

How to visualize (the dynamics of) molecular interactions?

Förster or Fluorescence Resonance Energy Transfer (FRET)

Intramolecular FRET (biosensors)

METHOD

Ratiometric imaging approach (Donor/Acceptor)

MICROSCOPES

Oconfocal: Nipkow/ spinning disk, Nikon A1r spectral/CLSM
Owidefield: Bioflux

SOFTWARES

NIS-Elements, Metafluor, Metamorph, ImageJ

CONDITIONS

- Key factors are:
 - O Distance A-D <100 Å (Ro)
 - O Overlap \(\text{Acceptor} \) \(\text{Acceptor} \)
 - O Fluorophore orientation
 - O Biological context
 - O Transfection level
- Controls are required to define the FRET efficiency (lowest and highest values, FRET range):
 - O positive control (high FRET efficiency, biosensor constitutively active)
 - O negative control (low FRET efficiency, biosensor constitutively inactive)

PROTOCOLE

Kardash et al. (2011). Imaging protein activity in live embryo using fluorescence resonance energy transfer biosensors. Nat. Protoc. Nov 3;6(12):1835-46

http://zeiss-campus.magnet.fsu.edu/articles/spectralimaging/spectralfret.html

Common Fluorescent Protein FRET Biosensor Strategies Sensory Domain No FRET Sensory Domain Figure 9 Protease Cleavage No FRET No FRET (d) No FRET

Intermolecular FRET

METHODS

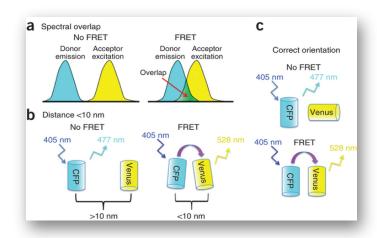
- FRET by intensity measurement
- FRET by Acceptor photobleaching
- O FRET by Donor photobleaching
- O FRET by lifetime measurement (TCSPC, Time Correlated Single Photon Counting) O FRET by fluorescence anisotropy

MICROSCOPES

- Confocal: Nikon A1r spectral/CLSM
- O FLIM (Fluorescence Lifetime Imaging Microscopy)
 by single-photon counting
 O FCS/ FCCS
 (Fluorescence (Cross-) Correlation Spectroscopy)

SOFTWARES

NIS-Elements, ImageJ


CONDITIONS

- Ney factors are:
 - O Distance A-D <100 Å (Ro)
 - O Overlap λem(Donor) λex(Acceptor)
 - O Stoechiometry D-A 1:1
 - O Fluorophore orientation
 - Biological context
 - O Transfection level
- Controls are required to define the FRET efficiency (lowest and highest values):
 - O D alone, A alone, D+A (constructs)

PROTOCOLE

https://www.unige.ch/medecine/bioimaging/en/information/tutorials/and go to: "F-techniques> * How to perform FRET experiments?"

Broussard et al. (2013). Fluorescence resonance energy transfer microscopy as demonstarted by measuring the activation of the serine/threononce kinase Akt. Nat. Protoc. 8, Jan 10, 265-281.

