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MOTIVATION 1: PROTEIN FOLDING

Transition between two protein configurations described by random
walk in an energy landscape.

Figure: Caricature of Energy Landscape for a Protein
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MOTIVATION 1: PROTEIN FOLDING

Quantities of interest:

# Average transition time/ binding time.
# Stability of a given conformation.
# Evolution of reaction coordinate.
# Most common transition path.

Figure: Transition between protein conformations

[Pirchi, Ziv et al, Nat. Comms, 2:493 (2011)] 5



MOTIVATION 2: COLLECTIVE TRANSPORT OF PARTICLES

System of d interacting particles moving in a multiscale potential.

q̈i = −∇qiV ε(q)− θ
(
qi −

1
N

N∑
k=1

qk

)
− γqi +

√
2γβ−1Ẇ (i)

t ,

# V ε denotes a rugged/multiscale potential.
# We can also consider localized coupling via e.g. a discrete

Laplacian.
# Applications:

1. Polymer Dynamics.
2. MOdeling of Dislocation dynamics.
3. Biophysics.

Question: How are dynamics of q affected by multiple scales
within V ε?
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MOTIVATION 3: INFERENCE FOR MULTI–SCALE SYSTEMS

Inference problems involving multiscale structure are ubiquitous in
science.

# Given observations from a multi-scaled model:

dX ε
t = Aε(X ε

t ; θ) dt + Bε(X ε
t ; θ) dWt ,

can we infer properties of the coarse grained model?
[Pavliotis & Stuart, J. Stat. Phys, 127, 2007].

# Related to Equation-free approach [Kevrekidis et al, Comm.
Math. Sci, 2006] and H.M.M [E et al, Phys. Rev. B 67,
2003].

# Variance reduction methods for sampling from a “rough”
distribution πε [Dupuis, Spiliopoulos & Hwang, 2011]
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PROBLEM OVERVIEW

Simplest model: Overdamped diffusion in a multiscale potential.

# Dynamics given by Itô SDE:

dX ε
t = −∇V ε(X ε

t ) dt +
√
2β−1 dWt .

# For ε� 1, V ε models a “rough” potential:

V ε(x) := V
(
x , x
ε
,
x
ε2
, . . . ,

x
εN

)
,

for a smooth function V (x0, y1, . . . , yN).
◦ x0: slowly–varying structure of potential.
◦ y1, . . . , yN : multiscale periodic fluctuations occuring at

different scales.

8



EXAMPLE
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Figure: V ε(x) = 1
4
(
x4 − 2αx2)− 1

2 sin(2πx/ε)x2
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INVARIANT BEHAVIOUR OF THE SLOW-FAST DYNAMICS

X ε
t is a Markov diffusion process with infinitesimal generator

defined by

Lεf = σ2eV ε(x)/σ2∇ ·
(
e−βV ε(x)∇f (x)

)
.

Stationary distribution satisfies the stationary Fokker-Planck
equation:

∇ ·
(
e−βV ε(x)∇(πε(x)eV ε(x)/σ2) = 0, x ∈ Rd .

Suppose Z ε =
∫
Rd e−βV ε(x) dx <∞,

# X ε
t is ergodic, with stationary density πε(x) = 1

Zε e−βV ε(x).
# X ε

t satisfies detailed balance with respect to πε(x), i.e.

Stationary Probability Flux = ∇
(
πε(x)eβV ε(x)

)
= 0, ∀x ∈ Rd .
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QUESTIONS AND OBJECTIVES

Questions:

# Can behaviour of X ε
t for small ε be approximated by some X 0

t ?
# X ε

t ergodic ⇒ X 0
t ergodic?

# Relationship between πε(·) and π0(·)?
# Asymptotic behaviour of other quantities related to X ε

t ,
◦ Observables of X ε

t , e.g. reaction coordinates.
◦ Mean First Passage Time (MFPT), as ε→ 0.

Approach:

# Formal approach: Asymptotic expansions of the Kolmogorov
Backward Equation for X ε

t in powers of O(ε−1).
# Rigorous Approach: probabilistic techniques for

locally-periodic homogenization, [Bensoussans, Lyons,
Papanicolau, 1979], [Pardoux, 1999], [Pardoux,
Veretennikov, 2001], [Bencherif-Madani, Pardoux, 2003].
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PROVING THE HOMOGENIZATION RESULT

To prove the existence of the limit of X ε
t as ε→ 0, we make the

following assumptions on V .

# There exist confining potentials M0(x) and M1(x) such that

M0(x) ≤ V (x , y1, . . . , yN) ≤ M1(x), ∀x ∈ Rd , y1, . . . yN ∈ Td

# V (x , y1, . . . , yN) is smooth in all variables (can be relaxed).
# The gradient of the potential is Lipschitz in x , i.e.∣∣∇V (x , y1, . . . , yN)−∇V (x ′, y1, . . . , yN)

∣∣ ≤ C |x − x ′|.

# |∇V (x , y1, . . . , yN)| ≤ C ′|x |, for some C ,C ′ for all x , x ′ ∈ R,
y1, . . . , yN ∈ Td .
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HOMOGENIZATION RESULT

As ε→ 0, the process X ε
t converges weakly in C([0,T ],Rd ) to a

diffusion process X 0
t having generator defined by

L0f (x) = β−1

Z (x)∇x · (Z (x)K(x)∇x f (x)) , f ∈ C2
c (Rd ).

where Z (x) =
∫
· · ·
∫
e−βV (x ,...) dyN . . . dy1, and

K(x) = I+ 1
Z (x)

∫
Td
· · ·
∫
Td

(I+∇xNθ
>
N ) · · · (I+∇x1θ

>
1 )e−βV dyN . . . dy1.

and θk are mean-zero solutions of the following Poisson equations
on Td :

∇yk · (Kk(∇ykθk + I)) = 0, y ∈ Td

where KN(x , y1, . . . , yN) = e−βV (x ,y1,...,yN )I and

Kk(x , y1, . . . , yk) =
∫

(I+∇Nθ
>
N ) · · · (I+∇k+1θ

>
k+1)e−βV dyN . . . dyk+1.
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HOMOGENIZATION RESULT

# The limiting dynamics can be characterised by the following
Itô SDE:
dX 0

t = −K(X 0
t )∇Ψ(X 0

t ) dt+σ2∇·K(X 0
t ) dt+

√
2β−1K(X 0

t ) dWt ,

where the effective potential is given by
Ψ(x) = −β−1 logZ (x).

# X 0
t satisfies detailed balance with respect to the invariant

measure

π0(x) = 1
Z
e−Ψ(x) = Z (x)

Z
, Z =

∫
Z (x ′) dx ′.

# The limiting SDE
# For all e ∈ Rd :

|e|2

Z (x)Ẑ (x)
≤ e · K(x)e ≤ |e|2,

where Ẑ (x) =
∫
· · ·
∫
eV (x ,y1,...,yN )/σ2 dyN . . . dy1.
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DYNAMICS IN THE LIMIT ε→ 0

The generator of X 0
t :

L0f (x) = β−1

K (x)π0(x)∇x ·
(
π0(x)K (x)∇x f

)
,

where
π0(x) = 1

Z
e−βΨ(x) = Z (x)

Z
.

# X 0
t satisfies detailed balance with respect to π0(x).

# Limiting behaviour is described by overdamped diffusion in a
potential Ψ(x) with inhomogeneous diffusion coefficent K(x).
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PROOF OF THE HOMOGENIZATION THEOREM

Slight generalisation of classical martingale approach to
homogenization, applied to SDEs with locally-periodic coefficients
having N-scales.
Rough idea:

1. The slow–fast system is the solution to the following
martingale problem:

Ex

[
φε(X ε

t )−
∫ t

s
Lεφε(X ε

u) du
∣∣∣Fs

]
= φε(X ε

s ), ∀φε ∈ D(Lε).

Construct a test function

φε(x) = φ0(x)+εφ1(x , x/ε)+. . .+εNφN(x , x/ε, . . . , x/εN)+. . .

such that
Lεφε(x) = L0φ0(x) + εRε(x),

where Ex [εRε(X ε
u)]→ 0, as ε→ 0.
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PROOF OF THE HOMOGENIZATION THEOREM CTD.

1. If the set of measures Pε on C([0,T ],Rd ) corresponding to
the processes {X ε

t , t ∈ [0,T ]} possesses a limit point X 0
t then

it is the unique solution of the following martingale problem

Ex

[
φ0(X 0)−

∫ t

s
L0φ0(X ε

u) du
∣∣∣Fs

]
= φ0(X ε

s ), ∀φ ∈ D(L0).

2. Show that {X ε
t }ε>0 possesses an accumulation point. i.e.

Establish tightness of the family of processes in {X ε
t }ε>0.
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INVARIANT DISTRIBUTION OF COARSE GRAINED PROCESS

We can distinguish between two types of potential

# Separable Potential:

V ε(x) = V0(x) + V1(x/ε, x/ε2, . . . x/εN).

In this case:

Z (x) ∝
∫
· · ·
∫

e−βV (x ,y1,...yN )dyN . . . dy1 ∝ e−V0(x).

and K is independent of x . Rapid fluctuations do not alter
stationary behaviour, but only speed of convergence to
equilibrium and effective diffusion tensor.

# Nonseparable Potential. In this case

Z (x) 6∝ e−V0(x), in general.

Rapid fluctuations can affect the stationary behaviour.
19



TOY EXAMPLE: 1D DOUBLE WELL POTENTIAL

Consider the ODE in R:

ẋ(t) = − d
dx V0(x ;α), t > 0,

where V0(x ;α) = −α
2 x

2 + 1
4x

4.
# Normal form for

supercritical pitchfork
bifurcation.

# α < 0: One stable
equilibrium at x = 0.

# α > 0: Stable equilibria
at x = ±

√
α. Unstable

equilibrium at x = 0.

-1.0 -0.5 0.5 1.0

-1.0
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1D DOUBLE WELL POTENTIAL

Consider the ODE in R:

ẋ(t) = − d
dx V0(x ;α), t > 0,

where V0(x ;α) = −α
2 x

2 + 1
4x

4.

Add multiscale fluctuations V ε(x ;α) = V (x , x/ε;α), where

V (x , y ;α) = 1
4x

4 −
(
α + sin(2πy)

2

)
x2.

Thermal motion in potential:

dX ε
t = −dV ε

dx (X ε
t ) dt +

√
2β−1 dWt .
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1D DOUBLE WELL POTENTIAL
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Figure: V0(x) and V ε(x) = 1
4
(
x4 − 2αx2)− 1

2 sin(2πx/ε)x2
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1D DOUBLE WELL POTENTIAL

By previous theory, X ε
t ⇒ X 0

t , as ε→ 0, where X 0
t is ergodic with

stationary distribution

π0(dx) ∝ Z (x) dx

Can show that

π0(x) ∝ e
β

(
α2x2

2 −
x4
4

)
︸ ︷︷ ︸

π0(x)

I
(
0, x2

2β−1

)
︸ ︷︷ ︸

correction

,

where I is the modified Bessel function of the first kind.

Varying the intensity of the noise can alter the equilibrium
dynamics of the system
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1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the
dynamics.
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Figure: β−1 = 1.0
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1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the
dynamics.
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Figure: β−1 = 10−1
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1D DOUBLE WELL POTENTIAL

The strength of the noise now plays an interesting role in the
dynamics.
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Figure: β−1 = 5 · 10−2
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1D DOUBLE WELL POTENTIAL

More generally: consider an N-scale potential

V ε(x ;α) = V0(x ;α)− 1
2

N∑
n=1

sin
(2π x
εn

)
x2
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Figure: Bifurcation diagram for a different number N of microscopic
scales in the potential
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1D DOUBLE WELL POTENTIAL

Stationary PDF of homogenized dynamics is:

ZN(x ;α) ∝ e−βV0(x ;α)I
(
0, x2

2β−1/2

)N

.
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Figure: Phase diagram for α and σ
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EXAMPLE: PITCHFORK BIFURCATION

Change in qualitative dynamics depends on how fast and slow
scales interact. Consider

V ε(x ;α;λ) = 1
4x

4 −
[
α + sin(2πx/ε)

2

]
x2 + λ sin(2πx/ε2)x .
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EXAMPLE: PITCHFORK BIFURCATION

Coarse-grained process has stationary distribution
π0(x) = e−βV0(x)I0(x2β/2)I0(λxβ).
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Figure: Plot πε(x) and π0(x). Horizontally, α = −1,−0.02, 1.0, vertically
β−1 = 0.2, 0.5, 1.0.
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EXAMPLE: PITCHFORK BIFURCATION

Stable equilibrium points of the solution satisfy

−x3
s + xs

[
α + I ′0(x2

s β/2)
I0(x2

s β/2)

]
+ λ

I ′0(λxsβ)
I0(λxsβ) = 0.

−3 −2 −1 0 1
−2

−1

0

1

2

−3 −2 −1 0 1
−2

−1

0

1

2

−3 −2 −1 0 1
−2

−1

0

1

2
(a) (b) (c)

Figure: Bifurcation diagram for β−1 = 0.2, 0.5 and 1.
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EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR

As the number of scales increase, the effective diffusivity K (x)
decreases.

Must increase temperature β−1 to overcome “trapping effect” of
regions of slow diffusivity. Consider separable N-scale potential

V ε(x) = S (x/ε) + . . .+ S
(
x/εN

)
,

where

S(x) =
{
2x if x mod 1 ∈ [0, 1

2)
2− 2x if x mod 1 ∈ [ 1

2 , 1)
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EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR
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EFFECT OF NUMBER OF SCALES ON DIFFUSIVITY TENSOR

As ε→ 0, X ε
t ⇒ X 0

t , where

dX 0
t = σ

K (σ)N dWt

where σ = β−1, for K (σ) = 2σ2
(
cosh

(
1
σ

)
− 1

)
.
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MEAN FIELD LIMITS FOR INTERACTING DIFFUSIONS
IN A TWO-SCALE POTENTIAL
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# We consider a system of weakly interacting diffusions moving
in a 2-scale locally periodic potential:

dX i
t = −∇V ε(X i

t )dt− 1
N

N∑
j=1
∇F (X i

t−X
j
t )dt+

√
2β−1dB i

t , i = 1, ..,N,

(1)
# where

V ε(x) = V0(x) + V1(x , x/ε). (2)

# The full N-particle potential is

U(x1, . . . , xN , y1, . . . , yN) =
N∑

i=1
V0(xi ) + 1

2N

N∑
i=1

N∑
j=1

F (xi − xj)

+
N∑

i=1
V1(xi , yi ). (3)

# The homogenization theorem applies to the N-particle system.

36



The homogenized equation is

dX i
t =−M(X i

t )

∇V0(X i
t ) + 1

N
∑
i 6=j
∇F

(
X j

t − X i
t

)
+∇Ψ(X i

t )

 dt

+ β−1∇ ·M(X i
t )dt +

√
2β−1M(X i

t )dW i
t ,

(4)
for i = 1, . . . ,N, where M : Rd → Rd×d

sym is defined by

M(x) = 1
Z (x)

∫
Td

∫
(I +∇yθ(x , y))e−βV1(x ,y)dy , x ∈ Rd , (5)

and
Ψ(x) = −β∇ logZ (x), (6)

for (this is the free energy only with respect to V1(x , y))

Z (x) =
∫
Td

e−βV1(x ,y) dy ,

and where, for fixed x ∈ Rd , θ is the unique mean zero solution to

∇ ·
(
e−βV1(x ,y)(I +∇yθ(x , y)

)
= 0, y ∈ Td , (7)
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# We can pass to the mean field limit N → +∞ using the
results from e.g. Dawson (1983), Oelschlager (1984) to
obtain a McKean-Vlasov-Fokker-Planck equation:

∂p
∂t = ∇·

(
M(∇V0p+∇Ψp+(∇F∗p)p)+β−1∇·Mp+β−1∇·(Mp)

)
.

(8)
# The mean field N → +∞ and the homogenization ε→ 0

limits commute over finite time intervals.
# This is a nonlinear equation and more than one invariant

measures can exist, depending on the temperature. Eqn (8)
can exhibit phase transitions.

# The phase/bifurcation diagrams can be different depending on
the order with which we take the limits. For example:

V ε(x) = x2

2 + cos(x/ε).
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# Consider the case F (x) = θ x2

2 , take N → +∞ and keep ε
fixed. The invariant distribution(s) are:

pε(x ;m, θ, β) = 1
Z ε e

−β(V ε(x)+θ( 1
2 x2−x m), (9)

Z ε =
∫

e−β(V ε(x)+θ( 1
2 x2−x m) dx , (10)

# where
m =

∫
xpε(x ;m, θ, β) dx . (11)

# Take first ε→ 0 and then N → +∞. The invariant
distribution is

p(x ;m, θ, β) = 1
Z e−β(V0(x)+Ψ(x)+θ( 1

2 x2−x m), (12)

Z =
∫

e−β(V0(x)+Ψ(x)+θ( 1
2 x2−x m) dy , (13)

# where
m =

∫
xp(x ;m, θ, β) dx . (14)

# The number of invariant measures is given by the number of
solutions to the self-consistency equations (11) and (14).

# Separable fluctuations V0(x) + V1(x/ε) do not change the
structure of the phase diagram, since they lead to additive
noise. Nonseparable fluctuations V0(x) + V1(x , x/ε) lead to
multiplicative noise and change the bifurcation diagram.
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Figure: Self-consistency equation for the bistable potential.
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Figure: Self-consistency equation for the bistable potential with additive
fluctuations.
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Figure: Potential and solution of self-consistency equation for the
potential V (q) = 1∑N

`=−N
|q−q`|−2

(used in the Thesis of Dr Z. Trstanova).
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Figure: Bifurcation diagram for for the potential V (q) = 1∑N
`=−N

|q−q`|−2

for the order parameter m as a function of β−1 (plots by Dr S. Gomes).
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