

Advocating

Tropical geometry has been recently heavily used in

- the proof of longstanding Rota log-concavity conjecture [Adiprasito, Huh, Katz, 2015]. In particular it implies that the coefficients a_i of the chromatic polynomial of a graph form a log-concave sequence, i.e. $a_i^2 \ge a_{i-1}a_{i+1}$.
- a uniform estimate for the number N(d,g) of rational points on curves of small Mordell-Weil rank [Katz, Rabinoff, Zureick-Brown, 2015], as well as unconditional estimate for the number of torsion points of the images of curves in Jacobians.

Sandpile models: emergence of tropical objects

Topplings

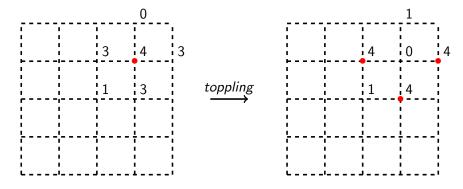
Definition

A sandpile is a collection of indistinguishable sand grains distributed among a finite subset Γ of \mathbb{Z}^2 , that is a function $f:\Gamma\to\mathbb{N}_0$. A vertex v is unstable if $f(v)\geq 4$. An unstable vertex can topple by sending one grain of sand to each of 4 neighbours.

Topplings

Definition

A sandpile is a collection of indistinguishable sand grains distributed among a finite subset Γ of \mathbb{Z}^2 , that is a function $f:\Gamma\to\mathbb{N}_0$. A vertex v is unstable if $f(v)\geq 4$. An unstable vertex can topple by sending one grain of sand to each of 4 neighbours.



The problem: picture after relaxation

Definition

The process of doing topplings while it is possible is called relaxation.

Proposition

The order of topplings has no influence on the result of the relaxation.

The problem: picture after relaxation

Definition

The process of doing topplings while it is possible is called relaxation.

Proposition

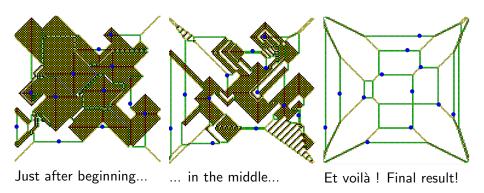
The order of topplings has no influence on the result of the relaxation.

Definition

We chose a boundary $\partial \Gamma \subset \Gamma$, where we never do topplings. For example, $\Gamma = [0, \dots, N] \times [0, \dots, N]$, $\partial \Gamma$ is the border of this square.

We start from the maximal stable distribution of sand, i.e. $f \equiv 3$, then we add a grain somewhere. What is the result of relaxation? And if we add a number of grains to different places?

Simulation, results



White: 3 grains, Green: 2 grains, Yellow: 1 grain, Red: no grains,

Black: more than 3 grains.

Explanation: look at the number of topplings

Consider the number h(x, y) of topplings at a point (x, y) during the relaxation.

Proposition

If the number of sand grains at (x, y) after relaxation is the same as before the relaxation, then

$$h(x-1,y) + h(x+1,y) + h(x,y-1) + h(x,y+1) - 4h(x,y) = 0.$$

Explanation: look at the number of topplings

Consider the number h(x, y) of topplings at a point (x, y) during the relaxation.

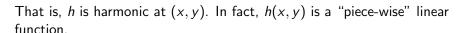
Proposition

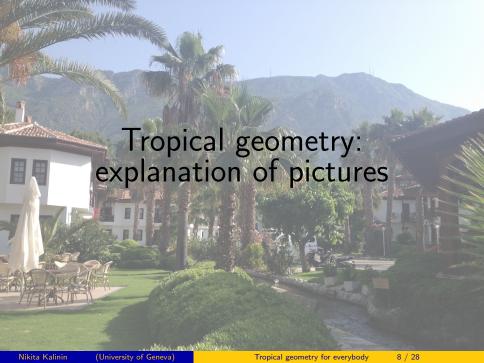
If the number of sand grains at (x, y) after relaxation is the same as before the relaxation, then

$$h(x-1,y) + h(x+1,y) + h(x,y-1) + h(x,y+1) - 4h(x,y) = 0.$$

Proof.

Indeed, count the number of incoming and outgoing grains.





Definition

Let \mathcal{A} be a finite subset of \mathbb{Z}^2 . A tropical polynomial is a function $h(x,y) = \min_{(i,j) \in \mathcal{A}} (a_{ij} + ix + jy), a_{ij} \in \mathbb{R}$. Note that $h : \mathbb{R}^2 \to \mathbb{R}$.

Definition

Let \mathcal{A} be a finite subset of \mathbb{Z}^2 . A tropical polynomial is a function $h(x,y) = \min_{(i,j) \in \mathcal{A}} (a_{ij} + ix + jy), a_{ij} \in \mathbb{R}$. Note that $h : \mathbb{R}^2 \to \mathbb{R}$.

A tropical curve is the set of non-smooth points of a tropical polynomial.

Definition

Let \mathcal{A} be a finite subset of \mathbb{Z}^2 . A tropical polynomial is a function $h(x,y) = \min_{(i,j) \in \mathcal{A}} (a_{ij} + ix + jy), a_{ij} \in \mathbb{R}$. Note that $h : \mathbb{R}^2 \to \mathbb{R}$.

A tropical curve is the set of non-smooth points of a tropical polynomial.

Motivation: let $log_t(x, y) = (\log_t(|x|), \log_t(|y|)), log_t : \mathbb{C}^2 \to \mathbb{R}^2$.

Definition

Let \mathcal{A} be a finite subset of \mathbb{Z}^2 . A tropical polynomial is a function $h(x,y)=\min_{(i,j)\in\mathcal{A}}(a_{ij}+ix+jy), a_{ij}\in\mathbb{R}$. Note that $h:\mathbb{R}^2\to\mathbb{R}$.

A tropical curve is the set of non-smooth points of a tropical polynomial.

Motivation: let $log_t(x,y) = (\log_t(|x|), \log_t(|y|)), \ log_t : \mathbb{C}^2 \to \mathbb{R}^2$. Consider a family of polynomials $F_t(x,y) = \sum_{(i,j) \in \mathcal{A}} t^{a_{ij}} x^i y^j$. Define the corresponding curves $C_t = \{(x,y) | F_t(x,y) = 0\} \subset \mathbb{C}^2$.

Definition

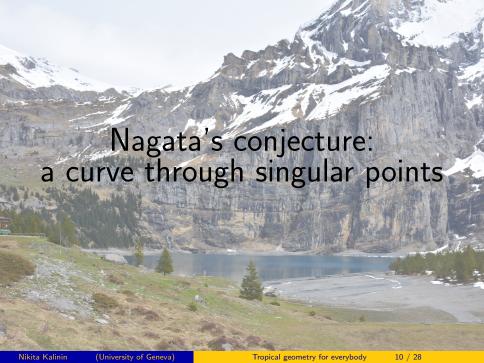
Let \mathcal{A} be a finite subset of \mathbb{Z}^2 . A tropical polynomial is a function $h(x,y) = \min_{(i,j) \in \mathcal{A}} (a_{ij} + ix + jy), a_{ij} \in \mathbb{R}$. Note that $h : \mathbb{R}^2 \to \mathbb{R}$.

A tropical curve is the set of non-smooth points of a tropical polynomial.

Motivation: let $log_t(x,y) = (\log_t(|x|), \log_t(|y|)), log_t : \mathbb{C}^2 \to \mathbb{R}^2$. Consider a family of polynomials $F_t(x,y) = \sum_{(i,j) \in \mathcal{A}} t^{a_{ij}} x^i y^j$. Define the corresponding curves $C_t = \{(x,y) | F_t(x,y) = 0\} \subset \mathbb{C}^2$.

Proposition

Then $C = \lim_{t\to 0} \log_t C_t$ is the tropical curve defined by $h(x,y) = \min_{(i,j)\in\mathcal{A}} (a_{ij} + ix + jx).$



Singular points

We consider a polynomial $F(x,y) = \sum a_{ij}x^iy^j$, $a_{ij} \in \mathbb{C}$, $0 \le i,j,i+j \le d$ of degree d, it defines a curve C as its zero-set, $C = \{(x,y)|F(x,y) = 0\}$.

Definition

A point $p \in \mathbb{C}^2$ is of multiplicity m for C if all the partial derivatives of F up to order m-1 vanish at p.

Singular points

We consider a polynomial $F(x,y) = \sum a_{ij}x^iy^j$, $a_{ij} \in \mathbb{C}$, $0 \le i,j,i+j \le d$ of degree d, it defines a curve C as its zero-set, $C = \{(x,y)|F(x,y) = 0\}$.

Definition

A point $p \in \mathbb{C}^2$ is of multiplicity m for C if all the partial derivatives of F up to order m-1 vanish at p.

Example

The point (0,0) is of multiplicity

- 1 if C passes through (0,0)
- 2 if (0,0) is a singular point of C
- m if $a_{ij} = 0$ for $i + j \le m 1$.

Dimension counting

As we see, the fact that a point p is of multiplicity m for a curve C imposes $\frac{m(m+1)}{2}$ linear conditions on the coefficients a_{ij} .

Dimension counting

As we see, the fact that a point p is of multiplicity m for a curve C imposes $\frac{m(m+1)}{2}$ linear conditions on the coefficients a_{ij} .

A curve of degree d has $\frac{(d+1)(d+2)}{2}$ coefficients. Therefore, if p_1, p_2, \ldots, p_n are in general position, a curve C passes through p_1, p_2, \ldots, p_n with some multiplicities m_1, m_2, \ldots, m_n , then we should expect

$$\frac{(d+1)(d+2)}{2} - 1 \ge \sum_{1 \le i \le n} \frac{m_i(m_i+1)}{2}.$$

Dimension counting

As we see, the fact that a point p is of multiplicity m for a curve C imposes $\frac{m(m+1)}{2}$ linear conditions on the coefficients a_{ij} .

A curve of degree d has $\frac{(d+1)(d+2)}{2}$ coefficients. Therefore, if p_1, p_2, \ldots, p_n are in general position, a curve C passes through p_1, p_2, \ldots, p_n with some multiplicities m_1, m_2, \ldots, m_n , then we should expect

$$\frac{(d+1)(d+2)}{2} - 1 \ge \sum_{1 \le i \le n} \frac{m_i(m_i+1)}{2}.$$

Unfortunately, these linear conditions are **not** independent.

- A line (d=1) passes though 2 points. $\frac{2\cdot 3}{2} 1 \ge \frac{1\cdot 2}{2} + \frac{1\cdot 2}{2}$ (still true).
- A doubled conic (d=4) passes through 5 points with multiplicities 2. $\frac{5.6}{2} 1 \ge 5 \cdot \frac{2\cdot 3}{2}$ (not true).

Nagata's conjecture

As a reasonable estimate, Nagata conjectured that if $n \ge 10$ and the above conditions are satisfied, then $d > \frac{\sum m_i}{\sqrt{n}}$.

Nagata's conjecture

As a reasonable estimate, Nagata conjectured that if $n \ge 10$ and the above conditions are satisfied, then $d > \frac{\sum m_i}{\sqrt{n}}$.

• Open even for $n = 10, m_i = m$. (That is $d > \sqrt{n} \cdot m$)

Nagata's conjecture

As a reasonable estimate, Nagata conjectured that if $n \ge 10$ and the above conditions are satisfied, then $d > \frac{\sum m_i}{\sqrt{n}}$.

- Open even for $n=10, m_i=m$. (That is $d>\sqrt{n}\cdot m$)
- Nagata proved it himself for $n = k^2$. The proof gives a counterexample for 14th Hilbert Problem: Is the ring of invariants of an algebraic group acting on a polynomial ring is always finitely generated?

A tropical curve comes as the locus where a function $h(x,y) = \min_{(i,j) \in \Delta} (a_{ij} + ix + jy)$ is not smooth.

A tropical curve comes as the locus where a function $h(x,y) = \min_{(i,j) \in \Delta} (a_{ij} + ix + jy)$ is not smooth.

Definition

The Extended Newton polytope of h is the convex hull of the set $\bigcup \{(i,j,s)|(i,j) \in \Delta, s \leq a_{ij}\}.$

A tropical curve comes as the locus where a function $h(x,y) = \min_{(i,j) \in \Delta} (a_{ij} + ix + jy)$ is not smooth.

Definition

The Extended Newton polytope of h is the convex hull of the set $\bigcup \{(i,j,s)|(i,j) \in \Delta, s \leq a_{ij}\}.$

The projection along the third coordinate of the faces of the Extended Newton polygon gives a subdivision of the convex hull of Δ .

A tropical curve comes as the locus where a function $h(x,y) = \min_{(i,j) \in \Delta} (a_{ij} + ix + jy)$ is not smooth.

Definition

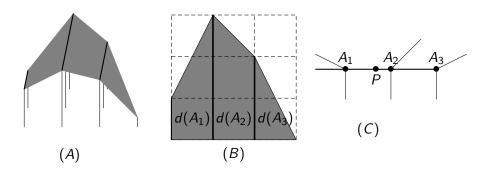
The Extended Newton polytope of h is the convex hull of the set $\bigcup \{(i,j,s)|(i,j) \in \Delta, s \leq a_{ij}\}.$

The projection along the third coordinate of the faces of the Extended Newton polygon gives a subdivision of the convex hull of Δ .

Proposition

This subdivision is dual to the tropical curve C defined by h.

Example



The extended Newton polyhedron of the curve C is drawn in (A). The projection of its faces gives us the subdivision of the Newton polygon of the curve, see (B). The tropical curve C is drawn in (C).

Influenced regions

Definition

For a point P on a tropical curve C we define the region of influence of P in the Newton polygon as follows. Draw straight lines through all the edges of C which pass through P. Take all the vertices of C lying on the latter lines. Take the dual cells to these vertices. The union of these cells is the region of influence of P.

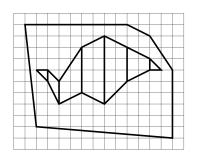
Influenced regions

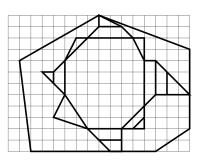
Definition

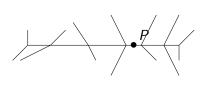
For a point P on a tropical curve C we define the region of influence of P in the Newton polygon as follows. Draw straight lines through all the edges of C which pass through P. Take all the vertices of C lying on the latter lines. Take the dual cells to these vertices. The union of these cells is the region of influence of P.

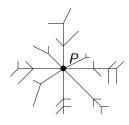
On the previous slide P is the tropicalization of a singular point of multiplicity 3. The influenced region is the whole Newton polygon.

Examples









Theorems

Theorem

If P is of multiplicity m on C, then the area of the influenced region of the Newton polygon is bigger or equal than

- $\frac{3}{8}m^2$ if $\operatorname{Trop}(P)$ is a vertex of $\operatorname{Trop}(C)$
- $\frac{1}{2}m^2$ if $\operatorname{Trop}(P)$ is not a vertex of $\operatorname{Trop}(C)$.

Theorems

Theorem

If P is of multiplicity m on C, then the area of the influenced region of the Newton polygon is bigger or equal than

- $\frac{3}{8}m^2$ if $\operatorname{Trop}(P)$ is a vertex of $\operatorname{Trop}(C)$
- $\frac{1}{2}m^2$ if $\operatorname{Trop}(P)$ is not a vertex of $\operatorname{Trop}(C)$.

Theorem

If points $P_1, P_2, \dots P_n$ are chosen generically, then all triple intersections of their regions of influence are empty.

Implications

These tropical theorems imply some estimates in Nagata's conjecture.

Proposition

The degree d of a curve passing through generic p_1, p_2, \ldots, p_n with multiplicities m is subject to the following inequality:

$$d^2 \ge (n - \sqrt{n} - 1)m^2$$

There are more tight estimates (Exercise: use Bezout's Theorem) .

Definition

A differential 1-form ω on M^3 is contact if $\omega \wedge d\omega \neq 0$ everywhere.

Definition

A differential 1-form ω on M^3 is contact if $\omega \wedge d\omega \neq 0$ everywhere.

We can generalize to complex geometry, the only complex contact form on $\mathbb{C}P^3$ is $\omega = ydx - xdy + wdz - zdw$.

Definition

A differential 1-form ω on M^3 is contact if $\omega \wedge d\omega \neq 0$ everywhere.

We can generalize to complex geometry, the only complex contact form on $\mathbb{C}P^3$ is $\omega = ydx - xdy + wdz - zdw$.

Definition

A curve C is contact or Legendrian if $\omega(TC) = 0$.

Definition

A differential 1-form ω on M^3 is contact if $\omega \wedge d\omega \neq 0$ everywhere.

We can generalize to complex geometry, the only complex contact form on $\mathbb{C}P^3$ is $\omega = ydx - xdy + wdz - zdw$.

Definition

A curve C is contact or Legendrian if $\omega(TC) = 0$.

How many algebraic Legendrian curves of given degree pass through given points in $\mathbb{C}P^3$?

Definition

A differential 1-form ω on M^3 is contact if $\omega \wedge d\omega \neq 0$ everywhere.

We can generalize to complex geometry, the only complex contact form on $\mathbb{C}P^3$ is $\omega = ydx - xdy + wdz - zdw$.

Definition

A curve C is contact or Legendrian if $\omega(TC) = 0$.

How many algebraic Legendrian curves of given degree pass through given points in $\mathbb{C}P^3$?

Answer: three rational Legendrian cubics through 3 points and one line.

All the curves tangent to ydx - xdy + wdz - zdw and passing through three points $(0,0,0,1), (1,1,1,1), (-1,1-1,1) \in \mathbb{C}P^3$ are: $(3t-t^3,2t^2+2\mu(t-t^3),2t^3,1+t^2-2\mu(t-t^3)),t\in \mathbb{C}P^1,\mu\in\mathbb{C}.$

All the curves tangent to ydx - xdy + wdz - zdw and passing through three points $(0,0,0,1), (1,1,1,1), (-1,1-1,1) \in \mathbb{C}P^3$ are: $(3t-t^3,2t^2+2\mu(t-t^3),2t^3,1+t^2-2\mu(t-t^3)), t \in \mathbb{C}P^1, \mu \in \mathbb{C}.$

Question

What is the compactification of this family? $(\mu o \infty)$

All the curves tangent to ydx - xdy + wdz - zdw and passing through three points $(0,0,0,1), (1,1,1,1), (-1,1-1,1) \in \mathbb{C}P^3$ are: $(3t-t^3,2t^2+2\mu(t-t^3),2t^3,1+t^2-2\mu(t-t^3)), t \in \mathbb{C}P^1, \mu \in \mathbb{C}.$

Question

What is the compactification of this family? $(\mu o \infty)$

Answer: three lines in a plane, with intersection at one point. This corresponds to the degenerate constraints: three points and a line in one plane.

All the curves tangent to ydx - xdy + wdz - zdw and passing through three points $(0,0,0,1), (1,1,1,1), (-1,1-1,1) \in \mathbb{C}P^3$ are: $(3t-t^3,2t^2+2\mu(t-t^3),2t^3,1+t^2-2\mu(t-t^3)), t \in \mathbb{C}P^1, \mu \in \mathbb{C}$.

Question

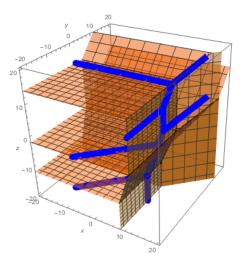
What is the compactification of this family? $(\mu o \infty)$

Answer: three lines in a plane, with intersection at one point. This corresponds to the degenerate constraints: three points and a line in one plane.

Question

Is it true that there are at least d rational legendrian curves of degree d through generic d points in $\mathbb{C}P^3$ and a line?

Tropical Legendrian curves



The tropicalization of the surface swept by legendrian cubics through three points. A particular tropical curve inside.

Abstract tropical curves

Proposition

Note that the amoeba $\log_t(C)$ is given by integration of $\frac{dx}{x}, \frac{dy}{y}$ on C and rescaling by $\ln t$.

Abstract tropical curves

Proposition

Note that the amoeba $\log_t(C)$ is given by integration of $\frac{dx}{x}$, $\frac{dy}{y}$ on C and rescaling by $\ln t$.

Definition

A tropical curve S is a degeneration of a family $S_t, t \to \infty$ of complex surfaces if the asymptotics of the lengths of the geodesics in the pair-of-pants decomposition are like $\frac{1}{a_i \ln t}$. The corresponding edges of S have lengths a_i .

The degeneration comes with the contraction maps $S_t \to S$, where we contract the hyperbolic collars of the geodesics.

Definition

We define tropical differential form by the following family.

Definition

We define tropical differential form by the following family. We have a family S_t of **punctured** Riemann surfaces, that degenerates to a tropical curve S.

Definition

We define tropical differential form by the following family. We have a family S_t of **punctured** Riemann surfaces, that degenerates to a tropical curve S. Also we have a family ω_t of differentials with poles of 3rd kind (i.e. the residue is not zero) at the punctures.

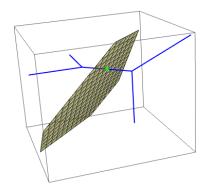
Definition

We define tropical differential form by the following family. We have a family S_t of **punctured** Riemann surfaces, that degenerates to a tropical curve S. Also we have a family ω_t of differentials with poles of 3rd kind (i.e. the residue is not zero) at the punctures.

Proposition

If $\lim \int_{\gamma_t} \omega_t = L$ then $\lim \frac{1}{\ln t} \int_{\Gamma_t} \omega_t = aL$. So, ω should be though as $L \frac{dx}{x}$

Application of tropical differential forms



A part of the tropicalization of a legendrian curve. This part looks like a tropical line.

We can prove that the plane x + y = z divides the interval between two vertices in the middle.

• Sandpile models and their evolution.

- Sandpile models and their evolution.
- \bullet For the square in \mathbb{Z}^2 the vertices with less than 3 grains constitute a tropical curve

- Sandpile models and their evolution.
- For the square in \mathbb{Z}^2 the vertices with less than 3 grains constitute a tropical curve
- From the matroidal point of view, tropical geometry is about subdivisions of the Newton polygon of a curve.

- Sandpile models and their evolution.
- ullet For the square in \mathbb{Z}^2 the vertices with less than 3 grains constitute a tropical curve
- From the matroidal point of view, tropical geometry is about subdivisions of the Newton polygon of a curve.
- Constraints, imposed by singular points on the coefficients, are visible on this subdivision.

- Sandpile models and their evolution.
- \bullet For the square in \mathbb{Z}^2 the vertices with less than 3 grains constitute a tropical curve
- From the matroidal point of view, tropical geometry is about subdivisions of the Newton polygon of a curve.
- Constraints, imposed by singular points on the coefficients, are visible on this subdivision.
- A definition of an abstract tropical curve and a tropical differential form.

Thank you for your attention!

Geneva, 2015