Outils pour utilisateurs

Outils du site


fables

Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentesRévision précédente
fables [2022/06/20 15:46] g.mfables [2022/06/20 15:52] (Version actuelle) g.m
Ligne 13: Ligne 13:
 Abstract: The highly non-trivial stable homotopy groups of the Waldhausen’s Abstract: The highly non-trivial stable homotopy groups of the Waldhausen’s
 h-cobordism space inject into the homotopy groups of spaces of appropriate Legendrian submanifolds. For instance,  there is  a  homotopically non-trivial 2-parametric family of Legendrian unknots in ${\mathbb R}^{2n+1}$ for a sufficiently large $n$. This is a joint work with Thomas Kragh. h-cobordism space inject into the homotopy groups of spaces of appropriate Legendrian submanifolds. For instance,  there is  a  homotopically non-trivial 2-parametric family of Legendrian unknots in ${\mathbb R}^{2n+1}$ for a sufficiently large $n$. This is a joint work with Thomas Kragh.
----- 
-  Monday, Dec, 20th, 16h15 - 18h15 
-   
-**On the asymptotics of Arakelov invariants** 
  
-We will discuss the asymptotics of invariants of Riemann 
-surfaces motivated by Arakelov theory. These invariants play a 
-fundamental role in bounds for the number of geometric torsion points on 
-curves. We will show that their asymptotic behaviour in families of 
-degenerating Riemann surfaces is controlled by their tropical counterparts. 
 ---- ----
   Fri 17.12.2021, 13h30, room 6-13   Fri 17.12.2021, 13h30, room 6-13
fables.txt · Dernière modification : 2022/06/20 15:52 de g.m