Pseudo-hermitian random matrix theory: phase structure in metric parameter space

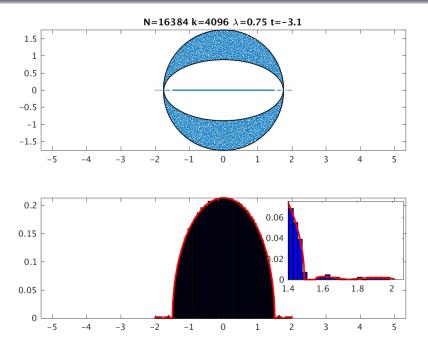
Roman Riser

University of Haifa and Holon Institute of Technology

joint work with Joshua Feinberg

Random Matrices and Random Landscapes, Congressi Stefano Franscini, Ascona, Switzerland, July 4-29 2022

Pseudo-hermitian random matrix theory: phase structure in metric parameter space


- Pseudo-hermitian random matrix φ : **B** is a fixed metric, φ is a $N \times N$ random matrix that fulfills the intertwining relation $\varphi^{\dagger} \mathbf{B} = \mathbf{B} \varphi$.
- Indefinite metric B is of the form

$$\mathbf{B} = \operatorname{diag}(\underbrace{1,\ldots,1}_{k},\underbrace{t,\ldots,t}_{N-k}), \qquad \lambda = k/N, t < 0.$$

• Probability distribution on φ

$$P(\varphi) = \tilde{Z}_N^{-1} e^{-\frac{Nm^2}{2} \operatorname{Tr} (\mathbf{B}^{-2} \varphi^{\dagger} \varphi)}.$$

- Calculation of eigenvalue distribution using diagrammatic approach in the planar limit where matrix size $N \to \infty$.
- Contains real eigenvalue density as well as domains in the complex plane which are filled with constant density.
- Rich phase structure with critical phases in the complex domain and/or in the real density.
- Video where λ is fixed and t changes with time.

