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Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].

SDE dX = f (X )dt + g(X )dW .

Euler-Maruyama method:

XN
n+1 = XN

n + hf (XN
n ) + g(XN

n )(W ((n + 1)h)−W (nh)).

I Drift f and/or diffusion g

not globally Lipschitz + polynomial growth condition then
Non-convergence of E‖X (t)− Xn‖2

I Consider 1D SDE

dX = −βX |X |νdt + σdW β, ν > 0.

The associated Euler map with stepsize h for deterministic Eq.

xn+1 = Fh(xn) = xn − hβxn|xn|ν

I stable equilibrium solution at 0

I unstable two-cycle at
{
± ν
√

2/hβ
}

.

So the basin of attraction of the zero solution is |x0| < ν
√

2/hβ.
I Outside of the basin of attraction : oscillation and growth !
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Tamed Euler-Maruyama methods
[Hutzenthaler, Jentzen, Kloeden], [Hutzenthaler,Jentzen],
[Gyongy, Sabanis, Siska], etc
I Idea : introduce higher order perturbation of the flow
Drift-tamed Euler-Maruyama :

Y N
n+1 = Y N

n +
h

1 + h‖f (Y N
n )‖

f (Y N
n )+g(Y N

n )(W ((n+1)h)−W (nh))

Moment bounds

sup
n∈N

sup
n∈{0,1,...,N}

E[‖Y N
n ‖p] <∞. (1)

Strong convergence(
E

[
sup

t∈[0,T ]
‖X (t)− Ȳ N

t ‖p
])1/p

≤ Cph1/2

I but use a finite h in computations.
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Perturbation - large step h
I VdPol equation : True h = 10−4
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Fixed step approximations : h = 0.0838 and h = 0.1269
Relative Errors in frequency: ≈ 0.21 & ≈ 0.28
I Adapt the step. Relative Errors : ≈ 0.09 & ≈ 0.18
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SPDE: same issues apply

Taming : [Gyongy, Sabanis, Siska], [Kurniawan].
Stopped [Jentzen & Pusnik]

I For example x ∈ [0, 1], W (t) ∈ H1
0 (0, 1)

du =
[
εuxx + u − u3

]
dt + σdW ,

ε = 0.01, σ = 0.5
Discretized in space: (Eg FEM)

duh =
[
εAhuh + uh − u3

h

]
dt + σdWh.

Large system of SDEs with additive noise : non-convergence.
Sample solution at T = 5. ∆tref = 5× 10−4. 100 SDEs
I RMS L2 Error using Fixed step ∆t = 0.004555 : 0.157084
I RMS L2 Error using adaptive step :0.009928
I 2 Ideas to adapt step + general framework
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Adaptive time stepping 1 : Tamed
Consider SDE dX (t) = f (X (t))dt + g(X (t))dW (t).
Explicit EM and tamed EM maps associated with the drift are

Fh(x) = x + hf (x); F̃h(x) = x +
hf (x)

1 + h‖f (x)‖
.

One approach : apply the Euler map, but at each step to choose a
stepsize h(x) so that

‖Fh(xn)− F̃h(xn)‖ < ε. (2)

Then (2) holds iff

h <
1

‖f (x)‖

[
ε+
√
ε2 + 4ε

2

]
.

Suggest an adaptive stepsize hn+1 defined by

hn+1(Xn) =
c

‖f (Xn)‖

[
ε+
√
ε2 + 4ε

2

]
where c ∈ (0, 1), normally c = 1/2.

6 / 25



Adaptive time stepping 1 : Tamed
Consider SDE dX (t) = f (X (t))dt + g(X (t))dW (t).
Explicit EM and tamed EM maps associated with the drift are

Fh(x) = x + hf (x); F̃h(x) = x +
hf (x)

1 + h‖f (x)‖
.

One approach : apply the Euler map, but at each step to choose a
stepsize h(x) so that

‖Fh(xn)− F̃h(xn)‖ < ε. (2)

Then (2) holds iff

h <
1

‖f (x)‖

[
ε+
√
ε2 + 4ε

2

]
.

Suggest an adaptive stepsize hn+1 defined by

hn+1(Xn) =
c

‖f (Xn)‖

[
ε+
√
ε2 + 4ε

2

]
where c ∈ (0, 1), normally c = 1/2.

6 / 25



Adaptive time stepping 1 : Tamed
Consider SDE dX (t) = f (X (t))dt + g(X (t))dW (t).
Explicit EM and tamed EM maps associated with the drift are

Fh(x) = x + hf (x); F̃h(x) = x +
hf (x)

1 + h‖f (x)‖
.

One approach : apply the Euler map, but at each step to choose a
stepsize h(x) so that

‖Fh(xn)− F̃h(xn)‖ < ε. (2)

Then (2) holds iff

h <
1

‖f (x)‖

[
ε+
√
ε2 + 4ε

2

]
.

Suggest an adaptive stepsize hn+1 defined by

hn+1(Xn) =
c

‖f (Xn)‖

[
ε+
√
ε2 + 4ε

2

]
where c ∈ (0, 1), normally c = 1/2.

6 / 25



Adaptive time stepping 2 : Basin
Recall 1D example : dX = −βX |X |νdt + g(X )dW .
The associated Euler map with stepsize h is given by

xn+1 = Fh(xn) = xn − hβxn|xn|ν . (3)

I unstable two-cycle at
{
± ν

√
2
hβ

}
. So the basin of attraction of

the zero solution is |x0| < ν
√

2/hβ.

I Increase the size of the basin of attraction by choosing h
sufficiently small.
I Example. Cubic drift equation : f (x) = −x3.
Basin based adaptation :

hn+1 = min

{
hmax,

1

2|Xn|2

}
.

Taming based adaptation :

hn+1(Xn) = min

{
hmax,

1

|Xn|3

[
ε+
√
ε2 + 4ε

4

]}
For large values of Xn, taming based will select much smaller hn.
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General Framework

dX (t) = f (X (t))dt + g(X (t))dW (t), t > 0,

Let (Ft)t≥0 be the natural filtration of W .
Suppose f : Rd → Rd is continuously differentiable.

‖Df (x)‖ ≤ c(1 + ‖x‖c)

and a one-sided Lipschitz condition with constant α > 0:

〈f (x)− f (y), x − y〉 ≤ α‖x − y‖2.

For diffusion term : global Lischitz

‖g(x)− g(y)‖F ≤ κ‖x − y‖.

I Unique strong solution on [0,T ], on the filtered probability
space (Ω,F , (Ft)t≥0,P).
For each p > 0 there is C = C (p,T ,X (0)) > 0 such that

E sup
s∈[0,T ]

‖X (s)‖p ≤ C .

8 / 25



General Framework

dX (t) = f (X (t))dt + g(X (t))dW (t), t > 0,

Let (Ft)t≥0 be the natural filtration of W .
Suppose f : Rd → Rd is continuously differentiable.

‖Df (x)‖ ≤ c(1 + ‖x‖c)

and a one-sided Lipschitz condition with constant α > 0:

〈f (x)− f (y), x − y〉 ≤ α‖x − y‖2.

For diffusion term : global Lischitz

‖g(x)− g(y)‖F ≤ κ‖x − y‖.

I Unique strong solution on [0,T ], on the filtered probability
space (Ω,F , (Ft)t≥0,P).
For each p > 0 there is C = C (p,T ,X (0)) > 0 such that

E sup
s∈[0,T ]

‖X (s)‖p ≤ C .

8 / 25



EM with adaptive step
Euler-type method for SDE over a random mesh {tn}n∈N on [0,T ]

Yn+1 = Yn + hn+1f (Yn) + g(Yn) (W (tn+1)−W (tn))

I {hn}n∈N sequence of random timesteps: hn+1 determined by Yn.
I Let {tn :=

∑n
i=1 hi}Nn=1 with t0 = 0, tn a (Ft)-stopping time.

Define discrete-time filtration {Ftn}n∈N by

Ftn = {A ∈ F : A ∩ {tn ≤ t} ∈ Ft}, n ∈ N.

Suppose that each hn is Ftn−1-measurable.

Let hn satisfy hmin < hn < hmax where

hmax = ρhmin 0 < ρ ∈ R

I hmin ensures finite number of time steps over [0,T ].
I hmax prevents stepsizes from becoming too large.
Convergence as hmax → 0.
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Adaptive timestepping scheme

Yn+1 = Yn+hn+1

[
f (Yn)I{hn+1>hmin} +

f (Yn)

1 + hmin‖f (Yn)‖
I{hn+1=hmin}

]
+ g(Yn) (W (tn+1)−W (tn)) , n = 0, . . . ,N − 1.

I Each W (tn+1)−W (tn) is a Wiener increment taken over a
random step of length hn+1 which itself may depend on Yn.

Therefore is not necessarily normally distributed.
I However, if hn+1 is an Ftn -stopping time then W (tn+1)−W (tn)
is Ftn -conditionally normally distributed with

E
[
‖W (tn+1)−W (tn)‖

∣∣∣∣Ftn

]
= 0, a.s.

E
[
‖W (tn+1)−W (tn)‖2

∣∣∣∣Ftn

]
= hn+1, a.s.

I In practice : replace Wiener increments with i.i.d. N (0, 1)
random variables denoted {ξn}Nn=1, scaled at each step by the
Ftn -measurable random variable

√
hn+1.

10 / 25



Adaptive timestepping scheme

Yn+1 = Yn+hn+1

[
f (Yn)I{hn+1>hmin} +

f (Yn)

1 + hmin‖f (Yn)‖
I{hn+1=hmin}

]
+ g(Yn) (W (tn+1)−W (tn)) , n = 0, . . . ,N − 1.

I Each W (tn+1)−W (tn) is a Wiener increment taken over a
random step of length hn+1 which itself may depend on Yn.
Therefore is not necessarily normally distributed.

I However, if hn+1 is an Ftn -stopping time then W (tn+1)−W (tn)
is Ftn -conditionally normally distributed with

E
[
‖W (tn+1)−W (tn)‖

∣∣∣∣Ftn

]
= 0, a.s.

E
[
‖W (tn+1)−W (tn)‖2

∣∣∣∣Ftn

]
= hn+1, a.s.

I In practice : replace Wiener increments with i.i.d. N (0, 1)
random variables denoted {ξn}Nn=1, scaled at each step by the
Ftn -measurable random variable

√
hn+1.

10 / 25



Adaptive timestepping scheme

Yn+1 = Yn+hn+1

[
f (Yn)I{hn+1>hmin} +

f (Yn)

1 + hmin‖f (Yn)‖
I{hn+1=hmin}

]
+ g(Yn) (W (tn+1)−W (tn)) , n = 0, . . . ,N − 1.

I Each W (tn+1)−W (tn) is a Wiener increment taken over a
random step of length hn+1 which itself may depend on Yn.
Therefore is not necessarily normally distributed.
I However, if hn+1 is an Ftn -stopping time then W (tn+1)−W (tn)
is Ftn -conditionally normally distributed with

E
[
‖W (tn+1)−W (tn)‖

∣∣∣∣Ftn

]
= 0, a.s.

E
[
‖W (tn+1)−W (tn)‖2

∣∣∣∣Ftn

]
= hn+1, a.s.

I In practice : replace Wiener increments with i.i.d. N (0, 1)
random variables denoted {ξn}Nn=1, scaled at each step by the
Ftn -measurable random variable

√
hn+1.

10 / 25



Adaptive timestepping scheme

Yn+1 = Yn+hn+1

[
f (Yn)I{hn+1>hmin} +

f (Yn)

1 + hmin‖f (Yn)‖
I{hn+1=hmin}

]
+ g(Yn) (W (tn+1)−W (tn)) , n = 0, . . . ,N − 1.

I Each W (tn+1)−W (tn) is a Wiener increment taken over a
random step of length hn+1 which itself may depend on Yn.
Therefore is not necessarily normally distributed.
I However, if hn+1 is an Ftn -stopping time then W (tn+1)−W (tn)
is Ftn -conditionally normally distributed with

E
[
‖W (tn+1)−W (tn)‖

∣∣∣∣Ftn

]
= 0, a.s.

E
[
‖W (tn+1)−W (tn)‖2

∣∣∣∣Ftn

]
= hn+1, a.s.

I In practice : replace Wiener increments with i.i.d. N (0, 1)
random variables denoted {ξn}Nn=1, scaled at each step by the
Ftn -measurable random variable

√
hn+1.

10 / 25



Admissible steps
I Admissible timestepping strategy if whenever hmin ≤ hn ≤ hmax,

‖f (Yn)‖2 ≤ R1 + R2‖Yn‖2, n = 0, . . . ,N − 1.

I Lemma : Let δ ≤ hmax, and c be the constant in bound on Df .
{hn}n∈N is admissible if, for each n = 0, . . . ,N − 1, one of the
following holds

(i) hn+1 ≤ δ/(‖f (Yn)‖);
(ii) hn+1 ≤ δ/(1 + ‖Yn‖1+c);
(iii) hn+1 ≤ δ‖Yn‖/(‖f (Yn)‖);
(iv) hn+1 ≤ δ‖Yn‖/(1 + ‖Yn‖1+c),

Proof. For Part (i) we can apply ρ = hmax/hmin

‖f (Yn)‖2 ≤
(

δ

hn+1

)2

≤ h2
max

h2
min

= ρ2,

and so R1 = ρ2 and R2 = 0.
For Part (ii) : ‖f (Yn)‖2 ≤ (2c + ‖f (0)‖)2(1 + ‖Yn‖1+c)2

‖f (Yn)‖2 ≤ (2c + ‖f (0)‖)2 h2
max

h2
n+1

≤ (2c + ‖f (0)‖)2ρ2.

and so R1 = (2c + ‖f (0)‖)2ρ2 and R2 = 0.
For Parts (iii) and (iv) similar arguments give
‖f (Yn)‖2| ≤ ρ2‖Yn‖2 and ‖f (Yn)‖2 ≤ (2c + ‖f (0)‖)2ρ2‖Yn‖2

respectively, so (??) is satisfied with R1 = 0, and R2 = ρ2, for Part
(iii), and R2 = (2c + ‖f (0)‖)2ρ2, for Part (iv).
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Theorem: Strong Convergence

Let (X (t))t∈[0,T ] be solution of the SDE
Let {Yn}n∈N be solution found with
admissible timestepping strategy {hn}n∈N
Initial value Y0 = X0.
Then

E
[
‖X (T )− YN‖2

]
≤ Chmax,

I Elements of proof.
1. Conditional expectation, conditional form Ito isometry
2. Taylor expand f and g :
There are a.s. finite and Ftn -measurable random variables
K̄1, K̄2 > 0, and constants K1,K2 <∞,

E
∥∥∥∫ tn+1

tn
Rz(s, tn,X (tn))ds

∥∥∥ ∣∣∣∣Ftn ≤ K̄1h
3/2
n+1, a.s.

E
∥∥∥∫ tn+1

tn
Rz(s, tn,X (tn))ds

∥∥∥2
∣∣∣∣Ftn ≤ K̄2h2

n+1, a.s.

E[K̄1] ≤ K1, and E[K̄2] ≤ K2.
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Define the error sequence {En}n∈N by En+1 := Yn+1 − X (tn+1)

En+1 = En+

∫ tn+1

tn

f (Yn)−f (X (s))ds+

∫ tn+1

tn

g(Yn)−g(X (s))dW (s).

Then

E
[
‖En+1‖2

∣∣Ftn

]
≤ ‖En‖2 + hn+1(2α + 2κ2)‖En‖2 + 2h2

n+1‖f (Yn)− f (X (tn))‖2

+ 4hn+1E
[
〈f (Yn)− f (X (tn)), R̃f + R̃g 〉

∣∣Ftn

]
︸ ︷︷ ︸

:=Ān

+B̄n + C̄n + D̄n

3. Use admissibility of timestep to bound terms :

h2
n+1‖f (Yn)− f (X (tn))‖2

≤ 2h2
n+1‖f (Yn)‖2 + 2h2

n+1‖f (X (tn))‖2

≤ 2h2
n+1(R1 + R2‖Yn‖2) + 2h2

n+1‖f (X (tn))‖2

≤ 4h2
n+1R2‖En‖2 + 4h2

n+1R2‖X (tn)‖2 + 2h2
n+1R1 + 2h2

n+1‖f (X (tn))‖2

Now, bound on Df gives ‖f (x)‖ ≤ c1 (1 + ‖x‖)c+1.
4. Sum, take expectation (Tower property) & discrete Gronwall
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〈f (Yn)− f (X (tn)), R̃f + R̃g 〉

∣∣Ftn

]
︸ ︷︷ ︸

:=Ān

+B̄n + C̄n + D̄n

3. Use admissibility of timestep to bound terms :

h2
n+1‖f (Yn)− f (X (tn))‖2

≤ 2h2
n+1‖f (Yn)‖2 + 2h2

n+1‖f (X (tn))‖2

≤ 2h2
n+1(R1 + R2‖Yn‖2) + 2h2

n+1‖f (X (tn))‖2

≤ 4h2
n+1R2‖En‖2 + 4h2

n+1R2‖X (tn)‖2 + 2h2
n+1R1 + 2h2

n+1‖f (X (tn))‖2

Now, bound on Df gives ‖f (x)‖ ≤ c1 (1 + ‖x‖)c+1.
4. Sum, take expectation (Tower property) & discrete Gronwall

13 / 25



Numerical convergence

SDE : SGL equation Multiplicative

dX (t) =

((
η +

1

2
σ2

)
X (t)− λX (t)3

)
dt + σX (t)dW (t)
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Numerical convergence

SDE : SGL equation Additive

dX (t) =

((
η +

1

2
σ2

)
X (t)− λX (t)3

)
dt + σdW (t)
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Role of ρ = hmax/hmin
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Here hmax = 2 and so hmin = 0.2, . . . , 0.0002. 16 / 25



Adaptive time step and MLMC

E(XL) = E(XL0) +
L−1∑
j=L0

E[(Xj+1)− (Xj)].

Stochastic Ginzburg-Landau (1D) equation : Accuracy ε = 0.01
h`max = h0

maxk−`, with h0
max = 1 and k = 4.
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Fang and Giles

〈Yn, f (Yn)〉+
1

2
hn+1‖f (Yn)‖2 ≤ α‖Yn‖2 + β, n = 0, . . . ,N − 1,

One sided linear bound 〈x , f (x)〉 ≤ α‖x‖2 + β, for α, β > 0

I Convergence with :
Additional upper and lower bounds on each timestep
Introduction of a convergence parameter δ ≤ 1.
I Two specific timestepping rules proposed :
(i) corresponds to admissible step hn+1 ≤ δ‖Yn‖/(‖f (Yn)‖);
(ii) corresponds to

hn+1 ≤ δ
‖Yn‖2

‖f (Yn)‖2
.

If we suppose that δ ≤ hmax then we have

‖f (Yn)‖2 ≤ δ

hn+1
‖Yn‖2 ≤ ρ‖Yn‖2,

which is admissible.
I Included in the framework of our proof.
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Two Extensions of our Proof

SDE dX = [AX + f (X )] dt + g(X )dW .

1. semi-implicit Euler–Maruyama

(I − hn+1A)Yn+1 = Yn + hn+1f (Yn) + g(Yn) (W (tn+1)−W (tn))

More suitable for SPDEs.

2. Assume f , g satisfy local Lipschitz condition and

〈f (x)− f (y), x − y〉+
(p + 1)

2
‖g(x)− g(y)‖2

F ≤ α‖x − y‖2

‖h(x)‖ ≤ c3(1 + a‖x‖γ0+1) + c4‖x‖−1, h = f , g

and have p > 4 moments for SDE. Then if
‖f (Yn)‖2} ≤ R1 + R2‖Yn‖2 have convergence.
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Numerical Results

I SPDEs : 1D, 2D, semi-implicit and multiplicative noise.

du =
[
εuxx + u − u3

]
dt + σdW ,
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Numerical results : Semi-Implicit adaptive time stepping

du =
[
εuxx + u − u3

]
dt + σdW

AT = Adaptive Tamed
AM = Adaptive Moment:

hmin ≤ hn ≤ max(1, ‖Xn‖)/‖f (Xn)‖ ≤ hmax

H r Adpt Method Error Adapt Error TAMED hmean

H−1/2 AT 1.112509 2.423275 0.001520

H−1/2 AM 1.246549 9.803268 0.028525

L2 AT 0.158108 0.852316 0.003545
L2 AM 0.161219 2.705998 0.041255

H1/2 AT 0.028677 0.240160 0.004240

H1/2 AM 0.039282 1.437737 0.044855

H1 AT 0.009928 0.157084 0.004555
H1 AM 0.020858 0.968483 0.046765

Reference solution fixed step tamed method with h = 0.0005.
100 realizations.
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2D SPDEs additive noise.

Semi-implicit solver.

du =
[
ε∆u + u − u3

]
dt + σdW

Adpt Method Error Adapt Error Fixed hmean

AT 0.128144 0.130304 0.006200
AM 0.132080 0.225055 0.250000

vorticity u := ∇× ~v

du = [ε∆u − (~v · ∇)u] + σdW ∆ψ = −u

ψ(t,~x) is scalar stream function, and ~v = (ψy ,−ψx).

Adpt Method Error Adapt Error Fixed hmean

AT 0.136268 0.118946 0.003540
AM 0.112863 0.130985 0.003880
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Summary

1. Proved convergence of adaptivity step method.

2. Showed more accurate simulations for larger steps than fixed
step tamed methods. (Although this is not error control).

3. Methods applicable to SPDEs: semi-linear

4. Extension to diffusion term as SDE system.

I No rejection of steps

Post-Doc position :
Enabling Quantification of Uncertainty for Inverse Problems
Part of EQUIP Grant with Prof M. Christie in IPE - based at
Heriot Watt working with Warwick and Imperial.

25 / 25



Summary

1. Proved convergence of adaptivity step method.

2. Showed more accurate simulations for larger steps than fixed
step tamed methods. (Although this is not error control).

3. Methods applicable to SPDEs: semi-linear

4. Extension to diffusion term as SDE system.

I No rejection of steps

Post-Doc position :
Enabling Quantification of Uncertainty for Inverse Problems
Part of EQUIP Grant with Prof M. Christie in IPE - based at
Heriot Watt working with Warwick and Imperial.

25 / 25


	Motivation
	Examples
	EM Adaptive
	Strong Convergence
	Fang Giles
	Extensions
	Numerics

