Adaptive time-stepping to control growth

Gabriel Lord
Maxwell Institute, Heriot Watt University, Edinburgh g.j.lord@hw.ac.uk, http://www.macs.hw.ac.uk/~gabriel Joint with: Conall Kelly: UWI

Adaptive time-stepping to control growth

Gabriel Lord
Maxwell Institute, Heriot Watt University, Edinburgh
g.j.lord@hw.ac.uk, http://www.macs.hw.ac.uk/~gabriel

Joint with: Conall Kelly: UWI

- Motivation \& Taming
- Adaptivity introduction
- General framework for adaptivity \& convergence
- Extensions and numerics

Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].

$$
\text { SDE } \quad d X=f(X) d t+g(X) d W \text {. }
$$

Euler-Maruyama method:

$$
X_{n+1}^{N}=X_{n}^{N}+h f\left(X_{n}^{N}\right)+g\left(X_{n}^{N}\right)(W((n+1) h)-W(n h)) .
$$

- Drift f and/or diffusion g not globally Lipschitz + polynomial growth condition then Non-convergence of $\mathbb{E}\left\|X(t)-X_{n}\right\|^{2}$

Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].

$$
\text { SDE } \quad d X=f(X) d t+g(X) d W \text {. }
$$

Euler-Maruyama method:

$$
X_{n+1}^{N}=X_{n}^{N}+h f\left(X_{n}^{N}\right)+g\left(X_{n}^{N}\right)(W((n+1) h)-W(n h)) .
$$

- Drift f and/or diffusion g
not globally Lipschitz + polynomial growth condition then
Non-convergence of $\mathbb{E}\left\|X(t)-X_{n}\right\|^{2}$
- Consider 1D SDE

$$
d X=-\beta X|X|^{\nu} d t+\sigma d W \quad \beta, \nu>0
$$

Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].

$$
\text { SDE } \quad d X=f(X) d t+g(X) d W \text {. }
$$

Euler-Maruyama method:

$$
X_{n+1}^{N}=X_{n}^{N}+h f\left(X_{n}^{N}\right)+g\left(X_{n}^{N}\right)(W((n+1) h)-W(n h)) .
$$

- Drift f and/or diffusion g
not globally Lipschitz + polynomial growth condition then Non-convergence of $\mathbb{E}\left\|X(t)-X_{n}\right\|^{2}$
- Consider 1D SDE

$$
d X=-\beta X|X|^{\nu} d t+\sigma d W \quad \beta, \nu>0
$$

The associated Euler map with stepsize h for deterministic Eq.

$$
x_{n+1}=F_{h}\left(x_{n}\right)=x_{n}-h \beta x_{n}\left|x_{n}\right|^{\nu}
$$

- stable equilibrium solution at 0
- unstable two-cycle at $\{ \pm \sqrt[\nu]{2 / h \beta}\}$.

So the basin of attraction of the zero solution is $\left|x_{0}\right|<\sqrt[\nu]{2 / h \beta}$.

Non-convergence: [Hutzenthaler, Jentzen, Kloeden 2011].

$$
\text { SDE } \quad d X=f(X) d t+g(X) d W \text {. }
$$

Euler-Maruyama method:

$$
X_{n+1}^{N}=X_{n}^{N}+h f\left(X_{n}^{N}\right)+g\left(X_{n}^{N}\right)(W((n+1) h)-W(n h))
$$

- Drift f and/or diffusion g
not globally Lipschitz + polynomial growth condition then Non-convergence of $\mathbb{E}\left\|X(t)-X_{n}\right\|^{2}$
- Consider 1D SDE

$$
d X=-\beta X|X|^{\nu} d t+\sigma d W \quad \beta, \nu>0
$$

The associated Euler map with stepsize h for deterministic Eq.

$$
x_{n+1}=F_{h}\left(x_{n}\right)=x_{n}-h \beta x_{n}\left|x_{n}\right|^{\nu}
$$

- stable equilibrium solution at 0
- unstable two-cycle at $\{ \pm \sqrt[\nu]{2 / h \beta}\}$.

So the basin of attraction of the zero solution is $\left|x_{0}\right|<\sqrt[\nu]{2 / h \beta}$.

- Outside of the basin of attraction : oscillation and growth!

Tamed Euler-Maruyama methods

[Hutzenthaler, Jentzen, Kloeden], [Hutzenthaler, Jentzen],
[Gyongy, Sabanis, Siska], etc

- Idea : introduce higher order perturbation of the flow

Drift-tamed Euler-Maruyama :

$$
Y_{n+1}^{N}=Y_{n}^{N}+\frac{h}{1+h\left\|f\left(Y_{n}^{N}\right)\right\|} f\left(Y_{n}^{N}\right)+g\left(Y_{n}^{N}\right)(W((n+1) h)-W(n h))
$$

Tamed Euler-Maruyama methods

[Hutzenthaler, Jentzen, Kloeden], [Hutzenthaler, Jentzen],
[Gyongy, Sabanis, Siska], etc

- Idea : introduce higher order perturbation of the flow

Drift-tamed Euler-Maruyama :

$$
Y_{n+1}^{N}=Y_{n}^{N}+\frac{h}{1+h\left\|f\left(Y_{n}^{N}\right)\right\|} f\left(Y_{n}^{N}\right)+g\left(Y_{n}^{N}\right)(W((n+1) h)-W(n h))
$$

Moment bounds

$$
\begin{equation*}
\sup _{n \in \mathbb{N}} \sup _{n \in\{0,1, \ldots, N\}} \mathbb{E}\left[\left\|Y_{n}^{N}\right\|^{p}\right]<\infty \tag{1}
\end{equation*}
$$

Strong convergence

$$
\left(\mathbb{E}\left[\sup _{t \in[0, T]}\left\|X(t)-\bar{Y}_{t}^{N}\right\|^{p}\right]\right)^{1 / p} \leq C_{p} h^{1 / 2}
$$

- but use a finite h in computations.

Perturbation - large step h

- VdPol equation : True $h=10^{-4}$

Perturbation - large step h

- VdPol equation : True $h=10^{-4}$

Fixed step approximations : $h=0.0838$ and $h=0.1269$
Relative Errors in frequency: $\approx 0.21 \& \approx 0.28$

Perturbation - large step h

- VdPol equation : True $h=10^{-4}$

Fixed step approximations : $h=0.0838$ and $h=0.1269$
Relative Errors in frequency: $\approx 0.21 \& \approx 0.28$

- Adapt the step. Relative Errors $: \approx 0.09 \& \approx 0.18$

SPDE: same issues apply

Taming : [Gyongy, Sabanis, Siska], [Kurniawan]. Stopped [Jentzen \& Pusnik]

SPDE: same issues apply

Taming : [Gyongy, Sabanis, Siska], [Kurniawan].
Stopped [Jentzen \& Pusnik]

- For example $x \in[0,1], W(t) \in H_{0}^{1}(0,1)$

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

$\epsilon=0.01, \sigma=0.5$
Discretized in space: (Eg FEM)

$$
d u_{h}=\left[\epsilon A_{h} u_{h}+u_{h}-u_{h}^{3}\right] d t+\sigma d W_{h} .
$$

Large system of SDEs with additive noise : non-convergence.

SPDE: same issues apply

Taming : [Gyongy, Sabanis, Siska], [Kurniawan].
Stopped [Jentzen \& Pusnik]

- For example $x \in[0,1], W(t) \in H_{0}^{1}(0,1)$

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

$\epsilon=0.01, \sigma=0.5$
Discretized in space: (Eg FEM)

$$
d u_{h}=\left[\epsilon A_{h} u_{h}+u_{h}-u_{h}^{3}\right] d t+\sigma d W_{h} .
$$

Large system of SDEs with additive noise : non-convergence. Sample solution at $T=5 . \Delta t_{\text {ref }}=5 \times 10^{-4} .100$ SDEs

SPDE: same issues apply

Taming : [Gyongy, Sabanis, Siska], [Kurniawan].
Stopped [Jentzen \& Pusnik]

- For example $x \in[0,1], W(t) \in H_{0}^{1}(0,1)$

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

$\epsilon=0.01, \sigma=0.5$
Discretized in space: (Eg FEM)

$$
d u_{h}=\left[\epsilon A_{h} u_{h}+u_{h}-u_{h}^{3}\right] d t+\sigma d W_{h} .
$$

Large system of SDEs with additive noise : non-convergence. Sample solution at $T=5 . \Delta t_{\text {ref }}=5 \times 10^{-4} .100$ SDEs

- RMS L^{2} Error using Fixed step $\Delta t=0.004555$: 0.157084

SPDE: same issues apply

Taming : [Gyongy, Sabanis, Siska], [Kurniawan].
Stopped [Jentzen \& Pusnik]

- For example $x \in[0,1], W(t) \in H_{0}^{1}(0,1)$

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

$\epsilon=0.01, \sigma=0.5$
Discretized in space: (Eg FEM)

$$
d u_{h}=\left[\epsilon A_{h} u_{h}+u_{h}-u_{h}^{3}\right] d t+\sigma d W_{h} .
$$

Large system of SDEs with additive noise : non-convergence. Sample solution at $T=5 . \Delta t_{\text {ref }}=5 \times 10^{-4} .100$ SDEs

- RMS L^{2} Error using Fixed step $\Delta t=0.004555$: 0.157084
\rightarrow RMS L ${ }^{2}$ Error using adaptive step $\quad 0.009928$

SPDE: same issues apply

Taming : [Gyongy, Sabanis, Siska], [Kurniawan].
Stopped [Jentzen \& Pusnik]

- For example $x \in[0,1], W(t) \in H_{0}^{1}(0,1)$

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

$\epsilon=0.01, \sigma=0.5$
Discretized in space: (Eg FEM)

$$
d u_{h}=\left[\epsilon A_{h} u_{h}+u_{h}-u_{h}^{3}\right] d t+\sigma d W_{h} .
$$

Large system of SDEs with additive noise : non-convergence. Sample solution at $T=5 . \Delta t_{\text {ref }}=5 \times 10^{-4} .100$ SDEs

- RMS L2 Error using Fixed step $\Delta t=0.004555$: 0.157084
- RMS L2 Error using adaptive step $\quad 0.009928$
- 2 Ideas to adapt step + general framework

Adaptive time stepping 1 : Tamed

Consider SDE $d X(t)=f(X(t)) d t+g(X(t)) d W(t)$.
Explicit EM and tamed EM maps associated with the drift are

$$
F_{h}(x)=x+h f(x) ; \quad \tilde{F}_{h}(x)=x+\frac{h f(x)}{1+h\|f(x)\|} .
$$

Adaptive time stepping 1: Tamed

Consider SDE $d X(t)=f(X(t)) d t+g(X(t)) d W(t)$.
Explicit EM and tamed EM maps associated with the drift are

$$
F_{h}(x)=x+h f(x) ; \quad \tilde{F}_{h}(x)=x+\frac{h f(x)}{1+h\|f(x)\|}
$$

One approach: apply the Euler map, but at each step to choose a stepsize $h(x)$ so that

$$
\begin{equation*}
\left\|F_{h}\left(x_{n}\right)-\tilde{F}_{h}\left(x_{n}\right)\right\|<\varepsilon \tag{2}
\end{equation*}
$$

Adaptive time stepping 1: Tamed

Consider SDE $d X(t)=f(X(t)) d t+g(X(t)) d W(t)$.
Explicit EM and tamed EM maps associated with the drift are

$$
F_{h}(x)=x+h f(x) ; \quad \tilde{F}_{h}(x)=x+\frac{h f(x)}{1+h\|f(x)\|}
$$

One approach: apply the Euler map, but at each step to choose a stepsize $h(x)$ so that

$$
\begin{equation*}
\left\|F_{h}\left(x_{n}\right)-\tilde{F}_{h}\left(x_{n}\right)\right\|<\varepsilon \tag{2}
\end{equation*}
$$

Then (2) holds iff

$$
h<\frac{1}{\|f(x)\|}\left[\frac{\varepsilon+\sqrt{\varepsilon^{2}+4 \varepsilon}}{2}\right]
$$

Suggest an adaptive stepsize h_{n+1} defined by

$$
h_{n+1}\left(X_{n}\right)=\frac{c}{\left\|f\left(X_{n}\right)\right\|}\left[\frac{\varepsilon+\sqrt{\varepsilon^{2}+4 \varepsilon}}{2}\right]
$$

where $c \in(0,1)$, normally $c=1 / 2$.

Adaptive time stepping 2 : Basin

 Recall 1D example : $d X=-\beta X|X|^{\nu} d t+g(X) d W$. The associated Euler map with stepsize h is given by$$
\begin{equation*}
x_{n+1}=F_{h}\left(x_{n}\right)=x_{n}-h \beta x_{n}\left|x_{n}\right|^{\nu} \tag{3}
\end{equation*}
$$

- unstable two-cycle at $\left\{ \pm \sqrt[\nu]{\frac{2}{h \beta}}\right\}$. So the basin of attraction of the zero solution is $\left|x_{0}\right|<\sqrt[\nu]{2 / h \beta}$.

Adaptive time stepping 2 : Basin

Recall 1D example : $d X=-\beta X|X|^{\nu} d t+g(X) d W$. The associated Euler map with stepsize h is given by

$$
\begin{equation*}
x_{n+1}=F_{h}\left(x_{n}\right)=x_{n}-h \beta x_{n}\left|x_{n}\right|^{\nu} \tag{3}
\end{equation*}
$$

- unstable two-cycle at $\left\{ \pm \sqrt[\nu]{\frac{2}{h \beta}}\right\}$. So the basin of attraction of the zero solution is $\left|x_{0}\right|<\sqrt[\nu]{2 / h \beta}$.
- Increase the size of the basin of attraction by choosing h sufficiently small.

Adaptive time stepping 2 : Basin

Recall 1D example : $d X=-\beta X|X|^{\nu} d t+g(X) d W$. The associated Euler map with stepsize h is given by

$$
\begin{equation*}
x_{n+1}=F_{h}\left(x_{n}\right)=x_{n}-h \beta x_{n}\left|x_{n}\right|^{\nu} \tag{3}
\end{equation*}
$$

- unstable two-cycle at $\left\{ \pm \sqrt[\nu]{\frac{2}{h \beta}}\right\}$. So the basin of attraction of the zero solution is $\left|x_{0}\right|<\sqrt[\nu]{2 / h \beta}$.
- Increase the size of the basin of attraction by choosing h sufficiently small.
- Example. Cubic drift equation : $f(x)=-x^{3}$. Basin based adaptation :

$$
h_{n+1}=\min \left\{h_{\max }, \frac{1}{2\left|X_{n}\right|^{2}}\right\} .
$$

Taming based adaptation :

$$
h_{n+1}\left(X_{n}\right)=\min \left\{h_{\max }, \frac{1}{\left|X_{n}\right|^{3}}\left[\frac{\varepsilon+\sqrt{\varepsilon^{2}+4 \varepsilon}}{4}\right]\right\}
$$

For large values of X_{n}, taming based will select much smaller h_{n}.

General Framework

$$
d X(t)=f(X(t)) d t+g(X(t)) d W(t), \quad t>0
$$

Let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be the natural filtration of W. Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is continuously differentiable.

$$
\|D f(x)\| \leq c\left(1+\|x\|^{c}\right)
$$

and a one-sided Lipschitz condition with constant $\alpha>0$:

$$
\langle f(x)-f(y), x-y\rangle \leq \alpha\|x-y\|^{2}
$$

For diffusion term : global Lischitz

$$
\|g(x)-g(y)\|_{F} \leq \kappa\|x-y\|
$$

General Framework

$$
d X(t)=f(X(t)) d t+g(X(t)) d W(t), \quad t>0
$$

Let $\left(\mathcal{F}_{t}\right)_{t \geq 0}$ be the natural filtration of W. Suppose $f: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ is continuously differentiable.

$$
\|D f(x)\| \leq c\left(1+\|x\|^{c}\right)
$$

and a one-sided Lipschitz condition with constant $\alpha>0$:

$$
\langle f(x)-f(y), x-y\rangle \leq \alpha\|x-y\|^{2}
$$

For diffusion term : global Lischitz

$$
\|g(x)-g(y)\|_{F} \leq \kappa\|x-y\|
$$

- Unique strong solution on $[0, T$], on the filtered probability space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \geq 0}, \mathbb{P}\right)$.
For each $p>0$ there is $C=C(p, T, X(0))>0$ such that

$$
\mathbb{E} \sup _{s \in[0, T]}\|X(s)\|^{p} \leq C
$$

EM with adaptive step

Euler-type method for SDE over a random mesh $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ on $[0, T]$

$$
Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)
$$

EM with adaptive step

Euler-type method for SDE over a random mesh $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ on $[0, T]$

$$
Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)
$$

- $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ sequence of random timesteps: h_{n+1} determined by Y_{n}.
- Let $\left\{t_{n}:=\sum_{i=1}^{n} h_{i}\right\}_{n=1}^{N}$ with $t_{0}=0, t_{n}$ a $\left(\mathcal{F}_{t}\right)$-stopping time.

EM with adaptive step

Euler-type method for SDE over a random mesh $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ on $[0, T]$

$$
Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)
$$

- $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ sequence of random timesteps: h_{n+1} determined by Y_{n}.
- Let $\left\{t_{n}:=\sum_{i=1}^{n} h_{i}\right\}_{n=1}^{N}$ with $t_{0}=0, t_{n}$ a $\left(\mathcal{F}_{t}\right)$-stopping time. Define discrete-time filtration $\left\{\mathcal{F}_{t_{n}}\right\}_{n \in \mathbb{N}}$ by

$$
\mathcal{F}_{t_{n}}=\left\{A \in \mathcal{F}: A \cap\left\{t_{n} \leq t\right\} \in \mathcal{F}_{t}\right\}, \quad n \in \mathbb{N} .
$$

Suppose that each h_{n} is $\mathcal{F}_{t_{n-1}}$-measurable.

EM with adaptive step

Euler-type method for SDE over a random mesh $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ on $[0, T]$

$$
Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)
$$

- $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ sequence of random timesteps: h_{n+1} determined by Y_{n}.
- Let $\left\{t_{n}:=\sum_{i=1}^{n} h_{i}\right\}_{n=1}^{N}$ with $t_{0}=0, t_{n}$ a $\left(\mathcal{F}_{t}\right)$-stopping time. Define discrete-time filtration $\left\{\mathcal{F}_{t_{n}}\right\}_{n \in \mathbb{N}}$ by

$$
\mathcal{F}_{t_{n}}=\left\{A \in \mathcal{F}: A \cap\left\{t_{n} \leq t\right\} \in \mathcal{F}_{t}\right\}, \quad n \in \mathbb{N} .
$$

Suppose that each h_{n} is $\mathcal{F}_{t_{n-1}}$-measurable.
Let h_{n} satisfy $h_{\text {min }}<h_{n}<h_{\text {max }}$ where

$$
h_{\max }=\rho h_{\min } \quad 0<\rho \in \mathbb{R}
$$

- $h_{\text {min }}$ ensures finite number of time steps over $[0, T]$.

EM with adaptive step

Euler-type method for SDE over a random mesh $\left\{t_{n}\right\}_{n \in \mathbb{N}}$ on $[0, T]$

$$
Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)
$$

- $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ sequence of random timesteps: h_{n+1} determined by Y_{n}.
- Let $\left\{t_{n}:=\sum_{i=1}^{n} h_{i}\right\}_{n=1}^{N}$ with $t_{0}=0, t_{n}$ a $\left(\mathcal{F}_{t}\right)$-stopping time. Define discrete-time filtration $\left\{\mathcal{F}_{t_{n}}\right\}_{n \in \mathbb{N}}$ by

$$
\mathcal{F}_{t_{n}}=\left\{A \in \mathcal{F}: A \cap\left\{t_{n} \leq t\right\} \in \mathcal{F}_{t}\right\}, \quad n \in \mathbb{N} .
$$

Suppose that each h_{n} is $\mathcal{F}_{t_{n-1}}$-measurable.
Let h_{n} satisfy $h_{\text {min }}<h_{n}<h_{\text {max }}$ where

$$
h_{\max }=\rho h_{\min } \quad 0<\rho \in \mathbb{R}
$$

- $h_{\text {min }}$ ensures finite number of time steps over $[0, T]$.
- $h_{\text {max }}$ prevents stepsizes from becoming too large.

Convergence as $h_{\max } \rightarrow 0$.

Adaptive timestepping scheme

$$
\begin{aligned}
& Y_{n+1}=Y_{n}+h_{n+1}\left[f\left(Y_{n}\right) \mathcal{I}_{\left\{h_{n+1}>h_{\min }\right\}}+\frac{f\left(Y_{n}\right)}{1+h_{\min }\left\|f\left(Y_{n}\right)\right\|} \mathcal{I}_{\left\{h_{n+1}=h_{\text {min }}\right\}}\right] \\
&+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right), \quad n=0, \ldots, N-1
\end{aligned}
$$

- Each $W\left(t_{n+1}\right)-W\left(t_{n}\right)$ is a Wiener increment taken over a random step of length h_{n+1} which itself may depend on Y_{n}.

Adaptive timestepping scheme

$$
\begin{aligned}
& Y_{n+1}=Y_{n}+h_{n+1}\left[f\left(Y_{n}\right) \mathcal{I}_{\left\{h_{n+1}>h_{\text {min }}\right\}}+\frac{f\left(Y_{n}\right)}{1+h_{\min }\left\|f\left(Y_{n}\right)\right\|} \mathcal{I}_{\left\{h_{n+1}=h_{\text {min }}\right\}}\right] \\
&+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right), \quad n=0, \ldots, N-1
\end{aligned}
$$

- Each $W\left(t_{n+1}\right)-W\left(t_{n}\right)$ is a Wiener increment taken over a random step of length h_{n+1} which itself may depend on Y_{n}. Therefore is not necessarily normally distributed.

Adaptive timestepping scheme

$$
\begin{aligned}
& Y_{n+1}=Y_{n}+h_{n+1}\left[f\left(Y_{n}\right) \mathcal{I}_{\left\{h_{n+1}>h_{\text {min }}\right\}}+\frac{f\left(Y_{n}\right)}{1+h_{\text {min }}\left\|f\left(Y_{n}\right)\right\|} \mathcal{I}_{\left\{h_{n+1}=h_{\text {min }}\right\}}\right] \\
&+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right), \quad n=0, \ldots, N-1 .
\end{aligned}
$$

- Each $W\left(t_{n+1}\right)-W\left(t_{n}\right)$ is a Wiener increment taken over a random step of length h_{n+1} which itself may depend on Y_{n}. Therefore is not necessarily normally distributed.
- However, if h_{n+1} is an $\mathcal{F}_{t_{n} \text {-stopping time then } W\left(t_{n+1}\right)-W\left(t_{n}\right), ~\left({ }^{\prime}\right)}$ is $\mathcal{F}_{t_{n}}$-conditionally normally distributed with

$$
\begin{aligned}
\mathbb{E}\left[\left\|W\left(t_{n+1}\right)-W\left(t_{n}\right)\right\| \mid \mathcal{F}_{t_{n}}\right] & =0, \quad \text { a.s. } \\
\mathbb{E}\left[\left\|W\left(t_{n+1}\right)-W\left(t_{n}\right)\right\|^{2} \mid \mathcal{F}_{t_{n}}\right] & =h_{n+1}, \quad \text { a.s. }
\end{aligned}
$$

Adaptive timestepping scheme

$$
\begin{aligned}
& Y_{n+1}=Y_{n}+h_{n+1}\left[f\left(Y_{n}\right) \mathcal{I}_{\left\{h_{n+1}>h_{\min }\right\}}+\frac{f\left(Y_{n}\right)}{1+h_{\min }\left\|f\left(Y_{n}\right)\right\|} \mathcal{I}_{\left\{h_{n+1}=h_{\min }\right\}}\right] \\
&+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right), \quad n=0, \ldots, N-1
\end{aligned}
$$

- Each $W\left(t_{n+1}\right)-W\left(t_{n}\right)$ is a Wiener increment taken over a random step of length h_{n+1} which itself may depend on Y_{n}.
Therefore is not necessarily normally distributed.
- However, if h_{n+1} is an $\mathcal{F}_{t_{n} \text {-stopping time then } W\left(t_{n+1}\right)-W\left(t_{n}\right), ~\left(\mathcal{F}^{\prime}\right)}$ is $\mathcal{F}_{t_{n}}$-conditionally normally distributed with

$$
\begin{aligned}
& \mathbb{E}\left[\left\|W\left(t_{n+1}\right)-W\left(t_{n}\right)\right\| \mid \mathcal{F}_{t_{n}}\right]=0, \quad \text { a.s. } \\
& \mathbb{E}\left[\left\|W\left(t_{n+1}\right)-W\left(t_{n}\right)\right\|^{2} \mid \mathcal{F}_{t_{n}}\right]=h_{n+1}, \quad \text { a.s. }
\end{aligned}
$$

- In practice : replace Wiener increments with i.i.d. $\mathcal{N}(0,1)$ random variables denoted $\left\{\xi_{n}\right\}_{n=1}^{N}$, scaled at each step by the $\mathcal{F}_{t_{n}}$-measurable random variable $\sqrt{h_{n+1}}$.

Admissible steps

- Admissible timestepping strategy if whenever $h_{\min } \leq h_{n} \leq h_{\max }$,

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq R_{1}+R_{2}\left\|Y_{n}\right\|^{2}, \quad n=0, \ldots, N-1
$$

Admissible steps

- Admissible timestepping strategy if whenever $h_{\min } \leq h_{n} \leq h_{\max }$,

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq R_{1}+R_{2}\left\|Y_{n}\right\|^{2}, \quad n=0, \ldots, N-1
$$

- Lemma : Let $\delta \leq h_{\text {max }}$, and c be the constant in bound on $D f$. $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ is admissible if, for each $n=0, \ldots, N-1$, one of the following holds

Admissible steps

- Admissible timestepping strategy if whenever $h_{\min } \leq h_{n} \leq h_{\max }$,

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq R_{1}+R_{2}\left\|Y_{n}\right\|^{2}, \quad n=0, \ldots, N-1
$$

- Lemma : Let $\delta \leq h_{\max }$, and c be the constant in bound on $D f$. $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ is admissible if, for each $n=0, \ldots, N-1$, one of the following holds
(i) $h_{n+1} \leq \delta /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(ii) $h_{n+1} \leq \delta /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$;
(iii) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(iv) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$,

Admissible steps

- Admissible timestepping strategy if whenever $h_{\min } \leq h_{n} \leq h_{\text {max }}$,

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq R_{1}+R_{2}\left\|Y_{n}\right\|^{2}, \quad n=0, \ldots, N-1
$$

- Lemma : Let $\delta \leq h_{\text {max }}$, and c be the constant in bound on $D f$. $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ is admissible if, for each $n=0, \ldots, N-1$, one of the following holds
(i) $h_{n+1} \leq \delta /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(ii) $h_{n+1} \leq \delta /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$;
(iii) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(iv) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$,

Proof.

Admissible steps

- Admissible timestepping strategy if whenever $h_{\min } \leq h_{n} \leq h_{\max }$,

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq R_{1}+R_{2}\left\|Y_{n}\right\|^{2}, \quad n=0, \ldots, N-1
$$

- Lemma : Let $\delta \leq h_{\text {max }}$, and c be the constant in bound on $D f$. $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ is admissible if, for each $n=0, \ldots, N-1$, one of the following holds
(i) $h_{n+1} \leq \delta /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(ii) $h_{n+1} \leq \delta /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$;
(iii) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(iv) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$,

Proof. For Part (i) we can apply $\rho=h_{\text {max }} / h_{\text {min }}$

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq\left(\frac{\delta}{h_{n+1}}\right)^{2} \leq \frac{h_{\max }^{2}}{h_{\min }^{2}}=\rho^{2}
$$

and so $R_{1}=\rho^{2}$ and $R_{2}=0$.

Admissible steps

- Admissible timestepping strategy if whenever $h_{\min } \leq h_{n} \leq h_{\max }$,

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq R_{1}+R_{2}\left\|Y_{n}\right\|^{2}, \quad n=0, \ldots, N-1
$$

- Lemma : Let $\delta \leq h_{\text {max }}$, and c be the constant in bound on $D f$. $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ is admissible if, for each $n=0, \ldots, N-1$, one of the following holds
(i) $h_{n+1} \leq \delta /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(ii) $h_{n+1} \leq \delta /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$;
(iii) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(iv) $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(1+\left\|Y_{n}\right\|^{1+c}\right)$,

Proof. For Part (i) we can apply $\rho=h_{\text {max }} / h_{\text {min }}$

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq\left(\frac{\delta}{h_{n+1}}\right)^{2} \leq \frac{h_{\max }^{2}}{h_{\min }^{2}}=\rho^{2}
$$

and so $R_{1}=\rho^{2}$ and $R_{2}=0$.
For Part (ii) : $\left\|f\left(Y_{n}\right)\right\|^{2} \leq(2 c+\|f(0)\|)^{2}\left(1+\left\|Y_{n}\right\|^{1+c}\right)^{2}$

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq(2 c+\|f(0)\|)^{2} \frac{h_{\max }^{2}}{h_{n+1}^{2}} \leq(2 c+\|f(0)\|)^{2} \rho^{2}
$$

Theorem: Strong Convergence

Let $(X(t))_{t \in[0, T]}$ be solution of the SDE Let $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ be solution found with admissible timestepping strategy $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ Initial value $Y_{0}=X_{0}$.
Then

$$
\mathbb{E}\left[\left\|X(T)-Y_{N}\right\|^{2}\right] \leq C h_{\max }
$$

Theorem: Strong Convergence

Let $(X(t))_{t \in[0, T]}$ be solution of the SDE Let $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ be solution found with admissible timestepping strategy $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ Initial value $Y_{0}=X_{0}$.
Then

$$
\mathbb{E}\left[\left\|X(T)-Y_{N}\right\|^{2}\right] \leq C h_{\max },
$$

- Elements of proof.

1. Conditional expectation, conditional form Ito isometry

Theorem: Strong Convergence

Let $(X(t))_{t \in[0, T]}$ be solution of the SDE Let $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ be solution found with admissible timestepping strategy $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ Initial value $Y_{0}=X_{0}$.
Then

$$
\mathbb{E}\left[\left\|X(T)-Y_{N}\right\|^{2}\right] \leq C h_{\max },
$$

- Elements of proof.

1. Conditional expectation, conditional form Ito isometry
2. Taylor expand f and g :

Theorem: Strong Convergence

Let $(X(t))_{t \in[0, T]}$ be solution of the SDE
Let $\left\{Y_{n}\right\}_{n \in \mathbb{N}}$ be solution found with admissible timestepping strategy $\left\{h_{n}\right\}_{n \in \mathbb{N}}$ Initial value $Y_{0}=X_{0}$.
Then

$$
\mathbb{E}\left[\left\|X(T)-Y_{N}\right\|^{2}\right] \leq C h_{\max },
$$

- Elements of proof.

1. Conditional expectation, conditional form Ito isometry
2. Taylor expand f and g :

There are a.s. finite and $\mathcal{F}_{t_{n}}$-measurable random variables $\bar{K}_{1}, \bar{K}_{2}>0$, and constants $K_{1}, K_{2}<\infty$,

$$
\begin{aligned}
& \left.\mathbb{E}\left\|\int_{t_{n}}^{t_{n+1}} R_{z}\left(s, t_{n}, X\left(t_{n}\right)\right) d s\right\|\right|_{t_{n}} \leq \bar{K}_{1} h_{n+1}^{3 / 2}, \quad \text { a.s. } \\
& \mathbb{E}\left\|\int_{t_{n}}^{t_{n+1}} R_{z}\left(s, t_{n}, X\left(t_{n}\right)\right) d s\right\|^{2} \mid \mathcal{F}_{t_{n}} \leq \bar{K}_{2} h_{n+1}^{2}, \quad \text { a.s. } \\
& \mathbb{E}\left[\bar{K}_{1}\right] \leq K_{1}, \quad \text { and } \quad \mathbb{E}\left[\bar{K}_{2}\right] \leq K_{2} .
\end{aligned}
$$

Define the error sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ by $E_{n+1}:=Y_{n+1}-X\left(t_{n+1}\right)$

$$
E_{n+1}=E_{n}+\int_{t_{n}}^{t_{n+1}} f\left(Y_{n}\right)-f(X(s)) d s+\int_{t_{n}}^{t_{n+1}} g\left(Y_{n}\right)-g(X(s)) d W(s)
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left[\left\|E_{n+1}\right\|^{2} \mid \mathcal{F}_{t_{n}}\right] \\
& \leq\left\|E_{n}\right\|^{2}+h_{n+1}\left(2 \alpha+2 \kappa^{2}\right)\left\|E_{n}\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad+\underbrace{4 h_{n+1} \mathbb{E}\left[\left\langle f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right), \tilde{R}_{f}+\tilde{R}_{g}\right\rangle \mid \mathcal{F}_{t_{n}}\right]}_{:=\bar{A}_{n}}+\bar{B}_{n}+\bar{C}_{n}+\bar{D}_{n}
\end{aligned}
$$

Define the error sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ by $E_{n+1}:=Y_{n+1}-X\left(t_{n+1}\right)$

$$
E_{n+1}=E_{n}+\int_{t_{n}}^{t_{n+1}} f\left(Y_{n}\right)-f(X(s)) d s+\int_{t_{n}}^{t_{n+1}} g\left(Y_{n}\right)-g(X(s)) d W(s)
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left[\left\|E_{n+1}\right\|^{2} \mid \mathcal{F}_{t_{n}}\right] \\
& \leq\left\|E_{n}\right\|^{2}+h_{n+1}\left(2 \alpha+2 \kappa^{2}\right)\left\|E_{n}\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad+\underbrace{4 h_{n+1} \mathbb{E}\left[\left\langle f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right), \tilde{R}_{f}+\tilde{R}_{g}\right\rangle \mid \mathcal{F}_{t_{n}}\right]}_{:=\bar{A}_{n}}+\bar{B}_{n}+\bar{C}_{n}+\bar{D}_{n}
\end{aligned}
$$

3. Use admissibility of timestep to bound terms:

$$
\begin{aligned}
& h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2}
\end{aligned}
$$

Define the error sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ by $E_{n+1}:=Y_{n+1}-X\left(t_{n+1}\right)$

$$
E_{n+1}=E_{n}+\int_{t_{n}}^{t_{n+1}} f\left(Y_{n}\right)-f(X(s)) d s+\int_{t_{n}}^{t_{n+1}} g\left(Y_{n}\right)-g(X(s)) d W(s)
$$

Then

$$
\begin{aligned}
& \mathbb{E}\left[\left\|E_{n+1}\right\|^{2} \mid \mathcal{F}_{t_{n}}\right] \\
& \leq\left\|E_{n}\right\|^{2}+h_{n+1}\left(2 \alpha+2 \kappa^{2}\right)\left\|E_{n}\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad+\underbrace{4 h_{n+1} \mathbb{E}\left[\left\langle f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right), \tilde{R}_{f}+\tilde{R}_{g}\right\rangle \mid \mathcal{F}_{t_{n}}\right]}_{:=\bar{A}_{n}}+\bar{B}_{n}+\bar{C}_{n}+\bar{D}_{n}
\end{aligned}
$$

3. Use admissibility of timestep to bound terms:

$$
\begin{aligned}
& h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 2 h_{n+1}^{2}\left(R_{1}+R_{2}\left\|Y_{n}\right\|^{2}\right)+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2}
\end{aligned}
$$

Define the error sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ by $E_{n+1}:=Y_{n+1}-X\left(t_{n+1}\right)$

$$
E_{n+1}=E_{n}+\int_{t_{n}}^{t_{n+1}} f\left(Y_{n}\right)-f(X(s)) d s+\int_{t_{n}}^{t_{n+1}} g\left(Y_{n}\right)-g(X(s)) d W(s)
$$

Then
$\mathbb{E}\left[\left\|E_{n+1}\right\|^{2} \mid \mathcal{F}_{t_{n}}\right]$

$$
\begin{aligned}
\leq & \left\|E_{n}\right\|^{2}+h_{n+1}\left(2 \alpha+2 \kappa^{2}\right)\left\|E_{n}\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& +\underbrace{4 h_{n+1} \mathbb{E}\left[\left\langle f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right), \tilde{R}_{f}+\tilde{R}_{g}\right\rangle \mid \mathcal{F}_{t_{n}}\right]}_{:=\bar{A}_{n}}+\bar{B}_{n}+\bar{C}_{n}+\bar{D}_{n}
\end{aligned}
$$

3. Use admissibility of timestep to bound terms:

$$
\begin{aligned}
& h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 2 h_{n+1}^{2}\left(R_{1}+R_{2}\left\|Y_{n}\right\|^{2}\right)+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 4 h_{n+1}^{2} R_{2}\left\|E_{n}\right\|^{2}+4 h_{n+1}^{2} R_{2}\left\|X\left(t_{n}\right)\right\|^{2}+2 h_{n+1}^{2} R_{1}+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2}
\end{aligned}
$$

Now, bound on Df gives $\|f(x)\| \leq c_{1}(1+\|x\|)^{c+1}$.

Define the error sequence $\left\{E_{n}\right\}_{n \in \mathbb{N}}$ by $E_{n+1}:=Y_{n+1}-X\left(t_{n+1}\right)$

$$
E_{n+1}=E_{n}+\int_{t_{n}}^{t_{n+1}} f\left(Y_{n}\right)-f(X(s)) d s+\int_{t_{n}}^{t_{n+1}} g\left(Y_{n}\right)-g(X(s)) d W(s)
$$

Then
$\mathbb{E}\left[\left\|E_{n+1}\right\|^{2} \mid \mathcal{F}_{t_{n}}\right]$

$$
\begin{aligned}
\leq & \left\|E_{n}\right\|^{2}+h_{n+1}\left(2 \alpha+2 \kappa^{2}\right)\left\|E_{n}\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& +\underbrace{4 h_{n+1} \mathbb{E}\left[\left\langle f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right), \tilde{R}_{f}+\tilde{R}_{g}\right\rangle \mid \mathcal{F}_{t_{n}}\right]}_{:=\bar{A}_{n}}+\bar{B}_{n}+\bar{C}_{n}+\bar{D}_{n}
\end{aligned}
$$

3. Use admissibility of timestep to bound terms:

$$
\begin{aligned}
& h_{n+1}^{2}\left\|f\left(Y_{n}\right)-f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 2 h_{n+1}^{2}\left\|f\left(Y_{n}\right)\right\|^{2}+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 2 h_{n+1}^{2}\left(R_{1}+R_{2}\left\|Y_{n}\right\|^{2}\right)+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2} \\
& \quad \leq 4 h_{n+1}^{2} R_{2}\left\|E_{n}\right\|^{2}+4 h_{n+1}^{2} R_{2}\left\|X\left(t_{n}\right)\right\|^{2}+2 h_{n+1}^{2} R_{1}+2 h_{n+1}^{2}\left\|f\left(X\left(t_{n}\right)\right)\right\|^{2}
\end{aligned}
$$

Now, bound on Df gives $\|f(x)\| \leq c_{1}(1+\|x\|)^{c+1}$.
4. Sum, take expectation (Tower property) \& discrete Gronwall

Numerical convergence

SDE : SGL equation Multiplicative

$$
d X(t)=\left(\left(\eta+\frac{1}{2} \sigma^{2}\right) X(t)-\lambda X(t)^{3}\right) d t+\sigma X(t) d W(t)
$$

$\rho=100 . \eta=0.1, \lambda=2$ and $\sigma=0.5 . \quad T=2$.

Numerical convergence

SDE: SGL equation Additive

$$
d X(t)=\left(\left(\eta+\frac{1}{2} \sigma^{2}\right) X(t)-\lambda X(t)^{3}\right) d t+\sigma d W(t)
$$

$$
\rho=100, \eta=0.1, \lambda=2 \text { and } \sigma=0.5 . T=2 .
$$

Role of $\rho=h_{\text {max }} / h_{\text {min }}$

Here $h_{\max }=2$ and so $h_{\min }=0.2, \ldots, 0.0002$.

Adaptive time step and MLMC

$$
\mathbb{E}\left(X_{L}\right)=\mathbb{E}\left(X_{L_{0}}\right)+\sum_{j=L_{0}}^{L-1} \mathbb{E}\left[\left(X_{j+1}\right)-\left(X_{j}\right)\right]
$$

Stochastic Ginzburg-Landau (1D) equation: Accuracy $\epsilon=0.01$ $h_{\max }^{\ell}=h_{\max }^{0} k^{-\ell}$, with $h_{\max }^{0}=1$ and $k=4$.

[Tempone et al]

Adaptive time step and MLMC

$$
\mathbb{E}\left(X_{L}\right)=\mathbb{E}\left(X_{L_{0}}\right)+\sum_{j=L_{0}}^{L-1} \mathbb{E}\left[\left(X_{j+1}\right)-\left(X_{j}\right)\right]
$$

Stochastic Ginzburg-Landau (1D) equation : Accuracy $\epsilon=0.01$ $h_{\max }^{\ell}=h_{\max }^{0} k^{-\ell}$, with $h_{\max }^{0}=1$ and $k=4$.

[Tempone et al]

Fang and Giles

$\left\langle Y_{n}, f\left(Y_{n}\right)\right\rangle+\frac{1}{2} h_{n+1}\left\|f\left(Y_{n}\right)\right\|^{2} \leq \alpha\left\|Y_{n}\right\|^{2}+\beta, \quad n=0, \ldots, N-1$,
One sided linear bound $\langle x, f(x)\rangle \leq \alpha\|x\|^{2}+\beta$, for $\alpha, \beta>0$

Fang and Giles

$\left\langle Y_{n}, f\left(Y_{n}\right)\right\rangle+\frac{1}{2} h_{n+1}\left\|f\left(Y_{n}\right)\right\|^{2} \leq \alpha\left\|Y_{n}\right\|^{2}+\beta, \quad n=0, \ldots, N-1$,
One sided linear bound $\langle x, f(x)\rangle \leq \alpha\|x\|^{2}+\beta$, for $\alpha, \beta>0$

- Convergence with :

Additional upper and lower bounds on each timestep Introduction of a convergence parameter $\delta \leq 1$.

Fang and Giles

$$
\left\langle Y_{n}, f\left(Y_{n}\right)\right\rangle+\frac{1}{2} h_{n+1}\left\|f\left(Y_{n}\right)\right\|^{2} \leq \alpha\left\|Y_{n}\right\|^{2}+\beta, \quad n=0, \ldots, N-1
$$

One sided linear bound $\langle x, f(x)\rangle \leq \alpha\|x\|^{2}+\beta$, for $\alpha, \beta>0$

- Convergence with :

Additional upper and lower bounds on each timestep Introduction of a convergence parameter $\delta \leq 1$.

- Two specific timestepping rules proposed :
(i) corresponds to admissible step $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(ii) corresponds to

$$
h_{n+1} \leq \delta \frac{\left\|Y_{n}\right\|^{2}}{\left\|f\left(Y_{n}\right)\right\|^{2}}
$$

If we suppose that $\delta \leq h_{\text {max }}$ then we have

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq \frac{\delta}{h_{n+1}}\left\|Y_{n}\right\|^{2} \leq \rho\left\|Y_{n}\right\|^{2}
$$

which is admissible.

Fang and Giles

$$
\left\langle Y_{n}, f\left(Y_{n}\right)\right\rangle+\frac{1}{2} h_{n+1}\left\|f\left(Y_{n}\right)\right\|^{2} \leq \alpha\left\|Y_{n}\right\|^{2}+\beta, \quad n=0, \ldots, N-1
$$

One sided linear bound $\langle x, f(x)\rangle \leq \alpha\|x\|^{2}+\beta$, for $\alpha, \beta>0$

- Convergence with :

Additional upper and lower bounds on each timestep Introduction of a convergence parameter $\delta \leq 1$.

- Two specific timestepping rules proposed :
(i) corresponds to admissible step $h_{n+1} \leq \delta\left\|Y_{n}\right\| /\left(\left\|f\left(Y_{n}\right)\right\|\right)$;
(ii) corresponds to

$$
h_{n+1} \leq \delta \frac{\left\|Y_{n}\right\|^{2}}{\left\|f\left(Y_{n}\right)\right\|^{2}}
$$

If we suppose that $\delta \leq h_{\text {max }}$ then we have

$$
\left\|f\left(Y_{n}\right)\right\|^{2} \leq \frac{\delta}{h_{n+1}}\left\|Y_{n}\right\|^{2} \leq \rho\left\|Y_{n}\right\|^{2}
$$

which is admissible.

- Included in the framework of our proof.

Two Extensions of our Proof

$$
\text { SDE } \quad d X=[A X+f(X)] d t+g(X) d W
$$

1. semi-implicit Euler-Maruyama
$\left(I-h_{n+1} A\right) Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)$
More suitable for SPDEs.

Two Extensions of our Proof

$$
\text { SDE } \quad d X=[A X+f(X)] d t+g(X) d W
$$

1. semi-implicit Euler-Maruyama
$\left(I-h_{n+1} A\right) Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)$
More suitable for SPDEs.
2. Assume f, g satisfy local Lipschitz condition and

$$
\begin{gathered}
\langle f(x)-f(y), x-y\rangle+\frac{(p+1)}{2}\|g(x)-g(y)\|_{F}^{2} \leq \alpha\|x-y\|^{2} \\
\|h(x)\| \leq c_{3}\left(1+a\|x\|^{\gamma_{0}+1}\right)+c_{4}\|x\|^{-1}, \quad h=f, g
\end{gathered}
$$

and have $p>4$ moments for SDE.

Two Extensions of our Proof

$$
\text { SDE } \quad d X=[A X+f(X)] d t+g(X) d W
$$

1. semi-implicit Euler-Maruyama
$\left(I-h_{n+1} A\right) Y_{n+1}=Y_{n}+h_{n+1} f\left(Y_{n}\right)+g\left(Y_{n}\right)\left(W\left(t_{n+1}\right)-W\left(t_{n}\right)\right)$
More suitable for SPDEs.
2. Assume f, g satisfy local Lipschitz condition and

$$
\begin{gathered}
\langle f(x)-f(y), x-y\rangle+\frac{(p+1)}{2}\|g(x)-g(y)\|_{F}^{2} \leq \alpha\|x-y\|^{2} \\
\|h(x)\| \leq c_{3}\left(1+a\|x\|^{\gamma_{0}+1}\right)+c_{4}\|x\|^{-1}, \quad h=f, g
\end{gathered}
$$

and have $p>4$ moments for SDE. Then if $\left.\left\|f\left(Y_{n}\right)\right\|^{2}\right\} \leq R_{1}+R_{2}\left\|Y_{n}\right\|^{2}$ have convergence.

Numerical Results

- SPDEs: 1D, 2D, semi-implicit and multiplicative noise.

Numerical Results

- SPDEs: 1D, 2D, semi-implicit and multiplicative noise.

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

(Explicit time stepping.)

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error TAMED	hmean
$H^{-1 / 2}$	AT	1.112509	2.423275	0.001520

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error TAMED	hmean
$H^{-1 / 2}$	AT	1.112509	2.423275	0.001520
$H^{-1 / 2}$	AM	1.246549	9.803268	0.028525

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error TAMED	hmean
$H^{-1 / 2}$	AT	1.112509	2.423275	0.001520
$H^{-1 / 2}$	AM	1.246549	9.803268	0.028525
L^{2}	AT	0.158108	0.852316	0.003545
L^{2}	AM	0.161219	2.705998	0.041255

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error TAMED	hmean
$H^{-1 / 2}$	AT	1.112509	2.423275	0.001520
$H^{-1 / 2}$	AM	1.246549	9.803268	0.028525
L^{2}	AT	0.158108	0.852316	0.003545
L^{2}	AM	0.161219	2.705998	0.041255
$H^{1 / 2}$	AT	0.028677	0.240160	0.004240
$H^{1 / 2}$	AM	0.039282	1.437737	0.044855

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error TAMED	hmean
$H^{-1 / 2}$	AT	1.112509	2.423275	0.001520
$H^{-1 / 2}$	AM	1.246549	9.803268	0.028525
L^{2}	AT	0.158108	0.852316	0.003545
L^{2}	AM	0.161219	2.705998	0.041255
$H^{1 / 2}$	AT	0.028677	0.240160	0.004240
$H^{1 / 2}$	AM	0.039282	1.437737	0.044855
H^{1}	AT	0.009928	0.157084	0.004555
H^{1}	AM	0.020858	0.968483	0.046765

Reference solution fixed step tamed method with $h=0.0005$.
100 realizations.

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error IMPLICIT	hmean
$H^{-1 / 2}$	AT	0.038453	0.034556	0.001695

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error IMPLICIT	hmean
$H^{-1 / 2}$	AT	0.038453	0.034556	0.001695
$H^{-1 / 2}$	AM	0.153387	0.257142	0.029015

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error IMPLICIT	hmean
$H^{-1 / 2}$	AT	0.038453	0.034556	0.001695
$H^{-1 / 2}$	AM	0.153387	0.257142	0.029015
L^{2}	AT	0.012816	0.026237	0.003570
L^{2}	AM	0.049354	0.192201	0.040865

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error IMPLICIT	hmean
$H^{-1 / 2}$	AT	0.038453	0.034556	0.001695
$H^{-1 / 2}$	AM	0.153387	0.257142	0.029015
L^{2}	AT	0.012816	0.026237	0.003570
L^{2}	AM	0.049354	0.192201	0.040865
$H^{1 / 2}$	AT	0.006155	0.028170	0.004220
$H^{1 / 2}$	AM	0.027982	0.179187	0.045120

Numerical results: Semi-Implicit adaptive time stepping

$$
d u=\left[\epsilon u_{x x}+u-u^{3}\right] d t+\sigma d W
$$

AT = Adaptive Tamed
AM = Adaptive Moment:

$$
h_{\min } \leq h_{n} \leq \max \left(1,\left\|X_{n}\right\|\right) /\left\|f\left(X_{n}\right)\right\| \leq h_{\max }
$$

H^{r}	Adpt Method	Error Adapt	Error IMPLICIT	hmean
$H^{-1 / 2}$	AT	0.038453	0.034556	0.001695
$H^{-1 / 2}$	AM	0.153387	0.257142	0.029015
L^{2}	AT	0.012816	0.026237	0.003570
L^{2}	AM	0.049354	0.192201	0.040865
$H^{1 / 2}$	AT	0.006155	0.028170	0.004220
$H^{1 / 2}$	AM	0.027982	0.179187	0.045120
H^{1}	AT	0.005273	0.034370	0.004605
H^{1}	AM	0.021265	0.167884	0.046780

Reference solution fixed step tamed method with $h=0.0005$.
100 realizations.

2D SPDEs additive noise.

Semi-implicit solver.

$$
d u=\left[\epsilon \Delta u+u-u^{3}\right] d t+\sigma d W
$$

Adpt Method	Error Adapt	Error Fixed	hmean
AT	0.128144	0.130304	0.006200
AM	0.132080	0.225055	0.250000

2D SPDEs additive noise.

Semi-implicit solver.

$$
d u=\left[\epsilon \Delta u+u-u^{3}\right] d t+\sigma d W
$$

Adpt Method	Error Adapt	Error Fixed	hmean
AT	0.128144	0.130304	0.006200
AM	0.132080	0.225055	0.250000

vorticity $u:=\nabla \times \vec{v}$

$$
d u=[\varepsilon \Delta u-(\vec{v} \cdot \nabla) u]+\sigma d W \quad \Delta \psi=-u
$$

$\psi(t, \vec{x})$ is scalar stream function, and $\vec{v}=\left(\psi_{y},-\psi_{x}\right)$.

Adpt Method	Error Adapt	Error Fixed	hmean
AT	0.136268	0.118946	0.003540
AM	0.112863	0.130985	0.003880

Summary

1. Proved convergence of adaptivity step method.
2. Showed more accurate simulations for larger steps than fixed step tamed methods. (Although this is not error control).
3. Methods applicable to SPDEs: semi-linear
4. Extension to diffusion term as SDE system.

- No rejection of steps

Summary

1. Proved convergence of adaptivity step method.
2. Showed more accurate simulations for larger steps than fixed step tamed methods. (Although this is not error control).
3. Methods applicable to SPDEs: semi-linear
4. Extension to diffusion term as SDE system.

- No rejection of steps

Post-Doc position :
Enabling Quantification of Uncertainty for Inverse Problems Part of EQUIP Grant with Prof M. Christie in IPE - based at Heriot Watt working with Warwick and Imperial.

