
Chapter 1

A guide to tropical modifications

Substance is by nature prior to its modifications.
... nothing is granted in addition to the understanding,

except substance and its modifications.
Ethics. Benedictus de Spinoza.

This is a draft of an expository chapter in my thesis. I would be really glad to receive any
comments and suggestions (Nikita.Kalinin at unige.ch). Probably, this text is intended to be
published somewhere, but definitely not in this state and not soon. If you know some appear-
ance of tropical modification, not mentioned here, or some practical advices about the exposi-
tion, or any questions, do not hesitate to contact me. The most recent version is available at
https://https://www.unige.ch/math/tggroup/lib/exe/fetch.php?media=guide.pdf

This chapter is dedicated to tropical modifications, which have already become a folklore in
tropical geometry. Tropical modifications are used in tropical intersection theory and in study of
singularities. They admit interpretations in various contexts such as hyperbolic geometry, Berkovich
spaces, and non-standard analysis.

We cite [10]: “Tropical modifications ... can be seen as a refinement of the tropicalization process,
and allows one to recover some information about X sensitive to higher order terms.”

One must say that the name “modification” is used in two different senses: the modification as
a well-defined operation; and a modification along X as a method that reveals a behaviour of other
varieties in an infinitesimal neighborhood of X. Namely, performing the modification of Y along
X ⊂ Y , we know how Y changes, but the objects of codimension 1 in Y may behave differently,
depending on their behavior near X. We will clarify this distinction with examples.

Our main goal is to mention different points of view, give references, and demonstrate the abilities
of tropical modifications. We assume that the reader have already met “tropical modifications”
somewhere and wants to understand them better. There are novelties here: a tropical version of
Weil’s reciprocity law and the study of non-transversal intersections. For a preliminary introduction
to tropical geometry, see [8], [9] and [31], where tropical modifications are also discussed. We are
glad to mention other texts, promoting modifications from different perspectives: [10] (examples,
construction of curves with inflection points), [3] (repairing the j-invariant of elliptic curves), and
[40] (intersection theory on tropical surfaces).

We define of tropical modifications via multivalued operations. Then we discuss several examples
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indicating principal features of the following observations. Then we obtain several structure theorems
and list the set of applications. In Section 1.3 we summarize the interpretations of the tropical
modifications, so a curious reader may start there and only after it return to Section 1.0.1.

1.0.1 Definition: tropical modification via the graphs of functions

Recall that the tropical semi-ring T is defined as T = R∪{−∞}, with the operation addition (“+”)
and order as for the real numbers, we extend addition by the rule −∞+A = −∞ for all A ∈ T, and
the order by the rule −∞ < A for all A ∈ R. The fastest way to define the tropical modifications is
via multivalued tropical addition.

Definition 1.0.1. [45]. Define tropical addition +trop and multiplication ·trop on the set T as
follows:

• A ·trop B = A+B,

• A+trop B = max(A,B) if A 6= B, and

• A+trop A = {x|x ≤ A}.

We can say, equivalently, that the operation max is redefined to be multivalued in the case of
equal arguments, i.e. max(A,A) = {X|X ≤ A}.

Definition 1.0.2. A tropical monomial is a function f : Tn → T, f(X1, X2, . . . , Xn) = A+ i1X1 +
i2X2+ · · ·+ inXn, where A ∈ T, (i1, i2, . . . , in) ∈ Zn. A tropical polynomial is a tropical sum (i.e. we
use the operation +trop) of a finite number of tropical monomials. A point X ′ = (X1, X2, . . . , Xn)
belongs to the zero set of a tropical polynomial f if 0 ∈ f(X ′). A tropical hypersurface (as a set) is
the zero set of a tropical polynomial on Tn.

Remark 1.0.3. In order to have the balancing condition satisfied, one has to provide a tropical
hypersurface with weights on its faces of the maximal dimension. We assume that the reader
understands how to do it.

We suppose that the reader knows the definition of an abstract tropical variety, if it is not the
case, refer to [30].

Definition 1.0.4. Let V be a tropical hypersurface in Tn, let f be a tropical polynomial on Tn and
W be the zero set of f . The modification of Tn along W is the set mW (Tn) = {(X,Y ) ∈ Tn×T|Y ∈
f(X)}, i.e. the graph of the multivalued function f . We call a tropical subvariety V ′ ⊂ mW (Tn) a
modification of V if the natural projection p : Tn × T→ Tn restricted to V ′ is a tropical morphism
p : V ′ → V of degree one.

Proposition 1.0.5 ([30], 1.5 B,C). The set mW (Tn) coincides with the zero set of the polynomial
f(X) +trop Y : Tn × T→ T.

Definition 1.0.6. For an abstract tropical variety Z and its subvariety W ⊂ Z defined by a tropical
(multivalued) function f : Z → T, we define the tropical modification mW (Z) of Z along W as the
graph of f in Z×T. A subvariety V ′ ⊂ mW (Z) is called a modification of V along W if the natural
projection V ′ → V is of degree one.
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Now we explain how the given definitions appear through limiting procedures. Consider two
algebraic curves C1, C2 ⊂ (C∗)2 defined by equations F1(x, y) = 0, F2(x, y) = 0, respectively. We
build the map mC2 : (x, y) → (x, y, F2(x, y)) ∈ (C∗)3. The set mC2((C∗)2) is the graph of F2,
z = F2(x, y). Now the intersection C1∩C2 can be easily recovered as mC2(C1)∩{(x, y, 0)} = {z = 0}.
For the complex curves this seems to be not very interesting, but during the tropicalization process
the plane (x, y, 0) goes to the plane (X,Y,−∞) = {Z = −∞}, and the intersection of tropical curves
will be represented by certain rays going to minus infinity by Z coordinate.

We look now on the limiting procedure. Given two tropical curves C1, C2 ⊂ T2, we start with
C1,t, C2,t – two families of plane algebraic curves, which tropicalize to C1, C2, i.e., in the Gromov-
Hausdorff sense we have

C1 = lim
t→∞

Logt(C1,t), C2 = lim
t→∞

Logt(C2,t),

where we apply Logt : C → T coordinate-wise, i.e. Logt(C1) = {(logt(|x|), logt(|y|))|(x, y) ∈ C1}.
Let F2,t be the equation of C2,t.

Proposition 1.0.7. The tropical modification mC2T2 of T2 along C2 is the limit of surfaces St =
Logt{(x, y, F2,t(x, y)) ∈ C3|x, y,∈ C∗}, i.e. mC2T2 = limt→∞ St.

Proposition 1.0.8. The tropical limit of the curves mC2,t(C1,t) ⊂ mC2,t((C∗)2), i.e. mC2C1 =
limt→∞ LogtmC2,t(C1,t), is a tropical modification mC2C1 of C1.

Eventhough the families C1,t, C2,t are included in the data, the graph mC2T2 does not depend on
this choice. However, for given tropical curves C1, C2 we can construct different families C1,t, C2,t

and the result mC2C1 can be different.
Note that we always suppose that an algebraic hypersurface comes with a defining equation.

Also, instead of taking the limit we can consider non-Archimedean amoebas of the varieties defined
over valuation fields.

Definition 1.0.9. Let V ⊂ (K∗)n be a variety over a valuation field K. Let W ⊂ (K∗)n be an
algebraic hypersurfaces defined by an equation f(x) = 0, x ∈ (K∗)n. The modification mW (V ) is the
non-Archimedean amoeba of the set {(x, f(x)|x ∈ (K∗)n)} ⊂ (K∗)n+1. The modification of Val(V )
along Val(W ) is the non-Archimedean amoeba of {(x, f(x)|x ∈ V } ⊂ (K∗)n+1.

Note that given only tropical curves C1, C2 it is often not possible to uniquely “determine” the
image of C1 after the modification along C2. Still, as it is proved below (and equivalent to the tropical
Weil reciprocity law), we know the sum of coordinates of all the legs of mF2(C1) going to minus
infinity by Z -coordinate, i.e. for each connected component C of C1 ∩ C2 we know the valuation
of the product of intersections of C1, C2 which are tropicalized to C, just looking on behavior of C1

and C2 near C.
That is why a modification of a curve along another curve is rather a method. The strategy is

the following: given two tropical curves, we lift them in a non-Archimedean field (or present them
as limits of complex curves, that is the same), then we construct the graph as above and tropicalize
the result. Depending on the conditions we imposed on lifted curves (be smooth or singular, be
tangent to each other, etc), we have a set of possible results for modification of one curve along the
second, see examples below.
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1.0.2 Examples.

In this section we calculate examples of the modification, treated as a method.You should not be
scared with these horrific equations, they are reverse-engineered, starting from the pictures. All the
calculations are quite straightforward.

First of all, we consider how modifications resolve indeterminacy that happens when the inter-
section of tropical objects is non-transversal. Also this example promotes the point of view that a
tropical modification is the same as adding a new coordinate.

In the second example, a modification helps to recover the position of the inflection point. Also,
the usefulness of the tropical momentum is demonstrated. The tropical Weil theorem which shortens
the combinatorial descriptions of possible results of a modification is proved in Section 1.1.1.

In the third example we study the influence of a singular point on the Newton polygon of a
curve. The same method suits for higher dimension and different types of singularities, but nothing
is yet done there, due to complicated combinatorics. In the same example we describe how to find
all possible valuations of the intersections of a line with a curve, knowing only their stable tropical
intersection – the answer is Vieta theorem. The same arguments may be applied for non-transversal
intersections of tropical varieties of any dimension.

Example 1.0.10. Modification, root of big multiplicity, Figure 1.1a.
In this example we see two tropical curves with non-transverse intersection which hides tangency

and genus. Consider the plane curve C, given by the following equation: F (x, y) = 0,

F (x, y) = (x− t1/3)3(x− t−2) + t−4xy2 + (t−4 + 2t−5)xy + (t−5 + t−6)x.

Its tropicalization1 is the curve, given by the set of non-smooth points of

Trop(F ) = max(1, 6 + x, 5 + x+ y, 4 + x+ 2y, 5/3 + 2x, 2 + 3x, 4x).

We want to know what is the intersection of C with the line L given by the equation y + t−1 = 0.
Tropicalizations of C and L are drawn on Figure 1.1a, below, as well as the Newton polygon of C.
The intersection is not transverse, hence we do not know the tropicalization of C ∩ L.

Then, let us consider the map mL : (x, y) → (x, y, y + t−1). On Figure 1.1a, in the middle,
we see the tropicalization of the set {(x, y, y + t−1)} and the tropicalization of the image of C
under the map mL. Let G(x, z) be the equation of the projection of mL(C) on the xz-plane.
So, F (x, y) = 0 implies that for the new coordinate z = y + t−1 we have G(x, z) = 0, G(x, z) =
(x − t1/3)3(x − t−2) + t−4xz + t−4xz2. Therefore the curve C ′ = prxzmL(C) is given by the set of
non-smooth points of max(1, 4 +X + Y, 4 +X + 2Y, 2 + 3X, 4X), we see C ′ on the projection onto
the plane XZ on the left part of Figure 1.1a. One can notice, that in order to have transversal
intersection of non-Archimedean amoebas we did nothing else as a change of coordinates.

Definition 1.0.11. As we see in this example, a tropical curve in Tn typically contains infinite
edges. We call them legs of a tropical curve. For each leg we have a canonical parametrization
(a0 + p0s, a1 + p1s, a2 + p2s) where ai ∈ R, pi ∈ Z, s ∈ R, s ≥ 0, where the vector (p0, p1, p2), the
direction of the leg, is primitive.

1One can think that we have a family of curves Ct with parameter t and its tropicalization is the limit of amoebas
limt→0 Logt({(x, y)|F (x, y) = 0}), or that we have a curve C over Puiseux series C{{t}} = K given by

∑
aijx

iyj =
0, aij ∈ K. Its non-Archimedean amoeba is given by the set of non-smooth points of the function maxij(val(aij) +
ix + jy). Both ways lead to the same result.
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(a) Initial picture is below.In the center we see
the limit of the graphs of the functions F2,t. On
the picture behind we see the projection of the
graph to the plane XZ. Numbers on the edges
are the corresponding weights.

1

3

1

3 • • • • •

•
•

(b) Notation is the same as for the picture on
the left. We see the result of the modification in
the case when the stable intersection is the actual
intersection. The Newton polygon of the curve C
is depicted below.

Figure 1.1: Example of a modification along a line
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Now, on the tropicalization of C ′ we see a vertical leg of of weight 3, i.e. z coordinate is zero at
this point. That happens because we have the tangency of order 3 between C and L, and z as a
function of x has a root of order 3.

Note that this leg can not mean the point is a singular point of C, because the curve C (according
to criteria of [26] or, more generally [18]) has no singular points, eventhough the tropicalization of
C has an edge of multiplicity 3.

Thus, this new tropicalization restores the valuations of intersection. We see that the modifica-
tion of the plane (i.e. amoeba of the set {(x, y, y + t−1)}) is defined, but in codimension one this
procedure shows order of roots and more unapparent structures like hidden genus. One can think
that this cycle was close to intersection, but after change of coordinates it becomes visible on the
picture of the amoeba of C ′.

Remark 1.0.12. Nevertheless, for a general choice of representative in Puiseux series for these two
tropical curves Trop(C),Trop(L), after modification we will have Fig. ??, which represents stable
intersection of the curves.

Example 1.0.13. Modification, inflection point, momentum map.
We consider a curve and its tangent line at an inflection point. Suppose, that the intersection

of their tropicalizations is not transverse. How can we recover the presence of the inflection point?

We consider a curve C with the equation F (x, y) = 0 where

F (x, y) = y+t−3xy+(t−1+4+6t+4t2+t3)x2+(−t−3−3−t−t2)xy2+(t−2−t−1−2+t2+t3)x2y+x2y2,

and a line L with the equation y = 1 + tx. The equation of the curve is chosen just in such a the
way that the restriction of F on the line L is t2(x − 1)3(x − t−1), i.e. the point (1, 1 + t) is the
inflection point of the curve and L is tangent to C at this point.

Tropicalization of the curve is given by the following equation:

Trop(F ) = max(y, x+ y + 3, 2x+ 1, 2x+ y + 2, x+ 2y + 3, 2x+ 2y). (1.1)

On the Fig. 1.2.1 we see the non-Archimedean amoeba of the image of the curve under the map
(x, y)→ (x, y, y − 1− tx).

In order to find X-coordinates of the possible legs we can apply the tropical momentum: see
Fig.1.1.2.

Definition 1.0.14. The moment of a leg (A0 + P0s,A1 + P1s,A2 + P2s) with respect to a point
(B0, B1, B2) is the vector product (A0 −B0, A1 −B1, A2 −B2)× (P0, P1, P2).

We will prove a (simple) theorem that the sum of the moments of the legs, counted with their
weights, is zero. Note, that in our case, all the legs we do not know are of the form (X,Y, Z0 − s),
because they are vertical. So, we take the vertex O of the tropical plane, and sum up the vector
products OXi × XiYi where XiYi are blue edges (which we know),beige, black, and green edges
(which are projected to points on the initial curve). Computation gives us (−4, 0, 0) × (−1, 1, 1) +
(−4, 0, 0)× (0,−1, 0) + (0,−1, 0)× (−1,−1, 0) + (0,−1, 0)× (1, 0, 1) + (2, 2, 2)× (1, 0, 1) + (2, 2, 2)×
(0, 1, 1) + (X, 0, 0)× (0, 0,−1) + (0, Y, 0)× (0, 0,−1) + (Z + 1, Z, 0)× (0, 0,−1) = 0, i.e. (1,−2, 0) +
(Y + Z + 1, X + Z, 0) = 0, where X stands for the sum of the X-coordinates of the legs under the
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x

z

x
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(a) Application of the tropical
moment: we know the direction
of the infinite blue rays ema-
nating from the tropical curve,
therefore an application of trop-
ical momentum gives the sum
of x- and y- coordinates of legs,
going vertically to the bottom
(these legs present exactly the
intersection of two considered
curves.)

Figure 1.2: Example of modification in the case of inflection point. The point (0, 0) on the bottom
picture is the tropicalization of the inflection point.
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line (1 − s, 0, 0), Y stands for the sum of the Y -coordinates of the legs under the line (1,−s, 0), Z
stands for the sum of the Y -coordinates of the legs under the line (1, s, s).

On the left picture we see that in fact we have one beige leg (which represent the inflection
point), one green leg, and no black legs. But, since modification of a tropical curve C along a
tropical curve C ′ is not canonically defined2.

For example, a modification of these tropical curves could differ from the initial curve by adding
vertical legs at four vertices of the blue curve: this would correspond to stable intersection (which
is always realizable in the sense that there exist curve in Puiseux series, such that, etc.)

Example 1.0.15. Singular point, its unique position, and possible liftings of intersection
Consider a curve C ′ defined by the equation G(x, y) = 0, where

G(x, y) = t−3xy3 − (3t−3 + t−2)xy2 + (3t−3 + 2t−2 − 2t−1)xy − (t−3 + t−2 − 2t−1 − 3t2)x+

+ t−2x2y2 − (2t−2 − t−1)x2y + (t−2 − t−1 − 3t2)x2 + t−1y − (t−1 + t2) + t2x3.

(A)

d(A1) d(A2) d(A3)

(B)

•
A1 •

P
•
A2 •

A3

1

1 + Y
3 +X + 3Y

3 +X 2 + 2X 3X − 2

2 + 2X + 2Y

(C)

Figure 1.3: The extended Newton polyhedron Ã of the curve C ′ is drawn in (A). The projection of
its faces gives us the subdivision of the Newton polygon of C ′; see (B). The tropical curve Trop(C ′)
is drawn in (C). The vertices A1, A2, A3 have coordinates (−2, 0), (1, 0), (4, 0). The edge A1A2 has
weight 3, while the edge A2A3 has weight 2. The point P is (0, 0) = Val((1, 1)).

Let us make the modification along the line y = 1. For that we draw the graph of the function
z(x, y) = y − 1.

Note that we can easily find the number (with multiplicities) of the vertical legs. Indeed, each
edge from A1, A2, A3 going up in direction (i, j) becomes after the modification a ray going in the
direction (i, j, j), therefore, the total moment of the vertical legs is the sum of y-moments of the
edges going up from A1, A2, A3, that is, 3. Then, if we know that after the modification our curve has
a leg of multiplicity 3, then its unique position can be found from the tropical momentum theorem.

2If the intersection C ∩ C′ is transverse, then the modification is uniquely defined.
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1.1 Some structural theorems about tropical modification

Proposition 1.1.1. Suppose that a horizontal edge E contains a point P . Suppose that on the
dual subdivision of the Newton polygon the vertical edge d(E) is dual to E. Let the endpoints of
E be A1, A2 and two faces d(A1), d(A2) adjacent to d(E) have no other vertical edges. Let the sum
of widths of the faces d(A1), d(A2) equals to m. Then the stable intersection of E with a horizontal
line through E is m.

Proof. Refer to Example 1.0.15 and Figure 1.1b. Let L be a tropical line containing E and with
vertex not coinciding with the endpoints of E. Making the modification along the line l we see
that the sum S of vertical components of edges going upward from A1, A2 equals the sum m of the
y-components of them.

Then, the sum of vertical components of edges going downward equals S by the balancing
condition for tropical curves. Sum of y-components of edges in the vertex v is exactly the width in
the (1, 0) direction of the dual to v face d(v) in the Newton polygon.

Here we repeat some definitions from Section ?? (see also [18]).
The multiplicity m(P ) of the point P of the intersection of two lines in directions u, v ∈ P (Z2)

is |u1v2 − u2v1| where u ∼ (u1, u2), v ∼ (v1, v2) (Def. ??).
Given two tropical curves A,B ⊂ T2 we define their stable intersection as follows. Let us choose

a generic vector v. Then we consider the curves TtvA where t ∈ R, t → 0 and Ttv is translation by
the vector tv. For a generic small positive t, the intersection TtvA∩B is transversal and consists of
points P t

i , i = 1, . . . , k with multiplicities m(P t
i ).

Definition 1.1.2 (cf. [38]). For each connected component X of A ∩ B, we define the local stable
intersection of A and B along X as A ·X B =

∑
im(P t

i ) for t close to zero, where the sum runs
over {i| limt→0 P

t
i ∈ X}. For a point Q ∈ A, we define A ·Q B as A ·X B, where X is the connected

component of Q in the intersection A ∩B.

Theorem 1.1.3. For two curves C1, C2 ∈ K2 we consider a connected component X of the inter-
section Trop(C1) ∩ Trop(C2). Then,

∑
x∈C1∩C2,Val(x)∈X m(x) = Trop(C1) ·X Trop(C2) where m(x)

is the multiplicity of the point x in the intersection C1 ∩ C2.

Proof. Consider the equation F (x, y) = 0 of C2. We construct the non-Archimedean amoeba mC2C1

of {(x, y, F (X, y)|(x, y) ∈ C1)}. Then Trop(C1) ·X Trop(C2) is the sum of the weights of the vertical
legs of mC2C1 under X. The latter is equal to

∑
x∈C1∩C2,Val(x)∈X m(x).

1.1.1 Tropical Weil reciprocity law and the tropical momentum map

The aim of this section is to establish another fact in tropical geometry, obtained by word-by-word
repetition of a fact in classical algebraic geometry. Weil reciprocity law can be formulated as

Theorem 1.1.4. Let C be a complex curve and f, g are two meromorphic functions on C with
disjoint divisors. Then

∏
x∈C

f(x)ordgx =
∏
x∈C

g(x)ordfx, where ordfx is the minimal degree in the

Taylor expansion (in local coordinates) of the function f at a point x: f(z) = a0(z−x)ordfx +a1(z−
x)ordfx+1 + . . . , a0 6= 0.
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Remark 1.1.5. The products in this theorem is finite because ordgx, ordfx equal to zero everywhere
except finite number of points.

Definition 1.1.6. If f and g share some points in their zeros and poles sets, then we state this

theorem as
∏
x∈C

[f, g]x = 1 and define the term [f, g]x = “f(x)ordgx

g(x)
ordf x ” = amn

bnm
· (−1)nm at a point x, where

f(z) = an(z − x)n + . . . , g(z) = bm(z − x)m + . . . are the Taylor expansions at the point x.

Khovanskii studied various generalizations of the Weil reciprocity law and reformulated them in
terms of logarithmic differentials [21], [22],[23]. The final formulation is for toric surfaces and seems
like a tropical balancing condition, what is, indeed, the case. The symbol [f, g]x is related with
Hilbert character and link coefficient, and is generalized by Parshin residues. Mazin treated them
[27] in geometric context of resolutions of singularities3.

In order to study what happens after a modification we consider a tropical version of Weil
theorem. We need to define tropical meromorphic function and ordfx, see also see [31].

Definition 1.1.7 ([30]). A tropical meromorphic function f on a tropical curve C is a piece-wise
linear function with integer slope. The points, where the balancing condition is not satisfied, are
poles and zeroes, and ordfx is the defect in the balancing condition by definition.

Example 1.1.8. The function f = max(0, 2x) on TP 1 has a zero of multiplicity 2 at 0, i.e. ordf (0) =
2 and ordf (+∞) = −2.

Theorem 1.1.9. Let C be a tropical curve and f, g are two meromorphic tropical functions on C.
Then

∑
x∈C

f(x) · ordgx =
∑
x∈C

g(x) · ordfx.

Example 1.1.10. Let C be CP 1 and f, g are polynomials f(x) = A
∏n

i=1(x−ai), g(x) = B
∏m

j=1(x−
bj) with ai 6= bj . Then,

∏
x∈C

g(x)ordfx = Bnm
∏n,m

i=1,j=1(ai − bj), for the second product we have

Anm
∏n,m

i=1,j=1(bj−ai) and the difference is corrected by the term [f, g]∞, because f, g have a common
pole there, see Def. 1.1.6.

Word-by-word repetition proves this case in tropical context because a tropical polynomial f :
T→ T can be presented as f(x) =

∑
max(ai, x) where ai are the roots of f .

For the general statement there are many proofs (and one can proceed by studying piece-wise
linear functions on a graph), we give here the shortest4 one, via so-called tropical momentum.

Suppose C is a planar tropical curve, its infinite edges are E1, . . . , Ek with directions given by
primitive5 integer vectors v1, . . . , vn. Suppose that each edge Ei has weight wi and the direction of
each vi is chosen to be ”to infinity” (there are two choices and for us the orientation of vi will be
important). Let A be a point on the plane. Let EBi be the perpendicular from A to the line li
containing Ei and Bi ∈ li.

3Unfortunately, tropical analog of this problem has no big interest: Parshin residues are destined for non-transversal
intersection, in order to define local residues. That suggests that Mazin’s resolution of singularities is a classical version
of tropical modifications. Probably, tropical approach can repeat classical results, and better visualize the different
types of non-transversality for higher-dimensional varieties.

4And which is using tropical modification
5i.e. non-multiple of another integer vector
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Definition 1.1.11. (Due to G. Mikhalkin) Tropical momentum for the point A with respect to C
is given by ρC(A) =

∑
det(vi, ABi) · wi.

Lemma 1.1.12. If a tropical curve C has only one vertex, then ρC(A) = 0 for any point A on the
plane.

Proof. First of all, ρC(A) does not depend on point A, because if we translate A by some vector u,
each summand in ρC(A) will change by det(vi, u) ·wi and the sum of changes is zero because of the
balancing condition. Therefore, ρ(A) = 0, because we can place A in the vertex of this curve.

Lemma 1.1.13. For an arbitrary plane tropical curve C and each point A in the plane ρC(A) = 0

Proof. Note that the moment for a curve is the sum of moments for all vertices (a summand cor-
responding to an edge between two vertices will appear two times with different signs). So, this
lemma follows from the previous one.

Definition 1.1.14. We consider a tropical curve C ⊂ T3. Let e1, e2, . . . , en be its infinite edges.
We define the moment of C with respect to A as ρ(A) =

∑n
i=1(vi × ABi) · wi where × stands for

the vector product, vi is the primitive vectors of an edge ei, wi is the weight of ei and Bi is a point
on ei.

Theorem 1.1.15. For a tropical curve C ⊂ T3 and any point A, the tropical moment ρ(A) of C
with respect to A is zero.

Proof. The same as in the planar case, we show that ρ(A) does not depend on A because of the
balancing condition, if C has only one vertex, then the claim is trivial, in general case we sum up
by all the edges, and the terms for internal edges appear two times with different signs.

This remark was demonstrated in Example 1.0.13.

1.1.2 Application of the tropical momentum to modifications.

Example 1.1.16. Consider the graph of a tropical polynomial f(x) = max(a0, a1+X, . . . , an+nX).
Suppose that we know only a0 and an. Definitely, the positions of the roots of f may vary, being
dependent on the coefficients of f . Nevertheless, we can apply the tropical momentum theorem for
the graph of f . We will calculate the moment with respect to (0, 0). This graph has one infinite
horizontal edge with moment a0 and one edge of direction (1, n) with the moment −an. Also, for
each root pi ∈ T of f we have an infinite vertical edge with the moment −pi. Application of the
tropical moment theorem gives us

∑
pi = a0 − an, which is simply a tropical version of the Vieta

theorem — the product of the roots of a polynomial
∑n

i=1 aix
i is a0/an.

On the Fig. ??,1.2.1, a priori we know only the sum of directions of edges with endpoints on the
modified curve. We know that there is no horizontal infinite edges (in these examples). Generally
it is possible, if the intersection of two initial curves is non-compact. Therefore by Weil theorem
(or tropical moment map, they are the same) we know the sum of x-coordinates of vertical infinite
edges. The sum of weights for vertical edges equals the sum of vertical components of the green
edges on the Figure.

— 12—
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Lemma 1.1.17. While doing a modification along horizontal line, the total vertical slope is the
total horizontal slope on the dual picture.

Proof. The same as for Proposition 1.1.1.

1.1.3 Proof of the tropical Weil theorem

We carry on with a proof of the tropical Weil theorem. Given two tropical meromorphic functions
f, g on a tropical curve C we want to define the map C → TP 2, x → (f(x), g(x)) and then use
tropical momentum theorem. Here we have to use tropical modification, because a priori, the image
of tropical curve under the map (f, g) : C → T2 with f, g tropical meromorphic functions, is not a
plane tropical curve: balancing condition is not satisfied near zeroes and poles of f and g

Definition 1.1.18. We call a triple (C, f, g) of a tropical curve C and two meromorphic function
f, g : C → TP 1 on it admissible if all the zeroes and poles of f, g are attained at different one-valent
vertices of C.

Lemma 1.1.19. Given a triple (C, f, g) of a tropical curve C and two meromorphic function f, g :
C → TP 1 on it, we can always find a modification C ′ of C and extend the function f, g there,
such that the obtained triple (C ′, f ′, g′) is admissible and

∑
x∈C

f(x) · ordgx −
∑
x∈C

g(x) · ordfx =∑
x∈C′

f ′(x) · ordg′x−
∑

x∈C′
g′(x) · ordf ′x.

Proof. We perform tropical modifications of C in order to have all zeros and poles of f, g at the
vertices of valency one. Namely, for a point p such that p is in the corner locus of f we add to C
an infinite edge l emanating from p. We define f on l as a linear function with integer slope such
that the sum of slopes of f over the edges from p is zero, i.e. f(p′) = f(p) − ordfp · p′ where p′ is
a coordinate on l such that p′ = 0 at p and then grows. We define g on this edge as the constant
g(p). We perform this operation for all roots and poles of f . Then we do the symmetric procedure
for g.

Proof of the tropical Weil theorem. By the lemma above we may suppose that the triple (C, f, g) is
admissible. Now f, g define a map C → T2 and the image is a tropical curve C ′: indeed, at every
vertex of the image the balancing condition is satisfied. Now it is easy to verify that g(x) · ordf (x)
is a term in the definition of the moment of C ′ with respect to (0, 0): if ordf (x) 6= 0, then C ′ has a
horizontal infinite edge, and its y-coordinate is g(x). Finally,∑

x∈C′

f(x) · ordgx−
∑
x∈C′

g(x) · ordfx = ρ((0, 0)) = 0. (1.2)

Remark 1.1.20. If f, g come as limits of complex functions fi, gi, having ordfi(pi) = k, ordgi(pi) =
m, lim pi = p, then the tropicalization of {(fi(x), gi(x))|x ∈ Ci} might not have vertical (with
multiplicity k) and horizontal (with multiplicity m) leg from a common divisor point p of f and g,
but can have a tree of legs, growing from p, with sum of slops still equal to (k,m). Nevertheless,
because of the tropical momentum theorem or the balancing condition, it has no influence on the
(1.2).
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1.1.4 Difference between stable intersection and any other realizable intersection

After examples considered, one may ask if the only obstruction for a modification is the tropical
momentum theorem? As we will see in this section, not at all.

Let us start with a variety V ′ ⊂ Kn and a hypersurface W ′ ⊂ Kn and their non-Archimedean
amoebas V,W ⊂ Tn. We suppose that the intersection of V with a tropical hypersurface W is not
transverse. We ask: how does the non-Archimedean amoeba of of intersections of V ′ ∩W ′ looks
like?

First of all, as a divisor on V (or W ) it should be rationally equivalently to the stable intersection
of V and W , as it shown for the case of curves in [32]. In the general case in follows from the results
of this section.

It it easy to find some additional necessary conditions. Let us restrict on V ′ the equation f of
W ′, and take the valuations of all these objects V ′,W ′, f . We get some function Trop(f) whose
behavior on a neighborhood of V ∩W is fixed but its behavior on W is under the question.

Definition 1.1.21. Let V be an abstract tropical variety and ι : V → Tn be its realization as an
tropical subvariety of Tn. Let f is a tropical function on Tn. We define the pull-back of ι∗(f) to V
as f ◦ ι. We call ι∗(f) frozen at a point p ∈ V if f is smooth at ι(p).

Note that in general, the slopes of f along ι(V ) does not coincide with slopes of ι∗(f) on V .
From now on we consider tropical functions which have frozen points, the motivation is explained
in the following definition.

Definition 1.1.22. A principal divisor P on an abstract tropical variety V is called positively
equivalent to a principal divisor Q, which is defined by a tropical meromorphic function f , if P can
defined by a tropical meromorphic function h, which satisfies h ≤ f and h = f at the points where
f is frozen.

Remark 1.1.23. As it is easy to see, the fact of positively equivalence depends only on P,Q, and
does not depend on particular choice of f, h as long as the sets of frozen points for f and h coincide.

Example 1.1.24. Refer to Example 1.0.15.
Now, let us start from the tropical curveW given by max(3+X+3Y, 3+X+2Y, 3+X+Y, 3+X, 2+

2X+2Y, 2+2X+Y, 2+2X, 1+Y, 1, 3X−2) and a horizontal line V given by max(Y, 0). We want to
understand the valuations of possible intersections of V ′ ∩W ′ where Trop(V ′) = V,Trop(W ′) = W .

We can rewrite the equation of W as F (x, y) = (t−1 +α0 + t−1y)+x(t−3 +α1 + t−3y3)+x2(t−2 +
α2+t−2y)+x3(t2+α3), where val(α0) < 1, val(α1) < 3, val(α2) < 2, val(α3) < −2 It is clear, that by
choosing y of the 1 + α, val(α) < 0 and then careful choice for α1, α2, α3 we can obtain any tropical
polynomial Trop(F )(x, 1 + α) = max(A,B +X,C + 2X,−2 + 3X with A ≤ 1, B ≤ 3, C ≤ 2.

Note that in this case we have also choice for the constant term. If the intersection is a compact
set, then the constant term is also fixed. Note that for the stable intersection our tropical function
is max(1, 3 +X, 2 + 2X,−2 + 3X).

In this example the set X ≥ 4 on V is frozen for Trop(F ).

Now we prove the following theorem whose proof consists only in a reformulation of the statement
on the language of tropical modifications.
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2 1

Figure 1.4: On the left figure we see the vertical part of the modification of the curve given by
F (x, y) = (−t−1 + t5/3 + t−1y) +x(t−3y− (t−3 + t−5/6) +x2(t−2y− t−2 + t−3/2) +x3t2 along the line
y = 1. On the right figure we see the restriction of F on y = 1, i.e. the function max(3X − 2, 2X +
1.5, X + 5/6,−5/3).

Theorem 1.1.25. For an abstract tropical variety X, ι : X → Tn and a tropical hypersurface
F ⊂ Tn, given by a tropical function f , the pullback of the divisor of the stable intersection of ι(X)
and F is given by ι∗(f). Furthermore, if F ′ and X are such that Trop(F ′) = F , F ′ is given by an
equation g = 0, and Trop(X ′) = X, then the pullback of Trop(F ′ ∩X ′) is positively equivalent to
the divisor of ι∗(f).

Proof. Let us make the modification of Tn along F . Look at the image mf (X) of X under this map.
The natural projection mf (X)→ X can be interpreted as a function on X. Note that this function
is exactly ι∗(f). Now we look at the tropicalization of the restriction g|X of the equation of F ′ on X ′.
Clearly, Trop(g|X) coincides with f at the points where f is smooth. At other points, the graph of
Trop(g|X) belongs to mF (T2). Therefore the pullback of ι∗(Trop(g|x)) is at most ι∗(f) everywhere,
and ι∗(Trop(g|x)) = ι∗(f) at the points where ι∗(f) is frozen. So, the divisor of ι∗(Trop(g|x)) on X
is positively equivalent to the pullback of the stable intersection. The graph of Trop(g|X) can be
less than the graph of FX because when we substitute the points on X ′ to g, some cancellation can
occur, but not in the general case.

1.1.5 Interpretation with chips

In the case of curves we can represent the divisors on curves as collections of chips. So, we proved the
theorem that any realizable intersection is positively equivalent to the stable intersection. This gives
a method to produce all realizable intersections (but not of the produced divisore will be necessary
realizable).

We start with the stable intersection, it is a divisor (collection of chips) on our curve. Then we
allow the following movement: pushing continuously together two neighbor chips on an edge, with
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equal speed. We donÕt allow the opposite operation Ñ when we slide continuously two points apart
from each other.

This corresponds to the following: we look at the modification of the first curve V along the
second, given by f(x, y) = 0, and by decreasing the coefficients of ι∗(f) on V we can obtain any
function less than ι∗(f).

Remark 1.1.26. Note that if the stable intersection is not compact that we need to add a chip at
infinity (or to treat infinity as a point with one chip). Now let A,B be two chips, A is at infinity
and B is on the leg of V going to A. Then, pushing together A,B moves only B towards infinity.
This corresponds to decreasing the constant term in Example 1.1.24.

Example 1.1.27. Big order tangency without perturbations. ([10], Lemma 3.15). We consider
a line y − αx − β = 0, val(α) = 0, val(β) = 0 and a curve a0 + a1y + a2xy

l = 0 with val(a0) =
0, val(a1) = 0, val(a2) = 0.

Clearly, we have non-stable intersection, we can perform substitution y = αx + β, that gives
a0 + a1(αx + β) + a2x(αx + β)l = (a0 + a1β) + x(a1α + a2β

l) +
∑l+1

i=2 x
i(a2β

l+1−iαi−1. The only
contraction may appear at two coefficients before x and the constant. So we have only two degrees
of freedom. So, when val(a0 + a1β) < val(a0), this correspond to the movement in Remark 1.1.26.
Also we can push two chips together by decreasing the valuation of a1α+ a2β

l. This reasoning can
be applied to the intersection of any two tropical varieties, if one of them is a complete intersection.
We restrict the equations of the second variety on the first, that give us a stable intersection, then
we have a situation similar to Definition 1.1.22.

Here we have only two degrees of freedom because we have only two degrees of freedom in the
equation a0 + a1y + a2xy

l = 0.

Question 1. The following suggestions seems to be reasonable for the realizability of intersections.
While defining ι∗(f) we keep track of all the monomials mi of f and then in Definition 1.1.22 we
allow g to contain only monomials of the type ι∗(mi). I.e. if f =

∑
aijx

iyj , then we only allow g of
the type max(cij + ι∗(xiyj)) with cij ≤ val(aij) which coincides with f on the frozen set of f .

Example 1.1.28. Difference between multiplicity leg and root. Take 1 + (t−1 + t)x+ (2t−1 + t2 +
t4)x2+(t3+2t4)x3+t−1xy+2t−1x2y in intersection with the line t5x+y+1 = 0. The same example
can be constructed for the similar Newton polygon (0, 0)− (1, 1)− (n, 1)− (n+ 1, 0).

1.2 Applications of a tropical modification as a method

1.2.1 Inflection points.

An inflection point of a curve is either its singular point, or a point where the tangent line has
order of tangency at least 3. It was known before that the number of real inflection points on a
curve of degree d is at most d(d − 2) and the maximum is attainable. The question, attacked in
[10] is which topological types of planar real algebraic curves admits the maximal number of real
inflection points? Using classical way to construct algebraic curves – Viro’s patchworking method
– the authors construct examples, for what they study possible local pictures of tropicalizations of
inflection points. The property to be verified is tangency, but intersection of tropical curve with a
tangent line at some point in most cases is not transversal and it is not visible what is the actual
order of tangency. To see that, the authors do tropical modifications.
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1.2.2 The category of tropical curves

See also [1, 2]. Namely, Mikhalkin defines the morphisms in the category of tropical curves as all the
maps, satisfying the balancing and Riemann-Hurwitz conditions (see, for example [6]) and subject
to the modifiability condition:

Definition 1.2.1. A morphism f : A→ B of tropical curves A,B is said to be modifiable if for any
modification B′ of B there exists a modification A′ of A and a lift f ′ of f which makes the obtained
diagram commutative.

Theorem 1.2.2. The modifiability condition ensures that a morphism came as a degeneration of
maps between complex curves.

Sketch of a proof. After a number of modifications we may have the map f ′ contracting no cycles.
Then we construct a family of complex curves Bi such that limBi = B′ in the hyperbolic sense
(see section 1.4.1). Finally, since f ′ should come as a tropicalization of a covering, the complex
curves Ai with limAi = A′ are constructed as coverings over fi : Ai → Bi where the combinatorics
(ramification profiles, local degrees at points of tori contracting to tropical edges) of fi is prescribed
by f ′. Balancing and Riemann-Hurwitz conditions follow.

1.2.3 Realization of collection of lines, (4, d)-nets

Which configuration of lines and points in P2 with given incidence relation are possible? That is a
classical question and even for seemingly easy data the answer is often not clear.

Definition 1.2.3. A (4, d)-net in P2 is four collections by d lines each of them, such that exactly
four lines pass through any point of intersection of two lines from different collections, all these four
lines are from different collections.

It is not clear whether a (4, d)-net exists for d ≥ 5. In [15] the authors proved, using tropical
geometry, that there is no (4, 4)-net.

The one of the key ingredients is the following: if some net exists in the classical world, then it
exists in the tropical world. The problem is the following: if we have more than three tropical lines
through a point on a plane, then the intersection will be non-transversal. But thanks to modifications
we always can have transversal intersection, but probably in the space of bigger dimension. For that
we just do modification along lines which has non-transversal intersection, after this modification,
all intersections with it become transversal and the modified lines goes to infinity. Then, let us
think about the following theorem, announced by the authors of [15], from the point of view of
modifications:

Theorem 1.2.4. If for some combinatorial data of intersection of linear spaces can be realized in
Pk, then there is a tropical configuration of tropical linear spaces which realize the same data in
TPk′ with k′ ≥ k.

Indeed, consider the realization in Pk. By passing to the tropical limit we obtain a tropical
configuration, but the intersection dimensions may increase. Then, by doing the modifications, we
want repair the right dimensions.
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1.2.4 A point of big multiplicity on a planar curve.

In its most general form, this question could be formulated as follows: given a type of subvariety S
in a bigger variety, how many singularities S may have? For example, is it possible for a surface of
degree 4 in CP 4 to have four double points and three two fold lines?

There are several reasons for tropical geometry could provide tools for such questions. We will
demonstrate these tools in the case of curves, where this deed has been already done. Combinatorics
of a tropical curve is encoded in the subdivision of its Newton polygon. In fact, a singular point
of multiplicity m influences a part of the subdivision of area of order m2, what is in accordance
with the order of the number of linear conditions (m(m+1)

2 ) that a point of multiplicity m imposes
on the coefficients of the curve’s equation. For a general treatment of the tropical sibgularities, see
[17],[18].

In this section we will only demonstrate how to apply modification technic in this problem,
though we will obtain weaker estimation – but still of order m2.

The idea is the following: if a curve C has a point p of multiplicity m, then for each curve
D, passing through p, the local intersection of C and D at p is at least m. The multiplicity of a
local intersection of C and D can be estimated from above by studying the connected component,
containing Val(p), of the stable intersection Trop(C) ∩ Trop(D) for the non-Archimedean amoebas
of C and D.

So, the method: we take the polynomial F defining D, and use the fact that the image of C under
the map mF : (x, y) → (x, y, F (x, y)) intersects the plane z = 0 with multiplicity at least m. That
implies existence of a modification of Trop(C) along Trop(D), which has a leg of multiplicity m
going in the direction (0, 0,−1), exactly under the point Val(p). The latter modification is obtained
just by taking the non-Archimedean amoeba of mD(C) ⊂ mD(P2).

Now we reduce the problem for its combinatorial counterpart: is it possible for two given tropical
curves, that after the modification along the second, the first curve will have a leg of multiplicity
m, which projects exactly on the given point Val(p)? After some work with intrinsically tropical
objects, we will get an estimate of this point’s influence on the Newton polygon of the curve.

We are not going to consider this problem in the full generality, so we will have a close look at
the simplest interesting example. Suppose that Val(p) is inside some edge E of the tropical curve
Trop(C) and this edge is horizontal.

Suppose that p is of multiplicity m for C. Let us take a line D through p, such that Trop(D)
contains Val(p) inside its vertical edge. Clearly the intersection Trop(C) ∩ Trop(D) is one point,
and of multiplicity at least m. That immediately implies that the weight of E is at least m. Hence
the lattice length of d(E) is at least m.

If we consider the modification along the horizontal line, then the contribution to the edge of
direction (0, 0,−1) consists of the horizontal components of the edges which intersect E at exactly
one point, see Example 1.0.15.

What to do if there is a rational component through Val(p)? We do the modification along
the horizontal line L. If a part of the curve goes to the minus infinity, that means that we can
divide the equation of F by some degree of L. That means that the Newton polygon of C has two
parallel vertical sides. The components which do not go to the minus infinity do not contribute to
the singularity.

Let E be the stable intersection of Trop(C) and the horizontal line; clearly E ⊂ E. Now, let’s
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compute sum of areas of faces corresponding to the singular point p. By that, we mean the sum
of areas of d(V ) where V runs over all vertices on E. It can be possible that more than two faces
correspond to one singular point, if the edge with the singular point has an extension, see again
Example 1.0.15.

First of all, we consider the simplest case.

Proposition 1.2.5. Suppose an horizontal edge E contains a point Val(p) of multiplicity m. Sup-
pose that on the dual subdivision of the Newton polygon the vertical edge d(E) is dual to E. Let
the endpoints of E be A1, A2 and two faces d(A1), d(A2) adjacent to d(E) have no other vertical
edges. Therefore the sum of widths of the faces d(A1), d(A2) is at least m, so their total area is at
least m2/2.

Proof. Let us look at the dual picture in the Newton polygon. Two faces d(A1), d(A2) adjacent to
the vertical edge have the sum of width in the (1, 0) direction at least m (by Proposition 1.1.1),
d(E1) has length m, so the sum of the areas of d(A1), d(A2) is at least m2/2.

Remark 1.2.6. Suppose that a tropical curve has edgesA1A2, A2A3, . . . , Ak−1Ak andA1, A2, . . . , Ak

are situated on a horizontal interval A1Ak = E. Suppose that p, point of multiplicity m, is on the
edge AsAs+1. The method above doesn’t work.

Explanation. Making a modification along a line containing A1Ak in the horizontal ray we
estimate only common width of faces corresponding to A1, A2, . . . Ak, which gives no good estimate
for the sum of areas of d(Ai).

The new idea is to make a modification along a quadric.

Lemma 1.2.7. In the hypothesis above the sum of areas of all faces d(A1), d(A2), . . . , d(Ak) is at
least m/2 +m2/4.

Proof. Let ai be the width of i-th face on the right of the egde dual to AsAs+1, bi be the width of
i-th face on the left, ci be the length of i-th vertical edge on the right, di be the length of the i-th

vertical edge on the left. Therefore,
k∑

i=1
ai = Ak,

k∑
i=1

bi = Bk. With the same calculations as above,

making the modification along a piece of a quadric with vertices on As−jAs+1−j and As+iAs+1+i we
get Ai + ci +Bj + dj ≥ m. Denote min

i
(ci +Ai) = A,min

i
(dj +Bj) = B, so A+B ≥ m.

Then, ci ≥ A−Ai, dj ≥ B −Bj . Sum S of areas can be estimated as

2S ≥ (m+ c1)A1 +
∑

(Ai+1 −Ai)(ci + ci+1) + (m+ d1)B1 +
∑

(Bi+1 −Bi)(di + di+1)

2S ≥ (m+A−A1)A1+
∑

(Ai+1−Ai)(A−Ai+A−Ai+1)+(m+B−B1)B1+
∑

(Bi+1−Bi)(B−Bi+B−Bi+1) ≥

≥ A1(m−A) +A2 +B1(m−B) +B2 ≥ m+m2/2.

So, S ≥ m/2 +m2/4.
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1.3 Motivation

Tropical modifications were introduced in the seminal paper [28] as the main ingredient in the
tropical equivalence relation. Namely, two tropical varieties are equivalent if they are related by a
chain of tropical modifications and reverse operations6.

The underlying idea is the following. Recall, that a tropical variety V can be decomposed into
a disjoint union of a compact part Vc and a non-compact part V∞, and V = Vc ∪ V∞. Moreover,
V retracts on Vc. Then, the set V∞ consists of “tree-like” unions of hyperplanes’ parts. We call
these parts legs, by analogy with the one-dimensional case. For tropical curves, V∞ is a union of
half-lines. For example, for a tropical elliptic curve (see Fig. 1.5, left side) the set Vc is the ellipse,
and V∞ is the set of trees growing on the ellipse.

Figure 1.5: On the left side we see a tropical elliptic curve V which is a part of the analytification
of an elliptic curve. The ellipse is Vc and the union of tree-like pieces is V∞. On the right side we
see a tropical rational curve V , which is equal to V∞. We can chose each point of V as Vc, because
V contracts onto any of its point x ∈ V .

Remark 1.3.1. On a tropical rational7 variety V , each point can serve as Vc, see Fig. 1.5 right
side. But there is a canonical way to define Vc for tropical varieties: we define V∞ as the set of
points v of V such that the shortest path from v to “infinity” does not pass through the cells of the
codimension one of the natural cell subdivision of V . Then, Vc = V \ V∞.

Consider the tropical limit V of algebraic varieties Wti ⊂ (C∗)n, i.e. V = limti→∞ Logti(Wti),
where we apply the map Logti : C∗ → R, x → logti |x| coordinate-wise. In this case the set V∞
encodes the topological way of how Wi approach some compactification of (C∗)n. For the moment,
the particular choice of the compactification does not matter8.

Besides, for i big enough the Bergman fan B(Wi) := limt→∞ Logt(Wi) of Wi is equal to
limt→∞

1
tV . The latter limit is obtained by contracting the compact part Vc of V , so the Bergman

fan can be restored by V∞. Note, that V came here with a particular immersion to Rn.

6For the full definition of an abstract tropical variety, see [31] and [29].
7Basically, rational tropical varieties are the contractible ones. They are not well studied even in small dimensions.

For example, there exist 3 dimensional cubic hypersurfaces which are not rational. It is not known whether we can
see this tropically.

8For a fixed compactification, see the notion of sedentarity in [42] and [8], p. 44.
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Example 1.3.2. If curves Wi, i = 1, 2, . . . in (C∗)2 all have branches with asymptotic (sk, sl) with
a local parameter s → 0, then the tropical limit V of this family lies in R2, and V has the infinite
leg (half-line) in the lattice direction (−k,−l).

Let us suppose that we have an algebraic map f : (C∗)n → (C∗)m, and f is in general position
with respect to the family {Wi}, i.e. for each i big enough, the image f(Wi) is birationally equivalent
to Wi. Let V ′ be the tropical limit of the family {f(Wi)}. One can prove that V ′∞ differs from V∞
by adding new half-planes and contracting other half-planes, see Section ??. These half-planes
grow along the tropicalization of zeros and poles of f on Wi. This consideration suggests the ideas
of modification and tropical birational equivalence. The name “modification” was borrowed from
complex analysis, and tropical modification is sometimes called “tropical blow-up”.

In Section 1.2.2 we see how the notion of modifications allows us to define the category of tropical
curves. This category keeps track of birational isomorphism in the category of complex algebraic
curves. See also §1.1.1, where making modifications for curves simplifies a proof to some extent.

Tropical geometry can be thought as studying of skeletas of analytifications of algebraic varieties.
We can obtain a tropical variety V as the non-Archimedean amoeba of an algebraic variety W
over a non-Archimedean field. This approach (see section §1.4.2) finally suggests the same idea of
equivalence up to modification, because the analytification W an should be thought as the injective
limit of all “affine” tropical modifications (i.e. along only principal divisors) of V ([35]). Berkovich
proved that W an retracts on a finite polyhedral complex, so V0 is a deformation retract of W an.
Even better, the metric on W an agrees with the metric on V for the case of curves9 ([5]).

Connection between tropical geometry and analytic geometry leads to the questions of lifting or
realisability, i.e. what could be the intersection of two varieties if we know the intersection of their
tropicalizations? In fact, if their tropicalizations intersect transversally, it is relatively simple, see
[33]. If the intersection is non-transverse, then we can lift the stable intersection of these tropical
varieties, see [34],[36].

This raised the following question: to what extent the only condition for a divisor on a curve
to be realizable as an intersection is to be rationally equivalent to the stable intersection (cf. [32],
Conjecture 3.4)?

Tropical modification (as a method) helps dealing with such questions. It is known that being
rationally equivalent to the stable intersection is not enough. We consider other existing obstructions
(in fact, equivalent to Vieta theorem) for what can happen in non-transverse tropical intersections,
and prove, for that occasion, the tropical Weil reciprocity law by using the tropical momentum.

Consequently, modifications are used in tropical intersection theory ([40, 41]), to define the
intersection product. Nevertheless, one must use modifications along non-Cartier divisors (Examples
1.1.37, 3.4.18 in [41], for moduli space of five points on rational curve) and even along non-realizable
subvarieties – for a proof that they are non-realizable as tropical limits.

As we stated before, one should think that a tropical modification along X reveals asymptotical
behavior of objects near X. We can find an analogy in non-standard analysis: the tropical line is
the hyperreal line, the modification at a point is an approaching this point with an infinitesimal
telescope, see Fig. 1.7 and Section 1.4.2. In order to define tropical Hopf manifolds one should also
use the modifications to study their germs [39].

9That should be true for varieties of any dimension, modulo integer affine transformations, but no proof has
appeared yet. For the skeletas in higher dimensions see [13, 14]
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Given a surface with hyperbolic structure, we can make a puncture at x. This changes the
hyperbolic structure and x goes, in a sense, to “infinity”. A tropical curve can be obtained as a
degeneration of hyperbolic structures, and making a puncture at x results as the modification at
the limit of x, see Section §1.4.1.

A modification can be described as a graph of a function, if we use the convention about multi-
valued addition, brought in tropical geometry by Oleg Viro ([45]), see the next section.

The other applications of tropical modification as a method are following. Passing to tropical
limit squashes a variety, and some local features become invisible. In order to reveal them back
we can do a modification10. For example, modifications allow us to restore transversality between
lines if we have lost it during tropicalization (§1.2.3), then it allows us to see (-1)-curves on del
Pezzo surfaces ([37]). Methods of lifting non-transverse intersections leads us to use modifications
in questions about singularities: inflection points – [10], singular points – [26]. As an example, we
use modification in the study of singular points of order m (but obtain weaker results than in [18]).

1.4 Interpretations

1.4.1 Hyperbolic approach and moduli spaces

Consider a tropical curve C given as the limit of complex curves Ci. From the point of view of
hyperbolic geometry, a modification at a point x of tropical curve C means just making a puncture xi
in Ci, with condition that xi → x. To explain this we need to know how to directly construct tropical
curves via limits of abstract surfaces with hyperbolic structure on them, without any immersions11.

So, for details how tropical geometry can be built on on the ground of hyperbolic geometry, see
[25]. Here we briefly sketch the construction.

The approach, proposed by L. Lang, uses the collar lemma ([11]). This lemma simply says that
any closed geodesic of length l has a collar of width log coth(l/4) and what is more important, for
different closed geodesics their collars do not intersect, see Fig. 1.6. That is also important that
smaller geodesics have bigger collars (and, intuitively, a puncture has the collar if infinite width).

Thus, given a family of curves Ci (of the same genus), we consider a fixed pair-of-pants decom-
position by geodesics Li. The tropical curve is constructed as follows: its vertices are in one-to-one
correspondence with the pair-of-pants, each shared boundary component between two pairs-of-pants
correspond to an edge of the tropical curve, and the collar lemma furnishes us with the length of the
edges of the tropical curve as the logarithms (with base t, and t → ∞ as the hyperbolic structure
degenerates) of widths of the collars of Li’s. Compare this approach with [7].

What will happen if we make a puncture ? A puncture is the limit of small geodesic circles.
Cutting out a disk with radius tl add a leaf of finite length, as it is seen from the above description.
Therefore, cutting out a point results in adding an infinite edge, i.e. a modification.

That explains why a permanent using of graphs for moduli space problems actually work ([24],
then compare with tropical interpretation [20]). Tropical curves describe the part of boundary of a
moduli space, and modification corresponds to marking a point (read [12] to see the hyperbolic view
on moduli space problems), which are punctures from the hyperbolic point of view (see applications

10so the metaphor “look in an infinitesimal microscope” grasps the essence.
11Usually people consider curves Ci in toric variety X and then they consider degeneration of complex structures

on X.
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L
γ1

γ2

L′

γ′1

(a) Blue dashed lines γ1, γ2 depict the collar
of geodesic L, γ′1 is a part of L′’s collar.

(b) Modification subdivides old edge and
adds a new edge of infinite lenght.

Figure 1.6: We draw the limits of hyperbolic surfaces, i.e. tropical curves. Modification adds a
puncture to each curve in the family and a leg to the tropical curve.

to moduli space of points [29]). Tropical differential forms are also defined in this manner while
taking a limit of hyperbolic structure [31].

1.4.2 Berkovich spaces, non-standard analysis

Non-standard analysis appeared as an attempt to formalize the notion of “infinitesimally small”
variables (see §4 [43] for nice and short exposition).

There is an approach to tropical geometry via nonstandard analysis (cf. §1.4 [16]) and the
following Fig. 1.7 shows that tropical modifications is similar to “infinitesimal microscope” for the
hyperreal line in the terminology of [19], and this interpretation in computational sense is the same
as for Berkovich spaces: doing modification at the point x = 1 on a curve is adding a leg to the
tropical curve, which ranges points according their asymptotical distance to x = 1, i.e. val(x − 1),
these pictures are also similar to the hyperbolic ones.

It is worth noting that there are still no applications of this point of view, neither in tropical
geometry, nor in non-standard analysis. Still, Berkovich spaces can be treated as a more modern
version of non-standard analysis, and tropical modification has applications there.

We should say that an important feature of tropical geometry is that it erects a bridge from a
very geometric things (hyperbolic geometry) to very discrete things as p-adic valuations and non-
Archimedean analysis.

See Figure 1.5, the analytification of an elliptic curve on the left, the analytification of P1 on the
right. Ends of leaves represent the norms with “zero” radius; . Berkovich spaces appeared as a wish
to have an analytic geometry on discrete spaces. The analytification Xan of a variety X is the set
of all seminorms on functions on X. Each point x ∈ X defines such a seminorm by measuring the
order of vanishing of a function at x, on Fig.1.5 these points are represented by the ends of leafs.
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Figure 1.7: Similarity in the pictures of infinitesimal microscope (left) and tropical modification at
points 1 and 1 + ε (right).

For the sake of shortness, we refer the reader to a nice introduction in Berkovich spaces, with a
bit of pictures [4],[44] and to [5] to see how it has been applied to tropical geometry (also, see on
the page 7 in [5], using of log reminds hyperbolic approach). Also there exists Berkovich skeletas
of analytifications, they correspond to the compact part Vc of a tropical variety, for example, for
elliptic curves that will be a circle in both tropical and analytical cases, and its length is prescribed
by j-invariant of a curve ([3]). The analytification of an elliptic curve is the injective limit of all
modifications of its tropicalization, see Fig. 1.5.
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If you are in difficulties with a book,
try the element of surprise: attack it at an hour when it isn’t expecting it.

Herbert George Wells
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