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Abstract. This is a draft of the second part of the article entitled “Trop-

ical curves in 2-dimensional sandpile model”. Here we study the case of an
arbitrary boundary.

1. Sandpile models

For an introduction, see our article [6] and references therein.
Here we prove that the limiting procedure for sandpiles defined on an convex

body gives almost the same answer as for polygonal boundary. Namely, the critical
locus tends to a tropical curve, but it has infinite number of vertices now. For that
we develop some polytope theory and study different convergency questions.

2. Tropical series

Definition 1. We say that a polygon ∆ ⊂ R2 is a Q-polygon if all its sides have
rational slopes.

Definition 2. [10] A function F : Ω→ R is called a tropical series if for each x ∈ Ω◦

there exists a neighbourhood U ⊂ Ω of x such that F |U is a tropical polynomial.

Let Ω be a convex domain and p̄ = {p1, . . . , pn} be a collection of points in Ω◦.
We always assume that the collection of points p̄ is non-empty. Denote by V (Ω, p̄)
the set of tropical series F on Ω such that F |Ω ≥ 0 and F is not smooth at each of
the points pi.

Definition 3. For x ∈ Ω◦ define GΩ
p̄ (x) = inf{F (x)|F ∈ V (Ω, p̄)}.

Lemma 1. The function GΩ
p̄ is a tropical series.

Proof. Let us take a point q ∈ Ω◦. If in a neighbourhood of q the function GΩ
p̄ is

the minimum of a finite number of tropical polynomials then it is itself a tropical
polynomial. It remains to show that near q the function GΩ

p̄ can not be a minimum
of infinite number of series. If it is indeed the case, then, using the fact that all our
linear functions are of the type ix+ jy+ aij , i, i ∈ Z, we obtain that GΩ

p̄ (q′) = −∞
for some q′ arbitrary close to q what is impossible since GΩ

p̄ ≥ 0. �

In the notation of [6] the function GΩ
p̄ is Gp1,...,pn(0).

Date: May 3, 2015.

Key words and phrases. Tropical curves, sandpile model, tropical dynamics, tropical series.
Research is supported in part by the grants 140666,159240 of the Swiss National Science

Foundation as well as by the National Center of Competence in Research SwissMAP of the Swiss
National Science Foundation.

1



2 N. KALININ, M. SHKOLNIKOV

Figure 1. Additional grain of sand thrown to the center. Sand
picture and limiting example.

Remark 1. Each tropical series f is a concave, piece-wise linear with integer slopes
real-valued function on Ω◦, in general f cannot be extended to Ω.

Corollary 1. The functional F 7→
∫

Ω
Fdxdy defined on the space V (Ω, p̄) has a

unique minimum GΩ
p̄ .

Definition 4. Let CΩ
p̄ be a tropical analytic curve defined as the set of points

where GΩ
p̄ is not smooth.

Note that GΩ
p̄ is a tropical polynomial if Ω is a lattice polygon, as we proved in

[6].

Definition 5. A tropical analytical curve in Ω is the locus of non-linearity of a
tropical series on Ω.

Definition 6. For any w ∈ Z2 denote by cw the infimum of w · x over x ∈ Ω. Let
AΩ be the set of all such w that cw 6= −∞. If w ∈ AΩ define function lwΩ to be

lwΩ(x) = w · x− cw.

Note that lwΩ is positive on Ω◦ and it is actually a support function for Ω.

Definition 7. The weighted distance function lΩ on Ω is defined by

lΩ(x) = inf
w∈AΩ

lwΩ(x) = “
∑
w∈AΩ

cwx
w ”

Since lΩ is an infimum of non-negative functions, it s a non-negative concave
continous function on Ω. For each point x ∈ Ω◦

Definition 8. Denote by CΩ the tropical analytic curve defined by lΩ.

Definition 9. Let RΩ be a set of points on x ∈ ∂∆ such that lwΩ(x) = 0 for some
w ∈ AΩ.

Lemma 2. The set ∂Ω\R̄Ω is a disjoint union of intervals with irrational slope.
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Proof. Consider a connected component I of ∂Ω\R̄. Note that if I is not a straight
interval, then we can find a line {lwΩ = 0} such that its intersection with I is not
empty. Thus, I is a straight interval that cannot have a rational slope because
otherwise I ⊂ R. �

Lemma 3. For a smooth convex function f with f(0) = 0 we have f((f ′)−1(x)) < x
for x close to 0.

Proof. Indeed, denote y = (f ′)−1(x), then we have f(y) < f ′(y) which easy follows
from convexity for y < 1. �

Lemma 4. For each convex function f such that f > 0 on (0, ε] there exists a
smooth convex function f̄ > 0 on (0, ε′], ε′ > 0 such that f < f̄ on [0, ε′].

Proof. We can consider the function f1(x) = f(x) · x2, then choose a sequence
pi → 0 and then draw piece-wise linear f2 through points f1(pi) and smoothen it.
Namely, the fact that the interval between (pi, f1(pi)) and (pi−1, f1(pi−1)) is below

the graph of f follows from pi−1
f(pi)
pi
≥ f(pi−1)p2

i−1, so we choose p1 = ε and pi

from the condition f(pi)
pi

= 2f(pi−1)pi−1. Clearly pi < pi−1 and the only limiting

point p∗ of the sequence of pi is p∗ = 0 since f(p∗)
p∗ = 2f(p∗)p∗ implies f(p∗) = 0

or p∗ = 1/
√

2 but we chose ε′ small enough. Then we smooth this piecewise linear
function.

�

Lemma 5. The function lΩ can be continuously extended to ∂Ω by zero.

Proof. It is clear that lΩ is zero on the closure of zero sets of functions lw, w ∈ Z2.
It means that it is enough to consider the situation near irrational smooth edges.
Consider an edge of a boundary with irratioanl slope α. By the previous lemma
we can suppose that the boundary near the edge is given by a garph of a smooth
function αx + f(x). By continued fractions for an irrational number α we get
two sequences of numbers, p2n/q2n < α < p2n+1/q2n+1 such that α − p2n/q2n <
1/q2

2n, p2n+1/q2n+1 − α < 1/q2
2n+1. Take an approximation p/q = pi/qi for α.

Then for a tangency of slope p/q we have α + f ′(x0) = p/q, then the equation
of the line is y−αx0 − f(x0) = p/q(x− x0) and we want its value at (−t,−αt). Id
est, x0 = (f ′)−1(p/q − α),

q(y − α(f ′)−1(p/q − α)− f((f ′)−1(p/q − α))) = p(x− (f ′)−1(p/q − α)).

−t(αq − p) + (p− αq)((f ′)−1(p/q − α))− qf((f ′)−1(p/q − α))

Since |αq − p| < 1/q we have | − t(αq − p)| < t/q,

(p− αq)((f ′)−1(p/q − α)) < 1/q(f ′)−1(1/q2),

which tends to zero as q →∞, and since f((f ′)−1(x)) < x for x small enough, we
have

qf((f ′)−1(p/q − α)) < q(p/q − α) < 1/q.

�

Remark 2. If f(x, y) = ix+ jy + aij , i, j ∈ Z, aij ∈ R, f |Ω ≥ 0 and (i, j) 6= (0, 0),
then f ≥ lΩ on Ω.

Remark 3. For a point q ∈ Ω◦ we have GΩ
{q}(x) = min{lΩ(x), lΩ(q)}.
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Proposition 1. It follows from the previous remark that there exists ε > 0 such
that GΩ

p̄ (x) ≥ lΩ(x), for any x in the ε-neighbourhood of ∂Ω.

Proposition 2. For any x ∈ Ω, and p̄ = {p1, . . . , pn}

GΩ
p̄ (x) ≤

∑
GΩ
{pi}(x) ≤ n · lΩ(x)

3. Limits of toppling functions for an arbitrary boundary

Lemma 6. Consider a function F on Ω given by F (x) = inf G∆
p̄ (x), where the

infimum is taken over all the Q-polygons ∆ containing Ω. Then F coincides with
GΩ
p̄ .

Proof. Consider an arbitrary point q ∈ Ω◦. Since G∆
p̄ |Ω ∈ V (Ω, p̄) for any ∆ ⊃ Ω,

we have F (q) ≥ GΩ
p̄ (q). On the other hand, there exist only a finite number of

monomials in GΩ
p̄ which contribute to the values of GΩ

p̄ at all the points pi ∈ p̄

and q. Thus, eliminating all the other monomials from GΩ
p̄ , we get a new tropical

polynomial F0. Note that F0 is not smooth at the points pi and F0(q) = GΩ
p̄ (q).

Moreover, the set of points where F0 ≥ 0 contains a Q-polygon ∆0 ⊃ Ω, because
F0|Ω ≥ 0. This implies that F0 ∈ V (∆0, p̄) from which it immidiatly follows that

GΩ
p̄ (x) = F0(x) ≥ G∆0

p̄ (x) ≥ F (x).

�

Lemma 7. For any ε > 0 the set Ωε = {x ∈ Ω|GΩ
p̄ ≥ ε} is a Q-polygon and GΩ

p̄ |Ωε

is a tropical polynomial.

Proof. Since GΩ
p̄ is continous and vanishes at the boundary of Ω, the set GΩ

p̄ = ε
is a curve disjoint from ∂Ω. We claim that the intersection of Ωε with the tropical
analytic curve defined by the series GΩ

p̄ is a finite part of a tropical curve. Indeed,
if the intersection is supported on an infinite graph, then we can find a sequence
of vertices convergent to a point y ∈ Ω◦. Thus, there is no neighbourhood of y
where the series GΩ

p̄ can be represented by a tropical polynomial, which it is a
contradiction.

The finiteness of the number of vertices implies that there is only a finite number
of monomials participating in the restriction of GΩ

p̄ to the domain Ωε. �

Remark 4. For a convex domain Ω we constructed a canonical series of polygon
Ωε → Ω. This could lead to new toric insights.

Lemma 8. In the hypothesis of the previous lemma, for ε > 0 such that GΩ
p̄ (pi) ≥ ε

for each pi ∈ p̄ we have GΩε
p̄ = GΩ

p̄ − ε.

Proof. We can canonically extend GΩε
p̄ + ε to Ω, using the fact that it is a tropical

polynomial. Since GΩε
p̄ + ε is linear near each side of ∂Ωε and GΩε

p̄ + ε ≤ GΩ
p̄ inside

Ωε, we have GΩε
p̄ + ε ≥ GΩ

p̄ on Ω \ Ωε. Then, GΩε
p̄ + ε ∈ V (Ω, p̄), that finishes the

proof. �

Lemma 9. Consider a function F on Ω given by F (x) = supG∆
p̄ (x), where the

supremum is taken over the set of all lattice polygons ∆ ⊂ Ω containing x. Then F
coincides with GΩ

p̄ .
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Proof. It is clear that GΩ
p̄ ≥ F on Ω. Consider a point q ∈ Ω◦ and ε > 0 such

that GΩ
p̄ (q) > ε and GΩ

p̄ (pi) > ε for each pi ∈ p̄. We are going to prove that

F (q) + ε ≥ GΩ
p̄ (q). Lemma 7 implies that the set Ωε = {x ∈ Ω|GΩ

p̄ (x) ≥ ε} is a Q-

polygon. Evidently, q ∈ Ωε and F ∈ V (Ωε, p̄), therefore F (q) ≥ GΩε
p̄ (q) = GΩ

p̄ (q)−ε.
�

Theorem 1. A sequence of functions FΩ
N : Ω→ R given by

FΩ
N (x, y) =

1

N
TopplΩφN

([Nx], [Ny])

uniformly converges to GΩ
p̄ .

Proof. It is clear that FN (∆)(x, y) ≤ FN (Ω)(x, y) ≤ FN (∆′)(x, y) for polygons
∆,∆′ such that ∆ ⊂ Ω ⊂ ∆′. Then, using Theorems from the previous article we
get G∆

p̄ = limFN (∆)(x, y) ≤ limFN (∆′)(x, y) = G∆′

p̄ . Then, applying Lemmata 6
and 9 by standard squeeze convergency arguments we get

lim
∆
G∆
p̄ = lim

N
FN (Ω)(x, y) = lim

∆′
G∆′

p̄ = GΩ
p̄ .

�

Theorem 2. The sequence of sets 1
NEN has a limit C̃ in Ω in the Hausdorff sense.

Proof. Indeed, 1
NEN tends to GΩε

p̄ on Ωε for each ε > 0. �

Corollary 2. We can do all the same for all convex domains, possibly unbounded.

Corollary 3. Furthermore, under the above hypothesis, C = C̃\∂Ω is the zero set
of an infinite tropical series GΩ

p̄ . Moreover, C passes through the points p1, . . . , pn
and ∂∆ \ C is the collection of intervals with rational slopes.

Remark 5. Consider a halfplane with irrational slope of its boundary. That is
unique example where we have no limit.

4. Tropical symplectic length of curves defined by tropical series

Definition 10 (See [3]). The tropical symplectic area of a finite segment l with
a rational slope is given by Area(l) = Length(l) · Length(v), where Length(−)
denotes a Euclidean length and v is a primitive integer vector parallel to l. If C ′

is a finite part of a tropical curve, then its symplectic area is the weighted sum of
areas for its edges, i.e.

Area(C ′) =
∑

e∈E(C′)

Area(e) ·Weight(e).

Definition 11. We say that G is antirational if ∂G contains a connected part r
which contains no subsets of rational slope.

Remark 6. For ∆ which are neither Q-polygons nor antirational, the Area(C∆)
can be infinite or finite.

Lemma 10. If ∂G is antirational then Area(CΩ) is infinite.
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Proof. This lemma is somewhat similar to Theorem 1 in [3] but has no direct
relation with it. Since Ω is antirational, there is a part r of ∂Ω which contains no
sides of rational slope. We consider the polygons Ωε. Let us choose rε ⊂ ∂Ωε such
that rε → r. Recall that Area(CΩ ∩ Ωε) equals to the sum of euclidean lengths of
the sides of Ωε with the weights, given by their directions. Since r contains no sides
of rational slopes, then for each N > 0 the sum si of euclidean lengths of edges in

rε with slopes (p, q),
√
p2 + q2 < N tends to zero. This implies that Area(rε)→∞

as ε→∞, because Area(rε) ≥ N × (rε − sε). �

Question: what is the euclidean length of this tropical curves?
Since the tropical symplectic area of CΩ in infinite, it is natural to consider some

kind of regularisation.

Definition 12. Regularized area of CΩ
p̄ is the limit by compactsK ⊂ Ω ofArea(CΩ

p̄ ∩
K)−Area(CΩ ∩K).

Lemma 11. If ∂Ω contains no sides with rational slopes then the regularised area
of each CΩ

p̄ is zero.

Proof. Indeed, if we consider the weights on ∂Ωε for CΩ
p̄ and CΩ, they differ only

on finite number of intervals. Since ∂Ω contains no sides with rational slopes, all
these intervals tends to zero. �
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[5] Erwan Brugallé, Some aspects of tropical geometry, Newsletter of the European Mathematical
Society,(83) (2012): 23-28.

[6] Nikita Kalinin, Mikhail Shkolnikov Tropical curves in 2-dimensional sandpile model,

arXiv:1502.06284
[7] Wesley Pegden and Charles Smart, Convergence of the Abelian sandpile, Duke Mathematical

Journal 162.4 (2013): 627-642.
[8] F. Redig, Mathematical aspects of the abelian sandpile model, Les Houches lecture notes.

[9] Lionel Levine, Wesley Pegden, Charles K. Smart, Apollonian structure in the Abelian sand-

pile, arXiv preprint (2012), http://arxiv.org/pdf/1208.4839.pdf
[10] Michael Temkin, Introduction to Berkovich analytic spaces, arXiv:1010.2235.

Université de Genève, Section de Mathématiques, Route de Drize 7, Villa Battelle,

1227 Carouge, Switzerland

E-mail address: Nikita.Kalinin{at}unige.ch, nikaanspb{at}gmail.com
mikhail.shkolnikov{at}gmail.com


	1. Sandpile models
	2. Tropical series
	3. Limits of toppling functions for an arbitrary boundary
	4. Tropical symplectic length of curves defined by tropical series
	References

