start
Différences
Ci-dessous, les différences entre deux révisions de la page.
| Les deux révisions précédentesRévision précédenteProchaine révision | Révision précédente | ||
| start [2025/02/07 16:01] – [Seminars and conferences] g.m | start [2025/11/07 21:14] (Version actuelle) – g.m | ||
|---|---|---|---|
| Ligne 8: | Ligne 8: | ||
| Johannes Josi (February 2018). | Johannes Josi (February 2018). | ||
| - | Current members: Thomas Blomme, Francesca Carocci, Aloïs Demory, Gurvan Mével, [[Grigory Mikhalkin|Grigory Mikhalkin]], | + | Current members: Thomas Blomme, [[Grigory Mikhalkin|Grigory Mikhalkin]], |
| - | Alumni: Ivan Bazhov, Johan Bjorklund, Rémi Crétois, Weronika Czerniawska, | + | Alumni: Ivan Bazhov, Johan Bjorklund, Francesca Carocci, Rémi Crétois, Weronika Czerniawska, Aloïs Demory, Yi-Ning Hsiao, Jens Forsgard, Maxim Karev, Ilya Karzhemanov, |
| We organize several seminars: | We organize several seminars: | ||
| Ligne 29: | Ligne 29: | ||
| ---- | ---- | ||
| - | Joé Brendel (ETHZ), Friday, Feb 21, 14h00, room 6-13 (Seminaire " | + | |
| + | |||
| + | " | ||
| + | |||
| + | Abstract: Combinatorial patchworking is a powerful method used for constructing real algebraic hypersurfaces with controlled topology. I will discuss generalization of this method to higher codimension using real phase structure. | ||
| + | In codimension 2, we give explicit patchworking rules (based on triangulations, | ||
| + | As an application, | ||
| + | |||
| + | | ||
| "Split tori in S^2 x S^2, billiards and ball-embeddability" | "Split tori in S^2 x S^2, billiards and ball-embeddability" | ||
start.1738940484.txt.gz · Dernière modification : de g.m
