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I have quite broad interests in low-dimensional Geometry and Topology, such as Knot theory,

Tropical, Hyperbolic, Convex and Non-commutative geometry, Combinatorics and Mathematical
Physics, including sandpile model, string theory and condensed matter physics. In my early years
I’ve been doing some homological algebra in relation with TQFT’s. One of my major current
interests is the interplay between Number theory, Enumerative Geometry and non-archemidean
dynamics.

I’m finishing my PhD under the supervision of Grigory Mikhalkin in the University of Geneva,
Switzerland. During my master program we started to work on a new topic in the theory of
amoebas. The usual logarithmic amoebas were introduced in the theory of discriminants (see [1])
as images of algebraic subvarieties unsder the map Log : (C∗)n 7→ Rn. Group theoretically this
map can be described as factorization by the maximal compact subgroup (S1)n in the algebraic
torus. Replacing an algebraic group (C∗)n by a group PSL2C in this description, we arrive to
the definition of hyperbolic amoebas (to appear in [21]). This name comes from the fact that
PSL2C has SO(3) as its maximal subgroup and the quotient is H3. In my thesis, I show that
non-commutativity of PSL2C (oposed to commutativity of algebraic torus) induces certain critical
phenomena manifested at the level of hyperbolic amoebas that can be used to approach topological
problems in the theory of real algebraic surfaces and projective knots.

Figure 1: Matched pairs of crossings (on the left) and the minimal diagram 946 of the preztzel knot
P(3,3,-3) (on the right). The second Alexander ideal of this knot is spaned by 3 and t+1 in the
ring of integral Laurent polynomials and, thus, the knot is not bipartite, i.e. doesn’t admit the
diagram consisting exclusively of matched pairs.

Before arriving to Geneva, I had been working with Sergey Duzhin in Saint-Petersburg. One of
my favourite achievements was the proof [5] of a long-standing Przytycki conjecture stated in [3]
which is included to the renowned Kirby list of problems in low-dimensional topology [2]. A knot is
called bipartite if it admits a matched planar diagram. An oriented link diagram is called matched
if the crossings come in pairs shown in the figure 1 on the left. All knots up to 7 crossings are
bipartite. Our attention to this class of knots is due to a general observation that certain quantum
invariants have a particular nice form for such knots. This observation has been exploited in [4, 6]
for Homflypt and Kauffman polynomials on rational links and, in a similar way, in [7] by Krasner for
Khovanov-Rozansky homology on matched tangles. In [5] we show that if a knot is bipartite then
its higher Alexander ideal cannot contain t+ 1 provided the ideal is proper in Z[t, t−1]. Therefore,



we have shown that there exist non-bipartite knots which was exactly the content of the conjecture
mentioned above. Our technique recently has been used by Lewark and Lobb in [8] to show that
there exist infinite families of bipatite and non-bipartite pretzel knots.

During my stay in Geneva I had a succefull collaboration with Nikita Kalinin, another PhD
student of my working group. The work was initiated when our advisor, Grigory Mikhalkin, gave
me a copy of the paper [14], a short text on experimental condensed matter physics recomended
him by one of the authors. The model was a cellular automaton called abelian sandpile model and
the main discovery was a numerical evidence for presense of certain conservation law similar to one
obeyed by strings or tropical curves (the balancing condition [19]). Armed with newly studied tools
from tropical and toric geometry, discrete harmonic analysis and number theory we attempted to
study this model. As the main result of our work, we have shown that there exist a new type
of scaling limits in sandpiles [16] similar to [12]. Moreover, the limits are effectively described in
terms of tropical idempotent dynamics which we develop in [17]. This dynamics, in a sense, can be
seen as a continous analog of the original self-organized criticality [9], since as we found emprically
by means of supercomputer (to appear in [22]) the system demonstrates power-laws for the sizes
of avalanches and doesn’t have any continous tuning parameters such as temperature or magnetic
field in similar models.
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Figure 2: The operator Gp, the combinatorial shadow of quasi-algebraic Sp, shrinks the face Φ of
the tropical curve where p belongs to. The resulting curve solves the tropical Steiner problem for
one inner points p and five outer points (the ends of the curve).

The tropical idempotent dymamics can be lifted to quasi-algebraic non-archemedian dynamics
in characteristic 2. The lift is easy to describe. Let k be a filed of characteristic two. For every
point p ∈ (k∗)2 there is a well defined idempotent operator Sp acting on the space of polynomials
over k with a fixed support of coefficients A ⊂ Z2. This operator given by the formula

Spf(z) = f(z) +
√
f(z2p−1)f(p).

The square root is the inverse to the Frobenius (we assume it is an isomorphism). The operator Sp
is an algebra-geometric analog of the idempotent perturbation

φ 7→ (φ+ δz)
◦ − δz,

of [CPS11], where z = val(p) and ψ◦ denotes the relaxation of ψ. Note that (Spf)(p) = 0 for any
f and if f(p) = 0 then Spf = f. And so, Sp is a canonical projector on the space of polynomials
vanishing at p. In fact, if k is a non-archemedian field with the valuation val, then

V al(Spf) = Gval(p)V al(f)



and Gval(p) is an idempotent operator (see Figure 2) of the tropical dynamics arising from the
scaling limit of the idempotent perturbation acting on large sandpiles (as we discovered in [17]).
Now I’m working on certain stabilization and convergence conjectures concerning mutual dynamics
of finite collection of such idempotent operators. It is a problem of great importance, to find a
characteristic zero (or any other) analog of Sp, and I’m looking for the ideas that might provide a
better understanding of these questions.

Figure 3: The neutral element of the sandpile group, combinatorial incornation of the Jacobian
variety, on a big square. The cites are coloured with represent to the values {0,1,2,3} of this sandpile
at every cite. The fractality here might be of the non-archemedian origin. Mind the tropical curves
popping up in the triangles.

The original sandpile model inroduced in the celebrated paper [9] is a principal example of
a discrete stochastic dynamical system demonstrating a variety of sapid properties such as self-
organized criticality and power-laws manifested regardless of any tuning parameters. This makes it
similar to some natural phenomena such as earthquakes, solar flares or noises in electrophysiological
signals and could be usefull in their study. The evolution operator

φ 7→ (φ+ δp)
◦

of this dynamics acts on the space of all stable sandpiles φ : Γ→ {0, 1, 2, 3} on a fixed large portion
Γ of the square grid Z2 and p ∈ Γ in δp (the function which is equal to one at p and vanishes
elsewhere) is chosen randomly at each step. A general sandpile ψ is a non-negative itegral function



Figure 4: The deviation locus (black – less than 3 grains, white – 3) for the maximal stable state on
the triangular domain perturebed at two points converging to a tropical curve passing throug the
perturbation points where. We add a single grain at each of the perturbation points. This curve
minimizes the symplectic area of the curve and therofore solves a tropical analog of the Steiner tree
problem. The scale of the last picture is four times bigger than the scale of the first and two times
bigger than the scale of the second. This is a prototipe of the scalinig limit introduced in [16].

on Γ representing a distribution of sand grains and by (ψ)◦ we denote the relaxation of ψ, i.e. the
stable sandpile derived by performing as much topplings as possible. A toppling at certain cite of
Γ is just the redistribution of 4 grains of sand among its neighbours. Note that some number of
grains can leave the system during the relaxation. Clearly, we have ψ = ψ◦ if and only if ψ ≤ 3,
and such a sandpile is called stable. Therefore, one can vaguely interpret the original model as a
randomly growing sandpile on a given finite domain.

The usage of the term “self-organized criticality” is justified by the fact that the system has an
attractor consisting of the so-called recurrent sandpiles first studied mathematically in [10]. The
sandpile group of a finite graph is one of the cutting-edge objects of the modern combinatorics
intimately related to Jacobians of algebraic curves and domino-tillings (see [11]). It is an abelian
group formed by all recurrent sandpiles on Γ and the operation is given by

(φ, ψ) 7→ (φ+ ψ)◦.

One might think that the neutral element in this group is equal to the empty sandpile. The reality
is much more complicated, and for a general Γ the sandpile which is identically zero is not reccurent:
in fact it cannot appear in the dynamics after the first step. An example of the unit element in the
sandpile group for a square Γ = Z2 ∩ [0, N ]2 is shown on the Figure 3. Although, the picture itself
suggests a variety of nice geometric conjectures such as the existence of the fractal-like scaling limit
almost nothing is known rigorously about the shape of this particular sandpiles for an arbitrary N.

In contrast, a big progress is made in [12, 13] where the scaling limit for the process of adding a
grain at a single cite on the whole grid is shown to exist (the approximation to this limit is shown
on Figure 5). Moreover, some of its fractal nature is explained there.

If we look carefully at Figures 3 and 5 pictures we may notice some piecewice linear graphs inside
of peripherical triangles. In fact, these are not simply graphs but tropical curves, combinatorial
counterparts of holomorphic and non-archemedian curves, they have rational slopes and satisfy the
balancing condition at every vertex (see [19] for the introduction to the subject). The emergence



Figure 5: The result of the relaxation for the sandpile 28 · 106δ(0,0) on Z2. The fractality here is
described in terms of circle paking (see [13]). The emergense of tropical curves here is still not
clear.

of tropical geometry in these sandpiles is not accidental and is partially explained in our work [17].
The new scaling limit for sandpiles is introduced in this paper. The limits are completely described
in terms of tropical analytic curves. In the case of lattice polygons these curves appear to be finite
graphs providing solutions of a certain minimization problem of Steiner type (see [16]). Also, we
may think that our work provides a description of the heavy layer of the sandpile group, identifying
it with a space of soliton curves on the domain.

Inspired by the study of inner structure of curves arising in sandpiles, we have been able define
a canonical pro-object in the category of toric schemes. This construction seems to be very similar
to [20] (or to be even a generalization), where they constructed non-commutative toric manifolds
having irrational moment polytopes. This direction looks very promising for the applications to
geometry of numbers and convex geometry. For example, we have found natural coordinates on
the space of all convex domains on the plane modulo Sl2Z. Namely, we found a canical embedding
of this quotient to the space of all metrized trees. The later space can be viewed as a boundary
of M0,∞, the moduli of an infinetly punctured sphere. This observation can lead to some fruitfull
applications to classical convex geometry.



In [18] we prove an analogue of the scaling limit theorem in a particular hyperbolic case, where
we consider specific convex piece of the triangular heptagonal lattice. The proof appears to be
much simpler than in the flat case since the deviation locus for the maximal stable state on a finite
hyperbolic disc looks like a complement of the graph to a single ball. In a very similar way as in
the case of tropicals curves and sandpiles on a grid, the hyperbolic analogues of amoebas in H3 of
hypersurfaces in PSL2C have a similar shape (see [21]) as the deviation locus of perturbation of
the maximal stable state. This again motivates a deeper study of the relation between sandpiles
on lattices and limits of algebraic varieties.
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