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Abstract
This study investigates the global adaptive practical tracking for a class of nonlinear stochastic systems with

dynamic uncertainties and unmeasured states via dynamic output feedback control.
We show that we can extend the work in [1] to stochastic system and generalize the work in [2]. An output feedback
controller is constructed to guarantee that the closed-loop system is globally practically stable in probability and the
output can be regulated to the all fixed ball almost surely.

Notations and preliminary results
Consider the following stochastic nonlinear system

dx = f (x)dt + g(x)dw (1)

Where x ∈ Rn is the system state, w is an m-dimensional standard Winner process defined on the
complete probability space (Ω,F , {Ft}t≥0, P ). The Borel measurable functions f : Rn → Rn

and g : Rn → Rn×m.
For any given function V (x) ∈ C2(Rn), associated with system (1), the differential operator L is
defined as

LV =
∂V

∂x
.f +

1

2
tr{g(x)∂

2V

∂x2
g⊤(x)}

Definition 1. [5] The solution process {x(t); t ≥ 0} of stochastic differential system (1) is said to be
bounded in probability, if

lim
t→∞

sup
0≤t<∞

P{|x(t)| ≥ c} = 0

Theorem 1. [6] Consider the system (1) and assume that f and g are C1 , if there exists a function
C2 function V (x), class K∞ functions β1 and β2, a constant c > 0, and a nonnegative function W (x)
such that

β1(|x|) ≤ V (x) ≤ β2(|x|), LV ≤ −W (x) + c Then,

1. There exists an almost surely unique solution on [0,∞)

2. The solution process is bounded in probability when W (x) ≥ αV (x) for some α > 0.

3. When c = 0, f (0) = g(0) = 0 and W ((x) is continuous, the equilibrium x = 0 is globally stable in
probability and the solution x(t) satisfies P{limt→∞W (x(t)) = 0} = 1.

Problem Statement and Assumptions
we consider a class of stochastic nonlinear systems in the following form:

dxi = (xi+1 + fi(t, x, u))dt + g⊤i (t, x, u)dw i = 1, 2, . . . , n− 1

dxn = (u + fn(t, x, u))dt + g⊤n (t, x, u)dw

y = x1 − yr

(2)

Where x = (x1, · · · , xn)⊤ ∈ Rn, u ∈ R and y ∈ R are the state, input and output, respectively.
yr is a given reference trajectory to be tracked; w is an m-dimensional standard Winner process The
mapping fi : R+×Rn×R → R and gi : R+×Rn×R → Rm; 1 ≤ i ≤ n, are unknown perturbation
functions and are assumed to be continuous in the first argument and locally Lipschitz in the rest of
the arguments.

0.1 Assumptions
(A1) 1. The functions fi and gi are contineous and locally Lipshitz.

2. There exist an unknown constants θ1, θ2 such that

|fi(t, x, u)| + |gi(t, x, u)| ≤ θ1(1 + |y|p)
i∑

j=1

|xj| + θ2. (3)

(A2) The reference trajectory yr is continuously differentiable and there exists an unknown constants
K such that

|yr| + |ẏr)| ≤ K (4)

0.2 Problem
The objective paper is to design an adaptive output-feedback controller

χ̇ = α(χ, y)

u = β(χ, y)
(5)

so that the solution process of the closed-loop system is bounded in probability and the outputs
y = x1 − yr can be regulated into a small neighborhood of the origin in probability

Controller design

0.3 Change of coordinates
z1 = y, zi = xi, i ≥ 2.

dz1 = (z2 + f1(t, z, u)− ẏr)dt + g⊤1 (t, z, u)dw

dzi = (zi+1 + fi(t, z, u))dt + g⊤i (t, z, u)dw i = 2, . . . , n− 1

dzn = (u + fn(t, z, u))dt + g⊤n (t, z, u)dw

y = z1

(6)

0.4 Controller
Let γ > 0, we introduce the controller via the full-order observer

uγ = −
∑n

i=1 (LM)n−i+1kiẑi

dẑi = ẑi+1 + (LM)iai(y − ẑ1)dt i = 1, 2, . . . , n− 1

dẑn = u + (LM)nan(y − ẑ1)dt

(7)

where ẑ = [ẑ1, ..., ẑn]
⊤ with the initial value ẑ(t0) = ẑ0,

gains M and L are updated by

Ṁ = −αM2 + β(1 + yl)M ; M(0) = 1

L̇ = max(0, M
(ML)2b

(ẑ21 + e21 − γ2))2; L(0) = L0 > 0
(8)

The parameters ai and ki are chosen so that

A =


−a1 1 . . . 0

... ... . . .
−an−1 0 . . . 1
−an 0 . . . 0

 B =


0 1 . . . 0
... ... . . .
0 0 . . . 1

−kn −kn−1 . . . −k1

 (9)

are Hurwitz matrices.

Lemma 1. There exists P and Q symmetric and positive definite matrices, and a positives constants
c1, c2, c3 and c4, such that

A⊤P + PA ≤ −idn, c1idn ≤ DbP + PDb ≤ c2idn, (10)

B⊤Q +QB ≤ −2idn, c3idn ≤ DbQ +QDb ≤ c4idn, (11)

Theorem 2. Consider system (2) under Assumptions A1 and A2. The output-feedback controller (7)
guarantees that, for any initial condition (x0, ẑ0) ∈ Rn × Rn, the solution (x(t), ẑ(t),M(t), L(t))
of the resulting closed-loop system is unique and bounded on [0,+∞) a.s., and furthermore, for all
γ > 0, there exists a finite time T > 0 so that |x1(t)− yr(t)| ≤ γ, ∀t ≥ T

1 Proof

The error dynamics and the closed-loop system
Let ei = zi − ẑi and define the following scaling state ζ = (ζ1, · · · , ζn)⊤ and estimation error
ϵ = (ϵ1, · · · , ϵn)⊤ as follows:

ϵi =
ei

(LM)i+b−1
ζi =

ẑi
(LM)i+b−1

(12)

Where b > 0 is constant. Now, using (12), the closed-loop systems (6) and (7) can be expressed
compactly as

dϵ = ((LM)Aϵ− (L̇L + Ṁ
M )Dϵ + F (t, x, u)dt +G(t, x, u)dw(t)

dζ = ((LM)Bζ − (L̇L + Ṁ
M )Dζ + (LM)aϵ1)dt

(13)

Where

a = (a1, · · · , an)⊤ D = Diag (b, b + 1, . . . , b + n− 1) (14)

and

F = (
f1(t, x, u)

LM b
, · · · , fn(t, x, u)

LM b+n−1
)⊤ G = (

g1(t, x, u)

LM b
, · · · , gn(t, x, u)

LM b+n−1
)⊤ (15)

1.1 Lyapunov analysis
Consider the Lyapunov function defined by

V = αV1 + V2 (16)

Where V1 = ϵ⊤Pϵ and V2 = ζ⊤Qζ .
The remainder of the proof is omitted on grounds of space
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