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Ergodic SDEs |

Consider the stochastic differential equation

dX; = Vlog m(X:)dt + V2dW;.

Under appropriate assumptions on V log 7(x) one can show that its
dynamics are ergodic with respect to 7(x) : R? — R i.e

-
Tlinm%/o d(Xs)ds = Eq[f] .= /Rd f(x)m(x)dx

7(x) also satisfies the equation

L'm(x) =0

L* is the adjoint of

L :=Vliogn(x)  Vx+ Ax T A
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Ergodic SDEs Il
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Figure: Long trajectory and invariant measure
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Ergodic SDEs Il

One can use

mr(f) ::%/0 F(X.) ds

as an estimator for E.[f], for T > 1. A natural way to measure the efficiency of
such estimator is the mean square error (MSE) given by

MSE(T) : = E|lrr(f) — n(f)|? = (En(f) — 7(f))? + E(n7(f) — Exr(f))>

2
o

2 2 2
= ~
U +or = us+

if the central limit theorem holds

Here
U% =2 <f - IE:‘rr[f]a (_‘C)_l(f - Eﬂ[f])>ﬂr
We note here that for geometrically ergodic SDEs 1+ — 0 exponentially fast.
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Numerical ergodic averages

In practice we cannot solve our SDE exactly and we have to approximate
in some way. We denote its approximation by XAt

N
. 1 At
#r(f) =5 D AXRM), nAt=T,
n=0
If the approximation is ergodic one has

lim 77(f) =Ex[f] = /Rd f(x)7(x)dx

T—o0

THE ALAN
49\ THE UNIVERSITY TURING
G JHHIRNT | INSTITUTE

K. C. Zygalakis (University of Edinburgh) Ergodics SDEs: NA prespective Geneva 31/01/17 7 /51



Two different approaches

@ Solve the underlying SDE with a numerical method for large times
anJfl = x2t — AtV log m(x2t) + V2AtE,
@ Use a Metropolis-Hastings type of algorithm. For example MALA

Use (1) as proposal within MCMC framework (y2t = x21).

At {anthl with probability a(y2t, n+1)

Yot1 = y&t  with probability 1 — a(yft, x24)

where

T(y2)gae(yAt xRh)

a(yn , n+1) = min (1,

71-( r1A+t1)qA( nA—ifbyn )>
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Things to consider when making a choice

MSE(T) : = E[#5(f) — w(f)|2=(m“(f)—w<f>) +E(R2(F) — EA2E(F))?

=05 ar+ 0% ar = 0 ac + fTAt if the central limit theorem holds

@ The first approach (numerical analysis) introduces (asymptotic) bias in the
calculation of 7(x), since #8t # 7

@ The second approach (computational statistics) removes the (asymptotic)

bias from the calculation of 7(x), since #4t = 7

However

@ Computational Statistics approach might be expensive in the presence of big
data.

@ Numerical Analysis approach permits for the construction of non-reversible
algorithms with much smaller asymptotic variance than the computational
statistics one.
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Computational Complexity

For MSE to be of O(€?) we have the following computational complexity

o numerical analysis approach: O(e~3).
» Asymptotic bias is of O(At) for a first order method.

A2
» Finite time error decays like 2.

e computational statistics approach: O(e2).
» No asymptotic bias.

A2
.. . . o
» Finite time error decays like 2.
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Three desirable features

A desirable approach should have three different features
@ Small asymptotic bias (this can already be zero with MCMC methods).
© Small asymptotic variance.

© Optimal computational Complexity of O(e~2) (already optimal for MCMC
methods).

We will try and address these by

@ Characterise the asymptotic bias of numerical integrators (without
Metropolizing them).

@ Introduce non reversible samples with small asymptotic variance.

© Make the Computational Complexity of numerical approach optimal with the
use of Multi-Level Monte Carlo.
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Overview

@ Characterizing the asymptotic bias of a numerical method
@ Main ldea: Modified Equations
@ Order conditions
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Backward Error Analysis

Given a numerical method for
dX = h(X)dt + g(X)dW,
can | find an equation
dX = hae(X)dt + ga(X)dW,,

that my integrator approximates better? The type of approximation one is
interested is the weak approximation

E(f(X7)) - E(F(X2"))

This approach will allows us to obtain the following expansion

B (x) = m(x) 4+ Atmy(x) + At?mp(x) 4 - --
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Weak Taylor Expansions

Consider the (deterministic) PDE
% =Lu, u(x,0)=f(x),
Then,
u(f,x, t) =E(f(Xe)| Xo = x),

which can be (formally) expanded in Taylor series u =3 -, tjj—lyqﬁ(x)

Similarly consider U(f, x,t) = E (f(X2")|X§* = x) Here no such PDE exists but
one can try. In particular, we will assume

Assumption

The numerical solution has the following expansion

U(f, x,At) = f(x) + AtAof (x) + APALF(x) + ...,
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Modified generator

i1
1)
with
L=C+> L
j>1
Lj can be computed recursively
L,=A —l(EL 1+1L 1£)—---—;£"+1
n n 2 n— n— (n+ ]_)I
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Numerical expansion

Lemma [DF12]

Under appropriate assumptions (restrict ourself on T?) the numerical

invariant measure 72t admits the following expansion

A84(x) )+ ZAt Tn(x / Ta(x)dx =0, n>1
Td

where
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Order conditions

Theorem [AVZ13]
Consider

on T solved by an ergodic numerical method. If

Aipo =0, j=1,-r—1

then
E.a[f] — E;[f] = O(At")

Thus the order of ergodic convergence for the numerical integrator is r.
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Ways to satisfy the order conditions

An obvious way to satisfy the order conditions is to use a method of weak
order r since in this case
L+
A=——,  foral j<r
TG+ J
and thus
A}‘W:O, j=1--,r—1

However if the structure of m is known then one can take advantage of it
and satisfy the order conditions without necessarily using a method of high
weak order.
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Reducing asymptotic bias with additive noise

XAY = XPT 4+ Atga(XEY) + V2AtE,
with

~ 1 1

gnc =g+ Atg1, & =- [Eg/g + EAg] ;. &(x) = Vlogm(x)
has weak order of convergence 5 =1 for finite time but the error for the
asymptotic bias is of order &« = 2 (a calculation shows that for this method

Aim = 0). In principle able to construct further perturbations (idea similar to
modified integrators [ACV12])

k

8nr = f+ZAtig;, suchthat a=k+1,8=1
i=1
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Numerical Investigation

(double-well potential, long trajectories of length T = 108).
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Overview

e Reducing the asymptotic-variance: Non reversible Samplers
@ Breaking the reversibility
@ Numerical Algorithm
@ Numerical Investigations
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Non reversible Langevin equation

We consider the SDE

dX: = (Vlog m(X:) + v(Xe))dt +V2dW,, V- (n(x)y(x)) = 0.

This SDE remains ergodic with respect to 7, but it has non-reversible dynamics.
The choice of v is not unique but one we study here is

¥(x) = BIV logm(x), JT =—J

One can show
o7(B) < 07(0)

hence the reversible dynamics 5 = 0 is the worse choice in terms of achieving
small asymptotic variance.
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Lie Trotter splitting

n+1 =0Oa¢ 0 ¢At(X )

where ®a¢(x) is a integrator that approximates the flow map
corresponding to the deterministic dynamics

d
T =0,

and ©a¢(x) which approximates the reversible dynamics

dx; = V log m(x¢)dt + v2dW,
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Examples of reversible integrators

@ Given X € RY, sample Y from the proposal density ga:(- | X2*%).
@ With probability

m(Y)qa:(X2 | Y)
T(XP)qac(Y | X))

aXPLY)=1A
set Oai(X2) =Y
@ Otherwise, set Oa:(X/) = XAL.

One can choose various options for proposal density ga¢, in particular we consider

Random Walk Metropolis Hastings (RWMH): In this case the proposal is given by
ane(- | x) ~ N(x, At),
Metropolis Adjusted Langevin Algorithm (MALA):
gat(- | x) ~ N(x + Vlog m(x)At, 2At).

We will also consider the Barker rule sampler, which uses a RWMH proposal and with
acceptance probability given by

7(Y) THE ALAN
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Asymptotic Bias of the splitting methods

The fact that the integrator used for the reversible dynamics preserves the
invariant measure is important as it implies that order of convergence of
the integrator used for the non-reversible dynamics is a lower bound for
the asymptotic bias of the corresponding splitting method.

THE ALAN
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Asymptotic variance of the splitting methods

Two sources of error
@ One associated with the discreteness of the approach.

O'%,At - a% = —2AtVar,(f) + o(At)

@ One associated with the choice of the numerical discretizations for
the reversible and non-reversible part

8%,At - U%,At = O(At)

If we combine both we see that the numerical asymptotic variance is an
O(At) perturbation of the true one hence the numerical scheme inherits
the good properties of the corresponding nonreversible SDE.

THE ALAN

URING

@ DR | WS

Ergodics SDEs: NA prespective Geneva 31/01/17 26 / 51

K. C. Zygalakis (University of Edinburgh)



Gaussian Case

dXt = AXtdt + thWt

We consider
At ,
eAt(X) _ eAAtX + an’ QQT _ / eA(At—s)zzTeA (At—s)ds.
0

Here it is possible to calculate the asymptotic bias and variance analytically since
the theory of modified equations allows us to find a new SDE

d)?t == AA)?tdt + itth‘

that the numerical method is solving exactly.
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Gaussian Case: Asymptotic Bias
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Gaussian Case: MSE

0.01

0.009) 0.009]

0.008| 0.008|

MSE
MSE

0.007| 0.007|

0.006) 0.006}

0.0 0.00; ’/
10" 10°

10" 10 107 10° 10 10 10°
5 8

(a) First order method (b) Second order method

Figure: MSE for two different methods applied to the non-reversible part.
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Banana shape distribution
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Figure: Dynamics and MSE error for the banana shaped distribution
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Bayesian Logistic Regression

Given Data set (X, Yi)1<i<n posterior distribution over regression
coefficients 0

N
1
m(0](Xi, Yi)i<i<n) o< exp <Z Y0 X; — log (1 + eeTX") - §9T2_19>
i=1

Gaussian prior
m(0) = N(0,X), X =100/yxqg

THE ALAN
49\ THE UNIVERSITY TURING
G JHHIRNT | INSTITUTE

K. C. Zygalakis (University of Edinburgh) Ergodics SDEs: NA prespective Geneva 31/01/17 31 /51



Diabetes data set d = 8, N = 532

Median S5

uuuuuu

'(“miu&jdiﬂ :;“”””/" |
(

b) (c)

Figure: Logistic regression for the Pima indian data set. The computational
budget is set to N = 108 gradient evaluations
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Spatial Model |

(a) Observed position data (b) Average Inferred (c) Average Inferred
Poisson intensity for MALA  Poisson intensity for
splitting scheme

Nij=exp(Yij), Y =(ijij=1,---64) ~ N(ul,x)

N P O

Tty =0 oap . g =1 64
64 ,
Flylx) oc TT exp{(xi jvij) — mexp(yi )} exp{—0.5(y — p1) ="}y — u1)} }HFH%AN
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Spatial Model Il

(a) Estimator of first covariate (b) Histogram of effective sample sizes

Figure: Results for the inference of the log-Gaussian cox process. The
computational budget is set to N = 10* gradient evaluations.
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Overview

e Multi-Level Monte Carlo approach
@ Preliminaries
@ New MLMC framework
@ Numerical Investigations
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Multi-level Monte Carlo

To estimate E[P] where P can be approximated by P, using hy = 27¢T uniform
time steps, we use
L
E[Pi] = E[Po] + > B[P, — Pr_1]
=1

E[ﬁ( — ﬁg_l] is estimated using N, simulations with the same Brownian path
W(t) for both P, and Py_4,

o _ LS (B0 _ i
YzZmE(’De _Pe—1>

Because of the strong convergence, on finer levels V[P, — P;_4] is small and so
few paths are required.

Same Brownian path W(t) = strong convergence = small variance
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Modified Multilevel approach

@ Note that 134 appears twice, in E[ﬁgﬂ — I3€C] and E[ﬁ[ — ﬁg_l], and
Plf = P§ naturally leads to cancellation and the telescoping sum.

@ It may be better to use a different approximation for I3[
and P§ | in E[Pf—Ps ], provided E[P]] = E[Pf].
A new MLMC: .
E[P[] = E[P{] + ) EIP{ —Ff ]
I=1

The complexity theorem is still valid.
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Main Challenge

We want to extend the MLMC framework for T — oo. However for a
typical SDE the constants ¢, ¢ will grow exponential with time T.

Approach:

@ Restrict ourselves to a certain class of ergodic SDEs with log-concave
invariant densities.

@ These SDEs have exponentially contracting properties when driven by
the same Brownian motion

@ Exploit the exponentially contracting property of the SDE on the level
of the numerical discretization by appropriately coupling of the fine
and the coarse level. These will yield uniform in time estimates for
the appropriate differences between the fine and the coarse paths.

THE ALAN
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Contracting properties

For the simplicity of notation take U(x) = log 7(x) and assume that there
exists m > 0 such that

m
Uly) = UG + (VU(x),y = x) = o lIx = ylI?
We define

t t
Vs.e.w(X) ::x+/ VU(X,)dr+/ V2dW,, xeRq.
s

s
and XT = T/JO’T’W(X()) and YT = ’l/)o’T,W(YO). Then
E[[X7 = Y7]|* <E|[Xo — Yo|[?e2"T
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MLMC in time

Jim E(g(Xr)) = (g),

Now consider (0= To < T; < Tp,..., T; <,...,) and a sequence of random
variables (A;)i>o satisfying

EA,:{Eg(XTI) Eg(Xr,_,) i>1

Eg(XT) i=0
w(g) = D _E(A)
i=1
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Properties of the paths at different levels

We will construct the fine X(f:) and the coarse X(¢) paths in a way to satisfy

E(X(f7i)) = ‘C’(XTi)a ‘C(X(C7I)) = ‘C(XT:'—I)’ Vi> 0’

and i i
B[ X — X2 < B|IX7 — Xr. [P

Construction:
o Take X(")(0) = g 77,y w(X(0))

o Set X")(Ti1) = o, 1, w(XED(0)),  XED(Ti_y) = o 7, w(X(0)).
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lllustrations of couplings
We have

E|[XD(T;_1) — X©(Toq)| P < E[IXD(0) — X(0)[]2e=2m T2

which leads to small variance for the choice of T; := %6(/' +1)

600 002 004 006 008 010 012 014 016 018 %400 002 004 006 008 010 012 014 016 018

Figure: Shifted Couplings
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Coupling Numerical solutions

Consider

X1 = She, (), Y = Spg (k). Palx.) = L (S]¢(x))

The coupling arises by evolving both fine and course paths jointly, over a time
interval of length T; — T;_1, by doing two steps for the finer level (with the time
step h;) and one on the coarser level (with the time step h;_1) using the
discretization of the same Brownian path.

THE ALAN
URING

@ s | worire

K. C. Zygalakis (University of Edinburgh) Ergodics SDEs: NA prespective Geneva 31/01/17 43 / 51



Numerical Algorithm

@ Set xof") = Xp, then simulate according to Py, up to fo_'t? o
—h.

i

Q set xéc’i) = xp and xéf") ng,') , then simulate (x.(f’i),x.(c’i)) jointly
LS

according to

<XI(<:-II)7XI:-11)) (Sh k.2 Sh 2k, 1( ) ) SC 17\/(& 1+&k, 2)( )> '

@ set
Aj=g <X(t,-f_’1)) -g (X(f_’?)
hi_1 hi_1

i
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Ornstein Uhlenbeck process

dX; = —kXedt + V2dW,,

2
<02 a -<-MLMC o MLMC
-2-0.15 N - --theory 275 - --theory
-=-0.1 10°
005 T -y °
2-0.01 ~ o 5
0.005 10° ~ g 265
~ #-0.001 K ©. E o
= 0.0005 8 - oo H
10 = 8 255
N N " ~ 2.5| [SRP—— P -
> 2.451 o
‘OD 4 3 -2 1 0 4 3 -2 1 0
10 15 10 10 10 10 10 10 10 10 10 10f
level | € €

Figure: MLMC results for the OU process for g(x) = x? and k = 0.4
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Non Lipschitz example
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K. C. Zygalakis (University of Edinburgh)

Figure: MLMC
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Bayesian Logistic Regression

Coupling
i

ccost

0 100
accuracy ¢

Figure: Cost of MLMC (sequential CPU time) SGLD for Bayesian Logistic
Regression for decreasing accuracy parameter € and different couplings
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Conclusions

@ Understanding the long time properties of a numerical integration has
important implications for applications

@ Obtained an expansion that approximates the numerical invariant
measure, used then to obtain order conditions.

@ Used the order conditions to study the properties of non-reversible
Langevin samplers

o lllustrated applications of non-reversible samplers to "real” data sets

@ Discussed about the extension of Multi-Level Monte Carlo to infinite
time, which allows for optimal computational complexity
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