Growth Fragmentations, Brownian Motion and Random Geometry

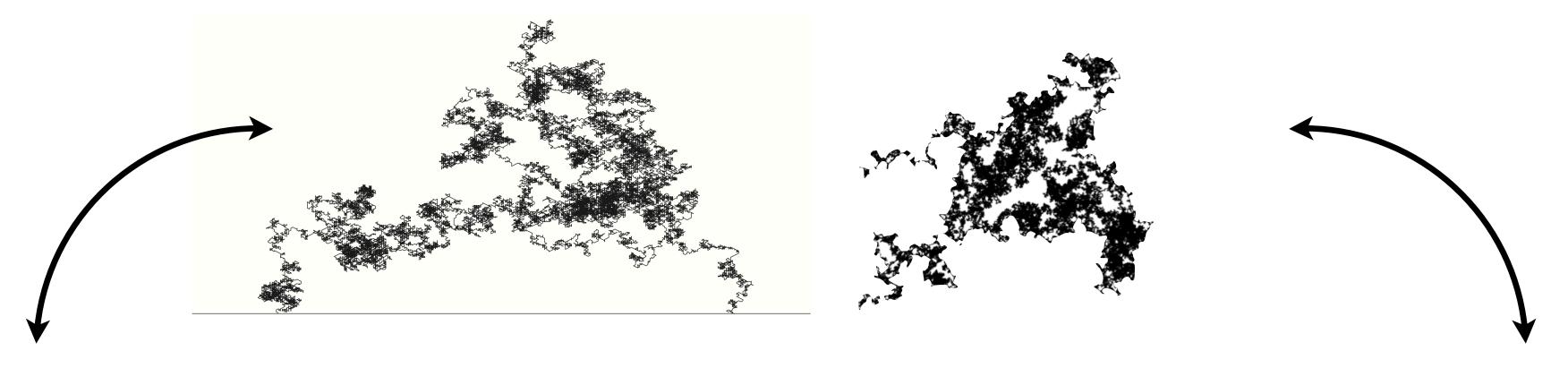
Les Diablerets, February 2023

Ellen Powell, Durham University.

Based on joint work with Juhan Aru, Nina Holden, Xin Sun

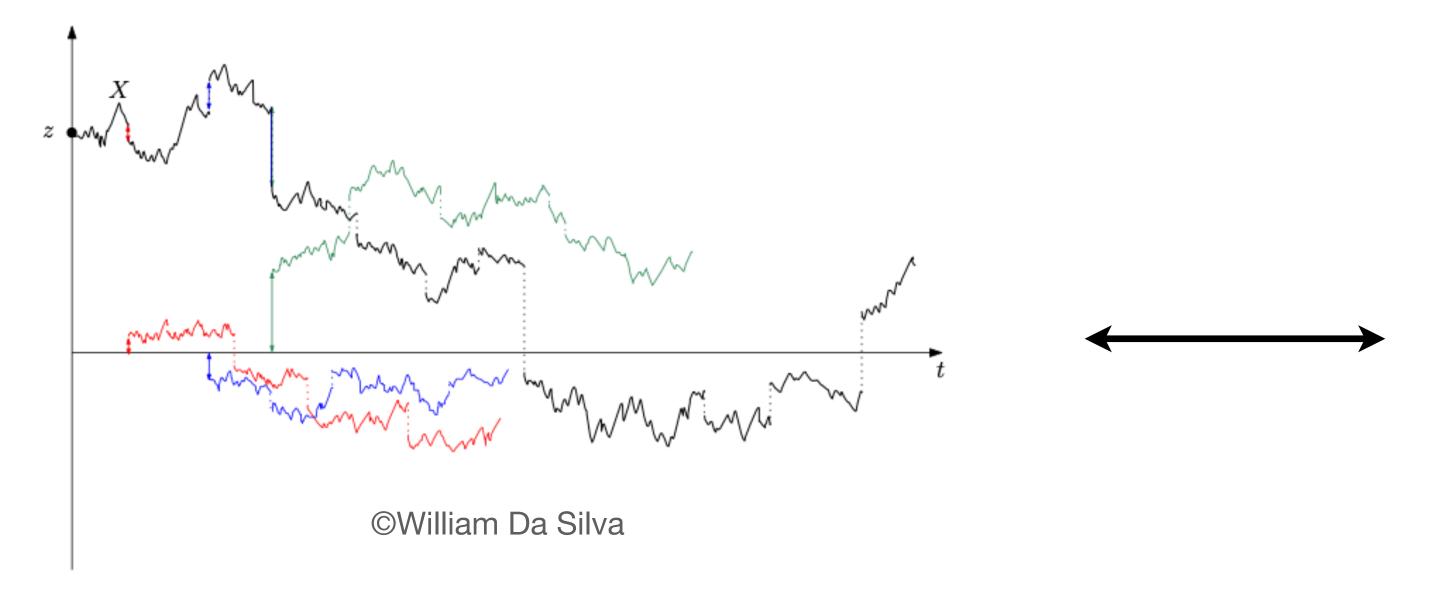
Planar Brownian Excursions

Aim

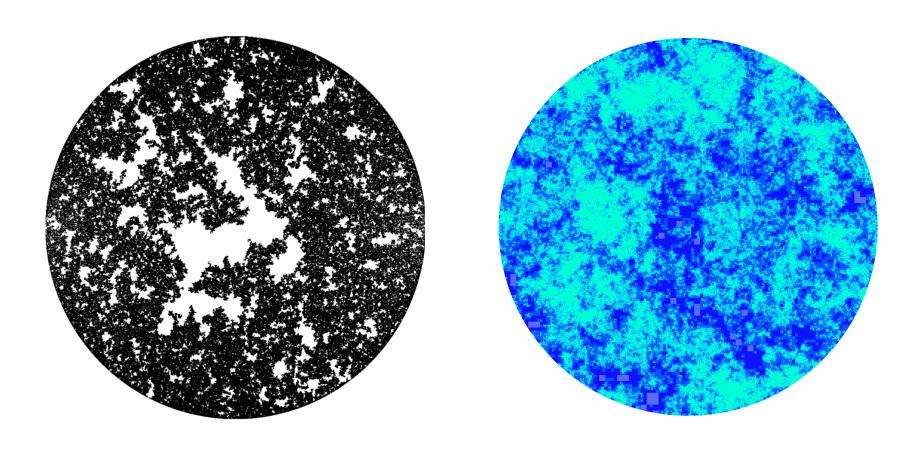


©Wendelin Werner - Jason Miller

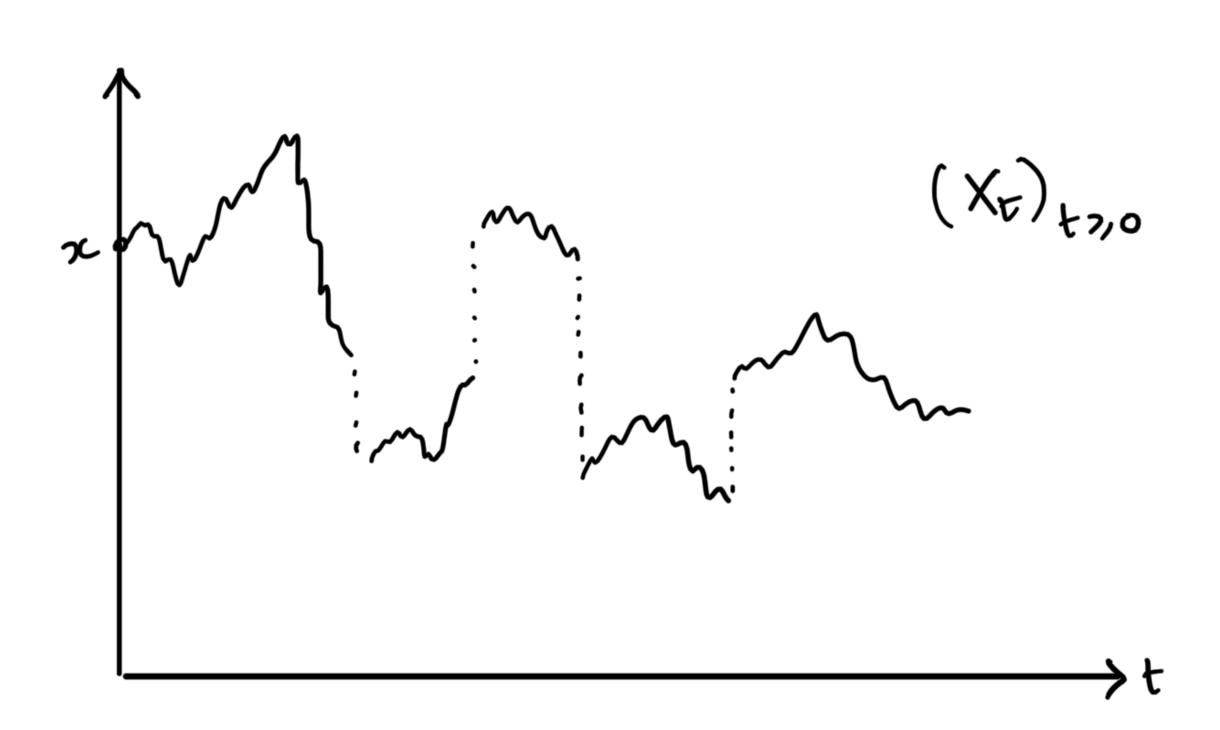
Growth Fragmentations



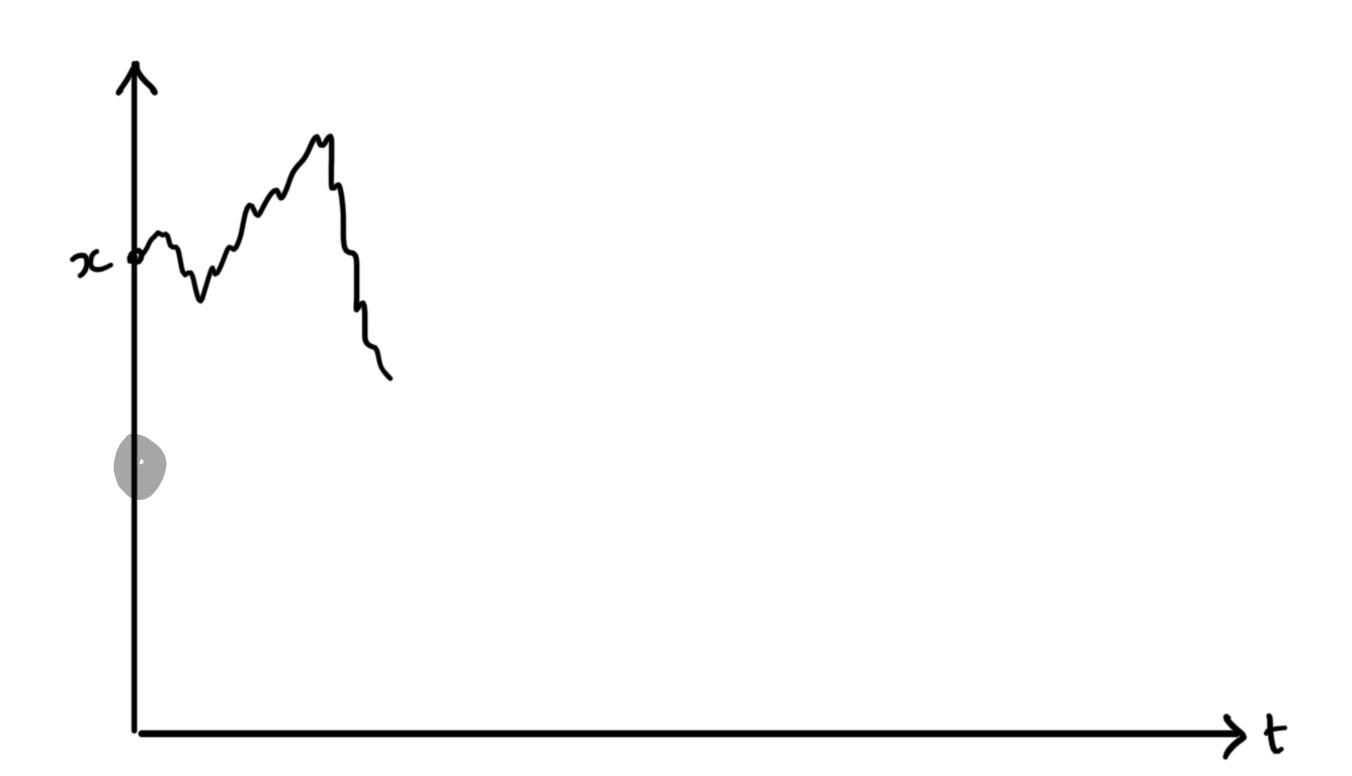
Gaussian Multiplicative Chaos & Conformal Loop Ensembles



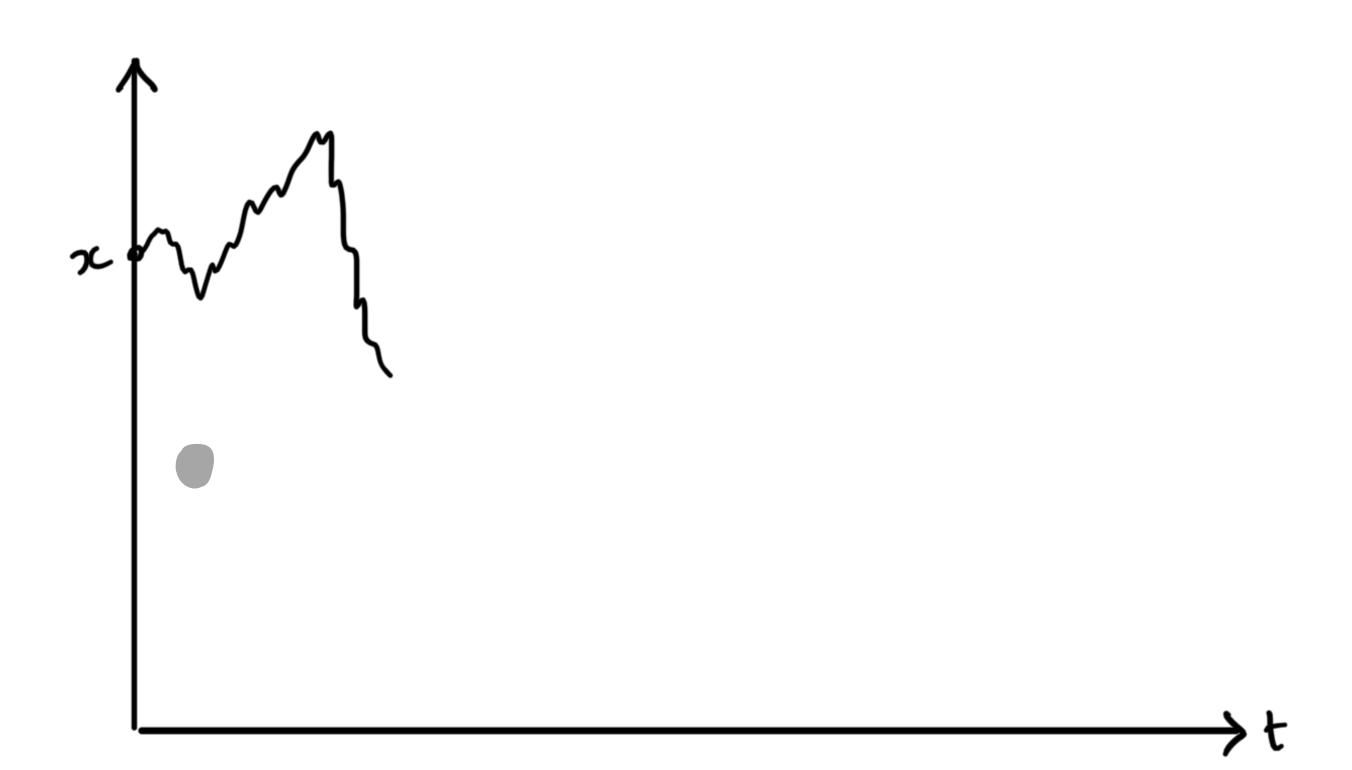
- X = positive self-similar Markov process, some initial value x
- E.g. Stable Lévy process conditioned to be die continuously at 0



- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}

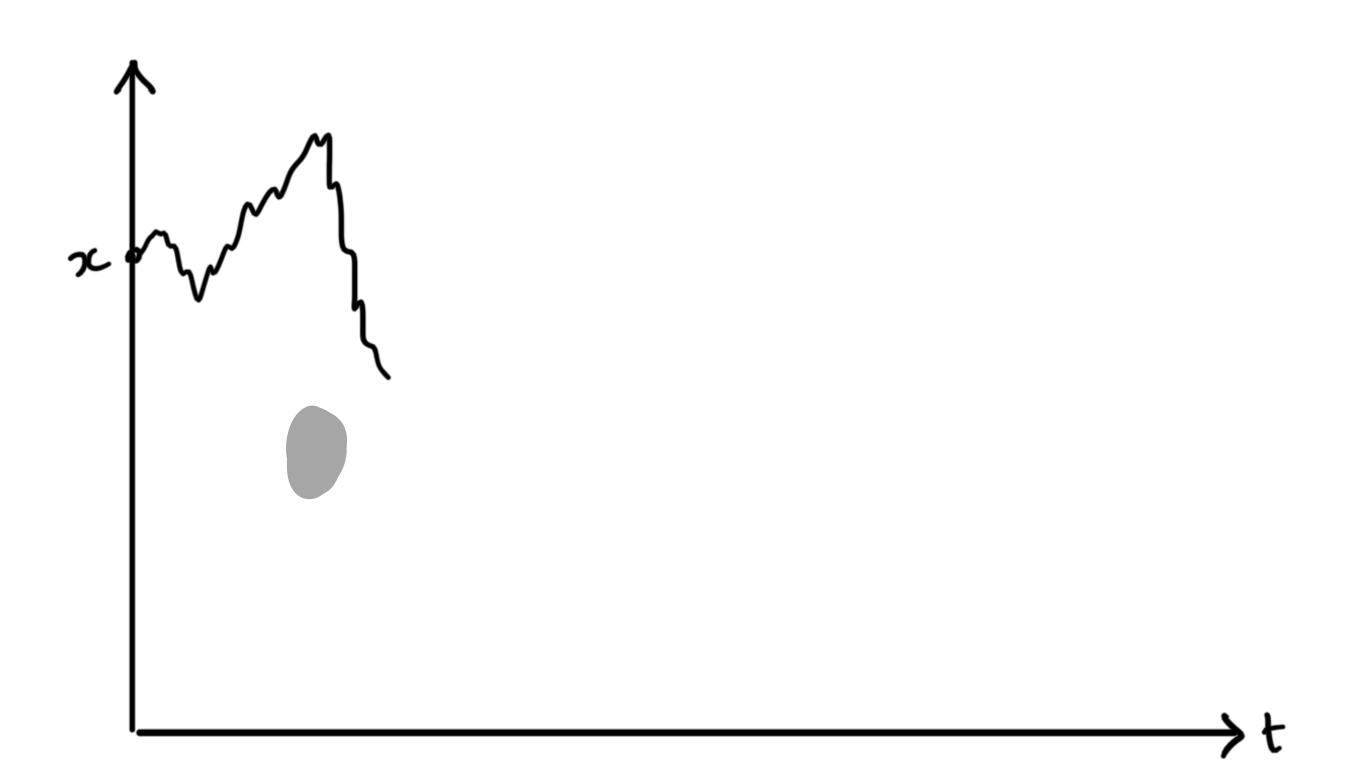


- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}



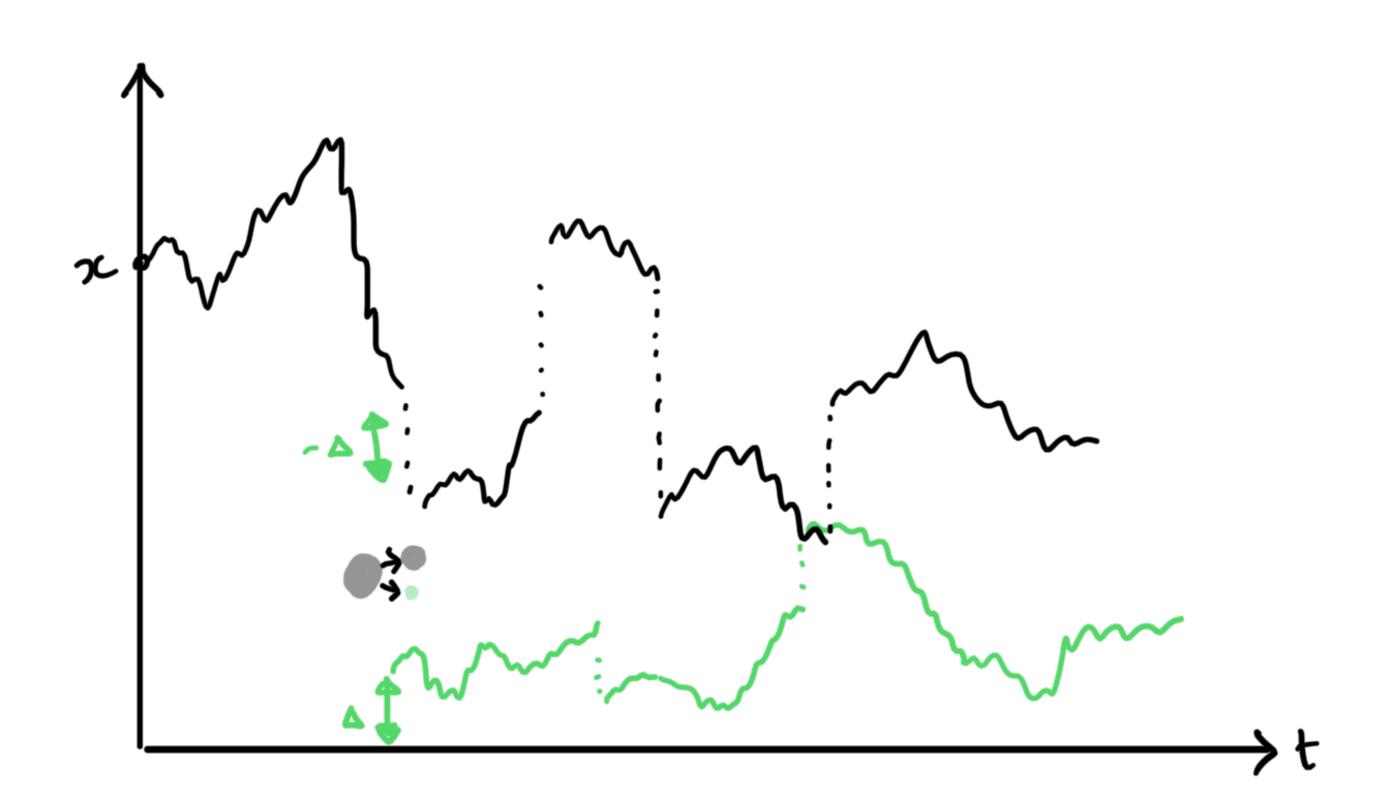
- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}

- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}

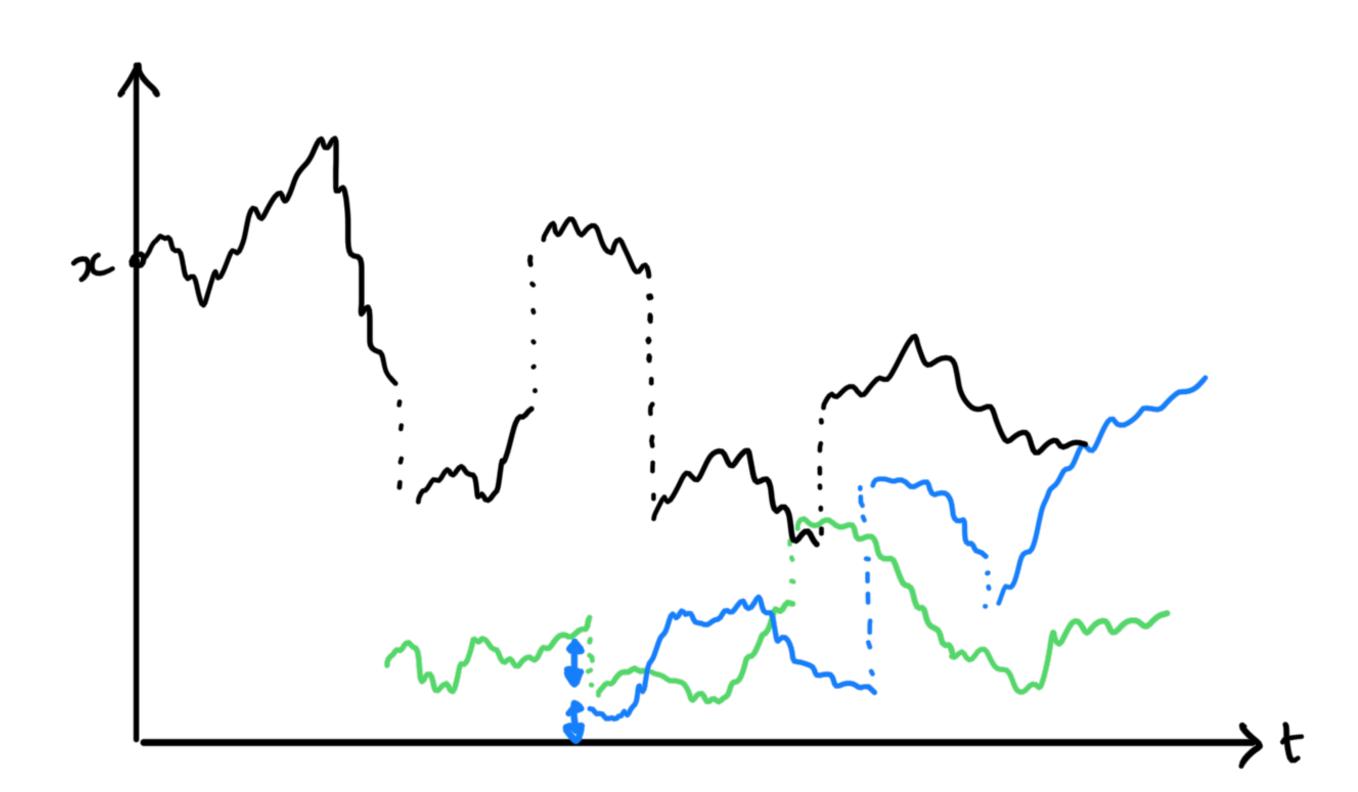


- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}

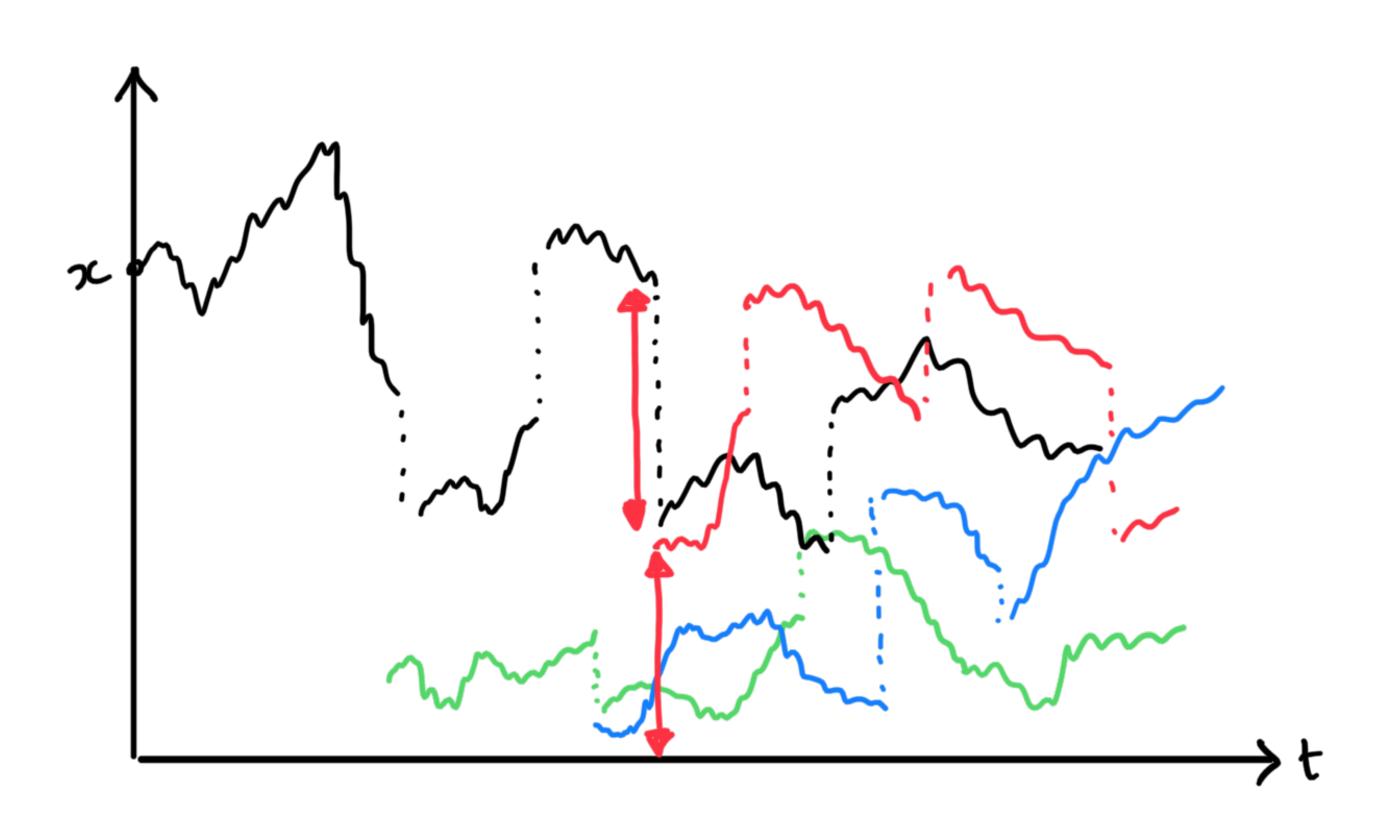
- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}
- Fragmentation: negative jump Δ of $X \sim$ new particle with initial size Δ , then evolves independently under same law as X (mass is conserved)



- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- Iterates

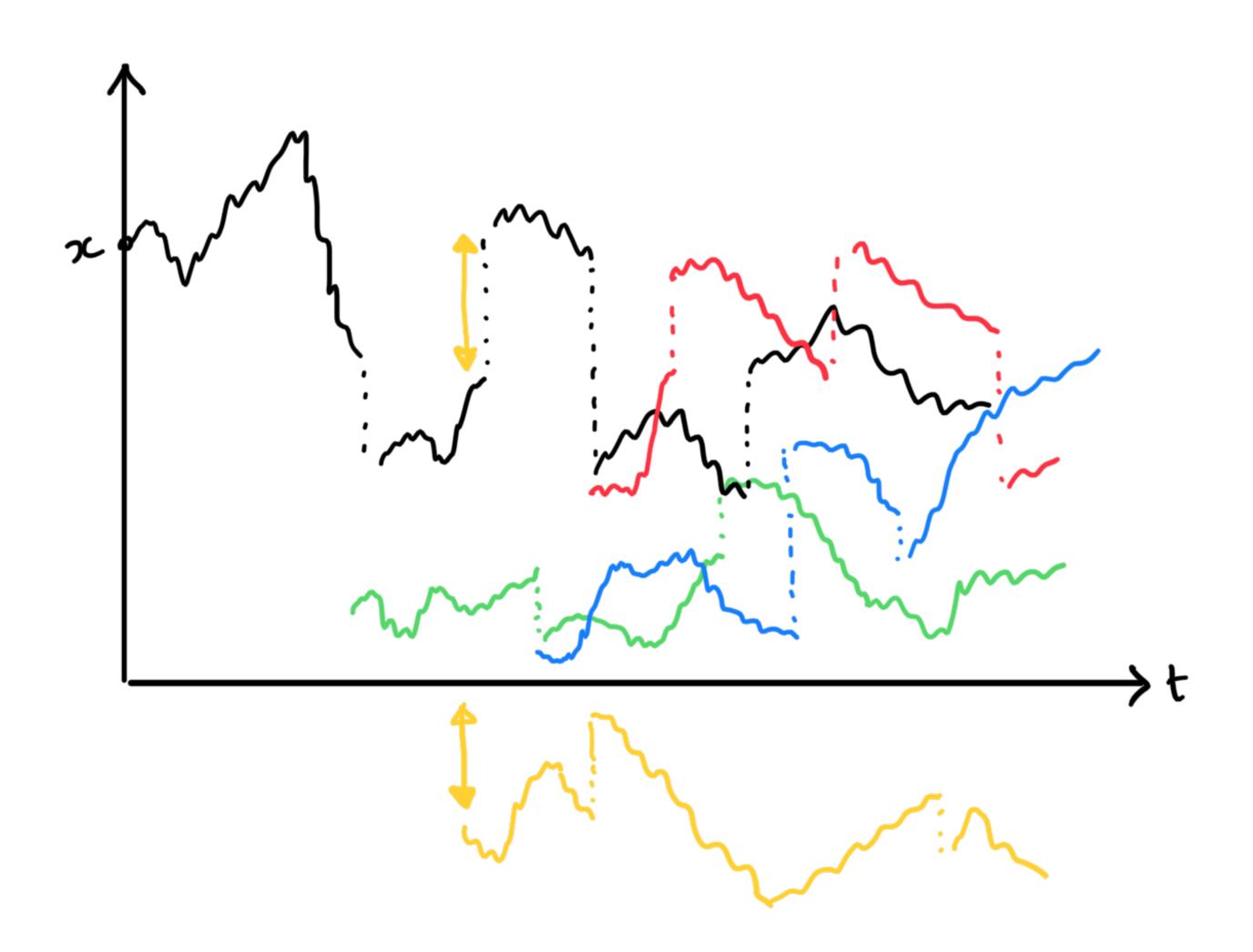


- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- Iterates



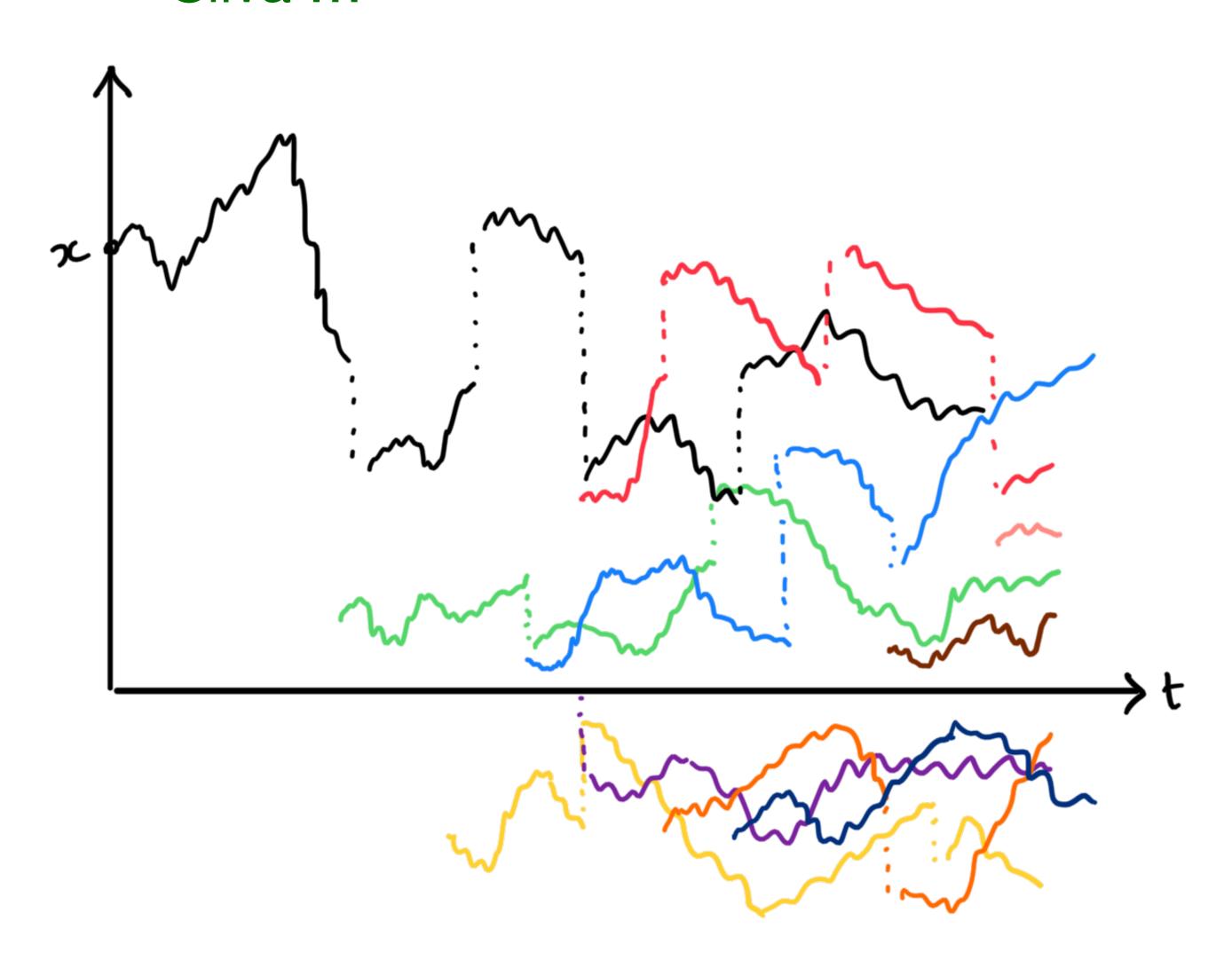
- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- Signed version: positive jumps

 ~ new particles of negative mass



- X = positive self-similar Markov process, some initial value x
- Growth (or shrinking) of cells: evolution of \boldsymbol{X}
- Fragmentation: negative jump Δ of $X \leadsto$ new particle with initial size Δ
- At time $t \ge 0$, system = collection of particles with (signed) masses

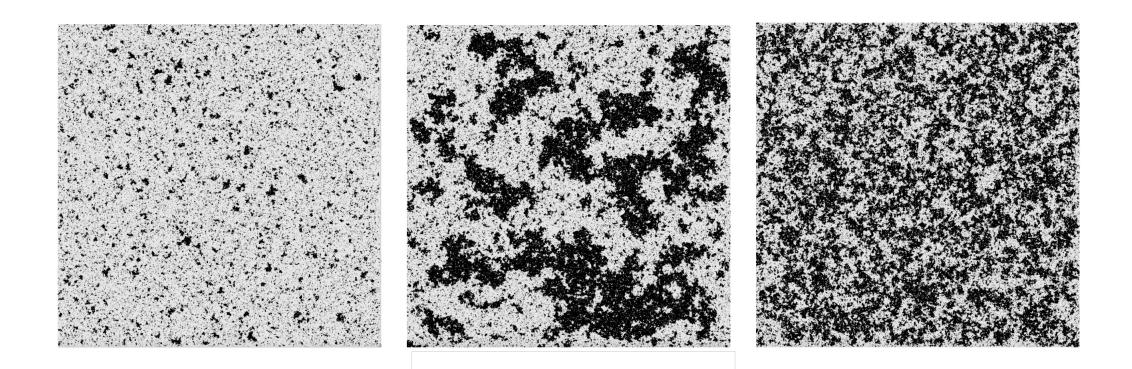
Bertoin, Bertoin-Budd-Curien-Kortchemski, Aïdékon-Da Silva, Da Silva ...



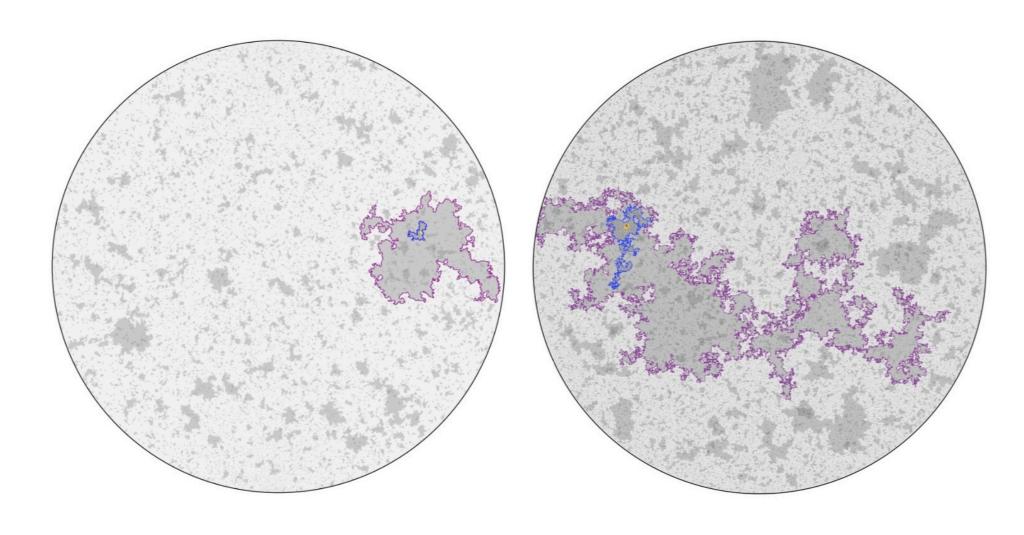
Conformal Loop Ensembles

• Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield-Werner)

- Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield—Werner)
- (Conjectured) scaling limit of interfaces in discrete models
- CLE₃ (top, bottom left): Chelkak—
 Duminil-Copin—Hongler—Smirnov,
 Benoist—Hongler

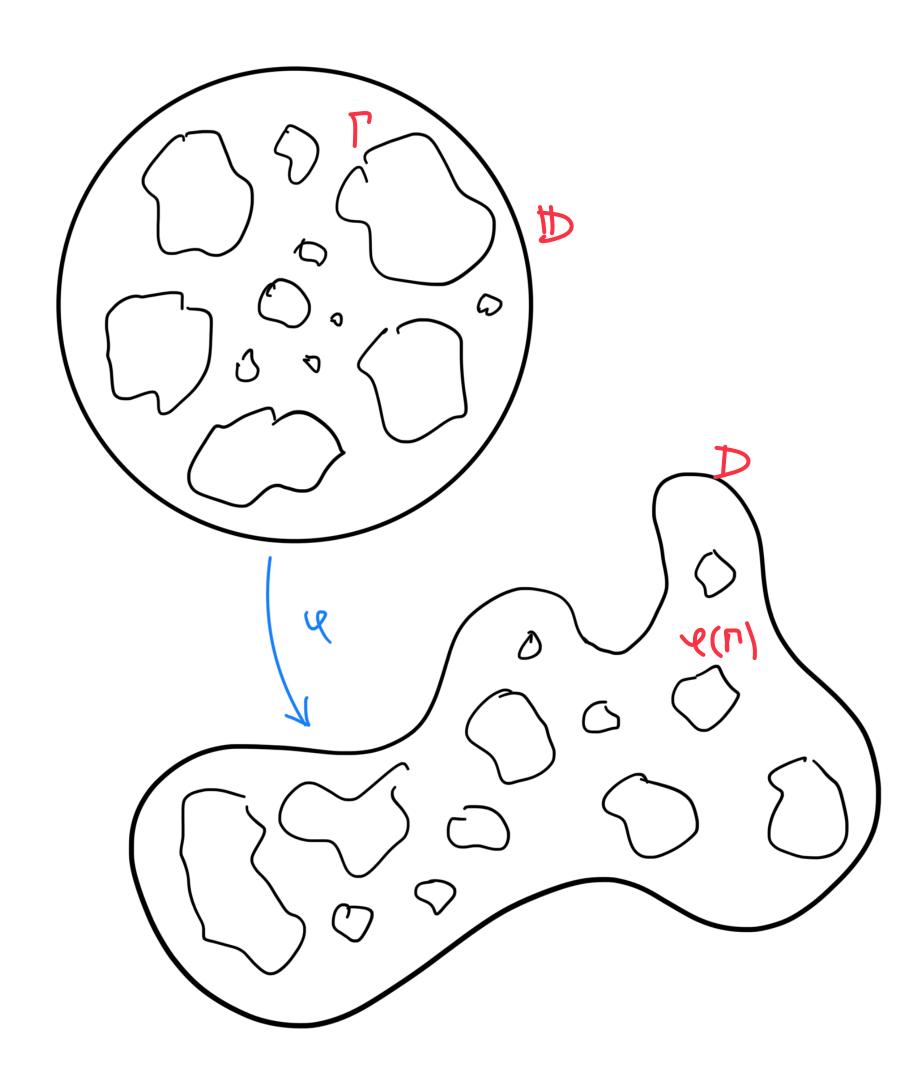


©Raphaël Cerf

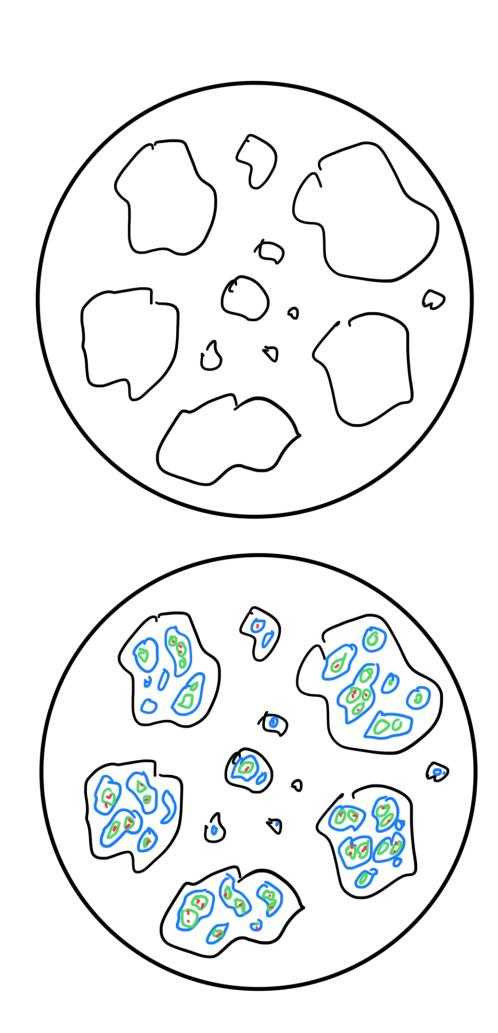


©Miller-Watson-Wilson

- Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield-Werner)
- (Conjectured) scaling limit of interfaces in discrete models
- Conformally invariant
- $\Gamma \stackrel{(d)}{=} CLE_{\kappa} in D \Rightarrow \varphi(\Gamma) \stackrel{(d)}{=} CLE_{\kappa} in D'$



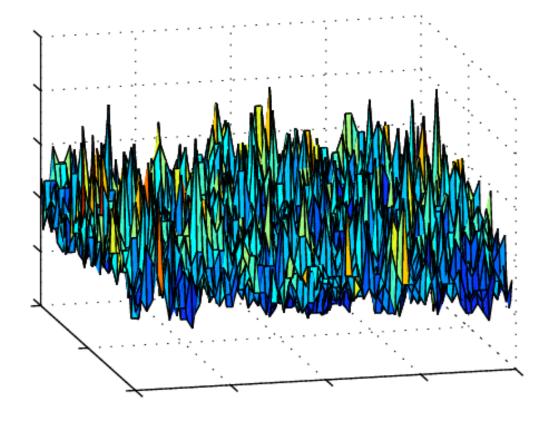
- Simple CLE_{κ} = random collection of disjoint simple loops in a simply connected domain of \mathbb{C} , introduced by (Sheffield-Werner)
- (Conjectured) scaling limit of interfaces in discrete models
- Conformally invariant
- Nested version defined by iteration

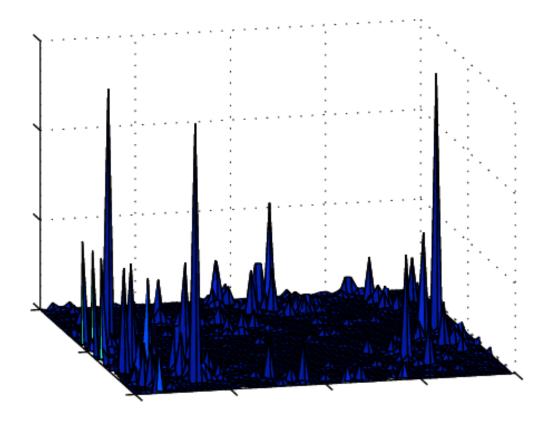


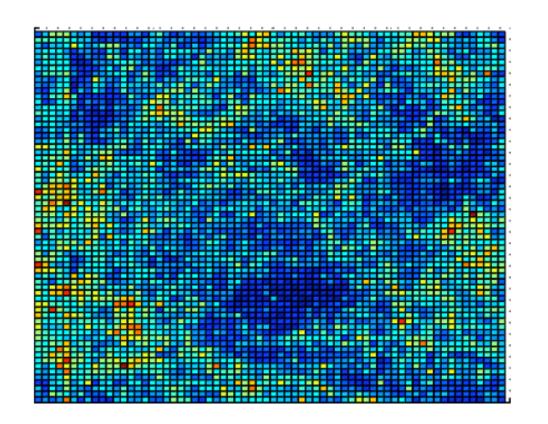
Gaussian Multiplicative Chaos

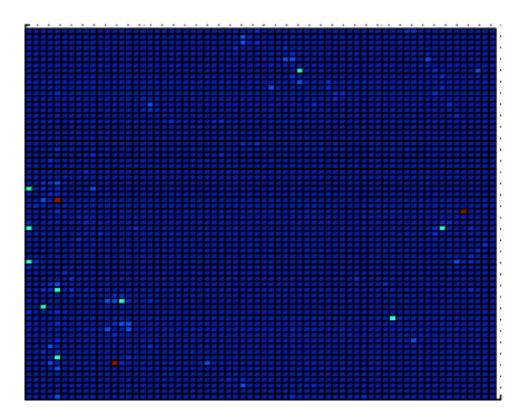
Gaussian Multiplicative Chaos/ Liouville Quantum Gravity

- Family of measures on $D \subset \mathbb{R}^d$,
- Parameter $\gamma \in (0, \sqrt{2d})$
- $\mu_{\gamma}(dx)$ " = " $\exp(\gamma h(x))\,dx$, h a Gaussian log-correlated field on D



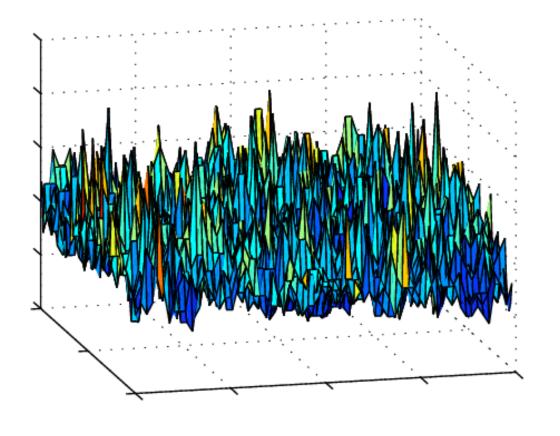


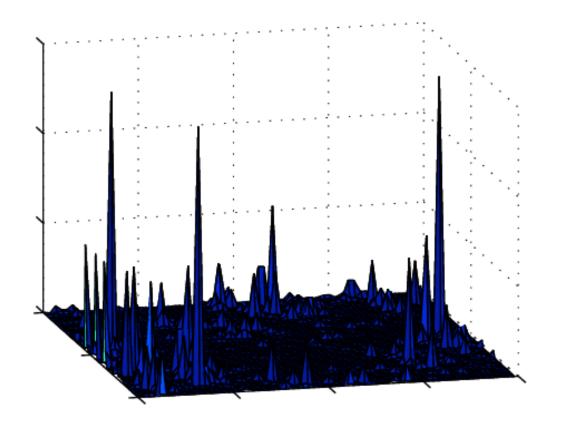


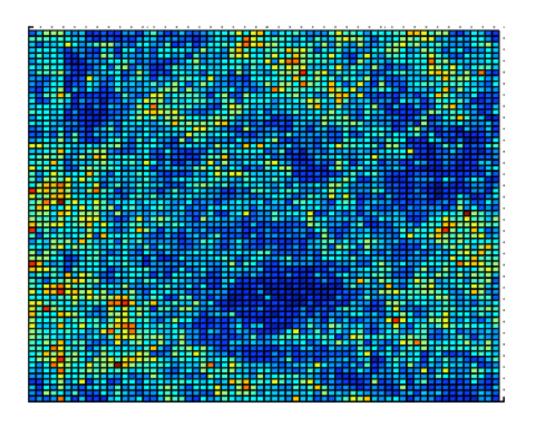


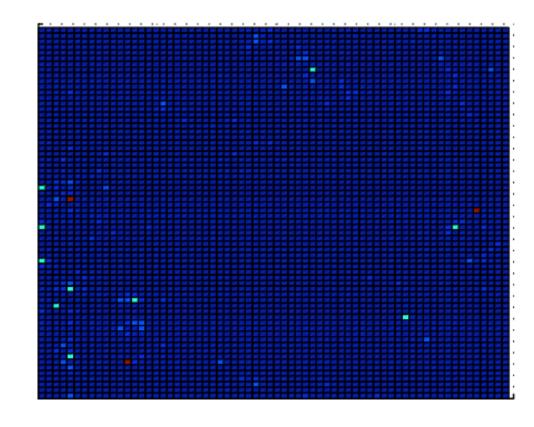
Gaussian Multiplicative Chaos/ Liouville Quantum Gravity

- Family of measures on $D \subset \mathbb{R}^d$,
- Parameter $\gamma \in (0, \sqrt{2d})$
- $\mu_{\gamma}(dx)$ " = " $\exp(\gamma h(x))\,dx$, h a Gaussian log-correlated field on D
- Constructed by regularisation
- Defines areas of regions and lengths of (some) curves (Kahane, Duplantier-Sheffield, Robert-Vargas, Rhodes-Vargas, Berestycki, Shamov, Junnila-Saksman ...)





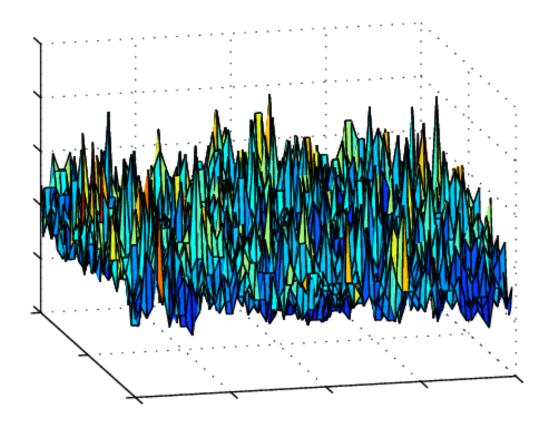


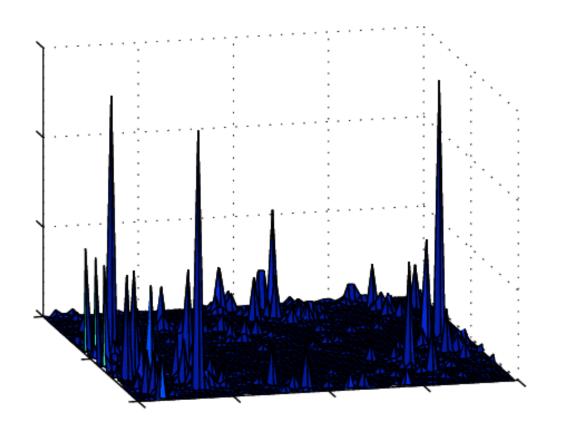


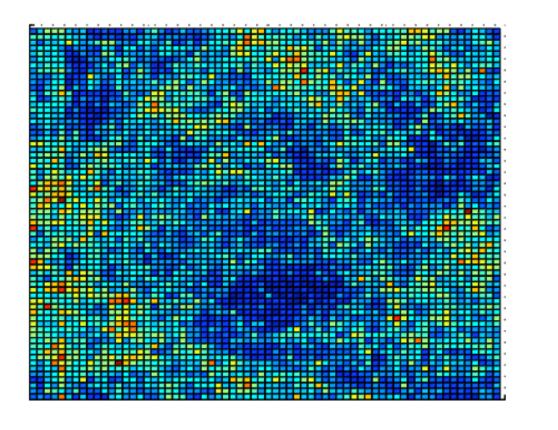
©Remi Rhodes-Vincent Vargas

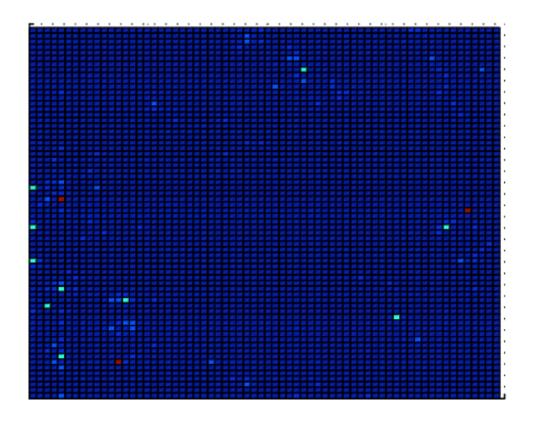
Gaussian Multiplicative Chaos/Liouville Quantum Gravity

- Family of measures on $D \subset \mathbb{R}^2$,
- Parameter $\gamma \in (0,2)$
- $\mu_{\gamma}(dx)$ " = " $\exp(\gamma h(x)) dx$, with h a Gaussian free field on D
- Constructed by regularisation
- Defines areas of regions and lengths of (some) curves (Kahane, Duplantier-Sheffield, Robert-Vargas, Rhodes-Vargas, Berestycki, Shamov, Junnila-Saksman ...)









©Remi Rhodes-Vincent Vargas

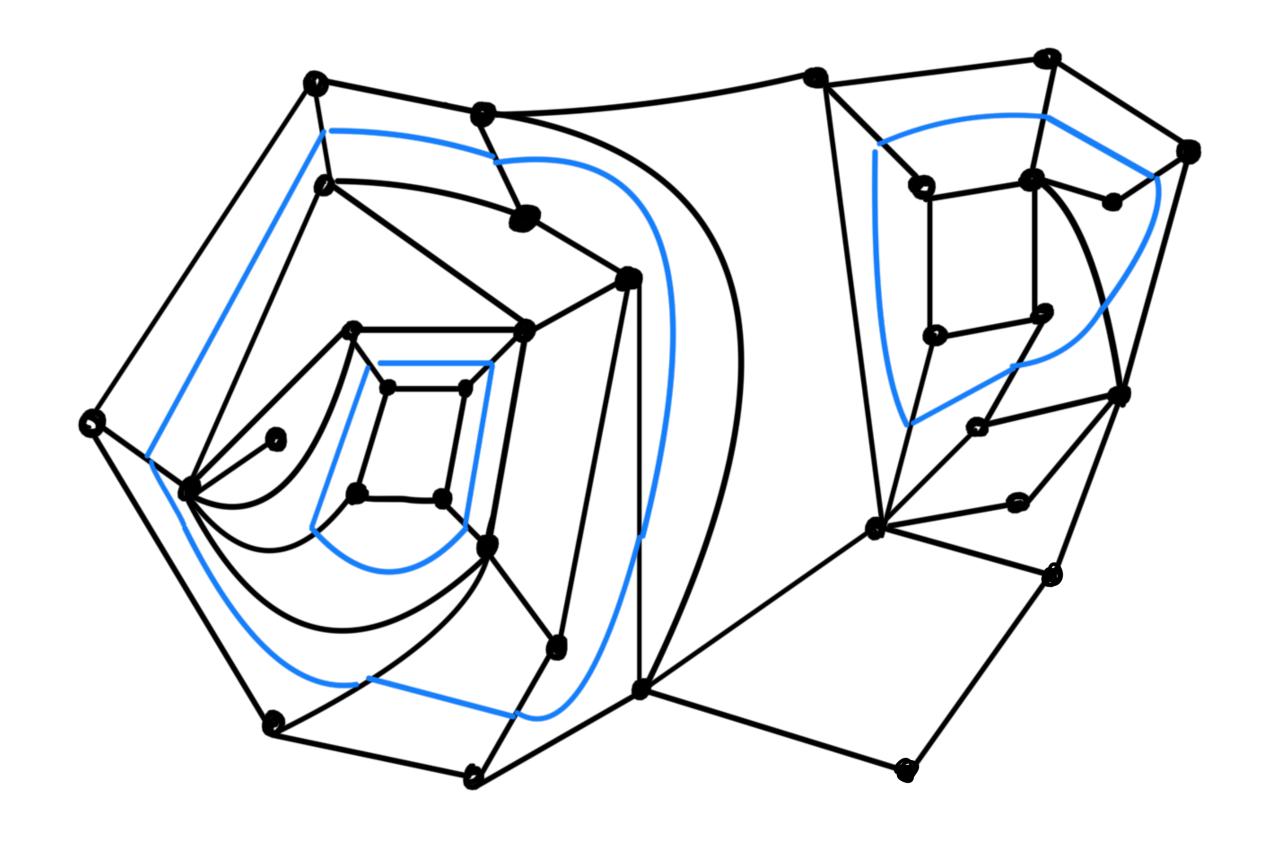
Loops and Chaos

Growth Fragmentations and Random Quadrangulations

• Example: O(n) model of random quadrangulation with fixed perimeter p plus loops

(q, l)

Borot-Bouttier-Guittier

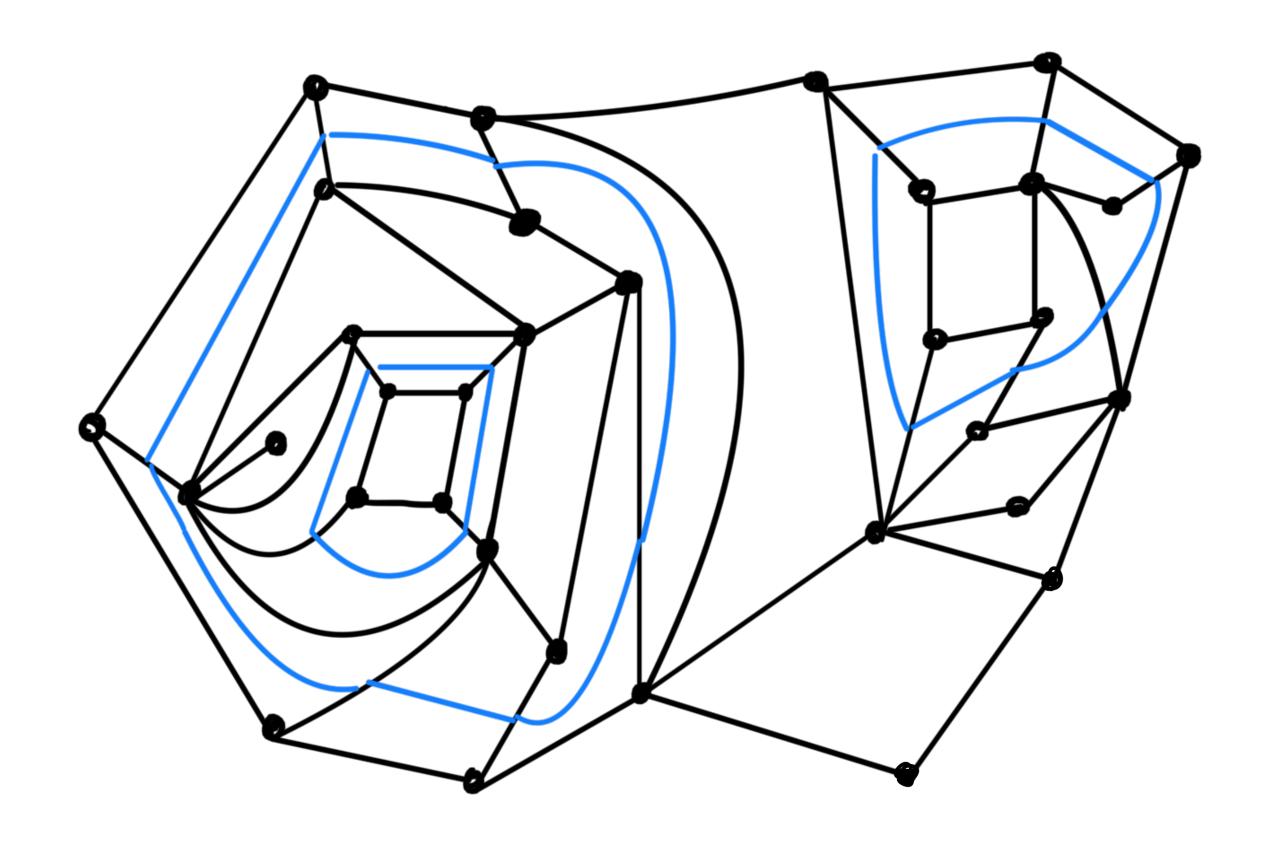


Growth Fragmentations and Random Quadrangulations

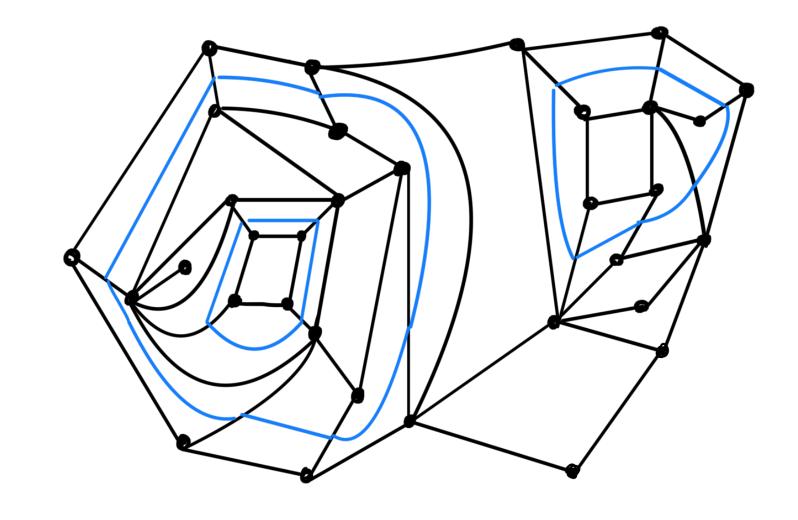
• Example: O(n) model of random quadrangulation with fixed perimeter p plus loops

• $\mathbf{P}((q, l)) \propto g^{\# faces q} h^{\text{total length } l} n^{\# l}$

Borot-Bouttier-Guittier



- Example: O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q, l)) \propto g^{\# faces q} h^{\text{total length } l} n^{\# l}$

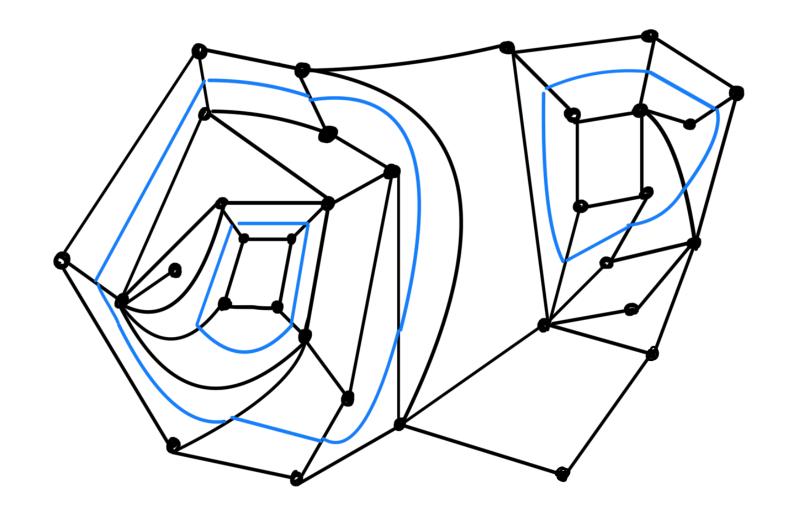


- Example: O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q, l)) \propto g^{\# faces q} h^{\text{total length } l} n^{\# l}$
- Conjecture $(n \in (0,2))$

 $\exists (g^*, h^*)$ "dilute **critical**" values s.t large p scaling limit of (q, l) embedded in $\mathbb D$

=independent ${\rm CLE}_\kappa$ plus γ -GMC measure

$$\kappa = \gamma^2 = 2 - \frac{1}{\pi} \arccos(\frac{n}{2}) \in (\frac{8}{3}, 4)$$

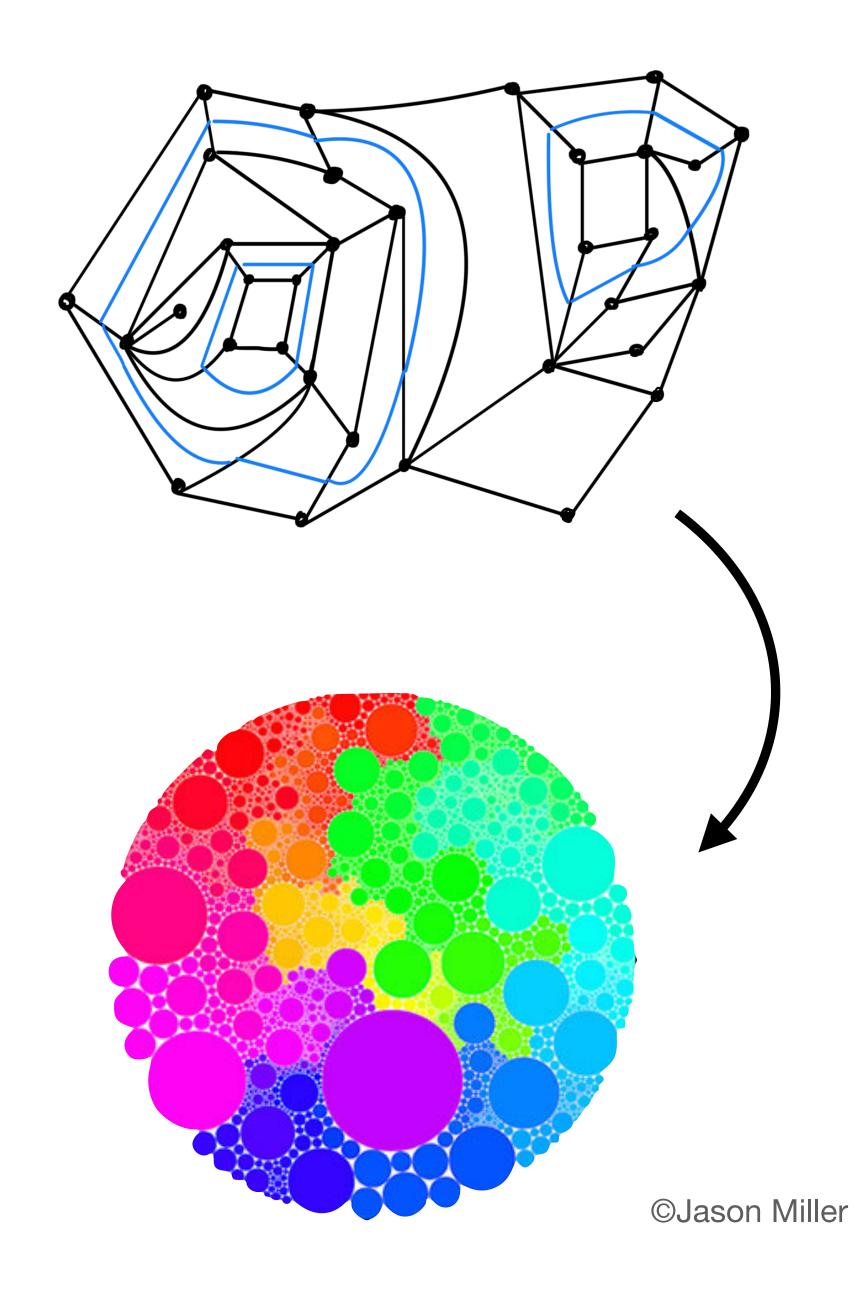


- Example: O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q, l)) \propto g^{\#faces q} h^{total length l} n^{\#l}$
- Conjecture $(n \in (0,2])$

 $\exists (g^*, h^*)$ "dilute **critical**" values s.t large p scaling limit of (q, l) embedded in $\mathbb D$

=independent CLE_{κ} plus γ -GMC measure

$$\kappa = \gamma^2 = 2 - \frac{1}{\pi} \arccos(\frac{n}{2}) \in (\frac{8}{3}, 4]$$

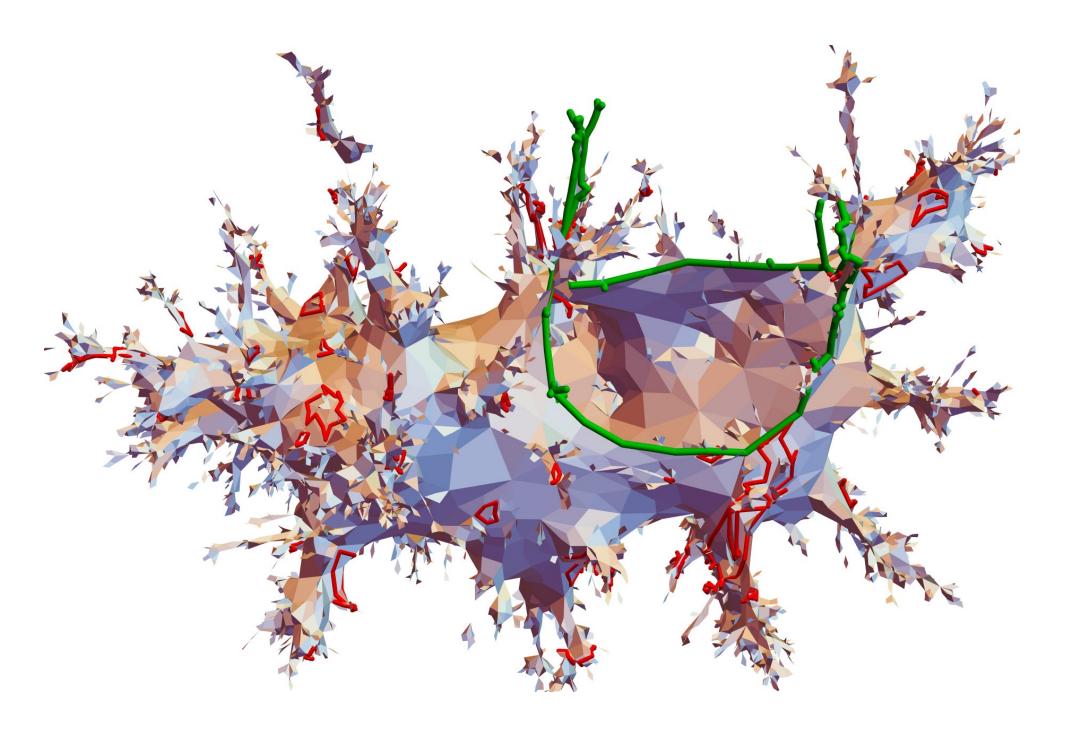


- Example: O(n) model of quadrangulation with fixed perimeter p plus loops (q, l)
- $\mathbf{P}_p((q, l)) \propto g^{\# faces q} h^{\text{total length } l} n^{\# l}$
- Conjecture $(n \in (0,2])$

 $\exists (g^*, h^*)$ "dilute **critical**" values s.t large p scaling limit of (q, l) embedded in $\mathbb D$

=independent ${\rm CLE}_\kappa$ plus γ -GMC measure

$$\kappa = \gamma^2 = 2 - \frac{1}{\pi} \arccos(\frac{n}{2}) \in (\frac{8}{3}, 4)$$

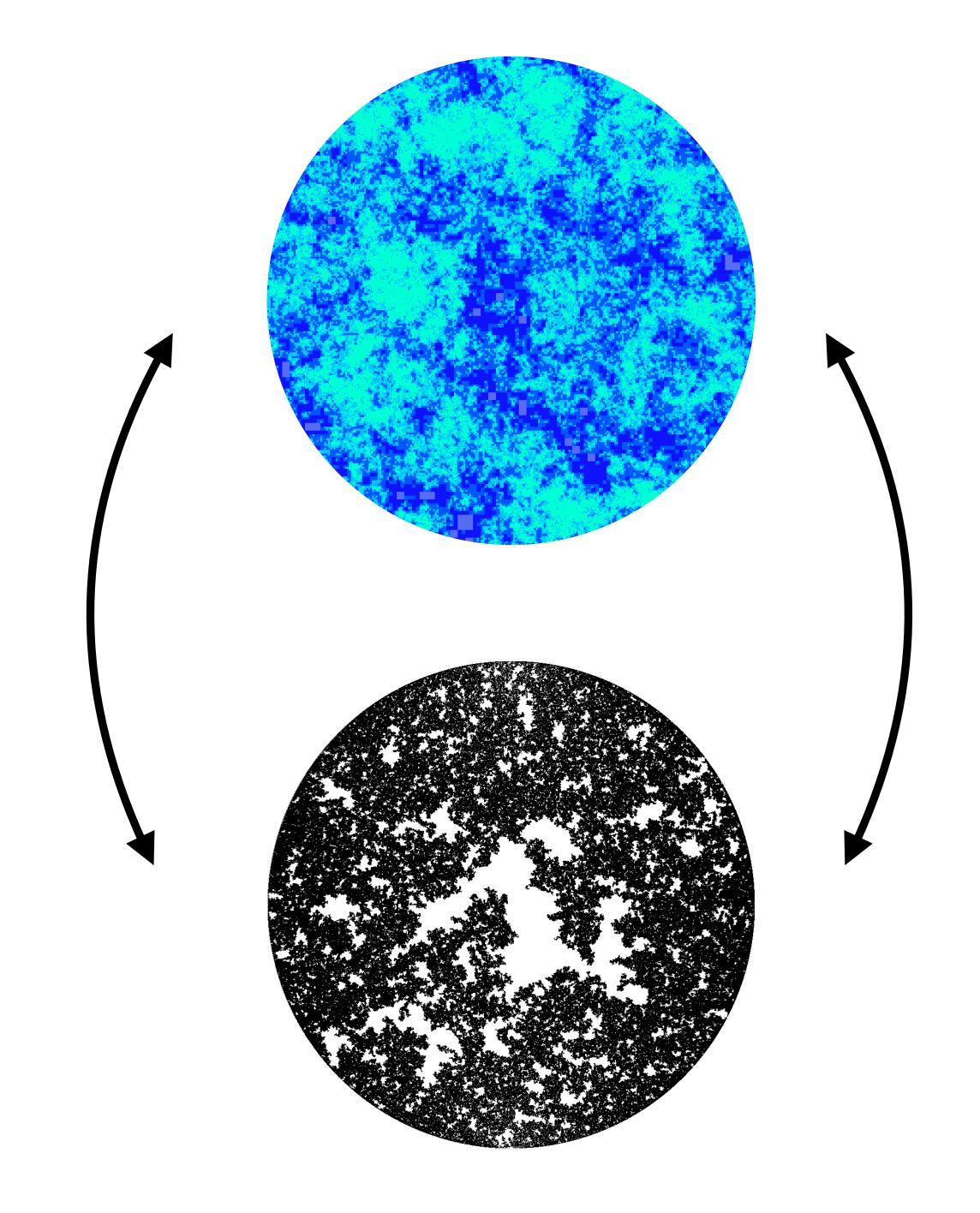


©Timothy Budd

CLE decorated GMC

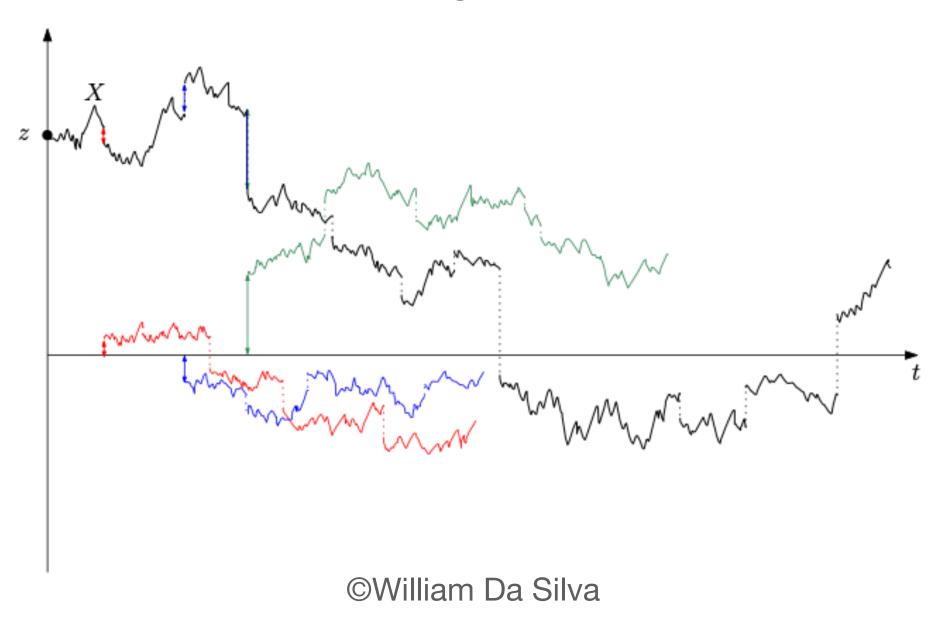
Therefore natural to study in the continuum (on \mathbb{D}):

- a conformal loop ensemble with parameter $\kappa \in (8/3,4]$
- a ($\gamma = \sqrt{\kappa}$) GMC measure
- independent of one another

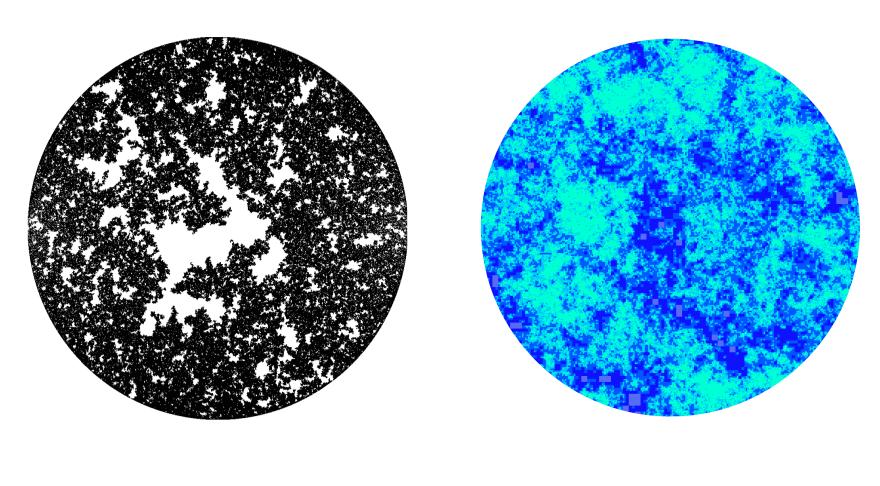


So far...

Growth Fragmentations



Gaussian Multiplicative Chaos & Conformal Loop Ensembles



©David Wilson - Jason Miller

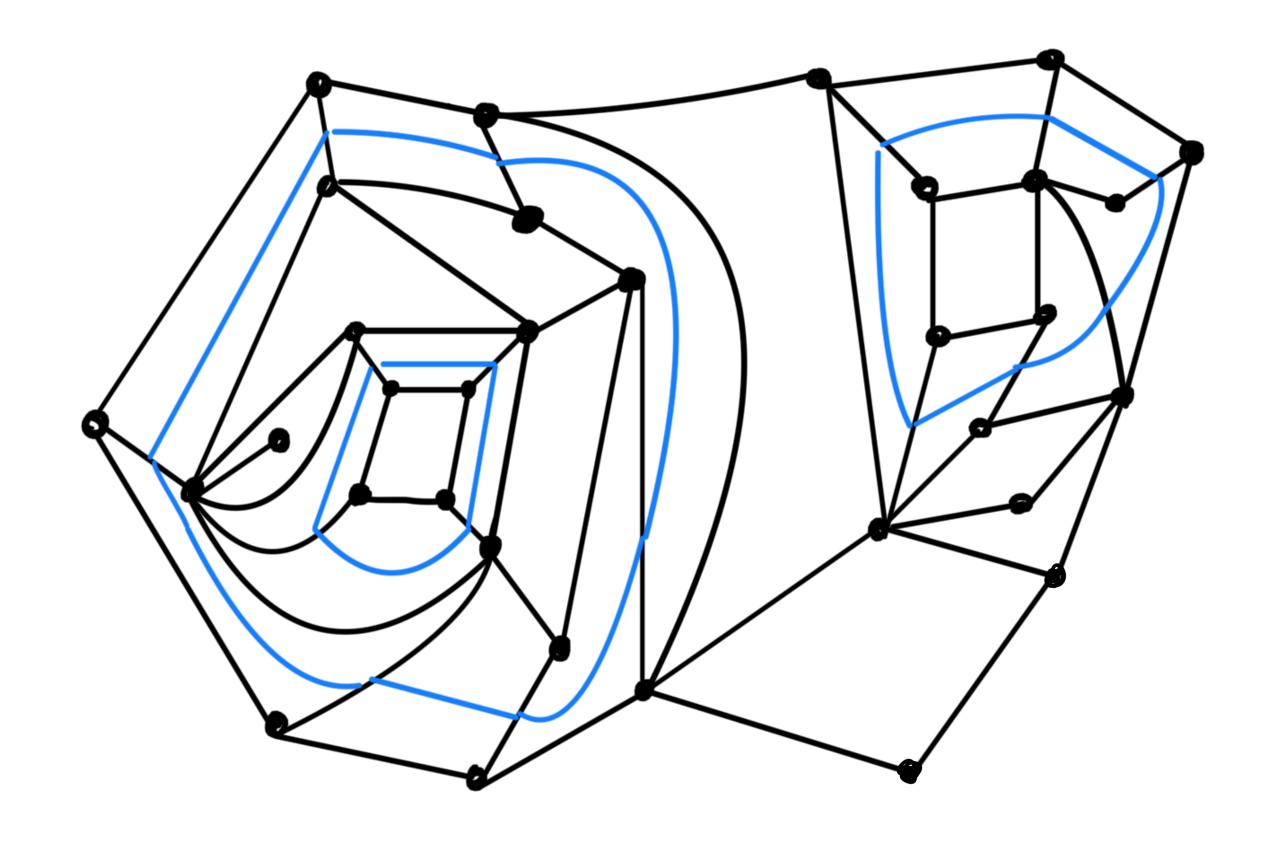
Existing connection with growth fragmentations

Growth Fragmentations and Random Quadrangulations

• Example: O(n) model of random quadrangulation with fixed perimeter p plus loops

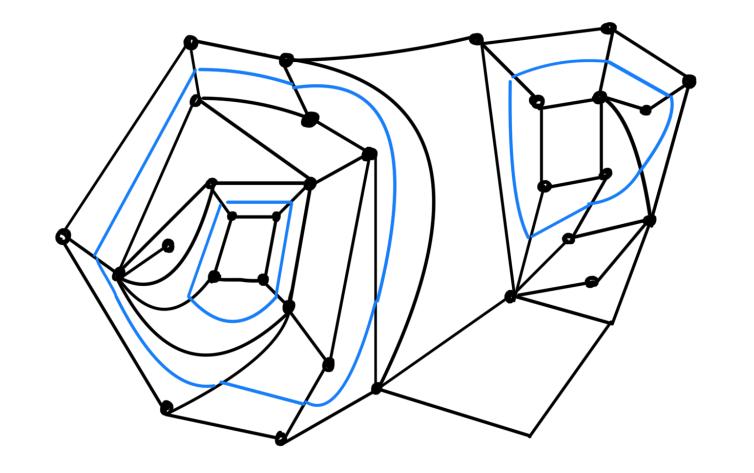
- $\mathbf{P}((q, l)) \propto g^{\text{\#faces } q} h^{\text{total length } l} n^{\text{\#}l}$
- $(g^*, h^*) = (g^*(n), h^*(n))$ dilute critical, $n \in (0,2)$

Borot-Bouttier-Guittier

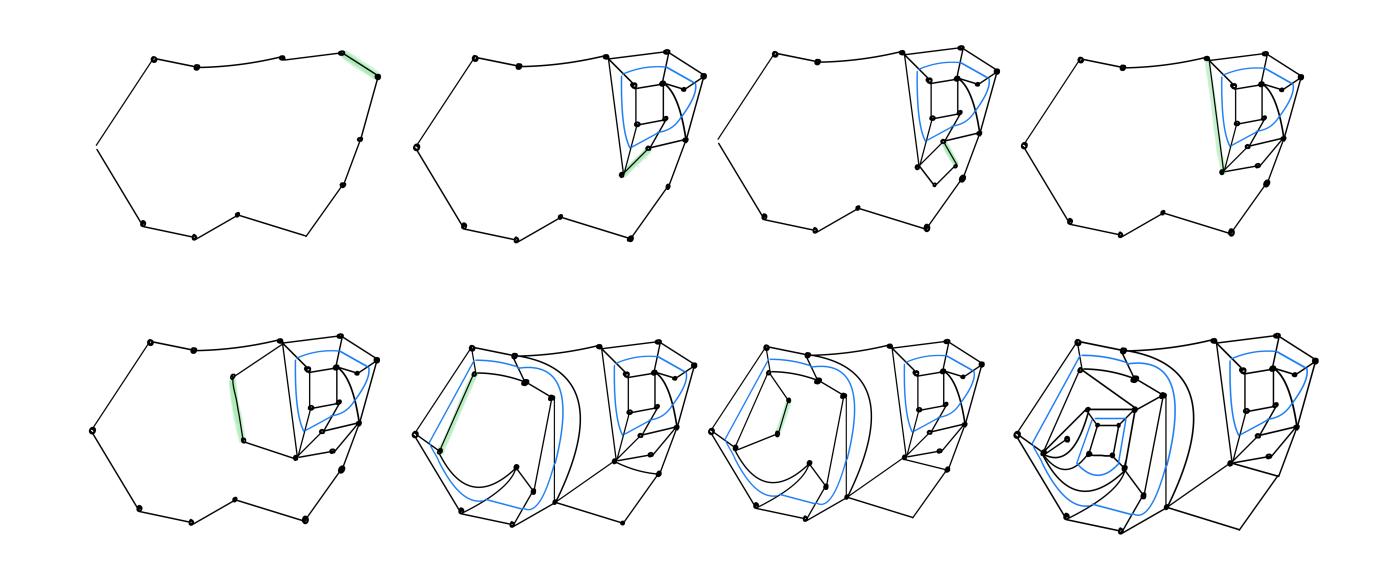


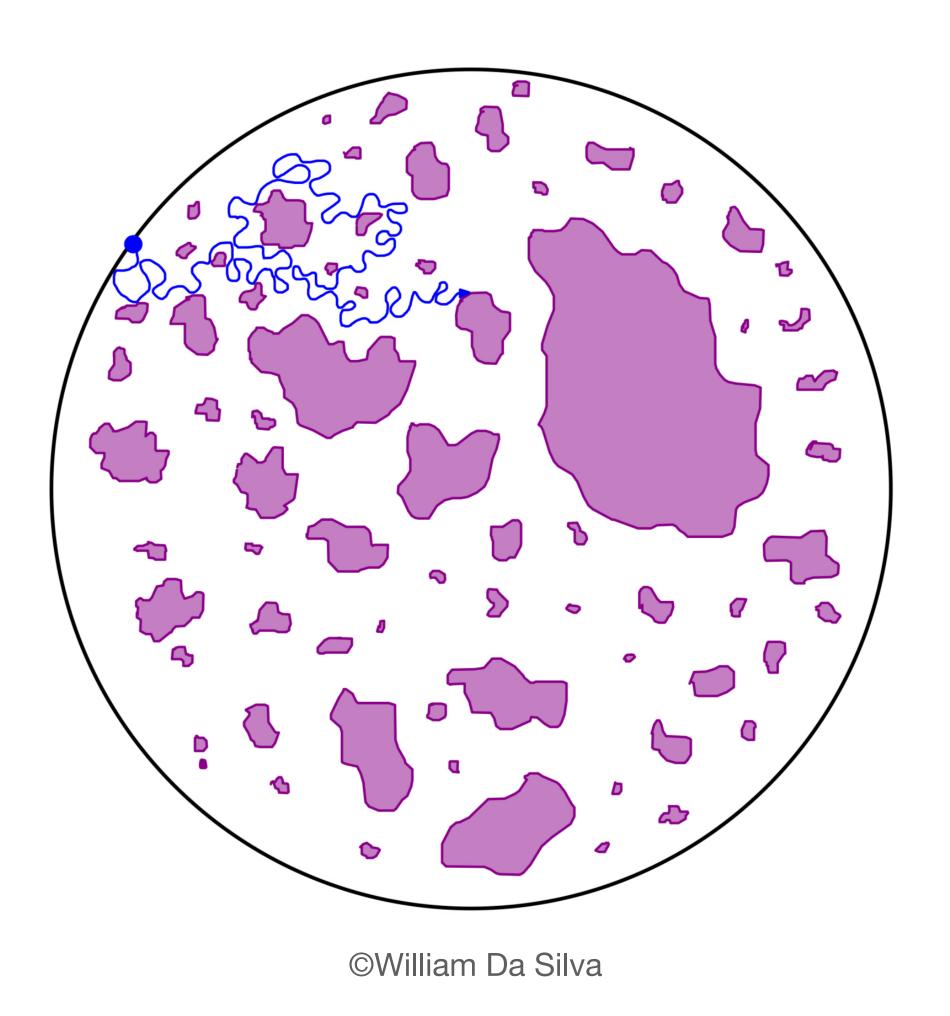
Growth Fragmentations and Random Quadrangulations

- Peeling processes explore maps from boundary inwards in a Markovian way
- Branching variants
- Functional limit theorems as perimeter $p \to \infty$
- Get explicit growth
 fragmentation for perimeters of
 to-be-explored regions



Angel, Bertoin-Curien-Kortchemski, Bertoin-Budd-Curien-Kortchemski, Budd-Curien, Chen-Curien-Maillard, Curien-Le Gall





• Recall $n \in (0,2)$, with (g^*,h^*) as before: large volume scaling limit of (q,l) should be an independent ${\rm CLE}_\kappa$ plus γ -LQG surface with

$$\kappa = \gamma^2 = 2 - \frac{1}{\pi} \arccos(\frac{n}{2}) \in (\frac{8}{3}, 4)$$

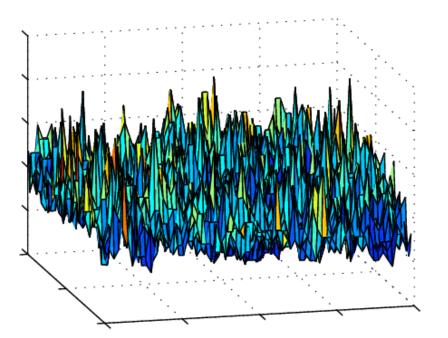
- Miller-Sheffield-Werner → ∃ continuum analogue of a peeling exploration: random interface in CLE gasket discovering CLE loops along the way
- Obtain same processes as Bertoin-Budd-Curien-Kortchemski

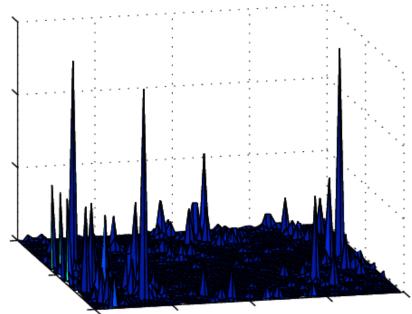
The $\gamma = 2$, $\kappa = 4$ case

Special case ($\gamma = 2, \kappa = 4$)

- $\kappa=4$ is a **critical value** for SLE and CLE; ${\rm SLE}_{\kappa}$ is simple for $\kappa\le 4$ but self-touching for $\kappa>4$
- $\gamma = 2$ is **critical** for GMC in the plane; usual definition **doesn't work**.
- $(\gamma = 2)$ -GMC can be defined from $(\gamma < 2)$ -GMC, but need to **blow up** measures by $1/(2-\gamma)$
- Miller-Sheffield-Werner's exploration doesn't have a nice limit, but...
- Budd-Curien-Marzouk: peeling the gasket of a(n) (infinite) critical O(2) model \sim Cauchy process

©David Wilson





©Remi Rhodes-Vincent Vargas

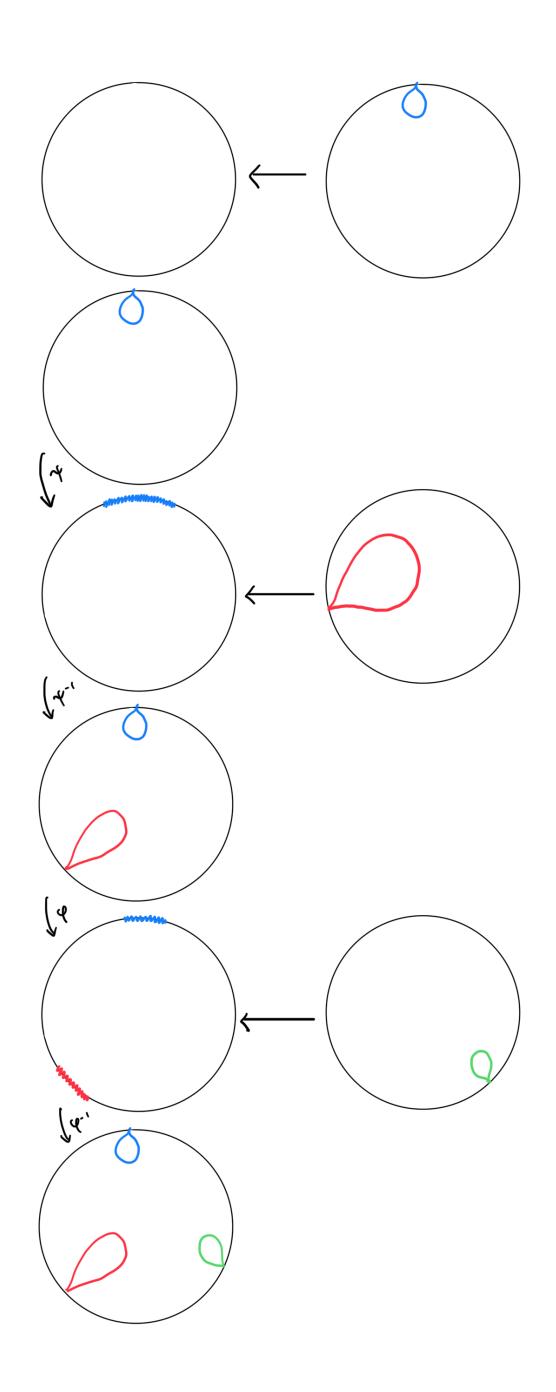
Special case ($\gamma = 2, \kappa = 4$)

Theorem (Aru-Holden-P.-Sun)

Take a uniform branching exploration* of a CLE_4 in $\mathbb D$ and an independent GFF (variant) on $\mathbb D$

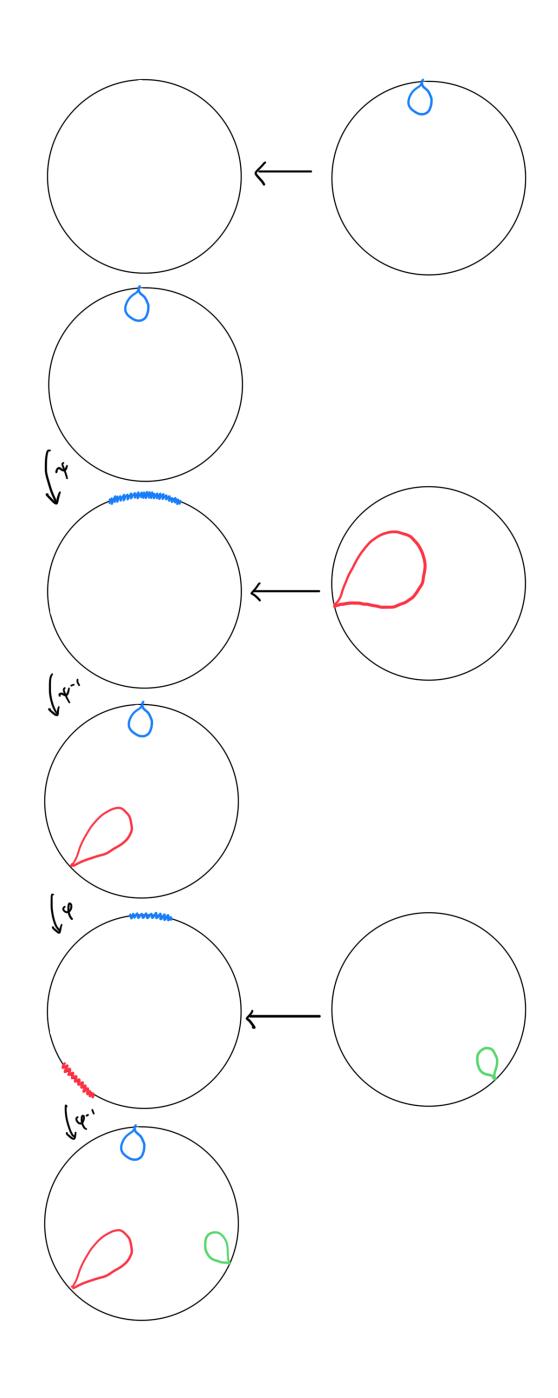
*Roughly: a PPP of SLE_4 type bubbles are "added in" uniformly on the boundary of the to-be-explored domain: see drawing!

Then the critical GMC lengths, as measured by the GFF, of the yet-to-be-explored connected components gives an (explicit) **growth fragmentation process**



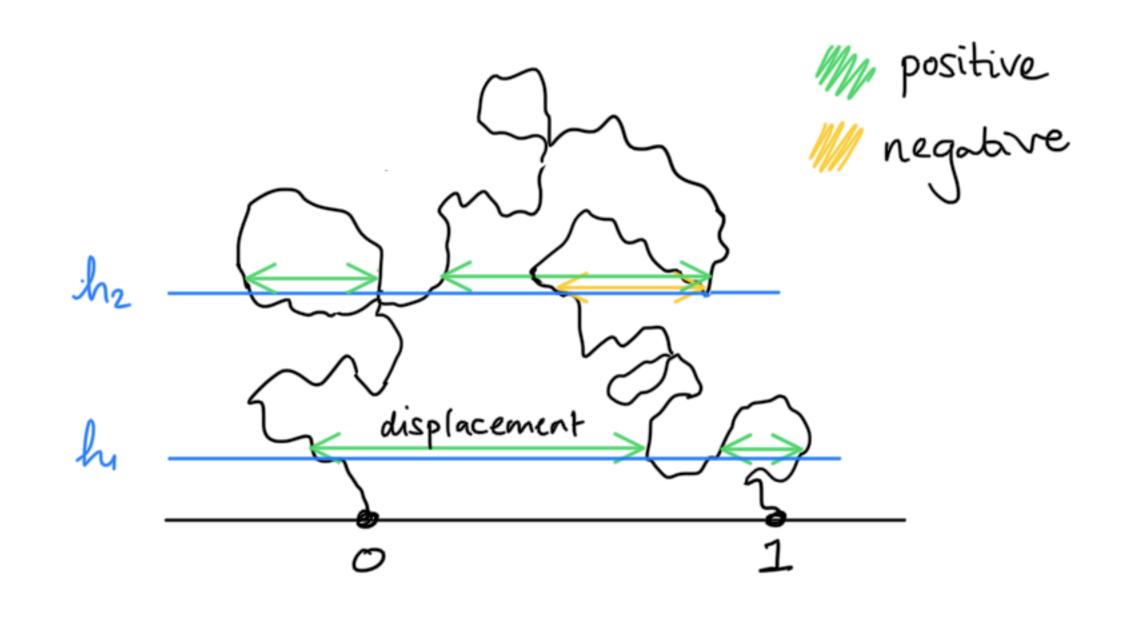
Comments

- The uniform CLE_4 exploration is different to that considered by Miller-Sheffield-Werner in the subcritical case
- The growth fragmentation is explicit and signed (signs correspond to level of nesting)
- "Eve cell" (pssMp X from def of GF) is a type of Cauchy process
- Time parameterisation = "quantum distance" from boundary
- It's exactly the same the signed GF that Aïdékon-Da Silva constructed out of a **Brownian half plane** excursion...



Brownian half-plane excursions

Growth fragmentations and Cauchy processes (Aïdekon & Da Silva)



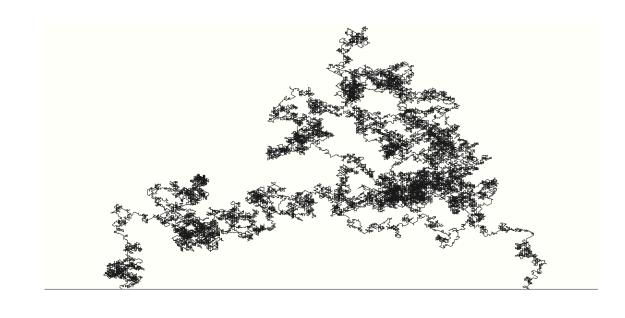
- Start with a half-planar Brownian excursion (given duration, X coordinate is Brownian bridge and Y coordinate is independent Brownian excursion)
- At each height $h \ge 0$ have countable collection of sub-excursions above h
- These have masses (widths) with signs according to direction traversed by the Brownian half-plane excursion
- Gives a signed growth fragmentation with the same law as in our theorem

Our Result

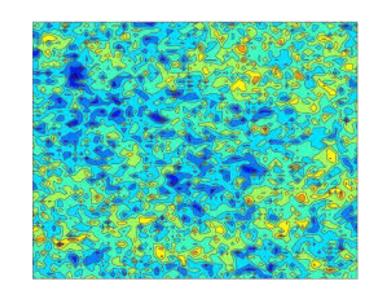
Correspondence:

Brownian half-plane excursion ↔ CLE₄ + "critical quantum disk"

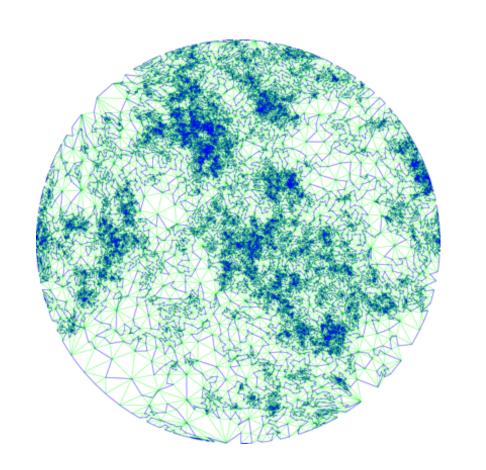
CLE ₄ decorated critical quantum disk	Brownian half-plane excursion
Branching structure defined by exploration	Branching structure in the associated CRT
Boundary lengths of discovered disks	Displacements of sub-excursions above heights
Areas of discovered disk	Durations of sub-excursions above heights
Parity of nesting	Sign of subexcursion
Some notion of "quantum" distance from boundary	Height

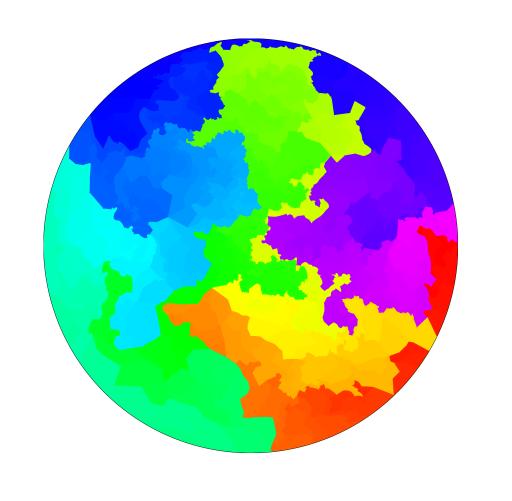


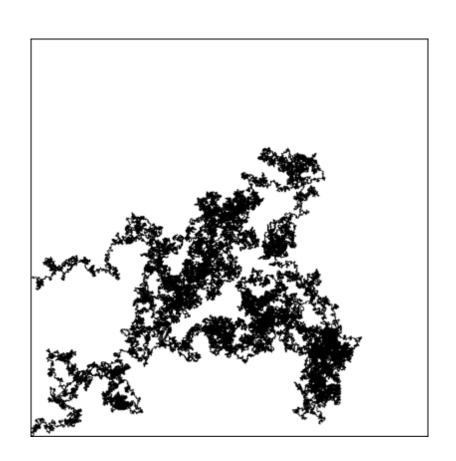
+



Proof and a Question







©Jason Miller

- For $\gamma \neq 2$, $\kappa \neq 4$, a correspondence between ${\rm CLE}_{\kappa}$ decorated γ -GMC and **Brownian cone excursions** is already known (Duplantier-Miller-Sheffield)
- Our proof is based on taking a limit (of lots of things at once...) in this picture
- Question Can you extract a growth fragmentation process directly from correlated BM? Work in progress with Alex Watson and William Da Silva

Thanks!