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Abstract. We associate a half-integer number, called the quan-
tum index, to algebraic curves in the real plane satisfying to cer-
tain conditions. The area encompassed by the logarithmic image
of such curves is equal to π2 times the quantum index of the curve
and thus has a discrete spectrum of values. We use the quantum
index to refine real enumerative geometry in a way consistent with
the Block-Göttsche invariants from tropical enumerative geometry.

1. Introduction.

1.1. Quantum index. Geometry of real algebraic curves in the plane
is one of the most classical subject in Algebraic Geometry.

It is easy to see that the logarithmic image Log(RC◦) ⊂ R2 of any
real algebraic curve RC◦ ⊂ (R×)2 ⊂ R2 under the map (2) bounds a
region of finite area in R2 (see Figures 1, 2, 3 for some examples of
Log(RC◦) in degrees 1 and 2). Furthermore, this area is universally
bounded from above for all curves of a given degree by the Passare-
Rullg̊ard inequality [19] for the area of amoebas.

E.g. if RC◦ is a circle contained in the positive quadrant (R>0)2 then
it bounds a disk D ⊂ (R>0)2, ∂D = RC◦. The area of the disk D is∫

D

dxdy = πr2,

where r is its radius. Clearly, Area(D) may be arbitrarily large. In the
same time it is easy to see that the area of LogD is∫

D

dx

x

dy

y
< π2

and thus stays bounded no matter how large is the radius r. In the
same time it is clear that Area(Log(D)) can assume any value between
0 and π2.

In this paper we impose the following conditions on an algebraic
curve RC ⊂ RP2 (in the main body of the paper it is also formulated for
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other toric surfaces in place of RP2) so that such continuous behavior
of the logarithmic area is no longer possible.

Namely, we assume that RC is an irreducible curve of type I (see
subsection 2.1). Then according to [20] RC comes with a canonical
orientation (defined up to simultaneous reversal in all components of
RC). This enables us to consider the signed area (with multiplici-
ties) AreaLog(RC) bounded by Log(RC◦) ⊂ R2. Unless one of the two
possible complex orientations of RC is chosen, AreaLog(RC) is only
well-defined up to sign.

The paper starts from the following result asserting that if all coordi-
nate intersections of RC are real or purely imaginary then AreaLog(RC)

must be divisible by π2

2
and thus cannot vary continuously. The num-

ber k =
AreaLog(RC)

π2 is thus a half-integer number naturally associated
with the curve. We call it the quantum index of RC.

Theorem 1 (special case for R∆ = RP2). Let RC ⊂ RP2 be a real
curve of degree d and type I enhanced with a complex orientation. If
RC has pure imaginary or real coordinate intersection then

AreaLog(RC) = kπ2

with k ∈ 1
2
Z and −d2

2
≤ k ≤ d2

2
.

To our knowledge this classical-looking result is new even in the case
d = 2. Meanwhile the special case of d = 1 is well-known. The identity
|AreaLog(RC)| = π2

2
in the case of lines was used by Mikael Passare [18]

in his elegant new proof of Euler’s formula ζ(2) = π2

6
. Another known

special case of Theorem 1 is the case of the so-called simple Harnack
curves introduced in [13]. As it was shown in [17] these curves have
the maximal possible value of |AreaLog(RC)| for their degree (equal to
d2

2
π2). Simple Harnack curves have a number of geometric properties

[13]. By now these curves have appeared in a number of situation out-
side of real algebraic geometry, in particular in random perfect match-
ings of bipartite doubly periodic planar graphs of Richard Kenyon,
Andrei Okounkov and Scott Sheffield [9]. The quantum index of The-
orem 1 can be interpreted as a measure of proximity of a real curve to
a simple Harnack curve.

Half-integrality of the quantum index k may be explained through
appearance of 2k as the degree of some map as exhibited in Proposition
3. In accordance with this interpretation Theorem 2 computes the
quantum index through the degree of the real logarithmic Gauß map
of RC.
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Theorem 3 studies the quantum index in the special case when RC is
not only of type I, but also of toric type I (Definition 7). This condition
implies that all coordinate intersections of RC are real. In this case
the quantum index may be refined to the index diagram (Definition 9),
a closed broken lattice curve Σ ⊂ R2 well-defined up to a translation
by 2Z2.

The broken curve Σ is an immersed multicomponent curve with each
component corresponding to a component of the compactification RC̄
of RC◦ defined by its Newton polygon ∆. The complex orientation
of RC induces an orientation of the closed broken curve Σ so that we
may compute the signed area Area Σ inside Σ which is a half-integer
number as the vertices of Σ are integer.

Theorem 3 (simplified version). If RC ⊂ RP2 is a real algebraic curve
of toric type I enhanced with a choice of its complex orientation then
its quantum index k coincides with Area Σ.

Each edge of Σ corresponds to an intersection of RC̄ with a toric
divisor of the toric variety R∆ corresponding to the Newton polygon
∆ and thus to a side E ⊂ ∂∆. If this intersection is transversal then
the corresponding oriented edge of Σ is given by the primitive integer
outer normal vector ~n(E). More generally it is given by ~n(E) times the
multiplicity of the intersection. This makes finding the index diagram
Σ and thus the quantum index k especially easy at least in the case
of rational curves with real coordinate intersections (cf. e.g. Figures 2
and 4).

The index diagram Σ can be viewed as a non-commutative version
of the Newton polygon ∆: it is made from the same elements (the
vectors ~n(E) taken #(E ∩Z2)− 1 times) as ∂∆, but the real structure
on RC̄ gives those pieces a cyclic order (in the case of connected RC̄)
or divides these elements into several cyclically ordered subsets.

Recall that Mikael Forsberg, Mikael Passare and August Tsikh in
[4] have defined the amoeba index map which is a locally constant
map on R2 rA, the complement of the amoeba A = Log(CC◦) of the
complexification CC◦ of RC◦. Each connected component of R2 rA is
associated a lattice point of the Newton polygon ∆.

For toric type I curves the formula (6) defines the real index map so
that each connected component of the normalization RC̃◦ or a solitary
real singularity of RC◦ acquires a real index which is a lattice point
of the convex hull of the index diagram Σ. Theorem 4 computes the
amoeba index map ind in terms of the linking number with the curve
RC◦ enhanced with the real indices.
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1.2. Refined real enumerative geometry in the plane. The sec-
ond part of the paper is devoted to applications of the quantum index
of real curves introduced in this paper to refined enumerative geome-
try. According to the seminal vision of Lothar Göttsche [5] as well as
his recent works in collaboration with Florian Block [1] (in the tropical
geometry set-up) and with Vivek Shende [6] (in the set-up of algebraic
topology of complex moduli spaces) the number of curves in surfaces
may often be viewed as a q-number (a Laurent polynomial in q with
positive integer coefficients invariant under q 7→ 1

q
) rather than a bare

integer number. The value at q = 1 is capable to recover the number
of complex curves while the value at q = −1 should be capable to re-
cover the number of real curves in the same enumerative problem. E.g.
there are q + 10 + q−1 many of rational cubic curves passing through
8 generic points in RP2. In the same time there are 12 curves over C
and 8 curves over R (if we count real curves with the Welschinger sign
[22]).

The quantum index allows us to obtain a refined enumeration of
planar curves entirely within real algebraic geometry with the help of
Theorem 5. Once again for simplicity we discuss only the special case
of the projective plane here in the introduction while in the main body
of the paper the theorem is formulated for other toric surfaces as well.

Recall that the space of rational curves of degree d in RP2 is (3d−1)-
dimensional. Thus we expect a finite number of such curves if we
impose on them 3d−1 conditions. Let us choose a generic configuration
of 3d − 1 points on the three coordinate axes of RP2 (the x-axis, the
y-axis and the ∞-axis) so that each axis contains no more than d
points: e.g. there are d generic points on the x- and y-axis and 3d− 1
generic points on the ∞-axis. The elementary generalization of the
classical Menelaus theorem (see Figure 7) ensures that there is a unique
3dth point on the ∞-axis such that any irreducible curve of degree d
passing through our 3d− 1 points also passes through the 3dth point.
The resulting configuration of 3d points on the union ∂RP2 of three
coordinate axes varies in a (3d − 1)-dimensional family of Menelaus
configurations.

Any irreducible rational curve passing through P is of toric index
I and thus has a well-defined quantum index k (as well as a well-
defined index diagram Σ). We define the square map Fr2 : CP2 → CP2

by Fr2(z0 : z1 : z2) = (z2
0 : z2

1 : z2
2). An irreducible rational curve

RC ⊂ RP2 such that Fr2(RC) passes through P is of type I and has
purely imaginary or real coordinate intersections. Thus the quantum
index k is well-defined.
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In (20) we define Rd,k(P) (here we write d instead of ∆ since we
restrict ourselves to the special case of RP2 in the introduction) as one
quarter of the number of irreducible oriented rational curves RC ⊂ RP2

of degree d and quantum index k such that Fr2(RC) passes through P .
Each curve RC here is taken with the sign (18) which is a modification
of the Welschinger sign [22]. Note that such curves come in quadruples
thanks to the action of the deck transformation of the 4-1 covering
Fr2 |(R×)2 : (R×)2 → (R×)2. This is the reason for including 1

4
in the

definition of Rd,k(P). The points of P contained in the closure of the
positive quadrant (R>0)2 (positive points) correspond to real coordinate
axes intersections of RC, other (negative) points correspond to purely
imaginary coordinate axes intersections.

The image of each component of CCrRC under Fr2 may be viewed
as an open holomorphic disk F in CP2 with the boundary contained
in the closure L = (R>0)2 of the positive quadrant. The subspace L ⊂
CP2 is a Lagrangian submanifold with boundary. The positive points
of P correspond to tangencies of ∂F and ∂L while the negative points
of P correspond to intersections of the open disk F with ∂RP2 r L.
Note that such viewpoint provides a connection with the viewpoint
on refinement of enumerative geometry of Maxim Kontsevich and Yan
Soibelman [10].

The number of negative points on three coordinate axes is given by
λ = (λ1, λ2, λ3) with λj ≤ d.

Theorem 5. The number Rd,k,λ = Rd,k(P) is invariant of the choice
of P and depends only on d, k and λ.

In particular, Rd,k(P) depends only on d and k when all points of P
are positive.

For a positive point p ∈ P the inverse image Fr−1
2 (p) consists of two

points a positive point p+ ∈ ∂RP2 and a negative point p− ∈ ∂RP2.
The condition Fr2(RC) 3 p is equivalent to the condition that RC
passes through p+ or p−. Note that this invariance result depends on
including into Rd,k(P) both these possibilities. If we leave out only the
curves passing through p+ (or p−) as in (21) then the resulting sum
R̃d,k(P) is no longer invariant under deformations of P . Nevertheless,

a partial invariance result for R̃d,k(P) is provided by Theorem 6.
The generating function Rd(λ) =

∑
k

Rd,k,λq
k defined in (24) is a

Laurent polynomial in q
1
2 . As such it can be compared with the Block-

Göttsche refined tropical invariants BGd where each tropical curve is
counted with the multiplicity equal to the product of q-numbers corre-
sponding to the multiplicities of its vertices ([1],[7]). The last theorem
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of the paper is an identity between Rd = Rd(0) (for λ1 = λ2 = λ3 = 0)
and BGd.

Theorem 7 (special case of RP2).

Rd = (q
1
2 − q−

1
2 )3d−2BGd.

This theorem has a surprising corollary. As the number of irreducible
rational complex curves CC ⊂ CP2 of degree d passing through P
coincides with BGd(1), this number is completely determined by Rd,
the number accounting only for curves defined over R. Note that for
this purpose it is crucial to use the quantum refinement by qk as for
q = 1 we would have to divide by 0 (the value of (q

1
2 − q−

1
2 )3d−2 at

q
1
2 = 1) to recover BGd(1).

2. Conventions and notations

2.1. Real curves of type I and their complex orientation. A real
curve RC ⊂ RP2 is given by a single homogeneous polynomial equation
F (z0, z1, z2) =

∑
j,k,l

ak,lz
j
0z
k
1z

l
2 = 0, j + k + l = d, ak,l ∈ R. The locus

CC ⊂ CP2 of complex solutions of F = 0 is called the complexification
of RC. The normalization

(1) ν : CC̃ → CC

defines a parameterization of CC by a Riemann surface CC̃. The
antiholomorphic involution of complex conjugation conj acts on CC
in an orientation-reversing way so that its fixed point locus is RC. The
restriction of conj to the smooth locus of CC lifts to an antiholomorphic
involution ˜conj : CC̃ → CC̃ on the normalization. We denote with RC̃
the fixed point locus of ˜conj. Clearly, ν(RC̃) ⊂ RC. In this paper we
assume that CC is irreducible, i.e. that CC̃ is connected.

Following Felix Klein we say that RC is of type I if CC̃ rRC̃ is dis-
connected. In such case it consists of two connected components S and
S ′ = ˜conj(S) which are naturally oriented by the complex orientation
of the Riemann surface CC̃. We have RC̃ = ∂S = ∂S ′, so a choice
of one of these components, say S, induces the boundary orientation
on RC̃. The resulting orientation is called a complex orientation of
RC̃ and is subject to Rokhlin’s complex orientation formula [20]. If we
choose S ′ instead of S then the orientations of all components of RC
will reverse simultaneously. Thus any orientaion of a component of RC̃
determines a component of CC̃ rRC̃.
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2.2. Toric viewpoint and reality of coordinate intersections.
The projective plane CP2 can be thought of as the topic compactifica-
tion of the torus (C×)2. The curve CC ⊂ CP2 is the closure of its toric
part CC◦ = CC ∩ (C×)2. The complement ∂CP2 = CP2 r (C×)2 is the
union of three axes: the x-axis, the y-axis and the ∞-axis. These axes
intersect pairwise at the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1) ∈ RP2. If
the coefficients a0,0, ad,0, a0,d are non-zero then CC is disjoint from the
intersection points of the axes. In the general case it is reasonable to
consider other toric surfaces compactifying (C×)2, so that the closure
of CC◦ is disjoint from pairwise intersections of toric divisors.

Let us consider the (non-homogeneous) polynomial f(x, y) = F (1, x, y)
and its Newton polygon

∆ = ConvexHull{(j, k) ∈ R2 | aj,k 6= 0}.
The fan dual to ∆ defines a toric compactification C∆ ⊃ (C×)2. The
toric divisors of C∆ correspond to the sides of ∆. Their pairwise in-
tersections correspond to the vertices of ∆ and are disjoint from the
compactification CC̄ of the curve CC◦. We denote with ∂C∆ ⊂ C∆
the union of toric divisors. Accordingly, we denote with R∆ (resp.
∂R∆, RC◦, RC̄) the real part of C∆ (resp. ∂C∆, CC◦, CC̄). E.g. we
have RP2 = R∆ for the triangle ∆ = ConvexHull{(0, 0), (1, 0), (0, 1)}
or a positive integer multiple of this triangle.

Let Fr2 : (C×)2 → (C×)2 be the map defined by Fr2(x, y) = (x2, y2).
This map extends to a map Fr∆

2 : C∆→ C∆.
We call a point p ∈ C∆ purely imaginary or real if Fr∆

2 (p) ∈ R∆.
We say that a curve RC ⊂ RP2 has pure imaginary or real coordinate
intersection if every point of CC ∩ ∂C∆ is purely imaginary or real.

2.3. Logarithmic area and other numbers associated to a real
curve of type I. Let RC be a real curve of type I enhanced with a
choice of a complex orientation. Consider the image Log(RC◦) ⊂ R2,
where Log : (C×)2 → R2 the map defined by

(2) Log(x, y) = (log |x|, log |y|).
For a point p ∈ R2rLog(RC◦) we define ind(p) ∈ Z as the intersection
number of an oriented ray R ⊂ R2 emanating from x in a generic direc-
tion and the oriented curve Log(RC◦) (this number can be considered
as the linking number of p and Log(RC◦)).

Definition 1. The integral

AreaLog(RC) =

∫
R2

indRC(x)dx
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is called the logarithmic area of RC.

This is the signed area encompassed by Log(RC◦), where the area
of each region of R2 rLog(RC◦) is taken with the multiplicity equal to
the linking number of Log(RC◦).

Let S ⊂ CC̃ r RC̃ be the component corresponding to the com-
plex orientation of RC̃. The intersection points ν(S) ∩ (R×)2 are the
so-called solitary real singularities of RC◦. The multiplicity of a soli-
tary real singularity p ∈ ν(S) ∩ (R×)2 is the local intersection number
of S and (R×)2 at p. Here the orientation of S is induced by the
inclusion S ⊂ CC̃, while the orientation of (R×)2 is induced by the
covering Log |(R×)2 : (R×)2 → R2. In other words, the quadrants R2

>0

and R2
<0 are counterclockwise-oriented while the quadrants R>0 ×R<0

and R<0 × R>0 are clockwise-oriented. The toric solitary singularities
number E(RC) ∈ Z is the sum of multiplicities over all solitary real
singularities of RC◦, i.e. the total intersection number of S and (R×)2

(enhanced with our choice of orientation).
The logarithmic Gauß map sends a smooth point of RC◦ to the

tangent direction of the corresponding point on Log(RC) ⊂ R2. This
map uniquely extends to a map

γ : RC̃ → RP1,

cf. [8], [13]. The logarithmic rotation number RotLog(RC) ∈ Z is the
degree of γ.

3. Quantum indices of real curves.

Theorem 1. Let RC ⊂ RP2 be a real curve of type I enhanced with
a complex orientation. If RC has pure imaginary or real coordinate
intersection then

AreaLog(RC) = kπ2

where k ∈ 1
2
Z,

−Area(∆) ≤ k ≤ Area(∆)

and k ≡ Area(∆) (mod 1).

Note that as ∆ ⊂ R2 is a lattice polynomial, its area is a half-integer
number.

Definition 2. We say that k(RC) = 1
π2 AreaLog(RC) is the quantum

index of RC.

If RC is a real curve of type I with pure real or imaginary coordinate
intersection, but the complex orientation of RC is not fixed then its
quantum index is well-defined up to sign.
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The quantum index k(RC) can also be expressed without computing
the logarithmic area.

Proposition 3. The integer number 2k(RC) coincides with the degree
of the map

2 Arg : CC◦ rRC◦ → (R/πZ)2,

i.e. with the number of inverse images at a generic point of the torus
(R/πZ)2 counted with the sign according to the orientation. (In partic-
ular, this number does not depend on the choice of a point in (R/πZ)2

as long as this choice is generic.) Here the orientation of of CC◦rRC◦
is defined by the condition that it coincides with the complex orienta-
tion of CC on the component S ⊂ CC◦ r RC◦ determined by the ori-
entation of RC and is opposite to the complex orientation of CC on
the component conj(S) ⊂ CC◦ r RC◦. The map 2 Arg is defined by
2 Arg(x, y) = (2 arg(x), 2 arg(y)).

We say that RC̄ is transversal to ∂R∆ if for any p ∈ RC ∩ ∂R∆
we have ν−1(p) ⊂ RC̃ and the composition RC̃→RC̄ ⊂ R∆ is an
immersion near ν−1(p) ⊂ RC̃ which is transversal to ∂R∆.

Theorem 2. Let RC be a curve of type I with pure real or imaginary
coordinate intersections such that RC̄ is transversal to ∂R∆. Then

k(RC) = −1

2
RotLog(RC) + E(RC).

If RC̄ is not transversal to ∂R∆ then an adjustment of the right-
hand side according to the order of tangency and the orientation of
RC should be added to the formula of Theorem 2.

Example 4 (Simple Harnack curves). If RC◦ ⊂ (R×)2 is a simple
Harnack curve (see [13]) then k(RC) = ±Area(∆). Vice versa, if
k(RC) = ±Area(∆) then RC◦ is a simple Harnack curve, see [17].
This characterizes real curves of highest and lowest quantum index.

Example 5 (Quantum indices of real lines). Any real line is a curve of
type I and has real coordinate intersections. The quantum index of a
real line in RP2 disjoint from the points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1)
is ±1

2
(depending on its orientation), see Figure 1. The quantum index

of a line passing through exactly one of these points is 0.

Example 6 (Quantum indices of real conics). A smooth nonempty real
conic is a curve of type I. Figure 2 depicts real conics in RP2 that
intersect the coordinates axes in 6 real points.

Note that a circle in R2 intersects the infinite axis of RP2 at the
points (0 : 1 : ±i). Thus a circle intersecting the coordinate axes of R2



10 GRIGORY MIKHALKIN

k = −1 k = 0 k = +1

Figure 1. Oriented lines, their logarithmic images and
quantum indices.

k = ±2 k = ±1 k = 0 k = ∓1

Figure 2. Projective hyperbolas, their logarithmic im-
ages and quantum indices.

in 4 real points has pure real or imaginary coordinate intersections, see
Figure 3. A circle passing through the origin in R2 has quantum index
±1

2
. Otherwise, the quantum index of a circle is 0 or ±1.

4. Toric type I curves: quantum indices and diagrams

4.1. Definition of toric type I curves and their index diagrams.
Denote with CC̃◦ ⊂ CC̃ the normalization of an algebraic curve CC◦ ⊂
(C×)2 and with RC̃◦ its real part. The composition of the normalization
and the inclusion map induces a map CC̃◦ rRC̃◦ → (C×)2.

Definition 7. We say that an irreducible real algebraic curve RC◦ ⊂
(R×)2 has toric type I if RC is of type I (in the sense of Klein) and the
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k = ±1 k = ±1
2

k = 0

Figure 3. Circles, their logarithmic images and quan-
tum indices.

induced homomorphism

(3) H1(CC̃◦ rRC̃◦)→ H1((C×)2) = Z2

is trivial.

Each side E ⊂ ∆ is dual to a unique primitive integer vector ~n(E) ⊂
Z2 (which sits in the space dual to the vector space containing the
Newton polygon ∆) oriented away from ∆. We refer to ~n(E) as the
normal vector to E ⊂ ∂∆.

Proposition 8. If RC◦ ⊂ (R×)2 is of toric type I then

CC̄ ∩ ∂C∆ ⊂ RC̄ ⊂ R∆.

In other words RC has real coordinate intersection. Thus it has a well-
defined quantum index.

Proof. The homology class in H1((C×)2) = Z2 of a small loop in CC◦
around a point of CC̄ ∩ ∂C∆ is a positive multiple of ~n(E) for a side
E ⊂ ∆. Therefore it is non-zero. Thus such loop must intersect RC◦
if RC◦ is of toric type I. �

Definition 9. An oriented broken line Σ ⊂ R2 is called the index
diagram of the curve RC◦ of toric type I enhanced with a choice of the
complex orientation S ⊂ CC̃ rRC̃ if the following conditions hold.

• The vertices Σ are in 1-1 correspondence with the components
of K◦ ⊂ RC̃◦. We write v = v(K◦).
• Each vertex v(K◦) = (a, b) ∈ Z2 is a lattice point in R2 such

that K is contained in the ((−1)a, (−1)b)-quadrant of (R×)2.
• The vertices v1 and v2 are connected with an oriented straight

edge e = ~v1v2 if the corresponding (arc) components K◦1 and
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K◦2 are adjacent at a point pe ∈ RC̃ in the order defined by the
complex orientation of RC̃. Furthermore, we have

(4) ~v1v2 = me~n(E),

where pe ∈ CE and me is the local intersection number of CC̃
and ∂C∆ at pe.
• There exists a continuous map

(5) l̃ : S̃ = (S r ∂C∆) ∪ RC̃◦ → C2

holomorphic on S̃ r RC̃◦ such that eπl̃ coincides with the tau-
tological map S̃ → (C×)2 while for every connected component
K◦ ⊂ RC̃◦ we have

Im l̃(K◦) = v(K◦).

Here both the exponent map and the imaginary part are un-
derstood coordinatewise.

We write Σ = Σ(RC) ⊂ R2 and denote with Σ̄ ⊂ R2 the convex hull
of Σ. The map

(6) α : K◦ 7→ Im l̃(K0) = v(K◦) ∈ Σ̄ ∩ Z2

is called the real index map.
Since the map l̃ is holomorphic its imaginary part Im l̃ is harmonic

and thus α(K◦) ∈ Σ̄.

Proposition 10. Any curve RC◦ ⊂ (R×)2 of toric type I admits an
index diagram Σ(RC) ⊂ R2 which is unique up to a translation by 2Z2

in R2.

Proof. Since RC is of toric type I the surface S̃ ⊂ (C×)2 lifts under
the exponent map C2 → (C×)2. Rescaling this lift by π ensures that
(a, b)+2iZ2 ⊂ C2 corresponds to the lift of the ((−1)a, (−1)b)-quadrant
in (C×)2. The diagram Σ is given by the union of the image of RC̃◦
and the accumulation sets of the ends of S̃.

Each end e of S̃ corresponds to an intersection point with a toric
divisor in C∆ ⊃ (C×)2. Changing coordinates in (C×)2 multiplicatively
we may assume that this toric divisor is an x-axis so that the end wraps
me times around the geodesic Arg(y) = const in S1 × S1. The inverse
coordinate change maps this geodesic to the one defined by ~n(E). �

Note that for each connected component K ⊂ RC̃ (which is neces-
sarily closed) with K ∩ ∂R∆ 6= ∅ the formula (4) already determines
the part Σ(K) of the index diagram Σ corresponding to K up to a
translation in R2. Indeed it suffices to choose arbitrarily v(K◦) of an
arc K◦ ⊂ K r ∂R∆ and proceed inductively.
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Proposition 11. If RC◦ is a curve of toric type I then the broken
line Σ(K) resulting from inductive application of (4) is closed for any
connected component K of RC̃ with K ∩ ∂R∆ = ∅.

Conversely, suppose that RC̃ is an M-curve (i.e. the number of its
components is one plus the genus of CC̃) with CC̃ r RC̃ ∩ ∂C∆ = ∅
such that Σ(K) is closed for all connected components K ⊂ RC̃. Then
RC◦ has toric type I.

Proof. The first part of the statement is a corollary of Proposition
10. Conversely, for an M -curve RC̃ each component of CC̃ r RC̃ is a
sphere with punctures corresponding to the components of RC̃. The
loops around the punctures are trivial if all Σ(K) are closed. �

4.2. Quantum index and toric complex orientation formula.
Let

(7) Area Σ(RC) ∈ 1

2
Z

be the signed area (with multiplicities) enclosed by Σ(RC).
Recall the definition of the linking number lk(p,Σ) between a point

p ∈ R2 r Σ. The integer number lk(p,Σ) is defined as the intersection
number lkε(p,Σ) of the closed oriented curve Σ(RC) ⊂ R2 and a ray Rε

in R2 emanating from p in a generic direction ε ∈ R̃P1
. Here R̃P1 ≈ S1

is the oriented projective line (the non-trivial double covering of RP1).
Clearly, lkε(p,Σ) does not depend on the choice of ε if p /∈ Σ.

Consider now the case p ∈ Σ. Let ε ∈ R̃P1 r Q̃P1
be an irrational

direction. The number lkε(p,Σ) (where we ignore the intersection of
Rε and Σ at p itself) coincides with lk(pε,Σ) for the point pε ∈ R2

obtained by a very small translation of p in the direction of ε.
For each quadrant Q = ((−1)a, (−1)b)R2

>0 we define

(8) lkε(Q,Σ) =
∑

ka,kb∈Z

lkε((a+ 2ka, b+ 2kb),Σ) ∈ Z.

Any connected component K ⊂ RC̃ disjoint from ∂R∆ is contained
in a single quadrant Q. Such K is a closed component of RC̃. The
image Log(K) is a closed oriented curve in R2. Let λ(K) ∈ Z be the
rotation number of Log(K) that is the degree of the logarithmic Gauß
map of K ⊂ R2. E.g. if K ⊂ R2 is a positively oriented embedded
circle contained in the (+,+)- or (−,−)-quadrant (resp. in the (+,−)-
or (−,+)-quadrant) then λ(K) = 1 (resp. λ(K) = −1). Any point
of S ∩ Q is a real isolated singular point p ∈ RC◦. We denote with
λ(p) ∈ Z the intersection number of S (enhanced with the complex
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orientation) and Q (enhanced with the orientation pulled back from
the standard orientation of R2 by Log |Q).

If K◦ ⊂ RC̃◦ is a connected component (not necessarily compact)
then the local degree of the oriented logarithmic Gauß map γ̃|K : K →
R̃P1

at a point ε ∈ R̃P1
may depend on the choice of ε. For (a, b) ∈ Z2

and ε ∈ R̃P1 r Q̃P1
we set

(9) λε(a, b) = −
∑
K

λ(K) +
∑
p

λ(p),

where the sums are taken over all components K◦ ⊂ RC̃◦ with α(K◦) =

(a, b) and all isolated singular points p of RC◦ with Im l̃(p) = (a, b).

The maximum principle for Im l̃ implies that λε can only take non-zero
values in the convex hull Σ̄ of Σ. We get the following statement.

Proposition 12. The number λε(a, b) does not depend on ε if (a, b) /∈
Σ. If (a, b) /∈ Σ̄ then λε(a, b) = 0.

For each quadrant Q = ((−1)a, (−1)b)R2
>0 ⊂ (R×)2 we may take the

sum

(10) λε(Q) =
∑

ka,kb∈Z

λε(a+ 2ka, b+ 2kb).

The result is independent of the definition of the real index map as we
take the degree of all the components K◦ and solitary singular points
p contained in the quadrant Q without looking at its real indices.

Theorem 3. If RC◦ ⊂ (R×)2 is a real algebraic curve of toric type I
enhanced with a choice of its complex orientation then

(11) k(RC) = Area Σ(RC).

Furthermore, for each (a, b) ∈ Z2 and ε ∈ R̃P1 r Q̃P1
we have

(12) λε(a, b) = lkε((a, b),Σ).

for each lattice point (a, b) ∈ Z2.

Corollary 13. For a curve of toric type I with the index diagram Σ
we have

(13) λε(Q) = lkε(Q,Σ)

for each quadrant Q ⊂ (R×)2.

The equality (13) may be viewed as the toric complex orientation
formula for toric type I curves.
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Corollary 14. The total number of closed components of a curve RC̃◦
of toric type I and its solitary real singularities is not less than the
number of lattice points (a, b) ∈ Z2 r Σ with lk((a, b),Σ) 6= 0.

Proof. If lk((a, b),Σ) 6= 0 then by (12) λ(a, b) 6= 0 and thus there exists
a closed component or a solitary real singularity of RC◦ of real index
(a, b). �

Example 15. All real rational curves which intersect ∂∆ in #(∂∆∩Z2)
points (counted with multiplicity) have toric type I as CC̃◦ r RC̃◦ is
the disjoint union of two open disks. Therefore we may compute the
quantum index of such curves with the help of Theorem 3.

2

2

Figure 4. Squares of the real conics from Figure 2 and
their diagrams Σ for both possible orientations.

Figure 4 depicts the images of the real conics from Figure 2 under
Fr∆

2 (reparameterized with the help of the moment map). Each of these
conics may be oriented in two different ways producing two different
diagrams. For one of these conics the diagrams for the two opposite
orientations coincide. For the other three conics they are different.

Note that in the case of C∆ = CP2 the orientation can be uniquely
recovered from the diagram as the edges correspond to the normals to
∆. E.g. the vertical edges are always directed downwards.

Remark 16. The diagram Σ = Σ(RC) may be viewed as a non-commutative
version of the polygon ∆. Here the set of normal vectors is given an
order.

Note that −Area ∆ ≤ Area Σ ≤ Area ∆ for any (possibly multicom-
ponent) closed broken curve Σ whose oriented edges are normal vectors
to ∆ so that each side E ⊂ ∆ contribute to #(E∩Z2)−1 normal vectors
(counted with multiplicity). Furthermore, we have Area Σ = ±Area ∆
if and only if Σ ⊂ R2 is a single-component broken curve coinciding
with the polygon ∆ itself rotated by 90 degrees (as we can represent the
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primitive normal vector to a vector (a, b) ∈ Z2 by (−b, a) identifying
the vector space R2 with its dual).

Recall the notion of cyclically maximal position of RC̄ ⊂ R∆ in R∆
from Definition 2 of [13]. It can be rephrased that RC̄ has a connected
component K intersecting ∂R∆ in m = #(∂∆ ∩ Z2) points counted
with multiplicity, and the cyclic order of the intersection points on K
agrees with the cyclic order of the correwsponding normal vectors to
∂∆. This condition is equivalent to the equality (14).

The number of points in (∆ r ∂∆) ∩ Z2 is equal to the arithmetic
genus g of RC̄. On the other hand, Corollary 14 implies that the total
number of closed connected components of RC◦ and its isolated real
singular points is at least g. Thus all closed components of RC◦ are
smooth ovals and all singular points of RC◦ are solitary double points,
and the curve CC◦ is a nodal M -curve. We get the following statement.

Corollary 17. If RC◦ ⊂ (R×)2 is a curve of toric type I with

(14) Area Σ(RC) = ±Area ∆

then it is an M-curve whose only singularities are solitary real nodes.
Furthermore, the topological type of (R∆;RC̄, ∂R∆) is obtained from

the unique topological type of a smooth real curve RĀ transversal to
∂R∆ by contracting some of the ovals of RA◦ to solitary double points
and replacing some n-tuples of consecutive transversal intersection points
of RĀ and ∂R∆ (sitting on the same toric divisor) with points of nth
order of tangency.

Proof. The curve Fr∆
2 (CC◦) also has toric type I. Its diagram is ob-

tained from Σ(RC) by scaling both coordinates by 2, so the quan-
tum index of Fr∆

2 (CC◦) is equal to ±Area(2∆). Corollary 14 implies
that the only singularities of Fr∆

2 (CC◦) are solitary real nodes, so that
Fr∆

2 (RC̄) does not have self-intersections. Therefore for each toric di-
visor RE the order of intersection points on RE and that on the com-
ponent K ⊂ RC̃ agree.

Let us look at the compact components of RC◦. Their number and
distribution among the quadrants of (R×)2 is determined by the lattice
points of Σ(RC) and thus by ∆. Furthermore, Corollary 14 implies that
in each quadrant of (R×)2 all ovals and solitary real nodes of RC◦ have
the same orientation. The complex orientation formula [20] ensures
that these components cannot be nested among themselves and that
they are arranged with respect to K so that their complex orientation
is coherent with the complex orientation of K. �

Remark 18. The proof of Corollary 14 is applicable also for pseudoholo-
morphic, and even the so-called flexible (see [21]) real curves of toric
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type I. Thus Corollary 17 may be considered as a further generaliza-
tion of the topological uniqueness theorem for simple Harnack curves
[13] from its version for pseudoholomorphic curves [2] recently found
by Erwan Brugallé.

Example 19. The curve sketched on Figure 5 is isotopic to a smooth
real quartic curve of type I. Namely, it can be obtained as a pertur-
bation of a union of 4 lines. However, it is not an M -curve while its
diagram coincides with the diagram of the simple Harnack curve of
the same degree (i.e. the triangle with vertices (0, 0), (0,−4), (−4,−4)
for one of the orientations). By Corollary 17 this curve is not of toric
type I. In other words there is a cycle in CC◦ rRC◦ that is homologi-
cally non-trivial in H1((C×)2). Also we can deduce this from the toric
complex orientation formula (13).

Figure 5. A quartic curve of type I, but not of toric
type I.

4.3. The real index map vs. the amoeba index map. To forward
the viewpoint of the index diagram Σ as a non-commutative version of
the Newton polygon ∆ it is interesting to compare the real index map
(6) for toric type I curves and the amoeba index map

(15) ind : R2 r Log(CC◦)→ ∆ ∩ Z2

of Forsberg-Passare-Tsikh [4]. The map (15) is locally constant and
thus it indexes the components K of the amoeba complement R2 r
Log(CC◦) by lattice points of ∆.

One obvious distinction between ind and α is that they take values in
dual spaces: the Newton polygon ∆ belongs to the dual vector space to
R2 = Log(C×)2. But thanks to the symplectic form ω((a, b), (c, d)) =
ad − bc, a, b, c, d ∈ R we have a preferred isomorphism between these
spaces. Denote with (a, b)∗ = (b,−a) the corresponding identification.
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As usual, we fix a complex orientation on RC̃ and consider the cor-
responding component S◦ ⊂ CC̃◦ rRC̃◦. Let

p, p′ ∈ R2 r Log(CC◦)
and γ ⊂ R2 be a smooth path between p and p′. We assume γ to
be in general position with respect to RC◦. The intersection number
#(γ,LogRC) ∈ Z is well-defined as Log(RC) ⊂ R2 is proper.

Proposition 20. We have #(γ,LogRC) = 0.

Proof. The local degree of the map Log |S◦ : S◦ → R2 changes along γ
according to the intersection with RC◦. Since the local degree at the
endpoints of γ vanishes we have #(γ,LogRC) = 0. �

Using the real index map (6) we may refine the intersection number
#(γ,LogRC) = 0 to

(16) #α(γ,LogRC◦) =
∑

q∈Log−1(γ)∩RC◦
#q(γ,LogRC◦)α(q) ∈ Z2

Here #q(γ,LogRC◦) = ±1 is the local intersection number between γ

and LogRC◦ and α(q) ∈ Z2 is the real index of the component of RC̃◦
containing the point q.

Theorem 4. Let RC◦ ⊂ (R×)2 be an algebraic curve of toric type I.
For any two points p, p′ ∈ R2 r S◦ ∪ RC◦ and a generic smooth path
γ ⊂ R2 connecting p and p′ we have

(17) (ind(p′)− ind(p))∗ = #α(γ,LogRC◦).

Proof. Consider the 1-dimensional submanifold

M = Log−1(γ) ∩ CC◦.
Its orientation is induced by that of γ (together with the complex
orientation of CC◦). Since γ is chosen generically M is a smooth 1-
submanifold.

Any component ofM disjoint from RC◦ is null-homologous inH1((C×)2)
as RC◦ is a toric type I curve. A component L ⊂M intersecting RC◦
consists of two arcs interchanged by conj. Suppose that the arc δ from
S◦ is directed from q to q′, q, q′ ∈ RC◦. We have

Im l̃(q′)− Im l̃(q) = α(q′)− α(q)

by (6) and therefore [L] = α(q′) − α(q) ∈ Z2 = H1((C×)2) so that
[M ] ∈ H1((C×)2) is given by the right-hand side of (17).

By [13] we may interpret ind(p) as the linear functional on

H1(Log−1(p)) = Z2



QUANTUM INDICES OF REAL PLANE CURVES 19

that associates to each oriented loop N ⊂ Log−1(p) the linking number
of N and the closure of the surface CC◦ in C2. Suppose that N ′ ⊂
Log−1(p′) is a loop homologous to N in (C×)2 so that N ′ − N = ∂P
for a surface P ⊂ (C×)2. Then the difference of the linking numbers
of N ′ and N coincides with the intersection number of P and CC◦.
Choosing the membrane P to be contained in Log−1(γ) we identify the
difference with the intersection number of [N ] and [M ] in

Z2 = H1(Log−1(p)) = H1((C×)2) = H1(S1 × S1).

�

5. Refined real enumerative geometry

5.1. Invariance of real refined enumeration. Let ∆ ⊂ R2 be a
lattice polygon. Let Ej ⊂ ∂∆, j = 1, . . . , n, be its sides of integer
length mj = #(Ej ∩ Z2) − 1. Let CEj be the corresponding toric

divisors. Let P = {pj}mj=1, m =
n∑
j=1

mj, be a configuration of points on

∂R∆ such that we have exactly mj points on the toric divisor REj.
We require that the first m − 1 points in P are chosen on ∂R∆

generically, and that the whole configuration P is subject to the con-
dition of the Menelaus theorem (cf. discussion after Proposition 28).
This means that the linear system defined by the divisor P on the
(singular) elliptic curve ∂C∆ is O(∆), i.e. any curve with the Newton
polygon ∆ passing through the point {pj}m−1

j=1 also passes through pm.
For any subset of m − 1 points on P there exists a unique remaining
point with this condition. We say that P is a generic configuration of
m points on ∂R∆ subject to the Menelaus condition.

The configuration (Fr∆
2 )−1(P) consists of purely real or imaginary

points. Thus any oriented real rational curve RC̄ ⊂ R∆ with the New-
ton polygon ∆ such that Fr∆

2 (RC) passes through P has the quantum
index k(RC) ∈ 1

2
Z. (Note that rationality over the real numbers imply,

in particular, that RC̃ is non-empty and that RC is of type I.)
Define

(18) σ(RC) = (−1)
m−RotLog(RC)

2 .

Since the parities of RotLog(RC) and m coincides we have σ(RC) = ±1.

Remark 21. Note that if RC◦ is nodal then its toric elliptic number
E(RC) has the same parity as the number of solitary nodes of RC◦.
Thus the Welschinger sign w(RC) (see [22]) coincides with (−1)E(RC).
Since the curve RC̄ intersects the union ∂R∆ of toric divisors in m
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distinct points and m
2
≡ Area(∆) (mod 1) by Pick’s formula, we have

(19) σ(RC) = (−1)Area(∆)−k(RC)w(RC)

by Theorem 2.

We define

(20) R∆,k(P) =
1

4

∑
RC̄

σ(RC),

where the sum is taken over all oriented real rational curves RC̄ with
the Newton polygon ∆ and k(RC̄) = k such that Fr∆

2 (RC̄) ⊃ P . We
have the coefficient 1

4
in the right-hand side of (20) as the group of

the deck transformations of Fr∆
2 : C∆ → C∆ is Z2

2, so each curve RC̄
comes in four copies with the same image Fr∆

2 (RC̄). (Alternatively,
we can take a sum over different oriented images Fr∆

2 (RC̄) without the
coefficient 1

4
.)

We call a point in ∂R∆ positive if it is adjacent to the quadrant
(R>0)2 and negative otherwise. Note that (Fr∆

2 )−1(p) consists of real
points if p is positive and of purely imaginary points if it is negative. Let
λj be the number of negative points in P ∩ REj. Denote λ = (λj)

n
j=1.

Theorem 5. The number R∆,k(λ) = R∆,k(P) is invariant of the choice
of P and depends only on ∆, k and λ.

If all points of P are negative (i.e. mj = λj) the number R∆,k(λ)
is the number of real curves RC̄ contained in the positive quadrant
R2
>0 ⊂ (R×)2 and passing through all points of the purely imaginary

configuration (Fr∆
2 )−1(P). For a positive point p ∈ P a curve RC̄

should passes through one of the two real points in (Fr∆
2 )−1(p).

Define

(21) R̃∆,k(P) =
∑
RC̄

σ(RC̄)

where the sum is taken over all curves RC̄ with the Newton polygon
∆ and k(RC) = k passing through P . Let

(22) ∆d = ConvexHull{(0, 0), (d, 0), (0, d)}.
We have C∆d = CP2.

Example 22. The curves RC with the Newton polygon ∆2 are pro-
jective conics. In this case n = 3, m1 = m2 = m3 = 2, m = 6. For
any generic P ⊂ ∂CP2 subject to the Menelaus condition we have a
unique conic through P . This gives us two oriented curves through P
of opposite quantum index.
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We may assume (applying the reflections in x and y axes if needed)
that P contains a positive point in the x-axis and a positive point in
the y-axis. As the positivity of the last point of P will be determined
by the Menelaus condition we have 3 possibility for the non-decreasing
sequence λ = (λ1, λ2, λ3). The possible values of k(RC) are listed in
the following table, cf. Figure 2. In particular in this case R̃∆2,k(P) is

λ1 λ2 λ3 k(RC)
0 0 0 ±2
0 0 2 ±1 or 0
0 1 1 ±1 or 1

Table 1. Quantum indices for conics

different for different configurations with the same λ for two last rows
of Table 1. Thus the numbers R̃∆,k(P) may vary when we deform P .

Define

(23) R̃∆,even(P) =
∑

k∈m
2

+2Z

R̃∆,k(P); R̃∆,odd(P) =
∑

k∈m
2

+1+2Z

R̃∆,k(P).

Theorem 6. The numbers R̃∆d,even(P) and R̃∆d,odd(P) do not depend
of P as long as d is even and all the points of P are positive (i.e.
λ = (0, 0, 0)).

5.2. Refined real and refined tropical enumerative geometry.
We return to the study of the invariant R∆,k from Theorem 5.

Definition 23. The sum

(24) R∆(λ) =

Area(∆)∑
k=−Area(∆)

R∆,k(λ)qk

is called the real refined enumerative invariant of (R×)2 in degree ∆.

If λ = 0 (i.e. all λj = 0) then all points of (Fr∆
2 )−1(P) are real. In

such case we use notations R∆,k = R∆,k(0) and R∆ = R∆(0).
Recall that the Block-Göttsche invariant is a symmetric (with respect

to the substitution q 7→ q−1) Laurent polynomial with positive integer
coefficients. This polynomial is responsible for the enumeration of the
tropical curves with the Newton polygon ∆ of genus g, passing through
a generic collection of points in R2, see [7]. The expression BG∆ defined
by (43) may be viewed as the counterpart for the case when the tropical
curves pass through a collection of m points on the boundary of the
toric tropical surface T∆ which are generic among those satisfying to
the tropical Menelaus condition (38).
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Theorem 7.
R∆ = (q

1
2 − q−

1
2 )m−2BG∆.

Corollary 24. The value BG∆ at q = 1 corresponding to the number
of complex rational curves in C∆ with the Newton polygon ∆ passing
through P is determined by R∆.

Let us reiterate that R∆ accounts only for curves in (C×)2 defined
over R.

5.3. Holomorphic disk interpretation. Recall that an orientation
of a real rational curve RC defines a connected component S ⊂ CC̃ r
RC̃. Let D be the topological closure of the image of S in C∆. The
disk D ⊂ C∆ is a holomorphic disk whose boundary ∂D = RC is
contained in the Lagrangian subvariety R∆ ⊂ C∆.

Let L be the topological closure of the quadrant R2
>0 in C∆. Note

that L is a Lagrangian subvariety of C∆ with boundary. The image
Fr∆

2 (D) is a holomorphic disk whose boundary is contained in L.
Thus the expression (24) may also be interpreted as a refined enu-

meration of holomorphic disks with boundary in L, passing through P ,
and tangent to ∂R∆ at the points of P .

These disks are images under Fr∆
2 of disks D with boundary in R∆

and

(25) Fr∆
2 (D) ∩ ∂C∆ = P ⊂ ∂R∆.

Let C∆̂ be the result of blowup of the toric variety C∆ at P . Let
L̂ = (R×)2 r ˆ∂R∆ where (R×)2 is the topological closure of (R×)2

in C∆̂ and ˆ∂R∆ is the proper transform of ∂R∆ in C∆̂. Then a
holomorphic disk D lifts to a holomorphic disk D̂ with the boundary
in the non-compact Lagrangian subvariety L̂ ⊂ C∆̂ without boundary.
Furthermore, the Maslov index of D̂ is 0. This construction appears in
the Kontsevich-Soibelman wall-crossing approach [10].

6. Proofs

6.1. Proof of Proposition 3 and Theorems 1, 2 and 3. Consider
the map Arg : (C×)2 → (R/2πZ)2 defined by

(26) Arg(z, w) = (arg(z), arg(w))

and the map 2 Arg : (C×)2 → (R/πZ)2 obtained by multiplication of
Arg by 2, cf. [16]. The involution of complex conjugation in (C×)2

descends to (R/πZ)2 as the involution σ : (a, b) 7→ (−a,−b). Denote
with

(27) P = (R/πZ)2/σ
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the quotient space. The orbifold P is the so-called pillowcase. The
projections of the four points (0, 0), (π

2
, 0), (0, π

2
), (π

2
, π

2
) form the Z2-

orbifold locus of P (the corners of the pillowcase). All other points
are smooth. (The orbifold P can be viewed as the real part of the
Kummer surface.) We denote with 0 ∈ P the origin of P , i.e. the
projection of (0, 0). Note that (2 Arg)−1(0, 0) = (R×)2. Since the
involution σ preserves the orientation, the standard volume form on
(R/πZ)2 induces the standard volume form dVolP on the orbifold P .

Let RC be a real curve of type I with purely real or imaginary coor-
dinate intersection. Consider the surface S◦ = Srν−1(∂C∆), where S
is the component of CC̃ rRC̃ corresponding to the orientation of RC
and ν is the normalization map (1). Denote with

(28) β : S◦ → P

the composition of the map 2 Arg |S◦ : S◦ → (R/πZ)2 and the projec-
tion (R/πZ)2 → P .

Let p ∈ P be a regular point of β. A point q ∈ β−1(p) is called
positive (resp. negative) if locally near q the map β is an orientation-
preserving (resp. orientation-reversing) open embedding. The differ-
ence between the number of positive and negative points in β−1(p) is
called the degree at p. A priori, since β is a non-proper map, the degree
at different points could be different.

Lemma 25. We have

(29) AreaLog(RC) =

∫
S◦

β∗dVolP .

Furthermore, the degree of β at a generic point of P is 2k(RC).

Proof. Consider the form

(30)
dx

x
∧ dy
y

= (d log |x|+ id arg(x)) ∧ (d log |y|+ id arg(y)) =

d log |x| ∧ d log |y| − d arg(x) ∧ d arg(y)+

i(d log |x| ∧ d arg(y) + d arg(x) ∧ d log |y|)

on (C×)2. As it is a holomorphic 2-form, it must restrict to the zero
form on any holomorphic curve in (C×)2. In particular, the real part of
this form must vanish everywhere on S◦, so that d log |x| ∧ d log |y| =
d arg(x) ∧ d arg(y) on S◦, and thus (29) holds, cf. [12].

The smooth map β : S◦ → P extends to a continuous map

(31) β̄ : S̄ → P
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for a surface with boundary S̄ ⊃ S◦ such that S◦ = S̄ r ∂S̄. Each
p ∈ CC̄∩CEj corresponds to a geodesic in (R/πZ)2 in the direction par-
allel to ~n(Ej) for a side Ej ⊂ ∂∆, cf. [16]. Since Fr∆

2 (p) ∈ R∆ the corre-
sponding geodesic passes through two of the points (0, 0), (π

2
, 0), (0, π

2
), (π

2
, π

2
).

The image of this circle in P is a geodesic segment connecting the cor-
responding Z2-orbifold point of P .

Thus β̄(S̄) is a 2-cycle in P and it covers a generic point l times
(counted algebraically), where l is a number independent on the choice
of a generic point. But then

∫
S◦
β∗dVolP = lArea(P ) = lπ2/2. There-

fore, l = 2k(RC). �

Note that this lemma implies Proposition 3.

Proof of Theorem 1. We have k(RC) ∈ 1
2
Z since 2k(RC) is the degree

of β at a generic point of P by Lemma 25. Let ã ∈ (R/πZ)2 be
a generic point and a ∈ P be the point corresponding to ã. The
inverse image β−1(a) consists of points of S◦ mapped to ã or σ(ã). If
2 Arg(p) = −ã for p ∈ S◦ then 2 Arg(conj(p)) = ã, where conj(p) ∈
conj(S◦). Thus we have a 1-1 correspondence between sets β−1(a) and
R = (2 Arg)−1(ã) ∩ CC◦.

Consider the continuous involution conjã : C∆→ C∆ extending the
involution of (C×)2 defined by z 7→ ã conj(σ(ã)(z)). Note that the fixed
point locus of this involution in (C×)2 coincides with (2 Arg)−1(ã), cf.
[12]. Note that

(32) R ⊂ CC◦ ∩ conjã(CC◦)
while Rr(CC◦∩conja(CC◦)) consists of pairs of points interchanged by
the involution conjã. For generic ã the curve conjã(CC◦) is transverse
to CC◦, while conjã(CC◦) ∩ CC◦ ∩ ∂C∆ = ∅.

Thus the number of points inR is not greater than #(CC◦∩conjã(CC◦)),
while we have #(CC◦∩conjã(CC◦)) = 2 Area(∆) by the Kouchnirenko-
Bernstein theorem [11]. Thus the degree of β takes values between
−2 Area(∆) and 2 Area(∆). Also #(R) = 2 Area(∆). �

Proof of Theorem 2. Let us compute the degree of the map (31) at a
generic point a ∈ P close to the origin 0 ∈ P . The set β̄−1(0) ∩
S◦ contributes 2E to the degree of β̄ as the intersection number gets
doubled when we pass from (R/πZ)2 to P .

Note that the set SR = β̄−1(0) ∩ ∂S̄ can be thought of as the topo-
logical closure of RC◦ in S̄ by our assumption of transversality to
∂R∆. Let U ⊃ SR be a small regular neighborhood of SR. The image
β̄(U) makes RotLog(RC) rotation around 0 ∈ P . Thus SR contributes
to −RotLog(RC) to the degree of β̄ equal to 2k(RC). We have the
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appearance of the negative sign since the basis composed of vectors
v1, v2, iv1, iv2 is negatively-oriented in C2 whenever vectors v1, v2 are
linearly independent over C. Thus a positive rotation in (iR)2 (and
therefore also in P ) corresponds to a negative contribution to the de-
gree of β̄. �

Proof of Theorem 3. The signed area of β(S◦) coincides with the signed
area of its lift to the universal covering space and thus with Area Σ(RC)

multiplied by π2. For (a, b) ∈ Z2 and ε ∈ R̃P1 r Q̃P1
we consider a

point pε obtained by a small translation of (a, b) in the direction of ε.
A point of S◦ mapped to pε by the lift of β must correspond to a point
of RC◦ of realigned map (a, b) which is either singular or has β as the
image of its logarithmic Gauß map. Summing up the contributions of
all such points we get (12). �

6.2. Invariance of the numbers R∆,k(P).

Proof of Theorem 5. First we compute the dimension of the space of
rational curves RC◦ ⊂ (R×)2 with the Newton polygon ∆. Two co-
ordinate functions on (C×)2 define two meromorphic functions on the
Riemann surface CC̃. The zeroes and poles of these functions are
∂CC̃ = C̃ ∩ ∂C∆. The order of these zeroes and poles is determined
by the multiplicity of the corresponding intersection points of CC̄ with
CEj as well as by the slope of Ej ⊂ ∆. As CC̃ is rational, we may

freely deform ∂CC̃ in CC̃ and each such deformation extends to the
deformation of the coordinate functions. The group PSL2(C) of sym-
metries of CC̃ is 3-dimensional, so the space of deformation of ∂CC̃ is
(#(∂CC̃) − 3)-dimensional. The resulting curve is well-defined up to
the multiplicative translation in (R×)2. Altogether, the dimension of
the space of rational curves in (R×)2 is m−1, which coincides with the
dimension of the space of configurations P .

Note that the deformation of a single point p to p′ in ∂CC̃ corre-
sponds to adding rational functions with zeroes and poles only at p
and p′ to the corresponding integer multiples of the coordinate func-
tions. A non-immersed point of CC◦ corresponds to a common zero
of the differentials of the coordinate functions. But the differential of
each coordinate function can be perturbed separately by addition of a
rational function as above. Thus the set R∆,k(P) of curves in (R×)2

with Newton polygon ∆ and quantum index k passing through P is
finite, and each curve in this set is immersed.

It is convenient to consider not only conventional irreducible rational
curves, but also the so-called stable rational curves (cf. [3]) in C∆.
These are possibly disconnected Riemann surfaces F enhanced with
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a holomorphic map to C∆ and with a tree Γ whose vertices are the
components of F so that each edge of Γ corresponds to an intersection
point of the images of the corresponding components. Conventional
rational curves are stable rational curves with the tree Γ consisting of
a single vertex. Any sequence of (stable) rational curves in (R×)2 with
the Newton polygon ∆ converges to a stable rational curve RD ⊂ (R×)2

with a Newton polygon ∆′ ⊂ ∆. Note that if CD̄∩∂C∆ is disjoint from
the points of intersection of toric divisors CEj then ∆′ = ∆. Therefore,
the map

(33) ev :M∆ →M∂∆

is proper. Here the sourceM∆ is the space of stable oriented real ratio-
nal curves with the Newton polygon ∆. The target M∂∆ is the space
of conj-invariant configurations of m points in ∂R∆ with mj points in
CEj, m =

∑
mj = #(∂∆∩Z2, subject to the Menelaus condition. The

map ev sends a curve RC◦ to the configuration Fr∆
2 (CC̄)∩∂C∆ ⊂ ∂C∆.

We refer to stable rational curves with disconnected F as reducible
rational curves in C∆. Note that the dimension of the space of defor-
mation of such curves is equal to the sum of the space of deformation
of their irreducible components, i.e. to m minus the number of com-
ponents. Thus for a generic choice of P there are no reducible rational
curves of Newton polygon ∆ passing through P .

Consider the space M∂∆,λ ⊂ M∂∆ of real configurations P ⊂ R∆

with λj points in REj r ((R>0)2). Any curve in ev−1(M∂∆,λ) satisfies
to the hypothesis of Theorem 1, thus its quantum index is well-defined.
Let P ,P ′ ∈ M∂∆,λ and γ = {Pt}t∈[0,1] ∈ M∂∆,λbe a smooth generic
path connecting two such configurations P = P0 and P ′ = P1.

All but finitely many values of t correspond to Pt such that R∆,k

are irreducible. If this finite set is empty then ev−1(γ) consists of irre-
ducible rational curves. In this case an orientation of a curve uniquely
determines the orientations of all curves in its connected component
in ev−1(γ). Thus, ev−1(γ) splits to a disjoint union of components ac-
cording to the quantum index k. Furthermore, we may deduce that
R∆,k(P) = R∆,k(P ′) from the Welschinger theorem [22].

For this deduction we note that the curve RC̄ ⊂ R∆ birationally
corresponds to a curve RĈ ⊂ RP1 × RP1. Furthermore, in RP1 × RP1

we may obtain a deformation RĈ ′ of RĈ as follows. We take the
Riemann surface CC̃ and two coordinate functions with zeroes and
poles at ∂CC̃. Each point p ∈ ∂CC̃ is thus associated two numbers,
nx and ny: the order of zero (or pole) of the first and of the second
coordinate function at p. The points are ordered according to the
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orientation of RC̃. We may replace p with nx+ny generic points in the
neighborhood of p and ask that the first (resp. the second) coordinate
function has a simple zero (or pole) at the first nx point (resp. the last

ny points). The resulting curve RĈ ′ ⊂ R∆′ = RP1 × RP1 has Newton
polygon ∆′ ⊃ ∆ (which is a rectangle). Denote the critical values of

the two coordinate functions on RC̄ (resp RĈ ′) with Zx and Zy (resp.

Ẑ ′x and Ẑ ′y). Generically, all these critical values are of order 1, so that
#(Z ′x) = 2dx−2 and #(Z ′y) = 2dy−2. The set Z ′x (resp Z ′y) is obtained

from Zx (resp. Zy) by a small perturbation (in the circle RC̃) as well
as adding nx − 1 (resp ny − 1) points near the corresponding point of

∂RC̃ in the prescribed relative position. Thus the number of hyperbolic
nodes, i.e. the points of self-intersection of RĈ ′, is the same as for RC◦.

The set Fr∆
2 (RĈ ′)∩∂R∆′ minus one point (determined by the Menelaus

condition) can be further perturbed to a generic set Q ⊂ R∆′ =
RP1 × RP1. Similarly the path Pt produces a generic path Qt so that
the curves from R∆,k(Pt) can be perturbed to real rational curves with
the Newton polygon ∆′ such that their images under Fr∆

2 pass through
Qt. The Welschinger signs of the resulting curves in RP1 × RP1 de-
termine the sign σ for the curves from R∆,k(Pt) since the Welschinger
sign for a given ∆′ can be expressed through the number of hyperbolic
points and the index k is locally invariant for deformation in the class
of irreducible curves. Therefore, by the local invariance of Welschinger
count [22], we have R∆,k(P) = R∆,k(P ′) in this case.

Suppose now that

(34) R∆(Pt) =

Area(∆)⋃
k′=−Area(∆)

R∆,k′(Pt)

contains a reducible curve RD̄ for t = t0.
As the dimension of the space of deformation of each component is

equal to the number of points in its intersection with ∂C∆ minus 1, for
the generic path γ the curve Fr∆

2 (RD̄) is the union of two irreducible ra-
tional immersed curves Fr∆

2 (RD̄j), j = 1, 2. Also, the presence of mul-
tiplicative translations in (R×)2 implies that Fr∆

2 (RD̄1) and Fr∆
2 (RD̄2)

intersect transversally.
We may assume that all points Fr∆

2 (Pt) except for two points pj(t) ∈
RD̄j, j = 1, 2, remain independent of t ∈ [t0−ε, t0 +ε] for a small ε > 0.
For t ∈ [t0 − ε, t0 + ε] the deformation p1(t) ∈ ∂R∆ determines the
deformation p2(t) by the Menelaus condition. These two points must
belong to two different components of RD̄ as there are no reducible
curves in R∆(Pt) for t ∈ [t0 − ε, t0 + ε] except for t = t0. Denote with
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RRD
∆ (Pt) for t0− εt ≤ t0 + ε the curves whose images under Fr∆

2 is close
to Fr∆

2 (RD̄).
Let us choose some orientations of RD̄1 and RD̄2. Then the inter-

section points of

(35) I = Fr∆
2 (RD̄1) ∩ Fr∆

2 (RD̄2)

come with the intersection sign in R2
>0. The set of positive points

I+ ⊂ I has the same cardinality as the set of negative points I− ⊂ I,
I = I+ ∩ I− as R2

>0 is contractible.
The curves in RRD

∆ (Pt0±ε) are obtained by smoothing a nodal point
q ∈ I in one of the two ways, one that agrees with our choice of
orientation and one that does not. Without loss of generality (chang-
ing the direction of the path γ if needed) we may assume that the
orientation-preserving smoothing in a point q ∈ I+ corresponds to a
curve RD̄q,+ ∈ R∆(Pt0+ε) and thus the orientation-reversing smooth-
ing at the same point corresponds to a curve RD̄q,− ∈ R∆(Pt0−ε). The
following lemma determines the situation at all the other points of I.

Lemma 26. A curve obtained by the smoothing of a node from I+ in
the orientation-preserving way, or by the smoothing of nodes from I−
in the orientation-reversing way belongs to R∆(Pt0+ε), ε > 0.

Accordingly, a curve obtained by the smoothing of a node from I−
in the orientation-preserving way, or by the smoothing of nodes from
I+ in the orientation-reversing way belongs to R∆(Pt0−ε).

Proof. Let RDq′,s ∈ R∆(Pt0+ε), s = ±1, be the curve obtained by
smoothing RD at a point q′ ∈ I according to the sign s. Note that
Fr∆

2 (RDq,+) and Fr∆
2 (RDq′,s) are tangent to each other at m points

of Pt0+ε and must intersect each other at pairs of points close to the
nodes of Ir{q, q′}. By Pick’s formula the total number of intersection
is equal to the twice the area of 2∆, which is the Newton polygon of
Fr∆

2 (RDq,+) and Fr∆
2 (RDq′,s). By the Kouchnirenko-Bernstein formula,

these curves do not have any other intersection points which implies
that s = +1 if q′ ∈ I+, see Figure 6. �

Note that any curve in RRD
∆ (Pt0±ε) is obtained by smoothing RD at

a point q ∈ I. The quantum index of the result is ±k(RD1)± k(RD2),
where the signs are determined by the agreement or disagreement of
the orientation of the resulting curve with the chosen orientations of
RDj. Since #(I+) = #(I−), Lemma 26 implies that RRD

∆ (Pt0+ε) and
RRD

∆ (Pt0−ε) have the same number of curves of each quantum index.
�
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+ +
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Figure 6. The signs of intersection points of two
components of RD and the corresponding direction of
smoothing.

Proof of Theorem 6. By the same reason as above we have R̃∆d,k(P) =

R̃∆d,k(P ′) if there are no reducible curves with the Newton polygon ∆d

that pass through Pt. Also we may assume that if RD is a reducible
curve with the Newton polygon ∆d passing through Pt0 then it consists
of two components RD1 and RD2 that intersect transversely at a finite
set I. Note that the degree of both components, RD1 and RD2, must
be even, as a real curve of odd degree must intersect ∂RP2 in a negative
point as the boundary of the positive quadrant is null-homologous.

We have two smoothings of RD at q ∈ I that pass through Pt0−ε
and Pt0+ε. One can be oriented in accordance with the orientations of
RD1 and RD2 and the other in accordance with the orientation of RD1,
but opposite to the orientation of RD2. The corresponding quantum
indices are different by 2k(RD2). The index k(RD2) is integer since
the degree of RD2 is even. �

6.3. Indices of real phase-tropical curves. We start by recalling
the basic notions of tropical geometry (cf. [14], [15]) specializing to the
case of plane curves. Recall that a metric graph is a topological space
homeomorphic to Γ◦ = Γr∂Γ enhanced with a complete inner metric.
Here Γ is a finite graph and ∂Γ is the set of its 1-valent vertices. The
metric graph is also sometimes called a tropical curve (while in some
other instances the term tropical curve is reserved for the equivalence
class of metric graphs with respect to tropical modifications). In this
paper we require the graph Γ to be connected so that Γ◦ is irreducible
as a tropical curve. We assume that Γ has a vertex of valence at least
three, and that Γ does not have 2-valent vertices. The half-open edges
of Γ◦ obtained from the closed edges of Γ adjacent to ∂Γ are called
leaves.
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A plane tropical curve is a proper continuous map h : Γ◦ → R2 such
that h|E is smooth for every edge E ⊂ Γ with dh(u) ∈ Z2 for a unit
tangent vector u at any point of E. In addition we require the following
balancing condition at every vertex v ∈ Γ

(36)
∑
E

dh(u(E)) = 0,

where u(E) is the unit tangent vector in the outgoing direction with
respect to v and the sum is taken over all edges E adjacent to v.

The collection of vectors {dh(uv)}v∈∂Γ where uv is a unit vector tan-
gent to the leaf adjacent to v (and directed towards v) is called the
(toric) degree of h : Γ◦ → R2. The identity (36) implies that the sum
of all vectors in this collection is zero. Therefore this collection is dual
to a lattice polygon ∆ ∈ Z2 which is well-defined up to translations
in Z2. The polygon ∆ is determined by h(Γ◦). We call ∆ the Newton
polygon of h : Γ◦ → R2.

Tropical curves appear as limits of scaled sequences of complex curves
in the plane. Let A be any set and α→ tα ∈ R be a function unbounded
from above (this function is called the tropical scaling sequence). Let
CCα ⊂ (C×)2, α ∈ A, be a family of complex curves with the Newton
polygon ∆.

Definition 27. We say that a family CCα has a phase-tropical limit
with respect to tα if for every p ∈ R2 we have

(37) lim
tα→+∞

t−pα CCα = Φp

for a (possibly empty) algebraic curve Φ(p) ⊂ (C×)2. Here t−pα CCα is
the multiplicative translation of the curve CCα by t−pα ∈ (C×)2. The
coefficients of the polynomials defining t−pα CCα represent a point in the
projective space of dimension #(∆ ∩ Z2)− 1. The limit is understood
in the sense of topology of this projective space. The curve Φp ⊂ (C×)2

may be reducible and even non-reduced.
We say that h : Γ◦ → R2 is the tropical limit of CCα with respect to

tα if for a sufficiently small open convex neighborhood p ∈ U ⊂ R2 the
irreducible components Ψ ⊂ Φ(p) ⊂ (C×)2 correspond to the connected
components ψ ⊂ h−1(U) so that the lattice polygon ∆ψ determined by
the ends of the open graph ψ coincides with the Newton polygon ∆Ψ of
the irreducible component Ψ taken with some multiplicity. The same
component Ψ may correspond to several components of h−1(U) so that
the some of all resulting multiplicities is equal to the multiplicity of Ψ
in Φ(p). Each connected component of h−1(U) corresponds to a unique
component of Φ(p).
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If h does not contract any edge of Γ◦ to a point then the open set
ψ ⊂ Γ◦ may contain at most one vertex. If v ∈ Γ is such a vertex
then we call Ψ the phase Φv of the vertex v. If ψ is contained in
an edge E then we call Ψ the phase ΦE of the edge E. The phases
Φ(E) ⊂ (C×)2 do not depend on the choice of a point p ∈ h(E) and
are well-defined up to multiplicative translations by (R×)2. The curve
h : Γ◦ → R2 enhanced with the phases Φv and ΦE for its vertices and
edges is called the phase-tropical limit of CCα with respect to the scaling
sequence tα → +∞.

We consider the phases in (C×)2 that are different by multiplicative
translation by vectors from (R>0)2 equivalent.

Note that the Newton polygon of the phase ΦE of an edge E is
an interval. Thus after a suitable change of coordinates in (C×)2 the
(irreducible) curve ΦE is given by a linear equation in one variable.
Therefore, ΦE is a multiplicative translation of a subtorus S1 ≈ TE ⊂
S1 × S1 in the direction parallel to h(E).

Let us orient E. Then TE as well as the quotient space BE =
(S1 × S1)/TE also acquire an orientation. The image Arg(ΦE) co-
incides with π−1

E (σE) for some σE ∈ BE, where πE : S1 × S1 → BE is
the projection. Since BE is isomorphic to S1 and oriented, we have a
canonical isomorphism BE = Z/2πZ. Thus, a phase ΦE of an oriented
edge E of a planar tropical curve is determined by a single argument
σ(E) ∈ Z/2πZ. The change of the orientation of E results in the
change of sign of σ(E).

Let v ∈ Γ◦ be a vertex and Ej be the edges adjacent to v. Orient Ej
outwards from v. The oriented edges Ej can be associated a momentum
µ(Ej) with respect to the origin 0 ∈ R2. This is the wedge product of
the vector connecting the origin with a point of Ej and the unit tangent
vector u(Ej) coherent with the orientation. Clearly, it does not depend
on the choice of the point in Ej.

Recall that the vertex v is dual to the lattice polygon ∆v determined
by the integer vectors dh(u(Ej)). The multiplicity is defined as m(v) =
2 Area ∆v, cf. [14].

Proposition 28 (tropical Menelaus theorem). For any tropical curve
h : Γ◦ → R2 and a vertex v ∈ Γ◦ the momenta µ(Ej) of the edges
adjacent to v and oriented outwards from v satisfy to the equality

(38)
∑
j

µ(Ej) = 0.
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If σ(Ej) ∈ Z/2πZ are phases of the oriented edges Ej then

(39)
∑
j

w(Ej)σ(Ej) = πm(v)

(assuming that σ(Ej) appear in the phase-tropical limit of a family
CCα ⊂ (C×)2 of complex curves).

This statement can be viewed as a generalization of the ancient
Menelaus theorem stating that three points D,E, F on the extensions
of three sides of a planar triangle ABC are collinear if and only if

(40)
|AD|
|DB|

|BE|
|EC|

|CF |
|FA|

= −1.

Here the length is taken with the minus sign if the direction of an
interval (e.g. |CF |) is opposite to the orientation of the triangle, see
Figure 7.

Figure 7. The Menelaus theorem.

Proof. The wedge product of the balancing condition (36) with the
vector connecting 0 and v gives (38). To deduce (39) we consider
the polynomial fv (whose Newton polygon is ∆v) defining the phase
Φv ⊂ (C×)2. By Vieta’s theorem, the product of the roots cut by
fv on a divisor of C∆v corresponding to an oriented side F ⊂ ∆v is
(−1)#(F∩Z2) times the ratio of the coefficients at the endpoints of F .
Therefore the sum of the phases of the edges of Γ corresponding to F
is the argument of this ratio plus #(F ∩Z2)π. Since by Pick’s formula
the parity of #(∂∆∩Z2) coincides with that of m(v) = 2 Area(∆v) we
recover (39). �

Corollary 29. We have
∑
E

µ(E) = 0, where the sum is taken over all

leaves of h : Γ◦ → R2 oriented in the outwards direction.
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Proof. Take the sum of the expression (38) over all vertices of Γ◦. The
momenta of all bounded edges will enter twice with the opposite signs.

�

If all curves CCα are defined over R then the phases Φ(p) must be
real for all points p ∈ R2. Note, however that in general, the phase Φv

for a vertex v ∈ Γ◦ does not have to be real as the involution of complex
conjugation may exchange it with Φv′ for another vertex v′ ∈ Γ with
h(v) = h(v′). We say that a vertex v is real if Φv is defined over R.

Let RCα be a scaled sequence of type I curves enhanced with a
complex orientation, so that a component Sα ⊂ CCαrRCα is fixed for
all α. Suppose that CCα has a phase-tropical limit, and the orientations
of RCα agree with some complex orientations of the real part RΦ(p) of
the phases Φ(p). The quantum index of RCα is well-defined if it has a
purely imaginary or real coordinate intersection. Similarly, the phase
RΦv of a real vertex v of the tropical limit has a well-defined quantum
index if σ(E) ≡ 0 (mod π) for any edge E adjacent to v.

Proposition 30. For large tα we have

(41) k(RCα) =
∑
v

k(RΦv),

where the sum is taken over all real vertices whenever all quantum
indices in (41) are well-defined.

Proof. Additivity of the quantum index with respect to the phases Φv

follows from Theorem 1 through additivity of the degree of the map
2 Arg restricted to S ∩ (C×)2. Non-real vertices have zero contribution
to k(RCα) as the signed area of the amoeba of the whole complex curve
is zero. �

Proof of Theorem 7. Recall the definition of the (tropical) Block-Göttsche
invariants, see [7], which refine tropical enumerative invariants of [14].
Namely, to any 3-valent (open) tropical immersed curve h : Γ◦ → R2

we may associate the Laurent polynomial

(42) BG(h(Γ◦)) =
∏
v

q
m(v)

2 − q−
−m(v)

2

q
1
2 − q− 1

2

,

where v runs over all vertices v ∈ Γ and m(v) is the multiplicity of the
vertex v. The genus of a (connected) tropical curve Γ◦ is the first Betti
number of Γ◦. In particular, a rational tropical curve is a tree.

Let us fix a collection µ = {mj}mj=1, m = #(∂∆ ∩ Z2), of generic

real numbers subject to the condition
m∑
j=1

µj = 0. This means that µj,
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j = 1, . . . ,m−1 are chosen generically, and µm is determined from our
condition.

If h : Γ◦ → R2 is a tropical curve with the Newton polygon ∆ then
we number its leaves so that the first m1 leaves are dual to the side
E ⊂ ∂∆, the second m2 to the side E2 ⊂ ∂∆ and so on with the last
mn leaves dual to En. We say that h : Γ → R2 passes through the
∂T∆-points determined by µ if the jth unbounded edge of Γ has the
momentum µj. Note that a leaf E ⊂ Γ◦ must have the momentum
µ(E) if it passes through a point pE on the oriented line parallel to
the vector (dh)u(E) with the momentum µ(E). Thus a generic choice
of the momenta ensures that h : Γ◦ → R2 passes through a generic
collection of m − 1 points in R2. Thus we have only finitely many
rational tropical curves with the Newton polygon ∆ passing through
the ∂T∆ points determined by µ by Lemma 4.22 of [14] (as the number
of combinatorial types of tropical curves with the given Newton polygon
∆ is finite). By Proposition 4.11 of [14] all these tropical curves are
simple in the sense of Definition 4.2 of [14].

The Block-Göttsche number associated to µ is

(43) BG∆ = BG∆(µ) =
∑

h:Γ◦→R2

BG(h(Γ◦)),

where the sum is taken over all h : Γ◦ → R2 passing through the ∂T∆
points determined by µ. Independence of BG∆ from µ can be proved
in the same way as in [7]. Also it follows from Theorem 5 once we
prove coincidence of R∆ and BG∆(µ).

A toric divisor CEj ⊂ C∆ is the compactification of the torus C×
obtained by taking the quotient group of (C×)2 by the subgroup defined
by the side Ej ⊂ ∆. Thus a configuration P = {pj}mj=1 ⊂ ∂C∆ is
given by a collection of m nonzero complex numbers as well as an
attribution of the points to the toric divisors. This collection is real if
the corresponding numbers are real and positive if these number are
positive.

We set P t = {pt1, . . . , ptm} ⊂ ∂R∆ be the configuration of points
with the same toric divisor attribution as P , and given by the positive
numbers {t2µj}, t > 1. By Proposition 8.7 of [14] the amoebas of
rational complex curves with the Newton polygon ∆ passing through
(Fr∆

2 )−1(Pt) converge when t→ +∞ to tropical curves passing through
the ∂T∆-points determined by µ. Proposition 8.23 of [14] determines
the number of complex curves with amoeba in a small neighborhood
of a rational tropical curve h : Γ◦ → R2 passing through any choice of
points p̃tj ∈ (Fr∆

2 )−1(ptj), j = 1, . . . ,m−1, for large t, while Remark 8.25
of [14] determines the number of the corresponding real curves. E.g. if
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the weights of all edges of Γ◦ are odd we have a single real curve for any
choice of P̃ t = {p̃tj}. In general, some choices of P̃t may correspond to
no real solutions, while others may correspond to multiple solutions.
We claim that nevertheless there are 2m−1 different real curves whose
amoeba is close to h : Γ◦ → R2 with the image under Fr∆

2 passing
through P t for large t. Thus we have 2m different oriented curves. We
show this by induction on m as follows.

If Γ◦ has a single vertex v (so that m = 3) then there are 4 different
real rational phase Φv which differ by the deck transformations of the
map Fr∆

2 . Thus we have 8 different oriented real rational phases in
this case. The positive logarithmic rotation number for half of them
is positive, for the other half is negative. Adding each new 3-valent
vertex v′ to the tree Γ doubles the number of oriented real phases as
there are two ways to attach the phase for v′: so that the logarithmic
rotation number of the resulting real curve will increase by one and so
that it will decrease by one. Inductively we get 4 real oriented curves
for each of the 2m−2 possible distribution of signs for the vertices of Γ◦.

For each vertex v the real phase RΦv is the image of a line by a
multiplicative-linear map of determinant m(v) by Corollary 8.20 of

[14]. Therefore k(RΦv) = ±m(v)
2

, where the sign is determined by the
degree of the logarithmic Gauß map. According to our sign convention
(18) each oriented real curve comes with the sign equal to the number
of negative vertices. Thus by Proposition 30 the contribution of h :
Γ → R2 to R∆(P t) for large t is

∏
v

(q
m
2 − q−m2 ) which coincides with

the numerator of the Block-Göttsche multiplicity (42). �
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