Coulomb gases: results and open questions

Sylvia SERFATY

Courant Institute, New York University

Random Matrices and Random Landscapes, Conference in honor of Yan Fyodorov September 21, 2021

Coulomb kernel

$$g(x) = \begin{cases} -|x| & d = 1 \\ -\log|x| & d = 2 \\ \frac{1}{|x|} & d = 3 \\ \frac{1}{|x|^{d-2}} & d \ge 3. \end{cases}$$

Fundamental solution of Laplacian

$$-\Delta g = c_d \delta_0$$
 (in the sense of distributions)

ightarrow solution g = Coulomb kernel ightarrow solve Poisson's equation.

Also consider $g = -\log |x|$ for d = 1, $\log gas$

One-component Coulomb gas / plasma

- ▶ $X_N := (x_1, ..., x_N)$ positions of points in \mathbb{R}^d with charge +1.
- ightharpoonup V confining potential, smooth and large at ∞
- ▶ Total energy of the system in state X_N

$$\mathrm{H}_{N}(\mathrm{X}_{N}):=\frac{1}{2}\sum_{1\leq i\neq j\leq N}\mathrm{g}(x_{i}-x_{j})+\sum_{i=1}^{N}N\cdot V(x_{i}).$$

One-component Coulomb gas / plasma

- ▶ $X_N := (x_1, ..., x_N)$ positions of points in \mathbb{R}^d with charge +1.
- ightharpoonup V confining potential, smooth and large at ∞
- ▶ Total energy of the system in state X_N

$$\mathrm{H}_{N}(\mathrm{X}_{N}):=\frac{1}{2}\sum_{1\leq i\neq j\leq N}\mathrm{g}(x_{i}-x_{j})+\sum_{i=1}^{N}N\cdot V(x_{i}).$$

► (Canonical) Gibbs measure

$$d\mathbb{P}_{N,\beta}(x_1,\ldots,x_N) = \frac{1}{Z_{N,\beta}} \exp\left(-\beta H_N(X_N)\right) dx_1 \ldots x_N$$

 $Z_{N,\beta}$ = partition function

One-component Coulomb gas / plasma

- $ightharpoonup X_N := (x_1, \dots, x_N)$ positions of points in \mathbb{R}^d with charge +1.
- ightharpoonup V confining potential, smooth and large at ∞
- ▶ Total energy of the system in state X_N

$$\mathrm{H}_{N}(\mathrm{X}_{N}) := \frac{1}{2} \sum_{1 \leq i \neq j \leq N} \mathsf{g}(x_{i} - x_{j}) + \sum_{i=1}^{N} N \cdot V(x_{i}).$$

(Canonical) Gibbs measure

$$d\mathbb{P}_{N,\beta}(x_1,\ldots,x_N) = \frac{1}{Z_{N,\beta}} \exp\left(-\beta H_N(X_N)\right) dx_1 \ldots x_N$$

 $Z_{N,\beta}$ = partition function

for log interaction

$$d\mathbb{P}_{N,\beta}(x_1,\ldots,x_N) = \frac{1}{Z_{N,\beta}} \prod_{i < i} |\mathbf{x}_i - \mathbf{x}_j|^{\beta} e^{-\beta N \sum_{i=1}^N V(\mathbf{x}_i)} d\mathbf{x}_1 \ldots \mathbf{x}_N$$

$$\beta = 2 \rightsquigarrow determinantal case$$

▶ law of eigenvalues of **GOE** (Gaussian Orthogonal ensemble - Symmetric matrices) is a log gas at $\beta = 1$, with confinement potential $V(x) = x^2$

- ▶ law of eigenvalues of **GOE** (Gaussian Orthogonal ensemble Symmetric matrices) is a log gas at $\beta = 1$, with confinement potential $V(x) = x^2$
- ▶ law of eigenvalues of **GUE** (Gaussian Unitary ensemble Hermitian matrices) is a log gas at $\beta=2$, with confinement potential $V(x)=x^2$

- ▶ law of eigenvalues of **GOE** (Gaussian Orthogonal ensemble Symmetric matrices) is a log gas at $\beta = 1$, with confinement potential $V(x) = x^2$
- ▶ law of eigenvalues of **GUE** (Gaussian Unitary ensemble Hermitian matrices) is a log gas at $\beta=2$, with confinement potential $V(x)=x^2$
- ▶ there exists a *matrix model* for all log gases (β -ensembles) at any inverse temperature β : [Killip-Nenciu, Dumitriu-Edelman]

- ▶ law of eigenvalues of **GOE** (Gaussian Orthogonal ensemble Symmetric matrices) is a log gas at $\beta = 1$, with confinement potential $V(x) = x^2$
- ▶ law of eigenvalues of **GUE** (Gaussian Unitary ensemble Hermitian matrices) is a log gas at $\beta=2$, with confinement potential $V(x)=x^2$
- ▶ there exists a *matrix model* for all log gases (β -ensembles) at any inverse temperature β : [Killip-Nenciu, Dumitriu-Edelman]
- ▶ **Ginibre ensemble**: random $N \times N$ with complex iid Gaussian entries. Law is a 2D Coulomb gas with $\beta = 2$ and $V(x) = |x|^2$

- ▶ law of eigenvalues of **GOE** (Gaussian Orthogonal ensemble Symmetric matrices) is a log gas at $\beta = 1$, with confinement potential $V(x) = x^2$
- ▶ law of eigenvalues of **GUE** (Gaussian Unitary ensemble Hermitian matrices) is a log gas at $\beta=2$, with confinement potential $V(x)=x^2$
- ▶ there exists a *matrix model* for all log gases (β -ensembles) at any inverse temperature β : [Killip-Nenciu, Dumitriu-Edelman]
- ▶ **Ginibre ensemble**: random $N \times N$ with complex iid Gaussian entries. Law is a 2D Coulomb gas with $\beta = 2$ and $V(x) = |x|^2$
- explicit realizations of random Hermitian matrices deformed by a non-Hermitian part, motivated by quantum chaotic scattering [Fyodorov, Sommers, Khoruzenko, Akemann]

$$\mathbb{P}_{N,\beta} = Z^{-1} \exp\left(-NTr(J^*J) - \tau Re J^2\right)$$

"Interpolates" between GUE and Ginibre

Other motivation

▶ in quantum mechanics: fractional quantum Hall effet via the "plasma analogy" [Laughlin] \leftrightarrow 2D log gas

Other motivation

- ▶ in quantum mechanics: fractional quantum Hall effet via the "plasma analogy" [Laughlin] \leftrightarrow 2D log gas
- ▶ other 1D quantum mechanics models, self-avoiding paths in probability, see [Forrester '10] \leftrightarrow 1D log gas

Other motivation

- ▶ in quantum mechanics: fractional quantum Hall effet via the "plasma analogy" [Laughlin] ↔ 2D log gas
- ▶ other 1D quantum mechanics models, self-avoiding paths in probability, see [Forrester $'10] \leftrightarrow 1D \log gas$
- in statistical physics: plasmas, astrophysics ↔ d ≥ 2 classical Coulomb gas [Lieb-Lebowitz '72,Lieb-Narnhofer '75, Penrose-Smith '72, Sari-Merlini '76, Kiessling-Spohn '99, Alastuey-Jancovici '81, Jancovici-Lebowitz-Manificat' 93...]
- ▶ d = 2 logarithmic, "two-component plasma": particles of ± charges → theoretical physics models (XY, sine-Gordon, Kosterlitz-Thouless)

 [Gunson-Panta '77, Frohlich-Spencer '81, Leblé-S-Zeitouni '17]

Technical challenges

- ► Singularity at the origin, and particles living in the continuum.
- ► Long-range interaction.

$$\int_0^{+\infty} \mathsf{g}(r) r^{\mathsf{d}-1} dr = +\infty.$$

- ► → The effect of one particle at 0 is felt everywhere in the system.
- ► → Interaction energy is **not spatially additive** (even up to a small error).

Global behavior

[Recall
$$H_N = \frac{1}{2} \sum_{i \neq j} \mathsf{g}(x_i - x_j) + N \sum_i V(x_i)$$
]

Limit of empirical measure

$$\hat{\mu_N} := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}?$$

Global behavior

[Recall
$$H_N = \frac{1}{2} \sum_{i \neq j} g(x_i - x_j) + N \sum_i V(x_i)$$
]

Limit of empirical measure

$$\hat{\mu_N} := \frac{1}{N} \sum_{i=1}^N \delta_{x_i}?$$

 $\mu_V = {f Frostman~equilibrium~measure}$ is the unique minimizer among probabilities of

$$\mathcal{E}(\mu) = \frac{1}{2} \int_{\mathbb{R}^d \times \mathbb{R}^d} \mathsf{g}(x - y) \, d\mu(x) \, d\mu(y) + \int_{\mathbb{R}^d} V(x) \, d\mu(x).$$

Equilibrium measure

Euler-Lagrange equations associated to the minimization problem show that:

$$\mu_V = \left(\frac{1}{4\pi}\Delta V\right)\mathbb{1}_{\Sigma}.$$

- ▶ Finding Σ is challenging.
- ▶ If $V(x) = |x|^2$, Coulomb case, then

$$\mu_V = rac{1}{c_d} \mathbb{1}_{B_1} ext{ (circle law)}$$

Equilibrium measure

Euler-Lagrange equations associated to the minimization problem show that:

$$\mu_V = \left(\frac{1}{4\pi}\Delta V\right) \mathbb{1}_{\Sigma}.$$

- ▶ Finding Σ is challenging.
- ▶ If $V(x) = |x|^2$, Coulomb case, then

$$\mu_V = \frac{1}{c_d} \mathbb{1}_{B_1} \text{ (circle law)}$$

► d = 1, $g = -\log |x|$, $V(x) = x^2$ then

$$\mu_V(x) = \frac{1}{2\pi} \sqrt{4 - x^2} \, \mathbb{1}_{|x| < 2}$$
 (semicircle law)

► In [Fyodorov et al] interpolated model, equilibrium measure supported on an *ellipse*

Convergence by large deviations

► The convergence $\widehat{\mu}_N \to \mu_V$ holds at speed βN^2 , in the sense of a **Large Deviations Principle**: [Petz-Hiai '98, Ben Arous-Guionnet '97, Ben Arous -Zeitouni '98...]

$$\mathbb{P}_{N,\beta}(\widehat{\mu}_N \in \mathcal{B}(\mu,\epsilon)) \simeq \exp\left(-\beta N^2(\mathcal{E}(\mu) - \mathcal{E}(\mu_V))\right),$$

- The support and the density depend strongly on V, but not on β!
- ▶ Could take β small (high temperature) as long as $N\beta \to +\infty$.
- ▶ Global scale: system of N particles in Σ compact, scalelength ~ 1 .
- ▶ Local/micro scale: finite number of particles, scale $\sim N^{-1/d}$.
- ▶ Mesoscopic scales: between $N^{-1/d}$ and 1.

Questions

We know $\widehat{\mu}_N \to \mu_V$ at speed βN^2 . What's next?

Fluctuations

For $\varphi : \mathbb{R}^d \to \mathbb{R}$ test function:

▶ Measure the size of $\widehat{\mu}_N - \mu_V$ in a dual sense.

size of
$$\int \varphi(x) (d\widehat{\mu}_N(x) - d\mu_V(x))$$
?

- ▶ What if φ is **smooth** and lives at some mesoscopic scale?
- ▶ What if φ is the **indicator function** of a mesoscopic domain? Probability of a hole? Of an overcrowded ball?

Predictions

- ▶ [Martin Yalcin '80]: variance of charge fluctuations in Ω is of order $|\partial\Omega|N^{1/d}$, d=2,3
- ▶ [Jancovici-Lebowitz-Manificat '93] d = 2, uniform background

$$\mathbb{P}_{N,\beta}\left(\left\{X_{N}\right\}\cap B_{R}-\left|B_{R}\right|\geq R^{\alpha}\right)=e^{-\gamma R}$$

with

$$\begin{cases} \gamma = 2\alpha - 1 & \text{for } \frac{1}{2} \le \alpha \le 1 \\ \gamma = 3\alpha - 2 & \text{for } \alpha \in [1, 2] \\ \gamma = 2\alpha & \text{for } \alpha \ge 2. \end{cases}$$

- ▶ Other prediction for d = 3 with $\alpha = 1$ as typical deviation.
- ► See also "jellium" survey [Lewin].

Local arrangement of points

Pick \bar{x} inside Σ and zoom in by a factor $N^{1/d}$ around \bar{x} ?.

- ▶ What do we see? At the limit $N \to \infty$ a point process?
- ▶ Does it depend on β ?
- ▶ How much does it depend on μ_V (universality)?
- Can we characterize the local arrangement in a variational way?
- ▶ Is there a phase-transition as β changes?
- ▶ Describe the $\beta \to 0$ and $\beta \to \infty$ limits?

Free energy expansions

Asymptotics of **free energy** $-\frac{1}{\beta} \log Z_{N,\beta}$ as $N \to \infty$? Easy:

$$-rac{1}{eta}\log Z_{{\sf N},eta}\sim {\sf N}^2\mathcal{E}(\mu_V)+o({\sf N}^2)$$

Next order terms?

Free energy expansions

Asymptotics of **free energy** $-\frac{1}{\beta} \log Z_{N,\beta}$ as $N \to \infty$? Easy:

$$-rac{1}{eta}\log Z_{N,eta}\sim N^2\mathcal{E}(\mu_V)+o(N^2)$$

Next order terms?

Link with fluctuations: Laplace transform of linear statistics

$$\begin{split} \mathbb{E}_{\mathbb{P}_{N,\beta}} \left[\exp(tN \sum_{i=1}^{N} \varphi(x_i)) \right] \\ &= \frac{1}{Z_{N,\beta}} \int \exp\left(-\beta \sum_{i \neq j} \mathsf{g}(x_i - x_j) + N \sum_{i=1}^{N} V(x_i) + tN \sum_{i=1}^{N} \varphi(x_i)\right) dX_N \\ &= \frac{Z_{N,\beta}(V + t\varphi)}{Z_{N,\beta}(V)} \end{split}$$

1d log-gas: fluctuations

Theorem (CLT for fluctuations)

Let $\beta > 0$. Take φ smooth enough, assume V is nice. Then:

$$\sum_{i=1}^{N} \varphi(x_i) - N \int \varphi(x) d\mu_V(x) = N \int \varphi(x) \left(d\widehat{\mu}_N(x) - d\mu_V(x) \right)$$

has a Gaussian limit.

True at mesoscopic scales i.e. $\varphi = \bar{\varphi}(x/\ell)$ for some $\ell >> 1/N$.

No $\frac{1}{\sqrt{N}}$ normalization!

[Johansson,Borot-Guionnet, Bourgade-Erdös-Yau, Bekerman-Lodhia, M. Shcherbina, Borot-Guionnet, Bekerman-Leblé-S, Bourgade-Mody-Pain]

Theorem (Expansion of free energy to all orders)

$$-\frac{1}{\beta}\log Z_{N,\beta} = N^2 \mathcal{E}(\mu_V) + N\log N + A_\beta N + B_\beta + \frac{C_\beta}{N} + \dots$$

1d log-gas: existence of limiting point processes

Theorem (Limiting point process)

Take V quadratic, $d\mu_V(x) = \frac{1}{2\pi}\sqrt{4-x^2}$ (semi-circle) and $\Sigma = [-2,2]$. Consider the zoomed point configuration:

$$\sum_{i=1}^{N} \delta_{N(x_i - \bar{x})}$$

- If $\bar{x} = \pm 2$, limiting point process Airy- β
- ▶ If \bar{x} is inside (-2,2), limiting point process Sine- β .

[Ramírez-Rider-Virág] (edge), [Valkó-Virág & Killip-Stoiciu] (bulk). CLT for linear statistics of Sine- β [Leblé]

1d log-gas: existence of limiting point processes

Theorem (Limiting point process)

Take V quadratic, $d\mu_V(x) = \frac{1}{2\pi}\sqrt{4-x^2}$ (semi-circle) and $\Sigma = [-2,2]$. Consider the zoomed point configuration:

$$\sum_{i=1}^{N} \delta_{N(x_i - \bar{x})}$$

- If $\bar{x} = \pm 2$, limiting point process Airy- β
- ▶ If \bar{x} is inside (-2,2), limiting point process Sine- β .

[Ramírez-Rider-Virág] (edge), [Valkó-Virág & Killip-Stoiciu] (bulk). CLT for linear statistics of Sine- β [Leblé]

Theorem (Universality)

The local statistics depend on V only through a rescaling by the mean density μ_V .

[Bourgade-Erdös-Yau-Yin, Bekerman-Figalli-Guionnet].

What about Coulomb gases (in $d \ge 2$)?

g =
$$-\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (simul: Thomas Leblé)

g =
$$-\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (simul: Thomas Leblé)

g =
$$-\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (simul: Thomas Leblé)

g =
$$-\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (simul: Thomas Leblé)

g =
$$-\log$$
, $V=|x|^2$, 100 points, $\beta\in[0.7,400]$ (simul: Thomas Leblé)

g =
$$-\log$$
, $V=|x|^2$, 100 points, $\beta\in[0.7,400]$ (simul: Thomas Leblé)

g =
$$-\log$$
, $V = |x|^2$, 100 points, $\beta \in [0.7, 400]$ (simul: Thomas Leblé)

Numerical observations

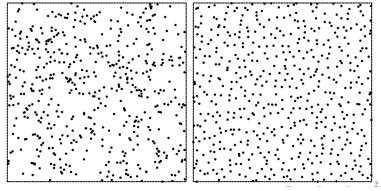
- ▶ The local behavior depends strongly on β . Order increases with β .
- ► The local behavior depends on μ_V only through a scaling (universality).
- For d = 2,3, a phase transition (?) happens at finite β (150?) (computational physics literature in the 80's: [Choquard-Clerouin, Alastuey-Jancovici,
 Caillol-Levesque-Weis-Hansen, Moore- Perez-Garrido]
- ▶ As $\beta \to \infty$, for d = 2, the points arrange themselves **on a triangular lattice** (Wigner crystal, \sim Abrikosov lattice in superconductivity).

Proofs?

No proof of phase transition, no proof of Abrikosov conjecture. No good order parameter. No universality for general $\beta\dots$

It is *determinantal* i.e. the k-point correlation function can be computed as $k \times k$ determinants.

- ► CLT for fluctuations at all scales [Rider-Virág, Ameur-Hedenmalm-Makarov, Shirai]
- ► Universality in *V*
- Existence of a limiting point process: the infinite Ginibre process.



It is *determinantal* i.e. the k-point correlation function can be computed as $k \times k$ determinants.

- ► CLT for fluctuations at all scales [Rider-Virág, Ameur-Hedenmalm-Makarov, Shirai]
- ► Universality in *V*
- Existence of a limiting point process: the infinite Ginibre process.
- Many quantitites can be estimated, or even explicitly computed.
- ► Number-rigidity of the Ginibre p.p. : the knowledge of the (infinite) configuration outside a ball determines the number of points inside almost surely. [Ghosh-Peres]

It is *determinantal* i.e. the k-point correlation function can be computed as $k \times k$ determinants.

- ► CLT for fluctuations at all scales [Rider-Virág, Ameur-Hedenmalm-Makarov, Shirai]
- ► Universality in *V*
- Existence of a limiting point process: the infinite Ginibre process.
- Many quantitites can be estimated, or even explicitly computed.
- ► Number-rigidity of the Ginibre p.p. : the knowledge of the (infinite) configuration outside a ball determines the number of points inside almost surely. [Ghosh-Peres]
- ► Hyperuniformity (à la [Torquato]):

 $\operatorname{Var}\left[\# \text{ points in disk } D(0,R)\right] \sim R \quad \text{as } R \to \infty \quad [\text{Shirai}]$

It is *determinantal* i.e. the k-point correlation function can be computed as $k \times k$ determinants.

- CLT for fluctuations at all scales [Rider-Virág, Ameur-Hedenmalm-Makarov, Shirai]
- ► Universality in *V*
- Existence of a limiting point process: the infinite Ginibre process.
- Many quantitites can be estimated, or even explicitly computed.
- ► Number-rigidity of the Ginibre p.p. : the knowledge of the (infinite) configuration outside a ball determines the number of points inside almost surely. [Ghosh-Peres]
- ► **Hyperuniformity** (à la [Torquato]):

 $\operatorname{Var}\left[\# \text{ points in disk } D(0,R)\right] \sim R \quad \text{as } R \to \infty \quad [\text{Shirai}]$

A few positive results

CLT for smooth linear statistics in 2D log / Coulomb case

Theorem

Assume d=2, $\beta>0$ arbitrary fixed, $V\in C^{3,1}$. Let $\varphi\in C^{2,1}_c(\Sigma)$ Then

$$\sum_{i=1}^N \varphi(x_i) - N \int_{\Sigma} \varphi \, d\mu_V$$

converges in law as N $ightarrow \infty$ to a Gaussian distribution with

$$\mathit{mean} = \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int \Delta \varphi \log \Delta V \qquad \mathit{var} = \frac{1}{2\pi\beta} \int_{\mathbb{R}^2} |\nabla \varphi|^2.$$

 $ightharpoonup -\log *\left(\sum_{i=1}^N \delta_{x_i} - N\mu_V\right)$ converges to the **GFF**. The result can be localized with φ supported on all mesoscales $\ell >> N^{-1/2}$.

[Leblé-S, Bauerschmidt-Bourgade-Nikula-Yau, S], case of φ overlapping $\partial\Omega$ in [Leblé-S].

CLT for smooth linear statistics in 2D log / Coulomb case

Theorem

Assume d=2, $\beta>0$ arbitrary fixed, $V\in C^{3,1}$. Let $\varphi\in C^{2,1}_c(\Sigma)$ Then

$$\sum_{i=1}^N \varphi(x_i) - N \int_{\Sigma} \varphi \, d\mu_V$$

converges in law as $N \to \infty$ to a Gaussian distribution with

$$\mathit{mean} = \frac{1}{2\pi} \left(\frac{1}{\beta} - \frac{1}{4} \right) \int \Delta \varphi \log \Delta V \qquad \mathit{var} = \frac{1}{2\pi\beta} \int_{\mathbb{R}^2} |
abla \varphi|^2.$$

 $ightharpoonup -\log *\left(\sum_{i=1}^N \delta_{x_i} - N\mu_V\right)$ converges to the **GFF**. The result can be localized with φ supported on all mesoscales $\ell >> N^{-1/2}$.

[Leblé-S, Bauerschmidt-Bourgade-Nikula-Yau, S], case of φ overlapping $\partial\Omega$ in [Leblé-S].

First CLT in 3D for large enough temperature [S]

This way, the electric field

$$h_{N} = -\log * \left(\sum_{i=1}^{N} \delta_{x_{i}} - N\mu_{V}\right)$$

is also expected to behave asymptotically like a log-correlated field. [Lambert-Leblé-Zeitouni] show

$$\max h_N \sim C \log N$$

by proving the corresponding CLT for h_N smoothed out at scale $\delta_N > N^{-1/2} \log N$

Local laws in any dimension

Theorem (Armstrong-S. '20)

- Control in exponential moments of energy and of fluctuations of (nonsmooth) linear statistics in boxes, down to a temperature-dependent minimal scale $\simeq N^{-1/d} \max(1, \beta^{-1/2})$
- Free energy expansion to next order (existence of thermodynamic limit) in the case of uniform μ_V

```
(can couple \beta and N) In 2D also Leblé
```

Local laws in any dimension

Theorem (Armstrong-S. '20)

- Control in exponential moments of energy and of fluctuations of (nonsmooth) linear statistics in boxes, down to a temperature-dependent minimal scale $\simeq N^{-1/d} \max(1, \beta^{-1/2})$
- Free energy expansion to next order (existence of thermodynamic limit) in the case of uniform μ_V

(can couple β and N) In 2D also Leblé

Corollary

For fixed β , bound on the number of points in microscopic boxes \rightarrow existence of a limit point process after subsequence.

A Large Deviations Principle for limiting point processes

Theorem (Leblé-S, '17, Armstrong-S '20)

For Coulomb or log (or Riesz interactions $|x|^{-s}$, $d-2 \le s < d$), there is an LDP for the "empirical field", averaged at any mesoscale after zoom by $(\mu_V(x)N)^{1/d}$ around x, at speed $N^{1+\frac{s}{d}}$ with rate function \mathcal{F}_β – $\min \mathcal{F}_\beta$,

$$\mathcal{F}_{\beta}(P) := \beta \mathbb{W}(P) + \text{ent}[P|\Pi] \qquad \Pi = Poisson \ 1$$

W = Coulomb renormalized energy for an infinite point configuration (jellium)

- ightharpoonup The Gibbs measure concentrates asymptotically on point processes which minimize \mathcal{F}_{eta}
 - competition between energy and relative entropy
 - $\blacktriangleright \beta \ll 1$ entropy dominates \leadsto convergence to Poisson point process
 - $> \beta >> 1 \ \hbox{convergence to minimizers of} \ \mathbb{W}_{\text{convergence}} + \beta >> 1 \ \text{convergence} \ \text{to minimizers} \ \text{for all } \beta >> 1 \ \text{convergence} \ \text{for all } \beta >> 1 \ \text{conven$

Corollary

Variational property of Sine- β and Ginibre (minimize $\beta \mathbb{W} + \text{ent}$).

The **jellium energy** W (defined in [Sandier-S '12, Rougerie-S '16, Petrache-S '17]) seems to favor crystalline configurations in low dimensions

- ▶ In dimension d = 1, the minimum of \mathbb{W} over all possible configurations is achieved for the **lattice** \mathbb{Z} .
- In dimension d = 8 the minimum of W is achieved by the E₈ lattice and in dimension d = 24 by the Leech lattice: consequence (by [Petrache-S '19] of the Cohn-Kumar conjecture proven in [Cohn-Kumar-Miller-Radchenko-Viazovska '19]

Corollary

Variational property of Sine- β and Ginibre (minimize $\beta \mathbb{W} + \text{ent}$).

The **jellium energy** W (defined in [Sandier-S '12, Rougerie-S '16, Petrache-S '17]) seems to favor crystalline configurations in low dimensions

- ▶ In dimension d = 1, the minimum of \mathbb{W} over all possible configurations is achieved for the **lattice** \mathbb{Z} .
- In dimension d = 8 the minimum of W is achieved by the E₈ lattice and in dimension d = 24 by the Leech lattice: consequence (by [Petrache-S '19] of the Cohn-Kumar conjecture proven in [Cohn-Kumar-Miller-Radchenko-Viazovska '19]
- ▶ the Cohn-Kumar in dimension 2 implies that min W is achieved at the **triangular lattice**, but remains **open**

Free energy expansion with a rate (Coulomb any d)

Theorem (Leblé-S '17, S '20)

Let s = d - 2.

with $\varepsilon = \frac{1}{2d}$ and

$$\begin{split} \log Z_{N,\beta} &= -\beta N^2 \mathcal{E}(\mu_V) + \left(\frac{\beta}{4} N \log N\right) \mathbb{1}_{d=2} \\ &- N \left(1 - \frac{\beta}{4}\right) \left(\int \mu_V \log \mu_V\right) \mathbb{1}_{d=2} \\ &- N^{1 + \frac{s}{d}} \int f_d(\beta \mu_V^{s/d}) d\mu_V + \beta O(N^{1 + \frac{s}{d} - \varepsilon}) \end{split}$$

 $f_d(\beta) = \min_{\text{stationary n.n.}} \beta \mathbb{W} + \text{ent}(\cdot | \Pi)$

Analogous result for log and Riesz interactions.

To be compared with [Borot-Guionnet '13, Shcherbina '13] (d = 1, log), [Wiegmann-Zabrodin '09] (d = 2, log) (physics)

Main ingredients

- ► The electric approach: work with $h_N = g * \left(\sum_{i=1}^N \delta_{x_i} N\mu_V\right)$, replace the energy by $\int |\nabla h_N|^2$
- ► The screening procedure \leadsto almost additivity of the (free) energy over boxes
- A bootstrap on scales for local laws + free energy expansion, which allow to perform the screening down to smaller and smaller scales, and improve local laws + free energy expansion, etc
- ► Transport approach for the CLT

THANK YOU AND HAPPY BIRTHDAY YAN!