Multiple partition structures

E. Strahov
Department of Mathematics,
The Hebrew University of Jerusalem

July 25, 2022

§1. A representation theorem for multiple partition structures

What are multiple partition structures?

- Multiple partition structures are sequences $\left(\mathcal{M}_n^{(k)}\right)_{n=1}^{\infty}$ of probability measures on families of Young diagrams (multiple partitions) such that for each n, $\mathcal{M}_n^{(k)}$ and $\mathcal{M}_{n+1}^{(k)}$ are connected by a certain consistency relation.
- ▶ Multiple partition structures can be understood as generalizations of the Kingman partition structures (Kingman, J.F.C. Random partitions in population genetics. Proc. R. Soc. London A 361, 1-20, (1978))

Multiple partitions

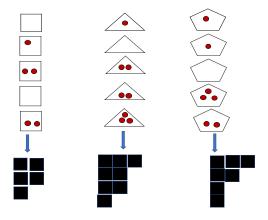
Let $\lambda^{(1)}, \ldots, \lambda^{(k)}$ be Young diagrams such that the condition

$$|\lambda^{(1)}| + \ldots + |\lambda^{(k)}| = n$$

is satisfied (here $|\lambda^{(I)}|$ denotes the number of boxes on $\lambda^{(I)}$). The family $\Lambda_n^{(k)} = (\lambda^{(1)}, \dots, \lambda^{(k)})$ is called a multiple partition of n into k components.

- Multiple partitions in representation theory of finite groups: Let G be a finite group with k conjugacy classes and k irreducible characters. Both the conjugacy classes and the irreducible characters of the wreath product $G \sim S(n)$ are parameterized by multiple partition $\Lambda_n^{(k)}$.
- Each $\Lambda_n^{(k)}$ corresponds to a configuration of n identical balls partitioned into boxes of k different types and vice versa.

Example: balls configurations as multiple partitions



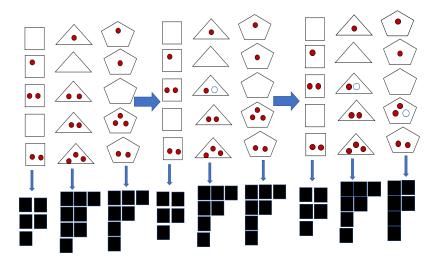
$$\Lambda_{20}^{(3)} = \left(\lambda^{(1)}, \lambda^{(2)}, \lambda^{(3)}\right),$$

$$\lambda^{(1)} = (2, 2, 1), \ \lambda^{(2)} = (3, 2, 2, 1), \ \lambda^{(3)} = (3, 2, 1, 1).$$

Definition of a multiple partition structure

- A random multiple partition of n is a random variable $\Lambda_n^{(k)}$ with values in the set $\mathbb{Y}_n^{(k)} = \{(\lambda^{(1)}, \dots, \lambda^{(k)}) : |\lambda^{(1)}| + \dots + |\lambda^{(k)}| = n\}$.
- A multiple partition structure is a sequence $\mathcal{M}_1^{(k)}$, $\mathcal{M}_2^{(k)}$, ... of distributions for $\Lambda_1^{(k)}$, $\Lambda_2^{(k)}$, ... which is consistent in the following sense: if n balls are partitioned into boxes of k different types such that their configuration is $\Lambda_n^{(k)}$, and a ball is deleted uniformly at random, independently of $\Lambda_n^{(k)}$, then the multiple partition $\Lambda_{n-1}^{(k)}$ describing the configuration of the remaining balls is distributed according to $\mathcal{M}_{n-1}^{(k)}$.

Example: each time a ball is deleted uniformly at random



Multiple partition structures in population genetics

- If k=1 then a multiple partition structure is a partition structure in the sense of Kingman. Kingman considers a sample of n representatives from a population, and studies the probability that there A_1 alleles (versions of a specific gene appeared due to mutations) represented once in the sample, A_2 alleles represented twice,
- ▶ In our language boxes correspond to alleles, so A_1 is interpreted as the number of boxes with exactly one ball, A_2 is interpreted as the number of boxes with exactly two balls, and so on.
- For an arbitrary k, boxes of k different types can be interpreted as alleles of k different genes under considerations. A model for the allelic partition is a probability distribution $\mathcal{M}_n^{(k)}$ over the set of all multiple partitions of the integer n into k components. Since n may be chosen at the experimenter's convenience, the consistency condition should be satisfied, and $\left(\mathcal{M}_n^{(k)}\right)_{n=1}^{\infty}$ is a multiple partition structure.

The representation theorem for multiple partition structures (E.S., 2022)

(A) There is a bijective correspondence between multiple partition structures $\left\{\mathcal{M}_n^{(k)}\right\}_{n=1}^{\infty}$ and probability measures P on the space

$$\begin{split} \overline{\nabla}^{(k)} = & \left\{ (x, \delta) \middle| x = \left(x^{(1)}, \dots, x^{(k)} \right), \delta = \left(\delta^{(1)}, \dots, \delta^{(k)} \right); \\ x^{(I)} = \left(x_1^{(I)} \geq x_2^{(I)} \geq \dots \geq 0 \right), \ \delta^{(I)} \geq 0, \ 1 \leq I \leq k, \\ \text{where } \sum_{i=1}^{\infty} x_i^{(I)} \leq \delta^{(I)}, \ 1 \leq I \leq k, \ \text{and } \sum_{l=1}^{k} \delta^{(I)} = 1 \right\}. \end{split}$$

(B) The correspondence is determined by

$$\mathcal{M}_{n}^{(k)}\left(\Lambda_{n}^{(k)}\right) = \int_{\overline{\Sigma}^{(k)}} \mathbb{K}\left(\Lambda_{n}^{(k)}, \omega\right) P(d\omega),$$

where $\mathbb{K}:~\mathbb{Y}_n^{(k)} imes\overline{\nabla}^{(k)} o\mathbb{R}$ is a kernel function.

(C) The kernel function $\mathbb{K}\left(\Lambda_n^{(k)},\omega\right)$ is given by

$$\mathbb{K}\left(\Lambda_n^{(k)}, \omega\right) = \frac{n!}{\prod\limits_{j=1}^k |\lambda_1^{(j)}|! \dots |\lambda_n^{(j)}|!} \times M_{\lambda^{(1)}}\left(x^{(1)}, \delta^{(1)}\right) \dots M_{\lambda^{(k)}}\left(x^{(k)}, \delta^{(k)}\right),$$

where $M_{\lambda^{(I)}}\left(x^{(I)},\delta^{(I)}\right)$ are extended monomial symmetric functions defined in terms of the usual monomial symmetric functions $m_{\lambda^{(I)}}(x_1,x_2,\ldots)$ as

$$M_{\lambda^{(I)}}\left(x^{(I)},\delta^{(I)}\right) = \sum_{p=0}^{\varrho_1^{(I)}} \frac{\left[\delta^{(I)} - \sum_{j=1}^{\infty} x_j^{(I)}\right]^p}{p!} m_{\left(1^{\varrho_1^{(I)} - p} 2^{\varrho_2^{(I)}} \dots\right)}\left(x_1^{(I)}, x_2^{(I)}, \dots\right)$$

where $\lambda^{(I)} = \left(1^{\varrho_1^{(I)}} \ 2^{\varrho_2^{(I)}} \dots\right)$.

Remark (The Kingman result (1978) as a particular case)

If k=1 then $\delta^{(1)}=1$, and

$$\overline{\nabla}^{(1)} = \left\{ x = \left(x_1^{(1)} \ge x_2^{(1)} \ge \ldots \ge 0 \right), \ \sum_{i=1}^{\infty} x_i^{(1)} \le 1 \right\}.$$

We obtain a bijective correspondence between the sequence $\left\{\mathcal{M}_n^{(1)}\right\}_{n=1}^\infty$ of measures on partitions satisfying the consistency condition and probability measures P on the space $\overline{\nabla}^{(1)}$. The correspondence is determined by

$$\mathcal{M}_{n}^{(1)}(\lambda) = \int_{\overline{\nabla}^{(1)}} \mathbb{K}(\lambda,\omega) P(d\omega), \ \forall \lambda \in \mathbb{Y}_{n},$$

where

$$\mathbb{K}(\lambda,\omega) = \sum_{p=0}^{\varrho_1} \frac{\left[1 - \sum_{j=1}^{\infty} x_j\right]^p}{p!} m_{\left(1^{\varrho_1 - \varrho_2 \varrho_2}...\right)}(x_1, x_2, ...).$$

§2. Multiple partition structures and harmonic functions on branching graphs

Algebra Sym(G)

- ▶ Let G be a finite group, $G_* = \{c_1, \ldots, c_k\}$ be the set of conjugacy classes in G, and $G^* = \{\gamma^1, \ldots, \gamma^k\}$ be the set of irreducible characters of G.
- ▶ The algebra Sym(G) is defined by

$$Sym(G) = \mathbb{C}[p_{r_1}(c_1), \dots, p_{r_k}(c_k) : r_1 \ge 1, \dots, r_k \ge 1],$$

where $p_{r_l}(c_l)$ is r_l th power sum in variables $x_{1c_l}, x_{2c_l}, \ldots$

lacksquare For each multiple partition $\Lambda_n^{(k)} = \left(\lambda^{(1)}, \dots, \lambda^{(k)}\right)$ define

$$\mathbb{P}_{\Lambda_n^{(k)}}\left(\gamma^1,\ldots,\gamma^k;\theta\right) = \prod_{j=1}^k P_{\lambda^{(j)}}\left(\gamma^j;\theta\right), \ \theta > 0,$$

where $P_{\lambda^{(j)}}\left(\gamma^{j};\theta\right)$ is the Jack symmetric function expressed as a polynomial in variables $\left\{p_{r}\left(\gamma^{j}\right):\ r\geq1\right\}$,

$$p_r\left(\gamma^j\right) = \sum_{i=1}^k \frac{|G|}{|c_i|} \gamma^j\left(c_i\right) p_r\left(c_i\right).$$

A Pieri-type formula. The branching graph $\Gamma_{\theta}(G)$

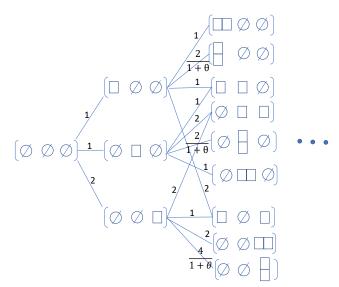
The following Pieri-type rule holds for the functions $\mathbb{P}_{\Lambda_n^{(k)}}\left(\gamma^1,\ldots,\gamma^k;\theta\right)$

$$\begin{split} & p_1(c_1) \mathbb{P}_{\Lambda_n^{(k)}} \left(\gamma^1, \dots, \gamma^k; \theta \right) \\ &= \sum_{\widetilde{\Lambda}_{n+1}^{(k)} \in \mathbb{Y}_{n+1}^{(k)}} \Upsilon_{\theta} \left(\Lambda_n^{(k)}, \widetilde{\Lambda}_{n+1}^{(k)} \right) \mathbb{P}_{\widetilde{\Lambda}_{n+1}^{(k)}} \left(\gamma^1, \dots, \gamma^k; \theta \right), \end{split}$$

where $\Upsilon_{\theta}: \mathbb{Y}_{n}^{(k)} \times \mathbb{Y}_{n+1}^{(k)} \to \mathbb{R}_{\geq 0}$ is the multiplicity function which can be written explicitly.

▶ Denote by Γ_θ(G) the branching graph associated with the Pieri-type rule for $\mathbb{P}_{\Lambda_n^{(k)}}(\gamma^1,\ldots,\gamma^k;\theta)$. The vertex set of this graph is the set of all multiple partitions $\mathbb{Y}^{(k)}$.

Example: the branching graph $\Gamma_{\theta}(S(3))$



Harmonic functions on $\Gamma_{\theta}(G)$ and multiple partition structures

▶ A function φ : $\Gamma_{\theta}(G) \to \mathbb{R}_{\geq 0}$ is called harmonic on $\Gamma_{\theta}(G)$ if

$$\varphi\left(\boldsymbol{\Lambda}_{n-1}^{(k)}\right) = \sum_{\widetilde{\boldsymbol{\Lambda}}_{n}^{(k)} \in \boldsymbol{\mathbb{Y}}_{n}^{(k)}} \Upsilon_{\boldsymbol{\theta}}\left(\boldsymbol{\Lambda}_{n-1}^{(k)}, \widetilde{\boldsymbol{\Lambda}}_{n}^{(k)}\right) \varphi\left(\widetilde{\boldsymbol{\Lambda}}_{n}^{(k)}\right),$$

and $\varphi(\emptyset) = 1$.

Let φ be the harmonic function on Γ_{θ} (*G*). Set

$$\mathcal{M}_{n}^{(k)}\left(\Lambda_{n}^{(k)}\right) = DIM\left(\Lambda_{n}^{(k)}\right)\varphi\left(\Lambda_{n}^{(k)}\right),$$

where $DIM\left(\Lambda_n^{(k)}\right)$ is the dimension function of $\Gamma_{\theta}(G)$ (if the multiplicities are integers, the dimension function at $\Lambda_n^{(k)}$ is equal to the number of ways to get $\Lambda_n^{(k)}$ form the empty set).

As $\theta=0$, the sequence $\left(\mathcal{M}_n^{(k)}\right)_{n=1}^\infty$ is a multiple partition structure.

► Conversely, each multiple partition structure gives rise to a harmonic function on $\Gamma_{\theta=0}(G)$.

Potential theory on the branching graph $\Gamma_{\theta}(G)$

Harmonic functions on $\Gamma_{\theta}(G)$ can be described in terms of potential theory. Namely, consider an analogue \triangle of the Laplace operator on $\Gamma_{\theta}(G)$ defined by its action on a function on $\Gamma_{\theta}(G)$ as

$$\left(\triangle f\right)\left(\Lambda_{n}^{(k)}\right) = -f\left(\Lambda_{n}^{(k)}\right) + \sum_{\widetilde{\Lambda}_{n+1}^{(k)} \in \mathbb{Y}_{n+1}^{(k)}} \Upsilon_{\theta}\left(\Lambda_{n}^{(k)}, \widetilde{\Lambda}_{n+1}^{(k)}\right) f\left(\widetilde{\Lambda}_{n+1}^{(k)}\right).$$

Then each harmonic function φ on $\Gamma_{\theta}(G)$ satisfies the Laplace equation

$$(\triangle \varphi)\left(\Lambda_n^{(k)}\right)=0.$$

Moreover, the dimension function of $\Gamma_{\theta}(G)$ can be understood as the Green function of the operator \triangle .

The generalized Thoma set $\Omega(G)$

► Set

$$\Omega(G) = \left\{ (\alpha, \beta, \delta) \middle| \alpha = \left(\alpha^{(1)}, \dots, \alpha^{(k)} \right), \\
\beta = \left(\beta^{(1)}, \dots, \beta^{(k)} \right), \quad \delta = \left(\delta^{(1)}, \dots, \delta^{(k)} \right); \\
\alpha^{(I)} = \left(\alpha_1^{(I)} \ge \alpha_2^{(I)} \ge \dots \ge 0 \right), \beta^{(I)} = \left(\beta_1^{(I)} \ge \beta_2^{(I)} \ge \dots \ge 0 \right), \\
\delta^{(1)} \ge 0, \dots, \delta^{(k)} \ge 0,$$

where
$$\sum_{i=1}^{\infty} \alpha_i^{(I)} + \beta_i^{(I)} \le \delta^{(I)}, \ 1 \le I \le k, \ \text{and} \ \sum_{l=1}^k \delta^{(I)} = 1$$
.

For each l, $1 \le l \le k$, denote by $p_{r,l}^o(\alpha, \beta, \delta; \theta)$ the θ -extended power sum symmetric function evaluated on $\Omega(G)$,

$$p_{r,l}^{o}(\alpha,\beta,\delta;\theta) = \begin{cases} \sum_{i=1}^{\infty} \left(\alpha_{i}^{(l)}\right)^{r} + (-\theta)^{r-1} \sum_{i=1}^{\infty} \left(\beta_{i}^{(l)}\right)^{r}, & r=2,3,\dots\\ \delta^{(l)}, & r=1. \end{cases}$$

Main result (E.S. 2022)

There is a bijective correspondence between the set of the normalized harmonic functions on $\Gamma_{\theta}(G)$, and the set of probability measures on the generalized Thoma set $\Omega(G)$. This correspondence is determined by

$$\varphi\left(\Lambda_n^{(k)}\right) = \int_{\Omega(G)} \mathbb{K}_{\theta}\left(\Lambda_n^{(k)}, \omega\right) P(d\omega), \ \forall \Lambda_n^{(k)} = \left(\lambda^{(1)}, \ldots, \lambda^{(k)}\right),$$

where P is a probability measure on $\Omega(G)$, and n=1,2,..., and k is the number of conjugacy classes in G.

▶ The kernel $\mathbb{K}_{\theta}\left(\Lambda_{n}^{(k)},\omega\right)$ is given by

$$\mathbb{K}_{\theta}\left(\Lambda_{n}^{(k)},\omega\right)=\prod_{l=1}^{k}\frac{1}{d_{l}^{|\lambda^{(l)}|}}P_{\lambda^{(l)}}^{o}\left(\alpha,\beta,\delta;\theta\right).$$

Here $P^o_{\lambda^{(I)}}(\alpha,\beta,\delta;\theta)$ denotes the Jack symmetric function parameterized by $\lambda^{(I)}$ which is obtained as a polynomial in the variables $\left\{p^o_{r,I}(\alpha,\beta,\delta;\theta): r\geq 1\right\}$, and d_I are the dimensions of irreps of G.

Remarks

- a) Particular cases
 - ightharpoonup k=1, heta=0 Kingman (1978) (partition structures)
 - ▶ k = 1, $\theta = 1$ Thoma (1964), Vershik and Kerov (1981) (characters of the infinite symmetric group)
 - ▶ $k=1, \ \theta \geq 0$ Okounkov (1997), Kerov, Olshanski, and Okounkov (1998) (different motivations, the case $\theta=1/2$ is relevant for the harmonic analysis for the Gelfand pair $(S(2\infty), H(2\infty)), \ H(2\infty)$ is hyperoctahedral subgroup of $S(2\infty)$).
 - ▶ k is an arbitrary, $\theta = 1$ -Hora, Hirai (2014) (characters of the infinite wreath products).
- b) The case k is an arbitrary, $\theta=0$ corresponds to the multiple partition structures.

§3. A multiple partition structure related to the wreath products $G \sim S(n)$

The wreath product $G \sim S(n)$

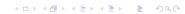
Our aim is to construct an example of a multiple partition structure. We will use probability measures on the wreath product $G \sim S(n)$. The wreath product $G \sim S(n)$ is the group whose underlying set is

$$\{((g_1,\ldots,g_n),s): g_i \in G, s \in S(n)\},\$$

where G is a finite group, and S(n) is the symmetric group. The multiplication in $G \sim S(n)$ is defined by

$$((g_1,\ldots,g_n),s)((h_1,\ldots,h_n),t)=((g_1h_{s^{-1}(1)},\ldots,g_nh_{s^{-1}(n)}),st).$$

When n=1, $G\sim S(1)$ is G. The order of $G\sim S(n)$ is $2^n n!$. The important fact is that both **the conjugacy classes and the irreducible representations of** $G\sim S(n)$ **are parameterized by multiple partitions** $\Lambda_n^{(k)}$, where k is the number of conjugacy classes in G.



The Ewens probability measure on $G \sim S(n)$

Assume that $x = ((g_1, \ldots, g_n), s) \in G \sim S(n)$. A cycle (i_1, \ldots, i_r) of s is called of type c_i if the product $g_{i_r} \ldots g_{i_2} g_{i_1}$ belongs the the conjugacy class c_i of G, $1 \le i \le k$.

Proposition

Fix $t_1 > 0$, ..., $t_k > 0$, and set

$$P_{t_1,...,t_k;n}^{Ewens}(x) = \frac{t_1^{[x]_{c_1}}t_2^{[x]_{c_2}}\dots t_k^{[x]_{c_k}}}{|G|^n\left(\frac{t_1}{\zeta_{c_1}}+\dots+\frac{t_k}{\zeta_{c_k}}\right)_n}, \ x \in G \sim S(n),$$

where c_1, \ldots, c_k are the conjugacy classes of G, $[x]_{c_i}$ is the number of cycles of type c_i in x, $\zeta_{c_i} = \frac{|G|}{|c_i|}$, and $(a)_n$ is the Pochhammer symbol. Each $P_{t_1,\ldots,t_k;n}^{Ewens}$ is a probability measure on $G \sim S(n)$.

The measure $P_{t_1,...,t_k;n}^{\textit{Ewens}}$ is called the **Ewens probability measure** on $G \sim S(n)$.

The multiple partition structure $\left(\mathcal{M}_{t_1,\dots,t_k;n}^{\textit{Ewens}}\right)_{n=1}^{\infty}$

To an element $x \in G \sim S(n)$ we assign a multiple partition $\Lambda_n^{(k)}$ describing the conjugacy class of x. Since $P_{t_1,\dots,t_k;n}^{Ewens}(x)$ is invariant under action of $G \sim S(n)$ on itself by conjugations, the projection $x \to \Lambda_n^{(k)}$ takes $P_{t_1,\dots,t_k;n}^{Ewens}$ to a probability measure $\mathcal{M}_{t_1,\dots,t_k;n}^{Ewens}$ on the set of multiple partitions $\mathbb{Y}_n^{(k)}$.

Proposition

The sequence $\left(\mathcal{M}^{Ewens}_{t_1,\dots,t_k;n}\right)_{n=1}^{\infty}$ is a multiple partition structure. The representation theorem for multiple partition structures gives

$$\mathcal{M}^{\textit{Ewens}}_{t_1,...,t_k;n}\left(\Lambda^{(k)}_n
ight) = \int_{\overline{
abla}^{(k)}} \mathbb{K}\left(\Lambda^{(k)}_n,\omega
ight) P^{\textit{Ewens}}_{t_1,...,t_k}(d\omega),$$

where $P_{t_1,\dots,t_k}^{Ewens}$ is a probability measure on $\overline{\nabla}^{(k)}$. **Problem**. Describe the probability measure $P_{t_1,\dots,t_k}^{Ewens}$. We will see that $P_{t_1,\dots,t_k}^{Ewens}$ can be understood as **the multiple Poisson-Dirichlet distribution**.

§4. The multiple Poisson-Dirichlet distribution. The representation theorem for $\left(\mathcal{M}_{t_1,\dots,t_k;n}^{Ewens}\right)_{n=1}^{\infty}$.

The Poisson-Dirichlet distribution PD(t)

The Poisson-Dirichlet distribution PD(t) can be understood as the Poisson-Dirichlet limit of the Dirichlet distribution $D(T_1, \ldots, T_M)$ with density

$$\frac{\Gamma\left(T_1+\ldots+T_M\right)}{\Gamma\left(T_1\right)\ldots\Gamma\left(T_M\right)}x_1^{T_1-1}x_2^{T_2-1}\ldots x_M^{T_M-1}$$

relative to the (M-1)- dimensional Lebesgue measure on the simplex

$$\triangle_M = \{(x_1, \ldots, x_M) : x_i \geq 0, x_1 + \ldots + x_M = 1\},$$

where T_1, \ldots, T_M are strictly positive parameters. Assume that (x_1, \ldots, x_M) has the Dirichlet distribution with equal parameters,

$$T_1=\ldots=T_M=\frac{t}{M-1}.$$

If $x_{(1)} \ge x_{(2)} \ge \ldots \ge x_{(M)}$ denote the x_j arranged in descending order, then $x_{(1)}, x_{(2)}, \ldots$ converge in joint distribution as $M \to \infty$, the limit is PD(t).

The multiple Poisson-Dirichlet distribution $PD(t_1, \ldots, t_k)$

Definition

Let $t_1>0,\ldots,t_k>0$. For each $l,1\leq l\leq k$, let $x^{(l)}=\left(x_1^{(l)},x_2^{(l)},\ldots\right)$ be independent sequences of random variables such that

$$x^{(I)} \sim PD(t_I), I = 1, \ldots, k.$$

Furthermore, let $\delta^{(1)}, \ldots, \delta^{(k)}$ be random variables independent of $x^{(1)}, \ldots, x^{(k)}$, and such that joint distribution of $\delta^{(1)}, \ldots, \delta^{(k)}$ is the Dirichlet distribution $D(t_1, \ldots, t_k)$. The joint distribution of the sequences $\delta^{(1)}x^{(1)}, \ldots, \delta^{(k)}x^{(k)}$ is called the *multiple* Poisson-Dirichlet distribution $PD(t_1, \ldots, t_k)$.

Remarks

▶ The distribution $PD(t_1, ..., t_k)$ is concentrated on

$$\begin{split} \overline{\nabla}_0^{(k)} = & \left\{ (x, \delta) \middle| x = \left(x^{(1)}, \dots, x^{(k)} \right), \delta = \left(\delta^{(1)}, \dots, \delta^{(k)} \right); \\ & x^{(I)} = \left(x_1^{(I)}, x_2^{(I)}, \dots \right), x_1^{(I)} \ge x_2^{(I)} \ge \dots \ge 0, \ 1 \le I \le k, \\ & \delta^{(1)} \ge 0, \dots, \delta^{(k)} \ge 0, \\ & \text{where } \sum_{i=1}^{\infty} x_i^{(I)} = \delta^{(I)}, \ 1 \le I \le k, \ \text{and } \sum_{l=1}^k \delta^{(I)} = 1 \right\}. \end{split}$$

- ▶ If k = 1, the multiple Poisson-Dirichlet distribution turns into the usual Poisson-Dirichlet distribution $PD(t_1)$.
- ▶ A point process can be associated with $PD(t_1, ..., t_k)$, and its correlation functions can be explicitly computed.

The representation theorem for $\left(\mathcal{M}_{t_1,\dots,t_k;n}^{\textit{Ewens}}\right)_{n=1}^{\infty}$. (E. S. (2022))

The multiple partition structure $\left(\mathcal{M}^{\textit{Ewens}}_{t_1,\dots,t_k;\;n}\right)_{n=1}^{\infty}$ has the following representation

$$\mathcal{M}_{t_1,\ldots,t_k;\ n}^{Ewens}\left(\Lambda_n^{(k)}\right) = \frac{n!}{\prod\limits_{j=1}^k |\lambda_1^{(j)}|! \ldots |\lambda_n^{(j)}|!} \times \int_{\overline{\nabla}_0^{(k)}} m_{\lambda^{(1)}}(x^{(1)}) \ldots m_{\lambda^{(k)}}(x^{(k)}) PD(T_1,\ldots,T_k) (d\omega).$$

Here $\Lambda_n^{(k)} = (\lambda^{(1)}, \dots, \lambda^{(k)})$ is a multiple partition, $m_{\lambda^{(l)}}(x^{(l)})$ are the monomial symmetric functions, $T_1 = \frac{t_1}{\zeta_{c_1}}, \dots, T_k = \frac{t_1}{\zeta_{c_k}}$, and $PD(T_1, \dots, T_k)$ is the multiple Poisson-Dirichlet distribution.