ELLIPTIC DIMER MODELS AND GENUS I HARNACK CURVES

Béatrice de Tilière University Paris-Dauphine

work in progress with

Cédric Boutillier (Sorbonne) & David Cimasoni (Genève)

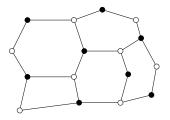
Les Diablerets, February 11, 2020

OUTLINE

- Dimer model
- Dimer model and Harnack curves
- Minimal isoradial immersions
- Elliptic dimer model
- Results

DIMER MODEL: DEFINITION

▶ Planar, bipartite graph $G = (V = B \cup W, E)$.



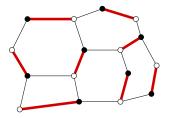
- Dimer configuration M: subset of edges s.t. each vertex is incident to exactly one edge of M → M(G).
- Positive weight function on edges: $v = (v_e)_{e \in E}$.
- ▶ Dimer Boltzmann measure (G finite):

$$\forall\,\mathsf{M}\in\mathcal{M}(\mathsf{G}),\quad \mathbb{P}_{\mathrm{dimer}}(\mathsf{M})=\frac{\prod\limits_{\mathsf{e}\in\mathsf{M}}\nu_{\mathsf{e}}}{Z_{\mathrm{dimer}}(\mathsf{G},\nu)}.$$

where $Z_{\text{dimer}}(G, \nu)$ is the dimer partition function.

DIMER MODEL: DEFINITION

▶ Planar, bipartite graph $G = (V = B \cup W, E)$.



- Dimer configuration M: subset of edges s.t. each vertex is incident to exactly one edge of M → M(G).
- ▶ Positive weight function on edges: $v = (v_e)_{e \in E}$.
- ▶ Dimer Boltzmann measure (G finite):

$$\forall\,\mathsf{M}\in\mathcal{M}(\mathsf{G}),\quad \mathbb{P}_{\mathrm{dimer}}(\mathsf{M})=\frac{\prod\limits_{\mathsf{e}\in\mathsf{M}}\nu_{\mathsf{e}}}{Z_{\mathrm{dimer}}(\mathsf{G},\nu)}.$$

where $Z_{\text{dimer}}(G, v)$ is the dimer partition function.

DIMER MODEL: KASTELEYN MATRIX

- ► Kasteleyn matrix (Percus-Kuperberg version)
 - · Edge $wb \rightsquigarrow$ angle ϕ_{wb} s.t. for every face $w_1, b_1, \dots, w_k, b_k$:

$$\sum_{j=1}^{k} (\phi_{w_j b_j} - \phi_{w_{j+1} b_j}) \equiv (k-1)\pi \mod 2\pi.$$

· K is the corresponding twisted adjacency matrix.

$$\mathsf{K}_{w,b} = \begin{cases} \nu_{wb} e^{i\phi_{wb}} & \text{if } w \sim b \\ 0 & \text{otherwise.} \end{cases}$$

DIMER MODEL: FOUNDING RESULTS

Assume G finite.

THEOREM ([Kasteleyn'61] [Kuperberg'98])

$$Z_{\text{dimer}}(\mathsf{G}, \nu) = |\det(\mathsf{K})|.$$

THEOREM (KENYON'97)

Let $\mathcal{E} = \{e_1 = w_1b_1, \dots, e_n = w_nb_n\}$ be a subset of edges of G, then:

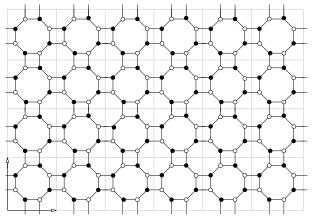
$$\mathbb{P}_{\text{dimer}}(\mathbf{e}_1,\ldots,\mathbf{e}_n) = \left| \left(\prod_{j=1}^n \mathsf{K}_{w_j,b_j} \right) \det(\mathsf{K}^{-1})_{\mathcal{E}} \right|,$$

where $(K^{-1})_{\mathcal{E}}$ is the sub-matrix of K^{-1} whose rows/columns are indexed by black/white vertices of \mathcal{E} .

- ▶ G infinite: Boltzmann measure → Gibbs measure
 - · Periodic case [Cohn-Kenyon-Propp'01], [Ke.-Ok.-Sh.'06]
 - · Non-periodic [dT'07], [Boutillier-dT'10], [B-dT-Raschel'19]

DIMER MODEL: PERIODIC CASE

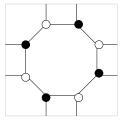
▶ Assume G is bipartite, infinite, \mathbb{Z}^2 -periodic.



▶ Exhaustion of G by toroidal graphs: $(G_n) = (G/n\mathbb{Z}^2)$.

DIMER MODEL: PERIODIC CASE

► Fundamental domain: G₁



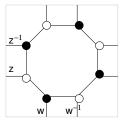
- ▶ Let K_1 be the Kasteleyn matrix of fundamental domain G_1 .
- ▶ Multiply edge-weights by $z, z^{-1}, w, w^{-1} \rightarrow K_1(z, w)$.
- ► The characteristic polynomial is:

$$P(z, w) = \det K_1(z, w).$$

Example: weight function $v \equiv 1$, $P(z, w) = 5 - z - \frac{1}{z} - w - \frac{1}{w}$.

DIMER MODEL: PERIODIC CASE

► Fundamental domain: G₁



- ▶ Let K_1 be the Kasteleyn matrix of fundamental domain G_1 .
- ▶ Multiply edge-weights by $z, z^{-1}, w, w^{-1} \rightarrow K_1(z, w)$.
- ► The characteristic polynomial is:

$$P(z, w) = \det K_1(z, w).$$

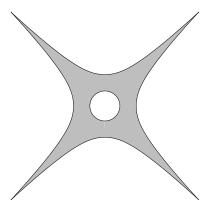
Example: weight function $v \equiv 1$, $P(z, w) = 5 - z - \frac{1}{z} - w - \frac{1}{w}$.

DIMER MODEL: SPECTRAL CURVE

► The spectral curve:

$$\mathcal{C} = \{ (z, w) \in (\mathbb{C}^*)^2 : P(z, w) = 0 \}.$$

▶ Amoeba: image of \mathcal{C} through the map $(z, w) \mapsto (\log |z|, \log |w|)$.



Amoeba of the square-octagon graph

DIMER MODEL AND HARNACK CURVES

THEOREMS

- ► Spectral curves of bipartite dimers

 [Ke.-Ok.-Sh.'06] [Ke.-Ok.'06] Harnack curves with points on ovals.
- ► Spectral curves of isoradial, bipartite dimer models with critical weights [Kenyon '02] \longleftrightarrow Harnack curves of genus 0.
- ► Spectral curves of minimal, bipartite dimers (Goncharov-Renyon 13)
 Harnack curves with points on ovals.

 Explicit (→) map
- ► [Fock'15] Explicit (←) map for all algebraic curves. (no check on positivity).

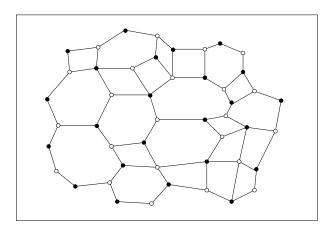
DIMER MODEL AND HARNACK CURVES OF GENUS I

THEOREM ([BOUTILLIER-DT-CIMASONI'20+])

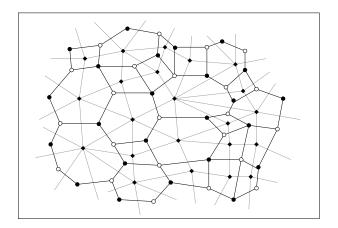
Spectral curves of minimal, bipartite dimer models with Fock's weights

Harnack curves of genus 1 with a point on the oval.

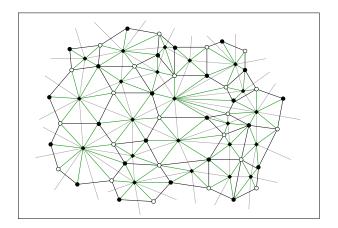
- ► Infinite, planar, embedded graph G; embedded dual graph G*.
- ► Corresponding quad-graph G°, train-tracks.



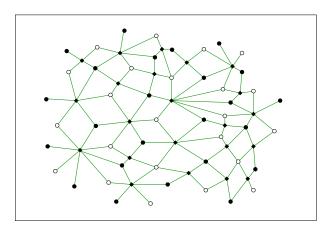
- ► Infinite, planar, embedded graph G; embedded dual graph G*.
- ► Corresponding quad-graph G[⋄], train-tracks.



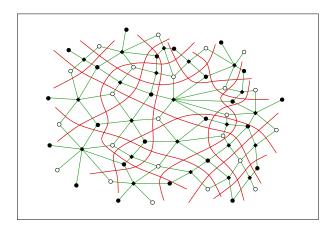
- ► Infinite, planar, embedded graph G; embedded dual graph G*.
- ► Corresponding quad-graph G[⋄], train-tracks.



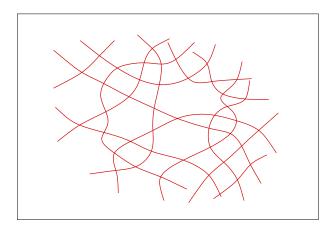
- ► Infinite, planar, embedded graph G; embedded dual graph G*.
- ► Corresponding quad-graph G[⋄], train-tracks.



- ► Infinite, planar, embedded graph G; embedded dual graph G*.
- ► Corresponding quad-graph G[⋄], train-tracks.



- ► Infinite, planar, embedded graph G; embedded dual graph G*.
- ► Corresponding quad-graph G[⋄], train-tracks.



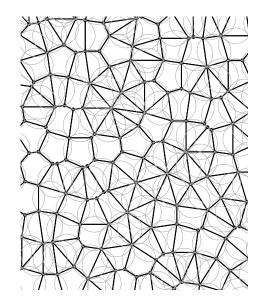
ISORADIAL GRAPHS

- ▶ An isoradial embedding of an infinite, planar graph G is an embedding such that all of its faces are inscribed in a circle of radius 1, and such that the center of the circles are in the interior of the faces [Duffin] [Mercat] [Kenyon].
- ► Equivalent to: the quad-graph G[⋄] is embedded so that of all its faces are rhombi.

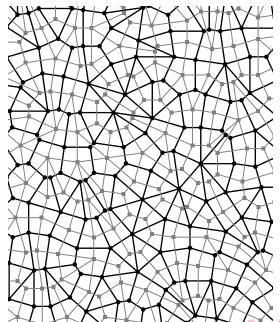
THEOREM (KENYON-SCHLENCKER'04)

An infinite planar graph G has an isoradial embedding iff

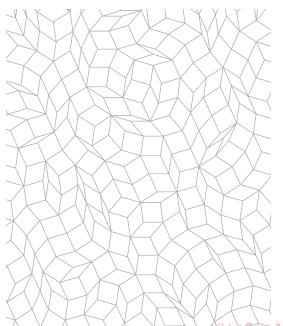
ISORADIAL EMBEDDINGS



ISORADIAL EMBEDDINGS

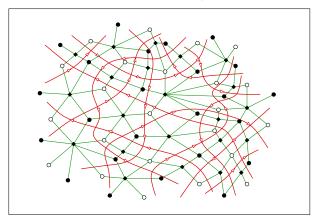


ISORADIAL EMBEDDINGS



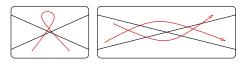
MINIMAL GRAPHS

► If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right).



MINIMAL GRAPHS

- ► If the graph G is bipartite, train-tracks are naturally oriented (white vertex of the left, black on the right).
- A bipartite, planar graph G is minimal if



[Thurston'04] [Gulotta'08] [Ishii-Ueda'11] [Goncharov-Kenyon'13]

IMMERSIONS OF MINIMAL GRAPHS

- ightharpoonup A minimal isoradial immersion of an infinite planar graph G is an immersion of the quadgraph G^{\diamond} such that:
 - · all of the faces are rhombi (flat or reversed)

· the immersion is flat: the sum of the rhombus angles around every vertex and every face is equal to 2π .

Proposition (Boutillier-dT-Cimasoni'19)

The flatness condition is equivalent to:

- · around every vertex there is at most one reversed rhombus
- around every face, the cyclic order of the vertices differ by at most disjoint transpositions in the embedding and in the immersion.

THEOREM (BOUTILLIER-DT-CIMASONI'19)

An infinite, planar, bipartite graph G has a minimal isoradial immersion iff it is minimal.

DIMER VERSION OF FOCK'S WEIGHTS

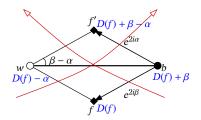
- ► Tool 1. Jacobi's (first) theta function.
 - · Parameter $q = e^{i\pi\tau}$, $\Im(\tau) > 0$, $\Lambda(q) = \pi \mathbb{Z} + \pi \tau \mathbb{Z}$, $\mathbb{T}(q) = \mathbb{C}/\Lambda$.

$$\theta(z) = 2q^{\frac{1}{4}} \sum_{n=0}^{\infty} (-1)^n q^{n(n+1)} \sin(2n+1)z.$$

- · Allows to represent $\Lambda(q)$ -periodic meromorphic functions.
- $\theta(z) \sim 2q^{\frac{1}{4}}\sin(z)$ as $q \to 0$.
- ► Tool 2. Isoradially immersed, bipartite, minimal graph G.
 - each train-track T is assigned direction $e^{i2\alpha_T}$.
 - · each edge e=wb is assigned train-track directions $e^{2i\alpha}, e^{2i\beta}$, and a half-angle $\beta-\alpha\in[0,\pi)$.

DIMER VERSION OF FOCK'S ADJACENCY MATRIX

- ► Tool 3. Discrete Abel map [Fock] $D \in (\mathbb{R}/\pi\mathbb{Z})^{V(G^{\circ})}$
 - Fix face f_0 and set $D(f_0) = 0$,
 - · o: degree -1, •: degree 1, faces: degree 0,
 - · when crossing T: increase/decrease D by α_T accordingly.



- Point $t \in \frac{\pi}{2}\tau + \mathbb{R}$.
- ► Fock's adjacency matrix

$$\mathsf{K}_{w,b}^{(t)} = \begin{cases} \frac{\theta(\beta - \alpha)}{\theta(t + D(b) - \beta)\theta(t + D(w) - \alpha)} & \text{if } w \sim b \\ 0 & \text{otherwise.} \end{cases}$$

DIMER VERSION OF FOCK'S ADJACENCY MATRIX

Lemma ([Boutillier-dT-Cimasoni'20+])

Under the above assumptions, the matrix $K^{(t)}$ is a Kasteleyn matrix for a dimer model (positive weights) on G.

Functions in the Kernel of $K^{(t)}$

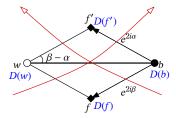
- ▶ Define $g^{(t)}: V^{\diamond} \times V^{\diamond} \times \mathbb{C} \to \mathbb{C}$
 - $\cdot g_{x,x}^{(t)}(u) = 1,$

· If
$$f \sim w$$
, $g_{f,w}^{(t)}(u) = g_{w,f}^{(t)}(u)^{-1} = \frac{\theta(u+t+D(w))}{\theta(u-\alpha)}$,

· If
$$f \sim b$$
, $g_{b,f}^{(t)}(u) = g_{f,b}^{(t)}(u)^{-1} = \frac{\theta(u - t - D(b))}{\theta(u - \alpha)}$,

where $e^{2i\alpha}$ is the direction of the tt crossing the edge.

• If distance ≥ 2 , take product along path in G° .



Property of the function $g^{(t)}$

Lemma ([Fock'15] [Boutillier-dT-Cimasoni'20+])

- The function $g^{(t)}$ is well defined.
- The function $g^{(t)}$ is in the kernel of $K^{(t)}$:

$$\forall w \in \mathbf{W}, x \in \mathbf{V}^{\diamond}, \quad \sum_{b:b \sim w} \mathsf{K}_{w,b}^{(t)} g_{b,x}^{(t)}(u) = 0.$$

Proof.

Weierstrass identity: $s, t \in \mathbb{T}(q), a, b, c \in \mathbb{C}$,

$$\begin{split} &\frac{\theta(b-a)}{\theta(s-a)\theta(s-b)}\frac{\theta(u+s-a-b)}{\theta(u-a)\theta(u-b)} + \frac{\theta(c-b)}{\theta(s-b)\theta(s-c)}\frac{\theta(u+s-b-c)}{\theta(u-b)\theta(u-c)} + \\ &+ \frac{\theta(a-c)}{\theta(s-c)\theta(s-a)}\frac{\theta(u+s-c-a)}{\theta(u-c)\theta(u-a)} = 0. \end{split}$$

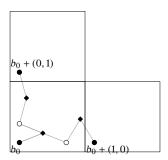
EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

▶ Assume G is \mathbb{Z}^2 -periodic. Define the map ψ ,

$$\psi : \mathbb{T}(q) \to \mathbb{C}^2$$

 $u \mapsto \psi(u) = (\mathsf{z}(u), \mathsf{w}(u))$

where
$$z(u) = g_{b_0,b_0+(1,0)}^{(t)}(u)$$
, $w(u) = g_{b_0,b_0+(0,1)}^{(t)}(u)$.



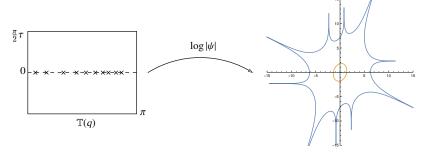
EXPLICIT PARAMETERIZATION OF THE SPECTRAL CURVE

Proposition ([B-dT-C'20+])

The map ψ is an explicit birational parameterization of the spectral curve \mathbb{C} of the dimer model with Kasteleyn matrix $K^{(t)}$.

The real locus of \mathbb{C} is the image under ψ of the set $\mathbb{R}/\pi\mathbb{Z} \times \{0, \frac{\pi}{2}\tau\}$, where the connected component with ordinate $\frac{\pi}{2}\tau$ is bounded and the other is not.

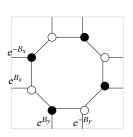
(The spectral curve is independent of t).

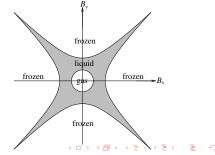


GIBBS MEASURES FOR BIPARTITE DIMER MODELS

THEOREMS (KENYON-OKOUNKOV-SHEFFIELD'06)

- The dimer model on a \mathbb{Z}^2 -periodic, bipartite graph has a two-parameter family of ergodic Gibbs measures indexed by the slope (h, v), i.e., by the average horizontal/vertical height change.
- · The latter are obtained as weak limits of Boltzmann measures with magnetic field coordinates (B_x, B_y) .
- · The phase diagram is given by the amoeba of the spectral curve C.





Local expression for Gibbs measures, genus i

Suppose *t* fixed. Omit it from the notation.

THEOREM (BOUTILLIER-DT-CIMASONI'20+)

The 2-parameter set of EGM of the dimer model with Kasteleyn matrix K is $(\mathbb{P}^{u_0})_{u_0 \in D}$, where \forall subset of edges $\mathcal{E} = \{e_1 = w_1b_1, \dots, e_n = w_nb_n\}$,

$$\mathbb{P}^{u_0}(e_1,\ldots,e_n) = \left(\prod_{j=1}^n \mathsf{K}_{w_j,b_j}\right) \det(\mathsf{A}^{u_0})_{\mathcal{E}},\,$$

where
$$\forall b \in \mathsf{B}, \ w \in \mathsf{W}, \quad \mathsf{A}_{b,w}^{u_0} = \frac{i\theta'(0)}{2\pi} \int_{\mathsf{C}_{b,w}^{u_0}} g_{b,w}(u) du.$$

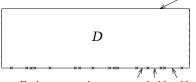
Moreover, when u_0

- is the unique point corresponding to the top boundary of D, the dimer model is gaseous,
- \cdot is in the interior of D, the dimer model is liquid,
- · is a point corresponding to a cc of the lower boundary, the model is solid.

Local expressions for ergodic Gibbs measures, genus i

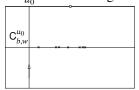
▶ Domain *D*.

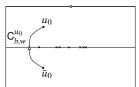
Top boundary identified with a single point

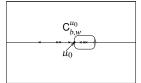


Each connected component is identified with a single point

Contours of integration.







COROLLARY

The slope of the Gibbs measure \mathbb{P}^{u_0} is:

$$h^{u_0} = \frac{1}{2\pi i} \int_{\mathbf{C}^{u_0}} \frac{d}{du} (\log \mathbf{w}(u)) du, \quad v^{u_0} = \frac{1}{2\pi i} \int_{\mathbf{C}^{u_0}} \frac{d}{du} (\log \mathbf{z}(u)) du.$$

IDEA OF THE PROOF

▶ Proof 1. Using [C-K-P], [K-O-S] the Gibbs measure \mathbb{P}^B with magnetic field coordinates $B = (B_x, B_y)$ has the following expression on cylinder sets:

$$\mathbb{P}^{(B_x,B_y)}(e_1,\ldots,e_k) = \left(\prod_{j=1}^k \mathsf{K}_{w_j,b_j}\right) \det(\mathsf{A}^B)_{\mathcal{E}},$$

where

$$\mathbf{A}_{b+(m,n),\mathbf{w}}^B = \int_{\mathbb{T}_B} \frac{Q(\mathsf{z},\mathsf{w})_{b,\mathbf{w}}}{P(\mathsf{z},\mathsf{w})} \mathsf{z}^{-m} \mathsf{w}^{-n} \frac{d\mathsf{w}}{2i\pi\mathsf{w}} \frac{d\mathsf{z}}{2i\pi\mathsf{z}},$$

- · Perform one integral by residues.
- · Do the change of variable $u \mapsto \psi(u) = (\mathsf{z}(u), \mathsf{w}(u))$.
- · Non-trivial cancellation!

IDEA OF THE PROOF

- ▶ Proof 2. Show that for every u_0 , A^{u_0} is an inverse of K.
 - · Use Weierstrass identity.
 - · Show that the contours of integration are such that one has 1 on the diagonal.

Use uniqueness statements of inverse operators.

Consequences

- ► Suitable for asymptotics.
- Explicit local expressions for edge probabilites.

Connection to previous work

- ► Genus 0. [Kenyon'02].
- ► Genus 1. Two specific cases were handled before:
 - the bipartite graph arising from the Ising model [Boutillier-dT-Raschel'20]
 - the $Z^{(t)}$ -Dirac operator [dT'18] \leadsto massive discrete holomorphic functions.

Perspectives

- ▶ 2-parameter family of Gibbs measures for non-periodic graphs. Missing: every finite, simply connected subgraph of an isoradial immersion can be embedded in a bipartite, Z²-periodic isoradial immersion.
- Extension to genus g > 1.
 - · [Fock] gives a candidate for the dimer model.
 - · Weierstrass identity \leadsto Fay's trisecant identity.