L^2 -Betti numbers of groups

Alain Valette

Les Diablerets Kervaire seminar 10 March 2020

1 Motivation for L^2 -cohomology

Let X be a finite complex. The *Betti numbers*

$$b_i(X) = \dim H^i(X, \mathbf{R})$$

are homotopy invariants of Y. The Fuler characteristic is

are homotopy invariants of
$$X$$
. The Euler characteristic is

 $\chi(X) = \sum_{i} (-1)^{i} b_{i}(X).$

Let \hat{X} be a *d*-sheeted covering of X. Then

$$\chi(\hat{X}) = d \cdot \chi(X).$$

However: in general $b_i(\hat{X}) \neq d \cdot b_i(X)$.

Example 1. Take
$$X = \hat{X} = S^1$$
, the unit circle in \mathbb{C} . The map $\hat{X} \to X : z \mapsto z^d$ is a d-sheeted covering. But $b_i(X) = b_i(\hat{X}) = 1$ for $i = 0, 1$.

Goal: By means of the universal cover \tilde{X} of X, construct L^2 -Betti numbers $b_i^{(2)}(X) \geq 0$ such that:

B1: $b_i^{(2)}(X)$ is a homotopy invariant of X.

B2: $\chi(X) = \sum_{i} (-1)^{i} b_{i}^{(2)}(X)$.

 $b_i^{(2)}(X) = \lim_{i \to \infty} \frac{b_i(X_j)}{[G:G_i]}.$

B4: (Lück approximation) Suppose $G = \pi_1(X)$, and if $(G_j)_{j \geq 1}$ is a family of finite index normal subgroups that decreases to $\{1\}$ for $j \to \infty$, then with $X_j = X/G_j$ we have:

B3: If \hat{X} is a d-sheeted cover of X, then $b_i^{(2)}(\hat{X}) = d \cdot b_i^{(2)}(X)$.

THIS CAN BE DONE!

2 A few successes

2.1 The Hopf conjecture

Conjecture 1. (Hopf 1931, Chern 1955) Let M^{2n} be a closed manifold carrying a Riemannian metric of negative sectional curvature. Then $(-1)^n \chi(M) > 0$.

The conjecture is known in dimensions 2 (Gauss-Bonnet formula) and 4 (Milnor 1955); it is open in general. Using L^2 -Betti numbers, Gromov proved in 1991:

Theorem 2.1. The Conjecture holds for Kähler manifolds.

2.2 Deficiency of groups

For G a finitely presented group, the deficiency of G is: $def(G) = \max\{g-r : G \text{ admits a presentation on } g \text{ generators and } r \text{ relations}\}.$

It is a measure of the "complexity" of G.

Let BG be the classifying space of G: a complex such that $\pi(BG) = G$ and BG is contractible (BG is unique up to homotopy). Set $b_i^{(2)}(G) =: b_i^{(2)}(BG)$.

Theorem 2.2. (B. Eckmann) $def(G) \leq 1 + b_1^{(2)}(G)$. More-

over, if def(G) = 1 and $b_1^{(2)}(G) = 0$, then G admits a 2-

2.3

 $dimensional \ model \ for \ BG.$

Structure of groups

In 1993 Gromov conjectured that, if

is a short exact sequence of infinite groups which are fundamental groups of finite aspherical complexes, then $b_1^{(2)}(G) = 0$. Actually a much stronger statement holds!

Theorem 2.3. (Gaboriau 2000; Lück 1995 under extra assumption $\mathbf{Z} \subset G/N$). Let

 $1 \to N \to G \to G/N \to 1$

be a short exact sequence of infinite groups. If N is finitely generated (as a group), then $b_1^{(2)}(G) = 0$.

Corollary 2.4. (Schreier 1930) Any (non-trivial) finitely generated normal subgroup of the free group \mathbf{F}_n , has finite index.

Proof: Assume $N \triangleleft \mathbf{F}_n$, with $n \geq 2$, and N finitely generated.

Since $b_1^{(2)}(\mathbf{F}_n) > 0$, we either have N finite (hence trivial) or G/N finite.

2.4 Cost and measurable group theory (Gaboriau 2002)

Theorem 2.5. $C(G) - 1 \ge b_1^{(2)}(G) - b_0^{(2)}(G)$, where C denotes the cost.

Theorem 2.6. Assume G admits a free, treeable action. Then $b_k^{(2)}(G) = 0$ for k > 1. Moreover $b_1^{(2)}(G) = 0$ if and only if G is amenable.

3 G-dimension

For G a countable group, let L(G) be the group von Neumann algebra, i.e. the commutant of the left regular representation λ of G on $\ell^2(G)$. The map

$$L(G) \to \ell^2(G) : S \mapsto S(\delta_1)$$

is an embedding with dense image. The functional

$$au(S) = \langle S(\delta_1) | \delta_1
angle$$

defines a trace on L(G) (i.e. $\tau(ST) = \tau(TS)$), which is positive

 $(\tau(S^*S) \ge 0)$ and faithful $(\tau(S^*S) = 0 \Leftrightarrow S = 0)$. Let \mathcal{H} be a Hilbert space. We extend τ to a densely defined trace on $L(G) \otimes B(\mathcal{H})$ by:

$$\tau(S \otimes T) =: \tau(S) \cdot Tr(T).$$

Let G act on $\ell^2(G) \otimes \mathcal{H}$ by $\lambda \otimes 1$.

If V is a closed G-invariant subspace of $\ell^2(G) \otimes \mathcal{H}$, and P is the orthogonal projection onto V, we define the G-dimension of V as:

 $\dim_G V = \tau(P) \in [0, +\infty].$

Properties:

D1: $\dim_G V = 0 \Leftrightarrow V = 0$. D2: If V is G-isomorphic to a dense subspace of W, then

Example 2. $\dim_G \ell^2(G) = \tau(1) = 1$.

 $\dim_G V = \dim_G W$.

D3: (additivity) $\dim_G(V \oplus W) = \dim_G V + \dim_G W$. D4: (continuity) If $(V_j)_{j>0}$ is a decreasing sequence of G-invariant

subspaces, then

 $\dim_G(\cap_{j>0}V_j) = \lim_{j \to \infty} \dim_G V_j.$ D5: (finite index subgroups) If [G : H] = d, and V is Ginvariant: $\dim_H(V) = d \cdot \dim_G V$.

Example 3. 1. If G finite: $\dim_G V = \frac{\dim V}{|G|}$.

Hence

2. For $G = \mathbf{Z}$, by Fourier series for $n \in \mathbf{Z}$ the shift opera-

of this action are of the form

this takes all values in [0,1].

tor $\lambda(n)$ becomes multiplication by $e^{2\pi i n\theta}$ on $L^2(S^1,\mu)$ (μ

the normalized Lebesgue measure). Invariant subspaces

 $\mathcal{H}_{B} = \{ f \in L^{2}(S^{1}) : f \equiv 0 \text{ a.e. on } S^{1} \setminus B \}.$

with B a Borel subset of S^1 . The corresponding projection is multiplication by the characteristic function χ_B of B.

 $\dim_{\mathbf{Z}} \mathcal{H}_B = \int_{\mathbb{S}^1} \chi_B \, d\mu = \mu(B);$

4 L^2 -cohomology

Let X be a finite complex, \tilde{X} its universal cover. Let \tilde{X}^k denote the set of k-cells of \tilde{X} . Consider the complex of ℓ^2 -cochains:

cochains:
$$\ell^2(\tilde{X}^0) \xrightarrow{d_0} \ell^2(\tilde{X}^1) \xrightarrow{d_1} \ell^2(\tilde{X}^2) \to \dots$$

where $(d_k f)(\sigma) = \sum_{\tau \subset \sigma} (-1)^{\epsilon(\tau,\sigma)} f(\tau)$, for $\sigma \in \tilde{X}^{k+1}$.

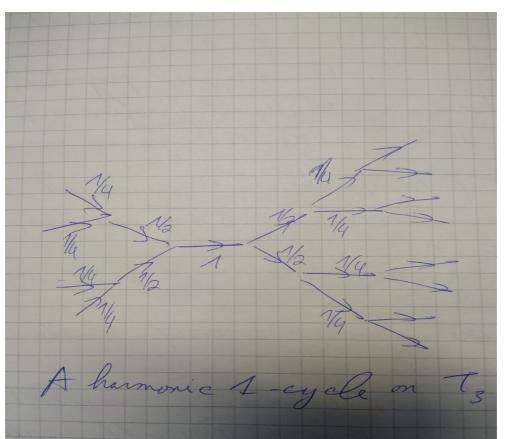
Example 4. $(d_0 f)(e) = f(e^+) - f(e^-)$ for $e \in \tilde{X}^1$.

Definition 4.1. The L^2 -cohomology of \tilde{X} is $H_{(2)}^k(\tilde{X}) = \ker d_k/\overline{Im d_{k-1}}$.

We can realize the quotient as a subspace because we use Hilbert spaces. Let $\mathcal{H}_{(2)}^k(X) = \ker d_k \cap (\operatorname{Im} d_{k-1})^{\perp}$ be the

Hilbert spaces. Let $\mathcal{H}_{(2)}^k(X) = \ker d_k \cap (\operatorname{Im} d_{k-1})^{\perp}$ be the space of harmonic k-cycles: then we have a canonical identification $\mathcal{H}_{(2)}^k(\tilde{X}) = H_{(2)}^k(\tilde{X})$.

Example 5. $(d_0^*f)(x) = \sum_{e:e^+=x} f(e) - \sum_{e:e^-=x} f(e)$ for $x \in \tilde{X}^0$.



For $G = \pi_1(X)$, all $\ell^2(\tilde{X}^k)$'s become G-invariant subspaces of $\ell^2(G) \otimes \ell^2(\mathbf{N})$, so we may define:

Definition 4.2. The k-th L^2 -Betti number of X is $b_k^{(2)}(X) =$

 $\dim_G H_{(2)}^k(X)$.

Proposition 4.3. (Atiyah 1976) $\chi(X) = \sum_{i} (-1)^{i} b_{i}^{(2)}(X)$.

Proof: Set $\ell_{even/odd}^2(\tilde{X}) =: \bigoplus_{k \, even/odd} \ell^2(\tilde{X}^k)$. Consider

Then $\sum_{k} (-1)^k b_k^{(2)}(X) = \dim_G \ker S - \dim_G \ker S^*$

 $S = d + d^* : \ell_{even}^2(\tilde{X}) \to \ell_{odd}^2(\tilde{X}).$

 $= (\dim_G \ker S + \dim_G \overline{ImS}) - (\dim_G \overline{ImS} + \dim_G \ker S^*)$ $= \dim_G \ell_{even}^2(\tilde{X}) - \dim_G \ell_{odd}^2(\tilde{X}).$

Choosing representatives for orbits of the free G-action on \tilde{X}^k , identify $\ell^2(\tilde{X}^k)$ with $\ell^2(G)^{|X^k|}$ in a G-equivariant way. So $\dim_G \ell^2(\tilde{X}^k) = |X^k|$ and $\sum_{k} (-1)^k b_k^{(2)}(X) = \sum_{k} (-1)^k |X^k| =$

 $\chi(X)$. \blacksquare Theorem 4.4. (Dodziuk 1977) $H_{(2)}^k(\tilde{X})$ is a homotopy invari-

ant of X.

Also enjoyable: **Proposition 4.5.** (Poincaré duality) If X is a triangulation of a closed orientable manifold M^n , then $b_k^{(2)}(X) = b_{n-k}^{(2)}(X)$.

5 Invariants of discrete groups

Suppose the countable group G has a finite classifying space BG (=Eilenberg-McLane space K(G,1)). Define:

$$b_{h}^{(2)}(G) = b_{h}^{(2)}(BG).$$

(well-defined by Dodziuk's theorem).

Example 6. 1. Construct BG from the presentation 2-complex of G. So the 1-skeleton of X is a Cayley graph of G, hence $\tilde{X}^0 = G$ and $H_0^{(2)}(\tilde{X})$ is the space of square-integrable

constant functions on
$$G$$
. So
$$b^{(2)}(G) = \int 0 \quad \text{if } G \text{ in finite}$$

 $b_0^{(2)}(G) = \begin{cases} 0 & if \ G \ infinite \\ 1/|G| & if \ G \ finite \end{cases}$

Moreover $b_1^{(2)}(G) < dim_G \ell^2(\tilde{X}^1)$, hence $b_1^{(2)}(G) < d(G)$, the minimal number of generators of G.

2.
$$G = \mathbf{Z}^n$$
. Then $BG = \mathbf{T}^n$, which is a double cover of itself. So $b_k^{(2)}(\mathbf{Z}^n) = b_k^{(2)}(\mathbf{T}^n) = 2b_k^{(2)}(\mathbf{T}^n)$, hence $b_k^{(2)}(\mathbf{Z}^n) = 0$.

3. $G = \mathbf{F}_n$. Then we may take for X = BG a bouquet of n

circles, so
$$\chi(X) = 1 - n = b_0^{(2)}(\mathbf{F}_n) - b_1^{(2)}(\mathbf{F}_n) = -b_1^{(2)}(\mathbf{F}_n)$$

hence $b_1^{(2)}(\mathbf{F}_n) = n - 1$.

4. $G = \pi_1(\Sigma_g)$, with Σ_g a closed Riemann surface of genus g > 0. Take $BG = \Sigma_g$, so by Poincaré duality:

$$\chi(\Sigma_g) = 2 - 2g = b_0^{(2)}(G) - b_1^{(2)}(G) + b_2^{(2)}(G) = -b_1^{(2)}(G)$$

$$hence \ b_1^{(2)}(G) = 2g - 2.$$

Theorem 5.1. The property $b_k^{(2)}(G) = 0$ is invariant under:

- quasi-isometry (Soardi for k = 1, Pansu for k arbitrary);
- measure equivalence (Gaboriau)

6 Methods of computation

Theorem 6.1. (Cheeger-Gromov 1986) There is a Künneth formula:

$$b_k^{(2)}(G_1 \times G_2) = \sum_{i=0}^k b_i^{(2)}(G_1)b_{k-i}^{(2)}(G_2).$$

Theorem 6.2. (Cheeger-Gromov 1986; Paschke 1992) For

 $b_1^{(2)}(G) = (0 - \frac{1}{6}) + (0 - \frac{1}{4}) - (0 - \frac{1}{2}) = \frac{1}{12}.$

Example 7. For $G = SL_2(\mathbf{Z}) = (\mathbf{Z}/6) *_{\mathbf{Z}/2} (\mathbf{Z}/4)$:

$$G = A *_{C} B:$$

$$b_{1}^{(2)}(G) - b_{0}^{(2)}(G) = (b_{1}^{(2)}(A) - b_{0}^{(2)}(A)) + (b_{1}^{(2)}(B) - b_{0}^{(2)}(B)) - (b_{1}^{(2)}(C) - b_{0}^{(2)}(C)).$$

$$G = A *_{C} B:$$

$$b_{1}^{(2)}(G) - b_{0}^{(2)}(G) = (b_{1}^{(2)}(A) - b_{0}^{(2)}(A)) + (b_{1}^{(2)}(B) - b_{0}^{(2)}(B)) - (b_{1}^{(2)}(C) - b_{0}^{(2)}(B))$$

$Infinite \ G$	$b_1^{(2)}(G)$	$b_k^{(2)}(G) \ (k \ge 2)$	Who?
$\overline{\mathbf{F}_n}$	n-1	0	
$SL_2({f Z})$	$\frac{1}{12}$	0	
$\pi_1(\Sigma_g)$	2g - 2	0	
Amenable	0	0	Cheeger-Gromov~198
Thompson'sF	0	0	Lueck~1994
Prop. (T)	0	*	Bekka - V. 1996
Lattice in $SL_n(\mathbf{R}), \ n \geq 3$	0	0	$Borel\ 1985$
$Lattice\ in\ SO(2n+1,1)$	0	0	Borel~1985
$G \rtimes \mathbf{Z} \ (G \ fin. \ gen.)$	0	0	Lueck 1995
$H \wr G$	0	*	Martin-V.2003
$1-relator\ on\ g\ gen.$	$\max\{g-2,0\}$	0	$Dicks-Linnell\ 2006$
$Higman's\ group\ H_4$	0	$\begin{vmatrix} b_2^{(2)} = 1 \\ b_k^{(2)} = 0 \ (k > 2) \end{vmatrix}$	Fernos-V.2016

Theorem 6.3. (Borel 1985) Let G be a lattice in a rank 1 simple Lie group S:

$$S = SO(2n, 1) \begin{vmatrix} b_n^{(2)}(G) > 0 \\ S = SU(n, 1) \end{vmatrix} \begin{vmatrix} b_n^{(2)}(G) > 0 \\ b_n^{(2)}(G) > 0 \end{vmatrix} \begin{cases} Others : 0 \\ Others : 0 \\ Others : 0 \end{cases}$$

$$S = Sp(n, 1) \begin{vmatrix} b_n^{(2)}(G) > 0 \\ b_{2n}^{(2)}(G) > 0 \end{vmatrix} Others : 0$$

THANK YOU FOR YOUR ATTENTION!

Following a question: D. Osin (2008) constructed finitely generated torsion groups with $b_1^{(2)}(G) > 0$, where non-amenability follows from non-vanishing of $b_1^{(2)}$.