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In a nutshell

Goal Simulate slow-fast SDEs over long time, quickly

Model Slow-fast system of SDEs, and a macroscopic
model taken from the “fast” limit

Method Parallel-in-time algorithm that iteratively im-
proves the macroscopic result

Result Reduction in wall clock time

Bonus Lower variance than full microscopic model

Microscopic model

Slow-fast system of coupled SDEs
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Time integrator: a Lie-Trotter splitting, updating X
t

first, then Y
t

Validation: deterministic solution given by the Fokker-
Planck equation, akin to the macroscopic model

The parareal algorithm

Iteratively improves the macroscopic propagator by
computing the discrepancies between the macroscopic
and the microscopic models in parallel

Parallel use of the microscopic propagator gives a re-
duction in wall clock time if there are fewer iterations
needed than time steps

Variance of the stochastic microscopic propagator
dominates the error (see figures !)

Reduction in variance by using a particle propaga-
tor with correlated noise for the macroscopic model in
computing the discrepancies between the models
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Macroscopic model

Only slow variable, assume the fast Y
t

is equilibrated
and use only the expected value of the term Y 2
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or in potential form
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The associated Fokker-Planck equation reads
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The macroscopic state is represented by integral quan-
tities over a regular grid

Coupling

Restriction (R, from micro to macro) sum the
weights of all particles in each bin

Matching (M, from macro to micro) reweight parti-
cles from a known microstate (X̄p, Ȳ p, W̄ p)

Resampling (M⇤, optional) retrieve an ensemble
with all particles equal in weight
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Convergence in iterations

Iteration converges

in a few steps, need

only K/N of serial

wall clock time

Convergence in number of particles
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M matching operator

restriction operator

microscopic propagator

macroscopic propagator

control propagator

parallel computations

serial computations
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Parameters used below: � = 5, ✏ = 0.1,K = N = 20,�t = 0.025, �t = 1.0⇥ 10�4




