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Introduction



Consider T > 0, d € N, £ € RY and sufficiently regular f: R? x R x RY — R,
g: R >R, pu: RY - R o: RY — R y: [0, T] x R? — R such that
u(T,x) = g(x) and

grut, x) +1(x, u(t, x), (Vxu)(t,0)) + (u(x), (V50)(t %)) e
+ 1 Tracege (o(x) [o(x)]* (Hess, u)(t, x)) = o.
for (t,x) € [0, T) x R?. Goal: Compute u(0, ) approximatively.
Application: Pricing of financial derivatives

Approximations methods such as finite element methods,
finite differences, sparse grids suffer under the curse of dimensionality.

Consider probability space (€2, F, P), Brownian motion W: [0, T] x  — RY, and
for every s € [0, T], x € R? a solution process X*: [s, T] x Q — R of

%Xfax e /L(th”() + U(XTS’X)% W;, te [s, -,-]7 XSS,x .
Feynman-Kac formula Vs € [0, T], x € R?:

u(s, x) = E[g(x")] + / E[1(t, X5, u(t, X5, (V) (1, X7))] .
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Linear pricing models

f=0



@ Black-Scholes model Consider T, 5 > 0, & € R and
IX = aX + B X Zaw,

for t € [0, T], where (W;)c[o,7] is a one-dimensional Brownian motion.



@ Black-Scholes model Consider T, 5 > 0, & € R and
IX = aX + B X Zaw,
for t € [0, T], where (W;)c[o,7] is a one-dimensional Brownian motion.

@ Heston model Consider o, v € R, /3, 9, Xé”, Xéz) >0,p€[—1,1] and

X0 o x4\ /x@ X{m 20
(2) — 5 ’)/X 2) +B1/ p 8t W(1 + p gt W(z))

for t € [0, T], where (W;)c[o,r] = (W, W,(z)))te[oﬂ is a two-dim. BM.

t



Theorem (Hairer, Hutzenthaler, & J 2015 AOP)

LetT € (0,00), d € {4,5,...}, & € RY. Then there exist globally bounded
w, o € C(RY,RY) such that for every probability space (2, F,P), every Brownian
motion W: [0, T] x Q — R, every solution X: [0, T] x Q — R? of

Ix = pu(X)+o(x) 2w, telo,T], X =¢

every YN: {0,1,...,N} x Q = R* N € N, with
VNeN,ne{0,1,....,N—1}: Y} = Xy and

YrI;V+1 o leyv'i"ﬂ(yr,rv)ﬁ + U(Yr,:v)(W(n+1)T - WLT)

N N

(Euler-Maruyama approximations), and every o € [0, 00) we have

im (v [EDxr] ~ E[][) = {° o

N—ro0 © a>0
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Plotof ||E[Xr] — E[YY]| for T =2and N € {2',22, ..., 2%}.
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Theorem (Gerencsér, J, & Salimova 2016)
LetT € (0,00),d € {2,3,4,...}, & € RY, (ay)nen C R satisfy
limy—soo av = 0. Then there exist globally bounded i, o € C*°(RY, R?) such that

for every probability space (2, F,P), every Brownian motion W: [0, T| x Q — R,
every solution X: [0, T] x Q — R of

IX = pu(X) +o(x)Ew,, telo,T], X =¢

and every N € N we have

31,...,.isr/:f€[0,T] u: Ri’(’]LR"E[HXT - U(WS1 o WSN) H:| 2 il
measurable

@ Dimension d > 4: J, Miller-Gronbach & Yaroslavtseva 2016 CMS

@ Weak convergence and d > 4: Miller-Gronbach & Yaroslavtseva 2016 SAA
(to appear)

@ Adaptive approximations and d > 4: Yaroslavtseva 2016
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LetT € (0,00),d € {2,3,4,...}, & € RY, (ay)nen C R satisfy
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Theorem (Gerencsér, J, & Salimova 2016)

LetT € (0,00),d € {2,3,4,...}, & € RY, (ay)nen C R satisfy

limy—s00 av = 0. Then there exist globally bounded i, o € C*°(RY, R?) such that
for every probability space (€2, F, IP), every Brownian motion W: [0, T] x Q — R,
every solution X: [0, T] x Q — R of

2 = u(X;)+o(x)Ew, telo,T], X =¢&

and every N € N we have

31,...,‘isr/\11f€[0,T] u: Ri’(’]LRdE[HXT a U(WS“ Y WSN) Hi| 2 an:
measurable

@ Dimension d > 4: J, Miller-Gronbach & Yaroslavtseva 2016 CMS

@ Weak convergence and d > 4: Miller-Gronbach & Yaroslavtseva 2016 SAA
(to appear)

@ Adaptive approximations and d > 4: Yaroslavtseva 2016
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Theorem (Hefter & J 2016)

LetT,0,0 € (0,00),7,& € [0,00), let (2, F, P) be a probability space, let
W: [0, T] x Q — R be a Brownian motion, let X : [0, T| x Q — R be a solution of

IX=(0—7%)+BVX oW, teo,T], X =C¢

Then there exists a ¢ € (0, 00) such that for all N € N we have

P 20
inf E“xr—u(wz,wg,...,wr)u > . N E)
u: RNSR N N

measurable
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Nonlinear pricing models
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Assume V x € R?: u(x) = 0,0(x) = Idgs, assume f: RY x R — R, let
O = UnenR", let W02 [0, T] x Q — RY, 0 € ©, be independent Brownian
motions, define AWY, = W/ — W and note Vs € [0, T), x € R:

u(s, %) = gx) + B[ (g(x + AW2,) — o(x))]
T
+ [E[f(x + AW, u(t, x + AW,))] dt .
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Assume V x € R?: u(x) = 0,0(x) = Idgs, assume f: RY x R — R, let
O = UnenR", let W02 [0, T] x Q — RY, 0 € ©, be independent Brownian
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Full history recursive multilevel Picard approximations Forall f € ©, k,p € N,
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Assume V x € R?: u(x) = 0,0(x) = Idgs, assume f: RY x R — R, let
O = UnenR", let W02 [0, T] x Q — RY, 0 € ©, be independent Brownian
motions, define AW?, = W/ — W/ andnote Vs € [0, T), x € RY:

u(s, %) = gx) + B[ (g(x + AW2,) — o(x))]
L TE[f(x+ AW, u(t x + AW2 )] ot

S

Full history recursive multilevel Picard approximations Forall f € ©, k,p € N,

s €[0,7), x € R define U] , (x) = 0and

Mk, p (9707_i)
g(x+Aw, —g(x)

0, () = gl + 3 S AT )
i=1

Mk, p

m,
k—l.p —Lp

k—1
+Z: Z Z Cls t { (X+AWs(jet,/,f)jul(%f;/,r)( —&—AW(H“)))

=1 te(s,T)

— In()) f(x + Aws(f””) (02000 (4 Awg””)))]

[I 1]+, p,t



Allen-Cahn equation
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Allen-Cahn equation T =1, =0 € R, u(T,x) = d

1
T+l * 3N
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Allen-Cahn equation T =1, =0 € R", u(T,x) = ——, and
%u(t, x) + u(t,x) — [u(t, )] + 3(Axu)(t,x) =0, (t,x)€[0,T) xR

Relative errors i 571°, U, ,(0.6)—v] for p € {1,2,...,5} against runtime;
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Allen-Cahn equation T =1, =0 € R", u(T,x) = ——, and
%u(t, x) + u(t,x) — [u(t, )] + 3(Axu)(t,x) =0, (t,x)€[0,T) xR

Relative errors i 571°, U, ,(0.6)—v] for p € {1,2,...,5} against runtime;
u(0,€) ~ v = 0.905.
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Allen-Cahn equation T =1, =0 € R, u(T,x) = 1+||1X|| , and

%u(t, x) + u(t,x) — [u(t, )] + 3(Axu)(t,x) =0, (t,x)€[0,T) xR

Relative errors i 571°, U, ,(0.6)—v] for p € {1,2,...,5} against runtime;
u(O, f) ~ v = 0.905. Simulations: MATLAB, Intel i7 CPU, 2.8 GHz, 16 GB RAM.
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Allen-Cahn equation T = 1,£ = (0,0,...,0) € R, y(T,x) = 1+H1X|| , and

%u(t, x) + u(t, x) — [u(t,x)]° + 3(Axu)(t,x) =0, (t,x) € [0, T) x R'.

Relative increments [11—0 e, |u;+17p+1(o,g)—u;,p(o,g)ﬂ/[ [ 3212, UL 50,8 )|] for
p € {1,2,3,4} against runtime; u(0, £) ~ 0.317.
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Pricing with default risk
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Pricing with default risk (Duffie, Schroder, & Skiadas 1996 AAP, Bender, Schweizer,
& Zhuo 2015 MF)
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Pricing with default risk (Duffie, Schroder, & Skiadas 1996 AAP, Bender, Schweizer,

& Zhuo 2015 MF) T =1,d = 1,£ = (100,...,100) € RY, u(T,x) = min_x;
1<i<d

10°
—g— relative approximation error
slope -1/
107 F
s
5]
c
S
T
£
310?
a
g
8
°
=
o
2
10°
10 n " " "
102 102 107 10° 10' 102 10° 10*

runtime (seconds)



Pricing with default risk (Duffie, Schroder, & Skiadas 1996 AAP, Bender, Schweizer,

& Zhuo 2015 MF) T =1,d = 1,£ = (100,...,100) € RY, u(T,x) = min_x;
1<i<d

Gu(t, x) + (x, u(t, x)) Z %ZZ\X,| (azu)( x)=0

for (t,x) € [0, T) x R7.
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Pricing with default risk (Duffie, Schroder, & Skiadas 1996 AAP, Bender, Schweizer,

& Zhuo 2015 MF) T =1,d = 1,£ = (100,...,100) € RY, u(T,x) = min_x;
1<i<d

d d
u(t, x) + f(x, u(t, x) Z x)—l—%ZZ\X;F(aa—;u)(t,x):O
= i=

for (t,x) € [0, T) x R7.
against runtime;
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Pricing with default risk (Duffie, Schroder, & Skiadas 1996 AAP, Bender, Schweizer,

& Zhuo 2015 MF) T =1,d = 1,£ = (100,...,100) € RY, u(T,x) = min_x;
1<i<d

d d
Gu(t, x) + (x, u(t, x)) Z X)+%ZZ\X;|2(§—;U)(1,X):O
= i=

for (t,x) € [0, T) x R7.
against runtime; u(0, ) ~ v = 97.705.

ot D U (0.8) vl for p € {1,2,...,7}
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Pricing with default risk (Duffie, Schroder, & Skiadas 1996 AAP, Bender, Schweizer,

& Zhuo 2015 MF) T = 1, d = 100, £ = (100, ...,100) € R?, u(T, x) = r<ni2 Xi»
1<i<d

d d
u(t, x) + (x, u(t, x)) Z X)+%ZZ\X;|2(68—;U)(1,X):O
= i=

for (t,x) € [0, T) x R [55000, U1 1406 -0, ,(0.6)]] / [ 51 12, vt (0] for
p € {1,2,...,6} against runtime; u(0, {) ~ 58.113.
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Pricing with default risk (Duffie, Schroder, & Skiadas 1996 AAP, Bender, Schweizer,
& Zhuo 2015 MF)

; 2 2 h_2 J_ 2 -_ 2 =_ 2 h
Consider 0 = 5, R= 155.7" = 15V = 150' B = 765 7 = 75 V' V' € (0,00)

satisfy v < v/, and assume for all x € R?, y € R that
pu(x) = iix,  o(x) = g diag(x),

and

f(XaY) - - (1 - 5)y|}}/h I[(7oo,v”)(y) +'7l I[[v’,oo)(y)

+[528 =v) + 2] 1) - v

@ We consider v = 50, v/ = 120 in the case d = 1.
@ Bender et al. consider v = 54, v/ = 90 in the case d = 5.

@ We consider v = 47, v/ = 65 in the case d = 100.



