

Exit sets of the Gaussian free field - an Overview

Avelio Sepúlveda.

Universidad de Chile /CMM

February 2023

Contents

1 Introduction

2 The Gaussian free field

3 Two-valued sets

4 First passage sets

Plan

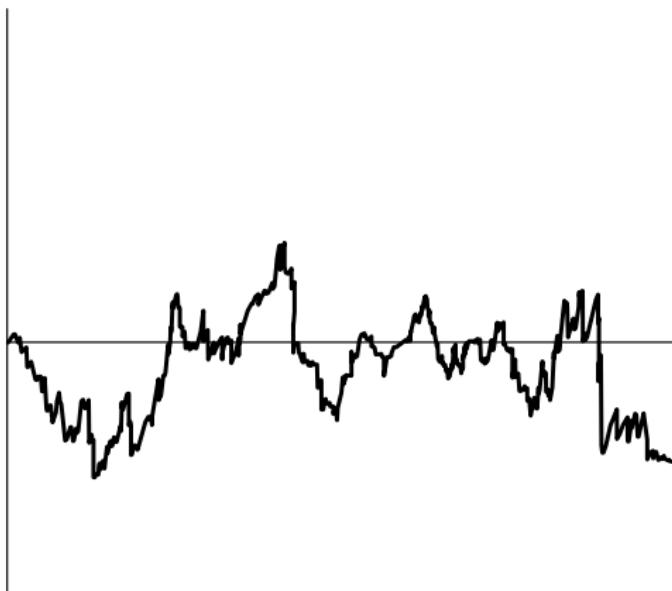
1 Introduction

2 The Gaussian free field

3 Two-valued sets

4 First passage sets

The Brownian motion



$$\tau_{-a,b} := \inf\{t \geq 0 : -a \leq B_t \leq b\},$$

$$\tau_{-a} := \inf\{t \geq 0 : B_t \geq -a\}.$$

Plan

1 Introduction

2 The Gaussian free field

3 Two-valued sets

4 First passage sets

The discrete Gaussian free field

Let $\Lambda \subseteq \mathbb{Z}^2$ be a graph. A GFF is the random function in the vertex of the graph

$$\mathbb{P}(d\phi) \propto \exp\left(-\frac{1}{2}\|\nabla\Phi\|^2\right) \prod d\phi_i$$

The discrete Gaussian free field

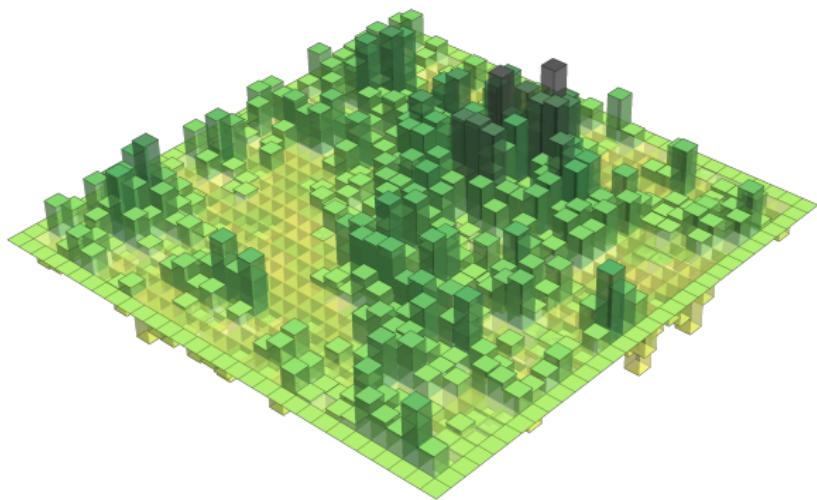
Let $\Lambda \subseteq \mathbb{Z}^2$ be a graph. A GFF is the random function in the vertex of the graph

$$\mathbb{P}(d\phi) \propto \exp\left(-\frac{1}{2}\|\nabla\Phi\|^2\right) \prod d\phi_i$$

Equivalently the GFF is the centred Gaussian process with covariance

$$\mathbb{E} [\phi(k)\phi(j)] = G_\Lambda(k,j)$$

Simulation of the discrete Gaussian free field

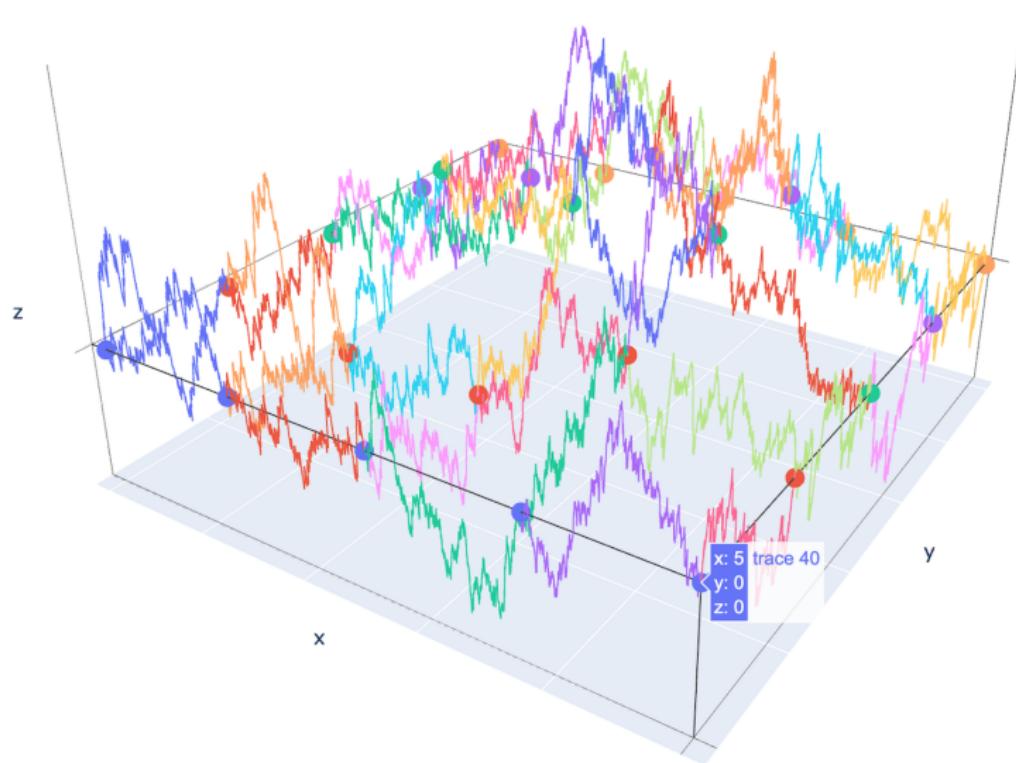


The metric Gaussian free field

Let $\Lambda \subseteq \mathbb{Z}^2$ be a graph. Define $\tilde{\Lambda}$ the metric space where you replace every vertex with a copy of $[0, 1]$. The GFF is the centred Gaussian process with covariance

$$\mathbb{E} [\phi(k)\phi(j)] = G_{\tilde{\Lambda}}(k, j)$$

Simulation of the metric Gaussian free field



Simulation by Thomas Laengle

The Gaussian free field

Take $D \subseteq \mathbb{C}$, The (continuum) Gaussian free field (GFF) is a centred Gaussian process with covariance given by

$$\mathbb{E} [\Phi(x)\Phi(y)] = G_D(x,y) \stackrel{x \rightarrow y}{\sim} -\log(\|x - y\|).$$

The Gaussian free field

Take $D \subseteq \mathbb{C}$, The (continuum) Gaussian free field (GFF) is a centred Gaussian process with covariance given by

$$\mathbb{E} [\Phi(x)\Phi(y)] = G_D(x, y) \xrightarrow{x \rightarrow y} -\log(\|x - y\|).$$

$$G_D(x, x) = \infty!! \quad \text{:(}$$

The Gaussian free field

Take $D \subseteq \mathbb{C}$, The (continuum) Gaussian free field (GFF) is a centred Gaussian process with covariance given by

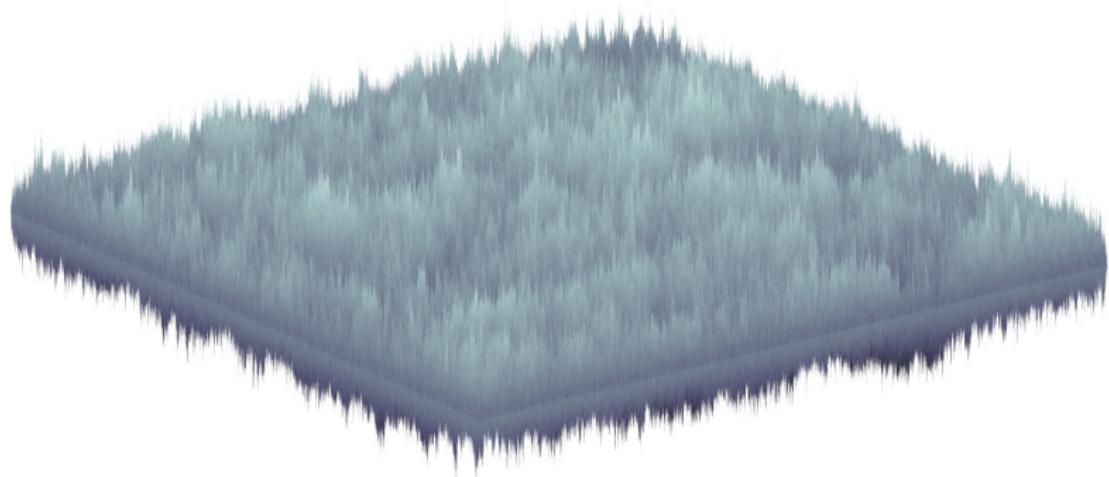
$$\mathbb{E} [\Phi(x)\Phi(y)] = G_D(x, y) \xrightarrow{x \rightarrow y} -\log(\|x - y\|).$$

$$G_D(x, x) = \infty!! \quad \text{:(}$$

The Gaussian free field, is defined as a random “generalised function” such that $(\Phi, f)_f$ smooth is a centred Gaussian process with

$$\mathbb{E} [(\Phi, f)(\Phi, g)] = \iint_{D \times D} f(x) G_D(x, y) g(y) dx dy.$$

Approximation of a continuum Gaussian free field



Conformal invariance

- The Green's function is conformally invariant, i.e., for any conformal transformation $\varphi : D \mapsto D'$

$$G_D(x, y) = G_{D'}(\varphi(x), \varphi(y)).$$

Conformal invariance

- The Green's function is conformally invariant, i.e., for any conformal transformation $\varphi : D \mapsto D'$

$$G_D(x, y) = G_{D'}(\varphi(x), \varphi(y)).$$

- The GFF is conformally invariant, i.e., for any conformal transformation $\varphi : D \mapsto D'$

$$\Phi^D(\cdot) \stackrel{\text{law}}{=} \Phi^{D'}(\varphi(\cdot)).$$

Weak Markov property

Weak Markov property

Let A be a closed set of $D \subseteq \mathbb{C}$. Then there exist two independent “generalized functions” Φ_A and Φ^A such that

① $\Phi = \Phi_A + \Phi^A.$

Weak Markov property

Let A be a closed set of $D \subseteq \mathbb{C}$. Then there exist two independent “generalized functions” Φ_A and Φ^A such that

- ① $\Phi = \Phi_A + \Phi^A$.
- ② Φ_A is harmonic in $D \setminus A$.

Weak Markov property

Let A be a closed set of $D \subseteq \mathbb{C}$. Then there exist two independent “generalized functions” Φ_A and Φ^A such that

- ① $\Phi = \Phi_A + \Phi^A$.
- ② Φ_A is harmonic in $D \setminus A$.
- ③ Φ^A is a GFF in $D \setminus A$.

Stopping (local) set

A is a stopping set of Φ if for all closed sets $C \subseteq D$

$$\{A \subseteq C\} \in \sigma(\Phi_C).$$

Strong Markov property

Let A be a **stopping set** of Φ . Then, **conditionally on A** , there exist two **conditionally independent** “generalised functions” Φ_A and Φ^A such that

① $\Phi = \Phi_A + \Phi^A.$

Strong Markov property

Let A be a **stopping set** of Φ . Then, **conditionally on A** , there exist two **conditionally independent** “generalised functions” Φ_A and Φ^A such that

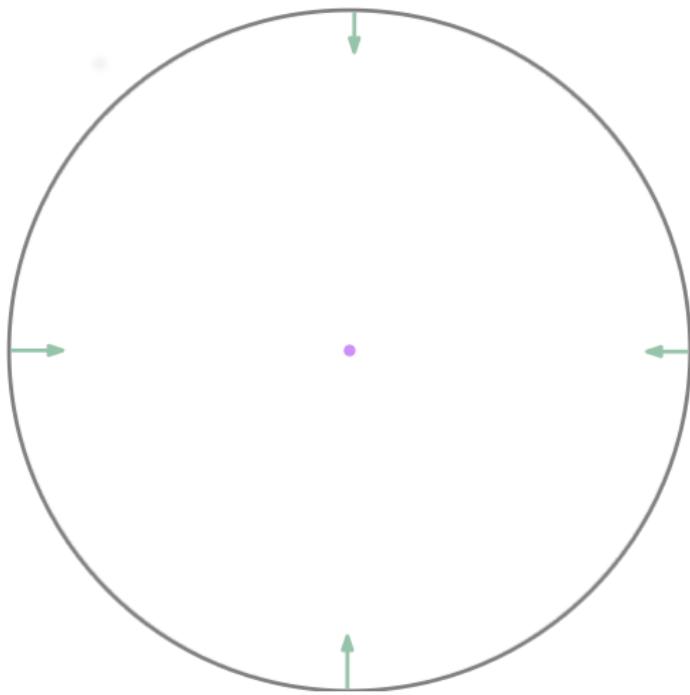
- ① $\Phi = \Phi_A + \Phi^A$.
- ② Φ_A is harmonic in $D \setminus A$.

Strong Markov property

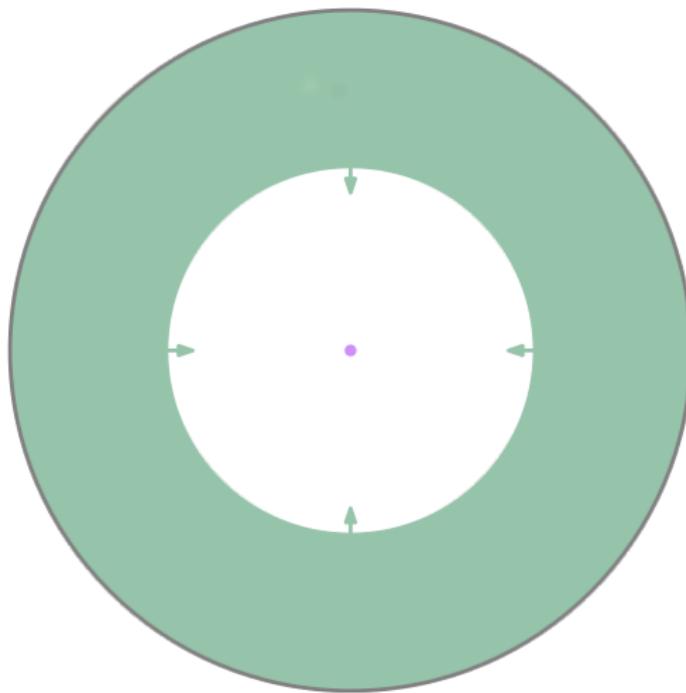
Let A be a **stopping set** of Φ . Then, **conditionally on A** , there exist two **conditionally independent** “generalised functions” Φ_A and Φ^A such that

- ① $\Phi = \Phi_A + \Phi^A$.
- ② Φ_A is harmonic in $D \setminus A$.
- ③ Φ^A is a GFF in $D \setminus A$.

Example of a stopping set



Example of a stopping set



Plan

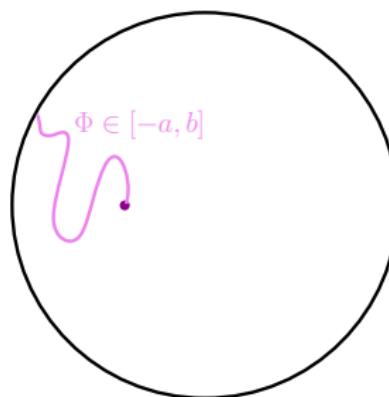
1 Introduction

2 The Gaussian free field

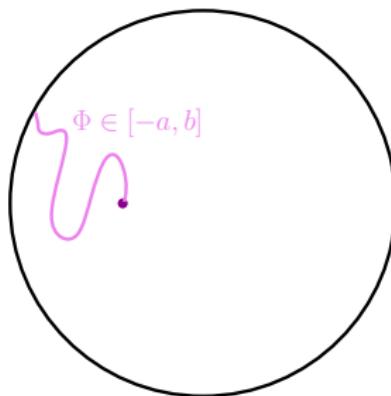
3 Two-valued sets

4 First passage sets

Two-valued sets

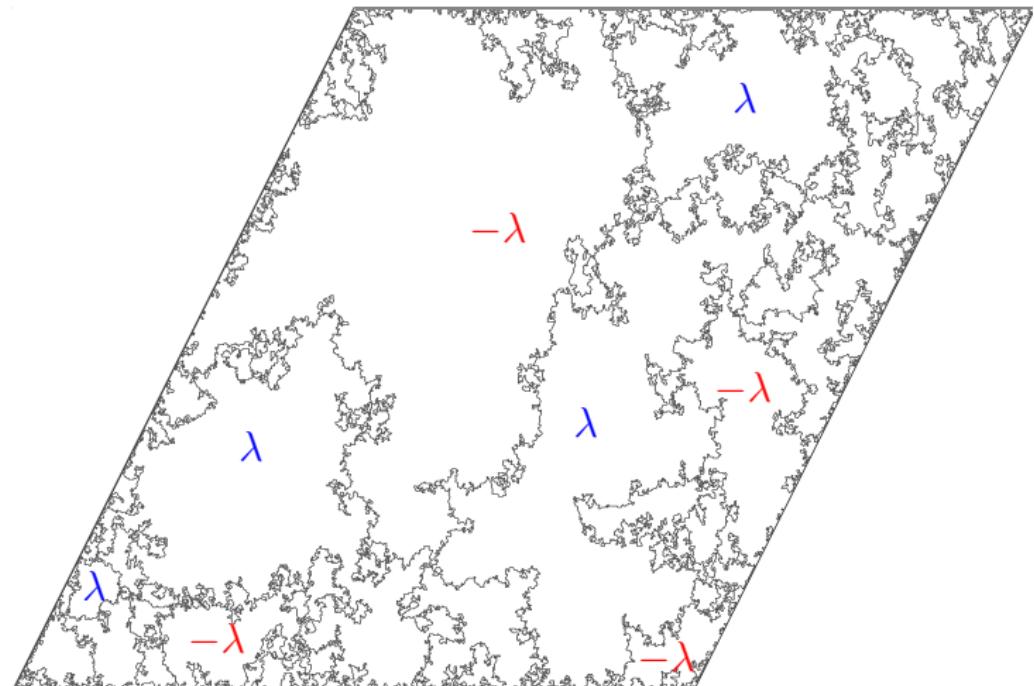


Two-valued sets



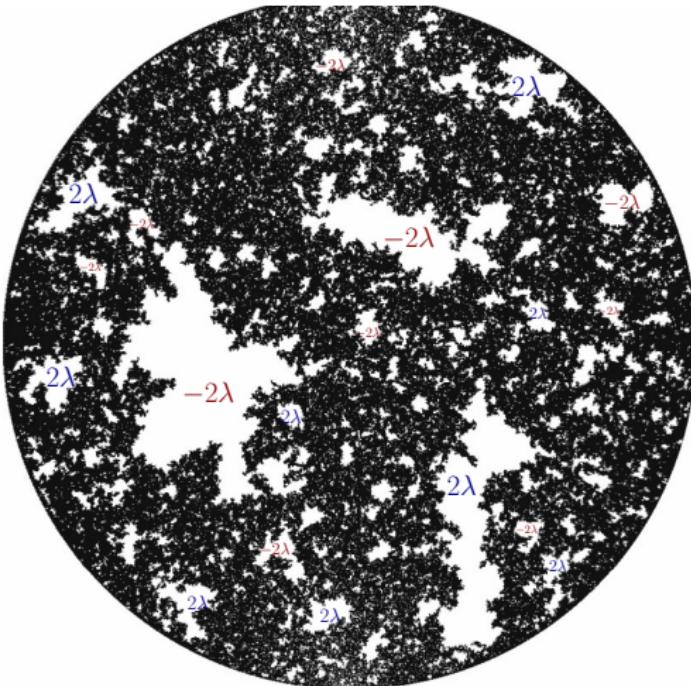
Theorem (Aru-S.-Werner '17)

Take $a, b \geq 0$, such that $a + b \geq 2\lambda := \pi$. There exists a unique stopping set $\mathbb{A}_{-a,b}$ such that $\Phi_{\mathbb{A}_{-a,b}}$ is a harmonic function constant in each connected component taking values in $\{-a, b\}$.



Simulation by B. Werness.

$\mathbb{A}_{-2\lambda, 2\lambda} = \text{CLE}_4$ (Miller-Sheffield)



Simulation by D. Wilson.

Monotonicity

Proposition (Aru-S.-Werner '17)

Let $a, b \geq 0$ with $a + b \geq 2\lambda$ and $a', b' \geq 0$ such that $[-a, b] \subseteq [-a', b']$ then $\mathbb{A}_{-a, b} \subseteq \mathbb{A}_{-a', b'}.$

Monotonicity

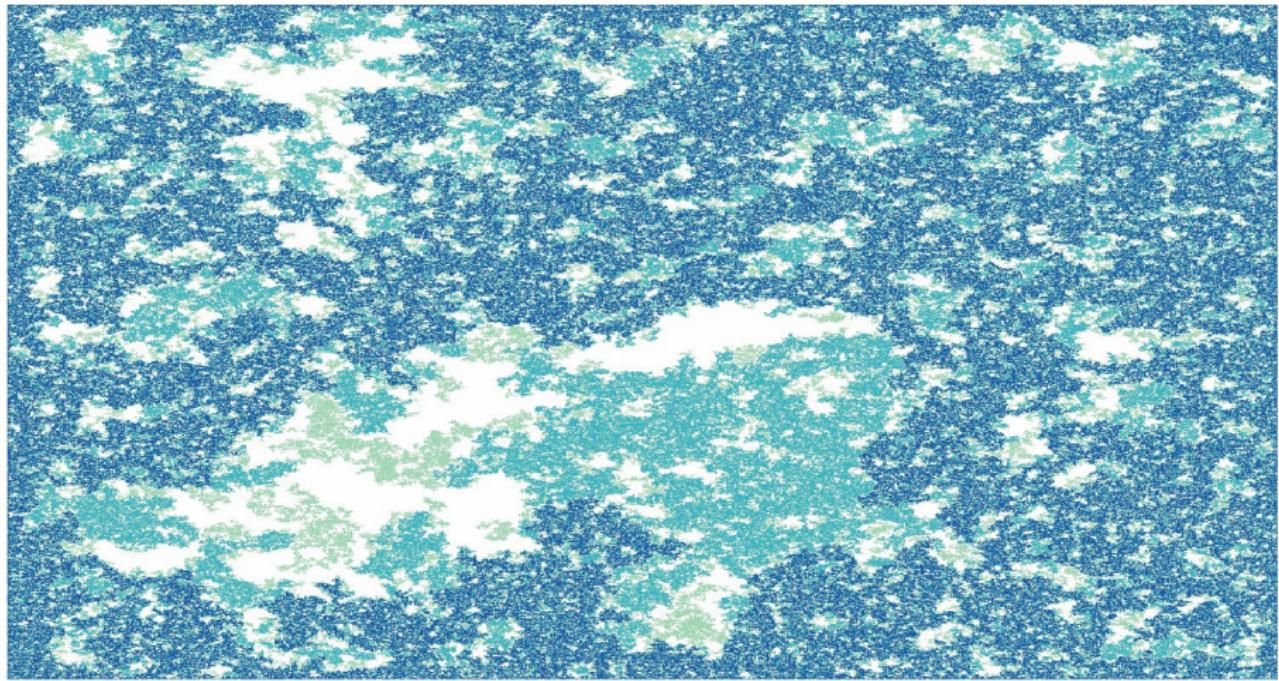
Proposition (Aru-S.-Werner '17)

Let $a, b \geq 0$ with $a + b \geq 2\lambda$ and $a', b' \geq 0$ such that $[-a, b] \subseteq [-a', b']$ then $\mathbb{A}_{-a,b} \subseteq \mathbb{A}_{-a',b'}$.

Furthermore, for any fixed a, b a.s. we have that

$$\mathbb{A}_{-a,b} := \bigcap_{\substack{a', b' \in \mathbb{Q} \\ [-a, b] \subset [-a', b']}} \mathbb{A}_{-a',b'}$$

Simulation for monotonicity



Non-existence

Proposition (Aru-S.-Werner '17)

Let $a, b \geq 0$ with $a + b < 2\lambda$. There is no stopping set $\mathbb{A}_{-a,b}$ with the property that $\Phi_{\mathbb{A}_{-a,b}}$ is a harmonic function with values in $\{-a, b\}$.

Explicit laws

Theorem (Aru-S.-Werner'17)

The law of $-\log(CR(0, \mathbb{D} \setminus \mathbb{A}_{-a,b}))$ is equal to the law of the first time a Brownian motion exits $[-a, b]$.

Explicit laws

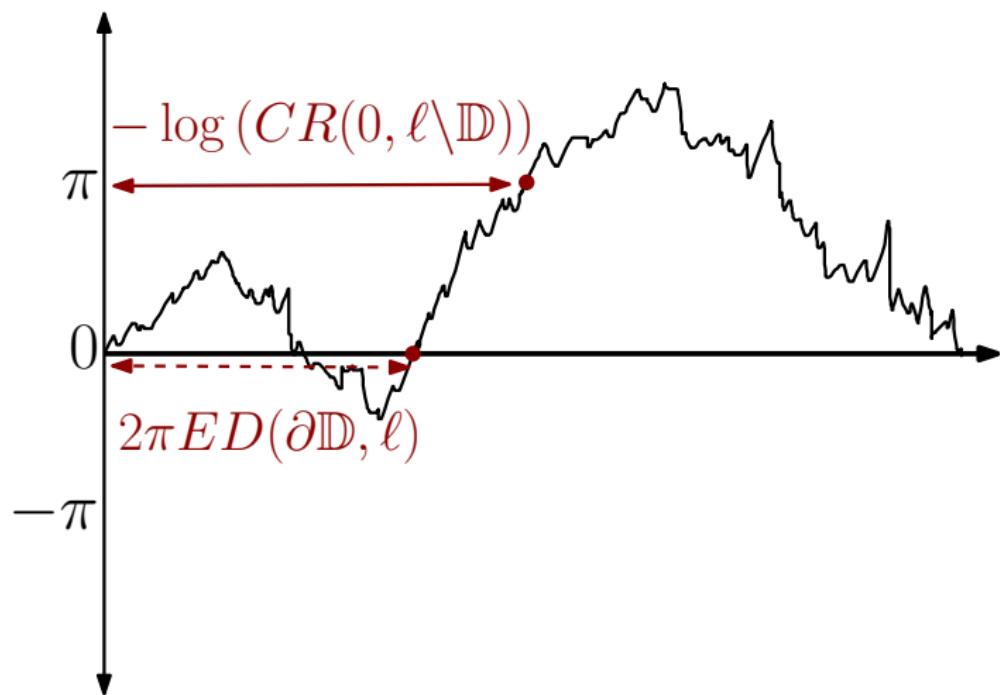
Theorem (Aru-S.-Werner'17)

The law of $-\log(CR(0, \mathbb{D} \setminus \mathbb{A}_{-a,b}))$ is equal to the law of the first time a Brownian motion exits $[-a, b]$.

Theorem (Aru-Lupu-S.'22)

Take ℓ the outer most loop of $\mathbb{A}_{-2\lambda, 2\lambda}$ the joint law of $(2\pi ED(\partial B(0, 1), -\log(CR(0, \mathbb{D} \setminus \mathbb{A}_{-2\lambda, 2\lambda})))$ is that of $(\sup\{t < \tau\{-\pi, \pi : B_t = 0\}, \tau_{-\pi, \pi}\})$.

Representation of the joint law



Multifractal spectrum

Theorem (Schoug-S.-Viklund '19)

A.s. for any $a, b > 0$ with $a, b \geq 2\lambda$ the Hausdorff dimension of $\mathbb{A}_{-a,b}$ is equal to

$$2 - \frac{2\lambda^2}{(a+b)^2}.$$

Multifractal spectrum

Theorem (Schoug-S.-Viklund '19)

A.s. for any $a, b > 0$ with $a, b \geq 2\lambda$ the Hausdorff dimension of $\mathbb{A}_{-a,b}$ is equal to

$$2 - \frac{2\lambda^2}{(a+b)^2}.$$

This is related to the imaginary chaos

$$:\cos(i\alpha\Phi):|_{\mathbb{A}_{-a,a}} = \mu_{\mathbb{A}_{-a,a}}$$

when $\alpha a = \pi/2$.

Law of the labels in $\mathbb{A}_{-2\lambda, 2\lambda}$

Proposition (Miller-Sheffield '11, Aru-S.-Werner '17)

Conditionally on the geometry of $\mathbb{A}_{-2\lambda, 2\lambda}$ the harmonic function $h_{\mathbb{A}_{-2\lambda, 2\lambda}}$ takes values $\pm 2\lambda$ independently.

Measurability of labels

Proposition (Aru-S. '18)

Let $a, b > 0$ with $a + b \geq 2\lambda$ and $a \neq b$, then

- If $2\lambda \leq a + b < 4\lambda$, the harmonic function $h_{\mathbb{A}_{-a,b}}$ is a measurable function of $\mathbb{A}_{-a,b}$.
- If $a + b \geq 4\lambda$, the harmonic function $h_{\mathbb{A}_{-a,b}}$ is not a function of $\mathbb{A}_{-a,b}$.

Connectivity of the loops

Consider $G(\mathbb{A}_{-a,b})$ the graph whose vertices are the connected components of $\mathbb{D} \setminus \mathbb{A}_{-a,b}$ and there is an edge between \mathcal{O}_1 and \mathcal{O}_2 if $\overline{\mathcal{O}}_1 \cap \overline{\mathcal{O}}_2 \neq \emptyset$.

Connectivity of the loops

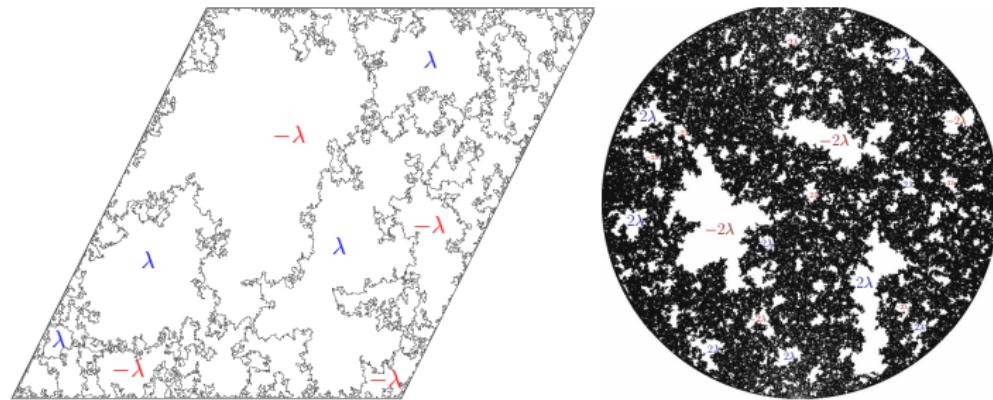
Consider $G(\mathbb{A}_{-a,b})$ the graph whose vertices are the connected components of $\mathbb{D} \setminus \mathbb{A}_{-a,b}$ and there is an edge between \mathcal{O}_1 and \mathcal{O}_2 if $\overline{\mathcal{O}}_1 \cap \overline{\mathcal{O}}_2 \neq \emptyset$.

Proposition (Aru-S. '18)

Let $a, b > 0$ with $a + b \geq 2\lambda$, then

- If $2\lambda \leq a + b < 4\lambda$, $G(\mathbb{A}_{-a,b})$ is connected and bipartite with colouring given by the value of $h_{\mathbb{A}_{-a,b}}$ in the connected component.
- If $a + b \geq 4\lambda$, $G(\mathbb{A}_{-a,b})$ is totally disconnected.

Two critical cases



Percolative properties

Proposition (Aru-S. '18)

Take $x, y \in \partial\mathbb{D}$

- ① If $a, b \geq 2\lambda$, a.s. there exists a continuous path η going from x to y in $\mathbb{D} \cap \mathbb{A}_{-a,b}$.
- ② If either a or b is strictly smaller than 2λ , a.s. there is no continuous path η going from x to y in $\mathbb{D} \cap \mathbb{A}_{-a,b}$.

Percolative properties

Proposition (Aru-S. '18)

Take $x, y \in \partial\mathbb{D}$

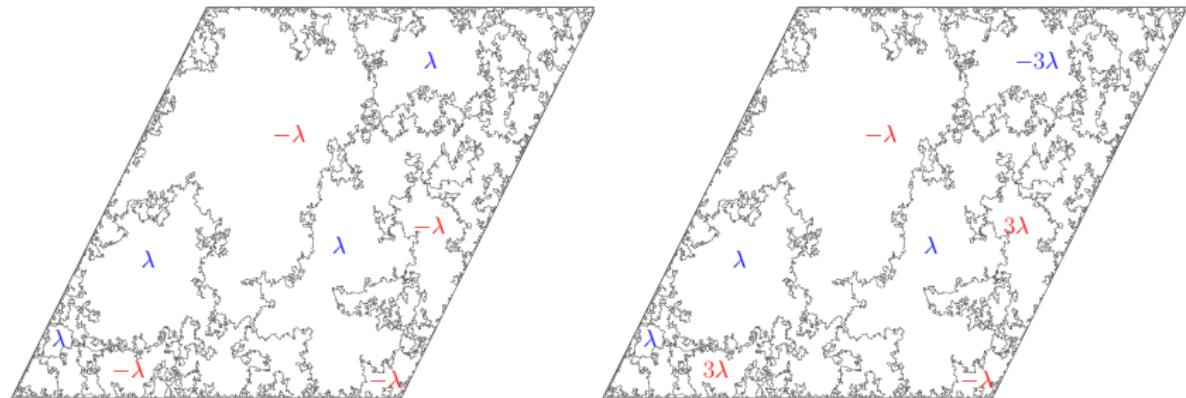
- ① If $a, b \geq 2\lambda$, a.s. there exists a continuous path η going from x to y in $\mathbb{D} \cap \mathbb{A}_{-a,b}$.
- ② If either a or b is strictly smaller than 2λ , a.s. there is no continuous path η going from x to y in $\mathbb{D} \cap \mathbb{A}_{-a,b}$.

What happens in the discrete/metric case?

Coupling between 0-boundary and free-boundary GFF

Theorem (Qian-Werner '18)

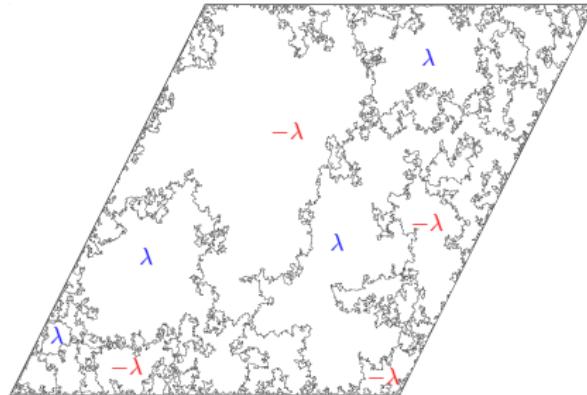
One can couple a free-boundary GFF and a 0-boundary GFF using $\mathbb{A}_{-\lambda, \lambda}$.



Convergences from the discrete GFF

Theorem (Schramm-Sheffield '11, Aru-S. '18)

The union of all the 0 level lines of a discrete Gaussian free field converge to $\mathbb{A}_{-\lambda, \lambda}$



Convergence from the double current model

Theorem (Duminil-Copin - Lis - Qian '21)

Let n^δ be a critical double current model in a graph $\Lambda_\delta \subseteq \delta\mathbb{Z}^2$. Then,

- ① The outer-most boundary of the outermost cluster converges to $\mathbb{A}_{-2\lambda, 2\lambda}$.
- ② The inner-most boundary of the outermost cluster converges to $\mathbb{A}_{-2\lambda, (2\sqrt{2}-2)\lambda}$ inside the loops of $\mathbb{A}_{-2\lambda, 2\lambda}$.

Convergence from the double current model

Theorem (Duminil-Copin - Lis - Qian '21)

Let n^δ be a critical double current model in a graph $\Lambda_\delta \subseteq \delta\mathbb{Z}^2$. Then,

- ① The outer-most boundary of the outermost cluster converges to $\mathbb{A}_{-2\lambda, 2\lambda}$.
- ② The inner-most boundary of the outermost cluster converges to $\mathbb{A}_{-2\lambda, (2\sqrt{2}-2)\lambda}$ inside the loops of $\mathbb{A}_{-2\lambda, 2\lambda}$.

What happens for the XOR-Ising model?

What happens for the Ashkin-Teller model?

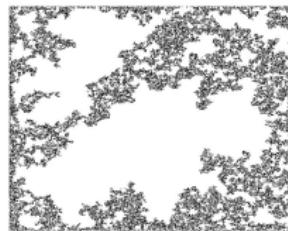
Convergence of approximative exit sets

Does the discrete/metric $\mathbb{A}_{-a,a}$ converge to a non-trivial set?

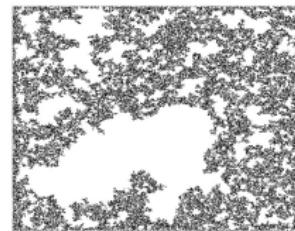
Convergence of approximative exit sets

Does the discrete/metric $\mathbb{A}_{-a,a}$ converge to a non-trivial set?

(a) $\mathbb{A}_{-0.95\lambda, 0.95\lambda}^{discrete}$



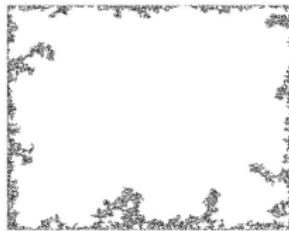
(b) $\mathbb{A}_{-\lambda, \lambda}^{discrete}$



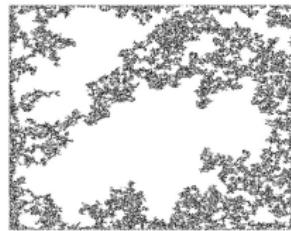
(c) $\mathbb{A}_{-1.05\lambda, 1.05\lambda}^{discrete}$

Convergence of approximative exit sets

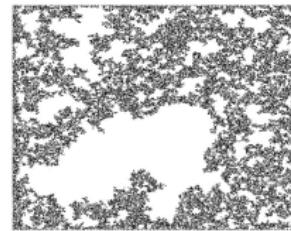
Does the discrete/metric $\mathbb{A}_{-a,a}$ converge to a non-trivial set?



(a) $\mathbb{A}_{-0.95\lambda, 0.95\lambda}^{discrete}$



(b) $\mathbb{A}_{-\lambda, \lambda}^{discrete}$



(c) $\mathbb{A}_{-1.05\lambda, 1.05\lambda}^{discrete}$

What happens for the level sets of integer-valued GFF? (Bauerschmidt - Park-Rodriguez '22)

However, we now what happens with two GFF

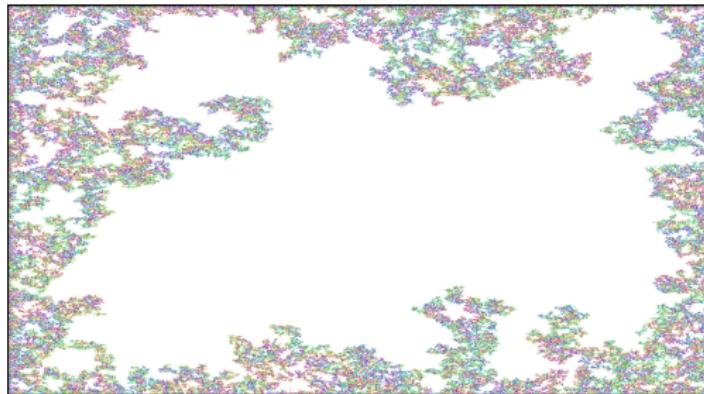
Theorem (Aru-Garban-S. '22)

Let (ϕ^1, ϕ^2) two independent discrete (or metric) GFF. For any $a > 0$, the level set $\mathbb{A}_{\|\cdot\| \leq a}$ is trivial.

However, we now what happens with two GFF

Theorem (Aru-Garban-S. '22)

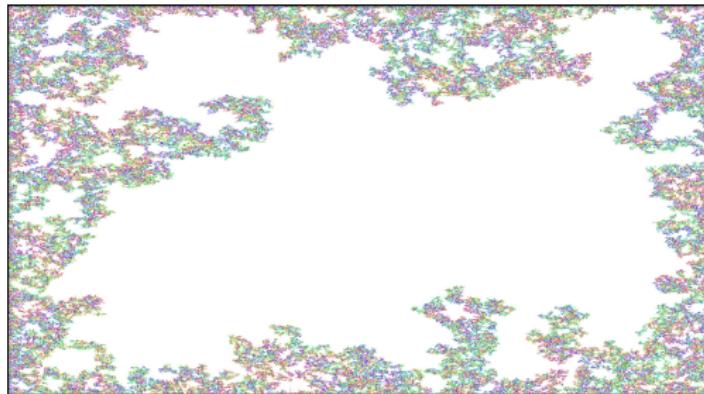
Let (ϕ^1, ϕ^2) two independent discrete (or metric) GFF. For any $a > 0$, the level set $\mathbb{A}_{\|\cdot\| \leq a}$ is trivial.



However, we now what happens with two GFF

Theorem (Aru-Garban-S. '22)

Let (ϕ^1, ϕ^2) two independent discrete (or metric) GFF. For any $a > 0$, the level set $\mathbb{A}_{\|\cdot\| \leq a}$ is trivial.



What happens in the continuum?

Plan

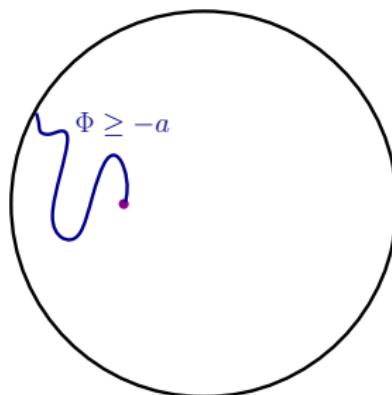
1 Introduction

2 The Gaussian free field

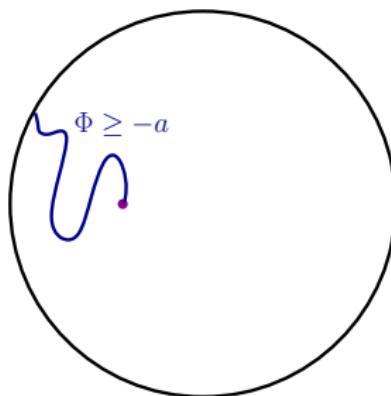
3 Two-valued sets

4 First passage sets

Definition



Definition

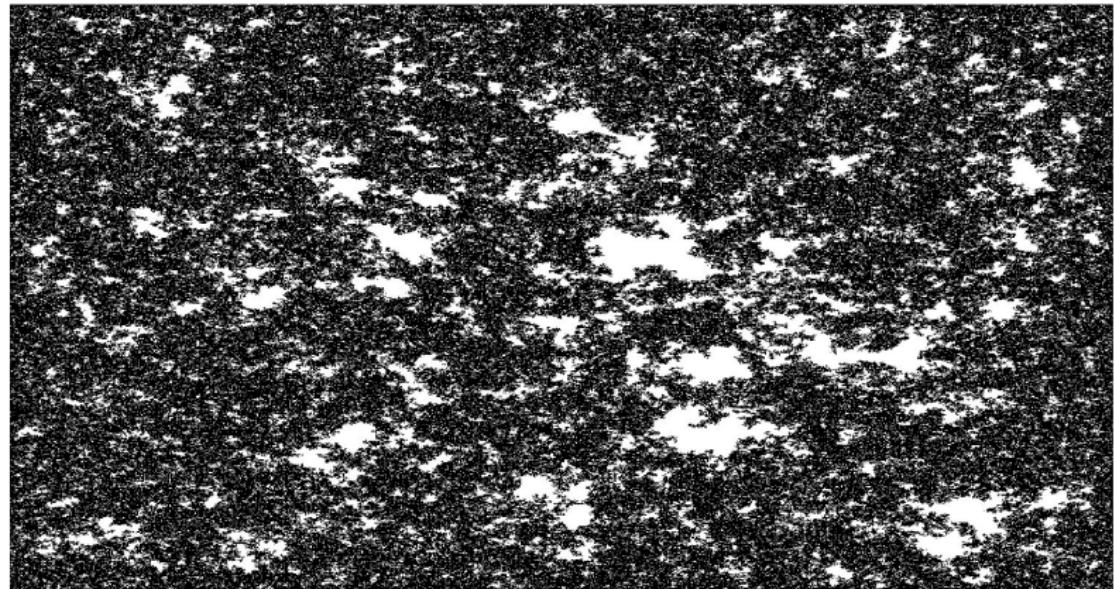


Theorem (Aru-Lupu-S.'19)

Take $a \geq 0$. There exists a unique stopping set \mathbb{A}_{-a} such that

- ① Restricted to $D \setminus \mathbb{A}_{-a}$, $\Phi_{\mathbb{A}_{-a}}$ is strictly equal to $-a$.
- ② $\Phi_{\mathbb{A}_{-a}} + a$ is a positive measure supported in \mathbb{A}_{-a} .

Simulation: $\mathbb{A}_{-2\lambda}$



Monotonicity

Proposition (Aru-Lupu-S. '19)

Take $0 \leq a \leq a'$, then $\mathbb{A}_{-a} \subseteq \mathbb{A}_{-a'}$.

Monotonicity: idea

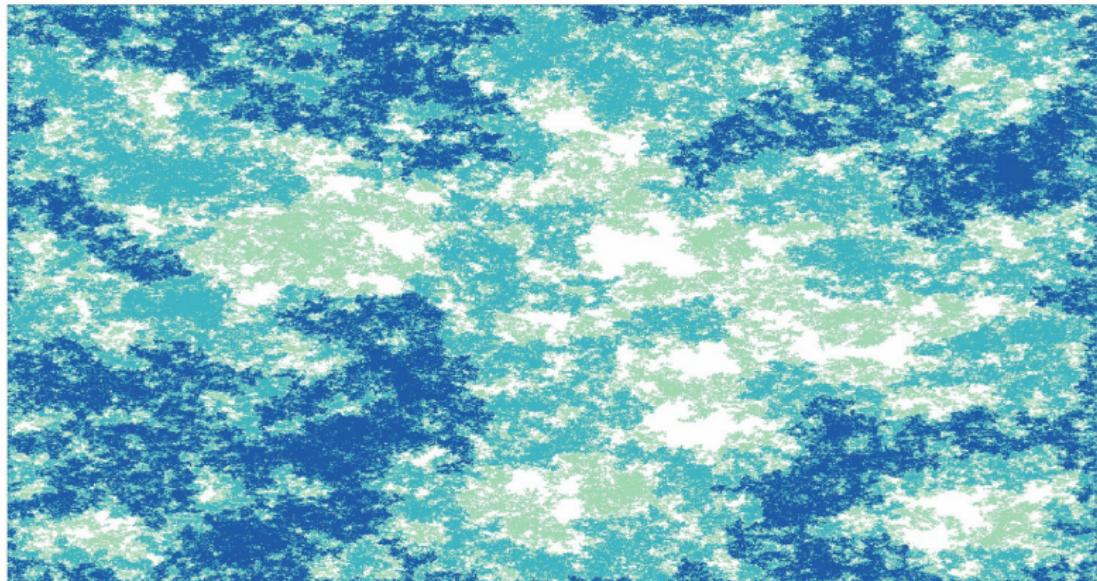


Figure: $\mathbb{A}_{-\lambda}$, $\mathbb{A}_{-2\lambda}$ and $\mathbb{A}_{-3\lambda}$

Relationship with two-valued sets

Theorem (Aru-Lupu-S. '19)

Take $a, b \geq 0$ such that $a + b \geq 2\lambda$, then

$$\mathbb{A}_{-a,b}(\Phi) = \mathbb{A}_{-a}(\Phi) \cap \mathbb{A}_{-b}(-\Phi)$$

Relationship with two-valued sets

Theorem (Aru-Lupu-S. '19)

Take $a, b \geq 0$ such that $a + b \geq 2\lambda$, then

$$\mathbb{A}_{-a,b}(\Phi) = \mathbb{A}_{-a}(\Phi) \cap \mathbb{A}_{-b}(-\Phi)$$

What happens when $a + b < 2\lambda$?

What happens for independent \mathbb{A}_{-a} and \mathbb{A}_{-b} ?

Theorem (Aru-Lupu-S. '18)

\mathbb{A}_{-a} has fractal dimension equal to 2. Furthermore, the non-trivial measure $\Phi_{\mathbb{A}_{-a}} + a$ correspond to a Minkowski content measure of the gauge $r \mapsto r^2 |\log r|^{1/2}$.

Theorem (Aru-Lupu-S. '18)

\mathbb{A}_{-a} has fractal dimension equal to 2. Furthermore, the non-trivial measure $\Phi_{\mathbb{A}_{-a}} + a$ correspond to a Minkowski content measure of the gauge $r \mapsto r^2 |\log r|^{1/2}$.

This is strongly related with the real exponential of the GFF : $e^{\gamma\phi}$:

Excursion decomposition

Theorem (Aru-Lupu-S. '18-'23+)

There exists a sequence of random pairwise disjoint sets $(e_i)_{i \in \mathbb{N}}$ and an independent i.i.d. centred sequence of signs $(\sigma_i)_{i \in \mathbb{N}}$ such that

$$\sum_{i \in \mathbb{N}} \sigma_i \mu_{e_i} \text{ has the law of a GFF,}$$

where μ_{e_i} is the Minkowski content measure of gauge $r \mapsto r^2 |\log r|^{1/2}$ of the set e_i .

Convergences

Theorem (Aru-Lupu- S. '18)

For any a , the FPS \mathbb{A}_{-a} for the metric graph converges to the continuum one.

Convergences

Theorem (Aru-Lupu- S. '18)

For any a , the FPS \mathbb{A}_{-a} for the metric graph converges to the continuum one.

Theorem (Aru-Lupu- S. '23+)

The excursion decomposition in the metric graph converges to the continuum one.

Convergences

Theorem (Aru-Lupu- S. '18)

For any a , the FPS \mathbb{A}_{-a} for the metric graph converges to the continuum one.

Theorem (Aru-Lupu- S. '23+)

The excursion decomposition in the metric graph converges to the continuum one.

What happens with the percolative properties of the discrete level sets?

Missing convergences

What happens for the FPS of the discrete GFF?

Missing convergences

What happens for the FPS of the discrete GFF?

What happens for the FPS of the integer-valued GFF?

End

Gracias!

