Log-correlated structures for random Jacobi matrices

Ofer Zeitouni

Joint with Raphael Butez and with Fanny Augeri

1/21

 U_N -CUE (aka Haar unitary on U_N).

 U_N -CUE (aka Haar unitary on U_N). Diaconis-Shahshahani '94: ${\rm Tr} U_N^k \sim N(0,k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

 U_N -CUE (aka Haar unitary on U_N).

Diaconis-Shahshahani '94: ${\rm Tr} U_N^k \sim N(0,k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

Motivated by links with Riemann zeta function:

Baker-Forrester '97, Keating-Snaith '00: $\log |\det U_N|$ is Gaussian of mean 0 and variance $c \log N$.



 U_N -CUE (aka Haar unitary on U_N).

Diaconis-Shahshahani '94: ${\rm Tr} U_N^k \sim N(0,k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

Motivated by links with Riemann zeta function:

Baker-Forrester '97, Keating-Snaith '00: $\log |\det U_N|$ is Gaussian of mean 0 and variance $c \log N$.

Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log |\det(z_i I - U_N)|$ is jointly Gaussian, \log correlated structure.

 U_N -CUE (aka Haar unitary on U_N).

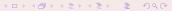
Diaconis-Shahshahani '94: ${\rm Tr} U_N^k \sim N(0,k)$ independent, very strong sense: mixed moments of total degree < N are *exactly* those for independent Gaussians.

Motivated by links with Riemann zeta function:

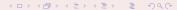
Baker-Forrester '97, Keating-Snaith '00: $\log |\det U_N|$ is Gaussian of mean 0 and variance $c \log N$.

Hughes-Keating-Oconnell, Wieand '02: multi-d extension: $\log |\det(z_i I - U_N)|$ is jointly Gaussian, \log correlated structure.

If it is log-correlated, what about the extrema?



Set
$$M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0,2\pi]} M_N(\theta).$$



3/21

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0,2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

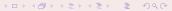
where W has the law of the sum of two independent Gumbels.



Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0,2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

where W has the law of the sum of two independent Gumbels. Still open, although much progress.



Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0,2\pi]} M_N(\theta).$ Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

where *W* has the law of the sum of two independent Gumbels. Still open, although much progress.

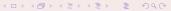
Arguin, Belius, Bourgade '17 - Identify the '1'.

Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0,2\pi]} M_N(\theta).$ Conjecture (Fyodorov-Hiary-Keating '12)

$$\mathit{M}_{\mathit{N}}^* = \log \mathit{N} - \frac{3}{4} \log \log \mathit{N} + \mathit{W}$$

where *W* has the law of the sum of two independent Gumbels. Still open, although much progress.

Arguin, Belius, Bourgade '17 - Identify the '1'. Paquette, Zeitouni '18 - Identify the '-3/4'.



Set $M_N(\theta) = \log |P_N(e^{i\theta})|, M_N^* = \max_{\theta \in [0,2\pi]} M_N(\theta)$. Conjecture (Fyodorov-Hiary-Keating '12)

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

where W has the law of the sum of two independent Gumbels.

Still open, although much progress.

Arguin, Belius, Bourgade '17 - Identify the '1'.

Paquette, Zeitouni '18 - Identify the '-3/4'.

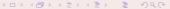
Both use in essential way CUE (aka $\beta = 2$), where joint distribution of eigenvalues is

$$\prod_{i < j} |\lambda_i - \lambda_j|^2$$

for which Gaussianity of traces follows from Diaconis-Shashahani and moments of determinant (=exponential moments of $M_N(z)$) are Toeplitz determinants.

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$



$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$

4/21

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18, and for proving convergence (Paquette-Z.,



4/21

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

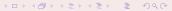
$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18, and for proving convergence (Paquette-Z., coming soon to a store next to you.)

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18, and for proving convergence (Paquette-Z., coming soon to a store next to you.) The key step of CMN is a representation in terms of orthogonal polynomials.



4/21

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

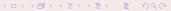
Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18, and for proving convergence (Paquette-Z., coming soon to a store next to you.) The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients),

4/21

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18, and for proving convergence (Paquette-Z., coming soon to a store next to you.) The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.



4/21

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18, and for proving convergence (Paquette-Z., coming soon to a store next to you.) The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$\left(\begin{array}{c} \Phi_{k+1}(z) \\ \Phi_{k+1}^*(z) \end{array}\right) = \left(\begin{array}{cc} z & -\bar{\alpha}_k^* \\ -\alpha_k z & 1 \end{array}\right) \left(\begin{array}{c} \Phi_k(z) \\ \Phi_k^*(z) \end{array}\right), \Phi_k^*(z) = z^k \overline{\Phi_k(\bar{z}^{-1})}.$$

 $\alpha_k = B_k e^{2\pi i \theta_k}$, $EB_k^2 \sim 2/\beta k$, beta variable. $\alpha_k \sim g_k + i g_k'$, Gaussian.

Ofer Zeitouni Log-cor Jacobi June 2022 4/21

$$M_N^* = \log N - \frac{3}{4} \log \log N + W$$

$$\prod_{i < j} |\lambda_i - \lambda_j|^{\beta}, \beta > 0$$

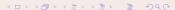
Chhaibi-Madaule-Najnudel '18 $M_N^* = \log N - \frac{3}{4} \log \log N + O(1)$ There is also some progress toward identifying W - G. Remy '18, and for proving convergence (Paquette-Z., coming soon to a store next to you.) The key step of CMN is a representation in terms of orthogonal polynomials. First, represent eigenvalues in terms of certain 5-diagonal matrices (CMV matrices) built from a sequence of independent variables (Verblunski coefficients), then write recursions for orthogonal polynomials in terms of Verblunsky coefficients.

$$\left(\begin{array}{c} \Phi_{k+1}(z) \\ \Phi_{k+1}^*(z) \end{array}\right) = \left(\begin{array}{cc} z & -\bar{\alpha}_k^* \\ -\alpha_k z & 1 \end{array}\right) \left(\begin{array}{c} \Phi_k(z) \\ \Phi_k^*(z) \end{array}\right), \Phi_k^*(z) = z^k \overline{\Phi_k(\bar{z}^{-1})}.$$

 $\alpha_k = B_k e^{2\pi i \theta_k}$, $EB_k^2 \sim 2/\beta k$, beta variable. $\alpha_k \sim g_k + i g_k'$, Gaussian. In addition, $\sup_{|z|=1} |\log |M_N(z)| - \log |\Phi_k^*(z)||$ is tight.

$$\log \Phi_k^*(e^{i\theta}) - \log \Phi_{k-1}^*(e^{i\theta}) = \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j e^{i\Psi_{k-1}(\theta)}$$

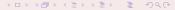
$$\Psi_k(\theta) = \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}).$$



5/21

$$\begin{split} \log \Phi_k^*(e^{i\theta}) - \log \Phi_{k-1}^*(e^{i\theta}) &= \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j e^{i\Psi_{k-1}(\theta)} \\ \Psi_k(\theta) &= \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}). \end{split}$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta) \log N$.



June 2022

5/21

$$\begin{split} \log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) &= \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)} \\ \Psi_k(\theta) &= \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}). \end{split}$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta)\log N$.

Log correlated, but joint law is not Gaussian.

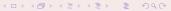


$$\begin{split} \log \Phi_k^*(\boldsymbol{e}^{i\theta}) - \log \Phi_{k-1}^*(\boldsymbol{e}^{i\theta}) &= \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)} \\ \Psi_k(\theta) &= \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j \boldsymbol{e}^{i\Psi_{k-1}(\theta)}). \end{split}$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta)\log N$.

Log correlated, but joint law is not Gaussian.

Use a branching structure.



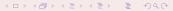
$$\begin{split} \log \Phi_k^*(e^{i\theta}) - \log \Phi_{k-1}^*(e^{i\theta}) &= \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j e^{i\Psi_{k-1}(\theta)} \\ \Psi_k(\theta) &= \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}). \end{split}$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta)\log N$.

Log correlated, but joint law is not Gaussian.

Use a branching structure.

Link to GMC: Chhaibi-Najnudel '19, Nikula, Saksman, Webb '18, Webb '15.



5/21

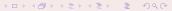
$$\begin{split} \log \Phi_k^*(e^{i\theta}) - \log \Phi_{k-1}^*(e^{i\theta}) &= \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}) \sim -\alpha_j e^{i\Psi_{k-1}(\theta)} \\ \Psi_k(\theta) &= \Psi_k(\theta) + \theta - 2\Im \log(1 - \alpha_j e^{i\Psi_{k-1}(\theta)}). \end{split}$$

Thus, marginal of $\log |\Phi_N^*(e^{i\theta})|$ is essentially Gaussian, of variance $(2/\beta)\log N$.

Log correlated, but joint law is not Gaussian.

Use a branching structure.

Link to GMC: Chhaibi-Najnudel '19, Nikula, Saksman, Webb '18, Webb '15. Some new phenomena for log-determinant of random permutations: Cook-Z. '20

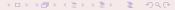


 X_N - random Wigner matrix, e.g. GUE/GOE.

 X_N - random Wigner matrix, e.g. GUE/GOE.

Empirical measure $L_N = N^{-1} \sum_{i=1}^N \delta_{\lambda_i}$ converges weakly (in probability) to the semicircle law σ of density

$$\frac{1}{2\pi}\sqrt{4-x^2}.$$

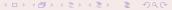


 X_N - random Wigner matrix, e.g. GUE/GOE.

Empirical measure $L_N = N^{-1} \sum_{i=1}^N \delta_{\lambda_i}$ converges weakly (in probability) to the semicircle law σ of density

$$\frac{1}{2\pi}\sqrt{4-x^2}.$$

Central limit theorem



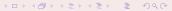
 X_N - random Wigner matrix, e.g. GUE/GOE.

Empirical measure $L_N = N^{-1} \sum_{i=1}^N \delta_{\lambda_i}$ converges weakly (in probability) to the semicircle law σ of density

$$\frac{1}{2\pi}\sqrt{4-x^2}.$$

Central limit theorem $f: \mathbb{R} \to \mathbb{R}$ compactly supported, smooth. Consider

$$W_{f,N} = \sum_{i=1}^{N} f(\lambda_i) - N \int f d\sigma.$$



Theorem (Johansson '98; β ensembles)

 $W_{f,N}$ satisfies CLT, mean $(2/\beta - 1) \int f d\nu$, variance

$$\frac{(2/\beta)}{4\pi^2} \iint_{-2}^2 f(t)f'(s) \frac{\sqrt{4-s^2}}{(t-s)\sqrt{4-t^2}} ds dt.$$



Theorem (Johansson '98; β ensembles)

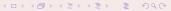
 $W_{f,N}$ satisfies CLT, mean $(2/\beta - 1) \int f d\nu$, variance

$$\frac{(2/\beta)}{4\pi^2} \iint_{-2}^2 f(t)f'(s) \frac{\sqrt{4-s^2}}{(t-s)\sqrt{4-t^2}} ds dt.$$

The measure ν in the mean expression is explicit.

The variance has an alternative expression

$$\frac{1}{2\pi^2} \sum_{k=1}^{\infty} k \left(\int_0^{\pi} f(2\cos(\theta)) \cos(k\theta) \right)^2 d\theta$$



Theorem (Johansson '98; β ensembles)

 $W_{f,N}$ satisfies CLT, mean $(2/\beta - 1) \int f d\nu$, variance

$$\frac{(2/\beta)}{4\pi^2} \iint_{-2}^2 f(t)f'(s) \frac{\sqrt{4-s^2}}{(t-s)\sqrt{4-t^2}} ds dt.$$

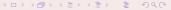
The measure ν in the mean expression is explicit.

The variance has an alternative expression

$$\frac{1}{2\pi^2} \sum_{k=1}^{\infty} k \left(\int_0^{\pi} f(2\cos(\theta)) \cos(k\theta) \right)^2 d\theta$$

CLT's of this type go back at least to CLT of Jonsson for moments ('82), Pastur and co-workers, Bai-Silverstein, Shcherbina, For Coulomb gas models, see Sylvia Serfaty's talk; also mesoscopic.

What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$. Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.



What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if f has log singularity then contributions at all scales, and kth coefficient gives roughly contribution $\int_0^\epsilon \log(x) \sin(kx) \sim 1/k$.

CLT

What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if f has log singularity then contributions at all scales, and kth coefficient gives roughly contribution $\int_0^\epsilon \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance.

CLT

What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if f has log singularity then contributions at all scales, and kth coefficient gives roughly contribution $\int_0^\epsilon \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance.

Our basic object of interest: $\log |P_N(z)| = \log |\det(zI - X_N)|$.

What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if f is indicator of interval then, for GUE, logarithmic variance.

Formally, if f has log singularity then contributions at all scales, and kth coefficient gives roughly contribution $\int_0^{\epsilon} \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance.

Our basic object of interest: $\log |P_N(z)| = \log |\det(zI - X_N)|$.

Theorem (Bourgade-Mody-Pain '21)

 $\log |P_N(z)| - N \int \log |z - x| \sigma(dx), z \in (-2, 2)$ converges to a log-correlated field.

8/21

CLT

What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if f has log singularity then contributions at all scales, and kth coefficient gives roughly contribution $\int_0^\epsilon \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance.

Our basic object of interest: $\log |P_N(z)| = \log |\det(zI - X_N)|$.

Theorem (Bourgade-Mody-Pain '21)

 $\log |P_N(z)| - N \int \log |z - x| \sigma(dx)$, $z \in (-2, 2)$ converges to a log-correlated field.

Actually, optimal error rates, local law, convergence of exponential moments, imaginary part, LLN for maximum,...

8/21

CLT

What if f is not smooth? e.g. Sosoe-Wong '13 $H^{1+\epsilon}$.

Costin and Lebowitz: if *f* is indicator of interval then, for GUE, logarithmic variance.

Formally, if f has log singularity then contributions at all scales, and kth coefficient gives roughly contribution $\int_0^\epsilon \log(x) \sin(kx) \sim 1/k$. Thus if could expand only to $k \sim N$, would get logarithmic variance.

Our basic object of interest: $\log |P_N(z)| = \log |\det(zI - X_N)|$.

Theorem (Bourgade-Mody-Pain '21)

 $\log |P_N(z)| - N \int \log |z - x| \sigma(dx)$, $z \in (-2, 2)$ converges to a log-correlated field.

Actually, optimal error rates, local law, convergence of exponential moments, imaginary part, LLN for maximum,...

Proof uses loop equations, and Coulomb gas structure. Works for non-Gaussian invariant ensembles.

8/21

$$f_N(z) = |P_N(z)| = |\det(zI - X_N)|.$$

Goal is to study recursions. $G\beta E$ give a 3-diagonal matrix model:

$$J_{n,\mathbf{a},\mathbf{b}} = \begin{pmatrix} b_n & a_{n-1} & 0 & \cdots & 0 \\ a_{n-1} & b_{n-1} & a_{n-2} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & a_2 & b_2 & a_1 \\ 0 & \cdots & \cdots & a_1 & b_1 \end{pmatrix}.$$
(1



$$f_N(z) = |P_N(z)| = |\det(zI - X_N)|.$$

Goal is to study recursions. $G\beta E$ give a 3-diagonal matrix model:

$$J_{n,\mathbf{a},\mathbf{b}} = \begin{pmatrix} b_n & a_{n-1} & 0 & \cdots & 0 \\ a_{n-1} & b_{n-1} & a_{n-2} & \cdots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \cdots & a_2 & b_2 & a_1 \\ 0 & \cdots & \cdots & a_1 & b_1 \end{pmatrix}. \tag{1}$$

Assumption

 $v = 2/\beta > 0$, $\{b_k\}_{k \ge 1}$, $\{g_k\}_{k \ge 1}$ - independent sequences of independent centered random variables of variance v + O(1/k), a.c. laws wrt Lebesgue measure on \mathbb{R} . Let a_{k-1} be such that, for a deterministic sequence c_k satisfying $c_k = O(1/k)$ and $c_{k+1} - c_k = O(1/k^2)$,

$$\frac{a_{k-1}^2}{\sqrt{k(k-1)}} = 1 - c_k + \frac{g_k}{\sqrt{k}}.$$

Further, there exist $\lambda_0 > 0$ and M > 0 independent of k such that

$$E(e^{\lambda_0|b_k|}) \le M, \ E(e^{\lambda_0|g_k|}) \le M. \tag{2}$$

9/21

Theorem (Augeri-Butez-Z. '20)

Fix $z \in (-2,2) \setminus \{0\}$. Then, the sequence of random variables

$$w_n(z) = \frac{\log |\det(zI_n - J_n/\sqrt{n})| - n(z^2/4 - 1/2)}{\sqrt{v \log n/2}}$$
(3)

converges in distribution to a standard Gaussian law.

The centering $n(z^2/4 - 1/2)$ is the *n* multiple of the logarithmic potential of the semi-circle distribution.

10/21

Theorem (Augeri-Butez-Z. '20)

Fix $z \in (-2,2) \setminus \{0\}$. Then, the sequence of random variables

$$w_n(z) = \frac{\log |\det(zI_n - J_n/\sqrt{n})| - n(z^2/4 - 1/2)}{\sqrt{v \log n/2}}$$
(3)

converges in distribution to a standard Gaussian law.

The centering $n(z^2/4 - 1/2)$ is the n multiple of the logarithmic potential of the semi-circle distribution. The case of z = 0 was handled by Tao-Vu, more later.

10/21

Theorem (Augeri-Butez-Z. '20)

Fix $z \in (-2,2) \setminus \{0\}$. Then, the sequence of random variables

$$w_n(z) = \frac{\log |\det(zI_n - J_n/\sqrt{n})| - n(z^2/4 - 1/2)}{\sqrt{v \log n/2}}$$
(3)

converges in distribution to a standard Gaussian law.

The centering $n(z^2/4 - 1/2)$ is the n multiple of the logarithmic potential of the semi-circle distribution. The case of z = 0 was handled by Tao-Vu, more later.

Theorem (Augeri-Z. '22, in progress)

 $\sqrt{v \log n/2} w_n(z)$ converges to a log-correlated Gaussian field.

In GUE case, access to max through R-H methods, Lambert-Paquette '18; also, link to GMC: Berestycki-Webb-Wong '18.

Claeys, Fahs, Lambert, Webb '21: sharp CLT's for counting functions, GMC convergence.

(D) (B) (불) (불) (불) (일)

Ofer Zeitouni Log-cor Jacobi June 2022 10/21

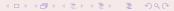
CLT for log determinant $G\beta E$

The case z = 0 is special.

Theorem (Tao-Vu '11)

 $\log M_N(0)/\sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments.



CLT for log determinant $G\beta E$

The case z = 0 is special.

Theorem (Tao-Vu '11)

 $\log M_N(0)/\sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $G\beta E, \beta = 1, 2$.

Ofer Zeitouni Log-cor Jacobi June 2022 11/21

CLT for log determinant $G\beta E$

The case z = 0 is special.

Theorem (Tao-Vu '11)

 $\log M_N(0)/\sqrt{\beta \log N}$ converges (for Wigner matrices, 4 matching moments) to standard Gaussian.

Bourgade-Mody '19: extends w/out matching 4 moments. By replacement principle, the key step in the TV proof is the result for $G\beta E$, $\beta=1,2$. Their proof extends to general $\beta>0$, and is based on recursions.

11/21

The Dumitriu-Edelman representation

Theorem (Dumitriu-Edelman '05)

 X_N from $G\beta E$ is unitarily equivalent to the following 3-diagonal Jacobi matrix

$$\frac{1}{\sqrt{N}}X_N = \frac{1}{\sqrt{N}} \begin{pmatrix} b_1 & a_1 & 0 & \cdots & 0 \\ a_1 & b_2 & a_2 & 0 & \cdots \\ 0 & a_2 & b_3 & a_3 & \mathbf{0} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \mathbf{0} & a_{N-1} & b_N \end{pmatrix}$$

where $b_i \sim N(0, \sqrt{2/\beta})$, $a_i \sim \chi_{i\beta}/\sqrt{\beta}$.

Here $a_i \sim \chi_{i\beta}/\sqrt{\beta}$; here $\chi^2_{i\beta}$ has chi-square distribution with $i\beta$ degrees of freedom, ie $\chi_{i\beta}/\sqrt{\beta} \sim \sqrt{i\beta} + G/\sqrt{2\beta} + O(1/i)$.

12/21

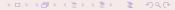
Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top k-by-k block of X_N .



13/21

Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top k-by-k block of X_N . From the 3-diagonal representation,

$$\varphi_k(z\sqrt{N}) = (z\sqrt{N} - b_k)\varphi_k(z\sqrt{N}) - a_{k-1}^2\varphi_{k-1}(z\sqrt{N}), \varphi_{-1} = 0, \varphi_0 = 1.$$



13/21

Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top k-by-k block of X_N . From the 3-diagonal representation,

$$\varphi_k(z\sqrt{N}) = (z\sqrt{N} - b_k)\varphi_k(z\sqrt{N}) - a_{k-1}^2\varphi_{k-1}(z\sqrt{N}), \varphi_{-1} = 0, \varphi_0 = 1.$$

$$\omega_k = z\sqrt{n/k}$$
, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}$ if $k < k_0$, $\alpha(\omega_k) = 1$ if $k \ge k_0$.

13/21

Let $\varphi_k(\cdot)$ denote the characteristic polynomial of the top k-by-k block of X_N . From the 3-diagonal representation,

$$\varphi_k(z\sqrt{N}) = (z\sqrt{N} - b_k)\varphi_k(z\sqrt{N}) - a_{k-1}^2\varphi_{k-1}(z\sqrt{N}), \varphi_{-1} = 0, \varphi_0 = 1.$$

$$\omega_k = z\sqrt{n/k}$$
, $k_0 = z^2n/4$, and $\alpha(\omega_k) = \omega_k/2 + \sqrt{\omega_k^2/4 - 1}$ if $k < k_0$, $\alpha(\omega_k) = 1$ if $k \ge k_0$.

We set

$$\Psi_k(z) = \phi_k(z\sqrt{N}) \frac{1}{\sqrt{k!} \prod_{i=1}^k \alpha(\omega_i)}$$

and then

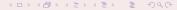
$$\Psi_k(z) = \frac{z\sqrt{N} - b_k}{\sqrt{k}\alpha(\omega_k)} \Psi_{k-1}(z) - \frac{a_{k-1}^2}{\sqrt{k(k-1)}\alpha(\omega_k)\alpha(\omega_{k-1})} \Psi_{k-2}(z).$$

Ofer Zeitouni Log-cor Jacobi June 2022 13/21

Recall that k_0 satisfies $\omega_{k_0}=2$ (if z=0 then $k_0=1$). In matrix form, for $k\geq k_0$,

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} \sim \begin{pmatrix} \omega_{k} & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + \begin{pmatrix} b_{k}/\sqrt{k} & g_{k}/\sqrt{k} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where $\omega_k = z\sqrt{n/k}$, and b_k , g_k are (essentially) iid Gaussian of variance $2/\beta$.



14/21

Recall that k_0 satisfies $\omega_{k_0}=2$ (if z=0 then $k_0=1$). In matrix form, for $k\geq k_0$,

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} \sim \begin{pmatrix} \omega_{k} & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + \begin{pmatrix} b_{k}/\sqrt{k} & g_{k}/\sqrt{k} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where $\omega_k = z\sqrt{n/k}$, and b_k , g_k are (essentially) iid Gaussian of variance $2/\beta$. In the Tao-Vu z=0 case, $\omega_k=0$, and except for perturbation, we have a pure rotation.

Ofer Zeitouni Log-cor Jacobi June 2022 14/21

Recall that k_0 satisfies $\omega_{k_0}=2$ (if z=0 then $k_0=1$). In matrix form, for $k \geq k_0$,

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} \sim \begin{pmatrix} \omega_{k} & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + \begin{pmatrix} b_{k}/\sqrt{k} & g_{k}/\sqrt{k} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where $\omega_k = z\sqrt{n/k}$, and b_k , g_k are (essentially) iid Gaussian of variance $2/\beta$. In the Tao-Vu z=0 case, $\omega_k=0$, and except for perturbation, we have a pure rotation.

Tao-Vu show that $\Psi_k(z)^2 + \Psi_{k-1}(z)^2$ (essentially) forms a martingale with quadratic variation process of increment $\sim 1/k$. This gives the CLT.

Ofer Zeitouni Log-cor Jacobi June 2022 14/21

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_{k}(z) \end{pmatrix} = A_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix} + E_{k} \begin{pmatrix} \Psi_{k}(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where

$$A_k = \begin{pmatrix} \omega_k & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_k(z) \\ \Psi_{k-1}(z) \end{pmatrix}, \quad \omega_k = z\sqrt{n/k}$$

and E_k is a small noise matrix.

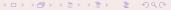
$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_k(z) \end{pmatrix} = A_k \begin{pmatrix} \Psi_k(z) \\ \Psi_{k-1}(z) \end{pmatrix} + E_k \begin{pmatrix} \Psi_k(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where

$$A_k = \begin{pmatrix} \omega_k & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_k(z) \\ \Psi_{k-1}(z) \end{pmatrix}, \quad \omega_k = z\sqrt{n/k}$$

and E_k is a small noise matrix.

The eigenvalues of A_k are roughly $\frac{1}{2}\omega_k \pm \frac{1}{2}\sqrt{\omega_k^2 - 4}$.



Ofer Zeitouni

$$\begin{pmatrix} \Psi_{k+1}(z) \\ \Psi_k(z) \end{pmatrix} = A_k \begin{pmatrix} \Psi_k(z) \\ \Psi_{k-1}(z) \end{pmatrix} + E_k \begin{pmatrix} \Psi_k(z) \\ \Psi_{k-1}(z) \end{pmatrix}$$

where

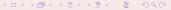
$$A_k = \begin{pmatrix} \omega_k & -1 + 1/2k \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \Psi_k(z) \\ \Psi_{k-1}(z) \end{pmatrix}, \quad \omega_k = z\sqrt{n/k}$$

and E_k is a small noise matrix.

The eigenvalues of A_k are roughly $\frac{1}{2}\omega_k \pm \frac{1}{2}\sqrt{\omega_k^2 - 4}$.

For $k < k_0 = z^2 n/4$, eigenvalues real and smaller that 1.

For $k > k_0$, eigenvalues imaginary, of modulus roughly 1.



Ofer Zeitouni

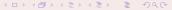
Recursions - general z

There are several regimes to consider. Fix $\epsilon > 0$, recall that $k_0 = z^2 N/4$.

- $k < (1 \epsilon)k_0$: one checks that $\Psi_k(z) \sim 1$.
- $k \in [(1 \epsilon)k_0, k_0]$: write

$$X_k = \Psi_k/\Psi_{k-1} = 1 + \delta_k, \quad X_k = A_k + B_k/X_{k-1}$$

for appropriate A_k , B_k .



16/21

Recursions - general z

There are several regimes to consider. Fix $\epsilon > 0$, recall that $k_0 = z^2 N/4$.

- $k < (1 \epsilon)k_0$: one checks that $\Psi_k(z) \sim 1$.
- $k \in [(1 \epsilon)k_0, k_0]$: write

$$X_k = \Psi_k/\Psi_{k-1} = 1 + \delta_k, \quad X_k = A_k + B_k/X_{k-1}$$

for appropriate A_k, B_k . In this regime, $\delta_k \sim 0$ and one obtains a recursion

$$\delta_k \sim u_k + v_k \delta_{k-1}$$

where, with $\alpha_k = \alpha(\omega_k)$,

$$u_k \sim \frac{b_k}{\sqrt{k\alpha_k^2}} + \frac{1}{2k\alpha_k^2} - \frac{g_k}{\sqrt{k\alpha_k^4}}, \quad v_k = \frac{1 - \frac{1}{2k} + \frac{g_k}{\sqrt{k}}}{\alpha_k^2}.$$

A much finer analysis by Lambert-Paquette: hyperbolic regime (up to $k_0 - k_0^{1/3} (\log k_0)^{2/3}$) arXiv:2001.09042 and edge regime (up to k_0) arxiv:2009.05003.

• $k > k_0$: Oscillatory regime, most interesting.

4 D > 4 D > 4 E > 4 E > 9 Q @

$$X_k = \begin{pmatrix} \Psi_{k+1} \\ \Psi_k \end{pmatrix}, k > k_0.$$

We have

$$X_{k+1} = (A_k + W_k)X_k,$$

where

$$A_k = \left(\begin{array}{cc} \omega_k & -1 + \frac{1}{2k} \\ 1 & 0 \end{array}\right), \ W_k = \left(\begin{array}{cc} \frac{-b_k}{\sqrt{k}} & \frac{g_k}{\sqrt{k}} \\ 0 & 0 \end{array}\right),$$

 $z_k = z \sqrt{rac{n}{k}} = 2 - rac{l}{k_0}$ and $b_k \sim \mathcal{N}(0, 2/eta)$ and $g_k \sim \mathcal{N}(0, 2/eta)$.

$$X_k = \left(egin{array}{c} \Psi_{k+1} \ \Psi_k \end{array}
ight), k > k_0.$$

We have

$$X_{k+1} = (A_k + W_k)X_k,$$

where

$$A_k = \left(\begin{array}{cc} \omega_k & -1 + \frac{1}{2k} \\ 1 & 0 \end{array}\right), \ W_k = \left(\begin{array}{cc} \frac{-b_k}{\sqrt{k}} & \frac{g_k}{\sqrt{k}} \\ 0 & 0 \end{array}\right),$$

 $z_k = z\sqrt{\frac{n}{k}} = 2 - \frac{1}{k_0}$ and $b_k \sim \mathcal{N}(0, 2/\beta)$ and $g_k \sim \mathcal{N}(0, 2/\beta)$.

Eigenvalues of A_k for $k > k_0$ are complex of (essentially) unit norm. Change basis to eigenvector basis, get

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0},$$

where R_i are rotation matrices of angle $\theta_k \sim \sqrt{k/k_0-1}$.

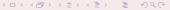
Ofer Zeitouni Log-cor Jacobi June 2022 17/21

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0}$$



$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

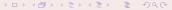
Problems:



$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) Q_{k_{0}}^{-1} \hat{X}_{k_{0}}$$

Problems:

 \bigcirc $Q_{k_0}^{-1}$ has huge norm.

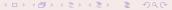


Ofer Zeitouni

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0}$$

Problems:

- $Q_{k_0}^{-1}$ has huge norm.
- Non-commutative product effect on perturbations.



Ofer Zeitouni

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0}$$

Problems:

- \bigcirc $Q_{k_0}^{-1}$ has huge norm.
- Non-commutative product effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0).

Ofer Zeitouni Log-cor Jacobi

18/21

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0}$$

Problems:

- \bigcirc $Q_{k_0}^{-1}$ has huge norm.
- 2 Non-commutative product effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0).

Solution: Recall that $\delta_{k_0-Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis.



Ofer Zeitouni Log-cor Jacobi

18/21

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0}$$

Problems:

- \bigcirc $Q_{k_0}^{-1}$ has huge norm.
- 2 Non-commutative product effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0).

Solution: Recall that $\delta_{k_0-Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis. This means initial conditions are of the form $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, plus small perturbation.

18/21

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0}$$

Problems:

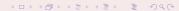
- \bigcirc $Q_{k_0}^{-1}$ has huge norm.
- 2 Non-commutative product effect on perturbations.

Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0).

Solution: Recall that $\delta_{k_0-Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis. This means

initial conditions are of the form $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, plus small perturbation.

In this direction, eigenvalue is small. This is enough to control from *above* the norm at the end of block.



18/21

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) Q_{k_0}^{-1} \hat{X}_{k_0}$$

Problems:

- \bigcirc $Q_{k_0}^{-1}$ has huge norm.
- 2 Non-commutative product effect on perturbations.

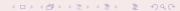
Problem 1: $Q_{k_0}^{-1}$ has huge norm: this is a problem at the first block only (which in fact starts at $k_0 - Ck_0^{1/3}$, not at k_0).

Solution: Recall that $\delta_{k_0-Ck_0^{1/3}}$ is $\sim k_0^{-1/3}$, by scalar analysis. This means

initial conditions are of the form $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$, plus small perturbation.

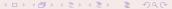
In this direction, eigenvalue is small. This is enough to control from *above* the norm at the end of block.

For lower bound on norm, use anti-concentration.



Problem 2: Noncommutative product - control

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) \hat{Y}_{k_0 + Ck_0^{1/3}}$$



Ofer Zeitouni Log-cor Jacobi

19/21

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1}/3}$$

First order approximation: divide to blocks of length $\ell_{i+1} - \ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i.



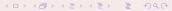
19/21

Ofer Zeitouni Log-cor Jacobi June 2022

Problem 2: Noncommutative product - control

$$\hat{X}_{k} = Q_{k} \prod_{i=k_{0}}^{k-1} Q_{i+1}^{-1} Q_{i} (R_{i} + \hat{W}_{i}) \hat{Y}_{k_{0} + Ck_{0}^{1/3}}$$

First order approximation: divide to blocks of length $\ell_{i+1} - \ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i. Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the norm is not a function of the norm!



19/21

Ofer Zeitouni Log-cor Jacobi June 2022

Problem 2: Noncommutative product - control

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) \hat{Y}_{k_0 + Ck_0^{1/3}}$$

First order approximation: divide to blocks of length $\ell_{i+1} - \ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i. Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the norm is not a function of the norm!

Solution: along block we have $\prod R_i = I$, but the vector $(1,0)^T$ is not mapped to $\rho_i(1,0)^T$ due to the noise. So instead, stop (at random time) where

$$\prod_{i=\ell}^{\ell_{j+1}} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) (1,0)^T \sim \rho_i (1,0)^T.$$

Problem 2: Noncommutative product - control

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) \hat{Y}_{k_0 + Ck_0^{1/3}}$$

First order approximation: divide to blocks of length $\ell_{i+1} - \ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i. Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the norm is not a function of the norm!

Solution: along block we have $\prod R_i = I$, but the vector $(1,0)^T$ is not mapped to $\rho_i(1,0)^T$ due to the noise. So instead, stop (at random time) where

$$\prod_{i=\ell_i}^{\ell_{j+1}} Q_{i+1}^{-1} Q_i \big(R_i + \hat{W}_i \big) (1,0)^T \sim \rho_i (1,0)^T.$$

We have $\ell_{j+1} - \ell_j \sim (k_0/j)^{1/3}$, and variance computation as in sketch.

Problem 2: Noncommutative product - control

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) \hat{Y}_{k_0 + Ck_0^{1/3}}$$

First order approximation: divide to blocks of length $\ell_{i+1} - \ell_i = (k_0/i)^{1/3}$, linearize in each block, and get contribution to variance of order 1/i. Caveat: unlike the case of z = 0, the quadratic variation of the (log) of the norm is not a function of the norm!

Solution: along block we have $\prod R_i = I$, but the vector $(1,0)^T$ is not mapped to $\rho_i(1,0)^T$ due to the noise. So instead, stop (at random time) where

$$\prod_{i=\ell_i}^{\ell_{j+1}} Q_{i+1}^{-1} Q_i \big(R_i + \hat{W}_i \big) (1,0)^T \sim \rho_i (1,0)^T.$$

We have $\ell_{j+1} - \ell_j \sim (k_0/j)^{1/3}$, and variance computation as in sketch. Of course, cannot achieve exactly $(1,0)^T$, but can control error by choosing when to stop.

Problem 2: Noncommutative product - control

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) \hat{Y}_{k_0 + Ck_0^{1/3}}$$

20/21

Problem 2: Noncommutative product - control

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) \hat{Y}_{k_0 + Ck_0^{1/3}}$$

Within a block, linearization is a good approximation:

$$\prod_{j=\ell_i+1}^{\ell_{i+1}} Q_{j+1}^{-1} Q_j ig(R_i + \hat{W}_i ig) = \prod_{j=\ell_i+1}^{\ell_{i+1}} (I + \Delta_j) ig(R_i + \hat{W}_i ig)$$

$$= \sum_{k=\ell_i+1}^{\ell_{i+1}} \mathbf{R_k} (I + \Delta_k + \hat{W}_k) \mathbf{R_k}^{-1} + \text{error terms} = I + \sum_{k=\ell_i+1}^{\ell_{i+1}} \mathbf{R_k} (\Delta_k + \hat{W}_k) \mathbf{R_k}^{-1} + \text{error terms}$$

where $\mathbf{R}_{\mathbf{k}}$ is a rotation by an angle between 0 and 2π .

Problem 2: Noncommutative product - control

$$\hat{X}_k = Q_k \prod_{i=k_0}^{k-1} Q_{i+1}^{-1} Q_i (R_i + \hat{W}_i) \hat{Y}_{k_0 + Ck_0^{1/3}}$$

Within a block, linearization is a good approximation:

$$\prod_{j=\ell_i+1}^{\ell_{i+1}} Q_{j+1}^{-1} Q_j \big(R_i + \hat{W}_i \big) = \prod_{j=\ell_i+1}^{\ell_{i+1}} (I + \Delta_j) \big(R_i + \hat{W}_i \big)$$

$$=\sum_{k=\ell_i+1}^{\ell_{i+1}}\mathbf{R_k}(I+\Delta_k+\hat{W}_k)\mathbf{R_k}^{-1}+\text{error terms}=I+\sum_{k=\ell_i+1}^{\ell_{i+1}}\mathbf{R_k}(\Delta_k+\hat{W}_k)\mathbf{R_k}^{-1}+\text{error terms}$$

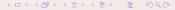
where $\mathbf{R}_{\mathbf{k}}$ is a rotation by an angle between 0 and 2π .

Easy to compute effect of linearization, get that $\rho_i \sim 1 + g_i + c'/i$ where g_i has variance c/i.

Caveat: Complication when blocks get too small - cannot ensure the approximation, e.g. if block is of length 1; But variance is small there, so can combine blocks!

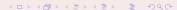
Computing correlation between different z's:

Scalar regime: follows directly from linearized equation.



Computing correlation between different z's:

- Scalar regime: follows directly from linearized equation.
- ② Oscilatory regime: depends on |z z'|. Easy case: $|z z'| > N^{-2/3}$.



Computing correlation between different z's:

- Scalar regime: follows directly from linearized equation.
- Oscilatory regime: depends on |z z'|. Easy case: $|z z'| > N^{-2/3}$.

Recall the blocks: Oscilatory, in block *i* have frequency $i = 1/(\ell_0 - \ell_0) \approx (i/2)^{1/3}$

$$\omega_i := 1/(\ell_{i+1} - \ell_i) \sim (\frac{i}{N})^{1/3}.$$

Computing correlation between different z's:

- Scalar regime: follows directly from linearized equation.
- Oscilatory regime: depends on |z z'|. Easy case: $|z z'| > N^{-2/3}$.

Recall the blocks: Oscilatory, in block *i* have frequency

$$\omega_i := 1/(\ell_{i+1} - \ell_i) \sim (\tfrac{i}{N})^{1/3}.$$

So noise looks like $\sum_{k=\ell_i}^{\ell_{i+1}} \frac{g_k}{\sqrt{k}} \cos(\omega_i(k-\ell_i))$.

21/21

Computing correlation between different z's:

- Scalar regime: follows directly from linearized equation.
- ② Oscilatory regime: depends on |z z'|. Easy case: $|z z'| > N^{-2/3}$.

Recall the blocks: Oscilatory, in block *i* have frequency $\omega_i := 1/(\ell_{i+1} - \ell_i) \sim (\frac{i}{N})^{1/3}$.

So noise looks like $\sum_{k=\ell_i}^{\ell_{i+1}} \frac{g_k}{\sqrt{k}} \cos(\omega_i(k-\ell_i))$. Recall that a given $k > k_0(z)$ translates to block i so that $\ell_i = k - k_0$.

Computing correlation between different z's:

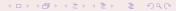
- Scalar regime: follows directly from linearized equation.
- ② Oscilatory regime: depends on |z z'|. Easy case: $|z z'| > N^{-2/3}$.

Recall the blocks: Oscilatory, in block *i* have frequency $(i, i-1)/(\ell_i, i-\ell_i) \approx (\frac{1}{2})^{1/3}$

$$\omega_i := 1/(\ell_{i+1} - \ell_i) \sim (\frac{i}{N})^{1/3}.$$

So noise looks like $\sum_{k=\ell_i}^{\ell_{i+1}} \frac{g_k}{\sqrt{k}} \cos(\omega_i (k-\ell_i))$. Recall that a given

 $k > k_0(z)$ translates to block i so that $\ell_i = k - k_0$. If $|z - z'| \gg N^{-2/3}$ and z' < z, at first block you have i = 1 but $i' = |z - z'|N \gg 1$.



Computing correlation between different z's:

- Scalar regime: follows directly from linearized equation.
- Oscilatory regime: depends on |z z'|. Easy case: $|z z'| > N^{-2/3}$.

Recall the blocks: Oscilatory, in block *i* have frequency $\omega_i := 1/(\ell_{i+1} - \ell_i) \sim (\frac{i}{N})^{1/3}$.

So noise looks like $\sum_{k=\ell_i}^{\ell_{i+1}} \frac{g_k}{\sqrt{k}} \cos(\omega_i(k-\ell_i))$. Recall that a given

 $k > k_0(z)$ translates to block i so that $\ell_i = k - k_0$. If $|z - z'| \gg N^{-2/3}$ and z' < z, at first block you have i = 1 but $i' = |z - z'|N \gg 1$.

Thus $\omega_{i'} \gg \omega_i$ which gives no correlation!

Computing correlation between different z's:

- Scalar regime: follows directly from linearized equation.
- ② Oscilatory regime: depends on |z z'|. Easy case: $|z z'| > N^{-2/3}$.

Recall the blocks: Oscilatory, in block *i* have frequency $(i, i-1)/(\ell_i, i-\ell_i) \sim (\frac{1}{2})^{1/3}$

$$\omega_i := 1/(\ell_{i+1} - \ell_i) \sim \left(\frac{i}{N}\right)^{1/3}.$$

So noise looks like $\sum_{k=\ell_i}^{\ell_{i+1}} \frac{g_k}{\sqrt{k}} \cos(\omega_i(k-\ell_i))$. Recall that a given

$$k > k_0(z)$$
 translates to block i so that $\ell_i = k - k_0$. If $|z - z'| \gg N^{-2/3}$ and $z' < z$, at first block you have $i = 1$ but $i' = |z - z'|N \gg 1$.

Thus $\omega_{i'} \gg \omega_i$ which gives no correlation!

For
$$|z-z'| \ll N^{-2/3}$$
 get correlation until block i corresponding to $\log(|z-z'|N^{2/3})$ which gives log-correlated structure.

