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Abstract

Extensive training on simple tasks such as fine orientation discrimination results in large

improvements in performance, a form of learning known as perceptual learning. Previous

models have argued that perceptual learning is due to either sharpening and amplification of

tuning curves in early visual areas or to improved probabilistic inference in later visual areas

(at the decision stage). However, early theories are inconsistent with the conclusions of

psychophysical experiments manipulating external noise, whereas late theories cannot

explain the changes in neural responses that have been reported in cortical areas V1 and V4.

Here we show that we can capture both the neurophysiological and behavioral aspects of

perceptual learning by altering only the feedforward connectivity in a recurrent network of

spiking neurons so as to improve probabilistic inference in early visual areas. The resulting

network shows modest changes in tuning curves, in line with neurophysiological reports,

along with a marked reduction in the amplitude of pairwise noise correlations.
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Extensive training on simple behavioral tasks such as vernier acuity 
or orientation discrimination leads to a gradual improvement in 
performance over several sessions, a form of learning known as per-
ceptual learning1–3. This form of learning has been observed in a 
wide range of tasks and across many modalities, thus suggesting that 
it represents a general mechanism by which humans and animals 
improve their performance in response to task demands4–9. Although 
the behavioral consequences of such learning are well understood, 
there is debate in the literature as to the nature of the neural changes 
that underlie the observed behavioral changes.

Perceptual learning is typically very specific both in terms of the 
task itself and in terms of the location of the training1,10–12 (but see 
refs. 13,14). For instance, in the visual domain, training on vernier 
acuity does not transfer to other tasks such as orientation discrimina-
tion or to the same vernier shown at a different retinal location2. This 
specificity, particularly the specificity to retinal location, suggests that 
this form of learning engages early visual areas where retinotopy is 
reasonably well preserved15. This is indeed consistent with single-
cell recordings, which have revealed modifications in the response 
properties of cells in early and midlevel visual areas such as V1 and V4 
after extensive training on orientation discrimination8,9,16. Two main 
types of changes have been reported: a sharpening and an amplifica-
tion of tuning curves to orientation (Fig. 1a). Theoretical studies have 
argued that such changes could account for the observed behavioral 
improvement, as both types of changes increase the slope of the tuning 
curves, thereby increasing the ability of single neurons to discriminate 
orientation17,18. Moreover, at least one study has also proposed that 
perceptual learning leads to reduced internal noise through a lowering 
of the Fano factor (the ratio of the variance over the mean of spike 
counts) of visual cells16, a change that could also potentially explain 
the behavioral improvement.

Although these studies offer a potential neural mechanism for 
perceptual learning in a fine orientation discrimination task, there are 
several open issues, and serious problems, with this perspective. First, 
the claim that tuning curve sharpening and amplification, or noise 
reduction, accounts for the observed behavioral improvement rests on 
the assumption that neural variability is independent before and after 
learning17,18. This assumption is problematic because neural variability 
is correlated in vivo19–21 and these noise correlations are likely to change 
before and after learning if learning is due to changes in connectivity, as is 
assumed in these models17,18. This is all the more serious because, when 
noise correlations are taken into account, previous studies have shown 
that amplification and sharpening by means of lateral connections do 
not necessarily result in more informative neural representations, and 
therefore do not necessarily lead to behavioral improvements22,23.

Second, it is unclear whether current neural theories can account 
for the effect of perceptual learning on what is known as the ‘thresh
old versus external noise contrast’, or TVC, curve, a comprehensive 
measure of human perceptual sensitivity that has been widely used to 
reveal observer characteristics in a wide range of auditory and visual 
tasks and changes of the perceptual limitations associated with cogni-
tive, developmental and disease processes24. A TVC curve shows the 
perceptual threshold (detection or discrimination threshold, depend-
ing on the task) of a subject, as a function of the amount of external 
noise present in the stimulus (that is, the noise injected in the image 
on every trial; see top of Fig. 1b). When plotted on a log-log scale, this 
curve takes on a characteristic shape (Fig. 1b). For low levels of exter-
nal noise, the perceptual threshold stays relatively constant as external 
noise increases because internal noise dominates. For large values of 
external noise, by contrast, the perceptual threshold increases linearly 
with the logarithm of the amplitude of the external noise because 
external noise is now the dominant source of variability.
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Perceptual learning as improved probabilistic 
inference in early sensory areas
Vikranth R Bejjanki1,4, Jeffrey M Beck1,2,4, Zhong-Lin Lu3 & Alexandre Pouget1

Extensive training on simple tasks such as fine orientation discrimination results in large improvements in performance, a form 
of learning known as perceptual learning. Previous models have argued that perceptual learning is due to either sharpening and 
amplification of tuning curves in early visual areas or to improved probabilistic inference in later visual areas (at the decision 
stage). However, early theories are inconsistent with the conclusions of psychophysical experiments manipulating external noise, 
whereas late theories cannot explain the changes in neural responses that have been reported in cortical areas V1 and V4. Here 
we show that we can capture both the neurophysiological and behavioral aspects of perceptual learning by altering only the 
feedforward connectivity in a recurrent network of spiking neurons so as to improve probabilistic inference in early visual areas. 
The resulting network shows modest changes in tuning curves, in line with neurophysiological reports, along with a marked 
reduction in the amplitude of pairwise noise correlations.
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Several experiments have shown that TVC curves change in a 
very specific manner during perceptual learning: the entire curve 
shifts down by a constant amount from one training session to the 
next (Fig. 1c)4,25–27. As argued by some authors, such a uniform 
shift in TVC curves is consistent with a ‘late’ theory of perceptual 
learning4,24–28. This conclusion relies on an engineering-inspired 
model containing two stages of processing: a sensory processing 
stage typically composed of a set of oriented spatial filters corrupted 
by additive and multiplicative noise, followed by a decision stage 
(Fig. 1d). In this class of models, the uniform shift in TVC curves 
is best explained by changes to the connections between the sensory 
representation and the decision stage, as opposed to a change in the 
early sensory representation29. Such results are consistent with a ‘late’ 
theory of perceptual learning, as cortical areas involved in decision 
making, such as the lateral intraparietal area (LIP) and the prefrontal 
cortex (PFC), are late in the hierarchy of cortical processing. This 
is also consistent with a recent report documenting a change in the 
response properties of LIP neurons as an animal learns a motion  
discrimination task30,31.

The problem with this conclusion, however, is that training on 
orientation discrimination has been shown to cause changes in the 
response of neurons in areas V1 and V4, two areas that are not thought 
to be implicated in decision making. Moreover, neurally inspired 
models that have been developed to capture the learning-induced 
changes in TVC curves assume noise sources, such as multiplicative 
and additive noise, that cannot easily be mapped onto neural variabil-
ity4. Indeed, although neuronal responses are known to be variable, 
this variability is neither additive nor multiplicative, but rather seems 
to show properties that are close to the Poisson distribution32.

In this paper, we show that all these perspectives can be reconciled 
when we consider a neural model of perceptual learning with realistic 
response statistics. In such a model, learning can be implemented in 
early visual areas in a manner that captures all the main features of 
the observed TVC curve changes, while also explaining the retinal 
specificity of learning. In addition, the model reveals that the key to 
learning is not to sharpen or amplify tuning curves, as these changes 
are neither sufficient nor necessary for learning. Instead, the key is 
to improve the efficiency of probabilistic inference in early cortical 
circuits by adjusting the feedforward weights in a manner that brings 
them closer to a matched filter. We show that at the neural level, this 
weight adjustment has only a minor effect on the shape of the tuning 
curves (as has been found in vivo) but leads to a large decrease in the 
magnitude of pairwise noise correlations.

RESULTS
Template matching in primary visual cortex
Several aspects of the neural architecture used in our simulations 
(Fig. 2a; see Supplementary Note) are based on previous models 
of orientation discrimination, particularly the models in refs. 33 
and 22. The model consists of three layers: retina, lateral genicu-
late nucleus (LGN) and V1. The retinal layer corresponds to grids 
of ON- and OFF-center ganglion cells modeled by difference-
of-Gaussian filters. The output of each filter is passed through 
a smooth nonlinearity and used to drive the LGN cells, which 
generate Poisson spikes. The output spikes from the LGN cells are 
pooled using oriented Gabor-function (a product of cosine and 
Gaussian functions) receptive fields, the orientations of which are 
uniformly distributed around a circle. The pooled output from 
the LGN cells is then used as input to V1. The V1 stage repre-
sents an orientation hypercolumn—a set of neurons with recep-
tive fields centered at the same spatial location but with different 
preferred orientations—of linear-nonlinear-Poisson (LNP) neu-
rons, coupled through lateral connections (see Online Methods).  
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Figure 1  Neural and behavioral correlates of perceptual learning.  
(a) An illustration of the two types of changes observed in the tuning 
curves of trained orientation-selective neurons. Each panel shows an 
illustration of a tuning curve before (blue) and after (red) learning. The 
x axis represents orientation (in degrees) and the y axis represents firing 
rate (in Hz). (b) The characteristic shape of a threshold-versus-contrast, 
or TVC curve, plotted on a log-log scale, showing the two main regimes. 
The x axis represents the external noise added to the stimulus (example 
stimuli are shown in the top panel). The y axis represents the signal 
contrast needed to elicit the specific level of performance. (c) Observed 
changes in TVC curves as a result of perceptual learning, at two levels 
of performance27. Signal contrasts needed to elicit a specific level of 
performance, estimated at each of eight levels of external noise, are 
shown averaged over pairs of days. Smooth TVC curves are fits of the 
Perceptual Template Model (PTM)27. The axes are the same as in b.  
(d) Standard model of perceptual learning. The image is preprocessed by 
a set of filters corrupted by noise. The noisy output of these filters is then 
fed into a single decision unit trained to optimize discrimination between 
two orientations.
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Figure 2  Network architecture. (a) A schematic  
of the neural architecture used to simulate 
orientation discrimination. (b) Contrast  
invariance of the tuning curve of cortical  
neurons in the network shown in Figure 3,  
after one session of training, when presented  
with stimuli of nine different signal contrasts.  
The x axis represents orientation (in degrees)  
and the y axis represents firing rate (in Hz).  
The width of the tuning is roughly invariant to 
changes in contrast: only the amplitude of the 
tuning curve changes with a change in contrast. 
Similar results were obtained for the network 
before learning and after both sessions of training.
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The lateral connections are tuned to ensure that the resulting 
orientation tuning curves are contrast invariant. In other words, 
changing the contrast of the image only affects the gain of the 
cortical response (Fig. 2b), while keeping the width of the tun-
ing curves constant, as has been reported in the primary visual  

cortex34. We constrained our parameter search to preserve contrast 
invariance in all the networks discussed in this paper.

This model was used to simulate the orientation discrimination 
task used in refs. 4,27. In those experiments, subjects were asked 
to report the orientation (clockwise or counterclockwise) of Gabor 

Figure 3  Modeling perceptual learning 
using a realistic neural model of orientation 
discrimination. (a) Replicating the uniform 
shifts in TVC curves (Fig. 1b,c) using the 
neural model of orientation discrimination. 
Feedforward connections between the LGN 
and V1 were adjusted in a manner that moved 
them toward a matched filter for the stimulus. 
After training, we reran ten new simulations 
with ±10% independent noise added to the 
final (training session 2) feedforward thalamo-
cortical weights. Pink dashed line, average TVC 
curve across the ten runs; error bars, 1 s.d. 
(b) Tuning curves of cortical neurons from the 
network, demonstrating modest amplification 
and sharpening as a result of learning.  
(c) Moving the thalamo-cortical feedforward weights toward a matched filter. The rightmost panel shows the two-dimensional spatial profile of a 
stimulus. The leftmost panel shows the two-dimensional spatial profile of the feedforward weights before learning, the second panel from left shows 
the spatial profile of the feedforward weights after one training session and the panel second from the right shows the spatial profile of the feedforward 
weights after two training sessions. Together these figures show the spatial profile of the thalamo-cortical feedforward connections moving toward the 
spatial profile of the stimulus, a manipulation that led to the changes in TVC curves shown in a.
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Figure 4  Perceptual learning and tuning curves: the role of amplification and sharpening. (a–l) Taking noise correlations into account demonstrates 
that amplification and sharpening are neither necessary nor sufficient for learning. (a,e,i) Amplification is not sufficient for learning. Parameters in this 
network were changed in a manner that led to amplification of the orientation tuning curves (a). At the level of TVC curves, the same change led to no 
improvement in performance—the TVC curve did not shift (e)—thereby showing that amplification is not sufficient for learning. Single-cell recordings in 
such a network would incorrectly conclude that performance improved during training, as illustrated by the drop of the TVC curve when computed with 
Ishuffled (i). (b,f,j) Amplification is not necessary for learning. Performance can improve in a network (f) in which the gain of the tuning curve decreases 
during learning (b). (c,g,k) Sharpening is not sufficient for learning. This network shows no change in performance (g) despite substantial sharpening of 
the tuning curves (c). (d,h,l) Sharpening is not necessary for learning. Performance can improve (h) even in the absence of any sharpening (d). All TVC 
curves were obtained for the 89% correct performance criterion.
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patches corrupted by pixel noise and oriented at either −12° or 12° 
from vertical (Fig. 1b). To model this task, we added a decision stage 
to our network in the form of a linear classifier. The linear classifier is 
equivalent to a decision unit whose activity is determined by the dot 
product of a weight vector with the population activity in the corti-
cal layer (Fig. 2a). The weights were tuned to optimize classification 
performance in the pre-training condition and were left untouched 
thereafter (see Online Methods). Network TVC curves were obtained 
using an analytical approach combined with numerical simulations. 
Specifically, we derived a lower bound on Fisher information (which is 
proportional to the inverse of the discrimination threshold of an ideal 
observer) in the cortical layer, as a function of specific network param-
eters such as the feedforward and recurrent connectivity, using our 
recent work on computing Fisher information in recurrent networks of 
spiking neurons35. We then used this expression to derive Fisher infor-
mation in the decision unit. Finally, we numerically estimated TVC 
curves using the expression for Fisher information in the decision unit, 
taking advantage of the inverse relation between Fisher information 
and the discrimination threshold19 (see Online Methods).

As several neural models of early perceptual learning modify lat-
eral connections17,18, we first explored whether such changes could 
capture the main features of perceptual learning, such as the uni-
form shift of the TVC curves. Despite an extensive parameter search 
(see Supplementary Note), this approach failed: sharpening tun-
ing curves by adjusting lateral connections often resulted in worse 
performance, and in an upward shift of the TVC curve, because 
sharpening tuning curves often modified the noise correlations 
between neurons in a way that decreased Fisher information. In 
the few cases in which the TVC curves shifted downward, we could 
never find a configuration in which the curves shifted uniformly. 
Of course, given the size of the parameter space, we cannot rule out 
the possibility that there exists a solution based only on changes 
to the lateral connections that accounts for perceptual learning. 
However, we can conclude that changes to lateral connections that 
result in sharpening or amplification do not necessarily result in 
behavioral improvement, in contrast to what previous models  
have suggested.

Next, we considered changes to feedforward connections (Fig. 3) 
and found that this approach could indeed shift the TVC curves 
nearly uniformly (Fig. 3a; see Supplementary Table 1 for parameter 
values). Notably, the ratio of any two TVC curves between training 
sessions was approximately constant across external noise levels 

(with a maximum value of 1.26 and a minimum value of 1.23), as 
has been reported experimentally27. Moreover, the ratios of any two 
TVC curves between criterion levels were approximately constant 
across noise levels (1.81 ± 0.05 in the pre-training session, 1.63 ±  
0.07 in training session 1 and 1.53 ± 0.08 in training session 2)  
and quantitatively similar to values observed experimentally27 
(1.82 ± 0.51 for the TVC curve fit to the average thresholds over 
days 1 and 2, 1.67 ± 0.22 for the TVC curve fit to the average 
thresholds over days 3 and 4 and 1.27 ± 0.15 for the TVC curve fit 
to the average thresholds over days 5 and 6). Crucially, to get these 
results, the spatial profile of the feedforward weights, between LGN 
and V1, had to be changed so as to match more closely the spatial 
profile of the stimulus (Fig. 3c). We repeated the simulations for 
three new sets of initial weights and found that the TVC curves 
always shifted uniformly as long as the weights were moved toward 
a matched filter (Supplementary Fig. 1). Our results were also 
robust to variability in the value of the final weights. Adding inde-
pendent noise of ±10% to the final weights resulted in variability 
in the TVC curves (error bars in Fig. 3a), but the shift remains 
close to uniform.

These results show that it is possible to capture the main features 
of perceptual learning–induced TVC curve changes by adjusting the 
feedforward connectivity in early visual areas. This solution has the 
added advantage of capturing the specificity of perceptual learning 
to retinal location because it involves changing weights at a specific 
location on the retinotopic map.

The role of amplification and sharpening
The amplitude of the tuning curve of a trained cortical neuron grows 
slightly with training, and the width is slightly reduced, thereby 
revealing modest amounts of amplification and sharpening (Fig. 3b). 
These changes are consistent with neurophysiological recordings in 
animals trained on orientation discrimination, which have reported 
that the tuning curves in both V1 and V4 are sharpened and/or ampli-
fied during perceptual learning8,9,16. However, these effects have been 
reported to be small, particularly in V1. Indeed, some studies did not 
find any appreciable sharpening or amplification36, whereas others 
found only a small amount of sharpening or amplification8,9, as is the 
case in our network.

Nonetheless, the fact that the tuning curves in our model show 
amplification and sharpening would seem to be consistent with con-
clusions from previous models that have invoked these mechanisms as 
the neural basis of perceptual learning17,18. Yet this would be mislead-
ing because, in our model, amplification and sharpening are neither 
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sufficient nor necessary to account for perceptual learning (Fig. 4). 
For instance, with appropriate choice of parameters, it is possible to 
find a network in which the tuning curves are amplified (Fig. 4a) 
but in which the TVC curve shows no shift (Fig. 4e), corresponding 
to no change in performance and a lack of perceptual learning. This 
indicates that amplification is not sufficient for perceptual learning. 
The opposite scenario is also possible (Fig. 4b): in this case, the tuning  
curves show depression, as opposed to amplification, but the TVC 
curve shifts downward (Fig. 4f) in line with changes observed during 
perceptual learning. This implies that amplification is not necessary 
for learning. Equivalently, sharpening, like amplification, is neither 
sufficient (Fig. 4c,g) nor necessary (Fig. 4d,h) for learning. (See 
Supplementary Table 2 for parameter values.)

These results demonstrate that single cell responses alone are insuf-
ficient to predict behavioral performance. To get a comprehensive 
neural theory of perceptual learning, one must also consider the cor-
relations between cells.

The role of noise correlations
Noise correlations, before learning, were within the range −0.1 to 0.4 
(Fig. 5), which is consistent with the values reported in vivo20,37,38. 
Moreover, correlations tended to decrease with the difference in 
preferred orientations between pairs of cells, as is typically found 
in models of orientation selectivity and in vivo20,38. After learning, 
correlation coefficients showed the same dependence on the dif-
ference in preferred orientation but the overall amplitude of the 
coefficients was reduced (Fig. 5).

It would be tempting to conclude that the increase in information is 
due to this general decrease in correlations, but one must be cautious 
with such conclusions. Just as sharpening the tuning curve does not 
guarantee an increase in information, neither does a decrease in cor-
relation coefficients. The increase in information is determined by a 
combination of a change in the pattern of correlations and a change 
in the shape of the tuning curves. To determine more quantitatively 
the contribution of correlations to the increase in Fisher information 
in our network, we used a recently proposed metric20. We compared 
the increase in information across training sessions for the network 
shown in Figure 3 against the change in information in a virtual 
population of neurons with the same change in correlations but with 
identical tuning curves across training sessions. This analysis revealed 
that correlations contribute to 70% of the increase in Fisher infor-
mation, indicating that correlations are responsible for much of the 
performance improvement.

In addition, to illustrate the kind of errors that one would encounter 
by ignoring correlations, we plotted the TVC curves for all the networks 
we have described so far, but using an information theoretic quantity 
called Ishuffled: the Fisher information in a set of neurons with the same 
single-cell response statistics as in the original data but without correla-
tions19. This is effectively the measure used in some previous models17,18 
and in neurophysiological studies using single-cell recordings.

This analysis revealed that the changes in TVC curves derived from 
Ishuffled do not necessarily reflect changes in the TVC curves derived 
from the true Fisher information (Fig. 4i–l). For instance, consider 
a network in which the tuning curve sharpens as a result of training 
(Fig. 4c,g,k). As one would expect from previous work on popula-
tion codes with independent noise, a sharpening of the tuning curves 
increases Ishuffled, which results in a downward shift of the TVC curve 
(Fig. 4k). Yet the true TVC curve for this particular network does not 
shift during training, indicating no change in performance (Fig. 4g). 
In addition, the TVC curve derived from Ishuffled does not have the 
right profile: it remains basically flat over the range of external noise 
values tested (Fig. 4k). In a different network, one in which the tuning 
curves are depressed as a result of training (Fig. 4b,f,j), the shift in the 
TVC curve derived from Ishuffled differs from the shift in the true TVC 
curve: the TVC curve derived from Ishuffled shifts upward (Fig. 4j),  
whereas the true TVC curve shifts downward (Fig. 4f).

Finally, we also computed the TVC curves from Ishuffled for the 
network shown in Figure 3, in which we modify the feedforward 
connections. In this network, the TVC curves from Ishuffled move 
in the right direction, but the curves are much too flat compared 
to the real ones, and the amount by which they move is consider-
ably less than the shift obtained with the true information (Fig. 6). 
Therefore, although the TVC curves derived from Ishuffled move in 

Figure 7  The effect of subsampling. (a,b) TVC curves obtained from 
subsets of neurons in the networks shown in Figure 3 (a) and Figure 4b,f,j (b).  
The plots in each panel were obtained by simulating the full network, but 
computing the TVC curve based on the response of a randomly picked 
sample of neurons. Number of neurons in each subset is indicated on each 
panel and varies from 256 to 32. (a) TVC curves obtained by subsampling 
the network shown in Figure 3. The results are qualitatively the same, 
even when we sample as few as 32 neurons. (b) TVC curves obtained by 
subsampling the network shown in Figure 4b,f,j. With 256 neurons, the 
results are similar to the results obtained with the full network (Fig. 4f), 
whereas with only 32 neurons, the result starts mimicking the results 
obtained with Ishuffled (Fig. 4j). The upward shift of the TVC curve with 
learning, observed with 32 cells, is therefore an artifact of subsampling 
and does not reflect the behavior of the whole neuronal population. All 
TVC curves were obtained for the 79% correct performance criterion.
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the right direction in this case, they still do not accurately reflect 
the TVC curves obtained from Fisher information.

Subsampling neurons: how many does it take?
Our results suggest that the neural basis of perceptual learning can 
only be revealed by recording the tuning curves and noise correlations 
of all the neurons involved in the task within a cortical area. However, 
such recordings are not available. Although multi-electrode arrays 
make it possible to record from many neurons simultaneously, this 
technique can only record the responses from a small fraction of all 
the neurons present in a given cortical patch38,39.

To determine whether the same conclusions would be reached 
in our simulated networks when recording from fewer neurons, we 
derived the TVC curves from subsets of neurons. More specifically, 
we simulated each of the networks considered so far with 256 neu-
rons in the cortical layer, but we computed information from the 
responses of only a subset of randomly sampled cortical neurons. We 
then generated TVC curves based on this measure of information. 
The TVC curves derived for the network shown in Figure 3, based 
on the responses of 256, 128, 64 and 32 neurons, are qualitatively the 
same, even when we sample as little as 32 neurons (Fig. 7a).

However, this does not hold for all networks, as can be seen with the 
TVC curves derived for the network shown in Figure 4b,f,j using sub-
sets of varying size (Fig. 7b). In this network, training led to a depres-
sion of the tuning curve amplitude and the TVC curves derived from 
the true Fisher information with all 256 neurons shifted downward, 
indicating a performance improvement. In contrast, the TVC curves 
estimated from 32 neurons show the reverse trend: performance is 
degraded as a result of training (Fig. 7b).

These results suggest that, in some networks, when we only consider 
the responses of a subset of a population of cortical neurons, we may not 
retain all the qualitative results obtained by considering the entire popu-
lation, even when we have enough data to accurately characterize the 
correlations (see Supplementary Fig. 2 for more examples). This in turn 
implies that a discrepancy between behavioral results and the information 
content of a subpopulation of neurons should not necessarily be taken as 
evidence that the recorded area does not play a role in learning.

DISCUSSION
We explored the neural basis for the improvement in behavioral per-
formance observed during perceptual learning in a fine orientation dis-
crimination task. Classical neural theories have argued that perceptual 
learning is mediated through a steepening—by means of amplification 
or sharpening—of the tuning curves of neurons in early sensory areas. 
Further, they have proposed that tuning curves are steepened through 
changes in the lateral connections between neurons in early cortical 
sites17,18. Our analysis suggests a different picture: given the observed 
changes in TVC curves, learning can be explained by changes in the 
feedforward connections between the thalamus and the primary visual  
cortex. More specifically, the feedforward connections must be modi-
fied in a manner that moves them toward a matched filter for the 
stimulus. These modifications also result in modest changes in tuning 
curves, in line with what has been reported in vivo, and in a decrease 
in the magnitude of pairwise noise correlations. To our knowledge, 
this is the first neural theory of perceptual learning that is consistent 
with the mean change in neural response in early visual areas, with the 
response statistics of sensory neurons, and with the uniform down-
ward shift in TVC curves documented in human observers.

One of the limitations of some previous theories of perceptual learn-
ing has been the assumption that neural variability remained the same 
before and after learning28,31. Under this assumption, steepening tuning 

curves can indeed improve behavioral performance. In contrast, we 
have shown here that when learning-induced changes in correlations 
are taken into account, steepening of tuning curves is neither neces-
sary nor sufficient for learning. Therefore, the key to the neural basis of 
perceptual learning may have less to do with how tuning curves change 
and more to do with how the connectivity is adjusted to improve the 
inference performed by neural circuits. Such changes to neural con-
nectivity can still affect tuning curves, but it is the combination of the 
change in tuning curves and the change in correlations that ultimately 
determines the presence or absence of learning.

Although this paper focuses on changes in early sensory areas, our 
work is conceptually related to late theories of perceptual learning. In 
late theories of perceptual learning, neural processing is decomposed 
into two stages: a sensory processing stage followed by a readout or 
decision stage. The readout stage is typically formalized as a probabil-
istic inference stage, whose goal is to compute the probability distribu-
tion over possible choices given the sensory evidence28,31,40. During 
learning, the weights between the early and late areas are adjusted 
so as to bring the probability distribution over choices closer to the 
optimal posterior distribution that would be obtained by applying 
Bayes’ rule to the output of the early sensory stage, which in turn 
leads to a uniform shift in TVC curves. This perspective is in line with 
several neurophysiological and modeling results that strongly suggest 
that neurons in areas such as LIP encode probability distributions, or 
likelihood functions, over choices and actions41,42.

Here we argue that perceptual learning might be due to improved 
probabilistic inference induced by changes at the sensory processing 
stage rather than at the decision stage (at least in the case of orientation 
discrimination). This possibility has been ignored in the past, in part 
because it is not common to think of early visual areas as performing 
probabilistic inference. Instead, the responses of neurons in early sensory 
areas are typically modeled as noisy nonlinear filters encoding scalar 
estimates of variables such as orientation. Recent theories43,44 have chal-
lenged this perspective and suggested that, even in early sensory areas, 
neural patterns of activity might in fact represent probability distributions 
or likelihood functions. This raises the possibility that learning in early 
visual areas involves an improvement in probabilistic inference that could 
in turn lead to a uniform shift in TVC curves. This is very much the logic 
that we have pursued here. Therefore, our solution is computationally 
very similar to the one proposed by late theories. Indeed, our model 
does not supersede previous models of late perceptual learning28,31,40 
but instead complements them by showing how similar results can be 
obtained by modifying population codes in early sensory areas. Our 
approach, however, has one significant advantage: it accounts for the fact 
that neural responses change in early and midlevel visual areas as a result 
of training on an orientation discrimination task8,9,16, an experimental 
observation that is difficult to reconcile with late theories.

Ultimately, whether perceptual learning involves early or late 
stages (or both) is likely to depend on the task, the sensory modalities 
involved and the nature of the feedback and training received by sub-
jects. For example, in the somatosensory and auditory systems, large 
changes have been reported in primary sensory cortices as a result of 
perceptual learning6,7. In the visual system, by contrast, whereas train-
ing on orientation discrimination seems to engage early and midlevel 
areas such as V1 and V4 (refs. 8,9,16,45), training on other tasks, such 
as motion discrimination, triggers changes in late areas such as LIP30. 
Moreover, double training on contrast and orientation discrimination 
seems to trigger learning in both early and late areas, with nearly com-
plete transfer of learning across trained locations13,14. Our approach 
could be extended to all of these forms of learning, as none of what we 
have presented is specific to the LGN-V1 architecture used here.
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Finally, although we have focused on perceptual learning, our 
approach can be generalized to other domains such as adaptation or 
attention. In the case of attention, our approach (as well as our previous 
work; see ref. 46) would suggest that changes in noise correlations might 
be critical in the behavioral improvement associated with enhanced 
attention, perhaps more so than changes in tuning curves, which are 
typically the focus of single-cell studies47,48. Of note, it was recently 
reported20 that changes in correlations account for 86% of the behavioral 
improvement triggered by attention. Likewise, another recent study37 
found that correlations are critical for adaptation. It will be important 
to investigate whether these neural changes can also account for the 
changes in TVC curves induced by attention or adaptation.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/natureneuroscience/.

Note: Supplementary information is available on the Nature Neuroscience website.
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ONLINE METHODS
Stimulus design. We generated stimulus displays that mimicked those used in 
earlier perceptual learning experiments4,27. The signals were Gabor patterns tilted 
θs° to the right or left of vertical. Each stimulus image was created by assigning 
grayscale values to image pixels according to the following function: 
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where
    Cx = x cos θ + y sin θ
    Cy = y cos θ − x sin θ
    θ = rad(90 ± θs)

and x and y are the horizontal and vertical coordinates respectively, K is the  
spatial frequency of the Gabor pattern, σx and σy are the s.d. (extent) of the Gabor 
pattern in the x and y directions respectively, Z0 is the mean, or background, 
grayscale value for the image and c is the maximum contrast of the Gabor pat-
tern as a proportion of the maximum achievable contrast. In all our experimen-
tal conditions, θs was set to 12°, the spatial frequency K was set to 0.75 cycles 
per degree, σx was set to 0.4, σy was set to 0.4 and Z0 was set to 126.22, which 
was the equivalent mean grayscale value used in the earlier perceptual learning  
studies4,27. The maximum contrast of the Gabor, labeled the signal contrast, var-
ied depending on the experimental condition.

Pixel gray levels for the external noise were drawn from a Gaussian distribu-
tion with mean 0 and s.d. depending on the experimental condition. As in the 
earlier studies4,27, we used eight external noise levels in which the s.d. of the 
external noise distribution was varied as a proportion of the maximum achievable 
contrast. The effective noise levels we used were 0.005%, 2%, 4%, 8%, 12%, 16%, 
25% and 33%. Each noise element included a single pixel and the noise gray level 
values were added to the stimulus gray level values on a pixel-by-pixel basis to 
generate the noise-injected image.

Modeling orientation selectivity. We simulated the circuits involved in one ori-
entation hypercolumn of primary visual cortex using a network model of spiking 
neurons subject to realistic variability. Several aspects of the model are based 
on previous models of orientation discrimination, particularly the models in  
refs. 33 and 22. The model consists of three layers: retina, LGN and V1. The 
retinal and LGN stages closely follow those described in ref. 22, with one  
difference being that we only model the spatial receptive fields of retinal and 
LGN cells, owing to the temporally stationary nature of our stimuli. The retinal 
stage corresponds to grids of uncoupled, ON and OFF ganglion cells modeled by 
difference-of-Gaussian filters. The output of each retinal filter is passed through a 
nonlinearity to produce an analog firing rate that accounts for stimulus contrast 
sensitivity. These firing rates are then used by the cells at the LGN stage to gener-
ate spikes according to a Poisson process.

The V1 stage represents a hypercolumn of orientation-selective layer 4 simple 
cells. It comprises 256 LNP units that are coupled to each other through lateral con-
nections. LNP units represent a mathematical description that provides a good model 
of integrate-and-fire neurons in the physiologically realistic high-noise limit49, while 
still being analytically tractable. The cortical simple-cell receptive field structure is 
established through a segregation of ON and OFF LGN inputs into ON and OFF 
subfields and is modeled using a Gabor function. Each cortical cell receives connec-
tions from all the LGN cells within a subfield boundary, with ON subfields yielding 
connections from all ON-center LGN cells and OFF subfields yielding connections 
from all OFF-center LGN cells. We implement full lateral connectivity: every cell is 
coupled with every other cell in the cortical layer. Unlike previous models of orien-
tation selectivity, the cortical layer in our model includes only excitatory neurons. 
We are nevertheless able to implement the full range of excitatory and inhibitory 
lateral connectivity to a given cell by allowing the strength of a recurrent connection 
between two cells to be either positive or negative. We model all the lateral connec-
tions as being inhibitory in polarity by making the baseline connection strength sub-
stantially negative. However, the pattern of connection strengths between neurons 
versus the difference in their preferred orientations is chosen so that the connection 
strengths form a ‘Mexican hat’ function33, relative to baseline.

(1)(1)

The parameters of the model are adjusted so that the response properties of 
individual cells in the cortical layer of our network closely match the response 
properties of V1 neurons in vivo. First, because we model cortical cells as LNP 
units, the variability of generated spikes is guaranteed to be of the Poisson form, 
which is a good description of neural variability in vivo. Second, the response 
of cortical cells in our network shows the characteristic contrast-invariance that 
has been reliably demonstrated in orientation-selective cells in the primary visual 
cortex34. Finally, units in the network are subject to realistic inter-neuronal noise 
correlations that arise from an interaction between the variability in the stimulus, 
the variability in neuronal firing and the pattern of network connections, and not 
from any artificial injection of variability.

In the perceptual learning experiments we modeled4,27, subjects were asked 
to report the orientation of Gabor patches corrupted by pixel noise and oriented 
at either −12° or 12° from vertical. To model this task, we added a decision stage 
to our network in the form of a linear classifier. The linear classifier is equivalent 
to a decision unit whose activity is determined by the dot product of a weight 
vector with the population activity in the cortical layer. The weights were tuned 
to optimize classification performance in the pretraining condition and were left 
untouched thereafter.

Computing discrimination performance. We compute the orientation dis-
crimination performance of our network, when presented with the noisy 
oriented Gabor stimuli (described above), by estimating Fisher information. 
Discrimination thresholds can be computed by means of Fisher information 
because Fisher information is inversely proportional to the discrimination thresh-
old of an ideal observer; that is, it directly predicts performance in discrimination 
tasks. Recently, we have derived an analytic expression for the linear Fisher infor-
mation in a population of LNP neurons driven to a noise-perturbed steady state35. 
Linear Fisher information corresponds to the fraction of Fisher information that 
can be recovered by a locally optimal linear estimator. In practice, linear Fisher 
information has been found to provide a tight bound on total Fisher information, 
both in simulations22 and in vivo19. This expression can be written as follows: 

I M M M D GD MT T= ( ) +



 ( )− − −

h h′ ′Ghh
1 1 1

where M represents the matrix of thalamo-cortical feedforward connections, 
h represents the mean input firing rates from the thalamus, h′ represents the 
derivative of h with respect to orientation, Γhh represents the covariance matrix 
of the input firing rates from the thalamus, G is a diagonal matrix whose entries 
give the mean response of the LNP neurons and D is a diagonal matrix that gives 
the derivative, or slope, of the activation function G of the cortical neurons in 
steady state.

The expression in equation (2) is based on the assumption that the decoder 
used to read out the activity of the cortical layer is the optimal decoder for the 
specific network. However, in this study, we are interested in highlighting the 
changes in early response properties that could lead to the observed behavio-
ral improvements, while keeping the decoder constant. Thus, on the basis of 
previous work50, we derived another form of the expression in equation (2), for 
the Fisher information in our network using a fixed decoder, which takes the 
following form: 

I
T

TW
W

W W
dec

dec

dec dec
( ) =

( )m′
2

G

where 

m′ ′= −( )
= −( ) +



 −( )

− −

− − − − − −

D W M

D W M M D GD D W
T T

1 1

1 1 1 1 1 1

h

G Ghh

Wdec represents the pattern of connection weights from the cortical layer to the 
decision stage—that is, the fixed decoder described earlier—and W represents 
the matrix of cortical recurrent connections.

Deriving TVC curves. Using the expression in equation (3) allows us to compute 
the Fisher information, and hence the discrimination threshold, at the decision 
stage in response to a specific stimulus. In the perceptual learning studies we 

(2)(2)

(3)(3)
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modeled4,27, a staircase over signal contrast was used to generate a TVC curve 
that represents the signal contrast needed to elicit a specific level of perform-
ance (represented by percentage correct performance), given a particular level 
of external noise. In our simulations of those experiments, we numerically obtain 
TVC curves using the analytic expression in equation (3). Specifically, we first 
compute the Fisher information at the decision stage using stimuli with a wide 
range of signal contrasts and a specific level of external noise. We used 15 signal 
contrast levels: 1.25%, 1.5%, 2%, 2.5%, 3%, 3.5%, 4%, 5%, 6%, 7%, 8%, 10%, 12%, 
14% and 16%. We then repeat this process with the eight levels of external noise 
used by the earlier studies4,27. Finally, we compute an iso-information contour, for 
a value of information that is equivalent to the percentage correct criterion used 
by the earlier studies4,27 (computed by means of signal detection theory), through 
the matrix of information generated by the previous two steps, to obtain a TVC 
curve. As a result of this process, we are able to generate from our network TVC 
curves, or orientation discrimination performance curves, equivalent to those 
generated for the human subjects in the perceptual studies4,27.

Ishuffled. We denote as Ishuffled the information available in an artificial data set 
in which the activity of the cortical units was shuffled across trials to remove all 
noise correlations across cells. This shuffling operation is analogous to making 
single-cell recordings and generating artificial population patterns of activity by 
grouping the activity of different cells collected under the same stimulus condi-
tions. To compute Ishuffled for a given stimulus, we consider only the diagonal 

elements of the cortical covariance matrix (that is, we consider only the variance 
terms and assume no covariance) when computing the information at the deci-
sion stage using the analytic expression in equation (3). To then compute TVC 
curves based on Ishuffled, we use the same numerical approach as that used in 
computing TVC curves based on the true information (described above).

Subsampling neuronal populations. To quantify the results we would have 
obtained from our simulations had we been able to record only from a subset 
of the simulated cortical neurons, we also computed information on the basis of 
only the responses of a subset of randomly sampled cortical neurons. To do this, 
we again simulated all of the networks considered in the main paper with the full 
256 neurons in the cortical layer. However, when we compute information using 
the expression in equation (3), we only use the activities and the correlations 
derived from a randomly sampled subset of neurons, and the weights from these 
neurons to the decision stage, in computing the Fisher information at the deci-
sion stage. We then use the same numerical approach as that used in computing 
TVC curves on the basis of the true information, to compute TVC curves based 
on the subsampled information. To quantify the effect of varying sample size, we 
repeated this process for random samples of 128, 64 and 32 neurons.

49.	Gerstner, W. & Kistler, W. Spiking Neuron Models: An Introduction (Cambridge Univ. 
Press, New York, 2002).

50.	Wu, S., Nakahara, H. & Amari, S.I. Population coding with correlation and an 
unfaithful model. Neural Comput. 13, 775–797 (2001).
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