Outils pour utilisateurs

Outils du site


start

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
Prochaine révision
Révision précédente
start [2024/11/26 10:42] thomas2start [2025/11/07 21:14] (Version actuelle) g.m
Ligne 8: Ligne 8:
 Johannes Josi (February 2018). Johannes Josi (February 2018).
  
-Current members: Thomas Blomme, Francesca Carocci, Aloïs Demory, Gurvan Mevel, [[Grigory Mikhalkin|Grigory Mikhalkin]], Antoine Toussaint.+Current members: Thomas Blomme, [[Grigory Mikhalkin|Grigory Mikhalkin]], Antoine Toussaint.
  
-Alumni: Ivan Bazhov, Johan Bjorklund, Rémi Crétois, Weronika Czerniawska, Yi-Ning Hsiao, Jens Forsgard, Maxim Karev, Ilya Karzhemanov, Sergei Lanzat, Michele Nesci, Alina Pavlikova, Mikhail Pirogov, Johannes Rau, Arthur Renaudineau.+Alumni: Ivan Bazhov, Johan Bjorklund, Francesca Carocci, Rémi Crétois, Weronika Czerniawska, Aloïs Demory, Yi-Ning Hsiao, Jens Forsgard, Maxim Karev, Ilya Karzhemanov, Sergei Lanzat, Gurvan Mével, Michele Nesci, Alina Pavlikova, Mikhail Pirogov, Johannes Rau, Arthur Renaudineau.
  
 We organize several seminars: We organize several seminars:
Ligne 28: Ligne 28:
 ====== Seminars and conferences ====== ====== Seminars and conferences ======
 ---- ----
 +
 +  Enzo Pasquereau (Université de Nantes), Monday, Oct 13, 14h00, room 01-15 (Seminaire "Fables Géométriques")
 +
 +"Combinatorial patchworking in codimension 2 and more"
 +
 +Abstract: Combinatorial patchworking is a powerful method used for constructing real algebraic hypersurfaces with controlled topology. I will discuss generalization of this method to higher codimension using real phase structure.
 +In codimension 2, we give explicit patchworking rules (based on triangulations, sign distributions, and edge orientations) similar to Viro's original formulation for hypersurface.
 +As an application, we obtain families of maximal T-curves in real projective 3-space. For higher codimension, we derive new bounds on the number of connected components and prove non-existence of maximal T-curves (for codimension >3) and of high codimension T-surfaces. 
 +
 +  Joé Brendel (ETHZ), Friday, Feb 21, 15h15, room 6-13 (Seminaire "Fables Géométriques")
 +
 +"Split tori in S^2 x S^2, billiards and ball-embeddability"
 +
 +Abstract: In this talk we will discuss the symplectic classification of Lagrangian tori that split as circles in S^2 x S^2. As it turns out, this classification is equivalent to playing mathematical billiards on a rectangular table. This has many interesting applications, for example to Lagrangian packing and the topological study of the space of Lagrangians. We will focus on one application in particular, asking which Lagrangian tori are contained in the image of a symplectic ball embedding. There are many open questions of more general interest surrounding this property of "ball-embeddability" of Lagrangians, which we will discuss at the end of the talk. This is joint work with Joontae Kim. 
 +
 +  Gurvan Mével (UNIGE), Wednesday, Feb 19, 14h00, room 1-07 (Seminaire "Fables Géométriques")
 +
 +"Floor diagrams and some tropical invariants in positive genus"
 +
 +Abstract : Göttche-Schroeter invariants are a rational tropical refined invariant, i.e. a polynomial counting genus 0 curves on toric surfaces, that can be computed with a floor diagrams approach. In this talk I will explain that this approach extends in any genus. This gives new invariants, related to ones simultaneously defined by Shustin and Sinichkin. I will then say few words on a quadratically enriched (and not refined !) version of this extension.
 +
 +
 +  Uriel Sinichkin (Tel-Aviv), Wednesday, Feb 5, 14h00, room 1-07 + Zoom (Seminaire "Fables Géométriques")
 +
 +"Refined Tropical Invariants and Characteristic Numbers"
 +
 +Abstract: In this talk I will present a generalization of Goettche-Schroeter and Schroeter-Shustin refined counts of tropical curves that splits to a product of terms on small fragments of the curves. This count is invariant in each of the following situations: either genus at most one, or a single contact element, or point conditions in Mikhalkin position. I will compare our results to Mével’s floor diagram approach, and discuss the specialization of the count at q=1, which recovers certain characteristic numbers. 
 +
 +
 +  Thomas Blomme (Neuchâtel), Friday, Jan 31, 14h00, room 1-07 (Seminaire "Fables Géométriques")
 +
 +"Une preuve courte d’une formule de revêtement multiple"
 +
 +Abstract: Enumérer les courbes de genre g passant par g points dans une surface abélienne est un problème naturel, et d’une difficulté surprenamment inégale en fonction du degré des courbes étudiées. Pour les degrés « primitifs », il est aisé d’obtenir une formule close par une résolution simple et explicite. Pour les classes « divisibles », une telle résolution est en revanche assez fastidieuse et souvent hors de portée. Pour autant, les invariants de ces dernières s’expriment aisément en fonction des invariants primitifs au travers de la formule de revêtement multiple, conjecturée par G. Oberdieck. Dans cet exposé, on va montrer comment la géométrie tropicale permet de prouver cette formule en esquivant toute forme concrète d’énumération.
 +
 +
 +  Ajith Urundolil-Kumaran (Cambridge), Wednesday, Dec 11, 14h00, room 06-13 (Seminaire "Fables Géométriques")
 +
 +"Tropical correspondence theorems, Scattering diagrams and Quantum Mirrors"
 +
 +Abstract: The mirror algebras constructed in the Gross-Siebert program come with a natural trace pairing. The Frobenius conjecture gives an enumerative interpretation for this pairing. In the Log Calabi-Yau surface case there exists a deformation quantization of the mirror algebra. We prove a quantum version of the Frobenius conjecture by interpreting it as a refined tropical correspondence theorem. This is joint work with Patrick Kennedy-Hunt and Qaasim Shafi.
 +
  
   Marvin HAHN (Dublin), Wednesday, Dec 4, 14h00, room 06-13 (Seminaire "Fables Géométriques")   Marvin HAHN (Dublin), Wednesday, Dec 4, 14h00, room 06-13 (Seminaire "Fables Géométriques")
start.1732614158.txt.gz · Dernière modification : de thomas2