CLT for non-Hermitian random band matrices with variance profiles

Indrajit Jana

Indian Institute of Technology, Bhubaneswar

July 28, 2022 Random Matrices and Random Landscapes

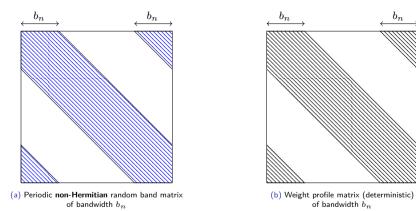


Figure: Blue/black lines represent the non-zero diagonal vectors.

- ▶ How do we analyze fluctuations of the random measure $\mu_M(=\frac{1}{n}\sum_{i=1}^n \delta_{\lambda_i})$ via linear eigenvalue statistics?
- ▶ Define the centered linear eigenvalue statistics

$$\mathcal{L}_f(M)^{\circ} = \sum_{i=1}^n f(\lambda_i) - nf(0)$$

▶ Rider, Silverstein (*The Annals of Probability*, 2006) had shown that if $f_1, f_2, ..., f_k$ are analytic function supported on $\mathbb{D}_4 := \{z : |z| \leq 4\}$, then $\mathbf{1}(\mathcal{L}_{f_1}^{\circ}(M), \mathcal{L}_{f_2}^{\circ}(M), ..., \mathcal{L}_{f_k}^{\circ}(M)) \xrightarrow{d} \mathcal{N}_k(0, \Sigma)$ as $n \to \infty$, where

$$\Sigma_{ij} = \frac{1}{\pi} \int_{\mathbb{D}_1} f_i'(\eta) \overline{f_j'(\eta)} \, d\Re(\eta) d\Im(\eta).$$

Band matrices

Let $M=\frac{1}{\sqrt{c_n}}X$, where X be an $n\times n$ random band matrix of bandwidth b_n , and $c_n=2b_n+1$. Then $\sqrt{c_n/n}(\mathcal{L}_{f_*}^{\circ}(M),\mathcal{L}_{f_*}^{\circ}(M),\ldots,\mathcal{L}_{f_*}^{\circ}(M))\stackrel{d}{\to}\mathcal{N}_k(0,\Sigma)$ as $n\to\infty$, where

$$\Sigma_{ij} = -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \mathrm{sinc}(k\pi\nu)}{(z\bar{w} - \mathrm{sinc}(k\pi\nu))^2} \; dz \; d\bar{w}$$

if $\nu := \lim_{n \to \infty} (c_n/n) \in (0,1]$ and M is periodic,

Band matrices

Let $M=\frac{1}{\sqrt{c_n}}X$, where X be an $n\times n$ random band matrix of bandwidth b_n , and $c_n=2b_n+1$. Then $\sqrt{c_n/n}(\mathcal{L}_{\ell_n}^\circ(M),\mathcal{L}_{\ell_n}^\circ(M),\dots,\mathcal{L}_{\ell_n}^\circ(M))\overset{d}{\to}\mathcal{N}_k(0,\Sigma)$ as $n\to\infty$, where

$$\Sigma_{ij} = -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \operatorname{sinc}(k\pi\nu)}{(z\bar{w} - \operatorname{sinc}(k\pi\nu))^2} dz d\bar{w}$$

if
$$\nu:=\lim_{n\to\infty}(c_n/n)\in (0,1]$$
 and M is periodic,

Technical notes:

- f_1, f_2, \ldots, f_k are complex analytic functions supported on $\mathbb{D}_{1+\epsilon}$.
- $ightharpoonup x_{ij}$ s are assumed to be complex random variables with $\mathbb{E}[x_{ij}] = 0$, $Var(x_{ij}) = 1$ and satisfy Poincaré inequality.

Band matrices

Let $M=\frac{1}{\sqrt{c_n}}X$, where X be an $n\times n$ random band matrix of bandwidth b_n , and $c_n=2b_n+1$. Then $\sqrt{c_n/n}(\mathcal{L}_{f_+}^{\circ}(M),\mathcal{L}_{f_+}^{\circ}(M),\ldots,\mathcal{L}_{f_+}^{\circ}(M))\stackrel{d}{\to}\mathcal{N}_k(0,\Sigma)$ as $n\to\infty$, where

$$\Sigma_{ij} = -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \mathsf{sinc}(k\pi\nu)}{(z\bar{w} - \mathsf{sinc}(k\pi\nu))^2} \ dz \ d\bar{w}$$

if $\nu := \lim_{n \to \infty} (c_n/n) \in (0,1]$ and M is periodic,

¿If $c_n = n$ i.e., $\nu = 1$, do we recover full matrix's variance?

Band matrices

Let $M = \frac{1}{\sqrt{c_n}}X$, where X be an $n \times n$ random band matrix of bandwidth b_n , and $c_n = 2b_n + 1$. Then $\sqrt{c_n/n}(\mathcal{L}_{\ell_n}^{\circ}(M), \mathcal{L}_{\ell_n}^{\circ}(M), \dots, \mathcal{L}_{\ell_n}^{\circ}(M)) \stackrel{d}{\to} \mathcal{N}_k(0, \Sigma)$ as $n \to \infty$, where

$$\begin{split} \Sigma_{ij} &= -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \mathrm{sinc}(k\pi\nu)}{(z\bar{w} - \mathrm{sinc}(k\pi\nu))^2} \; dz \; d\bar{w} \\ &\text{if } \nu := \lim_{k \to \infty} (c_n/n) \in (0,1] \; \text{and} \; M \; \text{is periodic}, \end{split}$$

Clearly, $\operatorname{sinc}(k\pi) = \mathbf{1}_{\{k=0\}}$. It can be shown that

$$-\frac{1}{4\pi^2}\oint_{\partial\mathbb{D}_1}\oint_{\partial\mathbb{D}_1}\oint_{\partial\mathbb{D}_1}\frac{f_i(z)\overline{f_j(w)}}{(z\bar{w}-1)^2}\;dz\;d\bar{w}=\frac{1}{\pi}\int_{\mathbb{D}_1}f_i'(\eta)\overline{f_j'(\eta)}\;d\Re(\eta)d\Im(\eta).$$

Band matrices

Let $M=\frac{1}{\sqrt{c_n}}X$, where X be an $n\times n$ random band matrix of bandwidth b_n , and $c_n=2b_n+1$. Then $\sqrt{c_n/n}(\mathcal{L}_{f_+}^\circ(M),\mathcal{L}_{f_+}^\circ(M),\ldots,\mathcal{L}_{f_+}^\circ(M))\stackrel{d}{\to}\mathcal{N}_k(0,\Sigma)$ as $n\to\infty$, where

$$\Sigma_{ij} = -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \operatorname{sinc}(k\pi\nu)}{(z\bar{w} - \operatorname{sinc}(k\pi\nu))^2} dz d\bar{w}$$

if $\nu := \lim_{n \to \infty} (c_n/n) \in (0,1]$ and M is periodic,

¿But, what if
$$\nu = 0$$
?

Let $M = \frac{1}{\sqrt{c_n}}X$, where X be an $n \times n$ random band matrix of bandwidth b_n , and $c_n = 2b_n + 1$. Then $\sqrt{c_n/n}(\mathcal{L}_{t_n}^{\circ}(M), \mathcal{L}_{t_n}^{\circ}(M), \dots, \mathcal{L}_{t_n}^{\circ}(M)) \stackrel{d}{\to} \mathcal{N}_k(0, \Sigma)$ as $n \to \infty$, where

$$\Sigma_{ij} = -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \operatorname{sinc}(k\pi\nu)}{(z\bar{w} - \operatorname{sinc}(k\pi\nu))^2} dz d\bar{w}$$

if $\nu := \lim_{n \to \infty} (c_n/n) \in (0,1]$ and M is periodic,

and

Band matrices

$$\Sigma_{ij} = -\frac{1}{4\pi^2} \int_{\mathbb{R}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \mathsf{sinc}(\pi t)}{(z\bar{w} - \mathsf{sinc}(\pi t))^2} \ dz \ d\bar{w} \ dt$$
if $\lim_{n \to \infty} (c_n/n) = 0$.

¿But, what if
$$\nu = 0$$
?

Band matrices

Let $M=\frac{1}{\sqrt{c_n}}X$, where X be an $n\times n$ random band matrix of bandwidth b_n , and $c_n=2b_n+1$. Then $\sqrt{c_n/n}(\mathcal{L}_{f_+}^\circ(M),\mathcal{L}_{f_+}^\circ(M),\ldots,\mathcal{L}_{f_+}^\circ(M))\stackrel{d}{\to}\mathcal{N}_k(0,\Sigma)$ as $n\to\infty$, where

$$\Sigma_{ij} = -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \mathsf{sinc}(k\pi\nu)}{(z\bar{w} - \mathsf{sinc}(k\pi\nu))^2} \ dz \ d\bar{w}$$

if $\nu := \lim_{n \to \infty} (c_n/n) \in (0,1]$ and M is periodic,

¿Can we attach weights, $h_{ij}x_{ij}$?

Band matrices

Theorem (J., 2022)

Let $M = \frac{1}{\sqrt{c_n}}X$, where X be an $n \times n$ random band matrix of bandwidth b_n , and $c_n = 2b_n + 1$. Then $\sqrt{c_n/n}(\mathcal{L}_{\mathfrak{f}_-}^{\circ}(M), \mathcal{L}_{\mathfrak{f}_-}^{\circ}(M), \ldots, \mathcal{L}_{\mathfrak{f}_-}^{\circ}(M)) \xrightarrow{d} \mathcal{N}_k(0, \Sigma)$ as $n \to \infty$, where

$$\Sigma_{ij} = -\frac{\nu}{4\pi^2} \sum_{k \in \mathbb{Z}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \hat{h}(k\nu)}{(z\overline{w} - \hat{h}(k\nu))^2} dz d\overline{w}$$

if
$$\nu := \lim_{n \to \infty} (c_n/n) \in (0,1]$$
 and M is periodic,

and

$$\Sigma_{ij} = -\frac{1}{4\pi^2} \int_{\mathbb{R}} \oint_{\partial \mathbb{D}_1} \oint_{\partial \mathbb{D}_1} \frac{f_i(z) \overline{f_j(w)} \hat{h}(t)}{(z\bar{w} - \hat{h}(t))^2} dz d\bar{w} dt$$
if $\lim_{n \to \infty} (c_n/n) = 0$.

Particular case, when $c_n = o(n)$ i.e., $\nu = 0$ and $f(z) = z^p$, the variance is

$$rac{p}{\pi} \int_{\mathbb{R}} \mathsf{sinc}^p(t) \; dt$$

Here are first few values

$$\begin{split} \frac{1}{\pi} \int_{\mathbb{R}} \mathrm{sinc}(t) \; dt &= 1 \\ \frac{1}{\pi} \int_{\mathbb{R}} \mathrm{sinc}^3(t) \; dt &= \frac{3}{4} \\ \frac{1}{\pi} \int_{\mathbb{R}} \mathrm{sinc}^3(t) \; dt &= \frac{3}{4} \\ \frac{1}{\pi} \int_{\mathbb{R}} \mathrm{sinc}^5(t) \; dt &= \frac{115}{192} \\ \frac{1}{\pi} \int_{\mathbb{R}} \mathrm{sinc}^6(t) \; dt &= \frac{11}{20}. \end{split}$$

Limiting variance - Band vs Full matrix

f(z)	z	z^2	z^3	z^4	z^5	z^6
Band matrix	1.00	2.00	2.25	2.67	2.9948	3.3
Full matrix	1.00	2.00	3.00	4.00	5.00	6.00

Polynomial test functions Numerical simulations

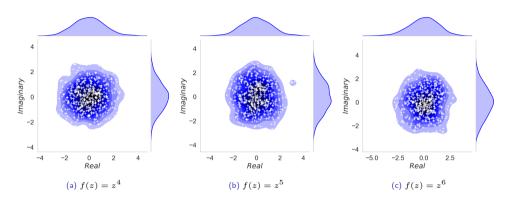


Figure: A heat map of 500 samples of $\sqrt{c_n/n}\mathcal{L}_f^{\circ}(M)$ and marginal densities of real and imaginary parts are plotted on the complex plane. M is a 4000×4000 random band matrix of bandwidth $b_n = n^{0.3}$ with i.i.d. complex Gaussian entries.

¡Thank you for your attention!