A robust a-posteriori error estimator for Divergence-conforming DG methods for Oseen equation

A. Khan ${ }^{\text {a }}$ and G. Kanschat ${ }^{\text {a }}$
a Interdisciplinary Center for Scientific Computing, Heidelberg University, Germany
Workshop on Multiscale methods for stochastic dynamics, University of Geneva, Switzerland

The finite element approximations of convection-diffusion equations or oseen equations have one drawback due to present layers of small width in solutions where their gradients change very rapidly.
In general, these layers seem in solution as boundary layers (near the outflow boundary of the domain) or as internal layers (due to non-smooth data near the inflow boundary).
To resolve these problems, the approach requires adaptive finite element methods which are able to locally refining the meshes in the vicinity of the layers and other singularities.

Oseen equation

$$
\begin{aligned}
&-\nu \Delta \mathbf{u}+\underline{\mathbf{a}} \cdot \nabla \mathbf{u}+\nabla p+b \mathbf{u}=\mathbf{f} \\
& \nabla \cdot \mathbf{i n} \quad \Omega, \\
& \mathbf{u}=0 \quad \text { in } \Omega, \\
& \mathbf{u}=\mathbf{0} \quad \text { on } \Gamma, \\
& \int_{\Omega} p d x=0 . \quad \text { (Compatibility relation) }
\end{aligned}
$$

Here $\mathbf{u}, p, \mathbf{f}, \nu$, $\underline{\mathbf{a}}$ and b are the velocity, the pressure, a prescribed external body force, the kinematic viscosity, a convective velocity field and a given scalar function, respectively.

Existence and uniqueness

Here $\underline{a}(\mathbf{x}) \in \mathbf{W}^{1, \infty}(\Omega)$ and $b(\mathbf{x}) \in L^{\infty}(\Omega)$. If $\underline{a}(\mathbf{x})$ and the size of domain Ω are of order one, then $\frac{1}{\nu}$ is the reynold number
(First case) Assume that \mathbf{u} is the velocity at the current time, \mathbf{a} is the velocity at the previous time step and $b=1 / \Delta t$, this imply $b>0$.
(Second case) $b=0$ for the steady-state Navier-Stokes problem.
(Assumption 1)

```
\(-\frac{1}{2} \nabla \cdot \underline{\mathbf{a}}(\mathbf{x})+b(\mathbf{x}) \geq \beta, \quad \mathbf{x} \in \Omega, \quad\|\nabla \cdot \underline{\mathbf{a}}(\mathbf{x})+b(\mathbf{x})\|_{L^{\infty}(\Omega)} \leq c_{\star} \beta\).
```

- Assumption 1 guarantees existence and uniqueness of a solution $(\mathbf{u}, p) \in \mathbf{H}_{0}^{1}(\Omega) \times L_{0}^{2}(\Omega)$.
- If $\beta=0$ then $\nabla \cdot \underline{\mathbf{a}}=\boldsymbol{b}$. Moreover $-\nu \Delta \mathbf{u}+\nabla \cdot(\underline{\mathbf{a} \mathbf{u})}+\nabla p=\mathbf{f}$. Assumption 1 is satisfied provided that $\nabla \cdot \underline{\mathbf{a}} \geq 0$.

$H^{\text {div }}$-DG formulation for Oseen problem

First we devide the domain Ω by a subdivision \mathcal{T}_{h} into a mesh of shape-regular rectangular cell K.

Let h_{K} and $\mathcal{E}\left(\mathcal{T}_{h}\right)$ be denoted as the diameter of an element K and the set of edges of \mathcal{T}_{h}, respectively.
For given mesh \mathcal{T}_{h}, the notions of broken spaces for the continuous and differentiable function spaces are denoted as $\mathcal{C}\left(\mathcal{T}_{h}\right)$ and $H^{s}\left(\mathcal{T}_{h}\right)$.

- Discrete subspace of $H_{0}^{\text {div }}(\Omega)$

$$
\begin{gathered}
\mathbf{V}_{h}=\left\{v \in H_{0}^{\text {div }}\left|\forall K \in \mathcal{T}_{h}: v\right|_{K} \in R T_{k} \quad \text { for } k \geq 1\right\} \\
\mathbf{V}_{h}^{0}=\left\{v \in \mathbf{V}_{h} \mid \nabla \cdot v=0\right\}
\end{gathered}
$$

- Discrete subspace of $L_{0}^{2}(\Omega)$

$$
Q_{h}=\left\{v \in L_{0}^{2}\left|\forall K \in \mathcal{T}_{h}: v\right|_{K} \in Q_{k}(K) \quad \text { for } k \geq 1\right\}
$$

- Important property of the pair $\mathbf{V}_{h} \times Q_{h}$

$$
\nabla \cdot \mathbf{V}_{h} \subset Q_{h}
$$

(Discrete weak formulation) Find $(\mathbf{u}, p) \in \mathbf{V}_{h} \times Q_{h}$ such that

$$
\mathcal{A}_{h}(\mathbf{u}, p ; \mathbf{v}, q)=(\mathbf{f}, \mathbf{v}), \quad \forall \quad(\mathbf{v}, q) \in \mathbf{V}_{h} \times Q_{h}
$$

where

$$
\mathcal{A}_{h}(\mathbf{u}, p ; \mathbf{v}, q)=a_{h}(\mathbf{u}, \mathbf{v})+o_{h}(\mathbf{u}, \mathbf{v})-(p, \nabla \cdot \mathbf{v})-(q, \nabla \cdot \mathbf{u}) .
$$

Details of $a_{h}(\mathbf{u}, \mathbf{v})$

$$
\begin{aligned}
a_{h}(\mathbf{u}, \mathbf{v}) & =\nu(\nabla \mathbf{u}, \nabla \mathbf{v})_{\mathcal{T}_{h}}+a_{h}^{i}(\mathbf{u}, \mathbf{v})+a_{h}^{\partial}(\mathbf{u}, \mathbf{v}) \\
a_{h}^{i}(\mathbf{u}, \mathbf{v}) & =a_{p}^{i}(\mathbf{u}, \mathbf{v})-a_{c}^{i}(\mathbf{u}, \mathbf{v})-a_{c}^{i}(\mathbf{v}, \mathbf{u}) \\
a_{h}^{\partial}(\mathbf{u}, \mathbf{v}) & =a_{p}^{\partial}(\mathbf{u}, \mathbf{v})-a_{c}^{\partial}(\mathbf{u}, \mathbf{v})-a_{c}^{\partial}(\mathbf{v}, \mathbf{u})
\end{aligned}
$$

- Interior face terms and Nitsche terms

$$
a_{c}^{i}(\mathbf{u}, \mathbf{v})=\langle\{\{\nu \nabla \mathbf{u}\}\}, \llbracket \mathbf{v} \otimes \mathbf{n} \rrbracket\rangle_{\mathcal{E}^{i}\left(\mathcal{T}_{h}\right)}, \quad a_{p}^{i}(\mathbf{u}, \mathbf{v})=\left\langle\gamma_{h}^{2} \llbracket \mathbf{u} \otimes \mathbf{n} \rrbracket, \llbracket \mathbf{v} \otimes \mathbf{n} \rrbracket\right\rangle_{\mathcal{E}^{i}\left(\mathcal{T}_{h}\right)}
$$

$$
a_{c}^{\partial}(\mathbf{u}, \mathbf{v})=\langle\nu \nabla \mathbf{u}, \mathbf{v} \otimes \mathbf{n}\rangle_{\mathcal{E}^{\partial}\left(\mathcal{T}_{h}\right)}, \quad a_{p}^{\partial}(\mathbf{u}, \mathbf{v})=\left\langle\gamma_{h}^{2} \mathbf{u} \otimes \mathbf{n}, \mathbf{v} \otimes \mathbf{n}\right\rangle_{\mathcal{E}^{\partial}\left(\mathcal{T}_{h}\right)}
$$

- Definition of $o_{h}(\mathbf{u}, \mathbf{v})$

$$
o_{h}(\mathbf{u}, \mathbf{v})=\sum_{K \in \mathcal{T}_{h}} \int_{K}((b-\nabla \cdot \underline{\mathbf{a}}) \mathbf{u} \mathbf{v}-(\underline{\mathbf{a}} \cdot \nabla) \mathbf{v} \cdot \mathbf{u}) \mathrm{d} \mathbf{x}+\frac{1}{2} \sum_{K \in \mathcal{T}_{h}} \int_{\partial K}\left[\underline{\mathbf{a}} \cdot n_{K} \llbracket \mathbf{u} \otimes \mathbf{n} \rrbracket-\left|\underline{\mathbf{a}} \cdot n_{K}\right|\left(\mathbf{u}^{e}-\mathbf{u}\right)\right] \cdot \mathbf{v d s} .
$$

DG Norm

$$
\|(\mathbf{u}, p)\|\left\|^{2}=\right\|\|\mathbf{u}\|\left\|^{2}+\nu^{-1}\right\| p \|_{T_{n},}^{2}
$$

where

$$
\|\|\mathbf{u}\|\|^{2}=\nu\|\nabla \mathbf{u}\|_{T_{h}}^{2}+a_{p}^{i}(\mathbf{u}, \mathbf{u})+a_{p}^{\partial}(\mathbf{u}, \mathbf{u})+\beta\|\mathbf{u}\| \|_{T_{i}}^{2}
$$

- Semi Norm

$$
|\mathbf{u}|_{A}^{2}=|\underline{\underline{\mathbf{u}}}|_{\mid *}^{2}+\sum_{E \in \mathcal{E}\left(\tau_{h}\right)}\left(\beta h_{E}+\frac{h_{E}}{\nu}\right)\| \| \mathbf{u}\| \|_{0, E}^{2}, \text { where }|\underline{q}|_{\star}^{2}=\sup _{\phi \in \boldsymbol{H}_{0}^{2}(\Omega) \backslash\{0\}} \frac{\int_{\Omega} \underline{q} \cdot \nabla \phi d x}{\|\phi \phi\|} .
$$

References

R. Verfurrth (2005), Robust a posteriori error estimates for stationary convection-diffusion equations, SINUM, 43(4), 1766-1782.
D. Schötzau, L. Zhu (2009), A robust a-posteriori error estimator for discontinuous Galerkin methods for convection-diffusion equations, Applied numerical mathematics, 59(9), 2236-2255.
B. Cockburn, G. Kanschat, D. Schötzau (2007) A note on discontinuous Galerkin divergence-free solutions of the NavierStokes equations, JSC, 31.1-2: 61-73.

A posteriori error estimator

- Parameters

$$
\rho_{K}=\min \left\{h_{K} \nu^{-\frac{1}{2}}, \beta^{-\frac{1}{2}}\right\}, \quad \rho_{E}=\min \left\{h_{E} \nu^{-\frac{1}{2}}, \beta^{-\frac{1}{2}}\right\} .
$$

- Note that if $\beta=0$ we choose $\rho_{K}=h_{k} \nu^{-\frac{1}{2}}$ and $\rho_{E}=h_{E} \nu^{-\frac{1}{2}}$.
- Local error indicator

$$
\eta_{K}^{2}=\eta_{R_{K}}^{2}+\eta_{E_{K}}^{2}+\eta_{J_{K}}^{2}
$$

- Interior residual

$$
\eta_{R_{K}}^{2}=\rho_{K}^{2}\left\|\mathbf{f}_{h}+\nu \Delta \mathbf{u}_{h}-\underline{\mathbf{a}}_{h} . \nabla \mathbf{u}_{h}-\nabla p_{h}-b \mathbf{u}_{h}\right\|_{0, K}^{2}
$$

- Edge residual

$$
\eta_{E_{K}}^{2}=\frac{1}{2} \sum_{E \in \partial K \backslash \Gamma} \nu^{-\frac{1}{2}} \rho_{E}\left\|\llbracket\left(p_{h} \underline{\mathbf{I}}-\nu \nabla \mathbf{u}_{h}\right) \cdot \mathbf{n} \rrbracket\right\|_{0, E}^{2}
$$

- Jump of the approximate solution \mathbf{u}_{h}

$$
\eta_{J_{K}}^{2}=\frac{1}{2} \sum_{E \in \partial K \backslash \Gamma}\left(\frac{\gamma \nu}{h_{E}}+\beta h_{E}+\frac{h_{E}}{\nu}\right)\left\|\llbracket \mathbf{u}_{h} \otimes \mathbf{n} \rrbracket\right\|_{0, E}^{2}+\sum_{E \in \partial K \cap \Gamma}\left(\frac{\gamma \nu}{h_{E}}+\beta h_{E}+\frac{h_{E}}{\nu}\right)\left\|\mathbf{u}_{h}\right\|_{0, E}^{2} .
$$

- Data oscillation term

$$
\Theta_{K}^{2}=\rho_{K}^{2}\left(\left\|\mathbf{f}-\mathbf{f}_{h}\right\|_{0, K}^{2}+\left\|\left(\underline{\mathbf{a}}-\underline{\mathbf{a}}_{h}\right) \cdot \nabla \mathbf{u}_{h}\right\|_{0, K}^{2}+\left\|\left(b-b_{h}\right) \mathbf{u}_{h}\right\|_{0, K}^{2} .\right.
$$

- A-posteriori error estimator and Data oscillation error

$$
\eta=\left(\sum_{K \in \mathcal{T}_{h}} \eta_{K}^{2}\right)^{\frac{1}{2}}, \quad \boldsymbol{\Theta}=\left(\sum_{K \in \mathcal{T}_{h}} \boldsymbol{\Theta}_{K}^{2}\right)^{\frac{1}{2}} .
$$

- Reliability
$\left|\left|\left|\mathbf{u}-\mathbf{u}_{h}\right|\left\|+\nu^{-1 / 2}| | p-p_{h}\right\|_{0}+\left|\mathbf{u}-\mathbf{u}_{h}\right|_{A} \lesssim \eta+\boldsymbol{\Theta}\right.\right.$.
- Efficiency
$\eta \lesssim\left|\left|\mathbf{u}-\mathbf{u}_{h}\right|\left\|+\nu^{-1 / 2}| | p-p_{h}\right\|_{0}+\left|\mathbf{u}-\mathbf{u}_{h}\right|_{A}+\Theta\right.$.

Remark

- Assume that the error $\|e\| \|$ converges with optimal order $\mathcal{O}\left(N^{-k / 2}\right)$,

$$
\left|\underline{\mathbf{a}}\left(\mathbf{u}-\mathbf{u}_{h}\right)\right|_{\star} \lesssim \nu^{-1 / 2}\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0} .
$$

- Assume that $\left\|\mathbf{u}-\mathbf{u}_{h}\right\|_{0}$ converges with with optimal order $\mathcal{O}\left(N^{-k / 2-1 / 2}\right)$, then

$$
\left|\underline{\mathbf{a}}\left(\mathbf{u}-\mathbf{u}_{h}\right)\right|_{\star} \lesssim\left(N^{-1 / 2} \nu^{-1}\right) \nu^{1 / 2} N^{-k / 2}
$$

- Similarly, we have

$$
\begin{aligned}
& \left(\sum_{E \in \mathcal{E}\left(\mathcal{T}_{h}\right)} h_{E} \nu^{-1}\left\|\llbracket \mathbf{u}-\mathbf{u}_{\mathbf{h}} \rrbracket\right\|_{0, E}^{2}\right)^{1 / 2} \lesssim\left(N^{-1 / 2} \nu^{-1}\right) \nu^{1 / 2} N^{-k / 2}, \\
& \left(\sum_{E \in \mathcal{E}\left(\mathcal{T}_{h}\right)} h_{E} \beta\| \| \mathbf{u}-\mathbf{u}_{\mathbf{h}} \rrbracket \|_{0, E}^{2}\right)^{1 / 2} \lesssim \beta^{1 / 2} N^{-k / 2-1 / 2} .
\end{aligned}
$$

- Hence the same conclusion as for $\left|\underline{\mathbf{a}}\left(\mathbf{u}-\mathbf{u}_{h}\right)\right|_{\star}$ can also prove for the error $\left|\mathbf{u}-\mathbf{u}_{h}\right|_{A}$.

Numerical Results

(First Example) L-shape domain (Stokes equation) $\Omega=(-1,1)^{2} \backslash(0,1)^{2}$.

(a)

(b)

(c)

(d)

Figure: Convergence history of $\left\|\left\|e_{\ell}\right\|\right\|$ and η_{ℓ} (a) $R T_{1} \times Q_{1}$ (b) $R T_{2} \times Q_{2}$ on uniformly and adaptively refined meshes for the L-shape domain. (c) Adaptive refined meshes for $R T_{1} \times Q_{1}$ (d) Adaptive refined meshes for $R T_{2} \times Q_{2}$.
(Second Example) Kovasznays solution (Oseen equation) $\Omega=\left(-\frac{1}{2}, \frac{3}{2}\right) \times(0,2)$.

(a)

Figure : Convergence behaviour for (a) $\nu=1$, (b) $\nu=10^{-1}$, (c) $\nu=10^{-2}$ (d) $\nu=10^{-3}$, (e) $\nu=10^{-4}$ with $R T_{1} \times Q_{1}$ element

(a)

(b)

(c)

(d)

(e)

Figure : Ratio for (a) $\nu=1$, (b) $\nu=10^{-1}$, (c) $\nu=10^{-2}$ (d) $\nu=10^{-3}$, (e) $\nu=10^{-4}$ with $R T_{1} \times Q_{1}$ element

(a)

(b)

(c)

(d)

(e)

Figure : Adaptive refined mesh for (a) $\nu=1$, (b) $\nu=10^{-1}$, (c) $\nu=10^{-2}$ (d) $\nu=10^{-3}$, (e) $\nu=10^{-4}$ with $R T_{1} \times Q_{1}$ element

