

Filtering of stochastic nonlinear systems with multiplicative noises

Asma BARBATA, PHD in Automatic Control

Thesis Supervisor, Michel ZASADZINSKI, Thesis Supervisor, Harouna SOULEY ALI (CRAN, Université de Lorraine)

Thesis Supervisor, Hassani MESSAOUD (Ecole Nationale d'Ingénieur de Monastir – Tunisie)

E-mail : asma.barbata@univ-lorraine.fr, barbata_asma@yahoo.fr

Objectifs :

- -Report \rightarrow Mean square exponential stability \implies almost sure exponential stability (for "very large" class of stochastic systems),
- -Report \rightarrow Amost sure exponential stability \Rightarrow Mean square exponential stability(for "very large" class of stochastic systems),
- -Relaxation of the stability conditions used in the literature for stochastic systems with multiplicative noises
 - ightarrow Replace the mean square exponential stability in (literature) by the almost sure exponential stability,
- -Application to observers synthesis,
- -Application to control synthesis.

Stochastic systems and notions of stability considered : $d x = f(x, u) d t + g(x, u) d w_x$ $d y = h(x) d t + q(x) d w_y$

• $x \in \mathbb{R}^n$ is the state vector, $y \in \mathbb{R}^p$ is the output vector and $u \in \mathbb{R}^m$ is the vector of known inputs,

- $w_x \in \mathbb{R}^d$ et $w_y(t) \in \mathbb{R}^\ell$ are multi-dimensional independent Brownian motions,
- $\bullet f(x,u)$ the drift part of the stochastic differential equation (SDE),
- g(x, u) the diffusion part of the stochastic differential equation (SDE).

Almost sure exponential stability :

$$\limsup_{t \to +\infty} \frac{1}{t} \ln(\|x(t, t_0, x_0)\|) < -\alpha < 0 \qquad \forall x_0 \in \mathbb{R}^n \qquad \text{almost surely}$$

Application to the observer design

Problem statement

The Observer is gibven by

 $d\,\widehat{x} = f(\widehat{x}, u)\,d\,t + \psi(u)(d\,y - h(\widehat{x})\,d\,t)$ The filtering error $e = x - \widehat{x}$ 2. it exists a matrix gain $\psi(u)$ such that the Ordinary differential equation (ODE) $\dot{e} = -f(-e, u) + \psi(u)h(-e)$

is exponentially stable stable.

Example

 $de = (f(x, u) - f(x - e, u) - \psi(u)(h(x) - h(x - e)) dt$

 $+ g(x, u) \operatorname{d} w_x - \psi(u) q(x) \operatorname{d} w_y$

 $\psi(u)$ is the matrix gain to determine such that the observation error e(t) converge exponentially almost surely.

The almost sure exponential stability of e needs the almost sure exponential stability x. **Problem :** The approaches based "Lyapunov" (literature) are reduced to the mean square exponential stability

Approach used : Stability of stochastic triangular systems

We consider a class of stochastic differential equation

$$d x_1 = f_1(x_1, u) d t + g_1(x_1, u) d w$$
(1a)

$$d x_2 = f_2(x_1, x_2, u) d t + g_2(x_1, u) d w$$
(1b)
and a class of stochastic differential equation "block-diagonals"

$$d \overline{x}_1 = f_1(\overline{x}_1, u) d t + g_1(\overline{x}_1, u) d w$$
(2a)

$$d \overline{x}_2 = f_2(0, \overline{x}_2, u) d t$$
(2b)
Assumption1 : it exists a reel $k > 0$ such that, $\forall t \ge 0$,

$$\|f_2(x_1, x_2, u) - f_2(0, \overline{x}_2, u)\| \le k (\|x_1\| + \|x_2 - \overline{x}_2\|),$$

$$\operatorname{trace}((g_1(x_1, u) - g_1(\overline{x}_1, u))(g_1(x_1, u) - g_1(\overline{x}_1, u))^T) \le k \|x_1 - \overline{x}_1\|^2,$$

$$\operatorname{trace}((g_2(x_1, u) - g_2(\overline{x}_1, u))(g_2(x_1, u) - g_2(\overline{x}_1, u))^T) \le k \|x_1 - \overline{x}_1\|^2.$$

Theorem 1: With assumption 1, the equilibrium point of SDE (1) is almost surely exponentially stable if and only if the equilibrium point of SDE (2) is almost surely exponen-

tially stable.

Application of theorem 1 to the design observer

<u>Theorem 2</u>: If the assumption 1 is satisfied with SDE $dx = f(x, u) dt + g(x, u) dw_x$, then the system $d\hat{x} = f(\hat{x}, u) dt + \psi(u)(dy - h(\hat{x}) dt)$ is an observer for the considered stochastic system Guaranteeing the almost sure exponential stability of the filtering error if

1. The SDE $dx = f(x, u) dt + g(x, u) dw_x$ is stable exponentially almost surely,

Filtering error e(t)

Conclusion

- Decoupling of the stability of the stochastic system from the stability of the filtering error.
- Stability of the SDE of the system → Itô calculus, LMI, etc...
 Calcul of the gain ψ(u) of the observer → literature of the observer for the
- nonlinear ODE \longrightarrow Lyapunov, LMI, great gain, etc...