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Let H, U be a R-Hilbert spaces and let X € LP(2; C([0, T], H)) be
the mild solution to

(SPDE)
Xo=&o
where
» T €(0,00),

v

A: D(A) C H — H generator of Co-semigroup (€");c[0,00).

v

U separable Hilbert spaces;

(2, F, P, (Ft)tepo,17) a stochastic basis and (W;)¢cpo, 7] an
Idy-Brownian motion,

v

v

Vi and Vg Hilbert spaces such that etA ‘somehow’ defines an
element of L(VE, H) and of L(Vg, H),

» F: H— Vg and B: H— HS(U, Vg) Lipschitz continuous,
pE [2,00), fo € Lp((Qw/—"OaP); H)

v
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le., forall t €0, T]:

t t
X: = ey + / elt=9AF(X,) ds + / e(=AB(X,) dW,  aus.
0 0
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Let (X(”))neN be a sequence of processes that approximates X, the
solution to (SPDE).
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Let (X(”))neN be a sequence of processes that approximates X, the
solution to (SPDE).
E.g. (X(M),en is obtained by either or both of

1. spatial discretization — spectral Galerkin method, finite
element method.

2. temporal discretization — Euler-Maruyama method,
exponential Euler method.
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Weak convergence

Wanted: o € (0,00) and A C Cp(H,R), both as large as possible,
such that
. _ (n) —«
Vo€ ATC € (0,00)VneN:  [Ep(X7) — Eo(X\™)| < cne.
(1)

(“Weak convergence with rate « of (X(T")),,eN against Xr1.")
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Weak convergence

Wanted: o € (0,00) and A C Cp(H,R), both as large as possible,
such that
. _ (n) —«
Vo€ ATC € (0,00)VneN:  [Ep(X7) — Eo(X\™)| < cne.
(1)

(“Weak convergence with rate « of (X(T”)),,eN against X7.")

‘Typical’ result: A = CK(H,R) with k € {2,3,4} and a = 23,
where /3 € (0, 00) is such that for all n € N one has

(el -

1
2\ 2
) < Cn P,

(“Strong convergence with rate 3 of (X(Tn))neN against X7.")
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The Kolmogorov equation

Suppose A € L(H), F € C2(H,H), B € C2(H,HS(U, H)),
¢ € Cg(H,]R) and for x € H let X* € L2(Q; C([0, T], H)) satisfy,
for all t € [0, T],

t t
XX =eAx + / e(=IAF(XX) ds + / elt=IAB(XX) dW, a.s.

0 0
(2)
and define u(t, x) = Ep(XY), (t,x) €0, T]x H.
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The Kolmogorov equation

Suppose A € L(H), F € C2(H,H), B € C2(H,HS(U, H)),
¢ € Cg(H,]R) and for x € H let X* € L2(Q; C([0, T], H)) satisfy,
for all t € [0, T],

t t
XX =eAx + / e(=IAF(XX) ds + / elt=IAB(XX) dW, a.s.
0

0
(2)
and define u(t, x) = Ep(XY), (t,x) €0, T]x H.
Then u € C2([0, T] x H,R), and if (ex)ken is an ONB for H then

9u(t, x) = 94(t,x)Ax + F(x %Z Zu(t, x)(B(x)ex, B(x)ex),
k=
u(0,x) =d(x), tel0,T],xeH

le., BS(X7) — E(X{”) = u(T, Xo) = u(0. X™).
Now apply It6’s formula to u?
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Problem: A is not bounded. Consequently,
» we cannot use the Kolmogorov equation (directly),

» we cannot use Itd's formula (directly).
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Problem: A is not bounded. Consequently,
» we cannot use the Kolmogorov equation (directly),
» we cannot use Itd's formula (directly).

Other techniques have been developed, using e.g. Malliavin
calculus, duality arguments for the stochastic integral, or (in our
case) the mild Itd formula.
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Some works on weak convergence for SPDEs:

Shadlow (2003), Hausenblas (2003/2010), de Bouard and
Debussche (2006), Debussche and Printems (2009), Geissert,
Kovdcs, Larsson (2009), Debussche (2011), Kovécs, Larsson,
Lindgren (2011, 2013), Andersson, Larsson (2012), Lindner and
Schilling (2013), Bréhier (2013), Bréhier and Kopec (2014),
Andersson, Kruse, Larsson (2013), Wang (2013), Wang and Gan
(2013), Conus, Jentzen, Kurniawan (2014), Jentzen and
Kurniawan (2015), Jacobe de Naurois, Jentzen, Welti (2015),
Bréhier, Hairer, Stuart (2016).
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Shadlow (2003), Hausenblas (2003/2010), de Bouard and
Debussche (2006), Debussche and Printems (2009), Geissert,
Kovdcs, Larsson (2009), Debussche (2011), Kovécs, Larsson,
Lindgren (2011, 2013), Andersson, Larsson (2012), Lindner and
Schilling (2013), Bréhier (2013), Bréhier and Kopec (2014),
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(2013), Conus, Jentzen, Kurniawan (2014), Jentzen and
Kurniawan (2015), Jacobe de Naurois, Jentzen, Welti (2015),
Bréhier, Hairer, Stuart (2016).

All except the red: additive noise.
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Extension

Some works on weak convergence for SPDEs:

Shadlow (2003), Hausenblas (2003/2010), de Bouard and
Debussche (2006), Debussche and Printems (2009), Geissert,
Kovdcs, Larsson (2009), Debussche (2011), Kovécs, Larsson,
Lindgren (2011, 2013), Andersson, Larsson (2012), Lindner and
Schilling (2013), Bréhier (2013), Bréhier and Kopec (2014),
Andersson, Kruse, Larsson (2013), Wang (2013), Wang and Gan
(2013), Conus, Jentzen, Kurniawan (2014), Jentzen and
Kurniawan (2015), Jacobe de Naurois, Jentzen, Welti (2015),
Bréhier, Hairer, Stuart (2016).

All except the red: additive noise.

De Bouard and Debussche: consider the case that A generates a
group.

Debussche/Andersson and Larsson: assumption on B that
essentially requires B to be affine linear.

Jentzen et al.: optimal weak rates for full discretization of
semi-linear parabolic SPDEs and spectral Galerkin method for
semi-linear hyperbolic SPDE.
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(\A/,f’)neNo is the exponential Euler approximation of X with step
size h;



Our work

Exponential Euler method
For h € [0,00) let \A/Oh = Xp and, for n € Ny,

Yy = e [ V04 hE (VD) + BV (Wens 1y — Wan)|

(\A/,f’)neNo is the exponential Euler approximation of X with step

size h;
also, Y = Yh where Y/: R x Q — H satisfies, for all t € [0, c0):

t
vh = efoo+/0 elt=lslAF (vl )ds+/0 el IAB(Y] ) dW,
(3)
with
|s]n = sup{nh: n € Ny and nh < s}.

Y is the exponential Euler approximation process of X with step
size h.
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Theorem (C, Jentzen, Welti; 2016)

Let by, by € R and consider:

2 o2
5246 %) = 55 u(t,x) + [bo + byu(t, x)]é(, x)

(t,x) € [0, T] x [0,1],

(1D WAVE)

with suitable initial and Dirichlet boundary conditions, where & is
space-time white noise.
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Let by, by € R and consider:
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—u(t,x) = p u(t, x) + [bo + bru(t, x)]&(t, x)

(t,x) € [0, T] x [0,1],

(1D WAVE)

with suitable initial and Dirichlet boundary conditions, where & is
space-time white noise.

For h € [0,00) let Y": [0, T] x Q — H be the exponential Euler
approximation process with step size h applied to (1D WAVE) and
let & € CR(L3(0,1),R).
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Theorem (C, Jentzen, Welti; 2016)

Let by, by € R and consider:

2 82
—u(t,x) = p u(t, x) + [bo + bru(t, x)]&(t, x)

(t,x) € [0, T] x [0,1],

(1D WAVE)

with suitable initial and Dirichlet boundary conditions, where & is
space-time white noise.

For h € [0,00) let Y": [0, T] x Q — H be the exponential Euler
approximation process with step size h applied to (1D WAVE) and
let & € CR(L3(0,1),R).

Then for all o € (0, 1) there exists a constant C such that for all
h € [0, 00) it holds that

E¢(u(T,-)) —Eg(Y7)| < Ch™.
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Details

Let A, denote the Dirichlet Laplacian on L2(0,1).
The wave equation fits into the setting with

» H=1%(0,1) x W=12(0,1);

[0 ddy ]
’A_[Ad 0 ]
» U= L?%0,1);
0
> BluvIh=1" b 1+ byu)h }

» dW; = £(t, x);

T B 0 POU RS P
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More details

In fact, we assume B € Lip(H, Lo(U, H)) such that
dp,r,y € [0,00), B € [v/2,7] N[y —1/2,7] such that
» Bly, € Lip(H,, L(U, Hy) N Lo(U, H,)),
> B‘Hr S Cg(Hr, LQ(U, H)),
and non-linear F € Lip(Hp) satisfying similar conditions.
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More details

In fact, we assume B € Lip(H, Lo(U, H)) such that
dp,r,y €[0,00), B € [v/2,7] N[y —1/2,7] such that
» Bly, € Lip(H,, L(U, Hy) N Lo(U, H,)),
> Bly, € Cy(Hy, La(U, H)),
and non-linear F € Lip(Hp) satisfying similar conditions.
This gives convergence rate 2(y — f3).
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1. Project problem onto finite dimensional subspaces (Galerkin
approximation): this gives processes YhN and XN, N €N,
h € [0, 00).

YA mild Ité6 formula for SPDEs, arXiv1009.3526.
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Outline of proof

1. Project problem onto finite dimensional subspaces (Galerkin
approximation): this gives processes YhN and XN, N €N,
h € [0, 00).

2. Obtain appropriate smoothness estimates for solution to the
Kolmogorov equation associated with the SDEs on the finite
dimensional subspaces (PhD thesis Andersson).

3. Obtain appropriate error estimates using, among others, the
mild Ité formula developed by Da Prato, Jentzen and
Rockner!.

YA mild Ité6 formula for SPDEs, arXiv1009.3526.



Key ingredients

Mild 1t6 formula

Let X: [0, T] x Q — H satisfy, for all t € [0, c0),

t
Xy = e Xo + / e(t=)AB(X,) dW.
0
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Mild 1t6 formula

Let X: [0, T] x Q — H satisfy, for all t € [0, c0),
t
Xy = e Xo + / e(t=)AB(X,) dW.
0

Then for all ¢ € C2(H) it holds that

o(X:) — d(e”Xe)
= / (XA B(X,) W,
0

00 t
T ——
k=1
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Proof (cont'd)

[E [o(v™) — o(x)]|
= [E [un(0, Y7Y) = un(T, v
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Proof (cont'd)

By (the ‘classical’) Itd formula

[E [o(v™) — o(x)]|
= [E [un(0, Y7Y) = un(T, v

L) hN T o hN hN
:‘E {—/ —un(t, Yy )dt+/ —un(t, Y7 )AY T dt
o Ot o Ox

33 [ e, Y (OB en, OB e
k— 0

)e )dt]
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Proof (cont'd)

By (the ‘classical’) 1td formula and the Kolmogorov equation
[E [o(v™) — o(x)]|
= [E [un(0, Y7Y) = un(T, v

=|E f/Tﬁu (t Yh’N)dtJr/Tgu (t, Y MYAYPN dt
. ot NQL, Tt o Ix N(L, Tt t

%Z —uN (t, vh’V)( WOAB(Y ) Yew, e B(Y e )dt]
k= 0

0
=|E [;Z/O oz (6 Ve (e‘s"(t)AB(YLhtJN)ek By e )
k=1

2

882UN(t YN (B(Yth’N)ek,B(Yth’N)ek) dt] .
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By the triangle inequality we obtain:
) g 5
[Z/ 7UN (t, ) N) ( h(t)AB(YLhtJN) h(t)AB(Ym )ek)

;XZ u(e, YE) (B(YEM)e, B(Y[”N)ek) dt

[Z/ Saun(t, Y (( WA BV e, (e +I)B(YL”tJN)ek> dt}

+ .

A h,N h,N Sp(t)Ay h,N
Z/ oz (£ YL (B MY er, B Y e

82
— Saun(e YY) (B(Yth’N)ek,B(Yth’N)ek> dt} .




Basic notions Our work Key ingredients Extension

By the triangle inequality we obtain:
) g 5
[Z/ 7UN (t, yth N) (e h(f)AB(YLhtJN) H(D)A B(Ymh)ek)

C,fXZ u(e, YE) (B(YEM)e, B(Y[”N)ek) dt

[Z/ Saun(t, Y (( WA BV e, (e +I)B(YL”tJN)ek> dt}

+ .

A h,N h,N Sp(t)Ay h,N
Z/ oz (£ YL (B MY er, B Y e

2

B
— Saun(e YY) (B(Yth’N)ek,B(Yth’N)ek> dt} .

Recall mild 1td formula:

t
1/J(Ytt’N)*1/J(etAYtt’N):/ w/(e(t—s)AYst,N)e(t—szh)AB(Yst,N) dW.
0

0t
+ % Z/O w//(e(t—s)Ayst,N) (e(t— LsJ,,)AB(YSt,N)7 e(t— LsJ,,)AB(YSt,N)) ds.
k=1




Extension

Nemytskii operators

Let f € Co(R,R). The operator F € L(L?(0,1)) is the Nemytskii
operator associated with f if for all g € L?(0,1) we have

F(g)(x) = f(g(x))-



Basic notions Our work Key ingredients Extension
i i

Recall that we assumed that B € Lip(H, L»(U, H)) such that
p,r,y €10,00), B € [v/2,7] N[y —1/2,7] such that

> B‘Hp € Llp(HP’ L(U7 H’Y) N L2(U7 HP))'

» Bly, € Ci(Hr, La(U, H)),

and non-linear F € Lip(Hp) satisfying similar conditions.
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Recall that we assumed that B € Lip(H, L»(U, H)) such that
dp,r,y €0,00), B € [v/2,7] N[y —1/2,7] such that

» Bly, € Lip(H,, L(U, H,) N La(U, Hy)),

» Bly, € Ci(Hr, La(U, H)),
and non-linear F € Lip(Hp) satisfying similar conditions.
In general, these assumptions are not satisfied by Nemytskii
operators.
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Nemytskii operators
Let f € Cp(R,R), let p € [1,00) and F € L(LP, LP) be given by
F(g)(x) = f(g(x))-

Observe: Ya > 0:

F e CH(LP*e, LP)
and (more generally)
F e ck(Ltrorp 1Py,
Using Sobolev embeddings we get
Feck (W%kaa)v"’, LP) .
In particular, for p = 2:

Feck(wima? 12).
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will not give optimal rates.
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Problem: interpreting the Nemytskii operator F as
Feck(wma? 1?)

will not give optimal rates.

Solution: interpret problem in a Banach space V.
More precisely, in the space V = LP for some large p € [1, c0):

Feck (W%*m’P,LP).
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Motivation:

» All known results on weak convergence assume F and G to be
at least twice continuously Fréchet differentiable.
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Future work

Extension to the Banach space setting.

Motivation:
» All known results on weak convergence assume F and G to be
at least twice continuously Fréchet differentiable.
» Nemytskii operators do not have the ‘right” Fréchet
differentiability properties in the Hilbert space setting.

» Nemytskii operators do have the ‘right’ Fréchet
differentiability properties in the Banach space setting.



Thank you!
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