Tropical curves in Sandpiles II

Mikhail Shkolnikov (joint with Nikita Kalinin)

University of Geneva

Goal

Consider $p_1, \ldots, p_n \in \Omega^{\circ} \subset \mathbb{R}^2$.

Goal

Consider $p_1, \ldots, p_n \in \Omega^{\circ} \subset \mathbb{R}^2$.

For h > 0 define a state

$$\phi_h = 3 + \sum \delta_{[p_i]_h}$$

on $\Gamma = \Omega \cap h\mathbb{Z}^2$, where $[(x,y)]_h = (h[h^{-1}x], h[h^{-1}y]) \in \Gamma$.

Goal

Consider $p_1, \ldots, p_n \in \Omega^{\circ} \subset \mathbb{R}^2$.

For h > 0 define a state

$$\phi_h = 3 + \sum \delta_{[p_i]_h}$$

on
$$\Gamma = \Omega \cap h\mathbb{Z}^2$$
, where $[(x,y)]_h = (h[h^{-1}x], h[h^{-1}y]) \in \Gamma$.

Goal

Describe ϕ_h° for small h.

Claim

We know that ϕ_h° coincides with the maximal stable state almost everywhere. Therefore, we are interested in describing the shape of the set $E(\phi_h^\circ) = \{v \in \Gamma | \phi_h^\circ(v) < 3\}$.

Claim

We know that ϕ_h° coincides with the maximal stable state almost everywhere. Therefore, we are interested in describing the shape of the set $E(\phi_h^\circ) = \{v \in \Gamma | \phi_h^\circ(v) < 3\}$.

Claim

There exist an Ω -tropical curve $C = C(\Omega, \{p_i\})$ such that

$$E(\phi_h^\circ) \subset B_r(C \cup \partial\Omega)$$

for r = O(h).

▶ Construct certain tropical curve $C = C(\Omega, \{p_i\})$

- ▶ Construct certain tropical curve $C = C(\Omega, \{p_i\})$
- ▶ Find $F_+ \ge F$, where F is the toppling function of ϕ_h

- ▶ Construct certain tropical curve $C = C(\Omega, \{p_i\})$
- \blacktriangleright Find ${\it F}_{+} \geq {\it F},$ where ${\it F}$ is the toppling function of $\phi_{\it h}$
- ▶ Find $0 \le F_- \le F$ such that $F_+ F_- = O(1)$ as $h \to 0$

- ▶ Construct certain tropical curve $C = C(\Omega, \{p_i\})$
- \blacktriangleright Find $F_{+} \geq F,$ where F is the toppling function of $\phi_{\it h}$
- ▶ Find $0 \le F_- \le F$ such that $F_+ F_- = O(1)$ as $h \to 0$
- ▶ Show that $E(\phi_h + \Delta F_-) \subset B_r(C \cup \partial \Omega)$ for r = O(h)

- ▶ Construct certain tropical curve $C = C(\Omega, \{p_i\})$
- \blacktriangleright Find ${\it F}_{+} \geq {\it F},$ where ${\it F}$ is the toppling function of $\phi_{\it h}$
- ▶ Find $0 \le F_- \le F$ such that $F_+ F_- = O(1)$ as $h \to 0$
- ▶ Show that $E(\phi_h + \Delta F_-) \subset B_r(C \cup \partial \Omega)$ for r = O(h)Then we apply the following lemma

- ▶ Construct certain tropical curve $C = C(\Omega, \{p_i\})$
- ▶ Find $F_+ \ge F$, where F is the toppling function of ϕ_h
- ▶ Find $0 \le F_- \le F$ such that $F_+ F_- = O(1)$ as $h \to 0$
- ▶ Show that $E(\phi_h + \Delta F_-) \subset B_r(C \cup \partial \Omega)$ for r = O(h)Then we apply the following lemma

Lemma

Let ψ be a state such that its toppling function is bounded by c>0. Then $E(\psi^{\circ})\subset B_{ch}(E(\psi)\cup\partial\Omega)$.

Finally, let $\psi = \phi_h + \Delta F_-$. Note that $\psi^{\circ} = \phi_h^{\circ}$.

Minimization problem

Let H be an Ω -tropical series and p_1, \ldots, p_n be a collection of points in Ω° . Consider a space $\mathcal{F}(H, \{p_i\})$ of all Ω -tropical series H' such that $H' \geq H$ and H' is not smooth at all p_i .

Minimization problem

Let H be an Ω -tropical series and p_1, \ldots, p_n be a collection of points in Ω° . Consider a space $\mathcal{F}(H, \{p_i\})$ of all Ω -tropical series H' such that $H' \geq H$ and H' is not smooth at all p_i .

Lemma

If Ω doesn't contain a line with irrational slope then the set $F(H, \{p_i\})$ is not empty.

Minimization problem

Let H be an Ω -tropical series and p_1, \ldots, p_n be a collection of points in Ω° . Consider a space $\mathcal{F}(H, \{p_i\})$ of all Ω -tropical series H' such that $H' \geq H$ and H' is not smooth at all p_i .

Lemma

If Ω doesn't contain a line with irrational slope then the set $F(H, \{p_i\})$ is not empty.

Definition

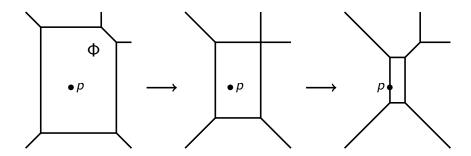
Denote by $G_{p_1,...,p_n}H$ the function on Ω given by

$$G_{p_1,\ldots,p_n}H(v)=\inf_{H'\in\mathcal{F}(H,\{p_i\})}H'(v).$$

Lemma

 $G_{p_1,\ldots,p_n}H\in\mathcal{F}(H,\{p_i\}).$

G_p action



Action of G_p by shrinking the face Φ where p belongs to. This corresponds to incrementing the coefficient dual to Φ . Note that combinatorics of the new curve can change.

The curve

Let F_0 be the Ω -tropical series given by

$$F_0 = G_{p_1,...,p_n}0$$

and $C = C(\Omega, \{p_i\})$ be the Ω -tropical curve defined by F_0 .

We claim that $E(\phi_h^{\circ})$ converges to C as h tends to 0.

The upper bound

For a given h>0, consider a non-negative integer-valued function F_+ on Γ given by

$$F_+(v) = [h^{-1}F_0(v)].$$

The function F_+ is superharmonic on Γ and strictly superharmonic at $[p_i]_h$. In particular, $\phi_h + \Delta F_+ \leq 3$ everywhere. Therefore,

$$F \leq F_+$$

by the least action principle.

Lower bounds: reduction to Q-polygons

Definition

A domain $\Omega \subset \mathbb{R}^2$ is called \mathbb{Q} -polygon if Ω is an intersection of a finite number of half-planes with rational slopes.

Lower bounds: reduction to Q-polygons

Definition

A domain $\Omega\subset\mathbb{R}^2$ is called \mathbb{Q} -polygon if Ω is an intersection of a finite number of half-planes with rational slopes.

Lemma

For any $\varepsilon>0$ the set $\Omega_{\varepsilon}=F_0^{-1}([\varepsilon,\infty))\subset\Omega$ is a \mathbb{Q} -polygon.

This observation allows to reduce the case of general domain to the case of \mathbb{Q} -polygon. We can take the lower bound F_- for F on Ω to be the toppling function for the state ϕ restricted to $\Omega_{\varepsilon} \cap h\mathbb{Z}^2$.

Waves

For each point in $p \in \Gamma$ denote by W_p the wave operator acting on the space of stable states on Γ and given by

$$W_{p}\psi=(T_{p}\psi)^{\circ},$$

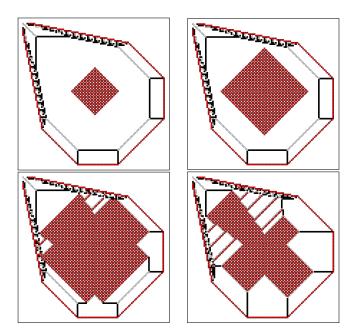
where T_p is the toppling operator.

Lemma

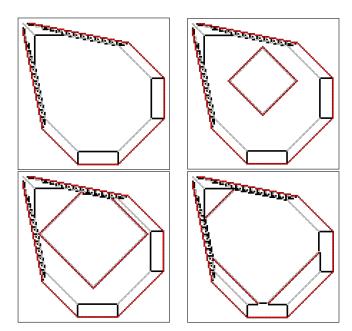
Let ψ be a stable state. Then there exist m such that

$$(\psi + \delta_p)^\circ = W_p^m \psi + \delta_p.$$

One point on a \mathbb{Q} -polygon: avalanche



One point on a \mathbb{Q} -polygon: waves



Smoothings I

We would like to understand the structure of discrete tropical edges and vertices. This can be done by *smoothings*.

Smoothings I

We would like to understand the structure of discrete tropical edges and vertices. This can be done by *smoothings*.

Consider a tropical polynomial

$$f(x,y) = \min_{(i,j)\in A} (ix + jy + a_{ij})$$

where A is a finite subset of \mathbb{Z}^2 and $a_{ij} \in \mathbb{Z}$. Let C be a tropical curve given by f.

Smoothings II

Denote by f_0 the restriction of f to \mathbb{Z}^2 . Note that f_0 is superharmonic. For any integer $n \geq 0$ consider a space \mathcal{F}_n of all $g: \mathbb{Z}^2 \to \mathbb{Z}$ such that

- ▶ g is superharmonic
- ▶ $f n \le g \le f$
- ▶ there exist r > 0 such that g = f on $\mathbb{Z}^2 \setminus B_r(C)$.

Denote by f_n the pointwise minimum of all functions in \mathcal{F}_n . We say that the sequence f_n stabilizes if there exist N such that $f_n = f_N$ for all n > N.

Smoothings III

We say that the sequence f_n stabilizes if there exist N such that $f_n = f_N$ for all n > N.

Theorem

The sequence f_n stabilizes if and only if the area of the Newton polygon of C is either

- ▶ a segment of lattice length 1
- ▶ a triangle with area $\frac{1}{2}$
- ▶ a parallelogram with area 1

In these cases C is a local model of an edge, a vertex or a simple node.

Wave action on half-planes

Emergence of a discrete tropical edge of direction (3,7) under the action by waves. It is an example of a self-reproducing pattern.

Discrete curves

Consider a simple nodal curve $C \subset \Omega$ defined by an Ω -tropical polynomial H. Using the smoothing procedure we can define the state C_h on $\Gamma = \Omega \cap h\mathbb{Z}^2$ such that $E(C_h)$ is close to C.

Discrete curves

Consider a simple nodal curve $C \subset \Omega$ defined by an Ω -tropical polynomial H. Using the smoothing procedure we can define the state C_h on $\Gamma = \Omega \cap h\mathbb{Z}^2$ such that $E(C_h)$ is close to C.

Lemma

Let p be a point in $\Omega^{\circ} \setminus C$. Suppose that $G_p f$ defines a simple nodal curve \tilde{C} . Then for h small enough the state \tilde{C}_h coincide with $(C_h + \delta_{[p]_h})^{\circ} - \delta_{[p]_h}$ outside $B_{O(h)}\partial\Omega$.

Discrete curves

Consider a simple nodal curve $C \subset \Omega$ defined by an Ω -tropical polynomial H. Using the smoothing procedure we can define the state C_h on $\Gamma = \Omega \cap h\mathbb{Z}^2$ such that $E(C_h)$ is close to C.

Lemma

Let p be a point in $\Omega^{\circ} \setminus C$. Suppose that $G_p f$ defines a simple nodal curve \tilde{C} . Then for h small enough the state \tilde{C}_h coincide with $(C_h + \delta_{[p]_h})^{\circ} - \delta_{[p]_h}$ outside $B_{O(h)}\partial\Omega$.

Thus, the operator G_p can be interpreted as a continuous analogue for the operator G_p^h given by

$$\psi \mapsto (\psi + \delta_{[p]_h})^{\circ} - \delta_{[p]_h}.$$

Finite dynamics

Therefore, in order to find $\phi^{\circ} = (3 + \sum \delta_{[p_i]_h})^{\circ}$ we can iteratively apply the operators $G_{p_i}^h$. This gives a process of the type

$$(3) \to G_{p_1}^h(3) \to G_{p_2}^hG_{p_1}^h(3) \to G_{p_1}^hG_{p_2}^hG_{p_1}^h(3) \to G_{p_3}^hG_{p_1}^hG_{p_2}^hG_{p_1}^h(3) \dots$$

Finite dynamics

Therefore, in order to find $\phi^{\circ} = (3 + \sum \delta_{[p_i]_h})^{\circ}$ we can iteratively apply the operators $G_{p_i}^h$. This gives a process of the type

$$(3) \to G_{p_1}^h(3) \to G_{p_2}^hG_{p_1}^h(3) \to G_{p_1}^hG_{p_2}^hG_{p_1}^h(3) \to G_{p_3}^hG_{p_1}^hG_{p_2}^hG_{p_1}^h(3) \dots$$

This motivates to consider a sequence of polynomials $H_0, H_1, ...$ such that $H_0 = 0$ and $H_{m+1} = G_{p_{k_m}}H_m$ for $k_m = 1, ..., n$.

Proposition

If each number $i=1,\ldots,n$ appears infinitely many times in the sequence $k_0,k_1\ldots$ then the sequence of functions H_m stabilizes at the function $H_N=G_{p_1,\ldots,p_n}0$.

Finite dynamics

Therefore, in order to find $\phi^{\circ} = (3 + \sum \delta_{[p_i]_h})^{\circ}$ we can iteratively apply the operators $G_{p_i}^h$. This gives a process of the type

$$(3) \to \textit{G}^{\textit{h}}_{\textit{p}_{1}}(3) \to \textit{G}^{\textit{h}}_{\textit{p}_{2}}\textit{G}^{\textit{h}}_{\textit{p}_{1}}(3) \to \textit{G}^{\textit{h}}_{\textit{p}_{1}}\textit{G}^{\textit{h}}_{\textit{p}_{2}}\textit{G}^{\textit{h}}_{\textit{p}_{1}}(3) \to \textit{G}^{\textit{h}}_{\textit{p}_{3}}\textit{G}^{\textit{h}}_{\textit{p}_{1}}\textit{G}^{\textit{h}}_{\textit{p}_{2}}\textit{G}^{\textit{h}}_{\textit{p}_{1}}(3) \dots$$

This motivates to consider a sequence of polynomials H_0, H_1, \ldots such that $H_0 = 0$ and $H_{m+1} = G_{p_{k_m}}H_m$ for $k_m = 1, \ldots, n$.

Proposition

If each number $i=1,\ldots,n$ appears infinitely many times in the sequence $k_0,k_1\ldots$ then the sequence of functions H_m stabilizes at the function $H_N=G_{p_1,\ldots,p_n}0$.

The main problem in this approach is that the curve defined by $G_{p_{k_i}}G_{p_{k_{i-1}}}\ldots G_{p_{k_1}}0$ can be very singular and we cannot deal with its discrete analogue. But we still can use this dynamics to get the lower bound for the toppling function of ϕ .

The lower bound

The tropical polynomial $H_{m+1}=G_{p_{k_m}}H_m$ is the result of incrementing by $b_m>0$ of a certain coefficient of H_m . Consider a large enough integer c>0. Define a sequence of states $\psi_0,\psi_1\dots$ such that $\psi_0=(3)$ and

$$\psi_{m+1} = W_{p_{k_m}}^{[h^{-1}b_m]-c}\psi_m = \psi_m + \Delta g_m,$$

where g_m is the toppling function of the wave action.

Claim

For "good" Ω the function $F_-=g_0+\cdots+g_N$ can be taken as the lower bound for the toppling function of $\phi=3+\sum \delta_{[p_i]_h}$.

The lower bound

The tropical polynomial $H_{m+1}=G_{p_{k_m}}H_m$ is the result of incrementing by $b_m>0$ of a certain coefficient of H_m . Consider a large enough integer c>0. Define a sequence of states $\psi_0,\psi_1\dots$ such that $\psi_0=(3)$ and

$$\psi_{m+1} = W_{p_{k_m}}^{[h^{-1}b_m]-c}\psi_m = \psi_m + \Delta g_m,$$

where g_m is the toppling function of the wave action.

Claim

For "good" Ω the function $F_-=g_0+\cdots+g_N$ can be taken as the lower bound for the toppling function of $\phi=3+\sum \delta_{[p_i]_h}$.

Claim

A general \mathbb{Q} -polygon can be deformed to a good one by a sequence of blow-ups. This gives small corrections to the lower bound F_- .

Thanks!