chapter 8 (working on TL with
0 boundary condition at the vertex {0}), the reader can check that the latter is a well-defined centered
Gaussian field with covariance matrix

GTL \{0}(i , j )
def=

∑
n≥0

Pi (Xn = j ,τ0 > n) ,

that is, the Green function of the simple random walk on TL , killed at its first visit at 0. Moreover, this
Green function is the inverse of the discrete Laplacian − 1

2d ∆ on TL .
We can thus fix k ∈ {1,2, . . . ,ν}, define

hk = (hk
i )i∈TL

, t k
L

def= (√
β/d(∆hk )i

)
i∈TL

, ϕk
L

def= (ϕk
i )i∈TL

,
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and use (8.9):
〈

exp
{

2β
∑

i∈TL

(∆hk )i (Sk
i −Sk

0 )
}〉

νL;β
=

〈
e t k

L ·ϕ̃k
L
〉
νL;β

= exp
( 1

2 t k
L ·GTL \{0}t k

L

)
.

Changing back to the original variables and using the fact that the Green function is the inverse of the
discrete Laplacian, the conclusion follows:

1
2 t k

L ·GTL \{0}t k
L =−β∆hk ·{GTL \{0}

(− 1
2d ∆

)
hk }=−β∆hk ·hk .

Solutions of Appendix B
Exercise B.1: For the first inequality, it suffices to write y as y =αx+(1−α)z, withα= (z−y)/(z−x). The
second follows by subtracting f (x) on both sides of (B.5).

Exercise B.4: Assume first that f ′′(x) ≥ 0 for all x ∈ I . Then, for all x, y ∈ I ,

f (y) = f (x)+
∫ y

x
f ′(u)du = f (x)+

∫ y

x

{
f ′(x)+

∫ u

x
f ′′(v)dv

}
du ≥ f (x)+ f ′(x)(y −x) .

This implies that f has a supporting line at each point of I and is thus convex by Theorem B.13. Now if f
is convex, then, for all x ∈ I and all h ̸= 0 (small enough), ( f ′(x +h)− f ′(x))/h ≥ 0, since f ′ is increasing.
By letting h → 0, it follows that f ′′(x) ≥ 0.

Exercise B.5: Assume f is affine on some interval I = [a,b], and consider a < a0 < b0 < b. On the one
hand, by Theorem B.12 and since each fn is differentiable, 0 = f ′(b0)− f ′(a0) = limn ( f ′n (b0)− f ′n (a0)).
On the other hand, f ′′n ≥ c and the Mean Value Theorem implies that, uniformly in n, f ′n (b0)− f ′n (a0) ≥
c(b0 −a0) > 0, a contradiction.

Exercise B.6: It suffices to write, for all x, y1, y2 and α ∈ [0,1],

x(αy1 + (1−α)y2)− f (x) =α{
x y1 − f (x)

}+ (1−α)
{

x y2 − f (x)
}≤α f ∗(y1)+ (1−α) f ∗(y2) .

Exercise B.7: By explicit computation: f ∗1 (y) = 1
2 y2, f ∗2 (y) = 3

44/3 y4/3, f ∗3 (y) = |y |, which are all convex.

Furthermore, f ∗∗1 = f1, f ∗∗2 = f2 but f ∗∗3 ̸= f3 since f ∗∗3 (x) = 0 if |x| ≤ 1, +∞ otherwise.

Exercise B.8:
f ∗∗(x) = sup

y

{
x y − sup

z

(
y z − f (z)

)

︸ ︷︷ ︸
≥y x− f (x)

}≤ f (x) .

Exercise B.10:

−1 1 x
f (x)

−1 1
x

f ∗(x) −1 1 x
f ∗∗(x)

Exercise B.11: Let xn → x. Then, for any z ∈ I ,

liminf
n→∞ f ∗(xn ) = liminf

n→∞ sup
y∈I

{
xn y − f (y)

}≥ liminf
n→∞

{
xn z − f (z)

}= xz − f (z) .

Therefore, liminfn→∞ f ∗(xn ) ≥ supz∈I
{

xz − f (z)
}= f ∗(x).

Exercise B.12: Since f (x) ≥ f (x0)+m(x − x0) for all x, we have f ∗(m) = x0m − f (x0). By definition,
f ∗(y) = supx {y x − f (x)}, and so

f ∗(y) ≥ x0 y − f (x0) = x0(y −m)+ (x0m − f (x0)) = x0(y −m)+ f ∗(m) .

Exercise B.14: Since epi(g ) is convex, closed and contains epi( f ) (since g ≤ f ), we have

CE f (x) = inf
{

y : (x, y) ∈C
}≥ inf

{
y : (x, y) ∈ epi(g )

}= g (x) .

Exercise B.15: Let µ be the counting measure on (N,P(N)): µ(n)
def= 1 for all n ∈ N. Let (xn )n≥1 ⊂ I be

any sequence converging to x0 and consider the sequence ( fn )n≥1 of functions fn : N→ R defined by

fn (k)
def= ξk (xn ). Then

∑
k ξk (xn ) = ∫

fn dµ, so the result follows from Theorem B.40.
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absolute continuity of measures, 495
additivity, 4, 469
affine function, 486
Aizenman–Higuchi theorem, 155, 290
algebra, 491
almost everywhere, almost sure, 492
analytic continuation

pressure, Curie–Weiss, 157
pressure, Ising, 156, 216

analyticity, 488
cluster expansion, 228

antiferromagnet, see Ising model
Asano contraction, 123

backward martingale convergence theo-
rem, 284, 502

Blume–Capel
large fields, 271
low-temperature Gibbs measure,

368
phase diagram, 347, 366
pressure, 366

Boltzmann
entropy, 27
principle, 31

Boltzmann weight, 23, 116, 120, 142
surface term, 232, 348
volume term, 232, 349

Borel sets, 492
boundary

edge boundary, 516
exterior, 100, 326
interior, 326
of configuration, 329
thickened, 331

boundary condition
+ boundary condition, 82

− boundary condition, 82
Dobrushin, 147, 209
free, 80
kernel, 255
periodic, 80
stable, 160
wired, 142
with frozen configuration, 81

box, 38
branches, liquid and gas, 186
Brownian bridge, 152

canonical
ensemble, 20
Gibbs distribution, 23, 170, 318
partition function, 23, 26, 170

Carathéodory’s extension theorem, 311,
492

Cauchy’s integral theorem, 489
Central Limit Theorem, 40, 498
chemical potential

grand canonical ensemble, 33
lattice gas, function of ρ, 189
thermodynamics, 7

chessboard estimate, 444
closed set, 491
cluster

FK percolation, 142
of polymers, 228
support of, 233

cluster expansion, 214, 219
convergence, 224

clustering, see short-range correlation
coexistence line, 104, 365
coexistence of phases, 206
coexistence plateau, 14, 187
compactness
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in metric spaces, 491
of M1(Ω), 264
ofΩ, 262

compatibility of contours, 343
complete graph, 58
concave function, 480
concavity

Boltzmann entropy, 31
entropy, 8
free energy, 12, 32
Shannon entropy, 21

concentration, 29, 40
density, lattice gas, 177, 188
magnetization, 1d Ising, 92
magnetization, Curie–Weiss, 60
magnetization, Ising model, 288

condensation, 13, 213
conditional expectation, 500

tower property, 502
version, 501

conditional probability, 503
as a specification, 257
regular, 258, 503

configuration
boundary, 329
equal at infinity, 327
ground state, 327
Ising, 38, 81
lattice gas, 169
restriction, 248
thickened boundary, 331

configuration integral, 24
conjugate variable, 8
connectivity

c-connectivity, 239, 340
maximal component, 340
of subsets of Zd , 340

continuity
function onΩ, 263
function onΩ, uniform, 263
in metric spaces, 491
lower semi-continuous function,

486
continuous spins, 305
contour, 340

2d Ising, 111
admissibility, 239
compatibility of, 343
exterior of, 340
external, 343
interior, 341
interior, Ising, 241
Ising, 238, 454
label, 340

of class n, 355
stability, 348, 360
truncated weight, 356
type, 340
weight, 345

contour representation
X Y anisotropic, 454
Ising, 109
Pirogov–Sinai, 346

convergence
almost sure, 498
configurations, 262, 307
in Lp , 498
in distribution, 498
in metric spaces, 491
in probability, 498
in the sense of Fisher, 471
in the sense of van Hove, 83
of probability measures, 264, 307
of states, 94
of subsets of Zd , 83

convex envelope, 192, 200, 486
convexity

concave function, 480
convex envelope, 486
convex function, 480
epigraph, 486
free energy, 12
free energy, lattice gas, 170
free energy, van der Waals model,

192
midpoint convex function, 482
of G (π), 280
pressure, 301, 309, 326
pressure, Ising, 84
pressure, lattice gas, 174
strongly convex function, 484
supporting line, 484
vs. continuity, 481
vs. differentiability, 482

correct point, 329
correlation inequalities, 97
correlation length, 162, 401
correlations

algebraic decay, 2d X Y model, 428,
433

decay, 1d O(N ) models, 427
decay, O(N ) models, 426
decay, X Y model, 413
decay, Ising, 471
decay, massive GFF, 401, 403
decay, massless GFF, 394
exponential decay, 2d X Y model,

433
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exponential decay, Ising, 119
Ornstein–Zernike behavior, Ising,

471
truncated, 144, 471

coupling, 137, 368
coupling constants, 127, 185
covariance matrix, 384, 504
critical, 61
critical exponent, 162

2d Ising, 45
Curie–Weiss, 72, 77

critical phenomena, 160
critical point, 161
critical temperature

2d Ising, 45, 132
Curie–Weiss, 59, 134
Ising, 107, 134
monotonicity in d , 115
Van der Waals, 15
van der Waals model, 192

cumulant generating function, 499
cumulative distribution function, 497
Curie temperature, 37
Curie–Weiss

Hamiltonian, 191
Curie–Weiss model, 57
cutoff function, 355
cylinder, 249, 305, 523
cylinders, algebra of, 249

degeneracy lifting, 336
delocalization, 392, 402, 425
dense set, 491
diagonalization argument, 262, 523
diameter, 326
differentiability

free energy, lattice gas, 177
left,right, 482
one-sided derivative, 482
pressure, 1d models, 311
pressure, Blume–Capel, 366
pressure, Ising, 108, 311

Dirichlet energy, 422
Dirichlet problem, 389

massive, 397
discrete

Dirichlet problem, 389, 397
gradient, 387
Green identities, 387
harmonic, 389, 397
Laplacian, 387

distance
between configurations, 262
between measures, 264

in metric spaces, 491
total variation distance, 507

distribution function, 497
Dobrushin’s condition of weak depen-

dence, 268
dominated convergence theorem, 495
Doob–Dynkin lemma, 493
droplet model, 216
dual lattice, 110
duality, 132
dusting lemma, 269
Dynkin system, 493

effective interface models, 407
energy density

average, 300
average, Curie–Weiss, 74
Curie–Weiss, 64
ground state, 234

energy shell, 19
energy, thermodynamics, 3
energy-entropy, 42, 191, 224, 297
ensemble, 19

canonical, 20
grand canonical, 23
microcanonical, 19

entropy
Boltzmann, 27
relative, 510
Shannon, 21, 297, 507
thermodynamics, 4

entropy density
Boltzmann, 29, 30, 319
Curie–Weiss, 64

epigraph, 486
equal-area rule, see Maxwell’s construc-

tion
equation of state, 8

ideal gas, 9, 34
real gas, 214
Van der Waals, 14

equilibrium
thermodynamic, 3

equilibrium shape, 211
equivalence of ensembles, 47, 176, 183,

206, 318
van der Waals model, 192

equivalence of measures, 495
ergodic

probability measure, 279
theorem, 47, 279

Euler relation, 8
evaluation map, 293
event
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σ-algebra, 249
increasing, 98
local, 249
tail, 281

exchangeable, 71
excitation, 42, 375
exponential mixing, 371
exponential relaxation, 371
extension of a probability measure, 282
extensive, 3
extensivity, 469
extremal decomposition, 291, 308
extremum principle, 4, 12

Feller property, 265
ferromagnetic model, 39
ferromagnetism, 35, 36

Curie–Weiss, 67
finite-range interaction, 169
finite-size effect, 234
finitely additive set function, 492
first-order phase transition, 37

analytic definition, 89, 309
Pirogov–Sinai, 321, 366
probabilistic definition, 103, 261

FKG inequality, 99, 128, 136
fluctuations, 4
Fourier transform, 460
free energy, 32

canonical ensemble, 32
Curie–Weiss, 61
Gibbs, 302
hard-core lattice gas, 182
Helmholtz, 11
lattice gas, 170
lattice gas, analyticity, 187
van der Waals model, 191

Fubini–Tonelli theorem, 496
fugacity, 214

gas
continuum, 24
lattice, 25

Gaussian
centered, 384
characteristic function, 384
covariance matrix, 384, 504
field, 386, 506
mean, 384, 504
measure, 386
normal standard, 498
vector, 383, 504
vector, convergence, 505

Gaussian domination, 463

Gaussian Free Field, 379
Hamiltonian, 381
link with Ising model, 407
massive, 381, 397
massive, RW representation, 399,

400
massless, 381, 389
massless, RW representation, 391

generating function, cumulant, 88
GFF, see Gaussian Free Field
GHS inequality, 120, 132
Gibbs distribution, 1, 23

canonical, 23, 170
grand canonical, 23, 174

Gibbs measure, 261
Blume–Capel, 368
closedness of G (π), 266
convexity of G (π), 280
extremal, 281, 307
gradient model d = 1,2, 425
Ising, 287
massive GFF, 400
massless GFF d = 1,2, 393
massless GFF d ≥ 3, 394
non-extremal, 289
non-uniqueness, 308
pathologies, 319
prepared with boundary condition,

266
singularity of extremal measures,

285
uniqueness, 268
uniqueness, boundary condition,

267
Gibbs sampler, 137
Gibbs state

2d Ising, 152
3d Ising, 146
Ising, 94

GKS inequalities, 98, 127
gradient gibbs states, 407
gradient model, 380, 424
grand canonical

ensemble, 23
Gibbs distribution, 23, 174
partition function, 26, 174

grand potential, 12
Green identities, 387
ground state, 327

energy density, 328
Ising, 41
periodic, 327
stable, 367
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Hamiltonian, 18, 259
O(N ) model, 412
O(N ) model, torus, 459
X Y model, 412
Curie–Weiss, 58
anisotropic X Y model, 416
associated to a potential, 326
Blume–Capel, 323
continuum gas, 24
formal, 261
Gaussian Free Field, 381
Heisenberg model, 412
Ising, 39, 81
Ising, modified, 323
lattice gas, 26, 169
relative, 327

hard-core, 26, 34, 228
harmonic, 389
m-harmonic, 397
harmonic crystal, see Gaussian Free Field
heat capacity

Curie–Weiss, 74
ideal gas, 9

Helmholtz free energy, see free energy
high-temperature representation

Ising, 116, 132, 237
Hölder inequality, 478
holomorphic function, 488
homogeneous function, 7, 8
homogeneous system, 14, 180
Hubbard–Stratonovich transformation,

70, 407
Hurwitz theorem, 490

i.i.d. random variables, 498
ideal gas, 9, 183
implicit function theorem, 491, 523
increasing event, 98
independence, 498

mutual, 498
pairwise, 498

inequalities
arithmetic-geometric, 478
Brunn–Minkowski, 517
Chebychev, 497
Chernov, 497
FKG, 99
FKG, proof, 128, 136
GHS, 120, 132
GKS, 98
GKS, proof, 127
Hölder, 478
Jensen, 480, 497
Markov, 497

Pinsker, 512
infrared bound, 459
integral with respect to a measure, 494
intensive, 8
interface, 149

2d Ising, 151
3d Ising, 150

interior of contour, 341
Ising, 112

internal energy, 3
inverse critical temperature, see critical

temperature
inverse temperature, 32, 33, 80
Isakov theorem, 159
Ising model, 37, 79

d-dimensional, 114
antiferromagnet, 140, 280, 334
contour, 109, 238, 454
ergodicity, 288
extremality, 287
interface, 149
large field, 229, 271, 450
link with GFF, 407
long-range, 260
modified, 323, 334
one-dimensional, 42, 90
three-dimensional, 146, 286
two-dimensional, 43
two-dimensional, simplex, 290

isolated system, 3
isoperimetric inequality, 349, 516
isotherm, 9

hard-core lattice gas, 183
nearest-neighbor lattice gas, 190
Van der Waals, 15
van der Waals, 195

Isserlis’ theorem, 385

Kac interactions, 198
Kac limit, see van der Waals limit
Kolmogorov

consistency, 251
extension theorem, 251

Kozlov–Sullivan theorem, 472
Kramers–Wannier duality, 132

label of a contour, 340
large deviations

1d Ising, 92
Curie–Weiss, 61, 68
lattice gas, 178

largest term, 31
lattice, 25

bipartite, 141
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cubic, 25
even, odd, 140

lattice gas, 25, 168
hard-core, 26, 34, 181
mapping with Ising model, 45, 184
nearest neighbor (Ising), 184
van der Waals, 190

Law of Large Numbers, 40, 47, 288, 498
Curie–Weiss, 60

Lebowitz–Penrose limit, see van der
Waals limit

Lee–Yang
circle theorem, 122, 186
theorem, 121, 235

Legendre transform, 11, 65, 191, 485
non-differentiable function, 487

Lévy’s continuity theorem, 500
liquid-vapor equilibrium, 14, 167
local function, 94, 444

support, 94
local limit theorem, 513
locally uniformly bounded family of

functions, 490
log-moment generating function, 499
logarithm branch, 489
long-range order

Ising, 108
orientational, 412, 437
Potts, 462
quasi, 413

low-temperature representation
Ising, 109, 132, 238

lower semi-continuity, 486

m-potential, see potential
macroscopic events and observables, 281
macrostate, 3
magnetic field, 35, 80
magnetic susceptibility, see susceptibility
magnetization, 36

1d Ising, 91
2d Ising, 46
Ising, large β, 242

magnetization density, 40
O(N ) models, 416
X Y model, 451
Curie–Weiss, 59
Ising, 87, 105, 126, 288

marginal, 251
Markov property, spatial, 99
mass, 381
Maximum entropy principle, 20
Maxwell’s Construction, 15, 197
Mayer expansion, 236

Mayer’s conjecture, 214
mean-field

“naive”, 69
approximation, 57
bounds, 76
equation, 63, 66, 69
lattice gas, 191
limit, 76

mean-field bounds, 134
measurable

function, 249, 493
function, real, 494
sets, 492
space, 492

measure, 492
equivalent, 495
extension, 492
extremal, 281
finite, 492
Lebesgue, 496
on an algebra, 492
probability, 492
σ-finite, 492
singular, 495
translation invariant, 496

Mermin–Wagner theorem, 415
metastability, 215

Ising, 159
metric space, 491

compact, 491
metric, 491
separable, 491
sequentially compact, 491

microcanonical distribution, 19, 318
microstate, 2, 18
Minlos–Sinai trick, 474
mixing, see short-range correlation
moment generating function, 499
momentum, 24
monotone class, 493
monotone convergence theorem, 495
monotonicity

in boundary condition, 100, 101
in coupling constants, 128
in volume, 99, 100

nearest neighbor, 38
non-uniqueness, see first-order phase

transition
Ising low temperature, 104
of Gibbs measure, 261

nondecreasing function, 98

observable, 18
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occupation number, 25, 96, 169
O(N ) model, 437
open set, 491
order parameter

Ising, 126
Ornstein–Zernike behavior, 471
oscillation, 268

parallelepiped, 479
paramagnetism, 35

1d Ising, 90
Curie–Weiss, 67

partial order, 98
partition function, 1

canonical, 23, 26, 170
Curie–Weiss, 58
grand canonical, 26, 174
Ising model, 80–82
Ising model, zeroes, 121, 125
polymer, 221
polymer representation, 346

pathologies, 319
Pecherski’s counter-example, 335
Peierls’ argument

anisotropic X Y model, 454
Ising, 109

Peierls’ condition, 331
Peierls’ constant, 331, 332

Blume–Capel, 332
rescaled potential, 537

percolation
Bernoulli, 142
FK, 142
FK, cluster, 142

phase coexistence
Curie–Weiss, 61
Ising, 104
Pirogov–Sinai, 324

phase diagram
Blume–Capel, 324, 347
completeness, 374
Ising, 103
Ising d ≥ 2, 104, 322
large-β asymptotics, 375
zero-temperature, 324, 337

phase separation, 206
phase transition, 14, 47

O(N ) model, d ≥ 3, 437
X Y model, anisotropic d ≥ 2, 438
Berezinskĭı–Kosterlitz–Thouless,

433
Blume–Capel, 366
continuous, 72, 161
Curie–Weiss, 59

Ising, 104
Kac interactions, 212
lattice gas, 186

Pinsker’s inequality, 421, 512
Pirogov–Sinai theory, 217, 321
Plancherel theorem, 460
plaquette, 149
Pólya theorem, 514
polymer, 220, 314

activity, 221
cluster, 228
compatibility, 228
decomposability, 228
partition function, 221
support, 314
weight, 221, 314

polymer model, 220
positive correlation, 98, 174
potential, 259

O(N ) model, 306
X Y model, 306
absolutely summable, 259
Blume–Capel, 259
finite-range, 259, 326
Gaussian Free Field, 306
Heisenberg model, 306
invariant under transformation,

277
Ising, 259
m-potential, 333
perturbation, 335
physical equivalence, 261
Potts, 259
rescaled, 339
translation invariant, 326
uniformly absolutely summable,

300
uniqueness criterion, 272

potential kernel, 433
Potts model, 141, 459

antiferromagnet, 272
pressure, 33, 311

1d Ising, 90
2d Ising, 93
O(N ) model, 462
analytic continuation, 214
anisotropic X Y model, 458
associated to a potential, 301, 309,

326
Curie–Weiss, 65, 67, 134
finite volume, Ising, 83
function of ρ, v , 188
grand canonical ensemble, 33
hard-core lattice gas, 182
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Ising, 45, 134
Ising model, terminology, 45
Ising, analyticity, 120, 156, 238, 240
isotherm, 9
lattice gas, 174
lattice gas (Ising), 185
lattice gas, analyticity, 186, 190
polymer models, 352
saturation, 15, 190
thermodynamics, 7, 13
truncated, 338, 355
van der Waals limit, 200
van der Waals model, 191

Principle of Insufficient Reason, 21, 469
probability kernel, 255

composition, 256
consistency, 256
infinite-volume, 293
proper, 255

probability measure, 492
compatible with specification, 256

product
σ-algebra, 496
measure, 251, 298, 496
space, 496

projection map, 248
PST, see Progov–Sinai theory321

quasilocal
function, 263
specification, 265

Radon–Nikodým theorem, 495
random variable, 497

characteristic function, 500
conditional expectation, 500
connected correlation function, 499
cumulant, 499
distribution, 497
expectation, 497
i.i.d., 498
independent, 498
moment, 499
semi-invariant, 499
standard normal, 498
truncated correlation function, 499
Ursell function, 499
variance, 497
with density, 497

random vector, 503
dsitribution, 503

random walk, 390, 422, 513
Green function, 390, 431, 515
killed, 398, 541

potential kernel, 433, 516
recurrence, transience, 514
stopping time, 513

random walk representation, 390
random-cluster representation, 141
random-current representation, 143
range (of potential), 259
rate function

Curie–Weiss, 62, 68
lattice gas, 178

rectangle, 496
reference measure, 306, 442
reflection

through edges, 440
through vertices, 439

reflection positive, 441
relative entropy, 298, 421, 510
relative Hamiltonian, see Hamiltonian
relaxation

2d Ising, 153, 156
high temperature, 274

renormalization group, 162, 320
pathologies, 163

reservoir, 10
restricted ensemble, 376
restriction

of configuration, 101
of probability measure, 282

Riesz–Markov–Kakutani representation
theorem, 95, 250, 312

roughening transition, 151

saturation pressure, see pressure
scaling parameter, 199
sea with islands, 109, 114, 372
short-range correlation, 103, 282
σ-algebra, 491

Borel sets, 492
generated by a function, 493
generated by sets, 492

simple function, 494
sine-Gordon transformation, 409
singular measures, 495
singularity, 47, 216
specific entropy, 299

upper semicontinuity, 300
specific volume, 9
specification, 256

compatible probability measure,
256

finite energy, 472
Gibbsian, 258, 306
invariant, 277, 308
non-null, 472
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quasilocal, 265
spin, 38, 80
spin flip, 39, 113, 277
spin wave, 418
spontaneous magnetization, 36

2d Ising, 45
Curie–Weiss, 59
Ising, 89, 106, 126

spontaneously broken symmetry, 41,
109, 278

stability, 12
stability of contour, 348
stable

boundary condition, 160
state, 94, 250

Dobrushin, 147
Gibbs, 94
metastable, 215
non-translation-invariant, 147
translation invariant, 95

statistical mechanics, 17
Stein’s method, 71
Stirling’s formula, 478
stochastic domination, 138
strict convexity of pressure, 175, 179
subadditivity

for existence of pressure, 87
lattice gas, 172
strong, 471
subadditive sequence, 479

subcritical, 15, 61
supercritical, 15, 61
support

cluster, 233
contour, 340
polymer, 314

supporting line, 484
surface energy, 345
surface tension, 209
surrounding set, 368
susceptibility, 72, 383
switching lemma, 144
symmetry

continuous, 308, 411
explicit breaking, 278
spontaneous breaking, 41, 278
spontaneous breaking, Ising, 109
under a transformation, 277
under global rotation of the spins,

414
under spin flip, 39

tail-σ-algebra, 281
triviality, 282, 307

Taylor series, inverse, 237
temperature

thermodynamics, 6
thermodynamic limit, 46, 83

X Y model, 413
canonical ensemble, 32
extremal Gibbs measure, 286
Gaussian Free Field, massive, 400
Gaussian Free Field, massless, 393
grand canonical ensemble, 33
Ising, 45
Ising model, 39
microcanonical ensemble, 30

thermodynamic potential, 10
thermostatics, 2
thin subset of Zd , 342
topology

on M1(Ω), 264
onΩ, 262

torus, 438
reciprocal, 460

total oscillation, 268
total variation distance, 268, 506
transfer matrix, 91, 139
transformation

internal, 276
spatial, 276

translation, 278
translation invariant

events, 279
probability measure, 278
specification, 280
state, 95

+1−1 trick, 314
triviality of a σ-algebra, 282
truncated correlation, 144, 243
type of a contour, 340

uniqueness
1d Ising, 104
1d models, 275
Gibbs measure, Dobrushin, 268
Gibbs specification, 272
high temperature, cluster expan-

sion, 274
Ising, 104
Ising h ̸= 0, 104, 119
Ising high temperature, 104, 116
long-range Ising, 273
Potts antiferromagnet, 272
vs. differentiability, 311
vs. differentiability, Ising, 108, 311

uniqueness vs. non-uniqueness, 103
universality, 49, 72, 161
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unpredictability, 20, 508
upper critical dimension, 77, 162
Ursell function, 222, 499

Van der Waals equation, 14
van der Waals limit, 198, 217

pressure, free energy, 200
Van der Waals–Maxwell theory, 13
variational principle, 318, 319

finite version, 298
virial coefficient, 236

virial expansion, 215, 235
lattice gas, 237

Vitali convergence theorem, 490

Weierstrass’ theorem, 490
Wick’s formula, 385
Wulff shape, 211

X Y model
anisotropic, 437
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