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Chapter 1

Main results

Consider a lattice polygon ∆. A state φ of the sandpile model is a
non-negative integral valued function on ∆ ∩ Z2. We think of every
lattice point as container or cell. It can contain some integer amount
of sand, where “sand” is a metaphor for mass-energy. So the state of a
system is a function φ representing the amount of grains in each cell.
If a cell has more than three grains of sand it topples, i.e. gives one
grain to the each of the four sides (some grain can cross ∂∆ and leave
the system). A state is stable if there is no toppling to be applied,
i.e. φ ≤ 3. A process of doing topplings while possible is called the
relaxation, we denote by φ◦ the stable state appearing in the result of
the relaxation of a state φ. The details about relaxations can be found
in [LP10] or in Appendix B of Chapter 9, the joint work with Nikita
Kalinin [KS15b].

Caracciolo-Paoletti-Sportiello [CPS10, CPS12] observed that per-
turbing the maximal stable state produces, what they called “strings”,
thin graphs made of soliton patterns, the strings are realised as gaps in
sand (energy) levels. The maximal stable state is represented by the
function equal to 3 at every point. In the example shown on Figure 1.1
we see a perturbation (3 + δp)

◦ made by one point on a square. The
result differs from 3 along a balanced graph with a single loop, i.e. a
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Figure 1.1: Snapshots during the relaxation for the state φ ≡ 3 on a
square after adding an extra grain at one point p (the big gray point).
Black rounds represent v with φ(v) ≥ 4, black squares (which are
arranged along the vertical and horizontal edges on the final picture)
represent the value of sand equal to 2, white rounds (arranged along
diagonals on the final picture) are 1, and white cells are 3. Rare cells
with zero grains are marked as crosses, one can see them during the
relaxation on the vertical and horizontal lines through p. The value of
the final state at p is 3.

tropical elliptic curve passing through the perturbation point.
In Chapter 9, we develop a sufficient mathematical formalism to

show that the behaviour of heavy sandpiles is governed by tropical
geometry. Inspired by breakthrough results [PS13, LPS16] of Levine-
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Pegden-Smart, we’ve chosen to use scaling limit as a basic tool to give
an explicit statement. We show that for big polygon ∆ the maximal
stable state perturbed in several points approximates the solution of
the tropical Steiner problem for these perturbation points (see Figure
0.1 for the demonstration). The tropical Steiner problem is the prob-
lem of drawing a ∆-tropical curve (given by a tropical polynomial
F = min(ix+ jy + aij) vanishing at the boundary ∂∆ of the polygon)
passing through the given collection of points in the interior ∆◦ and
minimising the action defined as

∫
∆ F. The origin of the minimisa-

tion is the least action principle in sandpiles [FLP10] and the action
corresponds to the total number of topplings performed during the
relaxation.

Theorem 1.1. Consider a lattice polygon ∆ and a collection of points

p1, . . . , pn ∈ ∆◦.

For any N ∈ Z>0 consider the perturbation of the maximal stable state
on N∆∩Z2 at Np1, · · · , Npn. Denote by DN ⊂ N∆ the locus of point
where it is not maximal, i.e.

DN = {(3 + δNp1
+ · · ·+ δNpn)

◦ 6= 3}.

Then 1
NDN converges to (the unique) ∆-tropical curve minimising the

action in the class of curves passing through the points p1, . . . , pn.

The limit is taken over all compacts contained in the interior ∆◦.
This extra technicality (becoming crucial when working on general
convex domain instead of ∆) is due to irregular behaviour near ∂∆.
Otherwise, the plane limit of 1

NDN on ∆ would contain some segments
of ∂∆. In Chapter 5 we show that minimisation of action implies
minimisation of tropical symplectic area, corresponding to the total
mass lost after the perturbation. Another feature of sandpiles [BTW87,
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Dha99] is the presence of power laws for the sizes of avalanches and
other observables. In [GKL+] we provide the evidence of power laws in
the tropical version of the sandpile model defined via the scaling limit.

In Chapter 5 we investigate the origin of symplectic area and state
the tropical Steiner problem. We give an iterative algorithm for ap-
proximating the solution and conjecture that it actually gives the exact
solution after enough iterations. We investigate the role of this algo-
rithm in the proof of the scaling limit theorem.

Chapter 9 (our joint paper with Nikita Kalinin) is dedicated to
the proof of the scaling limit theorem for the sandpiles bounded by
general convex domains. The main technical discovery for reducing
the problem to the case of Q-polygons (all sides have rational slopes)
and to even simpler case of Delzant polygons is the approximation
Theorem 1.2. We use the definition of Delzant polytope as it is given
in [dS08]. Applied to the two dimensional case we have.

Definition 1.1. A Q-polygon is called Delzant polygon if for every
pair of adjacent sides the primitive vectors in their directions give a
basis in Z2.

Theorem 1.2. For any compact convex domain Ω there exists a canon-
ical continuous family Ωε, ε > 0, of Q-polygons such that Ωε ⊂ Ωδ for
ε > δ and ∪εΩε = Ω. Moreover, if Ω has no corners then Ωε is Delzant.

The approximation is done by the level sets of the tropical analytic
series FΩ. Its definition is the following.

Definition 1.2. For a compact convex domain Ω ⊂ R2 define a func-
tion FΩ : Ω→ R

FΩ(z) = inf
v∈Z2

(av + v · z),

where a number αv for a vector v ∈ Z2\0 is given by av = −minz∈Ω z ·v.
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This function represents lattice distance to the boundary. It par-
ticipates in the simplest case of the scaling limit theorem on a general
domain, when we perturb the maximal stable state by a singe point.
This interprets the evolution of Ωε as wave front.

Definition 1.3. Let φ be a state of a sandpile model on Ω ∩ Z2. For
any point p the value F (p) of the toppling function F, corresponding
to the relaxation φ 7→ φ◦, is the number of topplings performed at p
during this relaxation.

The toppling function doesn’t depend on the particular order of
topplings in a relaxation. The discrete Laplacian of the toppling func-
tion F is equal to φ◦ − φ (see Appendix B, Chapter 9 for the details).

Theorem 1.3. Consider a convex compact domain Ω ⊂ R2 and a
point p in its interior. For any h > 0 consider ph to be the nearest
point to p in hZ2. Denote by Fh : Ω ∩ Z2 → Z≥0 the toppling function
of the relaxation for the maximal stable state perturbed at ph. Then
hFh converges point-wise to the tropical series on Ω described explicitly
as z 7→ min(FΩ(z), FΩ(p)).

The choice of a nearby point ph ∈ hZ2 is irrelevant if we take
|p − ph| ≤ h. In the case of several perturbation points a special care
is needed. The main reason is the instability of a solution for some
configurations (see Figure 5.4).

We investigate the properties of FΩ in the case of Delzant polygon
Ω in Chapter 3 via interpreting CΩ, the tropical curve defined by FΩ,
as a caustic curve (manifestation of a curve with maximal quantum
index [IM12, Mik15]). As a result we have the following.

Theorem 1.4. The level sets of F∆ are Delzant polygons if ∆ is
Delzant.
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Therefore, the canonical evolution Ω 7→ Ωε on convex domains
pushes domains with smooth boundary to Delzant polygons. And af-
ter, the evolution stays within Delzant polygons, until the degeneration
to the maximal level set.

We interpret the evolution as the symplectic version of the mini-
mal model for toric surfaces in Chapter 4 (the approach might work
in higher dimensions as well and symplectic Calabi-Yau manifolds
are distinguished as stationary points of the evolution). Recall that
c1(X) = c1(TX) the first Chern class of X in algebraic geometry is of-
ten called “anti-canonical” class of the surface X and denoted as −KX

and KX = −c1(X) is called the canonical class of X. For a smooth
toric surface X with symplectic form ω we consider the family of forms
ωε such that

[ωε] = [ω] + εKX ∈ H2(X,R).

There exist T > 0 such that for ε < T the form ωε is non-degenerate
and ωT degenerates over some boundary divisors. Consider X ′ to be
the result of contracting those divisors.

Proposition 1.1. If the limit of volumes
∫
X ωε ∧ ωε is not zero as

ε ∈ (0, T ) tends to T , then X ′ is smooth and push-forward of the form
ωT is non-degenerate on X ′.

After interpreting Ωε as the image of the moment map ωε we realise
this proposition as a version of Theorem 1.4. A consequence of the
proposition is that one can continue deforming the symplectic form ωT
by the canonical class of X ′ staying within the class of smooth surfaces.
It seems, that it is possible to generalise Proposition 1.1 outside toric
geometry, giving rise to the canonical evolution on symplectic varieties.
Chapter 3 gives an exhaustive description of events performed during
this evolution in the case of smooth toric surface. In Chapter 4 we see
that the evolution works equally well in singular case (i.e. for general
Q-polygons) and investigate the special role of −2 curves and multiple
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edges of CΩ manifesting as An singularities of surfaces. Finally, I share
some thoughts about how we could define a symplectic toric surface
for an arbitrary convex domain.

In any case, this mode of thinking suggests to look at the minimal
models for general Ω. The minimal model is defined as the germ of Ωε

near the maximal level set. There are countably many types of such
minimal models, we give a preliminary description for them in terms
of mutants of del Pezzo polygons in Chapter 6. The minimal models,
or equivalently the singularities of CΩ, define an SL2Z-invariant strat-
ification of the space of convex domains turning it into the infinite-
dimensional tropical manifold. We describe types of strata in Chapter
6 and show examples of working with them.

Theorem 1.5. The space of all compact convex domains {Ω ⊂ R2} on
the plane is stratified in terms of the type of singularity of CΩ. Every
stratum is a lattice polyhedral cone in the coordinates given by the
moduli of the curve CΩ.

The “moduli” here means the metric on the tree CΩ given by lengths
of all edges. Therefore, it should be possible to express any invariant
of convex domains in terms of this moduli. We give a formula for area
and some other invariants in general and show how to use them for the
unit disc (see section 6.1 and [KS17]). We hope to refine them to the
version of the Hirzebruch-Riemann-Roch formula on the toric space of
a disc, and a convex domain in general (we sketch possible definitions
of such exotic spaces in Section 4.2). Our interest in the subject is due
to the feeling that the plane is very weakly understood. A particular
example is the Gauss circle problem which we are attempting to solve
via the above-mentioned techniques.

A crucial step in planar geometry could be a complete description
of lattice invariants for the embeddings of a loop into the plane. Our
research shows that the sandpiles applied as a nice intuitive and empir-
ical basis for observing purely geometric phenomena. One of them is
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that sandpiles work well in higher dimension and, in dimension two, for
non-convex sets, also we need more of symplectic geometry to describe
what we see.

Consider the group PSL2 C ⊂ CP3 of orientation preserving auto-
morphisms of H3 and fix a point O ∈ H3. Define a map

κ : PSL2 C→ H3

by κ(A) = A(O). This map is an analogue of the logarithm acting
from algebraic torus to the Euclidean space. Therefore, for a an alge-
braic subvariety V of PSL2 C we consider κ(V ) ⊂ H3 and call it the
hyperbolic amoeba.

Theorem 1.6. The hyperbolic amoeba of a line is either a geodesic
cylinder or a horosphere. If V is an odd degree surface then κ(V ) = H3.
If V is an even degree surface then H3\κ(V ) is a convex domain.

This is a result of our joint work with Grigory Mikhalkin and the
idea is suggested by Yakov Eliashberg (also it seems we have misun-
derstood the original aspiration). The difference between hyperbolic
and Euclidean amoebas is manifested in our sandpile theorems, joint
with Nikita Kalinin [KS16, KS15a]. I gave an overview of geometric
ideas in Section 5.3 without spoiling the reading with technicalities.
The realistic picture on scaling limits is presented in Chapter 9.
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Chapter 2

Résumé en français

Considéron un polygon entier ∆. Un état du modèle du tas de sable
est φ : ∆ ∩ Z2 → Z≥0, est un point p de ∆ ∩ Z2 représente une cel-
lule contenant φ(p) des grains de sable. Si une cellule a plus de trois
grains de sable, elle donne une grain à chacune des quatre côtés. Cet
événement est appelé toppling, renversement. Un état est stable s’il
n’y a pas de renversement (topplings) á appliquer, C’est-á-dire φ3. Un
processus de prise de topplings possible est appelé le relaxation, on
note φ◦ l’état stable apparaissant dans le résultat de la relaxation d’un
état φ. Pour des détails sur les relaxations voir [LP10] ou l’appendice
B du Chapitre 9, du travail en commun avec Nikita Kalinin [KS15b].

Caracciolo-Paoletti-Sportiello [CPS10, CPS12] ont observé que les
perturbations de l’état stable maximal produit, ce qu’ils appelaient
“strings”, des graphs fins réalisés en motifs solitons, les cordes sont
réalisées comme des lacunes dans les niveaux de sable (énergie). L’état
stable maximal est représenté par la fonction égale à 3 partout.

Théorème 2.1. Considérons un polygon entier ∆ est une collection
des points

p1, . . . , pn ∈ ∆◦.

Pour tout N ∈ Z>0 considérons la perturbation de l’état maximal sta-
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ble sur N∆∩Z2 à Np1, · · · , Npn. Désignons par DN ⊂ N∆ l’ensemble
du points où ce n’est pas maximal, cet-à-dire

DN = {(3 + δNp1
+ · · ·+ δNpn)

◦ 6= 3}.

Alors 1
NDN converge vers une courbe ∆-tropicale minimisont l’action

dans la classe des courbes passant par les points p1, . . . , pn.

Le Chapitre 9 est consacré à la preuve du théoréme de la lim-
ite d’échelle pour les tas de sables délimités par des domaines con-
vexes généraux. La technique découverte pour réduire le problème
au cas des Q-polygones (tous les côtés ont des pentes rationnelles) et
même à un cas plus simple de polygones de Delzant est le Théorème
d’approximation 2.2. Nous utilisons la définition de polytope Delzant
tel qu’il est donné dans [dS08]. Appliqué en dimension deux nous
avons.

Définition 2.1. Un Q-polygone est appellé polygone de Delzant si,
pour chaque paire de côtés adjacents, les vecteurs primitifs dans leurs
directions donnent une base en Z2.

Théorème 2.2. Pour tout domaine convexe et compact Ω, il existe
une famille continue et canonique Ωε, ε > 0, de Q-polygones de telle
sorte que Ωε ⊂ Ωδ pour ε > δ et ∪εΩε = Ω. En outre, si Ω n’a pas de
coins alors Ωε est de Delzant.

L’approximation est faite par les ensembles de niveaux de la série
tropicale FΩ.

Définition 2.2. Pour un domaine convexe compact Ω ⊂ R2 définissons
une fonction FΩ : Ω→ R

FΩ(z) = inf
v∈Z2

(av + v · z),

où le nombre αv pour un vectuer v ∈ Z2\0 est av = −minz∈Ω z · v.
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Cette fonction représente la distance de réseau à la limite. Elle
participe au cas le plus simple du théorème de la limite sur un domain
convexe général , lorsque nous perturbons l’état stable maximal par
un grain.Ça donne une interprétation de l’évolution de Ωε comme front
d’onde. Nous analysons les propriétés de FΩ dans le cas de polygon
de Delzant Ω dans le Chapitre 3 par l’intermédiaire de interpréter CΩ,
la courbe définie par FΩ, en tant que courbe caustique (manifestation
d’une courbe avec indice quantique maximal [IM12, Mik15]).

Théorème 2.3. Les ensembles de niveau de F∆ sont des polygones
Delzant si ∆ est de Delzant.

Par consquent, l’é volution canonique Ω 7→ Ωε sur des domaines
convexes pousse des domaines avec ∂Ω lisse aux polygones Delzant.

Nous interprétons l’ évolution comme la version symplectique de la
modèle minimale pour des surfaces toriques au Chapitre 4. Pour une
surface lisse torique X avec la forme symplectique ω nous considérons
la famille de formes ωε telle que

[ωε] = [ω] + εKX ∈ H2(X,R).

Il existe T > 0 tel que pour ε < T la forme ωε est non dégénéré and ωT
dégénères sur diviseurs du bord de X. Considérons X ′ être le résultat
de la contraction de ces diviseurs.

Proposition 2.1. Si la limite des volumes
∫
X ωε ∧ ωε est différent de

zéro lorsque ε ∈ (0, T ) tend à T , alors X ′ est lisse et le push-forward
de la forme ωT est non dégénéré sur X ′.

The minimal model is defined as the germ of Ωε near the maximal
level set. There are countably many types of such minimal models,
we give a preliminary description for them in terms of mutants of del
Pezzo polygons in Chapter 6. The minimal models, or equivalently the
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singularities of CΩ, define an SL2Z-invariant stratification of the space
of convex domains.

Le modéle minimal est défini comme le germe de Ω proche de max-
imal l’ensemble de niveau. Il existe plusieurs types de modéles min-
imaux, nous leur donnons une description preliminaire en termes de
mutants de polygones del Pezzo au Chapitre 6. Les modéles mini-
maux, oú de façon équivalent les singularités de CΩ, définissent une
stratification SL2Z-invariante du l’espace de domaines convexes.

Théorème 2.4. L’espace de tous les domaines convexes compacts
{Ω ⊂ R2} sur le plan est stratifié par le type de singularité de CΩ.
Chaque strate est un cône polyédrique entier dans les coordonnées
données par les modules de la courbe CΩ.

Considérons le groupe PSL2 C ⊂ CP3 de l’automorphisme de H3

fixant l’orientation et considérons le point O ∈ H3. Définisons une
fonction

κ : PSL2 C→ H3

par κ(A) = A(O). Cette fonction est un analogue du logarithme agis-
sant du tore algébrique vers l’espace Euclidien. Par conséquent, pour
une sousvariété V du PSL2 C on considére κ(V ) ⊂ H3 et appelons
l’amibe hyperbolique.

Théorème 2.5. L’amibe hyperbolique d’une ligne est soit un cylindre
géodésique soit une horosphère. Si V est une surface de degré impair
alors κ(V ) = H3. Si V est une surface de degré pair alors H3\κ(V ) est
un domaine convexe.

Ceci est le résultat de notre travail conjoint avec Grigory Mikhalkin
et le l’idée est suggérée par Yakov Eliashberg (il semble également que
nous avons mal compris l’aspiration originale). La différence entre les
amibes hyperbolique et euclidiennes se manifestent dans nos théorèmes
sur les tas de sable [KS15a, KS16].
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Chapter 3

The caustic curve

First we give a mechanical description of the tropical curve C∆ in the
case of Delzant polygon ∆. We will construct a wave front ∆ε made
by moving the boundary of ∆. It is convinient to think of the vertices
of the moving polygons as particles. When a side of a polygon is con-
tracted, a pair of particles collide. The trajectory made by particles
is C∆. Such point of view on tropical curves is well known in appli-
cations to enumerative geometry, where, for example, we can look at
the system of particles going from infinity, colliding or not, and then
count the possible trajectories passing through prescribed points, the
answer corresponds to some Gromov-Witten invariant [BIMS15]. In
this chapter collisions are compulsory, i.e. if the particles meet they
form a new single particle in such a way that the balancing condition
is satisfied (see Figure 3.2). The resulting tropical curve is extremal in
many senses. Such curves are the curves of maximal quantum index
[Mik15, IM12].

We are going to introduce a finite system of particles in the polygon
and, as a set, C∆ will be the trajectory traced by these particles. In
the initial position, we set a particle at every vertex of ∆ and send
it towards the interior with the velocity vector equal to the sum of
the primitive vectors spanning the sides adjacent to the vertex. Every
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particle moves rectilinearly until some group of particles collides. For
example, in case of ∆ equal to a square with horizontal and vertical
sides all four particles meet at the center. Similarly, if ∆ is a Delzant
triangle all three particles meet at the same time (see Figure 3.1) and
the tropical curve C∆ has a unique vertex at the point of collision,
i.e. the tropical curve is unbranched. We note that in both cases the
polygons correspond to Fano toric surfaces X = CP 1 × CP 1 or CP 2

with a multiple of anti-canonical polarisation. This is true in general,
C∆ has a unique vertex if and only if Delzant polygon ∆ is proportional
to a lattice polygon with a unique lattice point in the interior. Indeed,
by putting the origin to the vertex of C∆ and rescaling ∆ by the inverse
of the total time τ∆ of the evolution we get such a lattice polygon. The
total time of the rescaled polygon is equal to 1 and the initial positions
of particles are opposite to their velocities.

If we perform a blowup of CP 2 at one of the three fixed points of
the torus action, this corresponds to cutting a corner of its moment
triangle. Note that the size of the cut may vary which corresponds to
a different choice of symplectic structure on the blowup. If the inte-
gral of the new symplectic form along the exceptional divisor is small
enough, the particles corresponding to the new corners will collide first
forming a new particle with the velocity equal to the sum of velocities
of collided particles. Note that this velocity is the same as of the parti-
cle which would be emitted from the blown-up corner. Moreover, after
the collision the three remaining particles behave in the same way as if
they would be simply emitted from the corners of the triangle without
the blowup. In particular, they meet at the same terminal point. In
this case the tropical curve has two vertices (see Figure 3.3).

While the cut gets bigger, eventually all the four initial particles
will be again meeting at the same time (see Figure 3.1 on the right)
and the curve has one vertex which is terminal for the process. Larger
cut produces trapezium in which the particles are meeting in pairs.
After the two collisions (apparently happening at the same time and
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Figure 3.1: Some Delzant polygons with unbranched tropical curve.

at the same altitude) two particles are going horizontally towards each
other. They collide at the terminal point (see Figure 3.3).

The rule of particle collision requires a minor clarification. In order
to do that, we need to introduce masses of particles which are positive
integers. The initial particles (∆ is Delzant) are all taken to be one
and set to the vertices of ∆. A momentum of a particle is its mass
times velocity and velocity is postulated to be primitive for all existing
particles. In the case when a group of particles collide they give a new
particle such that the momentum is preserved. For example, in Figure
3.3 on the right we see a pair of mass two particles annihilating each
other at the terminal point of the mechanical process.

Lemma 3.1. For any Delzant polygon ∆, after the initial moment all
the particles stay inside ∆◦ and there exists a unique (terminal) time
τ∆ > 0 at which a group of particles annihilate (without emission of a
new particle) each other at the terminal point p∆.

In particular, the trajectory of all particles C∆ is a weighted finite
planar graph with rational slopes. The one-valent vertices of C∆ are
the vertices of ∆. The weights (or multiplicities) on edges correspond
to the masses of particles tracing them. We note that the moment
preservation is equivalent to the balancing condition shown on Figure
3.2. This turns C∆ into a tropical curve. An edge of a tropical curve
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1× (1, 0)

1× (0, 1)

1× (−1,−1)

2× (1, 0)

1× (−1, 1)

1× (−1,−1) 5× (−1,−1)
1× (3,−1)

2× (2, 1)

2× (−1, 2)

Figure 3.2: Examples of balancing condition in local pictures of trop-
ical curves near vertices. The notation m × (p, q) means that the
corresponding edge has the weight m and the primitive vector (p, q).
The vertex on the left picture is smooth (i.e. has multiplicity one),
the vertices in the middle and right pictures are not smooth having
multiplicities two and forty (see Figure 3.5 for the computation).

is called multiple if its weight is greater than two. One can give a full
description of multiple edges in the Delzant case.

Proposition 3.1. If the terminal point p∆ is a vertex of C∆ for Delzant
polygon ∆ then C∆ has no multiple edges. If the terminal point is not
a vertex then it belongs to the middle of the last edge l∆ appearing
in the tracing of C∆, the last edge l∆ has multiplicity 2 and it is the
only multiple edge of C∆. The vertices that are not p∆ or ends of l∆
are 3-valent and smooth (see Figure 3.2).

The curve C∆ contains a lot of geometric information about X
the smooth symplectic toric surface whose moment polygon is ∆ (we
assume Delzant theorem [Del88]). At the most basic level we have.

Proposition 3.2. Consider a compact smooth symplectic toric man-
ifold X and an irreducible boundary divisor D. Then to this divisor
one associates a side s = µ(D) of the Delzant polygon ∆ = µ(X).
Let s1 and s2 be the edges of C∆ coming out of the ends of s. Then
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s together with continuations of s1 and s2 form a Delzant triangle iff
the self-intersection of D in X is −1.

• 2•

Figure 3.3: Different symplectic structures on a Hirzebruch surface
produce different curves on its moment polygon. Note that the termi-
nal point (marked by •) of the polygons is not integral (although the
polygons are lattice) and the caustic curve on the right has an edge
of multiplicity two. The terminal point on the left is the lower vertex
and on the right it is the middle of the multiplicity two segment. Note
that in both pictures there is a pair of sides of ∆ and a pair of edges
of CΩ which are parallel (see Remark 3.1).

Proof. All Delzant triangles are the same up to SL2Z, rescaling and
translations. Therefore, if v1 and v2 are the velocities of the particles
sent from the ends of s ⊂ ∂∆ then this segment is parallel to v1 − v2

(see Figure 3.4 on the left). If we denote by w1 and w2 the primitive
vectors in the directions of sides adjacent to s then by the construction
v1 = w1 + (v1− v2) and v2 = w2 + (v2− v1). Thus, w1 = v2 and w2 = v1

and the prolongations of sides intersect at a point p0. Denote by ∆̃ the
convex hull of ∆ and p0. In this case X is realised as a symplectic blow-
up of a manifold with the moment polygon ∆̃ and D is the exceptional
divisor.

If the conditions of Proposition 3.2 are satisfied, we call the side s
removable. Removing a side is opposite to cropping a corner.
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s

v2

v1

v1 + v2 w2 = v1

w1 = v2

Figure 3.4: Two particles collide, trajectories form a Delzant triangle
with the side s, emanate a new one in with velocity v1 + v2. Note that
even if they don’t meet geometry implies that two sides of the polygon
are parallel to the trajectories of the particles. We can move s towards
the intersection of the sides. This corresponds to blowdown on the
right. Note that blowing up gives a simple branching of the tropical
curve. And the resulting vertex is smooth (non-multiple).

Remark 3.1. A more visual criterium for the removability of D is that
the sides adjacent to s are parallel to the two edges of C∆ adjacent to
s in the reversed order (as on Figures 3.3 and 3.4).

By Proposition 3.1, unless C∆ has only one vertex (which is τ∆) or
it has only two belonging to the ends of l∆ (and in this cases we call
C∆ unbranched), there exist a side s such that the particles sent from
the ends of this side meet in a non-terminal vertex, such s satisfies
conditions of Proposition 3.2. In this case we can easily relate C∆ and
the curve corresponding to ∆ with s blown down (see Figure 3.4).

After we recall complex origins of tropical geometry and give an
asymptotic description of symplectic area, then we make sense of C∆

as limiting solution to a Steiner-type problem. In algebraic geometry a
curve is defined by a polynomial, tropical curves are logarithmic limits
of complex curves. To bring a better global understanding of C∆ first
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Figure 3.5: Polygons dual to local models of tropical curves on Figure
3.2. A dual polygon is defined up to a translation, its lattice points
(i, j) correspond to the monomials ix + jy + aij (in some polynomial
defining a curve) which contribute to the value of the tropical poly-
nomial at the vertex. Note that we need to reverse coordinate axes
because of the “inf” (instead of more conventional here “sup”) agree-
ment in (6.1), in the definition of the tropical curve. Sides of polygons
are orthogonal to the edges of curves. Moreover an integral length of a
side, computed as one plus the number of lattice points in its interior,
is the weight of the corresponding dual edge. The areas of the polygons
are 1/2, 1 and 20, thus the multiplicities of the dual edges are 1, 2 and
40.

we give an intrinsic definition of its defining polynomial.
One may notice that in the cases when ∆ is a lattice polygon, C∆

passes through the vertices of ∆′ = ConvexHull(∆◦ ∩ Z2). Iterating
the process we get a sequence of polygons ∆,∆′,∆′′, . . . And we can
think of a function F∆ on ∆ whose level sets are ∂∆, ∂∆′, ∂∆′′, . . . for
the levels 0, 1, 2, . . . This function F∆ will be piecewise linear and not
smooth exactly along C∆, and we say that F∆ defines C∆. In general,
a formal definition of F∆ can be given as follows.

Remark 3.2. After the first few moments, a particle sent from a vertex
of ∆ stays at the same distance from the sides adjacent to that vertex.
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The distance is taken in the “integral” (lattice-invariant) normali-
sation, a length of a lattice vector v = (x, y) is defined to be |gcd(x, y)|,
this is equal to the quotient of |v| by the length of a primitive vector
parallel to v. Therefore, a particle runs a unit of distance through the
unit of time in this normalisation. In particular, if we want to com-
pute the distance between a line with a rational slope and a point, one
applies an SL2Z transformation to make the line horizontal and the
integral normalised distance between the new point and the new line
(is the same as between the old ones) is equal to the usual distance
in this case. Anyway, for a side s of ∆ denote by λs : ∆ → R≥0 the
distance function from the line prolonging s. Note that this extends
to a linear function with integral gradient on R2 supporting ∆. Define
F∆ : ∆→ R≥0 by

F∆(p) = min
s
λs(p) (3.1)

In this formula the minimum is taken over all sides s of ∆, and we may
think of λs(x, y) = a+ ix+ jy as of monomial ”axiyj” and of min as of
summation. Therefore, F∆ is a formal analogue of a polynomial. This
mode of thinking is casual for tropical geometry where such piece-wise
linear polynomials are seen as the limits of the usual ones. Note that
each λs is a Z-normalised distance to the supporting line, therefore we
call F∆ the tropical distance function from the boundary of ∆.

Theorem 3.1. The distance function F∆ defines the caustic curve C∆.

The verb ”defines” means that C∆ is the corner locus of F∆. Re-
mark 3.2 justifies the theorem in the neighbourhood of ∂∆. To extend
this, we note that F∆ is a continuos concave piecewise-linear function.
Consider the maximum m∆ of F∆ and for 0 < ε < m∆ there exist a
polygon ∆ε obeying ∂∆ε = F−1

∆ (ε). The vertices of ∆ε are the positions
of particles at time ε.

Theorem 3.2. The polygon ∆ε is Delzant for ε ∈ [0,m∆).
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Note that ConvexHullF−1
∆ (m∆) has empty interior anyway and

cannot be Delzant polygon.

s

s2

p

s1

s

s2

p

s1

s

s2

p

s1

Figure 3.6: The possible configurations of sides with respect to a pair
of collided particles. The collision happens at p to the left from the
vertical side s. In the first case the adjacent sides s1 and s2 are parallel,
in the second case their prolongations intersect to the left from s or to
the right in the third case.

Proof. Consider the smallest time ε > 0 such that a pair of particles
emitted from the ends of a side s collide at point p. If s is removable
then we can consider ∆̃ the moment polygon of the blowdown (see
Figure 3.4). In this case either ∆̃ε = ∆ε if ε ≥ e0 or ∆ε is the blowup
of ∆̃ε otherwise. In both cases ∆ε is Delzant whenever ∆̃ε is Delzant,
so we can use induction on the number of sides.

We are going to prove that if s is not removable then F∆(p) = ε is
equal to the maximum m∆ = max∆ F∆. In this case for 0 ≤ δ < m∆

the polygons ∆∆ all have the same dual fan.

Lemma 3.2. Consider a point p ∈ ∆◦ such that F∆(p) = λs1
(p) =

λs2
(p) for a pair of parallel sides s1 and s2. Then F∆(p) = m∆.
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Proof. We note that ∆δ ⊂ ∆ is got squished (i.e. diameter is bounded
and the area goes to zero) as δ →− F∆(p) since the distance between
a pair of parallel sides tends to zero. This is not possible unless F∆(p)
is the maximal value.

Consider the sides s1 and s2 of ∆ adjacent to s. There are three
different situations (see Figure 3.6). In the first situation the sides s1

and s2 are parallel and we are done here by Lemma 3.2.
In the second case, the point of intersection of the prolongations of

s1 and s2 is on the same side with respect to s as the point of collision
p. If we think of F∆, its gradient∇F∆ is well defined on the compliment
to the tropical curve of F∆. Consider a side s3 6= s1, s2, s, the gradient
of it support function λs3

is the primitive vector orthogonal to a side
s3 and therefore is a positive combination of gradients for λs1

and λs1
.

In particular, p is a global maximum of F∆.
In the third case, we see that ∇λs is a positive linear combination

of ∇λs1
and ∇λs2

. Also, we know that ∇λs1
,∇λs and ∇λs2

,∇λs give a
basis in Z2. Now, note that the convex hull of the points ∇λs1

,∇λs2
, 0

and ∇λs is a four-gone with area 1. It contains a triangle with vertices
∇λs1

,∇λs2
and 0, since s is getting shrinked, see Figure 3.7

Therefore, this lattice triangle has the minimal possible area 1
2 and

s must be removable since

∇λs = ∇λs2
+∇λs2

. (3.2)

Summarising the proof above, we saw that only the right configu-
ration on Figure 3.6 can give a collision at a non-terminal point. In
fact, exactly two particles can meet at a non-maximal point.

Lemma 3.3. If when passing from ∆ to ∆ε two sides collapse at the
same vertex p of C∆ then F∆(p) = m∆.
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s

s2

p
s1

p2

p1

−∇λs

−∇λs1

−∇λs2

0

Figure 3.7: The third type of collision and its local dual picture. Note
that ∇λs doesn’t belong to the triangle spanned by ∇λs1

, ∇λs2
and 0

because a segment [p, pi], i = 1, 2, is orthogonal to the vector ∇λsi −
∇λsi and p ∈ ∆.

Proof. Supposing p is not maximal, note that for both contracting
sides we have a situation described on Figure 3.7. Also, note that
we can assume that these sides are adjacent. Now we apply SL2Z
transformation to make the contracting sides horizontal and vertical.
In terms of Figure 3.7 we have fixed the slopes of s and s2 which are
contracting now. There is only one position (on the dual picture) where
we can add −∇λs3

for s3 adjacent to s2, i.e. (as in the end of the proof
of Theorem 3.2) ∇λs2

= ∇λs+∇λs3
. Therefore, s1 is parallel to s3 and

we arrive to a contradiction with Lemma 3.2.

proof of Theorem 3.1. We use induction on time. Consider again the
first time of a collision ε. By Remark 3.2, C∆ coincides with the curve
given by F∆ in ∆\∆ε. And this is enough for the proof if ε = m∆.
Otherwise, by Theorem 3.2 we can run the particle process for C∆ε

.
On the other hand, by Lemma 3.3 and equation (3.2) there is only
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one local model for a non-maximal collision shown on Figure 3.4 which
guaranties that the processes for ∆ after the time ε and the process
for ∆ε are the same.

The representation of C∆ as a curve of F∆ makes Proposition
3.1 and Lemma 3.1 evident. Indeed, the last edge l∆ becomes just
F−1

∆ (m∆) and for a point p ∈ C∆ the value F∆(p) is the time at which
p is visited by a particle (or a group of particles if p is a vertex). There
are no multiple edges except for the maximal edge l∆ since a non-
maximal collision has a unique model shown on Figure 3.4. Finally,
note that the maximal edge has multiplicity two since it appears as a
limit of a collapsing polygon ∆ε with a pair of parallel sides and the
gradients of the support functions of these sides are primitive and op-
posite. The multiplicity of an edge is one less the number of monomials
participating in F∆ along the edge. In the case of the maximal edge
the monomial are the supporting functions for a pair of parallel sup-
porting lines and the constant monomial, i.e. three monomials along
the maximal edge. Experts may think of degenerate elliptic curve.

Remark 3.3. For a Delzant polygon ∆, a non-maximal vertex of C∆

cannot be multiple because there is a unique model for a non-maximal
vertex, see Figure 3.4, where it is smooth.

3.1 Q-polygons and Steiner problem

In the case if ∆ has a non-smooth vertex, the construction of the me-
chanical system needs adjustments. We use the canonical resolution of
toric singularities (also related to chain fractions) to approximate ∆ by
Delzant polygons, see figure 4.2. In general, a non-smooth corner emits
more than one particle and those particles can have multiple masses
(see Figures 4.1 and 3.9). In any case, the definition of the function
F∆ (3.1) with the corner locus on the trajectory C∆ of these particles
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works well. We should take care of invisible sides (corresponding to
contracted divisors in a non-smooth case, see Figure 4.2).

•p

Φ

•p •p

Figure 3.8: The operator Gp shrinks the face Φ where p belongs to.
We see the same type of wave front applyed to the face. This is done
by increasing the coefficient of the monomial contribution on Φ in the
tropical polynomial defining the curve.

In general, we want to look at generalisations of F∆, i.e. tropical
polynomials non-negative on ∆ and vanishing on its boundary. We
call such functions ∆-polynomials and F∆ is the point wise minimum
of all ∆-polynomials without a constant term (i.e. cannot have zero
gradient on a set with non-empty interior). Tropical polynomial F∆

represents the limit of the toppling function in sandpiles, i.e. the point-
wise action of the system. We consider a highly agitated, maximal
stable sate on a sandpile bounded by ∆. Perturbing it at one point
produces some action (i.e. the total number of topplings), we chose
such a perturbation by one point which produces the maximal action.
Then the resulting state deviates from the maximal stable state along
C∆ and the toppling function of the perturbation is approximated by
a multiple of F∆.

In purely tropical level, we may consider a Q-polygon ∆. Then for
any ∆-tropical curve C, the corner locus of a restriction of a tropical
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polynomial F to ∆ vanishing on the boundary, we associate the action
given by

∫
∆ F and mass, the tropical symplectic area, the limit of

the symplectic area for holomorphic curves. Then we ask what is the
∆-tropical curve passing through p ∈ ∆◦ and minimising action or
mass. It appears that both problems are solved by the same curve
Gp∅∆ = C∆/∂∆ ∪∆F∆(p).

We modified this one-point-perturbation by several points pertur-
bation, dropping additional grains of sand to the maximal stable state
at several perturbation points forming a set P . The resulting state
deviates from the maximum along a curve GP∅ passing through the
points in P. Moreover, its curve has the minimal symplectic area in
the class of all curves passing through P, thus solving a version of the
Steiner tree problem for the given configuration of points in the poly-
gon ∆. This property is, in fact, implied by the action minimisation.

In “GP∅” the empty set denotes the vacuum state, where no devi-
ation curves are present, we extend the action to the action to GPF for
F an arbitrary tropical ∆-polynomial. The polynomial GPF is defined
as the minimal ∆-polynomial with GPF ≥ F and the curve given by
GPF passes through P.
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Figure 3.9: Different lattice squares (not Delzant except for the one
above on the left) and their caustics, thick edges are of multiplicity
two. Be aware that the whole construction is SL2Z invariant but not
rotation invariant. The curves are the solutions to the simplest version
of Steiner type problem where we are trying to connect the corners of
squares with its center using only tropical curves.
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Chapter 4

The canonical evolution

Consider a Delzant polygon ∆ and its tropical function F∆ defined by
(3.1). For any t ∈ [0,m∆) we have a symplectic manifold X∆t

corre-
sponding to ∆t = F−1

∆ [t,∞) with 2−form ωt. Note that X∆ dominates
all these manifolds via blow-downs.

Theorem 4.1.
d

dt
[ωt] = K(X∆t

), (4.1)

where K(X∆t
) is the canonical class of X∆t

.

The equation can be taken either locally (on time) in the cohomol-
ogy of X∆t

or globally after the pull-back to the cohomology of X∆.
Between the critical values of F∆ the topology of the manifold is un-
changed and its canonical class K(X∆t

) is constant. The pull-back of
the form ωt, as a function of time, is continuous and piece-wise linear.

Proof. It is well known that ∆1, the convex hull of ∆◦∩Z2, is obtained
by twisting with the canonical line bundle in the case when ∆ is lat-
tice polygon (and so corresponds to an ample line bundle). Applying
rescaling and continuity of the correspondence ∆ → F∆, we are able
to integrate the observation using the lemma below.
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Lemma 4.1. Let Ω be a convex compact domain. Define FΩ as the
minimum of all lattice supporting functions (with integral gradients,
see (6.1)). Then the non-zero level sets Ωε of FΩ are polygons with
sides having rational slopes (aka Q-polygons). Moreover,

FΩε = FΩ|Ωε − ε

for 0 < ε < mΩ = maxFΩ.

The hardest part is to prove that FΩ is well defined and vanishes
along the boundary. This and the rest we totally omit here, the proof
is given in [KS15b] Appendix C, the paper attached to the thesis. The
idea is that only finitely many of tropical monomials give contribution
to FΩ on a compact subset of ∆◦. What we can imagine is that the
equation (4.1) is the vector field for the canonical evolution on the
space of all convex domains. A life of a convex domain Ω begins with
the maximal segment/point F−1

Ω (mΩ), its future is totally fixed and
runs through Ωt at the time t > 0. The past is undetermined, denote
the maximal possible live by MΩ. It has no past, i.e. MΩ = 0., unless
Ω is not a Q-polygon with mild singularities (An type). The past is
finite unless XΩ is del Pezzo.

Theorem 4.1 suggests how to read the information about the inter-
section pairing on X∆ from C∆ or ∆ε. Recall that the anti-canonical
class −K is dual to the sum of all boundary divisors. In particular, for
any boundary divisor D its self-intersection is equal to −D ·K−2. On
the other hand, applying (4.1) we see that the change of length for ev-
ery side under the canonical evolution is related to its self intersection,
see Proposition 4.1. This generalises Remark 3.1, where the length of
a blown-up side (i.e. of self-intersection −1) decreases by ε after the
time ε. For sides with self-intersection 0, we see them decreasing by
2ε. The only type of sides whose length doesn’t change with time are
the sides of self-intersection −2, in this case we see parallel edges of
the caustic. Contracting a chain of −2 curves, getting An singularity
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corresponds to a collapse of parallel edges and formation of a single
multiple edge. On Figure 4.3, there are two multiple edges. By per-
forming the resolution of singularities, shown in Figure 4.1 we see that
multiple edges split into a collection of parallel edges.

Proposition 4.1. Let s be a side in a Delzant polygon ∆. Consider
∆ε, for ε > 0 it has a side sε nearby and parallel to s. Then

d

dε
LengthZ sε = −D2

s − 2,

where Ds is a boundary divisor in X∆ over s.

Proof. If we multiply (4.1) by Ds we get

d

dε
LengthZ sε =

d

dε

∫

Ds

ωε = Ds ·K = −D2
s − 2.

4.1 The canonical Cauchy problem

.
The construction of CΩ shows that the canonical evolution defined

by (4.1) restricts well to the space of smooth toric surfaces. We consider
a smooth symplectic toric manifold X0 with symplectic form ω0 and
moment polygon Ω. Denote by K(X0) = −c1(X0) the canonical class
of X0. Then for small enough ε > 0 the form ωε = ω + εK(Xε), where
K(Xε) = K(X0) because the topology is unchanged. At some moment
t1 > 0 the form ωt1 becomes degenerate. It may happen that the
curve CΩ is unbranched and t1 is the terminal moment of the Cauchy
problem, i.e. the Liouville volume of Xt tends to zero as t→ t1+, and
so t1 = mΩ.
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Figure 4.2: The canonical resolution of toric singularities can be ex-
tracted either from the dual cone or from the chain fraction for the
slope of the corner.

Otherwise, we need to blow-down some boundary divisors to pro-
ceed. Denote the blow-down Xt1. Theorem 3.2 guaranties that Xt1 is
smooth. Passing through the critical level reduces the Picard rank, so
we will come to the terminal point moving by the piecewise segments
parallel to the canonical class at the moment (the canonical class is
considered as the piece-wise constant function of time). The terminal
manifolds are rather interesting, they generalise del Pezzo surfaces, and
correspond to the stratification of the space of all convex domains. As
we see, if a polygon of a symplectic manifold degenerates to a point
then the anti-canonical class is ample (or a suitable replacement in sin-
gular case, just saying that, up to a rescaling, the moment polygon has
exactly one point in its interior). If we see a degeneration of the poly-
gon to a segment of length λΩ, it means that [ω0] = λΩc1(L)−K(X0)t1,
where L is a line bundle dual of the divisor D dual to a side paral-
lel to a segment (there are two sides parallel to the segment, but the
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3

4

Figure 4.3: The evolution of triangle with no past (only the down
left corner has exactly one adjacent edge of the curve) decomposed
into three periods. The pentagon in the middle has three smooth
corners and two singular, where the multiple edges go. Note that the
level set of Fω near its maximum could have infinite past unless we
didn’t do so many blow-ups. The big triangle Ω contains the whole
information about the future — CΩ is the trajectory traced by the
vertices of shrinking polygons.

difference of their boundary divisors is linearly equivalent to a sum of
other boundary divisors and we define [D] = c1(L) as intersecting by
one with all divisors parallel to the maximal segment and by zero with
all the rest). We call λΩ the elliptic parameter of Ω. The reason
for the name is that 2λΩ compute the modulus of the tropical elliptic
curve appearing as the normalisation of CΩ, i.e. the length of the circle
parametrising the terminal segment of multiplicity two via the folding.

Now we are going to study the local conditions for Ω0 to have a
past. We can restrict ourselves to the case of Q-polygons by Lemma
4.1, because only them can appear as a result of the evolution, i.e. a
non-zero level set. The only event that can prevent a polygon Ω0 from
being (Ω−ε)ε, ε > 0 for some Ω−ε (note that there can be many!) is
that in the limit Ωε, ε → 0+ some sides have collapsed. Therefore,
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we’ve almost deduced the following.

Theorem 4.2. A Q-polygon Ω = Ω0 has a past iff XΩ has only An-
singularities.

Proof. The condition that no sides collapsed just before the present
moment is the same as the condition that exactly one side of CΩ is
adjacent to the each corner of Ω. It means that the triangle spanned
by the gradients of support functions of a pair of adjacent sides has no
lattice points except for vertices and, in the case of the multiple edge
of CΩ, the triangle has lattice points on the side orthogonal to that
edge. (see Figure 4.3)

As an easy consequence we have the following quite useful result.

Theorem 4.3. Let Ω be a compact convex domain with C1 smooth
boundary. Then the polygons in the approximation Ωε ⊂ Ω are Delzant.

Proof. Suppose that for some ε > 0 the polygon Ωε is not Delzant.
Then, by Theorem 4.2 there is a (non-maximal) multiple edge of CΩ

adjacent to some singular corner of Ωε. It means that there are at
least three supporting lines whose linear functions coincide along this
multiple edge of CΩ. In particular, the supporting lines intersect at
one point and this point has to be a corner of Ω.

4.2 Three topological constructions of XΩ

In the case when ∆ is a polygon, there are several known constructions
giving toric spaces X∆ (see [Bat12, KLMV13]). All constructions co-
incide for Delzant polygons and provide equivalences of corresponding
categories. We suggest some other extensions, but have very little un-
derstanding what are relations between the constructions in general.
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The main difference betwen our suggestions, and what we understand
about other known models is that we have the usual algeberaic torus
as an open dense subspace of our models and in the models presented
in [Bat12, KLMV13] it can be already replaced with some of its non-
commuatative quotients.

Consider compact convex Ω. In the first construction of the toric
space XΩ we use the approximation by polygons Ωε ⊂ Ω, this approxi-
mation is used in sandpiles. The boundary of each polygon is the level
set of FΩ. For δ ≥ ε the projection of XΩε to XΩδ . Define XΩ = Xpro

Ω as
limε→0XΩε, i.e. the projective limit of all these toric spaces. Note that
at least on the level of torus the symplectic form survives the limit.

This is seen more directly in the second construction (or rather
a version of the first), but now we approximate from outside. This
can be viewed as a symplectic version of the minimal model, totally
conducted by the symplectic geometry. Note that if one polygon is a
blow-up of another, then the second can have a longer history than the
first. If we go back in time, we can go until some side collapses, and
bowing up decreases self-intersection of adjacent sides. Therefore, if
we go first almost to the maximal level, i.e. consider ΩmΩ−ε, for ε > 0
small enough, then we can go back in time by mΩ − ε without any
branchings to the polygon Ω̂ circumscribing Ω. Consider Ω′ to be the
result of blowing-up all corners of Ω̂ which doesn’t belong Ω, and Ω′

circumscribes Ω. Applying cuts to new corners we get a sequence of
Q−polygons Ω̂,Ω′,Ω′′, . . . , the limit of the corresponding sequence of
symplectic blowups is denoted by XΩ.

It is interesting to apply the constructions to the case when Ω has
no corners. The toric space XΩ has no fixed points with respect to the
action of the torus and, strikingly, it is the same space for all such Ω.

The third construction is different in a spirit, we use irrational foli-
ations. The result XΩ = Xnc

Ω feats to the category of non-commutative
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spaces. Consider the double quotient

Z2\(Ω× R2)/{(p, L)},

where p runs through all boundary points of Ω and L+p is a supporting
line for Ω. If p is a corner of Ω then the fibre in XΩ over p is a fixed
point of the torus action. If Ω is a polygon, we have (possibly non-
commutative) boundary divisor over every side. If there are no corners,
we see again that the space XΩ has no fixed points of the torus action.
This suggests that Xpro

Ω and Xnc
Ω might be indeed two models of the

same space. This resonates with Kapranov’s idea of comparing non-
commutative and usual (but big) spaces, see [Kap09].

Another clue is that from the topological perspective the quotients
are all the same if Ω has a smooth boundary. It seems that, the space
XΩ can be constructed within the formalism of Shimura varieties. One
more step in this direction can be the following formal similarity. The
universal elliptic curve over H2 (with non-commutative tori over the
irrational points of the real line) is the same topologically as the univer-
sal toric surface of a smooth domain. Such non-commutative modular
curves are considered in relation to the highly obscured theory of real
multiplication and chain-fraction expansions (see [MM02, Man04] ).
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Chapter 5

Tropical Steiner
problem and the limit
of sandpiles

Tropical geometry is related to complex geometry in a similar way as
particles are related to strings. Simplifying as usual, one can replace a
particle with a loop. The world sheet of a string then is a holomorphic
curve which retracts to a tropical curve. We can measure the size of a
string as a symplectic area of the underlying topological surface. The
principle features of the symplectic area are that it is invariant under
deformations of the string and survives under tropicalization giving the
symplectic area of a tropical curve. The idea of its minimisation comes
from sandpiles, where this corresponds to the total lost mast of sand.
But since the action can be produced (at the level of solitons) with-
out any mass-loss, the problem of action-minimisation dominates the
problem of mass-minimisation. This realised through the quasi-degree,
measuring the number of emerging solitons (and thus the amount of
sand lost) coming from each sink-wall of a polygon ∆, so the mass is the
same in each deformation class. The origin for that is the deformation
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invariance of symplectic area of holomorphic curves.
It is very important to note that we are using the logarithmic pic-

ture now, so the whole Euclidean plane is in the image, corresponding
to the whole algebraic torus. Elsewhere in the text we use its compacti-
fications, and therefore compact moment polygons. In this section, the
moment polygon is thought as a collection of Lagrangian tori in the
preimage of its vertices under the logarithm. We need to think about
tropical curves with ends on the vertices as open holomorphic curves
with boundaries on this tori, the degree of the curve is encoded by
the total homology classes of boundaries on each torus.

5.1 Symplectic area and complex curves

In this section we sketch how one can translate the story about minimal
tropical curves to the context of classical holomorphic curves. Recall
that an amoeba (as defined in [GKZ08]) of an algebraic curve S in the
algebraic torus (C∗)2 is an image of S in R2 under the logarithm map
Log given by

Log(z1, z2) = (log |z1|, log |z2|).
Consider a family of algebraic curves St in (C∗)2 for t > 0. We say
that the family St tropicalizes to the tropical curve C if the family of
their rescaled amoebas LogtSt ⊂ R2 converges to C when t tends to∞.
Here Logt simply denotes the map (log t)−1Log. It could seem that
the tropicalization C is defined only as a set. In fact, the multiplicities
for the edges of C can be also canonically restored from the family St.

First of all we are going to justify the name “tropical symplectic
are” that we extensively used. Suppose a family St tropicalizes to a
tropical curve C. Let

ω = −id log(z1) ∧ d log(z̄1)− id log(z2) ∧ d log(z̄2)

be the symplectic form on (C∗)2.
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Proposition 5.1. Let C be a tropicalization for St and B be a convex
bounded open subset of R2. Then

∫

St∩Bt
ω ∼
t→∞

4π2Area(C ∩B) log t,

where Bt = Log−1
t (B).

Thus the symplectic area for a tropical curve indeed can be inter-
preted as a main part in the asymptotic for symplectic areas of a family
of holomorphic curves.

Proof. The outline is the following. For a large t the rescaled amoeba
Logt(St) is in a small neighbourhood of the tropical curve C. Moreover
St itself will be close to a certain lift of C to the torus (C∗)2. It is per-
formed by lifting each edge with a slope (p, q) to a piece of holomorphic
cylinder {(zp, zq)|z ∈ C} translated by the action of the torus.

Therefore, we can compute the area of St near the limit by looking
at the areas of the cylinders. There also can be minor corrections
coming from the vertices of C but the corrections are small with respect
to log(t) and so do not appear in the final statement.

To complete the proof we need to compute the contribution from
each edge in C ∩B. It is clear that for each segment in C ∩B the area
of its lift is proportional to the length of the segment. So if we show
that the area of the lift for the interval going from the origin to the
integer vector (p, q) is equal to 4π2(p2 + q2) log t then we will be done.
This computation is given in the following lemma.

Lemma 5.1. Let v = (p, q) be a primitive integer vector. Let Cpq
t be

a lift of an interval [0, v] to the torus (C∗)2 under Logt, i.e. Cpq
t =

{(zp, zq)|1 ≤ |z| ≤ t}. Then
∫

Cpqt

d log(z1) ∧ d log(z̄1) = −4iπ2p2 log t.
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Proof. Let z1 be r exp(iφ), where r > 0 and φ ∈ [0, 2π]. Then

d log z1 = d log r + iφdφ and

d log z1 ∧ d log z̄1 = −id log r ∧ dφ2

Then the left hand side of the equality we are proving is equal to

−i
∫ t

1

∫ 2π

0

d log r ∧ dφ2 = −4iπ2p2 log t.

Remark 5.1. The specific choice for ω is not crucial while it is in-
variant under the action of (C∗)2. Indeed, if ω′ is an arbitrary 2-form
then its restriction to any holomorphic curve will not have contribu-
tions from pure holomorphic and anti-holomorphic parts of ω′. So we
can think that ω′ is a (1, 1)-form. There is a two dimensional family
of torus-invariant (1, 1)-forms. Different choices for ω from this family
correspond to coordinate dilatations on the level of tropical curves.

Proposition 5.1 suggests us that symplectic area for tropical curves
should be deformation invariant. Indeed, this should follow from the
fact that the 2-form ω is closed. And actually, we can prove the defor-
mation invariance directly.

Lemma 5.2. Consider a continuous family Cs of bounded parts of
tropical curves with common fixed endpoints. Then Area(Cs) is con-
stant.

Proof. Any deformation Cs locally can be decomposed into the ele-
mentary ones. An elementary deformation is a process of moving and
shortening two edges while growing the one in the opposite direction
(see Figure 5.1).

43



Figure 5.1: In the picture we shrink a triangular cycle. Any defor-
mation of a tropical curve can be decomposed into such operations or
their inversions. This can be seen as an application of Gp operator
from the next section.

Globally this corresponds to enlarging a coefficient for a tropical
polynomial. For example on Figure 3.8 we change the coefficient for
the central region.

Up to a scaling an elementary deformation simply replaces the
union of segments [0, v1] an [0, v2] by a single segment [0, v1 +v2]. Here
v1 and v2 are the primitive (or appropriate multiples of primitive) vec-
tors for the edges we are moving. Denote by wi the projection of v1+v2

on the line spanned by vi (see 5.2) Then after the deformation the two
edges together loose

|v1||w1|+ |v2||w2| = |v1|(v1 + v2) ·
v1

|v1|
+ |v2|(v1 + v2) ·

v2

|v2|
= |v1 + v2|2

of their symplectic area. On the other hand, the growing edge con-
tributes exactly |v1 + v2|2 to the symplectic area of the deformed
curve.

Lets get back to our specific case. Let the ends for a part of a
tropical curve C be the vertices of a lattice polygon ∆. Suppose that
there exist a tropical polynomial F defining C and vanishing at the

44



v1 + v2

v2

v1

0

w1

w2

Figure 5.2: Computing contributions for symplectic area.

boundary of ∆. Denote by dC(s) the quasi-degree for this curve along
the side s, i.e. the lattice length of the gradient of F near s. Then we
can deform C to the union of all edges e of the polygon taken with
the multiplicities dC(s), by means of decreasing the coefficients of F
to zero. This observation together with the deformation-invariance
proves the following lemma.

Lemma 5.3. Area(C) =
∑

s∈Sides(∆) dC(s)Area(s).

5.2 Steiner problem

Consider a Q-polygon ∆, that is a convex polygon whose sides have
rational slopes. A ∆-tropical curve C is an intersection of ∆ with the
corner locus of some tropical polynomial F (x, y) = min(ix+ jy + aij)
vanishing at the boundary of ∆. Note that C intersects ∂∆ only at
the vertices. The restriction of F to ∆ vanishing on the is called
∆-tropical polynomial. The action of C is

∫
∆ F. Suppose that we

are allowed only to increase F and we want to find such ∆-tropical
polynomial H ≥ F such that it is not smooth in a given collection of
points p1, . . . , pn ∈ ∆◦, i.e. the curve defined by H passes through this
points. Such H certainly exist, so we take their point-wise minimum
and denote it by Gp1,...,pnF, it defines a ∆-tropical curve Gp1,...,pnC
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Proposition 5.2. The curve Gp1,...,pnC minimises the action and the
symplectic area in the class of all ∆-tropical curves passing through
p1, . . . , pn with defining polynomial greater than F.

Gp1,...,pnC is determined by minimisation of action, but there can
be many solutions with greater actions but same symplectic area in
special cases if the curve has relative deformations.

Proof. By its definition, Gp1,...,pnF is the point-wise minimum – so it
minimises the integral, i.e. the action of Gp1,...,pnC. It also minimises
the quasi-degree and, by Lemma 5.3, it minimises the symplectic area.

Corollary 5.1. Gp1,...,pn∅ is the solution to the Steiner problem, i.e.
minimises symplectic action (and therefore the symplectic area) in the
class of all ∆-tropical curves passing through p1, . . . , pn.

Until now, we said nothing about how this solution can be found for
the case of more than one point. The idea suggested by sandpiles is to
decompose Gp1,...,pn into an a sequence of Gpj applied in arbitrary order
and as much as needed (see Figure 3.8). In the case of two points we
would simply iterate Gp2

Gp1
. The key statement (crucial for the scaling

theorems in sandpiles) is the following.

Proposition 5.3. Let F be a ∆-tropical polynomial and

p1, . . . , pn ∈ ∆◦.

Consider a sequence of numbers k1, k2 · · · ∈ {1, . . . , n} such that every
of n possible values is taken infinitely many times. Then the sequence
of functions Fm = Gpkm . . . Gpk1

F converges to Gp1,...,pnF as m→∞.
Proof. Note that C → GpC is a projector on the space of curves passing
through p. It is counties on p just because it is given by an appropriate
shrinking of face (see Figure 3.8).
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On the other hand, the sequence of ∆-tropical polynomials Fm
converges because the sequence of its coefficients for every monomial is
non-decreasing, everyGp increases exactly one coefficient, and bounded,
because

Gp1,...pnFm = Gp1,...pnFm−1 = · · · = Gp1,...pnF

by Lemma 5.4 and so Gp1,...pnF ≥ Fm.
Combining everything, for each j the exist infinitely many Fm =

GpjFm1
, and the curve defined by Fm passes through pj. In particular,

the polynomials Gpj limFm and limFm are the same and define the
curve passing through all the points p1, . . . , pn. Therefore, Gp1,...pnF =
Fm since Gp1,...pnF ≥ Fm and Gp1,...pnF is subject to the minimality.

Lemma 5.4. For any ∆-polynomial F and pj ∈ ∆◦

Gp1,...,pnGp1
F = Gp1,...,pnF

Proof. It is clear thatGp1,...,pnGp1
F ≥ Gp1,...,pnF becauseGp1,...,pnGp1

F ≥
Gp1

F ≥ F and Gp1,...,pnGp1
F is not smooth at the points p1, . . . , pn.

On the other hand, Gp1,...,pnF ≥ F is not smooth at p1 and therefore
Gp1,...,pnF ≥ Gp1

F. Again by minimality, Gp1,...,pnF ≥ Gp1,...,pnGp1
F.

In fact, we know that if the points pj and the vertices of the polygon
∆ belong to the lattice and F has integral coefficients, the sequence
Fn from Proposition 5.3 will stabilise (just because we increment co-
efficients by integers at every step). Even in this case the number of
steps required for the stabilisation is very much unpredictable.

Conjecture 5.1. A sequence Fn stabilises for all F, ∆ and {pj}.
We believe that this conjecture can be proven via the lift of Gp to

the algebraic curves. We managed to do such lift only in characteristic
two. Let k be a field, char(k) = 2, on which Frobenius (taking the
square) acts as isomorphism. Let

Spf(z) = f(p)f(z) + f 2(
√
zp)
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be a Z2-linear function sending all polynomials over this filed with
a given Newton polygon to the polynomials with the same Newton
polygon and passing through p.We claim that if k is a non-archimedean
field then Sp is a lift of Gval(p), where val : k2 → R is the coordinate-
wise valuation. Therefore, if a lift of the sequence Fn converges in
non-archimedean topology, then it would imply the stabilisation at the
tropical (only higher asymptotes) level. We mention another relevant

operator which is idempotent f(z) 7→ f(z) +
√
f(z2p−1)f(p), where p

belongs to the two-dimensional algebraic torus over the field k.

5.3 Scaling limit theorem

Consider a big lattice polygon Ω. A sandpile φ on Ω is an integral non-
negative function on its lattice points. If φ(p) > 3 at some point p ∈ Ω
then we say that φ is unstable and perform a toppling Tp resulting
with the state Tpφ equal to φ(p) − 4 at p, φ(p′) + 1 for a neighbour
p′ ∈ Ω ∩ Z2 of p and the same as φ elsewhere. We perform such
topplings until the we get a stable state φ◦. This state doesn’t depend
on the order of topplings and called the relaxation of φ. In fact, we can
define a function F computing the number of toppling at every point,
then

φ◦ = φ+ ∆F,

where ∆F (p) = −4F (p) +
∑
|p′−p|=1 F (p′) is the discrete Laplace oper-

ator. For a more elaborate exposition consult with [LP10] or our joint
work [KS15b] with Nikita Kalinin attached to this thesis (see Appendix
B therein).

The sandpiles satisfy the least action principle (see [FLP10]) , i.e.
if F is the toppling function of the relaxation for φ then it is the point-
wise minimum of all functions H such that φ+ ∆H < 3.

If φ ≡ 3 is the maximal stable sate on ∆ and we perturb by adding
one grain at several points, we get a state which is maximal everywhere
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Figure 5.3: The evidence for a thin balanced graph as a deviation set
of a sandpile. White corresponds to three grains, black to one, circles
for two, crosses to zero, skew lines are the boundary vertices. Gray
rounds represent the positions of added grains. The procedure gives
a solution of the tropical Steiner problem in the limit. The edges are
made of string-solitons.

deviating from it along the thin graph passing through the perturbation
points. In [KS15b] we show that as the grid gets finer, the deviation
converges to the tropical curve given by GP0 and solving the Steiner
problem for the perturbation points, the limiting version of the least
action principle.

In physics, the sandpile model appeared in [BTW87], for the pur-
pose of modelling the self-organised criticality. In the original paper,
the sandpile model was a stochastic process of perturbing the sandpile
by adding more and more sand at random points. The main obser-
vations are the self-organised criticality, the ability to form attractors
without tuning parameters, and power-laws for avalanches. A particu-
lar power law is that the size of the avalanche satisfies the exponential
distribution:

P = O(exp(−cS)), c > 0

where P is the probability to have an avalanche of size S. We show
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empirically that this is also true after the tropical limit, at the level of
∆-curves and operators Gp.

The idea of the operator Gp was certainly known to the experts in
sandpiles. We show that this is the limit of the idempotent perturba-
tion at p

φ 7→ (φ+ δp)
◦ − δp

considered in [CPS12]. A comprehensive physical exposition is done in
[Pao12]. Clearly, this perturbation does nothing if φ(p) < 3. They con-
sidered the states (or interfaces) which are charged enough to see an
interesting dynamics. Our research in this direction started with con-
templating the idempotent perturbations of the maximal stable state
bounded by some region, as we’ve seen it in [CPS10, CPS12]. These
states were maximal almost everywhere except for a locus along a thin
graph. Those graphs resembled tropical curves. We shown that this is
indeed the case near the thermodynamical limit. The key ingredient
is the following.

Theorem 5.1. Let C be a tropical curve defined by a tropical polyno-
mial F with Newton polygon ∆. Consider F0 : Z2 → Z the restriction of
F . Consider a sequence of integral super harmonic functions F0, F1, . . .
on the lattice,∆Fj ≤ 0, such that Fk+1 is the minimal function with
Fk ≥ Fk+1 ≥ Fk + 1 and Fk coincides with Fk+1 outside of some finite
radius neighbourhood of C. The sequence stabilises if and only if ∆
has no lattice points in the interior.

The proof (where we call this process “smoothing” ) mainly belongs
to Nikita Kalinin and is given in [KS15b], Chapter 9. This theorem
relies on old estimates from [Duf53]. Denote by F h the function (on
the lattice hZ2 with the mesh h) on which the sequence has stabilised.
There are three types of polygons with no lattice points strictly inside.
This can be a segment and so C is a straight line. Denote by Ch the
state 3+∆hF. Note that such a state behaves like a soliton with respect
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to the wave operator (the front of the avalanche, see [KS15b]) with a
source at infinity. Neglecting the width of Ch we could write

(Ch + δp)
◦(z) = Ch(z − p) + δp(z),

so the soliton moves towards the perturbation point because the point
emits waves that act on the soliton by a translation. This is realised
just by changing the coefficients in the tropical polynomial F.

We give an idea of pattern formation in case of a single infinite
wall going in the primitive direction. We assume that we send waves
from infinity. When this walls crush agains the wall some sand goes
out of the system and we see some deviation from the maximum along
that wall. More waves we send, more sand we loose. At some point
a strip of deviation separates into two. One stays near the wall, the
waves doesn’t rich this region anymore, and other strip starts moving
without leaving any trace. Theorem 5.1 implies that there is a unique
strip with such properties for any direction.

The second type of lattice polygons without points is formed by
triangle with area 1/2. In this case Ch gives a discrete model of a
smooth tropical vertex. This is also a soliton. The third type consists
of parallelograms of area 1. The curve Ch gives a model for a simple
nodal point. Under the wave action, the four-valent cross of Ch gets
decomposed to a pair of three-valent vertices connected by a finite
segment. In the dual language this corresponds to the triangulation of
the parallelogram, this can be done in to ways corresponding to two
combinatorial types of the tropical curve.

This observations enables to construct a discrete model Ch for any
nodal tropical curve C. The main feature allowing to use tropical ge-
ometry is the following approximate expression (the size of error is o(h)
due to the rounding)

(Ch + δp)
◦ = (GpC)h + δp.
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Therefore, the addition of a point shrinks the face of C in such a way
that the resulting curve, i.e. GpC, passes through p. Therefore, we can
mimic the sandpile relaxation at the tropical level, decomposing it into
the sequence of Gp that converges (by Proposition 5.3) to the expected
solution of the tropical Steiner problem. Combining this with the idea
of canonical approximation by polygons Ωε we were able to prove the
following (see [KS15b]).

Theorem 5.2. Let Ω be compact convex set, p1, . . . , pn ∈ Ω◦ be a
collection of points. Consider the perturbation of the maximal stable
state on Ω ∩ hZ2 by adding a grain at the roundings ph1 , . . . p

h
n ∈ hZ2.

The deviation locus (from 3) of its relaxation converges to Gp1,...,pn∅Ω.

It is a miracle, that the corresponding tropical model restores the
full SL2Z symmetry, in sandpiles a choice of the basis in the lattice is
essential for the toppling rule. The subtle problem here is the choice
of roundings phj ∈ hZ2 near pj ∈ Ω◦. One way to resolve the problem
is to consider only lattice points p1, . . . , pn and polygon ∆ and take
the mesh N = h−10 be an integer. This choice is made in [KS16] for
simplicity of the first exposition, i.e. the roundings can be taken simply
as phj = pj ∈ N−1Z2. In general, this has to be considered as an extra

structure. For example, in the cone of all convex domains on R2 we
can define a rounding structure given by

Ωh = ConvexHull(Ω ∩ hZ2).

Similarly, we define a rounding structure on points. The subtlety comes
here, since the theorem would work for arbitrary roundings. The stupid
example is the following. If we add just one point, the roundings are
negligible, but the operator Gp1,...,tn∅ is not continuous with respect
to the variation of several points. For example, if we take Gp1,p2

∅ (see
Figure 5.4) on a rectangle with the points in the special position, the
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curve is unstable with respect to the perturbations of pj. In particu-
lar, small changes in rounding may result in a tremendous change of
the relaxation process, just because some point fell off a soliton which
is anchored to another point, so it produces lots of waves until some
soliton from far away doesn’t reach it. So the roundings, in fact, have
to be chosen in a consistent way. But this is essential only in the case
when the curve is somehow superabundant, i.e. small inner fluctua-
tions produce big jumps of energy, geometrically this means that the
configuration is special and the symplectic volume of this configura-
tion is isolated in terms of the symplectic volumes (or even better —
actions) of generic nearby configurations.

The scaling limits has appeared before in the context of sandpiles
in the case when we are relaxing a big sandpile supported at the origin
[PS13] and studied in [LPS16]. Note that tropical curves also appear
in their pictures.

There is another relation of sandpiles and tropical curves via the
identification of graph Jacobians and sandpile groups, see [BN07]. In
this theory the graphs are normally thought to be small and represent
intersections of irreducible components of a degenerate curve. In our
approach the graphs are arbitrary big, in fact it approximates a surface.
We show that the states close to the maximal stable state are governed
be tropical structures. This states are recursive (see [Dha99, BTW87])
and belong to the sandpile group, giving the tropical structure to the
infinitesimal neighbourhood of the maximal stable state.
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• • • •

Figure 5.4: An unstable configuration and its perturbation (by a light
shift of the right point) together with action minimising curves passing
through them (solutions of Steiner problem). A wrong rounding at
the sandpile approximation of the problem in similar cases produces
globally observable, surviving in the thermodynamical limit, jumps in
mass and action comparing to the expected tropical solution of the
Steiner problem. We can modify the whole setup, making it sort of
more realistic, using a concept of stable tropical intersection taking
as the solution the limit of local perturbations, dissolving unstable
energy in terms of sandpiles. Also the number of iterations of Gp1

Gp2

needed to arrive to the picture on the right actually gets tiger when
the perturbation is small.
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Chapter 6

Integral affine invariants
of convex domains

For a compact convex domain Ω ⊂ R2 define a function FΩ : Ω→ R

FΩ(z) = inf
v∈Z2

(av + v · z), (6.1)

where a number αv for a vector v ∈ Z2\0 is given by

av = −min
z∈Ω

z · v. (6.2)

We call FΩ the tropical series of Ω. It is discussed a lot in the the
joint work with Nikita Kalinin Chapter 9 (see Appendix C where FΩ

is denoted by lΩ). The terminology comes from the fact that if in (6.1)
we replace inf with

∑
, + with multiplication and the scalar product

with an exponentiation we would get something of the shape
∑
avz

v

which is a Laurent power series in two variables. Tropical series and
analytic curves have already appeared in several places, for example in
[MZ08] in a form of θ-divisor. Following the analogy with analysis, we
can say that Ω is the domain of convergence for the series representing
the function FΩ. We describe certain numerical characteristics of Ω in
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terms of this function. The easiest of them is mΩ, the maximal value of
FΩ. Clearly it is homogenous with respect to rescaling and has degree
one. It measures the future with respect to the canonical evolution, i.e.
mΩ is the time until degeneration to a maximal segment. Its length
λΩ, the elliptic parameter of Ω, corresponds to the lattice length of the
cohomology class of the symplectic form at the terminal point of the
canonical evolution starting at ωΩ, the symplectic form of XΩ.

Recall that a vector in Zn⊗R is called primitive if it is integral and
not proportional to any other integral vector. For a given segment s
having a rational slope there exist a primitive vector v in its direction
and the length of the segment is proportional to the length of the
vector with the coefficient LengthZ s, the integral norm. We define
the invariant λΩ as LengthZ F

−1
Ω (mΩ), clearly it has degree one with

respect to rescaling.

Remark 6.1. If Ω is a polygon with rational slopes, then only a finite
number of monomials contribute to FΩ, i.e. it can be represented by a
tropical polynomial minv∈A(av + p · v) for a finite subset A in Z2\0.

In fact, one could give an affine invariant (independent of metric)
definition of FΩ using the integral normalised length. First of all, we
define an integral-normalised distance from a point p0 on the plane to
a line l with a rational slope. Taking a projection of the plane along l
we have the line projected to a point q and p0 is projected to p in the
quotient R2/l. This R = R2/l is naturally endowed with an integral
affine structure and we define the integral normalised distance from p0

to l simply as LengthZ[p, q]. For any point p ∈ Ω we define FΩ(p) as an
infimum of distances from p to all lines with rational slopes supporting
Ω. Explicitly, the invariance and homogeneity of FΩ can be written in
the following way.

Proposition 6.1. Let Ω0 be a convex domain. For A ∈ SL2Z, v ∈ R2
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and r > 0 consider Ω1 = {rAp+ v|p ∈ Ω}. Then

rFΩ0
(p) = FΩ1

(rAp+ v).

To visualise FΩ we can look on the caustic curve CΩ ⊂ Ω, the
locus where FΩ is not locally smooth. Note that FΩ is linear on every
face, a connected component of Ω\CΩ, and every edge of CΩ has a
prescribed multiplicity identified with the integral normalised length
of the vector connecting v1 and v2, where vj · p + aj represent the
restrictions of FΩ(p) to the faces adjacent to the edge. With this mul-
tiplicities we have the balancing condition on slopes satisfied at every
vertex (see Figure 3.2). To every vertex p we associate a lattice polygon
spanned by the monomials contributing at the vertex and µ(p) ∈ Z,
the multiplicity of the vertex p is defined to be twice the area of this
dual polygon. See Figure 3.5 for a more detailed explanation. By defi-
nition, a vertex (or an edge) is called smooth if it has multiplicity one.
Theorem 4.3 asserts that there are no multiple vertices and edges in
CΩ except for the maximal ones if Ω has no corners. In this case CΩ is
an infinite tree (we think of it as of singular infinetly punctured ellipric
curve).

Remark 6.2. Ω is Q-polygon if and only if CΩ has a finite number of
segments. Two vertices (or one vertex if λΩ = 0) where FΩ attains its
maximum are never smooth. The conceptual reason is that CΩ can be
viewed as an elliptic curve and its genus is contracted to the maximal
segment (or vertex). In particular, CΩ ∩ Ω◦ has no loops except for
this hidden one, and thus is a tree.

6.1 Computations for the disk

This section is based on our joint paper with Nikita Kalinin [KS17].
Some aspects are reviewed better there. Here, the purpose of giving
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an example, is to show that the universal lattice invariants are fairly
easy to compute.

Let Ω be the unit disk {x2 +y2 ≤ 1}. Applying equations (6.2) and
(6.1), F is given by

F (z) = min
v∈Z2

(v · z + |v|).

The graph of F and its corner locus C are shown on the Figure
6.1. Clearly, that only four tropical monomials contribute to F at the
origin. These are 1 + x, 1 − x, 1 + y, 1 − y and the maximum of F
is 1. The monomials give an X part of C near the origin where the
maximum is taken.

Figure 6.1: A plot of the series FΩ and the caustic CΩ for Ω a disk.

Clearly, C is a tree and, apart from the origin, all the vertices of
C are trivalent and smooth by Theorem 4.3 and Remark 3.3. Starting
from the origin, the tree grows in four directions and branches infinitely
many times when gets close to the boundary. A branching gives a
vertex and the third monomial adjacent to the new vertex is chosen in a
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v1 + v2

v2

v1

Figure 6.2: On the left: branching pattern for the tropical curve at the
vertex z(v1, v2), the arrow denotes the direction towards the boundary.
The vectors v1, v2, v1 + v2 are the values of the gradient of F in the
complement to C, its edges are orthogonal to v1−v2, v1 and v2. On the
right: a schematic picture for two more branchings of C, the vertices
are z(v1, v2), z(v1, v1 + v2) and z(v1 + v2, v2). The parallel segments of
the drawing represent parallel edges of C. Compare this with Figure
6.1.

systematic manner shown in the Figure 6.2. Each such vertex z(v1, v2)
is adjacent to the three regions in the complement to C and on these
regions F is represented by the monomials |v1| + z · v1, ( |v2| + z · v2

and |v1 + v2|+ z · (v1 + v2), where v1 and v2 are vectors from the same
quadrant in R2 forming the basis of Z2. The value of F at z(v1, v2) is
given by

F (z(v1, v2)) = |v1|+ |v2| − |v1 + v2| (6.3)

which is exactly the error to the triangular inequality for the primitive
triangle formed by vectors v1, v2, v1 + v2. The only multiple vertex of
CΩ is the origin, where the maximum m = 1 is attained and the
multiplicity µ(0) is equal to 4 since δΩ is a union of 4 basic triangles
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with area 1/2.

The symplectic minimal model Ω̂ for the unit disk Ω is given by
the square of diameter 2. Recall how it is constructed, we go first to
the polygon Ωm− ε at the sub-maximal level. After we go back in
time by m − ε without any branchings, extending the open edges. In
the case of the disk it just means that we extend the X at the origin
until its ends form a square circumscribing the disk. Each branching
of the tropical curve C corresponds to the blow-up of the next level
and the size of this blow-up is exactly the value of F at the branching
(see Figure 3.4). Therefore, the values of F at every vertex of C hold

the whole information about Ω if Ω̂ is already fixed.
We define the sequence of polygons starting with Ω̂, then blowing

up all its corners in such a way that every corner cut is done by a line
tangent to a disk. The area of these polygons converges to the area
of disks. The size of every such cut coincides with a value of F at
a non-maximal vertex of C, given by (6.3). Therefore, using the fact
that we cut only Delzant triangles we get the formulas from [KS17].
The first term correspond to degeneration of lattice perimeter, the last
term corresponds to the maximal action of one point in sandpiles, the
cubic invariant of Ω, and is computed in terms of cutting tetrahedra
from the graph of FΩ̂.

Proposition 6.2.
∑

(v1,v2)∈SL+
2 Z

(|v0|+ |v1| − |v0 + v1|) = 2

∑

(v1,v2)∈SL+
2 Z

(|v0|+ |v1| − |v0 + v1|)2 = 2− π/2

∑

(v1,v2)∈SL+
2 Z

(|v0|+ |v1| − |v0 + v1|)3 = 2− 3

2

∫

Ω

FΩ
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The matrices

M1 =

[
1 0
1 1

]
and M2 =

[
1 1
0 1

]

generate a free monoid inside SL2Z. This monoid SL+
2 Z consists of all

matrices with determinant one and non-negative integral entries. A
matrix

M =

[
x1 x2

x3 x4

]

can be viewed as a planar triangle with vertices v1 = (x1, x2), v2 =
(x1, x4) and v1 + v2. We compute the error in the triangular inequality
as

f(M) = |v1|+ |v2| − |v1 + v2|.
For what values of s the series

∑

M∈Sl+2 Z

f s(M) (6.4)

converges? We know that it converges at least for s ≥ 1. Can it possibly
be improved?

We could use the idea originating in the study of Dirichlet series,
where we estimate a series of 1

ns over Z≥1 by a corresponding integral
over R≥1. Therefore, we introduce Sl+2 R, the space of all matrices with
non-negative entries and unit determinant. We would like to prove
that the convergence of the series (6.4) follows from the convergence
of the integral ∫

Sl+2 R
f s(M)σ(M),

where σ is an invariant measure on SL2R. It is enough to show that
there exist a collection of disjoint domains

{BM ⊂ SL+
2 R}M∈Sl+2 Z
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of the same (with respect to σ) non-zero volume such that the restric-
tion of f to BM attains its minimum at M.

6.2 The invariant stratification

Of course, the numbers av defined by (6.2) determine Ω. Every invari-
ant of Ω is contained in them. On the other hand, there are non-trivial
relations among av. We show a particular way of resolving those rela-
tions. Every Ω has its minimal model Ω̂, the polygon formed by the
supporting lines of Ω whose linear functions contribute to the maxi-
mum of FΩ (in the case of disk Ω̂ is a square). The minimal model
has two continuous degree one parameters — the maximum m and
the elliptic parameter λ, their values are the same as for Ω. After that
we record the history of symplectic blow-ups Ω → Ω̂. The blow-ups
correspond to branchings of CΩ. The size of a blow-up corresponding
to a non-maximal vertex z of CΩ is equal to FΩ(z). We can encode this
numbers either more geometrically or more algebraically.

In the first case, we observe that if z1 and z2 are adjacent vertices
of CΩ then

LengthZ[z1, z2] = |FΩ(z1)− FΩ(z2)|,
where [z1, z2] denotes the segment of CΩ connecting the vertices. There-
fore, we can take the moduli of CΩ to be the coordinates on the space
of convex domains. This already includes the elliptic parameter, the
maximum and all the sizes of blow-ups. We can argue, weather CΩ

contains the information about the germ of Ωε for ε > 0. The informa-
tion about the germ up to rescaling is captured by the dual subdivision
for CΩ in the neighbourhood of the maximum, see Figure 6.6. If there
is no maximal segment, then the subdivision is just a convex lattice
polygon with exactly one lattice point inside, there is a finite number
of their classes modulo the change of basis. Therefore, the abstract
curve CΩ (without a particular embedding to R2 but non-normalized)
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or its moduli together with the type of singularity determines Ω up to
translations and Sl2Z. In particular, we’ve just proved Theorem 1.5.

Figure 6.3: The caustic curves whose singularity types are double mu-
tants of each other. A mutation is performed by crossing a codimension
one wall while moving from one stable stratum to another. The unions
of dual faces to the end-points of the maximal segments are on the
right. Note that a polygon Ω with an unbranched curve CΩ has an
infinite past iff λΩ = 0 or the union of two adjacent faces dual to the
ends of the segment is convex. Note that in the non-convex case λΩ

cannot be zero.

If there is a maximal segment, its dual is a segment of length 2. Two
dual polygons of the ends of the maximal segment are glued along its
dual (the length two segment). If the union is convex, we again in the
case of del Pezzo polygon (there are sixteen types of convex polygons
with exactly one lattice point in the interior). If it is not convex, there
are infinitely many classes of such non-convex unions. This happens
mostly due to the mutations. The stabiliser the length two segment
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in SL2Z is an infinite cyclic group, we can act by its generator on
one of the polygons of the union keeping the other one untouched (see
Figure 6.3). If we take the combinatorial types of stable sub-maximal
germs of polygons up to SL2Z and mutations, there will be again a
finite number of their kinds. The combinatorial types of germs, or
the types of singularities of CΩ, give a canonical stratification of the
space of all convex domains. Within each stratum the moduli of CΩ

give the complete coordinates. In the case of polygons, every blow-
up of a corner reduces adjacent sides by its own size. Therefore, we
can compute the length of a side orthogonal to a primitive vector v
as a Z-linear combination of the moduli corresponding to the edges
of CΩ belonging to the boundary of the face on which the gradient
is equal to v. Thus, each stratum is a lattice polyhedral cone in the
coordinates given by the moduli of CΩ, the inequalities are just that
all rational sides of Ω have non-zero length (this has to be controlled

when gradually doing blowups starting with Ω̂) and these lengths are
expressible as Z−linear combinations of the moduli of CΩ. In partic-
ular, the space of all compact convex domains inherits the structure
of infinite dimensional tropical manifold. The linear structure on the
strata is compatible with the one given by the Minkowski sum (see
Figure 6.4).

A more algebraic way to encode the moduli is the following. Note
that a non-maximal multiple edge doesn’t branch (as in the proof of
Theorem 4.3), because it goes directly to the corner of Ω. Consider
a non-multiple edge. Then, there exist two support functions with
gradients v1 and v2, participating in FΩ along a segment. Denote by
z(v1, v2) the end of the segment where the restriction of FΩ takes its
minimal value (these are the analogues of the classical Steiner points).

Proposition 6.3. F (z(v1, v2)) = av1
+ av2

− av1+v2
.

Proof. Consider a simple pattern of the blow-up given on Figure 6.1.
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+ =

Figure 6.4: The moduli of the curve are additive with respect to the
Minkowski sum within the closure of the stratum fixed by the type of
singularity of CΩ.

Even if we have a degenerate branching, see Figure 6.5, the three values

z(v1, v2) · v1 + av1
; z(v1, v2) · v2 + av2

; z(v1, v2) · (v1 + v2) + av1+v2

of support functions are equal at the vertex z(v1, v2). Therefore, we
can compute the value by taking the sum of the first two minus the
third.

Therefore, we define a function fΩ : Ω→ R≥0 by

fΩ(v1, v2) = av1
+ av2

− av1+v2

if there is a side of CΩ on which the support functions with gradients
v1 and v2 are equal, otherwise fΩ(v1, v2) = 0. Note that a side can
be degenerate if it gets shrinked in the formation of a multiple edge
(see Figure 6.5) and we count its contribution to fΩ. The support of
f = fΩ is decomposed into a union of free-semigroups, one for each
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Figure 6.5: We go from the maximum (somewhere down left), accu-
mulating degenerate branchings, when we do a branching right after
a previous one, in the limit results in formation of a multiple edge.
According to Figure 6.2, the multiplicity of the branching is equal to
the multiplicity of the multiple edge stemming from it. Also compare
to Figure 4.1, where the resolution is done in a specific example.

non-multiple edge in the curve of a sub maximal germ. Note that the
map (v1, v2) 7→ v1 + v2, acting from the support of f to the primitive
vectors, is injective. Knowing the function f is the same as knowing
the moduli of the caustic curve. Repeating the same trick with cutting
out simplexes, as in the case of the disk, we get the following.

Theorem 6.1.

PerimeterZ(Ω) = PerimeterZ(Ω̂)−
∑

M∈SL2Z

fΩ(M)

Area(Ω) = Area(Ω̂)− 1

2

∑

M∈SL2Z

f 2
Ω(M)

Action(Ω) = Action(Ω̂)− 1

6

∑

M∈SL2Z

f 3
Ω(M),

where Action(Ω) =
∫

Ω FΩ.
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Figure 6.6: Examples of Ω with tropical curves CΩ inside. The cor-
responding dual subdivisions, encoding the combinatorial information
about the sub-maximal germs of Ωε, are shown in the second row. Note
that the right one is not convex and doesn’t get convex even after shift-
mutations (see Figure 6.3). The left one belongs to the stable stratum,
the neighbourhood of the maximum is unchanged under small pertur-
bations, the right triangle belongs to the unstable stratum because the
dual picture can be subdivide further keeping the segment of length
two untouched.

The lattice-normalised perimeter is equal to the number of lattice
points in the case of the lattice polygon. Just because any small piece
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of the supporting line will be cut away, it appears, that PerimeterZ
extends by zero to domains with C1 smooth boundary. If we think in
terms of the sum over the vertices, then they have to be taken with
corresponding multiplicities. By Theorem 4.3, all the multiplicities of
non-maximal vertices are equal to one.

We see that some sort of localisation is present here. We could
compute the area as an integral of 1 over Ω, but we reduce it to the
integration of F 2 over the vertices of CΩ. By Stocks theorem we could
went through the integration of F along the edges of CΩ. Integration
of F is reduced to the integration of F 3 along the vertices, etc.
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Chapter 7

Panoramic view

I believe that with a fair amount of contemplation, luck and training
it is possible to see a relation between two entities, no matter what is
the current convention about how remote they are. My research was
meant to be a humble attempt to illustrate this principle. The central
objects here are tropical curves, convex domains, sandpiles, toric sur-
faces and unimodular two-by-two matrices. The choice of those entities
is somewhat arbitrary and mostly induced by the incredible charisma
of several excellent teachers I was lucky to meet and my personal will-
ing to keep things basic but diverse. Contemplation of the vast space
of ideas and images in relation to the various geometries (of which to
my fault I still know very little) resulted in the discovery of several
landmarks, their description can be encapsulated to correspondences
described bellow. It seems that the landmarks doesn’t stand too close
to each other and the main question suggested for the future, more
subtle research, is wether we can come directly from one to another,
or perhaps to even draw a map. This thesis presents a first sight on a
particular location in low-dimensional geometry, although the picture
looks to me quite shattered now.

My advisor Grigory Mikhalkin suggested to look at hyperbolic
amoebas. Consider a hyperbolic 3-space with a fixed reference point O.
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The group of orientation-preserving isometries of H3 is identified with
PSL2 C (acting conformally on the boundary sphere) and we define a
map

κ : PSL2 C→ H3

by κ(A) = A(O). For a subvariety V of PSL2 C its hyperbolic amoeba
is κ(V ) ⊂ H3. This accords with the usual definition of amoeba in
the following sense: κ can be seen as factoring out SO(3), which
is the maximal compact subgroup of PSL2 C, and Log : (C∗)n → Rn

as forgetting the argument subgroup which is also maximal compact.
For a hypersurface V in the algebraic torus (C∗)n, the complement to
its logarithmic-amoeba Log(V ) consists of some finite union of con-
vex domains and to each of them one injectively associates a lat-
tice point of the Newton polytope of V (Forsberg-Passare-Tsikh the-
orem [FPT00]), therefore the number of connected components of
Rn\Log(V ) is bounded by the number of lattice points in the New-
ton polyhedron of V and it is easy to show that the bound is sharp for
any given polyhedron.

In the case of hyperbolic amoebas, if V is a hypersurface in PSL2 C
then the complement H3\κ(V ) is always bounded and connected. In
fact, if we compactify PSL2 C to CP 3 and consider the closure V̄ as a
surface of degree d then κ(V ) = H3 if d is odd. If d is even we associate
to V̄ ⊂ CP 3 a compact convex set H3\κ(V ) ⊂ H3.

As their different incarnation, the group of unimodular two-by-two
matrices SL2Z is the group of orientation preserving automorphisms
of the square lattice. We investigate the structure of the space of all
compact convex domains on the plane modulo SL2Z, translations and
rescaling. The space appears to be nicely stratified into a countable
number of contractible infinite-dimensional cells and we give geometric
coordinates on each stratum in which it appears to be an open lattice
polyhedron. The set of coordinates consist of a function

fΩ : SL2Z→ R≥0
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and an “elliptic” parameter λΩ > 0 corresponding to a domain Ω
of a given stratum. We describe a evolution on the space of convex
domains giving rise to the canonical approximation of any domain with
smooth boundary by smooth (or Delzant) polygons. We describe the
stratification of the space of convex domains into infinite-dimensional
polyhedral cones revealing the structure of infinite-dimensional tropical
manifold. The same structure is induced by the embedding

Ω→ {av(Ω) = − infz∈Ω z · v}v∈Prim,
to the space RPrim, where Prim ⊂ Z2 consists of all primitive vectors.

We call a polygon Delzant iff it is as an image of a smooth sym-
plectic toric surface under the moment map or equivalently if primitive
vectors directing a pair of adjacent sides for a basis in the lattice (see
[Del88]). We use the approximation to give a formalistic construction
of a compact symplectic toric pro-space Xpro

Ω having a compact convex
Ω as its moment domain. Interestingly enough, the resulting topologi-
cal substratum (forgetting the symplectic structure ωΩ) appears to be
the same for any Ω with C1 smooth boundary and is isomorphic to the
projective plane blown up infinitely many times such that all boundary
divisors do not intersect.

This observation is supported by another another construction for
a space of Ω – the non-commutative toric surface Xnc

Ω . We identify the
bare space with the universal elliptic curve over compactified upper half
plane. The non-commutative part is located over the boundary and
consists of all the foliations on a 2-torus. Very similar spaces appear in
Manin-Marcolli [Man04, MM02] in the context of real multiplication
and chain fractions in relation to class field theory. The space Xpro

Ω

has infinitely many independent commuting coordinates and the ring
of functions of Xnc

Ω is finitely generated but non-commutative. The
possibility of such similarities was first noted by Kapranov [Kap09].

The approximation by rational polygons helped a lot in our inves-
tigation (joint with Nikita Kalinin) of the behaviour of small pertur-
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bations of the maximal sandpile on large convex domains. Grigory
Mikhalkin attracted our attention to the series of papers by Carcciolo-
Paoletti-Sportiello, a group of Italian physicist which did a number of
computer experiments with abelian sandpile model. Among many of
their contributions was an empiric discovery of discrete soliton strings
propagating in a given primitive direction and moving rectilinearly
in the complimentary primitive direction under the wave action. We
gave a rigorous proof of this theorem, this enables to make a discrete
approximation for every planar tropical curve. Such discrete curves
appear when one perturbs the maximal stables state of the sandpile
by adding some extra sand grains in few points. Moreover, if we rescale
the supporting convex portion Ω of the lattice and keep the positions
of perturbation points, the curve remains essentially the same.

This observation was formalised in terms of the scaling limit for
sandpiles. This contributes to the study of sandpiles at large initiated
by Levine-Pegden-Smart [LPS16, PS13] in the case of a relaxation of
a big sandpile concentrated at one point. The operation of adding
a grain can be decomposed into the sequence of waves forming the
avalanche. The waves propagate through the maximally charged in-
terface interacting with soliton-edges of discrete tropical curves moving
them in the direction of a source of the wave. At the level of usual
tropical curves this integrates to a deformation of a coefficient of the
monomial corresponding to the face to which the source of the wave
belongs. Therefore, for any point p ∈ Ω◦ we have a well defined op-
erator Gp on the space of tropical curves in Ω corresponding to the
operator of perturbing at p.

If we perturb the maximal stable state on Ω∩Z2 at some collection
of points we get the curve passing through the points of perturbation
minimising the action, i.e. the total number of topplings during the
relaxation. In particular, if Ω is a rational polygon the resulting curve
is finite and minimises the symplectic area (this corresponds to the
mass of the string and to the symplectic area of holomorphic curve
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near the tropical limit). In particular, sandpile gives an approximation
to the tropical analog of the Steiner problem. If the vertices of the
polygon Ω and the points of perturbation p1, . . . , pn ∈ Ω◦ belong to
the lattice one can construct the exact solution iterating consequently
the idempotent deformation operators Gpk (starting with the empty
curve or vacuum state) in an arbitrary order such that all k appear
enough many times. The curves minimising the symplectic area and
action are closely related to the curves of maximal quantum index
[IM12, Mik15].

We consider a stochastic version of the above idempotent process
when the point p ∈ Ω◦ in Gp is taken at random after each step.
This can be seen as a continuous analogue of the idempotent stochas-
tic process considered by Carcciolo-Paoletti-Sportiello [CPS10, CPS12]
where they observed the soliton-patterns. However, their process is
a modification of the original Bak-Tang-Wiesenfeld [BTW87] models
demonstrating the power law distributions of the sizes of avalanches
without any tuning parameters. By means of the supercomputer (cite
[GKL+]), we demonstrate empirically that the tropical idempotent dy-
namics also obeys power laws. Also, it appears that in a suitable regime
the resulting random curve has a rather coherent structure.

Another feature of the original sandpile model is the self-organised
criticality, i.e. the presence of an attractor of recurrent states having a
group structure called the Sandpile group of Dhar (see [Dha99]). The
sandpile group on a finite graph (which can be thought as a tropical
curve) was interpreted by Baker-Norine in [BN07] as its Jacobian va-
riety, providing yet different relation of sandpiles and tropical curves.
Considered together with our sandpile convergence the picture gets
rather enigmatic. Indeed, in this interpretation the substratum for the
sandpile is a punctured (punctures correspond to sinks on the bound-
ary of the domain) tropical curve supported on a big portion Ω ∩ Z2

of the lattice, it has a genus depending quadratically on the rescaling
of the domain Ω. We see that the “heavy” layer of its sandpile group
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inherits the tropical sturcture near the scaling limit, since every small
perturbation of the maximal stable state is recurrent and described by
a discretisation of a tropical curve. The sandpile group considered at
large is rather obscure object. For example, one can observe that the
unit recurrent state on a square weakly converges when the size of the
square goes to infinity. Also geometric and fractal-like patterns are
clearly visible on such unit states, it doesn’t seem that we have enough
technique for the rigorous proof of their presence. In this context, our
results shed some light on just the opposite end of the sandpile group,
near the maximal stable state.

In general, performing an iterative process of applying Gpk at fixed

p1, . . . , pn ∈ Ω◦

points we get closer and closer to the solution of the Steiner problem
for these points. We couldn’t manage to proof that the the process
actually stabilises as in the lattice case, but several heuristics speak in
favour of this. One of them is that for an arbitrary fine grid we need
just a finite number of Gp’s to perform a relaxation of the perturbed
sandpile and we can estimate the acton of each deformation as a linear
function of the rescaling parameter. Another one is that we can extend
Gp to an operator Sp acting on algebraic curves over a non-archimedean
filed of characteristic 2 such that Sp becomes Gp at the level of non-
archimedean amoebas (being tropical curves). We know that iterating
Gp1

. . . Gpn converges if we would knew the same for Sp’s then the
iteration of Gp would stabilise. It is an interesting question if we can
give similar lifts of Gp to other geometries.

For example, we can view a tropical curve as a limit of logarithmic
amoebas. In this case, complex curve degenerates to a union of holo-
morphic cylinders and Lagrangian pairs of pants connecting them. All
cylinders go along edges and pairs of pants belong to the argument tori
over vertices of the tropical curve. The boundary of a tropical curve
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coming from a sandpile on a polygon Ω belongs to the Lagrangian
tori over the vertices of Ω. Thinking of that as of topological string
we compute its mass as symplectic area. It appear to be deformation
invariant and survives under the topicalisation giving the symplectic
area computed in terms of the lengths of edges.

The most fundamental perturbation is the perturbation by a single
point which produces the maximal action. We call this the central per-
turbation. This provides a correspondence: to every compact convex
domain Ω we associate the tropical analytic curve CΩ which appears to
be the limit of the locus of deviation of the maximal stable state from
its central perturbation when the mesh size goes to zero. The moduli
of this curve give the invariant system of coordinates on the set of all
compact convex Ω’s mentioned before.

In the case when Ω is a Q-polygon the curve CΩ is supported on
a finite graph such that CΩ ∩ ∂Ω consists of all vertices of Ω. We can
modify the logarithmic point of view and consider µ : XΩ → Ω. As
before, we can lift C∆ ∩ Ω◦ to the union of holomorphic cylinders and
Lagrangian pairs of pants. Over the vertices of Ω we have to glue those
cylinders by intersection points of the boundary divisors. This gives
a topological cycle ĈΩ ⊂ Xω which is dual to the anti-canonical class
of XΩ. Therefore, CΩ can be seen as a degenerate elliptic curve. This
construction suggests a geometric definition of the anti-canonical class
of XΩ for a general Ω.

We give a mechanical description of the caustic curve CΩ for a ra-
tional polygon Ω. We think of the vertices of Ω as of D-branes emitting
strings towards the interior. Each string-particle moves with the prim-
itive velocity and collision always results in one new particle respecting
the conservation of momentum. The caustic curve CΩ is the trajectory
of the evolution, i.e. the world-sheet of the string. Conservation of
momentum corresponds to the balancing condition. We prove that the
curve is the corner locus of the weighted distance function FΩ com-
puting the minimum of lattice distances from all supporting lines of
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Ω with rational slopes. Using this intuition we show that the non-
maximal level sets of FΩ are Delzant whenever Ω is Delzant. This
defines the canonical evolution on the space of Delzant polygons which
extends to convex Ω’s with smooth boundary. The refinement of this
result is that for a general compact convex Ω non-extremal level sets
of FΩ are rational polygons having only An singularities at their ver-
tices. Abusing the notation, we say that a vertex of rational polygon
has a singularity of a given type if the toric surface with this mo-
ment polygon has such singularity at the corresponding intersection of
boundary divisors. Developing the theory in arbitrary dimensions may
be worthwhile in approaching towards Mahler conjecture. One of the
major obstacles is that certain bodies must be distinguished in terms
of a evolution or flow (it might be a version of the one described in
Section 4) converging to them:

“The main reason why this conjecture is so difficult is that unlike
the upper bound, in which there is essentially only one extremiser
up to affine transformations (namely the ball), there are many distinct
extremisers for the lower bound - not only the cube and the octahedron,
but also products of cubes and octahedra, polar bodies of products of
cubes and octahedra, products of polar bodies of well, you get the
idea. It is really difficult to conceive of any sort of flow or optimisation
procedure which would converge to exactly these bodies and no others;
a radically different type of argument might be needed.” [Tao08]

We use similar canonical approximations in the spirit of the infinite
sequence of symplectic blowups to deduce localisation type formulas
for perimeter and area of Ω in terms of the moduli of CΩ. In case of the
unit disc the formula expresses the number π in terms of the total gap
in triangular inequalities for all unimodular triangles belonging to a
positive quadrant. Pushing this formula to the enumeration of lattice
points rather then area suggest a natural approach to the Gauss circle
problem. In our initial attempt to realise this program we reduce the
general problem of computing the lower order term in the enumeration
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of lattice points to the accumulation of oscillations in a basic gauge
theory on CΩ.We see that in terms of this theory the disc has additional
structure symmetries which could be a partial reason for the better
known estimates comparing to the general convex Ω. Another natural
approach to the enumeration of lattice points might be routed via K-
theory, and particularly the analogue of Riemann-Roch theorem, for
the space XΩ. This is one of the subjects of our current research.

The Gauss circle problem has certain formal similarities with the
Riemann hypothesis. Strangely enough, we can associate to every Ω
its ζΩ(s) function equal to the sum of f sΩ over SL2Z. The values at
1, 2, 3 correspond to the perimeter, area, and action of Ω.

The group SL2R acts on H2 via the automorphisms. This action
is a slice of the action by PSL2 C on H3. Therefore, the structure of
degenerate hyperbolic amoebas might be relevant in the study of sand-
piles on hyperbolic tillings in the same way as tropical curves affect
sandpiles on square lattice, hexagonal, or indeed any other periodic
Euclidean tilling. Our preliminary study of sandpiles on heptagonal
tiling gave a conformation of this guess. In [KS15a] we proof that
a family of hyperbolic amoebas of hypersurfaces always converges to
a complement of a ball centred at the reference point O. In accord
with that, a small perturbation of the maximal stable state on the
big portion of a tilling deviates from the maximal stable state in the
complement of a disc.
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Chapter 8

Hyperbolic amoebas

The usual amoebas appear as images of subvarieties in algebraic torus
under the coordinate-wise logarithm of absolute values. Topologicaly
this map is a trivial fibration over the Eucledean space with topological
torus over as a fiber. Algebraicaly, the logarithm is a projection onto
the quotient of the algebraic torus by topological torus, its maximal
compact subgroup. Here we are going to look what happens if we
replace algebraic torus by PSL2C. We are preparing a separate paper
[MS] which will contain some of the presented material and more recent
developments. Here I’ll review the most basic features of this version
of non-commutativity.
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The group I := PSL2 C2C is the group of all conformal automor-
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phisms of CP1. This action extends to the action on H3, where the
Riemann sphere becomes the boundary at infinity (see [Thu97]). Take
a reference point O ∈ H3 and let SO(3) be its stabilizer in I, it is
the maximal compact subgroup. Denote by κ : I→ H3 the map given
by κ(A) = A(O). It is the hyperbolic analogue of the logarithm map.
The group I is a complex algebraic group, a complement of CP3 to
the quadric Q = {det = 0}. The group I is a double cover of the
affine quadric threefold SL2 C. We can compactify it to the projective
quadric threefold SL2 C by comliting it with the projective quadric
surface Q = CP1 × CP1.

This representation is quite enough for the rest of the exposition.
For computanional purposes we can take a specific model for H3. That
is, consider the space of Hermitian two-by-two matrices. The determi-
nant is a quadratic form of signature (3, 1). We take H3 to be the pos-
tive part of the hyperboloid H3. The map κ the is given by A 7→ AA∗,
for detA = 1. The big diagram explains how the map is related to
SL2 C2 and how it gets compactified to act from CP3 = PC(M 2×2

C ×C)

to H3 = H3 ∩ CP1.
We are going to start with some general remarks on symmetries

of the amoeba map and a priori topological properties of amoebas.
Consider a subvariety V in I. The image of V under κ : I→ H3 is the
hyperbolic amoeba of V . The left action of a certain element A ∈ I on
V translates its amoeba by the isometry A, i.e. κ(A · V ) = A(κ(V )).
We will see that the similar right action in general greatly changes the
geometry of an amoeba. There is an obvious exception: the right action
on a subvariety by a rotation around O doesn’t change its amoeba. If
V is irreducible then its amoeba is connected. The existence of κ
implies that all amoebas are closed subsets in H3.
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8.1 Amoebas of lines

A shape of an amoeba A = κ(l ∩ I) of a line l ⊂ CP3 = I∪Q depends
on the position of l with respect to the quadric Q: either l can lie on
Q, be tangent to Q or intersect transversally in two points.

In the case when the line lies on the quadric the amoeba and the
intersection of l with I are both empty. To describe the image of l
under the compactified projection κ consider the same identification
of Q with CP1×CP1 as we had before. There are exactly two families
of lines in Q appearing as fibers of two projections from Q to CP1. If
l is of the form {p} × CP1 for some p ∈ CP1 then its image is single a
point and moreover if we consider an appropriate identification of CP1

and S2 = ∂∞H3 the image κ(l) is nothing but a point {p} ∈ ∂∞H3. In
another case l must be equal to some CP1×{q} ⊂ Q and so κ projects
l identically on ∂∞H3.

If Q doesn’t contain l then they intersect either at one or two points.
This cases give amoebas of quite different shape. Lets consider first a
line l which meets the quadric exactly at one point, in particular l is
tangent to Q. This immediately implies that the amoeba of l is non-
empty and touches ∂∞H3 exactly at one point. In fact, it is possible
to state much more accurate result.

Proposition 8.1. If a line is tangent to Q then its hyperbolic amoeba
is a horosphere in H3.

Recall that a horosphere is a surface in H3 such that it is orthogonal
to any geodesic starting at some fixed point at the infinity.

One can give the following equivalent statement for this proposi-
tion. A hyperbolic amoeba of a line in Ĩ is a horosphere. Indeed, a
curve in Ĩ is a line if and only if the restriction of the two-fold covering
Ĩ→ I on the curve is injective and its image is a line tangent to Q.

We will prove the proposition after work out necessary technics.
Here are some comments on the statement. Actually, any horosphere
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can be realized as an amoeba of some line and the restriction of κ to
such a line is always one-to-one. Two families of lines on Q mentioned
above give amoebas, which can be interpreted as infinitely small and
infinitely large horosphere.

The case of a line, which is not tangent to the quadric, is generic
and so there is no primary reason for its amoeba to have a nice shape.
It is clear that an amoeba of such line must be nonempty and its
closure must contain two infinite points. Surprisingly, we can give a
much stronger description.

Proposition 8.2. If a line is not tangent to Q then its hyperbolic
amoeba is a cylinder in H3.

A cylinder of radius r ≥ 0 in H3 is defined to be a locus of points
that are at the same distance r from a given geodesic.

We will show that any cylinder can be realized as an amoeba of some
line. In particular, any geodesic, which is a degenerate cylinder, is an
amoeba of a line. Except for this case all amoebas of lines are smooth
surfaces and the restriction of κ on such a line is an embedding. We
will use this fact to show that the lines projecting by κ on geodesics
are the only examples of algebraic curves in I with one dimensional
hyperbolic amoebas.

After we have announced some of the results lets move on to a more
systematic narrative.

Both left and right actions of I on itself can be uniquely extended
to I ⊂ CP3. Clearly, Q is invariant under these actions. And moreover
in the identification of Q with CP1×CP1 the group I acts separately on
the factors of Q, i.e. the left(right) action on Q acts by automorphisms
on the left(right) CP1 and preserves the right(left) one.

Consider the space of all lines in CP3 tangent to Q. We have an
action of I × SO(3) on this space. Lines in the same orbit of this
action have congruent hyperbolic amoebas. We claim that there are
only three different orbits for the action.

81



Lemma 8.1. Two families of lines lying on Q and a set of all other
lines tangent to Q are the only orbits for the action of I × SO(3) on
Q.

Thus, if we show that an amoeba of some particular properly tan-
gent line to Q is a horosphere then amoebas of all other lines of this
kind will be horosphere.

Proof. Let x be a point in Q. Take a stabilizer subgroup for x under the
action of I×SO(3) and consider its action on the tangent space to Q at
the point x. It is clear that the stabilizer has a subgroup isomorphic to
C∗×U(1) and acts separately on each multiplier in TxQ = C×C. The
action of this subgroup on the projectivization P(TxQ) for the tangent
space can be obviously reduced to the standard action of C∗ on CP1.
The last is stratified on three orbits: two points and a torus. The points
correspond to the lines in the intersection of Q and a plane tangent to
Q at x. The torus parametrizes the space of all lines properly tangent
to Q at x.

To finish the prove note that I× SO(3) acts transitively on Q and
evidently preserves the stratification for projectivization of a tangent
space to Q at each point.

Our goal now is to show that there exist a line tangent to Q with an
amoeba equal to a horosphere in H3. The main idea here is to use in-
teractions of some specific subgroups of I to produce extra symmetries
for their amoebas.

As we mentioned before, the group I can be interpreted as the
group of automorphisms for CP1 = C ∪ {∞}. A group B of affine
transformations on the complex line C is a 2-dimensional subgroup of
I. It can be also defined to be a stabilizer of ∞. In fact B can be
described up to conjugation as a Borel subgroup of I. Each element of

82



I can be seen a Möbius transformation

z 7→ az + b

cz + d
, ad− bc 6= 0.

Such transformation is affine if and only if c = 0 and is given by
z 7→ az + b. So the closure of B is a plane in CP3.

We introduce two natural subgroups in B: a subgroup l1 = {z 7→
z+ b} of translations in C and a subgroup l2 = {z 7→ az} generated by
homotheties and rotations around 0 ∈ C. In the above notations l1 is
given by the equation a = 1 and l2 is given by b = 0. So the closures
for both subgroups are lines in CP3. It is also clear that l1 is a normal
subgroup of B and so l2 acts on l1 by the conjugation, l1 is a maximal
affine subgroup and l2 is a maximal torus in I. Since l1 and l2 intersect
by a unity and generate the whole group of affine transformations, B
is a semi-direct product of l1 and l2.

Now we are going to describe amoebas for these groups. First we
have to note that an amoeba of any subgroup in I is smooth at each
point because the group acts on its amoeba transitively by isometries.

We start with l2. The point 0 and ∞ in ∂∞H3 are the only points
stabilized by l2. Denote by γ a geodesic through these points.

Lemma 8.2. An amoeba of l2 is the geodesic γ.

Proof. The points 0 and ∞ are antipodal on ∂∞H3 with resect to the
chosen metric. This means that the fixed point O is inside of a geodesic
γ through 0 and ∞. The action of l2 by isometries preserves the
geodesic. Rotations around 0 in C correspond to rotations around γ
and homotheties correspond to translations along γ. Because 1 ∈ l2,
the amoeba contains O and since it is closed under translations along
the geodesic, the whole γ is contained in l2.

Now we will show that the amoeba coincides with γ. Suppose a
point p ∈ H3 in the amoeba is outside of γ. Since the amoeba is
connected we can find the path inside of it starting at p and with
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endpoint on γ. This imply that the amoeba contains a non-degenerate
solid cylinder (which is an image of the action by l2 on γ) and thus 3-
dimensional. The amoeba cannot contain any boundary points because
it is homogenous. Thus it coincides with H3, so the amoeba and l2 have
infinitely many boundary points. This is a contradiction.

The only point in ∂∞H3 which is preserved by l1 is the point ∞.
This automatically implies that the amoeba of l1 has only one boundary
point and l1 itself is tangent to Q. Denote by η a horosphere through O
and touching ∂∞H3 at the point∞. The lemma below with the Lemma
8.1 completes the proof of the Proposition 8.2.

Lemma 8.3. An amoeba of l1 is the horosphere η.

Proof. The first observation is that compactified amoebas of l1 and
l2 share two points: the fixed point O and the point ∞ at infinity.
The group l2 acts on l1 by conjugation. The action by conjugation
of l2 ∩ SO(3) ∼= U(1) on I descends to the level of amoebas. And
so the amoeba of l1 is invariant under the rotations around γ. The
amoeba cannot sit on γ because it must not have boundary points and
is isolated from 0 ∈ ∂∞H3. This implies that it is not one dimensional,
i.e. it is a surface. In particular this means that a tangent space to O
is two dimensional and is invariant under the rotations around γ. So
the amoeba of l1 is orthogonal to γ.

Now we apply elements of l1 to H3, this doesn’t change its amoeba.
Since the action is isometric on H3 and transitive on the amoeba it can
move γ to any geodesic starting at the point∞. Moreover it preservers
orthogonality of a geodesic and the amoeba. This forces the amoeba
to be equal to the horosphere η.

Consider a line l which is not tangent to Q. The line meets the
quadric at two points (p1, q1), (p2, q2) ∈ Q. The following short ar-
gument shows that an amoeba of this line is a cylinder in H3 and a

84



geodesic through p1 and p2 is an axis of symmetry for this cylinder. In
particular, this implies Proposition 8.2.

The group I acts from the left on itself and on the space of lines not
tangent to Q. In terms of intersection points of lines with the quadric
the action by A ∈ I can be obviously written as

A{(p1, q1), (p2, q2)} 7→ {(Ap1, q1), (Ap2, q2)}.

Note that p1 and p2 are distinct since the line doesn’t lie on the quadric.
So the subgroup preserving both p1 and p2 is a subgroup of helicial
motions around the geodesic through this points. The subgroup also
acts from the left on the line l and, similarly as before, it acts by
isometries on the amoeba of l.

The question of precise geometric position of an amoeba is more
delicate. A cylinder in H3 has 5-dimensional deformation space. Four
of the dimensions correspond to the position of its endpoints at infinity
and the rest is the diameter. It is clear that the points p1 and p2 (the
left components of the intersection of the line with Q) are exactly the
endpoints for the amoeba. So there must be a way to extract the
diameter from the ”invisible” points q1 and q2. As before we can move
the line using the right action of SO(3) and this will not change its
amoeba. In particular, this implies that the diameter d must be a
function of an angle between q1 and q2 in S2. It is clear from the
discussion of the degenerate cases that the function surjectively maps
(0, π] on [0,+∞). It is actually monotone and so one-to-one. Of course,
it is possible to find an exact expression:

Remark 8.1. The diameter of the amoeba can be expressed as

diameter = − log sin
α

2

where α is the distance between the points q1 and q2 on the sphere.
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Proof of this fact is left to the reader.
This gives us an explicit description of the correspondence for lines

in general position with Q and their amoebas. A similar thing can be
done for lines tangent to the quadric Q. Consider a line l tangent to Q
at a point (p, q). We have already proved that an amoeba of this line is
a horosphere in H3 tangent to the absolute at the point p. There is a
one dimensional family of such horosphere. A parameter r ∈ R can be
defined to be an oriented distance from the point O to a horosphere.
More precisely, denote by x an intersection point of a horosphere with
the geodesic line through the points O and p. Then r is defined to
be the distance |Ox| if x is between O and p. In the opposite case
r = −|Ox|.

A family of lines tangent to Q at a fixed point can be identified
with the projectivization of the tangent space to Q at this point. Take
a tangent line l to the quadric and consider the correspondent one
dimensional tangent subspace to Q = CP1 × CP1 and its generating
vector (u, v). The boundary version of the map κ identifies CP1 with
S2. In particular it gives a canonical choice of metric on CP1. Now we
are able to describe a precise geometric position for the amoeba of l:

Remark 8.2. The oriented distance from O to the amoeba is given by

r = log
‖u‖
‖v‖

The proof is provided by a quite straightforward computation and
is left to the reader.

8.2 Amoebas of higher degree curves

Consider a curve C of degree d in CP. Since κ is continuos and C is
compact, it is clear that its compactified amoeba is a closed subset
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in H3 and thus its amoeba is a closed subset in H3. It has nonempty
complement because it has only finite number of points at infinity. This
points come as images of intersection points for the curve C with the
quadric Q. So there are at most 2d infinitely far points for the amoeba
and for a generic generic curve there are exactly 2d points. Let us give
a slightly dipper result.

Proposition 8.3. Let Ω be a domain in C and φ : Ω→ I be a holomor-
phic embedding. If κ ◦ φ is critical at every point then φ parametrizes
a part of a line in I projecting by κ on a geodesic.

In particular, a hyperbolic amoeba for an irreducible curve of degree
greater than one is smooth and two dimensional at its generic point.

Proof. Consider a map Ψ from Ω to the space GC(2, 4) of all lines
in CP3 given by x 7→ Tφ(x)φ(Ω). A point x ∈ Ω is critical for κ ◦ φ
if and only if a point φ(x) is critical for κ|Ψ(x). The set of all lines
in I for which a restriction of κ has critical points is precisely the
set of those lines which are projected on geodesics. And so, Ψ(x) is
not tangent to Q for all x ∈ Ω. By taking intersection points with
Q, the set set of such lines can be identified with a symmetric power
for Q without the diagonal. We can locally choose some lift Ψ̃(x) =
(p1(x), q1(x), p2(x), q2(x)) of Ψ to Q×Q = (CP1)×4. Since κ(Ψ(x)) is a
cylinder of zero diameter the angle between q1(x) and q2(x) is equal to π
and the points are antipodal. Thus q2(x) = −q1(x), where ”−” denotes
antiholomorphic involution on CP1 given by central symmetrizing on
∂∞H3. This implies that both q1 and q2 are constant. The points also
distinct since all Ψ(x) do not lie on Q.

Now take two non-intersecting lines inQ given by lk = {(p, qk)}p∈CP1.
There is a unique line through a generic point in CP and the lines lk.
Consequently, the choice of two points Pk ∈ lk and a choice of a point on
a line trough P1 and P2 together give a local coordinates for CP. From
the construction of Ψ̃ we already know that Pk(φ(x)) = (pk(x), qk) and
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that the line Ψ(x) is the line trough P1(φ(x)) and P2(φ(x)). The line
Ψ(x) is tangent to φ(Ω) this can be written as

∂

∂x
Pk ◦ φ(x) = 0.

Thus, both p1 and p2 are constant. In particular, φ parametrizes a
part of the line trough (p1, q1) and (p2, q2) which is mapped by κ on a
geodesic.

8.3 Amoebas of Surfaces

It is clear that a hyperbolic amoeba of a surface is closed. The standard
argument for this is that the map κ can be extended to the compact-
ifications of I and H3. It is a classical result that a complement for an
ordinary (logarithmic) amoeba is always nonempty. In the hyperbolic
setup this statement fails: an amoeba of any Borel subgroup always
spans H3.

Indeed, as we sow, a Borel subgroup is a semi-direct product of two
lines. An amoeba of the first line is a horosphere and an amoeba of
the second is a geodesic – the axis of symmetry for the horosphere.
The second line acts on H3 by translations along its amoeba. Thus,
the amoeba of the Borel subgroup contains all the translations of the
horosphere along the geodesic, and so coincides with the whole H3.

From this reasoning we can also conclude that a restriction of κ
on a Borel subgroup is equivalent to a quotiening out the rotations
around a geodesic, so it is an honest circle fibration. In particular it is
an evidence of certain stability for the property of amoeba to span the
whole ambient space. We will show that this observation is absolutely
true in degree one.

In general an amoeba of a surface fills almost all ambient space.
This is verified by the following simple lemma.
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Lemma 8.4. Let S be a nonempty surface in I and A be its hyperbolic
amoeba. Then ∂∞H3 ⊂ A and H3\A is bounded.

Proof. Consider an intersection of the closure for S in CP3 with Q.
This gives a curve of nonzero symmetric bi-degree on the quadric. The
boundary part of κ is holomorphic. Thus we have the first assertion.
The second assertion is an obvious consequence of the first one.

Proposition 8.4. A hyperbolic amoeba of a plane in I is H3.

Proof. A plane can be given by a homogenous equation a1x1 + a2x2 +
a3x3 + a4x4 = 0 on [x1 : x2 : x3 : x4] ∈ CP3. This equation can be
rewritten as an equation on X ∈ I :

tr(A0X) = 0, where A0 =

(
a1 a3

a2 a4

)
and X0 =

(
x1 x2

x3 x4

)
.

As usual, multiplication on the right of the plane by unitary ele-
ments doesn’t change the amoeba, i.e

κ({X ∈ I| tr(A0X) = 0}) = κ({X ∈ I| tr(A0XU) = 0}),

where U ∈ U(2). But tr(A0XU) = tr(UA0X). So the geometry of the
restriction of κ to the plane and the shape of the amoeba depend only
on A0 ∈ C4\{0} modulo the right action of U(2) and simple rescaling.
Thus,

[A0] ∈ H3 = (C4\{0})/(C∗ × U(2))

parametrizes different types of plane projections onto their amoebas.
Using the left action by I we isometricaly move the amoeba in H3.

This correspond to the analogous action on the space of parameters.
We see that the equivalence classes in H3/I correspond to congruent

amoebas. But the quotient consist only of two elements, i.e H3/I =
{H3, ∂∞H3}.
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We already know that in the case [A0] ∈ ∂∞H3 the amoeba fills the
whole space. That is because

[A0] =

(
0 1
0 0

)
and tr(A0X) = x3 = 0

correspond to the considered example of a Borel subgroup.
The case of [A0] ∈ H3 haven’t appeared before. For example, take

A0 to be the identity

A0 =

(
1 0
0 1

)
and tr(X) = 0.

Clearly, this plane is invariant under conjugation by I. Restricting this
action to the action by SO(3), we get that the amoeba is invariant
under all rotations around the fixed point O in H3. The point

X0 =

(
0 −1
1 0

)

obviously sits on the plane. But X0 is a unitary matrix and so κ(X0) =
O. This implies that the amoeba is H3, because it is connected, contains
the absolute and the point O, and invariant under all rotations around
the fixed point O.

From the proof we see that [A0] ∈ H3 actually parametrizes the
image for the only singular point of the projection from the plane onto
H3. The fiber over a generic point is a circle and the fiber over [A0] is
a 2-sphere. The planes of this type are not tangent to Q.

The case [A0] ∈ ∂∞H3 is a case of a plane tangent to the quadric Q.
The restriction of κ to such a plane is nonsingular circle fibration. We
can think that a singular fiber has been moved to infinity. And it is
actually so. The plane in this case intersects the quadric in two lines.
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And one of this lines is mapped to a point [A0] by the restriction for
the boundary part of κ to the plane.

In fact such an enormous behavior is not presented uniquely in de-
gree one. In any degree a space of surfaces with a hyperbolic amoeba
spanning H3 is nonempty and moreover has a nonempty interior. In-
deed, if we take a generic collection of planes then any of its small
deformations still fills H3.

The first example of an amoeba with a nonempty complement ap-
pears at degree two. Consider a family of quadric surfaces

Sλ = {X ∈ CP| tr2X = λ detX}, λ ∈ C.

We know that κ(S0) = H3. In fact κ(Sλ) = H3 if and only if
0 ≤ λ ≤ 4. For all other values of λ an amoeba is a complement to
an open nonempty ball with a center at O. This family is canonical in
that sense that it interpolates between doubble of the involution plane
{tr = 0}, the quadric Q, and the space of parabolic elements, those
that act with only one fixed point on CP1.

Lets turn to the problem of describing the topology for the comple-
ment of a hyperbolic amoeba for a general surface. We already know
that it should consist of a disjoint collection of open convex sets. To
solve the problem completely it would be enough to describe the exact
upper bound for the number of components for an amoeba when the
degree of a hypersurface is fixed and show that all the lower values can
be obtained on some open family. Surprisingly, it appears that this
program can be implemented in a rather simple way and the result
from the very beginning seems to by quite unexpected.

Theorem 8.1. A complement for a hyperbolic amoeba of an odd de-
gree surface is empty.

We already proved this result in the case of planes. The case of
even degree is less degenerate.
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Theorem 8.2. A complement to a hyperbolic amoeba of an even de-
gree surface is either empty or connected.

Moreover, we will see that for each fixed even degree, the locus of
surfaces with an amoeba having a nontrivial complement is nonempty
open, the locus of surfaces with a trivial amoeba has a nonempty in-
terior.

The following easy argument essentially proves both theorems. Con-
sider a topological 4−dimensional cycle S in I and an amoeba, i.e. its
image under κ. Suppose its complement is nonempty. Fix one hole (a
connected component of the complement) of the amoeba. It is auto-
matically open but not necessarily convex. Take a point p inside the
hole. Consider an oriented geodesic passing through the point p. There
exists a lift of this geodesic to a line. The line intersects the cycle in
a certain number of points which are splinted in to two parts by the
position of there images on the geodesic with respect to the point p.
Counted with multiplicities these points give us two numbers, say k1

and k2 for the points before and after p.

Lemma 8.5. The numbers k1 and k2 doesn’t depend on the choice of
the lift for the geodesic.

Proof. Clearly the sum k1 + k2 is constant and equals two the degree
of the cycle of S. Now we note that the family of lines projecting down
two the geodesic is continuos and is actually diffeomorphic to CP1. We
complete the proof by recalling that p is not in the amoeba of S and
thus the intersection points cannot jump through κ−1(p).

This lemma works in the same way in the case of classical logarith-
mic amoebas. The following phenomena is new.

Lemma 8.6. The numbers k1 and k2 are equal.

This implies immediately that the hole can exist only if the degree
of S is even. This completes the prove for the first theorem.

92



Proof. We use the same argument as in the previous lemma, but we are
going to vary the geodesic through the point p. This variation will go
smoothly (in contrast with the logarithmic setup) since locally the fam-
ily of lines projecting to the geodesic is parametrized by three points
in a sphere. Thus we can choose a path in the space of lines, such that
each line is projected by κ to the geodesic passing through distinguish
p and these geodesics perform a half-twist around p returning to the
initial geodesic, but changing the orientation. This interchanges the
two types of the intersection points for S and the lines.

Now we turn to the case when S is an algebraic even degree surface,
and so connected components of its amoeba are convex. Suppose, there
are two holes. Consider a geodesic γ through these two holes. Take
a point p in the intersection of the geodesic and the amoeba lying
between the holes. The intersection of S and κ−1(p) is nonempty.
Take a point A in this intersection. There exists a line l through A
projecting down on γ.

In analogy with what we were doing before it is possible to distin-
guish three segments in γ :before the first hole, between the holes, after
the second hole; and prescribe some numbers k1, k2, k3 to the segments,
given by the intersection points of l and S over the segments. From the
construction of l and holomorphisity of S we have k2 strictly positive.
Looking on the first hole individually we have k1 = k2 + k3, and on
the second k1 + k2 = k3. Thus k2 should be zero. This contradicts to
the existence of two distinct points in the amoeba and completes the
proof of the second theorem.

Now it becomes not completely evident that the situation when the
hole exists is common and that it could be arbitrary large. Clearly, the
condition of existence of a hole is open. We are going to show how to
deform an arbitrary even degree hypersurfaces to create a hole in its
amoeba containing an arbitrary compact subset of H3.

Consider a compact set C ⊂ H3 and a degree 2d hypersurface
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S ⊂ CP3 given by f = 0. A preimage κ−1(C) is again compact and
doesn’t intersect Q. Thus a function det−nf is well defined on κ−1(C)
and its absolute value has a finite maximum m. Now take any λ ∈ C
such that |λ| > m then an amoeba of Sλ = {f + λdet = 0} doesn’t
contain C.

8.4 Other

Theorem 8.2 partially explains why there is a combinatorially unique
non-deviation locus in heptagonal sandpiles [KS15a]. Taking into ac-
count the possibility to lift Gp operators from the Steiner problem to
the algebraic Sp, also suggests that there might exist a general frame-
work unifying sandpiles, algebraic groups and amoebas.

We’ve attempted to perform an analogue of tropicalization in the
hyperbolic framework. Clearly, there is nothing interesting at the level
of amoebas of surfaces. I would conjecture, a compactness theorem
of the form: in every sequence of non-trivial hyperbolic amoebas of
surfaces there exist a subsequence such that, combined with rescal-
ing, it converges to the complement of a metric ball (topologically the
statemnt is trivial). For curves the naive hyperbolic tropicalization
gives floor diagrams. The floors, similarly to [BM07], are the slices of
the complementary dimensions, concetric spheres with center at the
reference point. They are connected by a finite number of segments,
the elevators.

At the first glance, degeneration of hyperbolic amoebas of surfaces
doesn’t give much information. On the other hand, if we look at the
conjugate projection κ′(A) = A∗A together with the standard one, it
gives the projection (κ,κ′)(A) = (A∗A,AA∗) ⊂ (H3)2 of PSL2 C to the
real cone over the smooth complex quadric surface Q. Degenerating the
images of surfaces under this projection we get sort of floor diagram
in the cone, where the floor ocupies the whole level of the cone and an
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elevator between two floors is an algebraic curve of symmetric bi-degree
in Q. See [BM07] for the floor diagrams in classic contex.

We have observed that one can define a dual to κ

κ∗ : CP3 → H3

acting on the space of planes in the projective space. it is easy to check
that the restriction of κ to a plane H has a unique singualar value wich
we denote by κ∗(H) ∈ H3. The fiber over this point is a sphere if the
point is on the boundary and real projective space othervise. The key
ingredient is to recognize the projectivisation of traceless matrices as
the closure of all involutions in PSL2 C.

Finally, we note that despite the fact there are two different hy-
perbolic amoeba maps (corresponding to the right or left factoriza-
tion of PSL2 C by SO(3)), there is a unique spherical coamoeba map
σ(A) = U ∈ SO(3), where P = P ∗, P ≥ 0 and A = PU is the polar de-
composition. Note that A 7→ (A−1)∗ extends to the real structurcture
on the compactification CP 3 of I = PSL2 C and SO(3) = RP 3 is the
real locus. If we consider a real algebraic knot K of degree d the
spherical coamoeba of its complexification σ(CK) ⊂ RP 3 is a cobor-
dism joining K with a union of d lines. We do not elaborate more on
this matter since this goes beyond the scope of the project.

The rest of the section will be devoted to the concept closely related
to amoebas hypersurfaces, namely the Gauss map, [Kap91, Mik00].

Definition 8.1. Consider a smooth surface V ⊂ G. Let

γl : V → GC(2, TIG)

a left Gauss map be given by γl(A) = A−1TAS ⊂ TIG.

HereGC(2, TIG) means a Grassman manifold of 2-dimensional com-
plex linear subspaces of TIG. One can define a right Gauss map γr in
the similar way.
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We give a basic fact on this map. A subspace V of TIG is said to
be real if it is invariant under the Hermitian involution. A collection
of all 2-dimensional real subspaces in TIG is denoted by RGC(2, TIG).

Proposition 8.5. A set Crit(V ) of all critical points for the restriction
of pr on V coincides with γ−1

l (RGC(2, TIG)).

Proof. For any point A ∈ V there are precisely two possible different
relative position for a tangent space to a fiber of the projection and
a tangent space to the surface. Their intersection is either real one
dimensional, if A is not a critical point of κ, or two dimensional in a
case when A is critical. In the second case we have that A−1TAV is
generated by v1 and v2 from the TI SU2. Then iv1 and iv2 are real.
Hence A−1TAV = 〈iv1; iv2〉 is real.

Another usual property for the Gauss map relates it with the set
of real points of a surface. A surface is said to be real if it is invariant
under Hermitian conjugation. A point is called real if it is self-adjoint.
A set of all real points of V is denoted by RV . The property that
should be satisfied is that an image of a real point of a real surface
under the Gauss map is real. But suddenly there is a problem here
arises because of non-commutativity. Let us examine this more closely.

Take a real point A in a real surface V . Then TAV is closed under
the conjugation. Consider a conjugate to its translation by A−1:

(γl(A))∗ = (A−1TAV ) = TAV (A∗)−1 = (TAV )A−1 = γr(A).

We see that here a right Gauss map appears. Trying to satisfy the
property we can construct a variation of Gauss map in this way. Define
two-sided Gauss map by γlr(A) = (γlA, γrA). Also we introduce a
natural real structure on GC(2, TIG)2 by (l1, l2)

∗ = (l∗2, l
∗
1).

Proposition 8.6. RV ⊂ γ−1
lr (RGC(2, TIG)2).
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Proof. Take a real point A ∈ V. Then

(γlr(A))∗ = (γl(A), γr(A))∗ = ((γr(A))∗, (γl(A))∗) = γlr(A).

If we introduce a symmetric alternative for the product we men-
tioned at the very beginning then the analog of proposition 8.5 will be
true for γlr. Let a two-sided projection be prlr(A) = (prl(A), prr(A)).
A set of its critical points on a surface will evidently coincide with
γ−1
lr (RGC(2, TIG)2) by the same argument as in proposition 8.5. But

this map is also not perfect. In this context, it is meaningless to talk
about the degree since (2, TIG)2 is too big.

There is another more complicated, but very interesting way to
symmetrize the Gauss map. We can try to translate a tangent space
from the both sides simultaneously. By this we mean something of the
form

A 7−→
√
A−1(TAV )

√
A−1.

If such a map exists then the analogues of propositions ?? and 8.6 are
true for that. In this case, we would have seen the miraculous splitting
of the natural properties of the Gauss map [Mik00].

Immediately arises the question of whether you can do something
meaningful with that thing (like in [Mik00, Kap91]). We saw many
times in this paper that there is nothing special with taking a square
root of a Hermitian matrix. One can nicely generalize this for normal
matrices. But for a general non-singular matrix it is not possible to tell
something relevant about its square root. It happens that for a fixed
matrix there can be an infinite family of roots and no way to choose
one canonically (or better to say there some good non-global choices).
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Chapter 9

Tropical sandpiles

The remaining part of this thesis is occupied by our joint work with
Nikita Kalinin [KS15b], it is dedicated to the proof of the scaling limit
theorems. Be aware that the terminology doesn’t always match with
the first part of the thesis. A big effort was made to do things formally
and develop a precise mathematical foundation for the intuitive proof
explained in Section 5.3. Things like relaxations, waves and sandpiles
on infinite grafs are explained in Appendix B. Tropical analytic curves
and series are build in Appendix C.

Before we were refering only to compact convex domains. The
most general statement of the scaling limit theorem presented here
drops compactness exluding only the three cases: when Ω is the whole
plane, when it is a half plane with irrational slope or a stripe between
two parallel lines with irrational slope. So, in principle we could deal
with sandpiles (CΩ and all other lattice invariants) on an unbounded
component of the complemnet to a logarithmic amoeba of an algebraic
curve.
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TROPICAL CURVES IN SANDPILE MODELS

NIKITA KALININ, MIKHAIL SHKOLNIKOV

Abstract. A state of a sandpile is a configuration of grains at the vertices of a subgraph Γ of Z2. A
vertex with at least four grains is called unstable and can topple by sending one grain to each of its

four neighbors; sand falling outside Γ disappears. A relaxation is doing topplings while it is possible.

It was experimentally observed by S. Caracciolo, G. Paoletti, and A. Sportiello that the result of
the relaxation of a small perturbation of the maximal stable state on Γ contains a clearly visible thin

balanced graph in its deviation set.

In this paper we rigorously formulate (using a certain scaling limit procedure) this fact and prove
it. For that, a theory of tropical analytic series was developed. To understand the relaxation dynamic

we prove that sending waves in the sandpile model corresponds in the limit to an operator on the

set of tropical series. To study the local questions we developed a theory of smoothings of discrete
superharmonic functions.

1. Introduction

1.1. Sandpiles. Let h be a small positive real number, hZ2 = {(ih, jh)|i, j ∈ Z}. Each two points
z, z′ ∈ hZ2 with |z − z′| = h are connected by edge (we write it as z ∼ z′), thus hZ2 is a graph whose
all vertices have valency four. Let Γ be a finite subgraph of hZ2 and ∂Γ be the set of the vertices of
Γ, that have neighbors in hZ2 \ Γ.

A state φ of the sandpile model on Γ is a function φ : Γ \ ∂Γ→ Z≥0 on vertices of Γ. We interpret
φ(z) as the number of grains of sand in z ∈ hZ2. A vertex z0 ∈ Γ \ ∂Γ is called unstable if φ(z0) ≥ 4,
and in this case z0 can topple, producing a new state φ′ : Γ→ Z≥0 by the following local rule changing
only z0 and its neighbors:

φ′(z) =





φ(z)− 4 if z = z0;

φ(z) + 1 if z ∼ z0;

φ(z) otherwise.

A relaxation is doing topplings at unstable vertices while it is possible. Note that it is not allowed
to topple the vertices in ∂Γ by definition, this guarantees that any relaxation eventually terminates.
We denote by φ◦ the result of a relaxation of φ. It is a classical fact that φ◦ does not depend on the
relaxation and is uniquely determined by φ.

1.2. A perturbation of the maximal stable state. Denote by 〈3〉 the maximal stable state, the
state which has exactly three grains at every vertex of Γ \ ∂Γ. Let p1, . . .pk ∈ Γ \ ∂Γ.

S. Caracciolo, G. Paoletti, and A. Sportiello proposed to look at the result of the relaxation of a
small perturbation of 〈3〉, namely, of the state φh obtained from 〈3〉 by adding one grain to each of
pi. They also made the following observation, which we illustrate on a small concrete example, see
Figure 1.

Let Γh contains all the vertices of hZ2 inside the triangle Ω given by three lines

x− y = 0, 4x+ y = 30, x+ 4y = 120.

Let p1,p2,p3 be the points (7, 22), (12, 20), (12, 16), k = 3. Figure 1 shows the results of the relaxation

of φh = 〈3〉+
∑k
i=1 δpi

for each h = 1/N where N = 1, 2, 4, 8.
Such pictures firstly appeared in [3], and the striking fact that φ◦h is equal to three at most of vertices

of Γh motivates Definition 3.16: the deviation locus of a stable state ψ is the set {ψ 6= 3}. It was

Date: March 22, 2017.
Key words and phrases. Tropical curves, sandpile model, scaling limit, tropical dynamics, discrete harmonic functions.
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TROPICAL CURVES IN SANDPILE MODELS 2

observed by the authors of [3] that the deviation locus in Figure 1 looks balanced: at every vertex of
this graph the sum of outgoing primitive vectors in the directions of the edges is zero (see Figure 11).

Figure 1. The evidence for a thin balanced graph as a deviation set of a sandpile.
White corresponds to three grains, black to one, circles for two, crosses to zero, skew
lines are the boundary vertices. Grey rounds represent the positions of added grains.

1.3. Our main results. Following a suggestion of A. Sportiello, we prove the following: if graphs Γh
are obtained as the intersection of a convex figure Ω with hZ2 and we consider the states φh as above,
then the deviation locus of φ◦h tends to a balanced graph as h→ 0. Such graphs are known as tropical

curves, [18].
Precise formulations can be found in Section 3. In particular, Ω can be unbounded (but must be

admissible, see Definition 3.1). The corresponding theory for sandpiles on infinite graphs is presented in
Appendix B, though it is absolutely parallel to the theory on finite graphs. For another short statement
of our results the reader may read the announce, [10].

1.4. Application of our methods: fractals and patterns in sandpile. The sandpile on Z2

exhibits a fractal structure; see, for example, the pictures of the identity element in the critical group
[17]. As far as we know, only a few cases have a rigorous explanation. It was first observed in [21]
that if we rescale by

√
n the result of the relaxation of the state with n grains at (0, 0) and zero grains

elsewhere, it weakly converges as n→∞. Than this was studied in [16] and was finally proven in [23].
However the fractal-like pieces of the limit found their explanation later, in [14, 15] and happen to be
curiously related to Apollonian circle packing.

Periodic patterns in sandpiles were discovered by S. Caracciolo, G. Paoletti, and A. Sportiello in a
pioneer work [3], see also Section 4.3 of [4] and Figure 3.1 in [22]. Experimental evidence suggests that
these patterns carry a number of remarkable properties: in particular, they are self-reproducing under
the action of waves. That is why we call these patterns solitons. Solitons naturally appear during
relaxations on convex domains. In Figure 1 on the first two pictures we see these patterns for the
directions (1, 0), (1, 1), (1, 2). A pattern for directions (−1, 3), (3,−1) can be seen on the third picture
(it is represented by two edges at the top left corner). Solitons on pictures correspond to edges of the
limiting tropical curve.

The fact that the solitons appear as “smoothings” of piece-wise linear functions was predicted in
[26]. We provide a definition of the smoothing procedure. We will prove the existence (and uniqueness
modulo translation) of solitons for all rational slopes and provide certain estimates on their shape.

We construct triads — three solitons meeting at a point — and triads satisfy similar properties.
We show that the deviation locus of φ◦h is essentially glued out of solitons and triads along the graph,
which can be constructed via certain dynamic on the set of tropical series.

The papers in experimental physics often lack rigorous proofs and concentrate more on discovering
new models and effects. So, we contribute to this area by providing a rigorous formulation and a proof
of a particular case of the above mysteriously regular behavior.

In particular, we prove well known (experimentally) fact that these patterns move changeless under
the action of waves. A lot of work is to be done in future. Another thesis, [25](see also [26]), contains
a lot of pictures and examples with apparent piece-wise linear behavior. We expect that the methods
of this article will be used to study the fractal structure in those cases.
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1.5. About proofs. We developed two completely new technics which independently are also inter-
esting: Gp-dynamics on the space of tropical series and smoothing of discrete superharmonic functions.

Here we present the main ingredients of the proof, avoiding all the technicalities. We propose the
reader to concentrate on what seems to be right in the following, because most of claims will be formally
wrong. Otherwise we recommend to skip this section. Boldfaced terms are supposed to reveal the
parallels in the words of sandpiles and tropical series (certain piece-wise linear functions).

The toppling function Hφ(v) of φ = 3 +
∑
δp measures how many topplings at a vertex v happened

during a relaxation of φ. Knowing Hφ means knowing the result of the relaxation, since φ◦ = φ+∆Hφ.
Here ∆ is the discrete laplacian operator and ∆Hφ(v) measures how many grains come to v minus
how many grains leave v during the relaxation process. Sandpiles are “lazy” in the sense that Hφ is
the pointwise minimal such function H that φ+ ∆H ≤ 3. We prove that in our setup the toppling
function is concave.

Consider a concave piece-wise linear function F , which looks like ix + jy + aij on the linear
patches, such that P (the set of points p) belongs to the corner locus of F . Note that ∆F is zero
almost everywhere, ∆F < 0 at P and the deviation locus {3 +

∑
δp + ∆F 6= 3} is the corner locus

of F , which, in turn, is a balanced graph passing through P .
Since 3 +

∑
δp + ∆F < 0 at P , we understood that the pointwise minimum FP of all such

functions F is an upper bound for Hφ. Note that ix + jy + aij should have an integer slope (i.e.
i, j ∈ Z) because the toppling function is integer-valued.

Let ψ be a stable state. Adding a grain to a point p and a relaxation may be decomposed as
follows: we add a grain to p, perform a toppling at p, prohibit doing topplings at p for a while, and
relax what can be relaxed (this is called a wave). One can prove that we will have at most one toppling
at every vertex during this process. Then we unfreeze p, topple it, freeze p again, and relax what can
be relaxed (this gives the second wave). We repeat this until p does not want to topple after unfreezing,
i.e. until the deviation locus reaches the point p.

A relaxation of φ = 3 +
∑
δp may be decomposed into waves from P . Let ψ = 3 + ∆G where

G is a piece-wise linear function with integer slopes. Let p belongs to a region of linearity where
G = i0x + j0y + ai0j0 . We prove that sending a wave from p in ψ produces the state 3 + ∆G′ where
G′ differs from G just by a′i0j0 = ai0j0 + 1.

This motivated us to introduce the operator Gp (Figure 7): it acts on a piecewise linear function,
increasing one of its coefficients aij until the corner locus of the function reaches the point p. Finally,

the fact that FP can be decomposed as FP = limn→∞
(∏

p∈P Gp

)n
G for G ≡ 0 implies that FP is a

lower bound for Hφ.

1.6. Where to find proofs of previously announced results. In [10] we announced several the-
orems which are proven in this paper. Here we list where to look for the proofs. Theorem 1, in [10], is
Theorem 1 here. Theorem 2 in [10] is proven in Section 7. Theorem 3 in [10] easily follows from Theo-
rem 1, and will be proven in [9] to keep this paper shorter. Theorem 4 in [10] follows from Theorem 1
here just because of the definition of the function fΩ,P (see Definition 3.7). We prove Theorem 5 in
[10] on the way of the proof of Theorem 1, see Remark 3.24.

1.7. Strategies of reading and the structure of this paper. For the convenience of the reader,
for many statements we mention where they are cited inside this paper. We encourage to follow
these links. We moved more or less standard fact to Appendices. The reader can also choose different
strategies of reading, depending on goals.

• For readers, not familiar with tropical geometry, we propose to read Appendix C.1 (basic facts
about tropical geometry) first, and follow the references therein in case of interest for algebraic
geometry aspects of tropical geometry.
• For the reader, somehow familiar with tropical geometry, we recommend to read entire Section 3

(main definitions, the main theorm), then entire Section 5 (proof of the lower estimate). Then
we recommend to read the definitions in Appendices, and Section 4.2 (the dynamic of operators
Gp on tropical series). We spear about patterns in Section 6. Then follows the discussion in
Section 8.
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• For the readers interested in proofs mainly. The combinatorial core of the paper is Section 6
where we study superharmonic “smoothings” of piecewise linear integer-valued functions. Then
it is natural to reread Sections 4,5, which provide the lower bound. The upper bound is easier,
see Section 3.
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2. Glossary of symbols

We need considerable notation in this paper. For easy reference we list most of it here.

Domains.

Ω ⊂ R2 is any admissible (see Definition 3.1) closed convex domain, Ω◦ is its interior.
(x, y) is a point of Ω.
P is a finite subset of Ω◦, P =

⋃n
i=1{pi},pi ∈ Ω◦.

U,W are open subsets of R2.
∆ is a Q-polygon (Definition 3.19).
V denotes a vertex of the polygon ∆.
S denotes a side of ∆.
S(∆) is the set of all sides of ∆.
Br(A) is the r-neighborhood of a set A ⊂ R2, i.e. the closure of the union of the balls with radius r

and center in A.
O stands for the point (0, 0) ∈ R2.

Tropical objects.
fΩ,P is a certain Ω-tropical series associated with Ω and a finite collection P ⊂ Ω of points (Defini-

tion 3.7).
f, g are tropical series or tropical polynomials.
C(f) is the tropical curve defined by a tropical series (or polynomial) f .
0Ω is the function f ≡ 0 on Ω.
(i, j) ∈ Z2 parametrize monomials ix+ jy + aij and occasionally serve for indices.
Φ is a face of a tropical curve (see also Proposition C.3).
E is an edge of a tropical curve.
d(·) is the duality between faces (edges, vertices) of a tropical curve and vertices (resp., edges, faces)

of the dual subdivision of the Newton polygon (Proposition C.3).
mf : S(∆)→ Z>0 is the quasi-degree (Definition 4.18) of a ∆-tropical polynomial f .
Addcklf increase by c the coefficient akl in the (3.5), see Definition 4.33.
lΩ(x, y) : Ω→ R≥0 is the tropical weighted distance (from the boundary) function, Definition 4.3.
GP is an operator on tropical series, Definition 4.8. If P is just one point p we write Gp.

Lattice graphs.
h is the mesh of the lattice, a positive number small enough.
Γh = Ω◦ ∩ hZ2 is the underlying graph for sandpiles.
z stands for a vertex of Γh or for a point in Ω.
z′ ∼ z means that z′ is a neighbor of z ∈ Γh, γ(z) is the set of neighbors of z ∈ hZ2.
∂Γh is the boundary of Γ, i.e ∂Γh = {z ∈ Γh||γ(z)∩Γh| < 4}. We never do topplings at the vertices

of ∂Γh, in other words, ∂Γh is the set of sinks of our sandpile.
F,G,H are integer-valued functions on graphs Γh or Z2.
Sn(F ) is the n-smoothing of F (Definition 5.6).
∆F (z) is the discrete Laplacian of a function F : Γh → Z at a point z, ∆F (z) = −4F (z) +∑
z′∼z F (z′). Note that ∆F is defined on Γh \ ∂Γh, and for z ∈ Γh \ ∂Γh we always have |γ(z)| = 4.
D(F ) = {z ∈ Γ|∆F (z) 6= 0}, the non-harmonicity locus of F .
v, w are points of Z2.

Sand objects.
Hφ(z) is the value of the toppling function of a state φ at a point z.
Hv
φ(z) the value of the toppling function of one wave from v for φ at a point z.

Ph = {ph}p∈P is the set of roundings of the points p ∈ P with respect to Γh.
[a] is the maximal integer number, such that [a] ≤ a.
〈3〉 is the state with 3 grains at every vertex.
D(ψ) is the deviation locus (Definition 3.16) of a state ψ, i.e. the set of vertices where ψ 6= 3.
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Smoothh(f) (Definition 5.14) is the smoothing of a nice (Definition 4.30) ∆-tropical Laurent poly-
nomial f on Γh.

Other.
δv is the function which is equal to one at v and zero otherwise.
{X} for some property X is the set where X holds. For example, if f, g are two functions, then

{f 6= g} is the set of points x where f(x) 6= g(x). Similarly, χ(X) is the function which is equal to 1
at the points where X holds.
p1, p2, q1, q2 ∈ Z are such numbers that p1q2 − p2q1 = 1.
A sand pattern on a plane, corresponding to a tropical edge, is a soliton.
A pattern corresponding to a trivalent tropical vertex is a triad.
Constants are denoted by C,C1,C2, etc.

3. The main theorem

Definition 3.1. (Used on pages [2,6,9,10,10]) A convex closed subset Ω ⊂ R2 is said to be not ad-
missible if one of the following cases takes place:

• Ω has empty interior Ω◦ (i.e. Ω is a subset of a line),
• Ω is R2,
• Ω is a half-plane with the boundary of irrational slope,
• Ω is a strip between two parallel lines of irrational slope.

From now on we always suppose that Ω is an admissible convex closed subset of R2.

Definition 3.2. (Used on pages [41,41,41]) An Ω-tropical series is a function f : Ω→ R≥0, f |∂Ω = 0,
such that

f(x, y) = inf
(i,j)∈A

(aij + ix+ jy), aij ∈ R,

and A ⊂ Z2 is not necessary finite. An Ω-tropical analytic curve C(f) on Ω◦ is the corner locus (i.e.
the set of non-smooth points) of an Ω-tropical series on Ω◦.

The reason to consider only admissible sets is Proposition 4.2: there is no Ω-tropical analytic curves
on non-admissible Ω.

Question. An Ω-tropical series can be thought of an analog of a series wt(x, y) =
∑

(i,j)∈AΩ
taijxiyj

with t ∈ R>0 very small. Is is true that Ω is the limit of the images of the region of convergence of wt
under the map log : (x, y) → (logt |x|, logt |y|), and the corresponding Ω-tropical analytic curve is the
limit of the images of {wt(x, y) = 0} under logt | · | when t→ 0?

Lemma 3.3 (The proof is on page 41). (Used on pages [41]) In the definition of an Ω-tropical series
f we can replace “inf” by “min”, i.e. at every point (x, y) ∈ Ω◦ we have

inf
(i,j)∈A

(aij + ix+ jy) = min
(i,j)∈A

(aij + ix+ jy).verified

At a point on ∂Ω where there is no tangent line with a rational slope we actually have to take the
infimum, cf. Lemma 4.5.

Note that an Ω-tropical series f : Ω→ R always has different presentations as the minimum of linear
functions. For example, if Ω is the square [0, 1]× [0, 1] ⊂ R2, then min(x, 1− x, y, 1− y, 1/3) equals at
every point of Ω to min(x, 1− x, y, 1− y, 1/3, 2x, 5− 2x).

Definition 3.4. (Used on pages [16,39]) To resolve this ambiguity, we suppose that, in Ω◦, a tropical
series f is always (if the opposite is not stated explicitly) given by

(3.5) (Used on pages [6,7,16,17,37]) f(x, y) = min
(i,j)∈A

(aij + ix+ jy)

with maximal by inclusion A and with as minimal as possible coefficients aij . We call this presentation
the canonical form of a tropical series. For each Ω-tropical series there exists a unique canonical form.

Example 3.6. The canonical form of min(x, 1 − x, y, 1 − y, 1/3) on Ω = [0, 1] × [0, 1] is f(x, y) as in
(3.5) with A = Z2, a00 = 1/3 and aij = −min(x,y)∈Ω(ix+ jy) for (i, j) ∈ Z2 \ {(0, 0)}.
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Proof. It is easy to check that f(x, y) = min(x, 1−x, y, 1− y, 1/3) on Ω. The set of monomials A = Z2

is maximal by inclusion. All the coefficients aij , (i, j) 6= (0, 0) are chosen as minimal with the condition
that ix+ jy+ aij is non-negative on Ω. Finally, in the canonical form of min(x, 1−x, y, 1− y, 1/3) the
coefficient a00 can not be less than 1/3. �

Definition 3.7. (Used on pages [3,6,11]) Let p1, . . .pn ∈ Ω◦ be different points, P = {p1, . . . ,pn}.
We denote by fΩ,P the pointwise minimum among all Ω-tropical series non-smooth at all the points
p1, . . . ,pn.

Lemma 3.8 (The proof is on page 12). (Used on pages [11,13]) The function fΩ,P is an Ω-tropical
series.verified

Definition 3.9. Consider the lattice hZ2 with the mesh h > 0 and define Γh = hZ2 ∩ Ω◦, Let γ(z)
denote the set of all four neighbors of z in hZ2 and let ∂Γh be the set of vertices of Γh which have a
neighbor vertex outside Ω◦. We prohibit making topplings at the vertices in ∂Γ (or, equivalently, we
think of them as sinks).

Definition 3.10. We say that ph ∈ hZ2 is a rounding of a point p ∈ R2 with respect to hZ2 if the

distance between p and ph is less than h.

Definition 3.11. (Used on pages [36]) The set of roundings Ph = {ph|p ∈ P} for the set of points
P is called proper if the function

F : hZ2 → Z≥0, F (z) = [h−1fΩ,P (z)] ∈ Z, z ∈ Γh

has negative discrete Laplacian at all points ph. Here [·] stands for the usual integer part of a positive
number.

Proposition 3.12 (The proof is on page 37). (Used on pages [36,37,37]) For each finite subset P of

Ω◦ there exists a set Ph of proper roundings. verified

In fact, the set Ph = {ph} of proper roundings depends on Ω and P , so we should write phΩ,P for

each point p. Nevertheless, for a fixed h small enough this rounding ph of p ∈ P depends only on the
behavior of C(fΩ,P ) in a small neighborhood of p.

Proposition 3.13 (The proof is on page 37). (Used on pages [9,9,37]) If p ∈ P ∩ P ′,p ∈ Ω ∩Ω′ and

C(fΩ,P ) coincides with C(fΩ′,P ′) in a neighborhood of p, then phΩ,P = phΩ′,P ′ . verified

Let Ph = {ph|p ∈ P} be a set of proper roundings of points in P with respect to the lattice hZ2.
Consider the state φh of a sandpile on Γh defined as

(3.14) (Used on pages [9,37]) φh = 〈3〉+
∑

p∈P
δ(ph).

Proposition 3.15 (The proof is on page 37). (Used on pages [9,37]) The function

F (z) = [h−1fΩ,P (z)], z ∈ Γh

bounds from above the toppling function Hφh
(see Definitions B.5, B.15) of φh. verified

In particular, this implies that φh is relaxable (Definition B.11).

Definition 3.16. (Used on pages [1,6]) For a state ψ on Γh, its deviation locus D(ψ) is

D(ψ) = {z ∈ Γh|ψ(z) 6= 3}.
Our main result is the following theorem.

Theorem 1. (Used on pages [3,3,3,3,8,9,23,30,31,38]) [The proof is on page 9] The family of deviation
sets D(φ◦h) converges (by Hausdorff, on compact sets in Ω◦) to the tropical curve C(fΩ,P ) as h → 0.
verified
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The ambiguity with roundings is justified as follows. The corresponding (p1,p2, . . . ,pn)→ fΩ,P is
continuous for a generic set P of points, and, in this case, Theorem 1 holds for any roundings of points
in P . But if P belongs to the discriminant set of configurations, then φ◦h does not depend in any sense
continuously on the points where we drop additional sand; the susceptibility of a sandpile is very big.
For different roundings of p1, . . . ,pn we can obtain drastically different pictures of φ◦h.

On the other hand, in a certain setting a rounding is not necessary at all, as it was [10], Section 1.2.

Proposition 3.17 (The proof is on page 37). If P ⊂ Z2, Ω is lattice polygon, and h−1 ∈ N, then we

can take the proper roundings ph = p for each p ∈ P .

3.1. The scheme of the proof of the main theorem.

Lemma 3.18 (The proof is on page 37). (Used on pages [10,12,31,37,37]) If the toppling function Hψ

of a state ψ on Γh is bounded by a constant C > 0, then

D(ψ◦) ⊂ BCh(D(ψ) ∪ ∂Ω).verified

Definition 3.19. (Used on pages [6]) Let ∆ ⊂ R2 be a finite intersection of half-planes (at least one)
with rational slopes. We call ∆ a Q-polygon if it is a closed set with non-empty interior.

Note that a Q-polygon is not necessary compact. It is easy to verify that a Q-polygon is admissible
(Definition 3.1). The next lemma provides us with compact Q-polygons which exhaust Ω.

Lemma 3.20 (The proof is on page 14). (Used on pages [4,4,9,9,9,12,14,14]) For any compact set
K ⊂ Ω◦ such that P ⊂ K and for any ε > 0 small enough there exists a Q-polygon Ωε,K ⊂ Ω such
that B3ε(K) ⊂ Ωε,K and the following holds:

fΩ,P = fΩε,K ,P + ε on B3ε(K).

Note that fΩε,P ≤ fΩ,P automatically. If Ω is a compact set, then Ωε,K is {fΩ,P ≥ ε} for ε small
enough. For non-compact Ω we additionally cut the set {fΩ,P ≥ ε} far enough from K.

Corollary 3.21. (Used on pages [9,9]) Lemma 3.20 implies that for ε > 0 small enough the tropical
curves defined by fΩ,P and fΩε,K ,P coincide on K, i.e.

C(fΩ,P ) ∩K = C(fΩε,K ,P ) ∩K
therefore by Proposition 3.13 the proper roundings Ph of P for Ω and Ωε,K coincide for any h, ε > 0
small enough.

Proposition 3.22. (The proof is on page 22) (Used on pages [4,4,9,20,22,22]) Suppose that ∆ ⊂ R2

is a Q-polygon. Choose any ε > 0. Then, the toppling functions H of the states φh (see (3.14)) satisfy

hH(z) > f∆,P (z)− ε for all z ∈ Γh ∩∆

for all h > 0 small enough. Furthermore, the sets D(φ◦h) \Bε(∂∆) are ε-close to C(f∆,P ).verified

In other words, the deviation sets converge to the tropical curve everywhere outside an arbitrary
small neighborhood of the boundary of ∆. This is the core statement in this paper, the proof of the
main theorem heavily relies on it.

Proof of Theorem 1. Consider a compact set K ⊂ Ω◦, such that P ⊂ K, and ε > 0 small enough.
Choose ∆ = Ωε,K by Lemma 3.20. Denote by Γεh the set given by

Γεh = {z ∈ Ω ∩ hZ2|γ(z) ⊂ ∆◦}.
We consider the state φεh = 〈3〉 +

∑
p∈P δ(p

h) on Γεh. Note that the roundings ph of points p ∈ P in
∆ are the same as for Ω by Corollary 3.21 and Proposition 3.13.

Note that (φεh)◦ can be thought of a partial relaxation (Definition B.26) of φh. Denote by H1 = Hφh
the toppling function of φh (on Γh) and by H2 = Hφε

h
the toppling function of φεh (on Γεh). Therefore,

hH1 ≥ hH2 (Lemma B.27). Since ∆ is a Q-polygon, then, using Proposition 3.22 we can choose h small
enough, such that D((φεh)◦)∩K is ε-close to C(f∆,P )∩K = C(fΩ,P )∩K (Corollary 3.21) and hH2 is
ε-close to f∆,P .
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Figure 2. Additional grain of sand thrown to the center of Ω = {x2 + y2 ≤ 1}. The
sand picture for h = 1/100 is on the left and the limit as h → 0 is in the center. On
the right we see the limit of the toppling function. Note that the central picture shows
the corner locus of the right picture which is lΩ (Definition 4.3) for Ω = {x2 +y2 ≤ 1}.

On B3ε, combining the above arguments with Proposition 3.15 and Lemma 3.20 we obtain

(3.23) f∆,P − ε < hH2 ≤ hH1 ≤ h[h−1fΩ,P ] ≤ fΩ,P = f∆,P + ε.

Therefore, by Lemma 3.18 we see thatD(φ◦h) is 2ε-close toD((φεh)◦)∪∂B3ε(K) on B3ε(K). Therefore

D(φ◦h) ∩K is 3ε-close to C(fΩ,P ) ∩K. We proved that for each ε, h > 0 small enough, D(φ◦h) ∩K is

3ε-close to C(fΩ,P ) ∩K, which finishes the proof of the theorem. �

Remark 3.24. Note that (3.23) implies that fΩ,P = limh→0 hHφh
on compact sets K ⊂ Ω◦. This

implies the assertion in previously announced Theorem 5 in [10].

4. Tropical tools

4.1. Tropical weighted distance function.

Definition 4.1. (Used on pages [10,14,15,41]) For (i, j) ∈ Z2 denote by cij the infimum of ix+jy over
(x, y) ∈ Ω. Let AΩ be the set of pairs (i, j) with cij 6= −∞. Note that if Ω is bounded, then AΩ = Z2.
For each (i, j) ∈ AΩ we define

lijΩ (x, y) = ix+ jy − cij .

Note that lijΩ is positive on Ω◦. Also, AΩ always contains (0, 0).

Proposition 4.2 (The proof is on page 42). (Used on pages [7,42]) A convex closed set Ω is admissible
(Definition 3.1) if and only if AΩ 6= {(0, 0)} and Ω◦ 6= ∅. verified

Definition 4.3. We use the notation of Definition 4.1. The weighted distance function lΩ on Ω is
defined by

lΩ(x, y) = inf
{
lijΩ (x, y)|(i, j) ∈ AΩ \ {(0, 0)}

}
.

An example of a tropical analytical curve defined by lΩ is drawn on the right hand side of Figure 2.

Remark 4.4. (Used on pages [11]) If f(x, y) = ix + jy + aij , (i, j) ∈ A = Z2 \ {(0, 0)}, aij ∈ R,
f |Ω ≥ 0, then f ≥ lΩ on Ω.

Lemma 4.5 (The proof is on page 42). (Used on pages [7,42,42]) The function lΩ is an Ω-tropical
series.verified
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4.2. Operators Gp. Recall that Ω is admissible (Definition 3.1). Let P = {p1, . . . ,pn} be a finite
collection of points in Ω◦. Let g be an Ω-tropical series.

Definition 4.6. (Used on pages ) Denote by V (Ω, P, g) the set of Ω-tropical series f such that f |Ω ≥ g
and f is not smooth at each of the points p ∈ P.
Lemma 4.7. (Used on pages ) The set V (Ω, P, g) is not empty. verified

Proof. Since Ω is admissible, lΩ is well defined, and the function

g′(z) = g(z) +
∑

p∈P
min(lΩ(z), lΩ(p))

belongs to V (Ω, P, g). �

Clearly, if f ≥ g then V (Ω, P, f) ⊂ V (Ω, P, g).

Definition 4.8. (Used on pages [6]) For a finite subset P of Ω◦ and an Ω-tropical series f we define
an operator GP , given by

GP f(z) = inf{g(z)|g ∈ V (Ω, P, f)}.
If P contains only one point p we write Gp instead of G{p}.

•p •p •p •
p

•

•

•

• •

• •

•

•

• •

• •

•

•

• •

• •

•

•

• •

•

Figure 3. First row shows how curves given by Gp0Ω depend on the position of the
point in the pentagon Ω. The second row shows a dual decomposition for their Newton
polygon. Note that the coordinate axes of the second row are actually reversed as on
Figure 12.

In Proposition 4.37 we will prove that GP can be obtained as the limit of repetitive applications
Gp for p ∈ P and that each individual Gp simply contracts a face of a tropical curve C(g) such that
C(Gpg) passes through p, see Figure 7.

Lemma 4.9. For p ∈ Ω◦ we have Gp0Ω(z) = min(lΩ(z), lΩ(p)).

Proof. Indeed, all the coefficients, except a00, in the canonical form of Gp0Ω can not be less than in lΩ
by Remark 4.4, and if a00 were less than lΩ(p), then the function would be smooth at p. �

Proposition 4.10. (Used on pages [12,17,42]) For any z ∈ Ω and P = {p1, . . . ,pn} the following
inequality holds

GP 0Ω ≤ n · lΩ(z).verified

Proof. For each point p ∈ P we consider the function (Gp0Ω)(z) = min(lΩ(z), lΩ(p)), which is not
smooth at p and (Gp0Ω)|∂Ω = 0. Finally,

fΩ,P ≤
∑

p∈P
Gp0Ω ≤ n · lΩ.

�
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Lemma 4.11 (The proof is on page 42). (Used on pages [11,42]) The function GP f is an Ω-tropical
series. verified

Proof of Lemma 3.8. Note that GP 0Ω = fΩ,P (x) by the definition (Definition 3.7) of the latter. Ap-
plying Lemma 4.11 concludes the proof. �

Lemma 4.12. (Used on pages [17]) Let f1 and f2 be two tropical series on Ω◦ such that f1 ≤ f2 and
P ⊂ Ω◦. Then GP f1 ≤ GP f2.verified

Proof. Indeed, GP f2 ≥ f2 ≥ f1 and GP f2 is not smooth at P. Therefore, GP f1 ≤ GP f2 by definition
of GP f1. �

•

Figure 4. On the left: Ω-tropical series min(x, y, 1−x, 1−y, 1/3) and the correspond-
ing tropical curve. On the right: the result of applying G( 1

5 ,
1
2 ) to the left picture. The

new Ω-tropical series is min(x + 2
15 , y, 1 − x, 1 − y, 1

3 ) and the corresponding tropical

curve is presented on the right. The fat point is ( 1
5 ,

1
2 ).

Definition 4.13. (Used on pages [12,13,14,15,15]) We say that a tropical series f on Ω is presented
in the small canonical form if f is written as

(4.14) f(x, y) = min
(i,j)∈Bf

(ix+ jy + aij)

where all aij are taken from the canonical form and Bf ⊂ AΩ consists of monomials ix+ jy+aij which
are equal to f at at least one point in Ω◦.

Example 4.15. The small canonical form for Example 3.6 is min(x, y, 1− x, 1− y, 1/3).

Remark 4.16. (Used on pages ) Note that for a Q-polygon ∆, the small canonical form of the function
l∆ is a ∆-tropical polynomial, i.e. it has only finite number of monomials. It follows from Propo-
sition 4.10 that the small canonical form of GP f is a ∆-tropical polynomial too, for all ∆-tropical
polynomials f .

Lemma 4.17 (Cf. Lemma 3.18). (Used on pages [18,37,37]) Let ε > 0,B ⊂ Z2 and f, g be two
tropical series in Ω◦ written as

f(x, y) = min
(i,j)∈B

(ix+ jy + aij), g(x, y) = min
(i,j)∈B

(ix+ jy + aij + δij).

If |δij | < ε for each (i, j) ∈ B, then C(f) is 2ε-close to C(g).verified

Proof. Suppose that an edge E of C(f) is given by ix+jy+aij = i′x+j′y+a′ij for some (i, j), (i′, j′) ∈ B.
The local equation of E is therefore (i − i′)x + (j − j′)y + (aij − a′ij) = 0. For C(g) this becomes
(i − i′)x + (j − j′)y + (aij − a′ij) = (δ′ij − δij). Since i, i′j, j′ ∈ Z, the zero set of new local equation
of this edge is 2ε-close to E. In other words, when we change a coefficient aij , the edges of the face
F , where ix+ jy + aij is the minimal monomial, move by at most ε. When we change coefficients in
the neighboring faces, the edges of F move again by at most ε. Therefore ∂F moves by at most 2ε. If
there are vertices of valency bigger than three on ∂F , their perturbations can produce new edges, but
again in the ε-neighborhood of ∂F . Some new faces may appear, but, again, in ε-neighborhood of old
vertices and edges. �
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4.3. Finite parts of tropical curves and a proof of Lemma 3.20. Let us fix a Q-polygon ∆.
Consider a ∆-tropical polynomial f in the small canonical form (Definition 4.13). Let us analyze the
behavior of f near the boundary.

In the neighborhood of each side S of ∆ the function f can be locally written as (x, y) 7→ ix+jy+aij ,
where the point (i, j) ∈ Newt(f) in the Newton polygon Newt(f) (Definition C.2) of f and the vector
(i, j) is orthogonal to S. This integer vector (i, j) is a multiple of a certain primitive vector, i.e.
(i, j) = m(S)n(S), where n(S) is an inward primitive normal vector to S of ∆ and m(S) ∈ Z>0 is a
number. Thus, we constructed the function m on the set S(∆) of the sides of ∆, m = mf : S(∆)→ Z>0.

Definition 4.18. (Used on pages [6,15]) The aforementioned function mf is called the quasi-degree
for the ∆-tropical curve C.

Remark 4.19. Note that mf (S)n(S) ∈ Newt(f) for each S ∈ S(∆). The convex hull of the set

{mf (S)n(S)}S∈S(∆)

coincides with Newt(f), since the monomials from the outside of this convex hull can not contribute
to f |∆.

Definition 4.20. (Used on pages [13,15,22]) A quasi-degree mf is called nice if for each side S ∈ S(∆)
with mf (S) > 1 we have mf (S1) = mf (S2) = 1 for the neighboring sides S1, S2 of S.

Lemma 4.21. (Used on pages [13,13,22]) Let ∆ be a smooth Q-polygon (Definition C.5). Suppose
that a quasi-degree d on ∆ is nice (Definition 4.20). Then for any ε > 0 there exists a tropical ∆
polynomial g such that mg = d, the curve C(g) is smooth (Definition C.6) and is contained in the
ε-neighborhood of ∂∆.verified

Proof. Let {Sk}nk=1 be the sides of ∆. Suppose that the side Sk, k = 1, 2 is given by ikx+ jky+ ak = 0
and these linear function are non-negative on ∆. Choose small δ > 0. For each k = 1, . . . , n we consider
the following tropical polynomial:

fk(x, y) = min
l=1,...,d(Sk)

(
l(ikx+ jky + ak)− l(l + 1)

2d(Sk)
δ

)
.

The tropical curve defined by fk is the collection of d(Sk)− 1 lines parallel to Sk. Define g as

g(x, y) = min
(
ε/2, min

k=1,...,n
fk(x, y)

)
.

Clearly, C(g)∩∆ is contained in the ε-neighborhood of ∂∆. It is, as follows, a local calculation near
each corner that C(g) ⊂ R2 is a smooth tropical curve.

Since the quasi-degree is nice, so near a corner of ∆, C(g) is given locally by

min(ε/2, x, y, 2y − 1

n
, 3y − 3

n
, 4y − 6

n
, . . . )

where n = d(Sk)
δ . Such a curve has an edge locally given by x = ε/2 and, if δ is small enough, d(Sk)

edges locally given by y = k
n , 1 ≤ k ≤ d(Sk), and these edges meet in smooth position, see Figure 5 for

an illustration.
�

Lemma 4.22. (Used on pages [14]) If Ω is bounded, then for any ε > 0 the set Ωε = {x ∈ Ω|fΩ,P ≥ ε}
is a Q-polygon and fΩ,P |Ωε is a tropical polynomial.verified

Proof. By Lemma 3.8, fΩ,P is continuous and vanishes at ∂Ω. Since Ω is bounded, the set fΩ,P = ε is
a curve disjoint from ∂Ω. We claim that the intersection of Ωε with C(fΩ,P ) is a graph with a finite
number of vertices. Suppose the contrary. Then a sequence of vertices of this graph converges to
a point z ∈ Ω◦. Thus, there is no neighborhood of z where the series fΩ,P can be represented by a
tropical polynomial, which is a contradiction with Definition C.8. The finiteness of the number of
vertices implies that there is only a finite number of monomials participating in the restriction of fΩ,P

to the domain Ωε, therefore the restriction is a tropical polynomial. �
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Figure 5. Left: the curve corresponding to the function g from Lemma 4.21, near a
corner. Each vertex of the curve is smooth because it is dual to a triangle of the type
(0, 1), (k, 0), (k + 1, 0). Right: an example of a function g. Colored corners symbolize
that a quasidegree was not nice, and we applied Lemma 4.32 and made blow-ups at
these corners.

Lemma 4.23. (Used on pages [14]) Fix a presentation of fΩε,P is the small canonical form (Defi-
nition 4.13). We extend fΩε,P to Ω using this formula. In the hypothesis of the previous lemma, if
fΩ,P (p) ≥ ε for each p ∈ P , then we have fΩ,P = fΩε,P +ε on Ωε. Also fΩε,P +ε ≥ fΩ,P on Ω.verified

Proof. On Ωε we have that fΩ,P − ε ≥ fΩε,P by the definition of the latter. Then, two functions
fΩε,P + ε, fΩ,P are equal on ∂Ωε and by the previous line the quasi-degree of fΩε,P is at most the
quasi-degree of (fΩ,P − ε)|Ωε

. Hence fΩ,P is decreasing faster than fΩε,P when we move from ∂Ωε
towards ∂Ω. Therefore fΩε,P + ε ≥ fΩ,P on Ω \ Ωε. Since fΩε,P + ε ≥ 0 on Ω we obtain the estimate
fΩε,P + ε ≥ fΩ,P on Ω which concludes the proof. �

Lemma 4.24. Let K be a compact subset of Ω, M ∈ R. Let (i, j) ∈ Z2 \ {(0, 0)}. Let D be the set of
all d such that {ix+ jy+ d = 0} ∩Ω 6= ∅ and ∃(x0, y0) ∈ K such that ix0 + jy0 + d ≤M . Then there
exists C > 0 such that BC(K) ∩ Ω intersects the set {ix+ jy + d = 0} for all d ∈ D.

Proof. Clearly, D is a finite interval in R. The intersection Ω∩{−maxD ≤ ix+jy ≤ minD} is a convex
set, therefore we can pick a point z0 ∈ Ω∩{ix+jy+minD = 0} and a point z1 ∈ Ω∩{ix+jy+maxD =
0}, and the interval z0z1 belongs to Ω. Then we can choose C such that BC(K) contains z0, z1, and
such C satisfies the assertion of this lemma. �

Proof of Lemma 3.20. If Ω is a compact set, then Lemma 3.20 follows from Lemmata 4.22, 4.23, because
B3ε(K) ⊂ Ωε for small ε > 0. Suppose that Ω is unbounded. Let M be maxz∈B3ε(K) fΩ,P (z). If follows
from Lemma C.7 that the small canonical form (Definition 4.13) of a tropical series fΩ,P |B3ε(K) on
B3ε(K) contains only a finite set I of monomials.

Choose a compact set K ′ = BC(K)∩Ω with C > 0. We want to prove that if C is big enough, then
fΩ,P = fK′,P on B3ε(K). Suppose that fΩ,P and fK′,P are not identical on B3ε(K). Pick the set of all
monomial (i, j) such that ix+ jy has different coefficients aij , a

′
ij in fΩ,P , fK′,P respectively. We may

assume that (ix + jy + a′ij)|Ω ≥ 0, because (i, j) ∈ I, finite set, and we may choose C big enough by
Lemma 4.24 to prevent that a line {ix+ jy + a′ij = 0} with (ix+ jy + a′ij)K ≤M intersects Ω◦.

Then we may take all the monomials of fK′,P in the small canonical form of fK′,P on B3ε(K) and
take their min with fΩ,P . The result will be less than fΩ,P but still an Ω-tropical series, which is a
contradiction.

Therefore we reduced the non-compact case for Ω to the compact case for Ω = K ′ with whom we
know how to deal. �

4.4. How to blow-up corners of a polygon. Let p1, p2, q1, q2 ∈ Z such that p1q2−p2q1 6= 0 and let

Λ = {(x, y) ∈ R2|xp1 + yq1 ≥ 0 xp2 + yq2 ≥ 0}.
Consider the canonical form of lΛ (see Definition 4.3)

lΛ(x, y) = min
(i,j)∈A

(ix+ jy).

Denote by Λ∗ the cone R≥0(p1, q1)⊕ R≥0(p2, q2).
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Lemma 4.25. The support AΛ (Definition 4.1) of lΛ(x, y) is equal to the set

Λ∗ ∩ Z2.verified

Proof. Any vector (p, q) ∈ Z2 can be written as (p, q) = α · (p1, q1) + β · (p2, q2) with α, β ∈ R. Then,
if α < 0 or β < 0, then px+ qy is negative on one side of Λ. �

Let us now write lΛ in the small canonical form (see Definition 4.13)

lΛ(x, y) = min
(i,j)∈B

(ix+ jy).

Definition 4.26. (Used on pages [16]) Suppose that ∆ is a Q-polygon and O = (0, 0) is its vertex.
Let ε > 0. Let (p1, q1), (p2, q2) ∈ Z2, p1q2 − p2q1 6= 0 be the primitive vectors in the directions of the
edges of ∆ at O, oriented outwards. Let

Λ = {(x, y) ∈ R2|xp1 + yq1 ≥ 0; xp2 + yq2 ≥ 0}.
Clearly, ∆ ⊂ Λ and they coincide in a neighborhood of O. We say that ∆′ → ∆ is the ε-blowup of ∆
in a direction n ∈ AΛ if

∆′ = {(x, y) ∈ ∆|n · (x, y)− ε ≥ 0}.
We say that this blow-up is made with respect to the lattice point n ∈ Z2. Note that ∆′ ⊂ ∆. We say
that ∂∆′ \ ∂∆ (i.e. the new side of ∆′ obtained as cutting the corner at O) is the side dual to n.

Remark 4.27. Note that if Λ is smooth (Definition C.5) then p1q2 − p2q1 = ±1 and there exists a
preferred direction (p1 +p2, q1 + q2) to perform a blow-up which produces two smooth corners near the
vertex of Λ.

Remark 4.28. Note that n is not necessary a primitive vector. This will be important in Lemma 4.32.

Let f be any Λ-tropical polynomial written in the small canonical form (Definition 4.13). So,
supp(f) ⊂ AΛ (Definition 4.1) and is finite. Let O = (0, 0) be the corner of Λ.

Lemma 4.29. (Used on pages [16,16]) Consider any ε > 0. There exist δ > 0, N > 0 such that if

(p, q) ∈ (Λ∗)◦ ∩ Z2,
√
p2 + q2 > N,

then px+ qy − δ > f on Λ \Bε(O). verified

Proof. Each vector (p, q) ∈ (Λ∗)◦ ∩ Z2 can be written as (p, q) = α · (p1, q1) + β · (p2, q2) with α, β ∈
R, α, β > 0. We consider the case (p1, q1) = (1, 0), (p2, q2) = (0, 1), general case can be handled in the
same way. Let U = Bε(O) ∩ Λ be a neighborhood of O, we have

f |U = min
(pi,qi)∈A

(pix+ qiy)

where A ⊂ AΛ. It is enough to prove the statement for (p, q) = (1, N), i.e. that if N is big enough and
δ > 0 is small enough, then

x+Ny − δ > min
(pi,qi)∈A

(pix+ qiy) for (x, y) ∈ Λ \ U.

The cone Λ is dissected on regions where each of pix + qiy is the minimal monomial. All these
sectors except one satisfy y > cx for a constant c depending on pi, qi. Therefore if N is big enough
then x+Ny > (pi + 1)x+ (qi + 1)y > pix+ qiy + δ if x or y bigger than δ. The only region where we
do not have the estimate y > cx is the region where the minimal monomial pix + qiy satisfies pi = 0.
In this region, again, x+Ny > qiy + δ if x or y is bigger than δ and N is big enough.

�

Definition 4.30. (Used on pages [6,16,18,18,21]) Let f be a ∆-tropical series. We say that f is nice
if all the corners of ∆ are smooth (Definition C.5) and the quasi-degree (Definition 4.18) mf is nice
(Definition 4.20).

Lemma 4.31. (Used on pages [19]) Suppose that f is a nice ∆-tropical series for a Q-polygon ∆.
Then, at each corner of ∆, C(f) has one edge of weight one.verified
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Figure 6. Above pictures show non-smooth corners Λ (dashed lines). Th correspond-
ing below pictures present lattice points with respect to whom we should perform the
blow-ups (the result is shown by continuous lines) in order to make all the corners
smooth.

Proof. Suppose the contrary. Applying SL(2,Z) transformation and translation we may assume that
the corner in consideration is at the point (0, 0) and two neighboring vertices of ∆ (0, a) and (b, 0).
Denote these neighboring sides by S1, S2. Suppose that mf (S1) = 1,mf (S2) = k. Then f is given
by f ′(x, y) = min(y, kx) in a neighborhood of (0, 0), and the tropical edge defined by f ′ has weight
one. �

Lemma 4.32. (Used on pages [13,13,15,18]) Let Λ be a corner of a Q-polygon and f be any Λ-tropical
polynomial. Let ε > 0 be any small number. There exists a finite sequence of blowups (Definition 4.26)

Λn → · · · → Λ3 → Λ2 → Λ1 → Λ,

and a tropical polynomial f̃ on Λn such that f = f̃ on Λ \ Bε(O), and f̃ is nice (Definition 4.30) on

Λn, |f − f̃ | ≤ ε on Λn. verified

Proof. Consider any ordering {(ik, jk)}∞k=1 of primitive vectors in AΛ\{(p1, q1), (p2, q2)} such that
i2k+1 + j2

k+1 ≥ i2k + j2
k for any pair of consecutive (with respect to this order) primitive vectors. Choose

δ > 0 small enough and denote by Λk the δ-blow-up of Λk−1 with respect to the vector nk(ik, jk) where
nk ∈ N is chosen in such a way that ||nk(ik, jk)|| ≥ N from Lemma 4.29.

Note that Λk−1 contains k corners but only one of them can be blow-upped using the direction
(ik, jk); so there is no ambiguity.

We construct the following sequence {fk : Λk → R}∞k=1 of functions. The function f0 is taken to be
f on Λ0 = Λ. We take fk to be

fk(x, y) = min(fk−1(x, y), nk(ikx+ jky)− δ) on Λk.

Because of the choice of nk we know that fk and fk−1 are equal outside of a small neighborhood of
O. The number nk represents the quasi-degree of fn, n > k on the side dual to the vector (ik, jk). By
Lemma 4.29 for large k all this nk can be chosen to be 1. From the construction it is clear that fk is
nice on Λk for some k big enough. �

4.5. Dynamics on polyhedra. In this section we study operators Gp, the continuous analog of waves
(c.f. Section B.2).
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Definition 4.33. (Used on pages [6,21]) For an Ω-tropical series f in the canonical form (see (3.5),
Definition 3.4), (k, l) ∈ A, and c ≥ 0 and we denote by Addcklf the Ω-tropical series

(Addcklf)(x, y) = min


akl + c+ kx+ ly, min

(i,j)∈A
(i,j)6=(k,l)

(aij + ix+ jy)


 .

Remark 4.34. (Used on pages [17,17,18,18]) Suppose that Gpf = Addcijf . We can include the
operator Addcij into a continuous family of operators

f → Addctijf, where t ∈ [0, 1].

This allows us to observe the tropical curve during the application of Addcij , in other words, we look

at the family of curves defined by tropical series Addctijf for t ∈ [0, 1]. See Figure 7.

•p

Φ

•p •p

Figure 7. Illustration for Remark 4.34. The operator Gp shrinks the face Φ where

p belongs to. Firstly, t = 0, then t = 0.5, and finally t = 1 in Addctijf . Note that
combinatorics of the new curve can change when t goes from 0 to 1.

We denote by 0Ω the function f ≡ 0 on Ω.

Lemma 4.35. (Used on pages ) Let f = min(i,j)∈AΩ
(ix + jy + aij) 6= 0Ω be an Ω-tropical series in

the canonical form, such that the curve C(f) doesn’t pass through a point p = (x0, y0) ∈ Ω◦. Then

• a) Gpf differs from f only in a single coefficient d(Φ) ∈ AΩ dual to the face Φ of C(f)
(Proposition C.3) to which p belongs.

• b) Furthermore, Gpf = Addcklf with c = f ′(p)−kx0− ly0, where f ′ is defined below. verified

Proof. Suppose that f is equal to (kx+ ly + akl) near p. Consider the function

f ′(x, y) = min
(i,j)∈AΩ,(i,j) 6=(k,l)

(ix+ jy + aij).

Then Gp(f) is at most min (f ′, kx+ ly + (f ′(p)− kx0 − ly0)) by definition and this proves a). Also,
direct calculation shows that min(f ′, kx+ ly+ c) is smooth at p as long as c < f ′(p)−kx0− ly0, which
implies b). �

Corollary 4.36. In the notation of Definition 4.3, for a point p ∈ Ω◦ we have (Gp0Ω)(z) = min{lΩ(z), lΩ(p)}
for each z ∈ Ω.

Recall that P = {pi}ni=1, P ⊂ Ω◦. Let Q = {q1,q2, . . . } be an infinite sequence of points in P where
each point pi, i = 1, . . . , n appears infinite number of times. Let g be any Ω-tropical series. Consider
a sequence of Ω-tropical series {fm}∞m=1 defined recursively as

f1 = g, fm+1 = Gqmfm.

Proposition 4.37. (Used on pages [11,22]) The sequence {fm}∞m=1 converges pointwise toGP g.verified
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Proof. First of all, GP g has an upper bound g + nlΩ by arguments as in Proposition 4.10. Applying
Lemma 4.12, induction on m and the obvious fact that Gpm

GP g = GP g we have that fm ≤ GP g for
all m. Since the family {fm}∞m=1 is pointwise monotone and bounded, it converges to some function
f ≤ GP g, which is an Ω-tropical series. Indeed, to find the canonical form of f we can take the limits
(as m→∞) of the coefficients for fm in their canonical forms (3.5).

It is clear that f is not smooth at all the points P . Therefore, by definition of GP we have f ≥ GP g,
which finishes the proof. �

Remark 4.38. Note that in the case when Ω is a lattice polygon and the points P are lattice points,
all the increments c of the coefficients in Gp = Addckl are integers, and therefore the sequence {fi}
always stabilizes after a finite number of steps.

Remark 4.39. Note that if Gqn
. . . Gq1

g is close to the limit GP g, then by Lemma 4.17 we see that
the tropical curves are also close to each other.

Consider a sequence of operators Gq1
, Gq2

, . . . , Gqm
where q1,q2, . . . ,qm are (not necessary distinct)

points in ∆◦, where ∆ is a Q-polygon. We will use the following notation

(4.40) G = Gqm
Gqm−1

. . . Gq1
.

Proposition 4.41. (Used on pages [22]) For each ε > 0 small enough there exists a smooth Q-polygon
∆′ ⊂ ∆ such that

• G0∆′ is nice (Definition 4.30) on ∆′,
• 0 ≤ G0∆ −G0∆′ < ε on ∆′.
• G0∆ ≤ ε on ∆ \∆′.

Proof. Consider f = GP 0∆. We apply Lemma 4.32 to f and each corner of ∆. This gives ∆′ and a
function f̃ on ∆′ such that f̃ is nice on ∆′ and f = f̃ near P . Therefore GP 0∆′ ≤ f̃ and hence GP 0∆′

is nice on ∆′. Clearly G0∆ ≥ G0∆′ and we might choose ∆′ such that G0∆ < ε on ∂∆′ which implies
the second and third assessments. �

4.6. Coarsening. Let g be a nice Ω-tropical series, such that C(g) is a smooth tropical curve. In the
product Gqm

Gqm−1
. . . Gq1

g each Gqk
is the application of Addekik,jk for some ek > 0, i.e. we increase

the coefficient in the monomial ikx+ jky by ek. So we have

(4.42) (Used on pages [18,19,19,19]) GqmGqm−1 . . . Gq1g = AddemimjmAdd
em−1

im−1jm−1
. . .Adde1i1,j1g.

Proposition 4.43 (The proof is on page 19). (Used on pages [19,22,22]) Let f = Gqm
Gqm−1

. . . Gq1
g.

Suppose that the quasi-degrees mf ,mg coincinde (in particular, f is also nice (Definition 4.30) on ∆).
For a constant M we replace in (4.42)

Gqk
= Addekikjk by G◦qk

:= Addek−Mh
ikjk

for k = 1, . . . ,m.

Denote f0 = g, fk+1 = Addek−Mh
ikjk

fk = G◦qk
(fk). Then, for each ε > 0, there exists a constant M such

that for any h > 0 small enough

• all the tropical curves defined by fk, k = 1, . . . ,m are smooth or nodal (Definition C.6) on ∆
as well as each tropical curve in the family during the application of G◦qk

to fk (Remark 4.34);
• the tropical curve defined by fm is ε-close to the tropical curve defined byGqm

Gqm−1
. . . Gq1

g.verified

4.7. Contracting a face. Let a ∆-tropical polynomial f define a tropical curve C(f) ⊂ ∆. Let p
belong to the interior of a face Φ of the complement ∆ \ C(f) of C(f). Suppose that all corners of Φ
are smooth (Definition C.5). We can find c > 0 and (i, j) ∈ Z2 such that

Gpf = Addcijf.

Consider the family {Addctijf}t∈[0,1] of tropical polynomials (see Remark 4.34). Denote by Φt the face

of Addctijf to which p belongs.
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Lemma 4.44 (The proof is on page 19). (Used on pages [19,19,21]) In the above assumptions, all the
vertices of Φt, t ∈ [0, 1) are smooth or nodal (Definition C.4) vertices of the curve C(Addctijf). If Φ is

not contracted to a point or an interval by applying Gp to f , then the vertices of Φ1 are smooth or
nodal as well.verified

Consider a side S of the face Φ and two other sides S1 and S2 of Φ which are the neighbors of S.
Applying SL(2,Z)-change of coordinates and homothety we may suppose that S is the interval with
endpoints (0, 0), (1, 0). We may assume, then, that the picture is locally given by

f̃(x, y) = min(0, y, x+ n1y + c1,−x+ n2y + c2), n1, n2 ∈ Z, c1, c2 ∈ R,

because both endpoints of S are smooth vertices of C(f). Since the endpoints of S are (0, 0), (1, 0) we
see that c1 = 0, c2 = 1. We suppose that Φ is the face where the function 0 + 0x + 0y is the least
monomial in f̃ .

The curve C(Addct0,0f) in the neighborhood of S is given by the tropical polynomial

f̃t(x, y) = min(ct, y, x+ n1y,−x+ n2y + 1).

For small t > 0 denote by St the side of Φt (recall that Φt is a face of the curve C(Addct0,0f)) which
is close and parallel to the side S of the face Φ. It is easy to find the coordinates of the vertices of
St by direct calculation: they are (ct(1− n1), ct) and(ct(n2 − 1) + 1, ct). The length of St is therefore
ct(n2 − 1) + 1− ct(1− n1) = 1 + ct(n1 + n2 − 2). We just proved the following lemma.

Lemma 4.45. In the above notation, two facts are equivalent:

• St is shorter then S for small t > 0,
• n1 + n2 < 2.verified

Corollary 4.46. (Used on pages [19,19,19]) We have three different cases:

a) n1 + n2 < 0, corresponds to collapsing the face Φ to p,
b) n1 +n2 = 0, corresponds to collapsing the face Φ to a (possibly degenerate) interval containing

p,
c) n1 + n2 = 1, note that in this case (1, n1) + (−1, n2) = (0, 1).

Definition 4.47. We say that a continuous family of tropical curves has a nodal perestroika if all the
curves, except one, are smooth, and non-smooth curve has only one nodal point, and the family near
it is given by min(x, y, t, x+ y) for t ∈ [−ε, ε] up to SL(2,Z) change of coordinates.

Proof of Lemma 4.44. The combinatorial type of Φt can only change when at least one of the sides of
the Φt is getting shrinked to a point for some t. Choose the minimal such t = t0, and denote one of the
shrinking sides by S. Corollary 4.46 tells us that cases a), b) correspond to collapsing the face, hence
in these cases the lemma is proven.

We assume that t0 < 1 and the case c) in Corollary 4.46 takes place.
If neither S1 nor S2 gets contracted when we pass from C(f) to C(Addct0ij f), then we see a nodal

perestroika(Definition 4.47). If S2 is contracted by passing from C(f) to C(Addct0ij f), then the direct

computation using Corollary 4.46 c) implies that the side S3 of Φ, which is next after S2, is parallel to
S2 and therefore the whole face Φ is contracted by Addct0ij which is a contradiction. The case when S1

is contracted is handled by the same argument. �

Corollary 4.48. The edges of C(Addctijf) ∩ Φ for 0 ≤ t < 1 have weight 1.

Proof of Proposition 4.43. The only two possibilities how the tropical curve can become non-smooth
during our procedure in (4.42) is appearance of a non-smooth vertex inside ∆◦ and appearance of an
edge with weight bigger than one inside ∆◦ or at the corners of ∆.

It follows from Lemma 4.44 that a non-smooth vertex or an edge with weight bigger than one in ∆◦

can appear only by contracting a face. We can decrease the constants ei in (4.42) by any small positive
numbers, such that no G◦qk

contracts a face, this eliminates a part of the problems with smoothness
inside ∆◦. For that it is enough to choose M such that mMh (total change of function) would be
less than the minimal non-zero distance between one of the points q1, . . . , qm and the tropical curve in
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the process (4.42). Finally, fm is nice on ∆ and, therefore, the tropical curve C(fm) is smooth at the
corners of ∆ by Lemma 4.31. �

5. Proof of the lower estimate

In this section we introduce several important concepts and prove Proposition 3.22 modulo other
statements which we prove later.

Lemma 5.1. (Used on pages ) Let G : Z2 → Z be a superharmonic function. Suppose that G−G′ is
also superharmonic where G′ : Z2 → Z satisfies 0 ≤ G′ ≤ 1. Then for each connected component A of
Z2 \D(G) we have G′|A ≡ 0 or G′|A ≡ 1.verified

Proof. Consider a point v ∈ A. Note that 4G(v) =
∑
w∼v G(w). Suppose that G′(v) = 1. Since G−G′

is superharmonic and G′ ≤ 1, we must have G′(w) = 1 for all w ∼ v. Repeating this for the neighbors
of v, we prove the lemma. �

Definition 5.2. We say that a function F : Z2 → Z is solid if there exists C > 0 with the following
property. If a connected component T of Z2 \ D(F ) belongs to Bn(D(F )) for some n, then T ⊂
BC(D(F )). When we want to specify the constant C we write that F is C-solid.

Example 5.3. The functions F = Ψedge,Ψvertex,Ψnode (see (5.9),(5.9),(5.11)) are solid just because
Z2 \D(F ) has no components which belong to a finite neighborhood of D(F ).

Lemma 5.4. (Used on pages [20,25]) If F is C-solid, then for each G ∈ Θn(F ) the set {F 6= G} is
contained in Bmax(n,C)(D(F )).verified

Proof. Let An = {v ∈ Z2|G(v) = F (v)−n}. By the superhamonicity of F,G we see that if v ∈ An\D(F )
then all neighbors of v belong to An. Therefore the connected component of v in Z2 \D(F ) belongs
to An, which, in turn, belongs to a finite neighborhood of D(F ) because F is solid. Therefore v
is contained in BC(D(F )). By the same arguments, An−1 = {G = F − n + 1} is contained in the
1-neighborhood of D(F ) ∩ An or in BC(D(F )), An−2 is contained in the 1-neighborhood of An−1,
etc. �

Lemma 5.5. (Used on pages [20,25]) If F,G are two superharmonic functions on Γ ⊂ Z2, then
min(F,G) is a superharmonic function on Γ.verified

Proof. Let v ∈ Γ. Without loss of generality, F (v) ≤ G(v). Then, ∆ min(F,G)(v) ≤ ∆F (v) ≤ 0. �

Let F : Z2 → Z be a superharmonic (i.e. ∆F ≤ 0 everywhere) function.

Definition 5.6. (Used on pages [6,22,24,24,24,25,31]) Suppose that F is solid. For each n ∈ N con-
sider the set Θn(F ) of all integer-valued superharmonic functions G such that F − n ≤ G ≤ F and G
coincides with F outside a finite neighborhood of the deviation set of D, i.e.

Θn(F ) = {G : Z2 → Z|∆G ≤ 0, F − n ≤ G ≤ F,∃C > 0, {F 6= G} ⊂ BC(D(F ))}.
Define Sn(F ) : Z2 → Z to be

Sn(F )(v) = min{G(v)|G ∈ Θn(F )}.
We call Sn(F ) the n-smoothing of F .

Proposition 5.7. (Used on pages [25,27]) If F is C-solid for some C > 0, then the function Sn(F )
belongs to Θn(F ).verified

Proof. By Lemma 5.5 the function Sn(F ) is superharmonic and by Lemma 5.4, {F 6= Sn(F )} ⊂
BC′(D(F ))} for C′ ≥ max(n,C). �

Remark 5.8. For a fixed h > 0 we can naturally extend the notion of smoothing to integer-valued
superharmonic functions on hZ2.
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Let us fix p1, p2, q1, q2, c1, c2 ∈ Z such that p1q2 − p2q1 = 1. Consider the following functions on Z2:

(5.9) (Used on pages [20,20,25,25,25,25]) Ψedge(x, y) = min(0, p1x+ q1y),

(5.10) (Used on pages [25,25,27]) Ψvertex(x, y) = min(0, p1x+ q1y, p2x+ q2y + c1),

(5.11)

(Used on pages [20,25,25,27]) Ψnode(x, y) = min
(

0, p1x+q1y, p2x+q2y+c1, (p1+p2)x+(q1+q2)y+c2

)
.

Theorem 2 (See a proof on pages 25 (a) and 29 (b,c)). (Used on pages [4,4,21,21,21,25,27,27,29,29,30,30,31])
Let F be a) Ψedge, b)Ψvertex, or c)Ψnode. The sequence of n-smoothings Sn(F ) of F stabilizes eventu-
ally as n→∞, i.e. there exists N > 0 such that Sn(F ) ≡ SN (F ) for all n > N . In other words, there
exists a pointwise minimum θF (we call it the canonical smoothing of F ) in

⋃
Θn(F ). verified

5.1. Waves and operators Gp.

Remark 5.12. Note that ∆θF ≥ −3 because otherwise we could decrease θF at a point violating this
condition, preserving superharmonicity of θF , and this would contradict to the minimality of θF in⋃

Θn(F ).

Consider a state φ = 〈3〉 + ∆θF . By the previous remark, φ ≥ 0. Let v ∈ Z2 be a point far from
{∆θF 6= 0}. Let F equal to ix + jy + aij near v. Then, informally, sending a wave from v increases
the coefficient aij by one.

Lemma 5.13. In the above conditions, Wvφ = 〈3〉 + θF ′ where Wv is the sending wave from v
(Definition B.20) and F ′ = Add1

ijF (Definition 4.33).

Proof. In other words we want to prove that the toppling function Hv
φ (B.21) is equal to θ′F − θF .

Clearly, θ′F − θF ≥ Hv
φ thanks to Corollary B.32 and the fact that θ′F − θF = 1 at v. On the other

hand, if θ′F − θF > Hv
φ then the function θF +Hv

φ coincides with θF ′ far from D(F ′), is superharmonic

and less than F ′, which contradicts to the definition of θF ′ . �

Therefore, if φ = 〈3〉 + ∆F where F is a tropical polynomial such that C(F ) is smooth or nodal,
then sending waves from p corresponds to the operators Add. Then, (φ + δp)◦ can be obtained by
sending waves until v has less than three grains after the wave. This corresponds to applying Add
until a point gets to the tropical curve, i.e. this corresponds to the operator Γp. Note that we can
not avoid pereströıki (Definition 4.47) because they happen during application of Gp (Lemma 4.44)
therefore we study not only F defining a smooth tropical vertex or a node, but also nearby to the node
configurations (Ψnode).

Canonical smoothings in Theorem 2 provide us with the building blocks of the set D(φ◦h). The
smoothing of Ψedge represents a sandpile soliton, becoming a tropical edge in the limit, the smoothing
of Ψvertex represents a sandpile triad, becoming a smooth tropical vertex in the limit, and the smoothing
of Ψnode represents the degeneration of two sandpile triads into the union of two sandpile solitons. See
Section 6 for details.

Definition 5.14 (Canonical smoothing of a tropical polynomial). (Used on pages [6,22]) Let f be
a nice (Definition 4.30) ∆-tropical polynomial, such that C(f) is a smooth or nodal (Definition C.6)
tropical curve. Then, for small enough h > 0, we define the canonical smoothing Smoothh(f) : Γh → Z
as follows. We consider the lattice hZ2 ⊂ R2 and define F (x, y) = [h−1f(x, y)]. This defines a piece-
wise linear function on ∆ (cf. (B.18)) and we extend it to R2, using its formula. The curve C(f) has a
finite number of edges and vertices, which are smooth or nodal. Hence the same is true for C(F ) if h

is small enough. Each local equation of vertices and edges of C(F ) belongs to the cases in Theorem 2.
We apply Theorem 2 for all these local equations. Hence there exists N > 0 such that the smoothings
of all the local equations of edges and vertices of C(F ) stabilize after N steps. Finally, we define
Smoothh(f) as SN (F ) restricted to Γh. We call this procedure the canonical smoothing of F (or the
canonical smoothing of f with respect to h). Note that Smoothh(f) may be negative.
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Remark 5.15. (Used on pages [22]) The canonical smoothing procedure changes F only inBNh(D(F ))
where N is an absolute constant, which only depends on the slopes of the edges of C(f). Therefore
if h is small enough, the smoothings of different vertices and edges never overlap. In this case we say
that Smoothh(f) is well defined.

5.2. Proof of Proposition 3.22. The main idea is to construct a state on Γh ∩ ∆ whose toppling
function is less than that of φh, and whose relaxation (via wave decomposition) is completely controlled
by operators Gpi

.
Constructing auxiliary state. Choose ε > 0. By Proposition 4.41 there exists a Q-polygone

∆′ ⊂ ∆ such that f∆′,P = GP 0∆′ is ε-close to GP 0∆ on ∆ and GP 0∆′ is nice (Definition 4.20).
Lemma 4.21 asserts that there exist a ∆′-tropical polynomial g such that g < ε, a curve C(g)

is smooth and the quasi-degree mg is equal to the quasidegree of GP 0∆′ .Note that GP g = GP 0∆′ .
Therefore while applying GP to g we have no changes near the boundary of ∆′.

Now we will make reduction to a finite composition of Gpi
and smooth intermediate curves. Let

Q = q1,q2, . . . ,qm be a sequence of points in P such that each pi appears in Q infinite number of
times. By Proposition 4.37 we can choose m such that

f = GqmGqm−1 . . . Gq1g

is ε-close to GP g = GP 0∆′ . Now we will use the notation of Proposition 4.43. We replace each

Gqk
= Addekikjk by Addek−Mh

ikjk
such that all the curves in the new process are always smooth or nodal.

We have now a sequence of tropical polynomials f0 = g, f1, . . . , fm.
The next step is to use the theory of smoothings. Using fk we define Fk = [h−1fk] : Γh → Z≥0 as

in (B.18). We can choose h > 0 small enough such that all canonical smoothings Smoothh(fk), k =
0, . . . ,m are well defined (Remark 5.15). Recall Definition 5.14, we denote by Smoothh(fk) the canon-
ical smoothing of Fk. Define the states φk = 3 + ∆Smoothh(fk).

The final step is to use the fact that waves commutes with smoothings (we proceed as in Lemma 5.13
but with the global notation). Namely, let 0 ≤ k ≤ m. Fix the notation by Fk(x, y) = min(i,j)∈A(ixh−1+

jyh−1 + [aijh
−1]) with finite A. By Proposition 4.43, the points pi do not belong to C(fk) and so do

not belong to C(Fk) as long as h is small enough. Let v = h[h−1qk]. Then φk(v) = 3. Suppose that v
belongs to the region where i0xh

−1 + j0yh
−1 + [ai0j0h

−1] is the minimal monomial. Denote

F ′(x, y) = min
(i,j)∈A

(ixh−1 + jyh−1 + [a′ijh
−1])

where a′ij = aij if (i, j) 6= (i0, j0) and a′i0j0 = ai0j0 + h. Then Wvφk = 〈3〉+ ∆Smooth(F ′). Indeed, this
follows from the fact that in territory where v belongs we will have one toppling and ∆(F ′ − F ) is the
pointwise minimal integer-valued function with the property that 〈3〉+ ∆Smooth(F ) + ∆(F ′ −F ) is a
stable state.

Recall that f1 = Add
h[e1h

−1
]−Mh

i1j1
g.

Therefore

Smoothh(F1) = W
[e1h

−1
]−M

h[h−1
pi]

Smooth(F0).

Therefore, the toppling function of φ0 +
∑
p∈P δp is at least Fm. The proposition follows, since the

toppling function of φ0 +
∑
p∈P δp is less then the toppling function of 〈3〉+∑p∈P δp. Note that thanks

to the construction of g we had no topplings near the boundary of ∆′ during this process. We finished
the proof of Proposition 3.22.

6. Origin of patterns: smoothing of integer-valued superharmonic functions

Periodic patterns in sandpiles were discovered by S. Caracciolo, G. Paoletti, and A. Sportiello in a
pioneer work [3], see also Section 4.3 of [4] and Figure 3.1 in [22]. Experimental evidence suggests that
these patterns carry a number of remarkable properties: in particular, they are self-reproducing under
the action of waves. That is why we call these patterns solitons. Solitons naturally appear during
relaxations on convex domains, see examples for different directions in Figure 1. Solitons on pictures
correspond to tropical edges of the limiting curve.
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The fact that the solitons appear as “smoothings” of piece-wise linear functions was predicted in
[26]. We provide a definition of the smoothing procedure (Definition 5.6). We will prove the existence
(and uniqueness modulo translation) of solitons for all rational slopes and provide certain estimates on
their shape.

We construct triads — three solitons meeting at a point — and triads satisfy similar properties.
In the proof of Theorem 1 we show that the deviation locus of φ◦h is essentially glued out of solitons

and triads along the graph C(fΩ,P ). In this section we study only local pictures of sand relaxations,
it happens that our main objects of study are integer-valued non-negative discrete harmonic functions
on Z2.

6.1. Descending to a cylinder. Let G be an integer valued function on Z2 satisfying

G(i, j) = G(i+ q, j − p) for all i, j ∈ Z

and fixed p, q > 0. The function G naturally descends to the quotient of Z2 with respect to the additive
action of the vector (q,−p).
Definition 6.1. (Used on pages [25]) We consider the equivalence relation (i, j) ∼ (i + q, j − p) on
Z2, it respects the graph structure on Z2, so we define a new graph

Σ = Z2/ ∼, where ∼ is generated by (i, j) ∼ (i+ q, j − p).
We identify Σ with the strip [0, q − 1] × Z where each vertex is connected with its neighbors and,
additionally, (0, i) is connected with (q − 1, i − p) for all i ∈ Z. The notion of discrete harmonic
function also easily descends to Σ.

Let G be an integer valued superharmonic function on Σ. Suppose that there exists a constant µ
such that 0 ≤ G(i, j) ≤ µj for j > 0, 0 ≤ i ≤ q − 1. Suppose also that the number of points v with
∆G(v) < 0 is finite and denote D =

∑
v∈Σ ∆G(v) < 0.

Lemma 6.2. (Used on pages [26]) Let k ∈ Z>0. There exists a constant M = M(µ, p, q, |D|, k) such
that if a function G is as above, then G is linear on Σ′ = [0, q−1]× [m−k,m] for some m ≤M .verified

Proof. Take N very big. Dissect [0, q − 1]× [0, 6N(|D|+ 1)] on |D|+ 1 parts

[0, q − 1]×[0, 6N ]

[0, q − 1]×[6N, 12N ], etc.

Then there exists l ≤ |D|+ 1 and a part A = [0, q − 1]× [6Nl, 6N(l + 1)] in this dissection where G is
discrete harmonic. We have the estimate

0 ≤ G|A ≤ 6µ(|D|+ 1)(N + 1).

Let v be the center of A. Applying Lemma A.2 for v we prove that derivatives ∂•∂•G are zeros in the
middle part of A if N is big enough. �

6.2. Properties of smoothing. Consider a connected graph Γ ⊂ Z2

Let F,G be two superharmonic integer-valued functions on Γ \ ∂Γ. Suppose that H = F − G is
non-negative and bounded. Let m be the maximal value of H. Define the functions Hk, k = 0, 1, . . . ,m
as follows:

(6.3) Hk(v) = χ(H ≥ k) =

{
1, if H(v) ≥ k,
0, otherwise.

Lemma 6.4. In the above settings, the function F −Hm is superharmonic.verified

Proof. Indeed, F −Hm is superhamonic outside of the set {x|H(x) = m}. Look at any point v such
that H(v) = m. Then we conclude by

4(F −Hm)(v) = 4G(v) + 4(m− 1) ≥
∑

w∼v
G(w) + 4(m− 1) ≥

∑

w∼v
(F −Hm)(w).

�
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We repeat the procedure in Lemma 6.4 for F −Hm; namely, consider F −Hm −Hm−1, F −Hm −
Hm−1 −Hm−2, etc. We have

H = Hm +Hm−1 +Hm−2 + · · ·+H1,

and it follows from subsequent applications of Lemma 6.4 that all the functions F −∑m−k+1
i=m Hi are

superharmonic, for k = 1, 2, . . . ,m. Also, it is clear that

0 ≤
(
F −

m−k+1∑

i=m

Hi

)
−
(
F −

m−k∑

i=m

Hi

)
= Hm−k ≤ 1

at all v ∈ Γ, k = 0, . . . ,m.

Remark 6.5. It follows from definition of Hi that supp(Hm) ⊂ supp(Hm−1) ⊂ . . . and, hence,
|Hi −Hi+1| ≤ 1 for i = 1, . . . ,m− 1.

Consider a superharmonic function F. We are going to prove that two consequitive smoothings (see
Definition 5.6) of F differ at most by one at every point of Z.

Proposition 6.6. (Used on pages [24,25]) For all n ∈ N
|Sn(F )− Sn+1(F )| ≤ 1.verified

Proof. By definition, Sn(F ) ≥ Sn+1(F ) at every point of Z2. If the inequality |Sn(F )− Sn+1(F )| ≤ 1
doesn’t hold, then the maximum M of the function H = Sn(F )− Sn+1(F ) is at least 2. We will prove
now that in this case the following inequality holds:

Sn(F )− χ(H ≥M) ≥ F − n.
Namely, by Lemma 6.4 the function Sn(F )− χ(H ≥M) is superharmonic. Suppose that

Sn(F )− χ(H ≥M) < F − n at a point v ∈ Z2.

Since the support of χ(H ≥ 1) contains the support of χ(H ≥M), we have that

Sn(F )− χ(H ≥M)− χ(H ≥ 1) < F − (n+ 1) at v.

But this contradicts to

Sn(F )− χ(H ≥ 1)− χ(H ≥M) ≥ Sn+1(F ) ≥ F − (n+ 1).

Therefore, Sn(F ) − χ(H ≥ M) ≥ F − n (for χ see (6.3)). This implies that Sn(F ) − χ(H ≥ M) ∈
Θn(F ) which contradicts the minimality of Sn(F ).

�
Corollary 6.7. (Used on pages [25,25]) Proposition 6.6 implies that the function Sn+1(F ) can be
characterized as the point-wise minimum of all superharmonic functions G such that Sn(F )− 1 ≤ G ≤
Sn(F ) and Sn(F ) − G vanishes outside some neighborhood of D(Sn(F )) (Definition 5.6). In other
words, n-smoothing Sn(F ) of F is the same as 1-smoothing of (n− 1)-smoothing Sn−1(F ) of F .

Corollary 6.8. (Used on pages [26,28]) If Sn(F ) 6= Sn+1(F ) then there exists a point v0 such that
Sn+1(F )(v0) = F (v0)− (n+ 1).

Indeed, if there is no such a point, then Sn+1(F ) ≥ F − n and therefore Sn+1(F ) = Sn(F ).

Remark 6.9. (Used on pages [25,30]) Let F (x, y) = min(x, y, 0) or F (x, y) = min(x, y, x + y, c) for
c ∈ Z≥0. Then it is easy to check that S1(F )(x, y) = F (x, y) and therefore ΘF = {F} (see Definition 5.6
for the notation).

Definition 6.10. (Used on pages [25,25,25,30,31]) Let e ∈ Z2 \ {(0, 0)}. We say that a function
G : Z2 → Z is e-increasing if

a) G is a smoothing of a solid function F ,
b) for each v ∈ Z2 we have G(v) ≤ G(v + e),
c) there exists a constant C > 0 such that for each v for each k ≥ C · (dist(v,D(G)) + 1) we have

G(v − k · e) < G(v).
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Recall that D(G) = {w ∈ Z2|∆G(w) 6= 0}.
Example 6.11. (Used on pages [26]) Let G(x, y) = min(px + qy, 0) where p < 0, q > 0, p, q ∈ Z.
Note that G is Z-increasing in the direction (0, 1). Furthermore, if e = (e1, e2) ∈ Z2 is such that
0 ≤ e1 ≤ q − 1 and e2 ≥ |p|, then G is e-increasing.

Lemma 6.12. (Used on pages [31]) If G is e-increasing, then S1(G), the 1-smoothing of G, is also
e-increasing.verified

Proof. Corollary 6.7 gives the property a) of Definition 6.10 for free, and, therefore by Proposition 5.7
the function G − S1(G) is supported on a finite neighborhood of D(G), where, thus, and D(S1(G))
dwells. Proposition 6.6 implies that |S1(G) − G| ≤ 1. This gives c), probably, with another constant.
Therefore, we only need to prove that S1(G) satisfies b) in Definition 6.10.

We argue a contrario. Let H = F − S1(G). Suppose that the set

A = {v ∈ Z2|G(v − e) = G(v), H(v − e) = 0, H(v) = 1}
is not empty. Since H(v) = 1 for v ∈ A, A belongs to some finite neighborhood of D(G). Consider the
set

B = {v|H(v) = 0,∃n ∈ Z>0, v + n · e ∈ A,G(v) = G(v + n · e)}.
Take v ∈ B. Since G(v) = G(v + n · e) and v + n · e belongs to a fixed finite neighborhood of

D(G), then c) in Definition 6.10 implies that B belongs to a finite neighborhood of D(G). Consider
the following function

G̃ = S1(G)−
∑

v∈B
δv.

Note that for all v ∈ Z2 \B we have ∆G̃(v) ≤ ∆S1(G)(v) ≤ 0. Take v ∈ B. We have v + n · e ∈ A for
some n ∈ Z>0, therefore

4G̃(v) = 4S1(G)(v + n · e) ≥
∑

w∼v+n·e
S1(G)(w) ≥

∑

w∼v
G̃(w).

Therefore G̃ is superharmonic, and satisfies G ≥ G̃ ≥ G− 1 by construction, which contradicts to the
minimality of S1(G) in Θ1(G). �

Corollary 6.13. (Used on pages [26,29,30]) Let F be one of Ψedge,Ψvertex,Ψnode (Eqs. (5.9),(5.10),
(5.11)). Let e ∈ Z2 \ {(0, 0)}. If F is e-increasing, then Sn(F ) is also e-increasing.verified

Lemma 6.14. (Used on pages [25]) Let F = Ψedge (see (5.9)). Then for all n ∈ Z>0 smoothings
Sn(F ) are periodic in the direction e = (q1,−p1), i.e. Sn(F )(v) = Sn(F )(v+ e) for all v ∈ Z2.verified

Proof. Suppose, to the contrary, that Sn(F )(v) > Sn(F )(v + e) for some v ∈ Z2. It follows from

Lemma 5.5 that S̃n(F )(w) = min(Sn(F )(w), Sn(F )(w + e)), w ∈ Γ belongs to Θn(F ), but S̃n(F )(v) <
Sn(F )(v) which contradicts to the minimality of Sn(F ) in Θn(F ). �

Lemma 6.15 (The proof is on page 25). (Used on pages [25,26,27]) Let F be one of Ψedge,Ψvertex,Ψnode

(see (5.9),(5.10),(5.11)). Then for each n we have

dist
(
D(F ),

{
F 6= Sn(F )

})
≤ n.

verified

Proof of Lemma 6.15. It follows from Lemma 5.4 and Example 5.3. �

6.3. Proof of Theorem 2 for Ψedge.

Proof. For the sake of notation denote F = Ψedge (see (5.9)), p = p1, q = q1. We will prove that the
sequence {Sn(F )}∞n=1 of n-smoothings (Definition 5.6) of F eventually stabilizes. It is easy to check
that we cannot perform even a non-trivial 1-smoothings for F in the cases when (p, q) = (±1, 0) or
(0,±1) (cf. Remark 6.9). Therefore, we conclude the proof of the theorem in this case by Corollary 6.7.
From now on we suppose that pq 6= 0 and that the sequence {Sn(F )}∞n=1 does not stabilize.
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By Lemma 6.14, all Sn(F ) are periodic in the direction (q,−p). Consider the quotient Σ of Z2 by
translations by (q,−p) (see Definition 6.1). Abusing notations, we think of F, S1(F ), S2(F ), . . . as
functions on Σ. Note that D =

∑
v∈Σ ∆F (v) is finite. Indeed, min(0, px+ qy) has only finite number

of points in Σ where the laplacian is not zero.
Next we observe that

∑
v∈Σ ∆S1(F )(v) = D. Indeed, ∆S1(F ) is zero far from D(F ), additionally

F is equal to S1(F ) far from D(F ), therefore we can sum up the laplacian on a finite neighborhood
of D(F ), and by Lemma A.3, this sum can be found using only those values of F which lie near the
boundary of such neighborhood. Similarly, we obtain

∑
v∈Σ ∆Sn(F )(v) = D for all n ∈ Z>0 and

because of superharmonicity of Sn(F ) we see that

(6.16) |D(Sn(F ))| = |{v ∈ Σ|∆Sn(F )(v) 6= 0}| ≤ D.
We supposed that the sequence {Sn(F )}∞n=1 does not stabilize. Therefore, by Corollary 6.8 for each

n ∈ Z>0 the set An = {v ∈ Z2|Sn(F )(v) = F (v)− n} is not empty. Hence A1 ⊃ A2 ⊃ A3 . . . , and A1

is finite because A1 ⊂ D(F ) by Lemma 6.15. Thus we can take v ∈ ⋂
n≥1

An.

Without loss of generality we may suppose that q > 0, p < 0. Thanks to Example 6.11, F is (0, 1)-
increasing and by Corollary 6.13 so do all Sn(F ). By the same reason all Sn(F ) are (m, k)-increasing
if 0 ≤ m ≤ q − 1 and k > |p|. The property of (e1, e2)-increasing gives that

F (v)− n = Sn(F )(v) ≥ Sn(v + (e1, e2))

which is less than F (v + (e1, e2)) for fixed (e1, e2) and n big enough. So we see that there exists a
constant C3 such that supp(F − Sn(F )) contains [0, q − 1]× [−C3n, 0] for all n big enough.

For such n let j0 = min{j|∃i, (i, j) ∈ supp(F − Sn(F ))}. Applying Lemma 6.2 to the function
Sn(F ) − mini F (i, j0) on the set {(i, j) ∈ Σ|j ≥ j0} we conclude by saying that Sn(F ) is linear on a
big subset A of Σ, and A ⊂ supp(F − Sn(F )). So we reduced the proof to the following lemma. �

Lemma 6.17. Let F = min(pi+ qj, 0) and Σ as above. Suppose that

A ⊂ {F 6= Sn(F )}, A = [0, q − 1]× [x, x+ p].

Suppose that Sn(F ) restricted to A is linear. Then gcd(p, q) > 1.verified

Proof. Since Sn(F ) is periodic in the direction (q,−p), we conclude that Sn(F )(i, j)|A = k(pi+qj)+k′

for some k, k′ ∈ Z. The property of Z-increasing in the direction (0, 1) implies that k ≥ 0.
Suppose that k = 0, Sn(F ) = k′ on A. Then k′ < 0 because Sn(F ) ≤ F . However, we arrive

to the contradiction with superharmonicity by looking at the top part of A. Indeed, let (i0, j0) be
the point with the maximal second coordinate in the region {(i, j)|Sn(F )(i, j) = k′}. Then we have
Sn(F )(i, j) ≥ Sn(F )(i0, j0) for all neighbors (i, j) of (i0, j0) and Sn(F )(i0, j0 + 1) > Sn(F )(i0, j0) by
the construction, this contradicts to the superharmonicity of Sn(F ) at (i0, j0). Therefore k > 0.

Consider the function F ′(i, j) = F (i, j)− pi− qj. Then Sn(F ′)(i, j) = Sn(F )(i, j)− pi− qj and we
can repeat verbatim all the above consideration, which gives k < 1.

Since k(pi+ qj) must have integer coefficients and 0 < k < 1 we conclude that gcd(p, q) > 1. �

Remark 6.18. The following equality holds: |D| = p2 + q2. verified

Proof. Consider a function G : Z2 → Z given by G(x, y) = min(0, px − qy) and the lattice rectangle
R = [0, q]× [0, p] ∩ Z2. Then

D =
∑

R\(q,p)
∆G.

On the other hand, the sum of Laplacians over the rectangle R is reduced to the sum along its boundary,
i.e.

∑

R

∆G =

p∑

t=0

(G(0, t)−G(−1, t))+

p∑

t=0

(G(q, t)−G(q+1, t))+

q∑

t=0

(G(t, 0)−G(t,−1))+

q∑

t=0

(G(t, p)−G(t, p+1)).
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Since ∆G(q, p) = −p− q we have

−D = −p− q −
∑

R

∆G = −p− q + (p+ 1)p+ (q + 1)q.

�

This equality was observed earlier in [3]. Note also that p2 + q2 is the weight of an edge parallel to
(p, q) in the definition of the symplectic area (see [9] for details).

Corollary 6.19. (Used on pages ) Let p, p′, q, q′, a, a′ ∈ Z. Suppose that gcd(p−p′, q− q′) = 1. Then
there exists the canonical smoothing Fp,q,a,p′,q′,a′(x, y) of F (x, y) = min(px + qy + a, p′x + q′y + a′).
Furthermore,

Fp,q,a,p′,q′,a′(x, y) = Fp−p′,q−q′,a−a′,0,0,0(x, y) = Fp−p′,q−q′,0,0,0,0(x+ (a− a′)p′′, y + (a− a′)q′′)
where (p′′, q′′) ∈ Z2 satisfies (p− p′)q′′ + (q − q′)p′′ = 1. verified

Proof. The operation f(x, y) → f(x, y) + p′x + q′y + a′ of adding a linear function commutes with
n-smoothings and

min
(
(p− p′)x+ (q − q′)y + (a− a′), 0

)
= min

(
(p− p′)(x+ (a− a′)p′′) + (q − q′)(y + (a− a′)q′′), 0

)
.

�

6.4. Triads and their perestroiki. 1.
We use the notation of Theorem 2. Consider Ψvertex (see (5.10)). We denote by Ψ′vertex the function

(6.20)
Ψ′vertex(x, y) = min

(
θmin(0,p1x+q1y)(x, y), θmin(0,p2x+q2y+c1)(x, y), θmin(p1x+q1y,p2x+q2y+c1)(x, y)

)
.

Consider Ψnode (see 5.11). We denote by Ψ′node the function

Ψ′node(x, y) = min
(
θmin(0,p1x+q1y)(x, y), θmin(0,p2x+q2y+c1)(x, y),

(6.21)

θmin(p1x+q1y,(p1+p2)x+(q1+q2)y+c2)(x, y), θmin(p2x+q2y+c1,(p1+p2)x+(q1+q2)y+c2)(x, y)
)
.(6.22)

Note that each of the functions F = Ψ′vertex,Ψ
′
node is C-solid for some C, because they are made of

periodic patches. Therefore by applying Lemma 5.7 we obtain the following remark.

Remark 6.23. (Used on pages [28]) Lemma 6.15 holds for F = Ψ′vertex,Ψ
′
node, if n is bigger than C.

Lemma 6.24. Let F be Ψvertex (resp. Ψnode) and F ′ be Ψ′vertex (resp. Ψ′node). The following conditions
are equivalent:

• The sequence of n-smoothings Sn(F ) of F stabilizes.
• The sequence of n-smoothings Sn(F ′) of F ′ stabilizes.verified

Proof. It is enough to note that F ′ coincides with F outside of a finite neighborhood of D(F ) because
we have already proven Theorem 2 for the case of Ψedge. Hence there exists n such that |F − F ′| < n.
Therefore Sn(F ) ≤ F ′ ≤ F and smoothings of F ′ can be estimated by smoothings of F and vice
versa. �

We want to consider F ′ instead of F because of the following lemma.

Lemma 6.25. (Used on pages [28,29]) For all k ∈ Z≥0 the cardinality of the set {F ′ 6= Sk(F ′)} is
finite.verified

Proof. Each time we apply 1-smoothing, the set {Hk 6= 0} (see Section 6.2, (6.3) for the definition of
Hk) belongs to the finite neighborhood of C(F ). Therefore we only need to prove that {Hk 6= 0} can
not propagate far along a ray of C(F ), which is exactly the assertion in Lemma 6.26. �

1Plural of perestroika (rus.), literally “rebuilding, restructuring”. The word is coined by V. Arnold as a synonym to
bifurcation.
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p′x+ q′y < 0

Q1Q2Q3Q4

Picture for Lemma 6.26. Horizontal
line represents {∆φ 6= 0}, broken
lines along it represent the boundary
of {G 6= S1(G)}. Slices Q2, Q4 are
identical.

Figure 8

Q2Q3 Q2Q3 Q2Q3 Q3

Taking the region in between of Q2, Q4

we repeat it, thus obtaining a smoothing
of θpx+qy,0 which is a contradiction.

Figure 9

Lemma 6.26. (Used on pages [27,27,28]) Let (p, q), (p′, q′) be primitive vectors such that pq′−p′q = 1.
Denote A = {(x, y)|p′x+q′y ≤ 0}. Let G : Z2 → Z be equal to θmin(0,px+qy) in the region p′x+q′y ≥ 0.
Then there exists a constant C such that

{G 6= S1(φ)} \B1(A) is contained in BC(A).

Proof. We know that {φ 6= S1(φ)} is contained in the union of B1(A) and B1(∆φ 6= 3). Therefore we
need to prove that {φ 6= S1(φ)} \B1(A) (which is in 1-neighborhood of {∆φ 6= 3}) can not be far from
A. Suppose the contrary.

The pattern in supp(∆φ) is periodic, so we can cut this pattern into periodic pieces, Figure 8. We
look at φ− S1(φ) on the periodic pieces of the pattern and find two patterns such that the restriction
of φ − S1(φ) on them is the same. Then it means that we could smooth more the initial function
θmin(0,px+qy): indeed, take all the pieces in between of these two, repeat that all along as in Figure 9,
and decrease θmin(0,px+qy) according to φ− S1(φ) periodically. �

Lemma 6.27. (Used on pages [29]) Let G : Z2 → Z, p, q, r ∈ Z. Let G′(i, j) = G(i, j) − pi − qj − r.
Then Sn(F )(i, j)− (pi+ qj + r) = Sn(G)(i, j).

Definition 6.28. For a subset A ⊂ Z2 we define r(A) as max(i,j)∈A(
√
i2 + j2), i.e. the maximal

distance between A and (0, 0).

Lemma 6.29. (Used on pages [29]) The sequence Rn = r
(
{F ′ 6= Sn(F ′)}

)
grows at most linearly in

n, i.e. there exists a constant C4 such that Rn ≤ C4n for all n ∈ Z>0. verified

Proof. Let cn be the minimal number such that the support of F ′ − Sn(F ′) is contained in Bcn(O). It
is enough to prove that there exists a constant C4 such that cn+1 ≤ cn + C4 for all n. Now, look at
how the support of F ′−Sn+1(F ′) differs from the support of F ′−Sn(F ′) outside of Bcn(O). It follows
from Remark 6.23 that supp(F ′ − Sn(F ′)) belongs to the n+ 1-neighborhood of supp(∆F ′) for n big
enough. Then we use Lemma 6.26. �

Lemma 6.30. (Used on pages [29]) There exist C5 > 0 such that for any point v ∈ Z2 the set
{k|Hk(v) = 0} (see Section 6.2 for the definition of Hi) contains less than C5|v| elements. In particular,
for any v there exist m such that Hk(v) = 1 for all k > m.verified

Proof. Let v ∈ Z2. We argue as in Section 6.3. We supposed that the sequence {Sn(F )}∞n=1 does not
stabilize. Therefore, by Corollary 6.8 for each n ∈ Z>0 the set An = {v ∈ Z2|Sn(F )(v) = F (v) − n}
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is not empty. Hence A1 ⊃ A2 ⊃ A3 . . . , and Lemma 6.25 tells that A1 is finite. Thus we can take
v0 ∈

⋂
n≥1

An. Consider the vector ṽ = v − v0.

Let C be the tropical curve defined by F . Draw ṽ from the vertex of C. There exist a choice of
two primitive vectors e1 and e2 spanning two edges of C such that ṽ = k1e1 + k2e2 for some non-
negative integers k1 and k2. By an integer change of coordinates we can send e1 to (−1, 0), e2 to
(0,−1) and F ′(x, y) to min(0,−x,−y). In this coordinates F ′ is (0, 1)-increasing and (1, 0)-increasing.
By Corollary 6.13 F ′n is also (0, 1), (1, 0)-increasing. This implies

F ′(v0)− n = Sn(F ′)(v0) ≥ Sn(F ′)(k1e1 + k2e2 + v0) ≥ Sn(F ′)(v0 + ṽ) = Sn(F ′)(v) = F ′(v)− H̃n(v),

where H̃n =
∑n−1
k=0 Hk. And therefore, H̃n(v) ≥ n + F ′(v0) − F ′(v). To conclude, we note that there

exists a constant C5 such that |F ′(v0)− F ′(v)| ≤ C5|v|. �

Lemma 6.31. (Used on pages [29]) The sequence rn = max
{
r|Br(O) ⊂ {Sn(F ′) 6= Sn+1(F ′)}

}

grows at least linearly in n, i.e. there exists a constant C6 such that rn ≥ C6n as long as n ≥ N .verified

Proof. In the notation of Lemma 6.30 we take v0 which enjoys the property Sn(F ′)(v0) = F ′(v0)− n.
Take any point v ∈ Z2. Note that we may always suppose that F is (v0−v)-increasing in the direction
by adding to F a suitable linear function, this affects F ′ by adding the same linear function. Hence
we may suppose that F ′ is (v0 − v)-increasing. Then Sn(F ′)(v) ≤ Sn(F ′)(v0) ≤ F ′(v0)− n. Therefore
there exists a constant C6 (depending on the slopes of the linear parts of F ) such that if |v−v0| < C6n
then F ′(v) ≥ F ′(v0)−n. For such v, clearly, Sn(F ′)(v) < F ′(v) which, with the fact that |v0| is a fixed
finite number, concludes the lemma. �

Lemma 6.32. (Used on pages [30]) There exists a constant ρ such that the number of points v in
BnC4

(0, 0) with ∆Sn(F ′)(v) < 0 is at most ρn for n big enough.verified

Proof. The functions F ′, Sn(F ′) coincide outside BnC4
(O) and superharmonic, therefore it follows from

Lemma A.3 that ∑

v∈BnC4
(0,0)

|∆Sn(F ′)(v)| =
∑

v∈BnC4
(0,0)

∆Sn(F ′)(v) =
∑

v∈BnC4
(0,0)

∆F ′(v).

Then, outside of a finite neighborhood of (0, 0) the function ∆F ′(v) coincide locally with ∆θmin(p′x+q′y,c)

in each direction, and
∑
v∈BnC4

(0,0) ∆θmin(p′x+q′y,c) is linear in n for any coprime p′, q′ ∈ Z2. This works

both for Ψvertex and Ψnode. �

Lemma 6.33. (Used on pages [30]) Let F be Ψvertex or Ψnode. Then there exists k > 0 that for each
n > 0 for each square S of size k× k inside the set {F 6= Sn(F )} the function Sn(F ) is not linear on S.

Proof. Suppose that Sn(F ) is linear on such a square S. Denote by V the set of primitive integer
vectors v going in the directions of the edges of the tropical curve corresponding to F , in the direction
“from the vertex” of this tropical curve. Take k bigger than twice the maximal length of the vectors
in V . Using Lemma 6.27, for each directions v ∈ V we can add a linear function to F , and so we
can suppose that F is v-increasing. It follows from the proof of Lemma A.8 that if (after adding a
linear function) Sn(F ) is v-increasing for each v ∈ V , then Sn(F ) is a linear function on some part of
{F 6= Sn(F )}, and this linear function can not have integer coefficients which is contradiction. �

The main idea of the proof of the Theorem 2 is as follows. Using the fact that rn grows linearly,
we see that the set where Sn(F ′) 6= F ′ encircles a figure with the area of order n2. In this figure, the
number of points where ∆Sn(F ′) 6= 0 is linear, and we can find a part where Sn(F ′) is harmonic. A
positive harmonic function of at most linear grows is linear. This will contradict to the Lemma A.8.

Proof of Theorem 2. (For F = Ψvertex, and for F = Ψnode.)
We suppose that the sequence {Fn} of n-smoothings of F does not stabilize as n→∞. Therefore,

by Lemma 6.24 the sequence of {Sn(F ′)} of n-smoothings of F ′ does not stabilize. Lemma 6.25 asserts
that the support of F ′ − Sn(F ′) is finite, and Lemmata 6.29,6.31 tell us that the set {F ′ 6= Sn(F ′)}
grows at most and at least linearly in n. Refer to Figure 10: the grey region is {F ′ 6= Sn(F ′)}, internal
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(resp. external) circle has radius rn = C6n, (resp. Rn = C4n) and represents a subset (resp. superset)
of {F ′ 6= Sn(F ′)}.

Remark 6.9 eliminated several simple cases. So, after change of coordinates x → y, y → x, if
necessary, we may assume that the tropical curve defined by F does not contain the vertical ray (the
dashed line on Figure 10) and the top part of the dashed line belongs to the region where F ≡ 0.
Note that F is (0, 1)-increasing (Definition 6.10), and, thus, F ′ and all Sn(F ′) are (0, 1)-increasing by
Corollary 6.13.

By Lemma 6.32 the number of points v in BnC6
(O) with ∆Sn(F ′)(v) < 0 is bounded from above by

ρn for some fixed ρ. We draw a rectangular R like in Figure 10. Namely, the vertical sides of R lie on
different sides of the dashed line x = 0, the horizontal sides has length cN with some fixed c, R does
not intersect the set ∆F ′ < 0 outside of BC6n(O).

Take N big enough and consider SN (F ′). Then we choose l big enough and cut R into squares of
size cN

l (later we refer to them as small squares). We consider the intersection R′ = R∩{F ′ 6= SN (F ′)}
and pick all the small square which belongs to this intersection.

Comparing the area of R′ ∼ N2 with ρN we see that there exists a small square S which contains
at most cN

k points v with ∆SN (F ′)(v) < 0. Let M be the minimum of SN (F ′) on R′. Then Lemma
A.7 implies that Sn(F ′) −M should be linear on this small square k × k which is a subset of S. To
conclude we use Lemma 6.33. �

∼ N

Figure 10. An illustration for the proof of Theorem 2.

7. The weights of the edges via a weak convergence.

In the notation of Theorem 1, define ψh(x, y) = h−1
(

3− φ◦h(h[h−1x], h[h−1y])
)

. Note that φh is

not zero only near D(φ◦h).

Theorem 3 (Theorem 2 announced in [10]). There exists a ∗-weak limit ψ of the sequence ψh as
h→ 0. Moreover, there exists a unique assignment of weights me for the edges e of C(fΩ,P ) such that



TROPICAL CURVES IN SANDPILE MODELS 31

for all smooth functions Φ supported on Ω we have

ψ(Φ) = lim
h→0

∫

R2

ψhΦ =
∑

e∈E

(
||le|| ·me ·

∫

e

Φ

)
,

where E is the set of all edges of C(Ω, P ) and le is a primitive vector of e ∈ E, i.e. the coordinates of
le are coprime integers and le is parallel to e.

Proof. We know that outside of C(fΩ,P ) the ∗-weak limit of ψh is zero, because for any ε > 0 for h small
enough ψh ≡ 3 outside of ε-neighborhood of C(fΩ,P ) by Theorem 1. Consider an edge e of C(fΩ,P )
and a strict subinterval e′ of it, e′ ⊂ e. Consider a small parallelogram Q containing e′ whose one side
is parallel to e and another one is infinitesimally small, Q ∩ C(fΩ,P ) = e′. Choosing h small enough
and using Lemma A.3 (letting Γ = Q and ∂Γ = Z2

h \ Q) we see that
∫
Q
ψh ∼ h−1|le| · |e′|, because

only the contribution over the long sides of Q matters. We just need to show that the contribution of
infinitesimally small sides of Q is small. Here we use Lemma 3.18: the total amount of topplings is
bounded by a constant C, therefore the sum of defects along these sides is bounded by Ch−1 times the
sum of their length. Therefore, choosing the lengths of these sides significantly smaller than the length
of e′ we conclude the proof.

�

8. Discussion

8.1. About generalizations for higher dimensions. It seems that all the results can be extended
to higher dimensions: instead of a plane Ω ⊂ R2 we consider a convex set in Rn. Let us mention how one
should change the cornerstones of our proofs. Modified Lemma A.8 will take as its main object a lattice
polyhedron without lattice points except vertices. It seems that Theorem 2 can be extended to higher
dimensions more or less by induction. There seem to be some problems in generalizing Section 4.4 to
the higher dimension case — the pictures appear to be as in the resolution of singularities for toric
varieties, but we actually need less then smoothness, so at the current state we see no conceptual
problems.

8.2. Relation to the other convergences in sandpiles. We defined the procedure of smoothing
(Definition 5.6), and found several properties of smoothing of piece-wise linear functions. It seems that
the pictures in [14] are the smoothings of piece-wise quadratic functions, mixed with linear functions.
In order to prove that one should generalize the definition and properties of Z-increasing (which means
more or less monotonicity) (Definition 6.10, Lemma 6.12) for higher discrete derivatives.

8.3. Sand dynamic on tropical varieties, divisors. Let G be a graph and V = {v1, v2, . . . , vk} be
a collection of some of its vertices. Consider the following state φV =

∑
v∈G v · (deg(v)−1)−∑v∈V δv.

It corresponds to the divisor V =
∑
v∈V δv. Let P = {p1, p2, . . . , pn} be another collection of vertices

of G. There there exists a divisor linearly equivalent to V and containing P if and only if the relaxation
of φV +

∑
p∈P δp terminates.

In this article we studied sandpile on hZ2 ∩ Ω. We can produce the same type of problems for a
tropical variety, if we have a sort of grid on it. The convergence results are expected to be formulated
and proven in the same way.

What is an interesting aspect of the possible applications is the tropical divisors. Indeed, using
relaxation in sand dynamic we can understand if there exist a divisor linearly equivalent to a given
tropical divisor L, passing through prescribed set of points. For that we represent L as a collection of
sand-solitons glued with help of sand triads (because locally L looks like a tropical plane curve and we
know which sand-solitons should we take), then we add sand to the points p1, p2, . . . , pn and relax the
obtained state. If the relaxation terminates, it produces the divisor which is linearly equivalent to L.
If not, that means that such a divisor does not exist.
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8.4. Continuous limit. Tropical curves appear as limits of algebraic curves under the map logt | · |
when t → ∞. It is natural to ask how we can obtain a continuous family of “sandpile” models which
converges to the pictures we studied in this paper. An attempt to present such model was made in
[27] and it is yet to be understood how translate the results and methods of this paper in this new
framework.

Appendix A. Discrete harmonic functions.

A.1. Discrete superharmonic integer-valued functions and auxiliary statements.

Lemma A.1. ([5], Theorem 5) (Used on pages [32,32,33]) Let R > 1, v ∈ Z2, and F : BR(v)∩Z2 → R
be a discrete non-negative harmonic function. Let v′ ∼ v, then

|F (v′)− F (v)| ≤ C0 · F (v)

R
,

where C0 is an absolute constant.

Note that in [5] this result is formulated for a discrete harmonic function F on Z3 lattice, but the two-
dimensional case follows if we substitute F (x, y, z) = F (x, y) for all z ∈ Z. Morally, this lemma provides
an estimate on a derivative of a discrete harmonic function. We call ∂xF (x, y) = F (x+ 1, y)− F (x, y)
the discrete derivative of F in the x-direction. The derivative ∂y in the y-direction is defined in a
similar way. We denote by ∂•F the discrete derivative of a function F in any of directions x or y.

Lemma A.2 (Integer-valued discrete harmonic functions of sublinear growth). (Used on pages [23,33])
Let v ∈ Z2 and µ > 0 be a constant. Let R > 4µC2

0 (C0 is from Lemma A.1). For a discrete integer-
valued harmonic function F : B3R(v)∩Z2 → Z, the condition |F (v′)| ≤ µR for all v′ ∈ B3R(v) implies
that F is linear in BR(v) ∩ Z2. verified

Proof. Consider F which satisfies the hypothesis of the lemma. Note that 0 ≤ F (v′) + µR ≤ 2µR in
B3R(v) and applying Lemma A.1 for each v′ ∈ B2R(v) yields

|∂•F (v′)| ≤ C0 · 2µR
R

= 2µC0, for all v′ ∈ B2R(v).

The functions ∂•F (v′) + 2µC0 are discrete harmonic too, and are bounded from both sides by 0 and
4µC0 respectively, hence

|∂•∂•F (v′)| ≤ 4µC2
0

R
< 1, for v′ ∈ BR(v) if R > 4µC2

0.

Since F is integer-valued, all the derivatives ∂•∂•F are also integer-valued. Therefore all the second
derivatives of u are identically zero in BR(v), which implies that F is linear in BR(v). �

Let Γ be a finite subset of Z2, ∂Γ be the set of points in Γ which have neighbors outside Γ. Let F
be any function Γ→ Z.

Lemma A.3. (Used on pages [26,29,31]) In the above hypothesis the following equality holds:
∑

v∈Γ\∂Γ

∆F (v) =
∑

v∈∂Γ,
v′∈Γ\∂Γ,v∼v′

(
F (v)− F (v′)

)
.verified

Proof. We develop left side by definition of ∆F . All the terms F (v), except for the vertices v near ∂Γ,
cancel each other. So we conclude by a direct computation. �

Definition A.4. (Used on pages [33]) For v ∈ Z2 we denote by Gv : Z2 → R the function with the
following properties:

• ∆Gv(v) = 1,
• ∆Gv(w) = 0 if w 6= v,
• Gv(v) = 0,

• Gv(w) = 1
2π log |w − v|+ c+O

(
1

|w−v|2
)

when |w − v| → ∞, where c is some constant.
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It is a classical fact that Gv does exist and is unique ([28], (15.12), or [13], p.104, see [6], Remark 2,
for more terms in the Taylor expansion).

Corollary A.5. Let v = (0, 0). By direct calculation we conclude that there exists a constant C1 such
that

|∂•∂•Gv(i, j)| ≤
C1

(i2 + j2 + 1)
.

Lemma A.6. There exists a constant C2 such that the following inequality holds for all N ∈ Z>0, v ∈
Z2: ∑

−N≤i,j≤N
|∂•∂•Gv(i, j)| ≤ C2 lnN.verified

Proof. The maximum of this sum is attained when v = (0, 0). Then the sum is estimated from above
by ∫

1≤x2+y2≤2N2

2C1 dxdy

x2 + y2
+ C1 < C1

∫ 2N

r=1

rdr

r2
+ C1 ≤ C2 lnN.

�
Lemma A.7. (Used on pages [30]) Let k, µ ∈ N. Then there exists N > 0 with the following
property. Let F be any non-negative integer-valued function on the square Γ =

(
[0, N ] × [0, N ]

)
∩ Z2

such that for all z ∈ Γ
|F (z)| ≤ µ(|z|+ 1).

Let v1, v2, . . . vN be points in Z2 (not necessary distinct) and suppose that G = F +
∑N
i=1Gvi (see

Definition A.4) is a discrete harmonic function on Γ. Then there exists a square of size k× k in Γ such
that F is linear on this square. verified

Proof.

Applying Lemma A.1 for v ∈ Γ′ =

[
N

5
,

4N

5

]
×
[
N

5
,

4N

5

]
we obtain |∂•G| ≤

µC0(N + 1)

N/5
.

Proceeding as in Lemma A.2, we see that in the square

Γ′′ =

[
2N

5
,

3N

5

]
×
[

2N

5
,

3N

5

]

the second discrete derivatives ∂•∂•G are at most

2µC2
0(N + 1)

(N/5)2

by the absolute value, which is less than 1
2 if N is big enough.

Since
∑
v∈Γ ∂•∂•Gvi(v) is at most C2 lnN (Lemma A.6), we obtain by the direct calculation that

N∑

i=1

∑

w∈Γ

∂•∂•Gvi(w) ≤ C2N lnN.

We cut Γ′′ on (N5k )2 squares of size k×k. Therefore for N big enough we can find a square Γ′′′ ⊂ Γ′′

of size k × k such that
N∑

i=1

|∂•∂•Gvi(v)| ≤ 1/3 at every point v ∈ Γ′′′.

The estimates for |∂•∂•G| and
∑N
i=1 |∂•∂•Gvi | imply that for all second derivatives of F we have

∂•∂•F (v) = 0 for v ∈ Γ′′′. Thus F is linear on Γ′′′. �
Suppose that the area of a lattice triangle with vertices (0, 0), (p, q), (p′q′) ∈ Z2 is 1/2. Let c, c′, d, d′ ∈

Z be constants. Consider the functions

H1(i, j) = min(pi+ qj + c, p′i+ q′j + c′, d),

H2(i, j) = min(pi+ qj + c, p′i+ q′j + c′, d, (p+ p′)i+ (q + q′)j + d′).
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Lemma A.8. (Used on pages [29,29,31]) There exists no linear function H ′(i, j) = p′′i + q′′j + a′′

with

(p′′, q′′) ∈ Z2 \ {(0, 0), (p, q), (p′, q′)}
such that the set {(i, j)|H ′(i, j) < H1(i, j)} is bounded. There exists no linear function H ′(i, j) =
p′′i+ q′′j + a′′ with

(p′′, q′′) ∈ Z2 \ {(0, 0), (p, q), (p′, q′), (p+ p′, q + q′)}
such that the set {(i, j)|H ′(i, j) < H2(i, j)} is bounded.verified

Proof. Applying SL(2,Z)-change of the coordinates and a parallel translation, we may restrict ourselves
to the model case

H1(i, j) = min(i, j, 0) and H ′(i, j) = Pi+Qj +R

for some P,Q ∈ Z, R ∈ R. Consider the restriction of H ′ to the ray (t, 0)t∈R≥0
. Since H ′ must be

bigger than H far from zero, we see that P ≥ 0. By considering rays {(0, t)}t∈R≥0
and {(−t,−t)}t∈R≥0

,

we conclude that Q ≥ 0 and P +Q ≤ 1. Using the fact that (p′′, q′′) ∈ Z2 we arrive to a contradiction.
The second part of the statement can be proven similarly by reduction to the model case H2 =
min(i, j, i+ j, 0). �

Appendix B. Locally finite relaxations and waves

In this section we study the relaxations and stabilizability issues. The main goal here is to establish
The Least Action Principle (Proposition B.16) and wave decomposition (Proposition B.28 and Corol-
lary B.32) for locally-finite relaxations (Definition B.6) on infinite graphs. We also have to prove that
given a finite upper bound on a toppling function of a state, there exists a relaxation sequence of this
state which converges pointwise to a stable state (Lemma B.13).

The proofs are the same as in the finite case, but in the absence of references we give all the details
here. Sandpiles on infinite graphs were previously considered, for example, in [?, ?, ?], but only from
the distribution point of view: in their approach the relaxation (after adding a grain to a random
configuration in a certain class) is locally finite almost sure with respect to a certain distribution.
However, there are a lot of similarities between this section and [8].

B.1. The Least Action Principle for locally finite relaxations, relaxability. Let Γ be at most
countable set, τ : Γ→ Z>0 be a function and γ : Γ→ 2Γ be a set-valued function such that

• v 6∈ γ(v),
• if v ∈ γ(w), then w ∈ γ(v),
• |γ(v)| ≤ τ(v) for all v ∈ Γ, where |γ(v)| denotes the number of elements in the set γ(v).

We call τ the threshold function and interpret γ(v) as the set of neighbors of a point v ∈ Γ. We write
u ∼ v instead of u ∈ γ(v), because it is a symmetric relation. The laplacian ∆ is the operator on the
space ZΓ = {φ : Γ→ Z} of states on Γ given by

∆φ(v) = −τ(v)φ(v) +
∑

u∼v
φ(u).

A function φ is called superharmonic if ∆φ ≤ 0 everywhere.

Remark B.1. (Used on pages [36]) Note that condition |γ(v)| ≤ τ(v) for all v ∈ Γ is equivalent to
the superharmonicity of the function φ ≡ 1.

Example B.2. In our main situation, Γ is a subset of hZ2 and |γ(v)| = τ(v) = 4 for all v ∈ Γ \ ∂Γ. In
this case we obtain the standard definition of a laplacian on Γ◦:

(B.3) ∆φ(v) = −4φ(v) +
∑

u∼v
φ(u).

Definition B.4. For a point v ∈ Γ, we denote by Tv the toppling operator acting on the space of states
ZΓ. It is given by

Tvφ = φ+ ∆δ(v),

where δ(v) is the function on Γ taking 1 at v and vanishing elsewhere.
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Definition B.5. (Used on pages [8,35]) A relaxation sequence φ• of a state φ ∈ ZΓ is a sequence of
functions φ0, φ1, φ2, . . . such that φ0 = φ and for each k ≥ 0 there exists vk ∈ Γ such that φk(vk) ≥ τ(vk)
and φk+1 = Tvkφk. The toppling function Hφ• : Γ→ Z≥0 ∪ {∞} of the relaxation sequence φ• is given
by

Hφ• =
∞∑

k=0

δ(vk),

it counts the number of topplings at every point during this relaxation. We also refer to {v1, v2, . . . }
as a relaxation sequence. We may consider finite relaxation sequences {v1, v2, . . . , vn}, with a natural

modification of the definition of the toppling function, Hφ• =
n∑
k=0

δ(vk).

Definition B.6. (Used on pages [34,36]) A relaxation φ• is called locally-finite if Hφ•(v) is finite for
every v ∈ Γ. The result of a locally-finite relaxation is the state φ′ given by the point-wise limit

φ′ = φ0 + ∆Hφ• = lim
k→∞

φk.

Lemma B.7. (Used on pages [35,36,36,38,38,38,39]) Consider a locally-finite relaxation φ• for a state
φ and a function F : Γ→ Z≥0 such that φ+ ∆F < τ . Then Hφ•(v) ≤ F (v) for all v ∈ Γ. verified

Proof. We use the notation from Definition B.5. Consider the relaxation sequence φ• and the corre-
sponding sequence of functions Hn for n = 1, . . . given by

(B.8) Hn =
n∑

k=1

δ(vk).

Let H0 ≡ 0. It suffices to show that Hn ≤ F for every n, and H0 ≡ 0 ≤ F . Suppose that n ≥ 0 and
Hn−1 ≤ F. Since Hn = Hn−1 + δ(vn), it is enough to show that Hn−1(vn) < F (vn). We know that
φn(vn) ≥ τ(vn) and φn(vn) = φ0(vn) + ∆Hn−1(vn). Therefore,

τ(vn) ≤φ0(vn)− τ(vn)Hn−1(vn) +
∑

u∼vn
Hn−1(u) ≤

≤φ0(vn)− τ(vn)Hn−1(vn) +
∑

u∼vn
F (u) =

=φ0(vn) + ∆F (vn) + τ(vn)
(
F (vn)−Hn−1(vn)

)
.

Since φ0(vn) + ∆F (vn) < τ(vn) (by the hypothesis of the lemma) and τ(vn) > 0, we conclude that

1 ≤ F (vn)−Hn−1(vn).

�

Corollary B.9. Consider a state φ. If there exist a function F : Γ→ Z≥0 such that φ+ ∆F < τ , then
all relaxation sequences of φ are locally finite.

Proof. Applying Lemma B.7 twice, we have Hφ1
• ≤ Hφ2

• and Hφ1
• ≥ Hφ2

• . �

Lemma B.10. (Used on pages [36,36]) Consider a state φ and the set Ψ of all its relaxations ψ•.
Then there exists a relaxation φ• of φ such that

Hφ•(v) = sup
ψ•∈Ψ

Hψ•(v),∀v ∈ Γ.verified

Proof. Consider the set W = {(v, k)} ⊂ Γ× Z≥0 which contains all pairs (v, k) such that there exists

a relaxation sequence φv,k• ∈ Ψ which has k topplings at the vertex v ∈ Γ. Clearly, if (v, k) ∈W,k > 0
then (v, k− 1) ∈W . The set W is at most countable, so we order it as {(vn, kn)}n=1,2,... in such a way
that (v, k − 1) appears earlier than (v, k) for all (v, k) ∈W,k > 0.

Take any relaxation sequence φ•. We construct relaxation sequences φ0
•, φ

1
•, . . . in such a way that

φ• = φ0
•, all φ≥n• coincide at first n topplings, and the toppling function of φn• (vn) is at least kn for all

n ≥ 0.
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Let φn−1
• be already constructed, n ≥ 1, we construct φn• as follows.

If the toppling function of φn−1
• at vn is at least kn, we are done. If not, take φvn,kn• and consider

its toppling functions Hi
φvn,kn•

as in (B.8). Take the first i such that there exists w ∈ Γ such that

Hφn−1
•

(w) < Hi
φvn,kn•

(w). Note that there is a moment j > n when

Hj

φn−1
•

(w′) ≥ Hi
φvn,kn•

(w′)

for all w′ ∼ w. So we add to φn−1
• the toppling at w somewhere j-th toppling, and denote the obtained

relaxation sequence as φn−1
• again. Note that after repeating this cycle of arguments a finite number

of times, we will be done. �

Definition B.11. (Used on pages [8]) A state φ is called stable if φ < τ everywhere. A state φ is
called relaxable if there exist a locally-finite relaxation φ• of φ such that φ′(Definition B.6) is stable.
Such a relaxation φ• is called stabilizing.

Corollary B.12. If φ is relaxable, then Hφ1
• = Hφ2

• for any pair of stabilizing relaxations φ1
• and φ2

•
of φ. In particular, (φ1

•)
◦ = (φ2

•)
◦.

Lemma B.13. (Used on pages [34,36]) If all relaxations of a state φ are locally-finite, then φ is
relaxable.verified

Proof. Consider a point v ∈ Γ. We will prove that there exist N > 0 such that Hφ•(v) < N for all
relaxations φ• of φ. Suppose the contrary. Then there exists a sequence of relaxations φn• such that
limn→∞Hφn

• (v) =∞. Applying Lemma B.10 to the sequence φn• we see that there exists a relaxation
of φ, that is not locally-finite.

Therefore, for any v ∈ Γ there exist a relaxation φv• such that Hφ•(v) ≤ Hφv
•(v) for all relaxations φ•

of φ. Applying Lemma B.10 again to the family of relaxations {φv•}v∈Γ we find a relaxation sequence

φ̃• such that Hφ•(v) ≤ Hφ̃•
(v) for all relaxations φ•.

We claim that φ̃• is a stabilizing relaxation. Suppose that φ + Hφ̃•
is not stable, i.e. there exists

v ∈ Γ such that φ(v) + Hφ̃•
(v) ≥ τ(v). Therefore, we can make an additional toppling at v after the

moment when all the topplings at v and its neighbors in φ̃• are already made. This contradicts to the
maximality of φ̃•. �

Proposition B.14. (Used on pages [36,38]) A state φ is relaxable if and only if there exists a function
F : Γ→ Z≥0 such that φ+ ∆F < τ .verified

Proof. If φ is relaxable then we can take F to be Hφ. On the other hand, if such F exists, then by
Lemma B.7 all the relaxations of φ are locally-finite. Therefore, φ is relaxable by Lemma B.13. �

Definition B.15. (Used on pages [8]) Consider a relaxable state φ. Denote by Hφ the toppling func-
tion of φ, where Hφ is a toppling function of some stabilizing relaxation of φ. Define the relaxation of
φ to be the state φ◦ = φ+ ∆Hφ.

Proposition B.16 (The Least Action Principle). (Used on pages [34,37]) Let φ be a relaxable state
and F : Γ → Z≥0 be a function such that φ + ∆F is stable. Then Hφ ≤ F. In particular, Hφ is the
pointwise minimum of all such functions F . verified

Proof. Straightforward by Lemma B.7. �

Lemma B.17. (Used on pages [37]) Consider a stable state φ and a point v ∈ Γ. Then the state Tvφ
is relaxable. verified

Proof. Consider a function F (z) = 1 − δ(v) for every z ∈ Γ. Then Tvφ + ∆F = φ + ∆δ(v) + ∆(1 −
∆δ(v)) = φ + ∆1. Applying Remark B.1 we see that Tvφ + ∆F is stable. Thus, Tvφ is relaxable by
Proposition B.14. �

The least action principle allows us to construct an upper bound for the toppling function of φh.
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Proof of Proposition 3.12. Recall that the piece-wise linear function fΩ,P : Ω→ R≥0 is not smooth at
the points {p1,p2, . . . ,pn} = P ⊂ Ω. We consider the function (cf. Definition 3.11)

F (x, y) = [h−1fΩ,P (x, y)], (x, y) ∈ Γh.

Note that on Γh we have

(B.18) (Used on pages [21,22]) hF (x, y) = min
(i,j)∈A

(ix+ jy + h[aijh
−1])

where we take aij from fΩ,P (x, y) = min(i,j)∈A(ix+ jy + aij).

The difference between corresponding coefficients aij and h[aijh
−1] is at most h. It follows from

Lemma 4.17 that for each p ∈ C(fΩ,P ) there exists an h-close to p point ph ∈ Γh such that ph and
one of its neighbors in Γh belong to different regions of linearity of F .

This implies that ∆F (phi ) < 0 for i = 1, . . . n for

Ph = {ph1 ,ph2 , . . . ,phn} ⊂ Γh

chosen as explained above, i.e. Ph is a set of proper roundings.
�

Proof of Proposition 3.13. The choice in the above proof depends only on arbitrary small neighborhood
of p ∈ P on C(Ω, P ). Therefore we can fix some choice (for example: “take the nearest point in Γh
from the south-east region of p”) for all possible neighbors of a points in a tropical curve. �
Proof of Proposition 3.17. If P ⊂ Z2, h−1 ∈ N and Ω is a lattice polygon, then aij ∈ Z in (3.5). Indeed,
near the boundary of Ω that holds because Ω is a lattice polygon, and then when a linear function with
aij ∈ Z is equal to another linear function at p ∈ P this guarantees that its coefficient is also integer.

Therefore h[h−1aij ] = aij in the proof of the Proposition 3.12, so ph = p for all p ∈ P . �
Proof of Proposition 3.15. This proposition follows from the definition of proper roundings, Defini-
tion 3.14, their existence, Proposition 3.12, by applying the Least Action Principle, Proposition B.16,

because F ≥ 0 on Γ, ∆F ≤ 0 on Γ◦, and ∆F (ph) < 0 for p ∈ P . �
Proof of Lemma 3.18. Consider a point z ∈ D(ψ◦). Suppose that z does not belong to D(ψ) or ∂Γh.
Then ∆Hψ(z) < 0, therefore there exists a neighbor z1 of z such that Hψ(z1) < Hψ(z). If z1 does not
belong to D(ψ) or ∂Γh, then ∆Hψ(z1) ≤ 0, and Hψ(z1) < Hψ(z) implies that z1 has a neighbor z2 such
that Hψ(z2) < Hψ(z1). We repeat this argument and find z3, z4, etc. Since Hψ ≤ C , we can not have
such a chain of length bigger than C + 1. Therefore, starting with any point z ∈ D(ψ◦) and passing
each time to a neighbor we reach D(ψ) or ∂Γh by at most C steps, which concludes the proof. �
Remark B.19. A piecewise linear analog of Lemma 3.18 is Lemma 4.17.

B.2. Waves, their action. Sandpile waves were introduced in [7], see also [12].

Definition B.20. (Used on pages [21]) Let v be a point in Γ. The wave operator Wv, acting on the
space of the stable states on Γ, is given by

Wvφ = (Tvφ)◦.

The wave-toppling function Hv
φ of φ at v is given by

(B.21) Hv
φ = δ(v) +HTvφ.

Remark B.22. Note that if v has 3 grains and has a neighbor in Γ \ ∂Γ with 3 grains, then the result
Wvφ is also a stable state.

Indeed, Tvφ has −1 grain at v, but the neighbor of v has 4 grains and will topple. So, eventually,
we will have non-negative amount of sand at v.

Remark B.23. It is clear that Wvφ = φ+ ∆Hv
φ.

Corollary B.24 ([24]). (Used on pages [38,38]) For any u ∈ Γ the value Hv
φ(u) is either 0 or 1.

Furthermore, Hv
φ(v) = 1.
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Proof. It follows from the proof of Lemma B.17 that HTvφ ≤ 1− δ(v). �
Lemma B.25. (Used on pages [38]) Suppose that φ is a stable state and v a point in Γ. If φ+ δ(v)
is relaxable and not stable, then the toppling function for the wave from v is less or equal than the
toppling function for a relaxation of φ+ δ(v), i.e.

Hv
φ(w) ≤ Hφ+δ(v)(w) ,∀w ∈ Γ◦.verified

Proof. It is clear that (φ+ δ(v))(w) = φ(w) < τ(w) for all w 6= v and (φ+ δ(v))(v) = τ(v). Therefore,
Tv is the first toppling in any non-trivial relaxation sequence for φ + δ(v) and Hφ+δ(v)(v) ≥ 1. In
particular, the function Hφ+δ(v)− δ(v) is non-negative and HTvφ ≤ Hφ+δ(v)− δ(v) by Lemma B.7 since

Tvφ+ ∆
(
Hφ+δ(v) − δ(v)

)
= φ+ ∆δ(v) + ∆

(
Hφ+δ(v) − δ(v)

)
= φ+ ∆Hφ+δ(v) =

(
φ+ δ(v)

)◦ − δ(v) < τ.

�
Definition B.26. (Used on pages [9]) Let φ be a relaxable state, Hφ be its toppling function. Let
0 ≤ F ≤ Hφ. The state φ+ ∆F is called a partial relaxation of φ.

Lemma B.27. (Used on pages [9,38]) Consider a relaxable state φ and an integer-valued function F
on Γ such that 0 ≤ F ≤ Hφ. Then the state φ+ ∆F is relaxable and

Hφ+∆F = Hφ − F.verified

Proof. By Proposition B.14 the state φ+ ∆F is relaxable because

φ+ ∆F + ∆(Hφ − F ) = φ+ ∆Hφ = φ◦ < τ

and Hφ−F is non-negative. In particular, Hφ−F ≥ Hφ+∆F by Lemma B.7. On the other hand, since
Hφ+∆F + F ≥ 0, we have

φ+ ∆(Hφ+∆F + F ) = φ+ ∆F + ∆Hφ+∆F = (φ+ ∆F )◦ < τ.

Applying again Lemma B.7, we have Hφ ≤ Hφ+∆F + F. �
We applied this lemma in the proof of Theorem 1, page 9, while considering the relaxation of φεh as

a partial relaxation of φh.

Proposition B.28. (Used on pages [34]) Let φ be a stable state and v be a point in Γ. Suppose that
φ+ δ(v) is relaxable. Then the relaxation of φ+ δ(v) can be decomposed into sending n waves from v,
i.e.

(φ+ δ(v))◦ = δ(v) +Wn
v φ,

where n = Hφ+δ(v)(v) and Wn
v (φ) = Wv(Wv(. . . (φ)) . . . ), n-th power of Wv. On the level of toppling

functions, this gives

Hφ+δ(v) =
n−1∑

k=0

Hv
(Wk

v φ).verified

Added parenthesis in the subscript are for better readability only.

Proof. Combining Lemmata B.25 and B.27 we have

Hφ+δ(v) = Hv
φ +H(Wvφ+δ(v)).

If the state Wvφ+δ(v) is not stable, then we can apply the same lemmata again. We complete the proof
by iteration of this procedure and using Corollary B.24 (each wave has one toppling at v, therefore we
have n waves). �
Lemma B.29. (Used on pages [38]) If φ is a stable state and v1, . . . , vm are vertices of Γ such that
vi is adjacent to vi+1 and φ(vi) = τ(vi)− 1 for all i = 1, 2, . . . ,m, then Hv1

φ = Hvm
φ .verified

Proof. It follows from the simplest case m = 2, for which it is just a computation. �
Definition B.30. (Used on pages ) In a given state φ, a territory is a maximal by inclusion connected
component of the vertices v such that φ(v) = τ(v) − 1. Given a territory T , we denote by WT the
wave which is sent from a point in T (by Lemma B.29 it does not matter from which one).
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Basically, Corollary B.24 tells us that a wave from v increases the toppling function exactly by one
in the territory to which v belongs to, and by at most one in all other vertices.

Proposition B.31. (Used on pages [39]) Let φ be a stable stable, v be a point in Γ, and F : Γ→ Z≥0

be a function such that F (v) > 0 and φ+ ∆F is stable. Then F ≥ Hv
φ. verified

Proof. Similar to Lemma B.7. �

Corollary B.32 (Least Action Principle for waves). (Used on pages [21,34]) Suppose that a state φ

is stable. We send n waves from a vertex v. Let H =
∑n−1
k=0 H

v
(Wkφ) be the toppling function of this

process. Let F be a function such that ∆F ≤ 0, F (w) ≥ 0 for all w, and F (v) ≥ n. Then F (w) ≥ H(w)
for all w.verified

Proof. We apply Proposition B.31 n times, each time decreasing F by Hv
Wk(φ) for k = 0, 1, . . . , n−1. �

Appendix C. Tropical series, tropical analytic curves

In this section we briefly recall the basic notions of tropical geometry; see general introductions to
tropical geometry [2], [19], or [1] for details and motivation. Also we define and study tropical analytic
series and curves.

C.1. Tropical Laurent polynomials and tropical curves. A tropical Laurent polynomial (later
just tropical polynomial) f in two variables is a function on R2 which can be written as

(C.1) f(x, y) = min
(i,j)∈A

(ix+ jy + aij),

where A is a finite subset of Z2. Each point (i, j) ∈ A corresponds to a monomial ix + jy + aij , the
number aij ∈ R is called the coefficient of f of the monomial corresponding to the point (i, j) ∈ A.
The locus of the points where a tropical polynomial f is not smooth is a tropical curve (see [19]). We
denote this locus by C(f) ⊂ R2.

Definition C.2. The Newton polygon Newt(f) of f is the collection of all integer points in the convex
hull of A, i.e. Newt(f) = Z2 ∩ ConvHull(A).

We construct the extended Newton polytope

Ñewt(f) = ConvexHull{(i, j, t)|(i, j) ∈ A, t ≥ aij} ⊂ R2 × R.

A subdivision Sub(f) of Newt(f) is defined by the images of the faces of Ñewt(f) under the projection
along the third coordinate.

Proposition C.3. (Used on pages [6,6,17,40,41]) (See [2] for a proof and Figures 11,12 for an illus-
tration.) This subdivision Sub(f) of Newt(f) is dual to C(f) in the following sense:

• each connected component Φ (we call them faces) of the complement of C(f) in R2 corresponds
to a vertex d(Φ) in Sub(f),

• each edge E of C(f) corresponds to an edge d(E) in Sub(f),
• each vertex V of C(f) corresponds to a face d(V ) in Sub(f).

All these correspondences are bijections; abusing notation we denote the maps in both directions by d.
If I, J are two endpoints of an edge of C(f), then the faces d(I), d(J) of Sub(f) share a common edge,
this latter edge is dual to the edge IJ . In other words, d(I) ∩ d(J) is d(IJ).

Not all integer points in the Newton polygon are necessarily the vertices of the subdivision defined
by f . If a point (i, j) ∈ A is not a vertex of the subdivision, i.e. it belongs to the interior of a face
or an edge of Sub(f), then increasing of the coefficient cij in the expression (C.1) does not change the
values of the function f , and does not change the tropical curve C(f). In particular, this implies that
a function represented by a tropical polynomial doesn’t determine the coefficients of the polynomial in
general. So, similar to Definition 3.4, we always assume that A = Newt(f) and the coefficients in (C.1)
are the minimal possible. With this new requirement, decreasing any coefficient of the monomial in f
changes the curve C(f).
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Definition C.4. (Used on pages [18,40]) A vertex V of a tropical curve is smooth if d(V ) is a triangle
of area 1/2. A vertex V of a tropical curve is called a node if d(V ) is a parallelogram of area 1. An
edge E of a tropical curve has weight m if d(E) contains m+ 1 lattice points (in other words d(E) has
the lattice length m). See Figure 11 for examples of smooth and non-smooth vertices.

The concept of smoothness and nodality of a vertex plays a central role in our construction of the
lower bound for the toppling function (see Section 5).

It follows from Proposition C.3 that at every vertex of a tropical curve the balancing condition is
satisfied, i.e. the weighted sum of the outgoings primitive vectors in the directions of edges is zero, see
Figure 11.

1× (1, 0)

1× (0, 1)

1× (−1,−1)

2× (1, 0)

1× (−1, 1)

1× (−1,−1) 5× (−1,−1)
1× (3,−1)

2× (2, 1)

2× (−1, 2)

Figure 11. Examples of balancing condition in local pictures of tropical curves near
vertices. The notation m× (p, q) means that the corresponding edge has the weight m
and the primitive vector (p, q). The vertex on the left picture is smooth, the vertices
in the middle and right pictures are neither smooth nor nodal.

i

j

i

j
•

•
•
•
•

•
•

Figure 12. Polygons dual to the local models of tropical curves on Figure 11. A
dual polygon is defined up to a translation, its lattice points (i, j) correspond to the
monomials ix+jy+aij (in some tropical polynomial defining this tropical curve) which
contribute to the value of the tropical polynomial at the vertex. Note that, to make
the duality visible, we need to reverse coordinate axes because of the “min” (instead
of more conventional here “max”) agreement in (C.1), in the definition of the tropical
curve. Sides of polygons are orthogonal to the edges of curves. Moreover the lattice
length of a side, computed as one plus the number of lattice points in its interior, is
the weight of the corresponding dual edge.

Definition C.5. (Used on pages [13,15,15,18]) A corner of a Q-polygon ∆ is called smooth if the
primitive vectors of the directions of the edges of ∆ at this corner give a Z-basis of Z2. A Q-polygon
is smooth if all its corners are smooth.

Definition C.6. (Used on pages [13,18,21]) A ∆-tropical curve is called smooth or nodal if all its
vertices in ∆◦ are smooth or nodal (see Definition C.4). In particular, this curve has no edges of weight
bigger than one.

C.2. Basic facts about convergence of tropical series. Tropical series in one variable appeared
in [29]. Tropical series on Rn received some attention in [11]. We do not know any earlier references.
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Lemma C.7. (Used on pages [14,41,41,42,42]) Let U be an open subset of R2 and K be a compact
subset of U. For any C > 0 the set

M =
{

(i, j) ∈ Z2|∃d ∈ R,∃(x0, y0) ∈ K, (ix+ jy + d)|U ≥ 0, (ix0 + jy0 + d) ≤ C
}

is finite. verified

Proof. If U = R2, M = {(0, 0)}. So, let R > 0 denote the distance between K and R2\U. Then

(ix+jy+d)|K ≥ R·
√
i2 + j2 for any i, j and d such that (ix+jy+d)|U ≥ 0. Therefore, i2+j2 ≤ C2R−2

for all (i, j) ∈M. �

Proof of Lemma 3.3. Suppose that for a point (x0, y0) ∈ Ω◦ and each (i, j) ∈ A the value of the
monomial aij + ix0 + jy0 is distinct from the value of the infimum

inf
(i,j)∈A

(aij + ix0 + jy0).

Thus, there exists C > 0 such that we have aij + ix0 + jy0 < C for infinite number of monomials
(i, j) ∈ A. Since (aij + ix+ jy)|Ω ≥ 0 for all (i, j) ∈ A, applying Lemma C.7 yields a contradiction. �

Definition C.8. (Used on pages [13,41,42]) Let U be an open non-empty subset of R2. A function
f : U → R is called a tropical series if for each (x0, y0) ∈ U there exists an open neighborhood W ⊂ U
of (x0, y0) such that f |W is a tropical polynomial. If we write that a function f : U → R is a tropical
series for a non-open U , it means that f is a continuous function on U and f |U◦ is a tropical series.

Definition C.9 (Cf. Definition 3.2). A tropical analytic curve in U is the locus of non-linearity of a
tropical series f on U◦. We denote this curve by C(f) ⊂ U◦.
Example C.10. The standard grid – the union of all horizontal and vertical lines passing through
lattice points, i.e. the set

C =
⋃

k∈Z
{(k, y)|y ∈ R} ∪ {(x, k)|x ∈ R},

is a tropical analytic curve in R2. Similar examples are tropical Θ-divisors [20].

The following example shows that a tropical series on Ω◦ in general cannot be extended to ∂Ω.

Example C.11. Consider a tropical analytic curve C in the square [0, 1]× [0, 1], presented as

C =
⋃

n∈N

{(
1/n, y

)
|y ∈ [0, 1]

}
∪
{(
x, 1/2

)
|x ∈ [0, 1]

}
.

For all tropical series f with C(f) = C, the sequence of values of f(x, y) tends to −∞ as x→ 0.

Example C.12. See examples of tropical analytic curves on Figure 3 in [4], first two rows. It is a mys-
tery for us why the most of the slopes of the tropical curves on those pictures are (1, 0), (0, 1), (1, 1), (−1, 1).

Lemma C.13. (Used on pages ) An Ω-tropical series (Definition 3.2) is a tropical series on Ω in the
sense of Definition C.8.verified

Proof. We take any point (x0, y0) ∈ Ω◦ and a small compact neighborhood K ⊂ Ω◦ of (x0, y0). There
exists C > 0 such that our Ω-tropical series f restricted to K is less than C. We apply Lemma C.7
and see that f |K is a tropical polynomial. �

Lemma C.14. (Used on pages [42]) Suppose that a continuous function f : Ω→ R on an admissible
Ω satisfies two conditions: 1) f |Ω◦ is a tropical series, and 2) f |∂Ω = 0. Then f is an Ω-tropical series
(Definition 3.2).verified

Proof. Let f |U = ix + jy + aij for an open U ⊂ Ω◦. Note that f is convex (since it is locally convex
and Ω is convex) and so f(x, y) ≤ ix+ jy + aij on Ω. Therefore in Ω◦ we have

f(x, y) = min{ix+ jy + aij |(i, j, aij),∃ open U ⊂ Ω◦, f(x, y)|U = ix+ ij + aij}.
�



TROPICAL CURVES IN SANDPILE MODELS 42

Corollary C.15. If f is a tropical series on Ω, then a duality similar to Proposition C.3 holds: we
present f in a canonical form and construct the extended Newton polytope which defines a subdivision
of AΩ (Definition 4.1). The vertices of this subdivision correspond to the connected components of
Ω◦ \C(f), the edges correspond to the edges of C(f), and the faces correspond to the vertices of C(f).

Recall that Ω in the above lemma is admissible, in particular, it is convex. Tropical series on
non-convex domains exhibit the behavior as in the following example.

Example C.16. Let U1 =
(
[0, 5] × [0, 1]

)
∪
(
[4, 5] × [1, 2]

)
, U2 =

(
[0, 5] × [2, 3]

)
∪
(
[4, 5] × [1, 2]

)
, U =

(U1∪U2)◦. The function f(x, y) = min(3, x+[y]) is a tropical series on U , but f |U◦1 = min(3, x), f |U◦2 =
min(3, x+ 2), and the monomial x appears with different coefficients 0, 2 in the different parts of U .

Proof of Lemma 4.11. Let g ∈ V (Ω, P, f), z0 ∈ Ω◦ and K ⊂ Ω◦ be a compact set such that z0 ∈ K◦.
Denote by C > 0 the maximum of g on K. Consider the set M of all (i, j) ∈ Z2 for which there
exist d ∈ R, (x0, y0) ∈ K such that 0 ≤ (xi + yj + d)|Ω◦ , ix0 + jy0 + d ≤ C. The set M is finite by
Lemma C.7. Therefore, the restriction of any tropical series g ∈ V (Ω, P, f) to K can be expressed as
a tropical polynomial min(i,j)∈M(ix + jy + aij(g)). In particular, if we denote by bij the infimum of
aij(g) for all g ∈ V (Ω, P, f) then

GP f |K = min
(i,j)∈M

(ix+ jy + bij).

It follows from Proposition 4.10, that GP f ≤ f + n · lΩ. Then, lΩ|∂Ω = 0 by Lemma 4.5. Therefore
GP f |∂Ω = 0 and, thus, Lemma C.14 concludes the proof that fΩ,P is an Ω-tropical series. �
Lemma C.17. The function lΩ is a tropical series in Ω◦ (Definition C.8). verified

Proof. Consider z ∈ Ω◦. It follows from Lemma C.7 that for any constant C ∈ R for each z ∈ Ω◦ there
exist only finite number of (i, j) ∈ Z2 such that lijΩ (z) ≤ C which concludes the proof. In particular,

for z ∈ Ω◦, lΩ(z) is actually min(i,j)∈AΩ\{(0,0)} l
ij
Ω (z). �

Proof of Proposition 4.2. It is easy to verify that if Ω is not admissible, then Ω◦ = ∅ or AΩ = {(0, 0)}.
Let us prove the statement in another direction. If Ω 6= R2, then there exists a boundary point p of Ω
and a support line l at p. If the slope of l is rational, then AΩ contains the corresponding lattice point;
if this slope is irrational but l does not belong to the boundary of Ω, then there exists another support
line of Ω with a rational slope. So, we may suppose that l is contained in the boundary of Ω. If there
is no other boundary points of Ω, then Ω is a half-plane and is not admissible. If there exists another
boundary point, then we repeat the above arguments and find a support line of Ω with rational slope
or prove that Ω is a strip between two lines of the same irrational slope. �
Proof of Lemma 4.5. It is enough to prove that lΩ is zero on ∂Ω. It is clear that lΩ = 0 on zero sets of
functions lijΩ for all (i, j) ∈ AΩ. Suppose that there exists a point z ∈ ∂Ω where the only support line
L is of irrational slope α.

Since Ω is admissible, there exists a point z′ = (x2, y2) ∈ L which does not belong to ∂Ω. Using
continued fractions for α, we get two sequences of numbers, p2n/q2n < α < p2n+1/q2n+1 such that

|α− pm/qm| < 1/q2
m, for all m,

and qm tends to infinity. Either for all even i, or for all odd i the line through z′ with the slope pi/qi
does not intersect Ω, so (−pi, qi) ∈ AΩ. Thus, for such i the linear function

li(x, y) = qi

(
y − pi

qi
x−

(
y2 −

pi
qi
x2

))

estimates l−pi,qi(x, y) from above. The absolute value of li at z = (x1, y1) is

| − pix1 + qiy1 + (pix2 − qiy2)| =|pi(x2 − x1) + qi(y1 − y2)| =

|(x1 − x2)(−pi + qiα)| = |(x1 − x2)(α− pi/qi)qi| ≤
∣∣∣∣
x1 − x2

qi

∣∣∣∣ ,

which tends to zero as i→∞. Therefore, we can construct a sequence of functions li, i→∞, whose
values at z1 tend to zero, and lΩ ≤ li. Therefore lΩ(z1) = 0 and lΩ|∂Ω = 0.
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